kernfs_vnops.c revision 1.109 1 /* $NetBSD: kernfs_vnops.c,v 1.109 2005/05/29 21:55:33 christos Exp $ */
2
3 /*
4 * Copyright (c) 1992, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software donated to Berkeley by
8 * Jan-Simon Pendry.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)kernfs_vnops.c 8.15 (Berkeley) 5/21/95
35 */
36
37 /*
38 * Kernel parameter filesystem (/kern)
39 */
40
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: kernfs_vnops.c,v 1.109 2005/05/29 21:55:33 christos Exp $");
43
44 #ifdef _KERNEL_OPT
45 #include "opt_ipsec.h"
46 #endif
47
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/kernel.h>
51 #include <sys/vmmeter.h>
52 #include <sys/time.h>
53 #include <sys/proc.h>
54 #include <sys/vnode.h>
55 #include <sys/malloc.h>
56 #include <sys/file.h>
57 #include <sys/stat.h>
58 #include <sys/mount.h>
59 #include <sys/namei.h>
60 #include <sys/buf.h>
61 #include <sys/dirent.h>
62 #include <sys/msgbuf.h>
63
64 #include <miscfs/genfs/genfs.h>
65 #include <miscfs/kernfs/kernfs.h>
66
67 #ifdef IPSEC
68 #include <sys/mbuf.h>
69 #include <net/route.h>
70 #include <netinet/in.h>
71 #include <netinet6/ipsec.h>
72 #include <netkey/key.h>
73 #endif
74
75 #include <uvm/uvm_extern.h>
76
77 #define KSTRING 256 /* Largest I/O available via this filesystem */
78 #define UIO_MX 32
79
80 #define READ_MODE (S_IRUSR|S_IRGRP|S_IROTH)
81 #define WRITE_MODE (S_IWUSR|S_IRUSR|S_IRGRP|S_IROTH)
82 #define UREAD_MODE (S_IRUSR)
83 #define DIR_MODE (S_IRUSR|S_IXUSR|S_IRGRP|S_IXGRP|S_IROTH|S_IXOTH)
84 #define UDIR_MODE (S_IRUSR|S_IXUSR)
85
86 #define N(s) sizeof(s)-1, s
87 const struct kern_target kern_targets[] = {
88 /* NOTE: The name must be less than UIO_MX-16 chars in length */
89 /* name data tag type ro/rw */
90 { DT_DIR, N("."), 0, KFSkern, VDIR, DIR_MODE },
91 { DT_DIR, N(".."), 0, KFSroot, VDIR, DIR_MODE },
92 { DT_REG, N("boottime"), &boottime.tv_sec, KFSint, VREG, READ_MODE },
93 /* XXXUNCONST */
94 { DT_REG, N("copyright"), __UNCONST(copyright),
95 KFSstring, VREG, READ_MODE },
96 { DT_REG, N("hostname"), 0, KFShostname, VREG, WRITE_MODE },
97 { DT_REG, N("hz"), &hz, KFSint, VREG, READ_MODE },
98 #ifdef IPSEC
99 { DT_DIR, N("ipsecsa"), 0, KFSipsecsadir, VDIR, UDIR_MODE },
100 { DT_DIR, N("ipsecsp"), 0, KFSipsecspdir, VDIR, UDIR_MODE },
101 #endif
102 { DT_REG, N("loadavg"), 0, KFSavenrun, VREG, READ_MODE },
103 { DT_REG, N("msgbuf"), 0, KFSmsgbuf, VREG, READ_MODE },
104 { DT_REG, N("pagesize"), &uvmexp.pagesize, KFSint, VREG, READ_MODE },
105 { DT_REG, N("physmem"), &physmem, KFSint, VREG, READ_MODE },
106 #if 0
107 { DT_DIR, N("root"), 0, KFSnull, VDIR, DIR_MODE },
108 #endif
109 { DT_BLK, N("rootdev"), &rootdev, KFSdevice, VBLK, READ_MODE },
110 { DT_CHR, N("rrootdev"), &rrootdev, KFSdevice, VCHR, READ_MODE },
111 { DT_REG, N("time"), 0, KFStime, VREG, READ_MODE },
112 /* XXXUNCONST */
113 { DT_REG, N("version"), __UNCONST(version),
114 KFSstring, VREG, READ_MODE },
115 };
116 const struct kern_target subdir_targets[] = {
117 /* NOTE: The name must be less than UIO_MX-16 chars in length */
118 /* name data tag type ro/rw */
119 { DT_DIR, N("."), 0, KFSsubdir, VDIR, DIR_MODE },
120 { DT_DIR, N(".."), 0, KFSkern, VDIR, DIR_MODE },
121 };
122 #ifdef IPSEC
123 const struct kern_target ipsecsa_targets[] = {
124 /* NOTE: The name must be less than UIO_MX-16 chars in length */
125 /* name data tag type ro/rw */
126 { DT_DIR, N("."), 0, KFSipsecsadir, VDIR, DIR_MODE },
127 { DT_DIR, N(".."), 0, KFSkern, VDIR, DIR_MODE },
128 };
129 const struct kern_target ipsecsp_targets[] = {
130 /* NOTE: The name must be less than UIO_MX-16 chars in length */
131 /* name data tag type ro/rw */
132 { DT_DIR, N("."), 0, KFSipsecspdir, VDIR, DIR_MODE },
133 { DT_DIR, N(".."), 0, KFSkern, VDIR, DIR_MODE },
134 };
135 const struct kern_target ipsecsa_kt =
136 { DT_DIR, N(""), 0, KFSipsecsa, VREG, UREAD_MODE };
137 const struct kern_target ipsecsp_kt =
138 { DT_DIR, N(""), 0, KFSipsecsp, VREG, UREAD_MODE };
139 #endif
140 #undef N
141 SIMPLEQ_HEAD(,dyn_kern_target) dyn_kern_targets =
142 SIMPLEQ_HEAD_INITIALIZER(dyn_kern_targets);
143 int nkern_targets = sizeof(kern_targets) / sizeof(kern_targets[0]);
144 const int static_nkern_targets = sizeof(kern_targets) / sizeof(kern_targets[0]);
145 #ifdef IPSEC
146 int nipsecsa_targets = sizeof(ipsecsa_targets) / sizeof(ipsecsa_targets[0]);
147 int nipsecsp_targets = sizeof(ipsecsp_targets) / sizeof(ipsecsp_targets[0]);
148 int nkern_dirs = 4; /* 2 extra subdirs */
149 #else
150 int nkern_dirs = 2;
151 #endif
152
153 int kernfs_try_fileop(kfstype, kfsfileop, void *, int);
154 int kernfs_try_xwrite(kfstype, const struct kernfs_node *, char *,
155 size_t, int);
156
157 static int kernfs_default_xwrite(void *v);
158 static int kernfs_default_fileop_getattr(void *);
159
160 /* must include all fileop's */
161 const struct kernfs_fileop kernfs_default_fileops[] = {
162 { .kf_fileop = KERNFS_XWRITE },
163 { .kf_fileop = KERNFS_FILEOP_OPEN },
164 { .kf_fileop = KERNFS_FILEOP_GETATTR,
165 .kf_genop = {kernfs_default_fileop_getattr} },
166 { .kf_fileop = KERNFS_FILEOP_IOCTL },
167 { .kf_fileop = KERNFS_FILEOP_CLOSE },
168 { .kf_fileop = KERNFS_FILEOP_WRITE, .kf_genop = {kernfs_default_xwrite} },
169 };
170
171 int kernfs_lookup __P((void *));
172 #define kernfs_create genfs_eopnotsupp
173 #define kernfs_mknod genfs_eopnotsupp
174 int kernfs_open __P((void *));
175 int kernfs_close __P((void *));
176 int kernfs_access __P((void *));
177 int kernfs_getattr __P((void *));
178 int kernfs_setattr __P((void *));
179 int kernfs_read __P((void *));
180 int kernfs_write __P((void *));
181 #define kernfs_fcntl genfs_fcntl
182 int kernfs_ioctl __P((void *));
183 #define kernfs_poll genfs_poll
184 #define kernfs_revoke genfs_revoke
185 #define kernfs_fsync genfs_nullop
186 #define kernfs_seek genfs_nullop
187 #define kernfs_remove genfs_eopnotsupp
188 int kernfs_link __P((void *));
189 #define kernfs_rename genfs_eopnotsupp
190 #define kernfs_mkdir genfs_eopnotsupp
191 #define kernfs_rmdir genfs_eopnotsupp
192 int kernfs_symlink __P((void *));
193 int kernfs_readdir __P((void *));
194 #define kernfs_readlink genfs_eopnotsupp
195 #define kernfs_abortop genfs_abortop
196 int kernfs_inactive __P((void *));
197 int kernfs_reclaim __P((void *));
198 #define kernfs_lock genfs_lock
199 #define kernfs_unlock genfs_unlock
200 #define kernfs_bmap genfs_badop
201 #define kernfs_strategy genfs_badop
202 int kernfs_print __P((void *));
203 #define kernfs_islocked genfs_islocked
204 int kernfs_pathconf __P((void *));
205 #define kernfs_advlock genfs_einval
206 #define kernfs_blkatoff genfs_eopnotsupp
207 #define kernfs_valloc genfs_eopnotsupp
208 #define kernfs_vfree genfs_nullop
209 #define kernfs_truncate genfs_eopnotsupp
210 #define kernfs_update genfs_nullop
211 #define kernfs_bwrite genfs_eopnotsupp
212 #define kernfs_putpages genfs_putpages
213
214 static int kernfs_xread __P((struct kernfs_node *, int, char **, size_t, size_t *));
215 static int kernfs_xwrite __P((const struct kernfs_node *, char *, size_t));
216
217 int (**kernfs_vnodeop_p) __P((void *));
218 const struct vnodeopv_entry_desc kernfs_vnodeop_entries[] = {
219 { &vop_default_desc, vn_default_error },
220 { &vop_lookup_desc, kernfs_lookup }, /* lookup */
221 { &vop_create_desc, kernfs_create }, /* create */
222 { &vop_mknod_desc, kernfs_mknod }, /* mknod */
223 { &vop_open_desc, kernfs_open }, /* open */
224 { &vop_close_desc, kernfs_close }, /* close */
225 { &vop_access_desc, kernfs_access }, /* access */
226 { &vop_getattr_desc, kernfs_getattr }, /* getattr */
227 { &vop_setattr_desc, kernfs_setattr }, /* setattr */
228 { &vop_read_desc, kernfs_read }, /* read */
229 { &vop_write_desc, kernfs_write }, /* write */
230 { &vop_fcntl_desc, kernfs_fcntl }, /* fcntl */
231 { &vop_ioctl_desc, kernfs_ioctl }, /* ioctl */
232 { &vop_poll_desc, kernfs_poll }, /* poll */
233 { &vop_revoke_desc, kernfs_revoke }, /* revoke */
234 { &vop_fsync_desc, kernfs_fsync }, /* fsync */
235 { &vop_seek_desc, kernfs_seek }, /* seek */
236 { &vop_remove_desc, kernfs_remove }, /* remove */
237 { &vop_link_desc, kernfs_link }, /* link */
238 { &vop_rename_desc, kernfs_rename }, /* rename */
239 { &vop_mkdir_desc, kernfs_mkdir }, /* mkdir */
240 { &vop_rmdir_desc, kernfs_rmdir }, /* rmdir */
241 { &vop_symlink_desc, kernfs_symlink }, /* symlink */
242 { &vop_readdir_desc, kernfs_readdir }, /* readdir */
243 { &vop_readlink_desc, kernfs_readlink }, /* readlink */
244 { &vop_abortop_desc, kernfs_abortop }, /* abortop */
245 { &vop_inactive_desc, kernfs_inactive }, /* inactive */
246 { &vop_reclaim_desc, kernfs_reclaim }, /* reclaim */
247 { &vop_lock_desc, kernfs_lock }, /* lock */
248 { &vop_unlock_desc, kernfs_unlock }, /* unlock */
249 { &vop_bmap_desc, kernfs_bmap }, /* bmap */
250 { &vop_strategy_desc, kernfs_strategy }, /* strategy */
251 { &vop_print_desc, kernfs_print }, /* print */
252 { &vop_islocked_desc, kernfs_islocked }, /* islocked */
253 { &vop_pathconf_desc, kernfs_pathconf }, /* pathconf */
254 { &vop_advlock_desc, kernfs_advlock }, /* advlock */
255 { &vop_blkatoff_desc, kernfs_blkatoff }, /* blkatoff */
256 { &vop_valloc_desc, kernfs_valloc }, /* valloc */
257 { &vop_vfree_desc, kernfs_vfree }, /* vfree */
258 { &vop_truncate_desc, kernfs_truncate }, /* truncate */
259 { &vop_update_desc, kernfs_update }, /* update */
260 { &vop_bwrite_desc, kernfs_bwrite }, /* bwrite */
261 { &vop_putpages_desc, kernfs_putpages }, /* putpages */
262 { NULL, NULL }
263 };
264 const struct vnodeopv_desc kernfs_vnodeop_opv_desc =
265 { &kernfs_vnodeop_p, kernfs_vnodeop_entries };
266
267 static __inline int
268 kernfs_fileop_compare(struct kernfs_fileop *a, struct kernfs_fileop *b)
269 {
270 if (a->kf_type < b->kf_type)
271 return -1;
272 if (a->kf_type > b->kf_type)
273 return 1;
274 if (a->kf_fileop < b->kf_fileop)
275 return -1;
276 if (a->kf_fileop > b->kf_fileop)
277 return 1;
278 return (0);
279 }
280
281 SPLAY_HEAD(kfsfileoptree, kernfs_fileop) kfsfileoptree =
282 SPLAY_INITIALIZER(kfsfileoptree);
283 SPLAY_PROTOTYPE(kfsfileoptree, kernfs_fileop, kf_node, kernfs_fileop_compare);
284 SPLAY_GENERATE(kfsfileoptree, kernfs_fileop, kf_node, kernfs_fileop_compare);
285
286 kfstype
287 kernfs_alloctype(int nkf, const struct kernfs_fileop *kf)
288 {
289 static u_char nextfreetype = KFSlasttype;
290 struct kernfs_fileop *dkf, *fkf, skf;
291 int i;
292
293 /* XXX need to keep track of dkf's memory if we support
294 deallocating types */
295 dkf = malloc(sizeof(kernfs_default_fileops), M_TEMP, M_WAITOK);
296 memcpy(dkf, kernfs_default_fileops, sizeof(kernfs_default_fileops));
297
298 for (i = 0; i < sizeof(kernfs_default_fileops) /
299 sizeof(kernfs_default_fileops[0]); i++) {
300 dkf[i].kf_type = nextfreetype;
301 SPLAY_INSERT(kfsfileoptree, &kfsfileoptree, &dkf[i]);
302 }
303
304 for (i = 0; i < nkf; i++) {
305 skf.kf_type = nextfreetype;
306 skf.kf_fileop = kf[i].kf_fileop;
307 if ((fkf = SPLAY_FIND(kfsfileoptree, &kfsfileoptree, &skf)))
308 fkf->kf_genop = kf[i].kf_genop;
309 }
310
311 return nextfreetype++;
312 }
313
314 int
315 kernfs_try_fileop(kfstype type, kfsfileop fileop, void *v, int error)
316 {
317 struct kernfs_fileop *kf, skf;
318
319 skf.kf_type = type;
320 skf.kf_fileop = fileop;
321 if ((kf = SPLAY_FIND(kfsfileoptree, &kfsfileoptree, &skf)))
322 if (kf->kf_vop)
323 return kf->kf_vop(v);
324 return error;
325 }
326
327 int
328 kernfs_try_xwrite(kfstype type, const struct kernfs_node *kfs, char *bf,
329 size_t len, int error)
330 {
331 struct kernfs_fileop *kf, skf;
332
333 skf.kf_type = type;
334 skf.kf_fileop = KERNFS_XWRITE;
335 if ((kf = SPLAY_FIND(kfsfileoptree, &kfsfileoptree, &skf)))
336 if (kf->kf_xwrite)
337 return kf->kf_xwrite(kfs, bf, len);
338 return error;
339 }
340
341 int
342 kernfs_addentry(kernfs_parentdir_t *pkt, kernfs_entry_t *dkt)
343 {
344 struct kernfs_subdir *ks, *parent;
345
346 if (pkt == NULL) {
347 SIMPLEQ_INSERT_TAIL(&dyn_kern_targets, dkt, dkt_queue);
348 nkern_targets++;
349 if (dkt->dkt_kt.kt_vtype == VDIR)
350 nkern_dirs++;
351 } else {
352 parent = (struct kernfs_subdir *)pkt->kt_data;
353 SIMPLEQ_INSERT_TAIL(&parent->ks_entries, dkt, dkt_queue);
354 parent->ks_nentries++;
355 if (dkt->dkt_kt.kt_vtype == VDIR)
356 parent->ks_dirs++;
357 }
358 if (dkt->dkt_kt.kt_vtype == VDIR && dkt->dkt_kt.kt_data == NULL) {
359 ks = malloc(sizeof(struct kernfs_subdir),
360 M_TEMP, M_WAITOK);
361 SIMPLEQ_INIT(&ks->ks_entries);
362 ks->ks_nentries = 2; /* . and .. */
363 ks->ks_dirs = 2;
364 ks->ks_parent = pkt ? pkt : &kern_targets[0];
365 dkt->dkt_kt.kt_data = ks;
366 }
367 return 0;
368 }
369
370 static int
371 kernfs_xread(kfs, off, bufp, len, wrlen)
372 struct kernfs_node *kfs;
373 int off;
374 char **bufp;
375 size_t len;
376 size_t *wrlen;
377 {
378 const struct kern_target *kt;
379 #ifdef IPSEC
380 struct mbuf *m;
381 #endif
382
383 kt = kfs->kfs_kt;
384
385 switch (kfs->kfs_type) {
386 case KFStime: {
387 struct timeval tv;
388
389 microtime(&tv);
390 snprintf(*bufp, len, "%ld %ld\n", tv.tv_sec, tv.tv_usec);
391 break;
392 }
393
394 case KFSint: {
395 int *ip = kt->kt_data;
396
397 snprintf(*bufp, len, "%d\n", *ip);
398 break;
399 }
400
401 case KFSstring: {
402 char *cp = kt->kt_data;
403
404 *bufp = cp;
405 break;
406 }
407
408 case KFSmsgbuf: {
409 long n;
410
411 /*
412 * deal with cases where the message buffer has
413 * become corrupted.
414 */
415 if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) {
416 msgbufenabled = 0;
417 return (ENXIO);
418 }
419
420 /*
421 * Note that reads of /kern/msgbuf won't necessarily yield
422 * consistent results, if the message buffer is modified
423 * while the read is in progress. The worst that can happen
424 * is that incorrect data will be read. There's no way
425 * that this can crash the system unless the values in the
426 * message buffer header are corrupted, but that'll cause
427 * the system to die anyway.
428 */
429 if (off >= msgbufp->msg_bufs) {
430 *wrlen = 0;
431 return (0);
432 }
433 n = msgbufp->msg_bufx + off;
434 if (n >= msgbufp->msg_bufs)
435 n -= msgbufp->msg_bufs;
436 len = min(msgbufp->msg_bufs - n, msgbufp->msg_bufs - off);
437 *bufp = msgbufp->msg_bufc + n;
438 *wrlen = len;
439 return (0);
440 }
441
442 case KFShostname: {
443 char *cp = hostname;
444 int xlen = hostnamelen;
445
446 if (xlen >= (len - 2))
447 return (EINVAL);
448
449 memcpy(*bufp, cp, xlen);
450 (*bufp)[xlen] = '\n';
451 (*bufp)[xlen+1] = '\0';
452 len = strlen(*bufp);
453 break;
454 }
455
456 case KFSavenrun:
457 averunnable.fscale = FSCALE;
458 snprintf(*bufp, len, "%d %d %d %ld\n",
459 averunnable.ldavg[0], averunnable.ldavg[1],
460 averunnable.ldavg[2], averunnable.fscale);
461 break;
462
463 #ifdef IPSEC
464 case KFSipsecsa:
465 /*
466 * Note that SA configuration could be changed during the
467 * read operation, resulting in garbled output.
468 */
469 m = key_setdumpsa_spi(htonl(kfs->kfs_value));
470 if (!m)
471 return (ENOBUFS);
472 if (off >= m->m_pkthdr.len) {
473 *wrlen = 0;
474 m_freem(m);
475 return (0);
476 }
477 if (len > m->m_pkthdr.len - off)
478 len = m->m_pkthdr.len - off;
479 m_copydata(m, off, len, *bufp);
480 *wrlen = len;
481 m_freem(m);
482 return (0);
483
484 case KFSipsecsp:
485 /*
486 * Note that SP configuration could be changed during the
487 * read operation, resulting in garbled output.
488 */
489 if (!kfs->kfs_v) {
490 struct secpolicy *sp;
491
492 sp = key_getspbyid(kfs->kfs_value);
493 if (sp)
494 kfs->kfs_v = sp;
495 else
496 return (ENOENT);
497 }
498 m = key_setdumpsp((struct secpolicy *)kfs->kfs_v,
499 SADB_X_SPDGET, 0, 0);
500 if (!m)
501 return (ENOBUFS);
502 if (off >= m->m_pkthdr.len) {
503 *wrlen = 0;
504 m_freem(m);
505 return (0);
506 }
507 if (len > m->m_pkthdr.len - off)
508 len = m->m_pkthdr.len - off;
509 m_copydata(m, off, len, *bufp);
510 *wrlen = len;
511 m_freem(m);
512 return (0);
513 #endif
514
515 default:
516 *wrlen = 0;
517 return (0);
518 }
519
520 len = strlen(*bufp);
521 if (len <= off)
522 *wrlen = 0;
523 else {
524 *bufp += off;
525 *wrlen = len - off;
526 }
527 return (0);
528 }
529
530 static int
531 kernfs_xwrite(kfs, bf, len)
532 const struct kernfs_node *kfs;
533 char *bf;
534 size_t len;
535 {
536
537 switch (kfs->kfs_type) {
538 case KFShostname:
539 if (bf[len-1] == '\n')
540 --len;
541 memcpy(hostname, bf, len);
542 hostname[len] = '\0';
543 hostnamelen = (size_t) len;
544 return (0);
545
546 default:
547 return kernfs_try_xwrite(kfs->kfs_type, kfs, bf, len, EIO);
548 }
549 }
550
551
552 /*
553 * vp is the current namei directory
554 * ndp is the name to locate in that directory...
555 */
556 int
557 kernfs_lookup(v)
558 void *v;
559 {
560 struct vop_lookup_args /* {
561 struct vnode * a_dvp;
562 struct vnode ** a_vpp;
563 struct componentname * a_cnp;
564 } */ *ap = v;
565 struct componentname *cnp = ap->a_cnp;
566 struct vnode **vpp = ap->a_vpp;
567 struct vnode *dvp = ap->a_dvp;
568 const char *pname = cnp->cn_nameptr;
569 const struct kernfs_node *kfs;
570 const struct kern_target *kt;
571 const struct dyn_kern_target *dkt;
572 const struct kernfs_subdir *ks;
573 int error, i, wantpunlock;
574 #ifdef IPSEC
575 char *ep;
576 u_int32_t id;
577 #endif
578
579 *vpp = NULLVP;
580 cnp->cn_flags &= ~PDIRUNLOCK;
581
582 if (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME)
583 return (EROFS);
584
585 if (cnp->cn_namelen == 1 && *pname == '.') {
586 *vpp = dvp;
587 VREF(dvp);
588 return (0);
589 }
590
591 wantpunlock = (~cnp->cn_flags & (LOCKPARENT | ISLASTCN));
592 kfs = VTOKERN(dvp);
593 switch (kfs->kfs_type) {
594 case KFSkern:
595 /*
596 * Shouldn't get here with .. in the root node.
597 */
598 if (cnp->cn_flags & ISDOTDOT)
599 return (EIO);
600
601 for (i = 0; i < static_nkern_targets; i++) {
602 kt = &kern_targets[i];
603 if (cnp->cn_namelen == kt->kt_namlen &&
604 memcmp(kt->kt_name, pname, cnp->cn_namelen) == 0)
605 goto found;
606 }
607 SIMPLEQ_FOREACH(dkt, &dyn_kern_targets, dkt_queue) {
608 if (cnp->cn_namelen == dkt->dkt_kt.kt_namlen &&
609 memcmp(dkt->dkt_kt.kt_name, pname, cnp->cn_namelen) == 0) {
610 kt = &dkt->dkt_kt;
611 goto found;
612 }
613 }
614 break;
615
616 found:
617 error = kernfs_allocvp(dvp->v_mount, vpp, kt->kt_tag, kt, 0);
618 if ((error == 0) && wantpunlock) {
619 VOP_UNLOCK(dvp, 0);
620 cnp->cn_flags |= PDIRUNLOCK;
621 }
622 return (error);
623
624 case KFSsubdir:
625 ks = (struct kernfs_subdir *)kfs->kfs_kt->kt_data;
626 if (cnp->cn_flags & ISDOTDOT) {
627 kt = ks->ks_parent;
628 goto found;
629 }
630
631 SIMPLEQ_FOREACH(dkt, &ks->ks_entries, dkt_queue) {
632 if (cnp->cn_namelen == dkt->dkt_kt.kt_namlen &&
633 memcmp(dkt->dkt_kt.kt_name, pname, cnp->cn_namelen) == 0) {
634 kt = &dkt->dkt_kt;
635 goto found;
636 }
637 }
638 break;
639
640 #ifdef IPSEC
641 case KFSipsecsadir:
642 if (cnp->cn_flags & ISDOTDOT) {
643 kt = &kern_targets[0];
644 goto found;
645 }
646
647 for (i = 2; i < nipsecsa_targets; i++) {
648 kt = &ipsecsa_targets[i];
649 if (cnp->cn_namelen == kt->kt_namlen &&
650 memcmp(kt->kt_name, pname, cnp->cn_namelen) == 0)
651 goto found;
652 }
653
654 ep = NULL;
655 id = strtoul(pname, &ep, 10);
656 if (!ep || *ep || ep == pname)
657 break;
658
659 error = kernfs_allocvp(dvp->v_mount, vpp, KFSipsecsa, &ipsecsa_kt, id);
660 if ((error == 0) && wantpunlock) {
661 VOP_UNLOCK(dvp, 0);
662 cnp->cn_flags |= PDIRUNLOCK;
663 }
664 return (error);
665
666 case KFSipsecspdir:
667 if (cnp->cn_flags & ISDOTDOT) {
668 kt = &kern_targets[0];
669 goto found;
670 }
671
672 for (i = 2; i < nipsecsp_targets; i++) {
673 kt = &ipsecsp_targets[i];
674 if (cnp->cn_namelen == kt->kt_namlen &&
675 memcmp(kt->kt_name, pname, cnp->cn_namelen) == 0)
676 goto found;
677 }
678
679 ep = NULL;
680 id = strtoul(pname, &ep, 10);
681 if (!ep || *ep || ep == pname)
682 break;
683
684 error = kernfs_allocvp(dvp->v_mount, vpp, KFSipsecsp, &ipsecsp_kt, id);
685 if ((error == 0) && wantpunlock) {
686 VOP_UNLOCK(dvp, 0);
687 cnp->cn_flags |= PDIRUNLOCK;
688 }
689 return (error);
690 #endif
691
692 default:
693 return (ENOTDIR);
694 }
695
696 return (cnp->cn_nameiop == LOOKUP ? ENOENT : EROFS);
697 }
698
699 int
700 kernfs_open(v)
701 void *v;
702 {
703 struct vop_open_args /* {
704 struct vnode *a_vp;
705 int a_mode;
706 struct ucred *a_cred;
707 struct proc *a_p;
708 } */ *ap = v;
709 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
710 #ifdef IPSEC
711 struct mbuf *m;
712 struct secpolicy *sp;
713 #endif
714
715 switch (kfs->kfs_type) {
716 #ifdef IPSEC
717 case KFSipsecsa:
718 m = key_setdumpsa_spi(htonl(kfs->kfs_value));
719 if (m) {
720 m_freem(m);
721 return (0);
722 } else
723 return (ENOENT);
724
725 case KFSipsecsp:
726 sp = key_getspbyid(kfs->kfs_value);
727 if (sp) {
728 kfs->kfs_v = sp;
729 return (0);
730 } else
731 return (ENOENT);
732 #endif
733
734 default:
735 return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_OPEN,
736 v, 0);
737 }
738 }
739
740 int
741 kernfs_close(v)
742 void *v;
743 {
744 struct vop_close_args /* {
745 struct vnode *a_vp;
746 int a_fflag;
747 struct ucred *a_cred;
748 struct proc *a_p;
749 } */ *ap = v;
750 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
751
752 switch (kfs->kfs_type) {
753 #ifdef IPSEC
754 case KFSipsecsp:
755 key_freesp((struct secpolicy *)kfs->kfs_v);
756 break;
757 #endif
758
759 default:
760 return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_CLOSE,
761 v, 0);
762 }
763
764 return (0);
765 }
766
767 int
768 kernfs_access(v)
769 void *v;
770 {
771 struct vop_access_args /* {
772 struct vnode *a_vp;
773 int a_mode;
774 struct ucred *a_cred;
775 struct proc *a_p;
776 } */ *ap = v;
777 struct vattr va;
778 int error;
779
780 if ((error = VOP_GETATTR(ap->a_vp, &va, ap->a_cred, ap->a_p)) != 0)
781 return (error);
782
783 return (vaccess(va.va_type, va.va_mode, va.va_uid, va.va_gid,
784 ap->a_mode, ap->a_cred));
785 }
786
787 static int
788 kernfs_default_fileop_getattr(v)
789 void *v;
790 {
791 struct vop_getattr_args /* {
792 struct vnode *a_vp;
793 struct vattr *a_vap;
794 struct ucred *a_cred;
795 struct proc *a_p;
796 } */ *ap = v;
797 struct vattr *vap = ap->a_vap;
798
799 vap->va_nlink = 1;
800 vap->va_bytes = vap->va_size = 0;
801
802 return 0;
803 }
804
805 int
806 kernfs_getattr(v)
807 void *v;
808 {
809 struct vop_getattr_args /* {
810 struct vnode *a_vp;
811 struct vattr *a_vap;
812 struct ucred *a_cred;
813 struct proc *a_p;
814 } */ *ap = v;
815 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
816 struct kernfs_subdir *ks;
817 struct vattr *vap = ap->a_vap;
818 int error = 0;
819 char strbuf[KSTRING], *bf;
820 size_t nread, total;
821
822 VATTR_NULL(vap);
823 vap->va_type = ap->a_vp->v_type;
824 vap->va_uid = 0;
825 vap->va_gid = 0;
826 vap->va_mode = kfs->kfs_mode;
827 vap->va_fileid = kfs->kfs_fileno;
828 vap->va_flags = 0;
829 vap->va_size = 0;
830 vap->va_blocksize = DEV_BSIZE;
831 /*
832 * Make all times be current TOD, except for the "boottime" node.
833 * Avoid microtime(9), it's slow.
834 * We don't guard the read from time(9) with splclock(9) since we
835 * don't actually need to be THAT sure the access is atomic.
836 */
837 if (kfs->kfs_kt && kfs->kfs_kt->kt_namlen == 8 &&
838 !memcmp(kfs->kfs_kt->kt_name, "boottime", 8)) {
839 TIMEVAL_TO_TIMESPEC(&boottime, &vap->va_ctime);
840 } else {
841 TIMEVAL_TO_TIMESPEC(&time, &vap->va_ctime);
842 }
843 vap->va_atime = vap->va_mtime = vap->va_ctime;
844 vap->va_gen = 0;
845 vap->va_flags = 0;
846 vap->va_rdev = 0;
847 vap->va_bytes = 0;
848
849 switch (kfs->kfs_type) {
850 case KFSkern:
851 vap->va_nlink = nkern_dirs;
852 vap->va_bytes = vap->va_size = DEV_BSIZE;
853 break;
854
855 case KFSroot:
856 vap->va_nlink = 1;
857 vap->va_bytes = vap->va_size = DEV_BSIZE;
858 break;
859
860 case KFSsubdir:
861 ks = (struct kernfs_subdir *)kfs->kfs_kt->kt_data;
862 vap->va_nlink = ks->ks_dirs;
863 vap->va_bytes = vap->va_size = DEV_BSIZE;
864 break;
865
866 case KFSnull:
867 case KFStime:
868 case KFSint:
869 case KFSstring:
870 case KFShostname:
871 case KFSavenrun:
872 case KFSdevice:
873 case KFSmsgbuf:
874 #ifdef IPSEC
875 case KFSipsecsa:
876 case KFSipsecsp:
877 #endif
878 vap->va_nlink = 1;
879 total = 0;
880 do {
881 bf = strbuf;
882 error = kernfs_xread(kfs, total, &bf,
883 sizeof(strbuf), &nread);
884 total += nread;
885 } while (error == 0 && nread != 0);
886 vap->va_bytes = vap->va_size = total;
887 break;
888
889 #ifdef IPSEC
890 case KFSipsecsadir:
891 case KFSipsecspdir:
892 vap->va_nlink = 2;
893 vap->va_bytes = vap->va_size = DEV_BSIZE;
894 break;
895 #endif
896
897 default:
898 error = kernfs_try_fileop(kfs->kfs_type,
899 KERNFS_FILEOP_GETATTR, v, EINVAL);
900 break;
901 }
902
903 return (error);
904 }
905
906 /*ARGSUSED*/
907 int
908 kernfs_setattr(v)
909 void *v;
910 {
911
912 /*
913 * Silently ignore attribute changes.
914 * This allows for open with truncate to have no
915 * effect until some data is written. I want to
916 * do it this way because all writes are atomic.
917 */
918 return (0);
919 }
920
921 int
922 kernfs_read(v)
923 void *v;
924 {
925 struct vop_read_args /* {
926 struct vnode *a_vp;
927 struct uio *a_uio;
928 int a_ioflag;
929 struct ucred *a_cred;
930 } */ *ap = v;
931 struct uio *uio = ap->a_uio;
932 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
933 char strbuf[KSTRING], *bf;
934 off_t off;
935 size_t len;
936 int error;
937
938 if (ap->a_vp->v_type == VDIR)
939 return (EOPNOTSUPP);
940
941 off = uio->uio_offset;
942 bf = strbuf;
943 if ((error = kernfs_xread(kfs, off, &bf, sizeof(strbuf), &len)) == 0)
944 error = uiomove(bf, len, uio);
945 return (error);
946 }
947
948 static int
949 kernfs_default_xwrite(v)
950 void *v;
951 {
952 struct vop_write_args /* {
953 struct vnode *a_vp;
954 struct uio *a_uio;
955 int a_ioflag;
956 struct ucred *a_cred;
957 } */ *ap = v;
958 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
959 struct uio *uio = ap->a_uio;
960 int error, xlen;
961 char strbuf[KSTRING];
962
963 if (uio->uio_offset != 0)
964 return (EINVAL);
965
966 xlen = min(uio->uio_resid, KSTRING-1);
967 if ((error = uiomove(strbuf, xlen, uio)) != 0)
968 return (error);
969
970 if (uio->uio_resid != 0)
971 return (EIO);
972
973 strbuf[xlen] = '\0';
974 xlen = strlen(strbuf);
975 return (kernfs_xwrite(kfs, strbuf, xlen));
976 }
977
978 int
979 kernfs_write(v)
980 void *v;
981 {
982 struct vop_write_args /* {
983 struct vnode *a_vp;
984 struct uio *a_uio;
985 int a_ioflag;
986 struct ucred *a_cred;
987 } */ *ap = v;
988 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
989
990 return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_WRITE, v, 0);
991 }
992
993 int
994 kernfs_ioctl(v)
995 void *v;
996 {
997 struct vop_ioctl_args /* {
998 const struct vnodeop_desc *a_desc;
999 struct vnode *a_vp;
1000 u_long a_command;
1001 void *a_data;
1002 int a_fflag;
1003 struct ucred *a_cred;
1004 struct proc *a_p;
1005 } */ *ap = v;
1006 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
1007
1008 return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_IOCTL, v,
1009 EPASSTHROUGH);
1010 }
1011
1012 static int
1013 kernfs_setdirentfileno_kt(struct dirent *d, const struct kern_target *kt,
1014 u_int32_t value, struct vop_readdir_args *ap)
1015 {
1016 struct kernfs_node *kfs;
1017 struct vnode *vp;
1018 int error;
1019
1020 if ((error = kernfs_allocvp(ap->a_vp->v_mount, &vp, kt->kt_tag, kt,
1021 value)) != 0)
1022 return error;
1023 if (kt->kt_tag == KFSdevice) {
1024 struct vattr va;
1025 if ((error = VOP_GETATTR(vp, &va, ap->a_cred,
1026 ap->a_uio->uio_segflg == UIO_USERSPACE ?
1027 ap->a_uio->uio_procp : &proc0)) != 0)
1028 return (error);
1029 d->d_fileno = va.va_fileid;
1030 } else {
1031 kfs = VTOKERN(vp);
1032 d->d_fileno = kfs->kfs_fileno;
1033 }
1034 vput(vp);
1035 return 0;
1036 }
1037
1038 static int
1039 kernfs_setdirentfileno(struct dirent *d, off_t entry,
1040 struct kernfs_node *thisdir_kfs, const struct kern_target *parent_kt,
1041 const struct kern_target *kt, struct vop_readdir_args *ap)
1042 {
1043 const struct kern_target *ikt;
1044 int error;
1045
1046 switch (entry) {
1047 case 0:
1048 d->d_fileno = thisdir_kfs->kfs_fileno;
1049 return 0;
1050 case 1:
1051 ikt = parent_kt;
1052 break;
1053 default:
1054 ikt = kt;
1055 break;
1056 }
1057 if (ikt != thisdir_kfs->kfs_kt) {
1058 if ((error = kernfs_setdirentfileno_kt(d, ikt, 0, ap)) != 0)
1059 return error;
1060 } else
1061 d->d_fileno = thisdir_kfs->kfs_fileno;
1062 return 0;
1063 }
1064
1065 int
1066 kernfs_readdir(v)
1067 void *v;
1068 {
1069 struct vop_readdir_args /* {
1070 struct vnode *a_vp;
1071 struct uio *a_uio;
1072 struct ucred *a_cred;
1073 int *a_eofflag;
1074 off_t **a_cookies;
1075 int a_*ncookies;
1076 } */ *ap = v;
1077 struct uio *uio = ap->a_uio;
1078 struct dirent d;
1079 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
1080 const struct kern_target *kt;
1081 const struct dyn_kern_target *dkt = NULL;
1082 const struct kernfs_subdir *ks;
1083 off_t i, j;
1084 int error;
1085 off_t *cookies = NULL;
1086 int ncookies = 0, n;
1087 #ifdef IPSEC
1088 struct secasvar *sav, *sav2;
1089 struct secpolicy *sp;
1090 #endif
1091
1092 if (uio->uio_resid < UIO_MX)
1093 return (EINVAL);
1094 if (uio->uio_offset < 0)
1095 return (EINVAL);
1096
1097 error = 0;
1098 i = uio->uio_offset;
1099 memset(&d, 0, sizeof(d));
1100 d.d_reclen = UIO_MX;
1101 ncookies = uio->uio_resid / UIO_MX;
1102
1103 switch (kfs->kfs_type) {
1104 case KFSkern:
1105 if (i >= nkern_targets)
1106 return (0);
1107
1108 if (ap->a_ncookies) {
1109 ncookies = min(ncookies, (nkern_targets - i));
1110 cookies = malloc(ncookies * sizeof(off_t), M_TEMP,
1111 M_WAITOK);
1112 *ap->a_cookies = cookies;
1113 }
1114
1115 n = 0;
1116 for (; i < nkern_targets && uio->uio_resid >= UIO_MX; i++) {
1117 if (i < static_nkern_targets)
1118 kt = &kern_targets[i];
1119 else {
1120 if (dkt == NULL) {
1121 dkt = SIMPLEQ_FIRST(&dyn_kern_targets);
1122 for (j = static_nkern_targets; j < i &&
1123 dkt != NULL; j++)
1124 dkt = SIMPLEQ_NEXT(dkt, dkt_queue);
1125 if (j != i)
1126 break;
1127 } else {
1128 dkt = SIMPLEQ_NEXT(dkt, dkt_queue);
1129 if (dkt == NULL)
1130 break;
1131 }
1132 kt = &dkt->dkt_kt;
1133 }
1134 if (kt->kt_tag == KFSdevice) {
1135 dev_t *dp = kt->kt_data;
1136 struct vnode *fvp;
1137
1138 if (*dp == NODEV ||
1139 !vfinddev(*dp, kt->kt_vtype, &fvp))
1140 continue;
1141 }
1142 d.d_namlen = kt->kt_namlen;
1143 if ((error = kernfs_setdirentfileno(&d, i, kfs,
1144 &kern_targets[0], kt, ap)) != 0)
1145 break;
1146 memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1);
1147 d.d_type = kt->kt_type;
1148 if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1149 break;
1150 if (cookies)
1151 *cookies++ = i + 1;
1152 n++;
1153 }
1154 ncookies = n;
1155 break;
1156
1157 case KFSroot:
1158 if (i >= 2)
1159 return 0;
1160
1161 if (ap->a_ncookies) {
1162 ncookies = min(ncookies, (2 - i));
1163 cookies = malloc(ncookies * sizeof(off_t), M_TEMP,
1164 M_WAITOK);
1165 *ap->a_cookies = cookies;
1166 }
1167
1168 n = 0;
1169 for (; i < 2 && uio->uio_resid >= UIO_MX; i++) {
1170 kt = &kern_targets[i];
1171 d.d_namlen = kt->kt_namlen;
1172 d.d_fileno = KERNFS_FILENO(kt, kt->kt_tag, 0);
1173 memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1);
1174 d.d_type = kt->kt_type;
1175 if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1176 break;
1177 if (cookies)
1178 *cookies++ = i + 1;
1179 n++;
1180 }
1181 ncookies = n;
1182 break;
1183
1184 case KFSsubdir:
1185 ks = (struct kernfs_subdir *)kfs->kfs_kt->kt_data;
1186 if (i >= ks->ks_nentries)
1187 return (0);
1188
1189 if (ap->a_ncookies) {
1190 ncookies = min(ncookies, (ks->ks_nentries - i));
1191 cookies = malloc(ncookies * sizeof(off_t), M_TEMP,
1192 M_WAITOK);
1193 *ap->a_cookies = cookies;
1194 }
1195
1196 dkt = SIMPLEQ_FIRST(&ks->ks_entries);
1197 for (j = 0; j < i && dkt != NULL; j++)
1198 dkt = SIMPLEQ_NEXT(dkt, dkt_queue);
1199 n = 0;
1200 for (; i < ks->ks_nentries && uio->uio_resid >= UIO_MX; i++) {
1201 if (i < 2)
1202 kt = &subdir_targets[i];
1203 else {
1204 /* check if ks_nentries lied to us */
1205 if (dkt == NULL)
1206 break;
1207 kt = &dkt->dkt_kt;
1208 dkt = SIMPLEQ_NEXT(dkt, dkt_queue);
1209 }
1210 if (kt->kt_tag == KFSdevice) {
1211 dev_t *dp = kt->kt_data;
1212 struct vnode *fvp;
1213
1214 if (*dp == NODEV ||
1215 !vfinddev(*dp, kt->kt_vtype, &fvp))
1216 continue;
1217 }
1218 d.d_namlen = kt->kt_namlen;
1219 if ((error = kernfs_setdirentfileno(&d, i, kfs,
1220 ks->ks_parent, kt, ap)) != 0)
1221 break;
1222 memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1);
1223 d.d_type = kt->kt_type;
1224 if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1225 break;
1226 if (cookies)
1227 *cookies++ = i + 1;
1228 n++;
1229 }
1230 ncookies = n;
1231 break;
1232
1233 #ifdef IPSEC
1234 case KFSipsecsadir:
1235 /* count SA in the system */
1236 n = 0;
1237 TAILQ_FOREACH(sav, &satailq, tailq) {
1238 for (sav2 = TAILQ_FIRST(&satailq);
1239 sav2 != sav;
1240 sav2 = TAILQ_NEXT(sav2, tailq)) {
1241 if (sav->spi == sav2->spi) {
1242 /* multiple SA with same SPI */
1243 break;
1244 }
1245 }
1246 if (sav == sav2 || sav->spi != sav2->spi)
1247 n++;
1248 }
1249
1250 if (i >= nipsecsa_targets + n)
1251 return (0);
1252
1253 if (ap->a_ncookies) {
1254 ncookies = min(ncookies, (n - i));
1255 cookies = malloc(ncookies * sizeof(off_t), M_TEMP,
1256 M_WAITOK);
1257 *ap->a_cookies = cookies;
1258 }
1259
1260 n = 0;
1261 for (; i < nipsecsa_targets && uio->uio_resid >= UIO_MX; i++) {
1262 kt = &ipsecsa_targets[i];
1263 d.d_namlen = kt->kt_namlen;
1264 if ((error = kernfs_setdirentfileno(&d, i, kfs,
1265 &kern_targets[0], kt, ap)) != 0)
1266 break;
1267 memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1);
1268 d.d_type = kt->kt_type;
1269 if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1270 break;
1271 if (cookies)
1272 *cookies++ = i + 1;
1273 n++;
1274 }
1275 if (error) {
1276 ncookies = n;
1277 break;
1278 }
1279
1280 TAILQ_FOREACH(sav, &satailq, tailq) {
1281 for (sav2 = TAILQ_FIRST(&satailq);
1282 sav2 != sav;
1283 sav2 = TAILQ_NEXT(sav2, tailq)) {
1284 if (sav->spi == sav2->spi) {
1285 /* multiple SA with same SPI */
1286 break;
1287 }
1288 }
1289 if (sav != sav2 && sav->spi == sav2->spi)
1290 continue;
1291 if (uio->uio_resid < UIO_MX)
1292 break;
1293 if ((error = kernfs_setdirentfileno_kt(&d, &ipsecsa_kt,
1294 sav->spi, ap)) != 0)
1295 break;
1296 d.d_namlen = snprintf(d.d_name, sizeof(d.d_name),
1297 "%u", ntohl(sav->spi));
1298 d.d_type = DT_REG;
1299 if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1300 break;
1301 if (cookies)
1302 *cookies++ = i + 1;
1303 n++;
1304 i++;
1305 }
1306 ncookies = n;
1307 break;
1308
1309 case KFSipsecspdir:
1310 /* count SP in the system */
1311 n = 0;
1312 TAILQ_FOREACH(sp, &sptailq, tailq)
1313 n++;
1314
1315 if (i >= nipsecsp_targets + n)
1316 return (0);
1317
1318 if (ap->a_ncookies) {
1319 ncookies = min(ncookies, (n - i));
1320 cookies = malloc(ncookies * sizeof(off_t), M_TEMP,
1321 M_WAITOK);
1322 *ap->a_cookies = cookies;
1323 }
1324
1325 n = 0;
1326 for (; i < nipsecsp_targets && uio->uio_resid >= UIO_MX; i++) {
1327 kt = &ipsecsp_targets[i];
1328 d.d_namlen = kt->kt_namlen;
1329 if ((error = kernfs_setdirentfileno(&d, i, kfs,
1330 &kern_targets[0], kt, ap)) != 0)
1331 break;
1332 memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1);
1333 d.d_type = kt->kt_type;
1334 if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1335 break;
1336 if (cookies)
1337 *cookies++ = i + 1;
1338 n++;
1339 }
1340 if (error) {
1341 ncookies = n;
1342 break;
1343 }
1344
1345 TAILQ_FOREACH(sp, &sptailq, tailq) {
1346 if (uio->uio_resid < UIO_MX)
1347 break;
1348 if ((error = kernfs_setdirentfileno_kt(&d, &ipsecsp_kt,
1349 sp->id, ap)) != 0)
1350 break;
1351 d.d_namlen = snprintf(d.d_name, sizeof(d.d_name),
1352 "%u", sp->id);
1353 d.d_type = DT_REG;
1354 if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1355 break;
1356 if (cookies)
1357 *cookies++ = i + 1;
1358 n++;
1359 i++;
1360 }
1361 ncookies = n;
1362 break;
1363 #endif
1364
1365 default:
1366 error = ENOTDIR;
1367 break;
1368 }
1369
1370 if (ap->a_ncookies) {
1371 if (error) {
1372 if (cookies)
1373 free(*ap->a_cookies, M_TEMP);
1374 *ap->a_ncookies = 0;
1375 *ap->a_cookies = NULL;
1376 } else
1377 *ap->a_ncookies = ncookies;
1378 }
1379
1380 uio->uio_offset = i;
1381 return (error);
1382 }
1383
1384 int
1385 kernfs_inactive(v)
1386 void *v;
1387 {
1388 struct vop_inactive_args /* {
1389 struct vnode *a_vp;
1390 struct proc *a_p;
1391 } */ *ap = v;
1392 struct vnode *vp = ap->a_vp;
1393 const struct kernfs_node *kfs = VTOKERN(ap->a_vp);
1394 #ifdef IPSEC
1395 struct mbuf *m;
1396 struct secpolicy *sp;
1397 #endif
1398
1399 VOP_UNLOCK(vp, 0);
1400 switch (kfs->kfs_type) {
1401 #ifdef IPSEC
1402 case KFSipsecsa:
1403 m = key_setdumpsa_spi(htonl(kfs->kfs_value));
1404 if (m)
1405 m_freem(m);
1406 else
1407 vgone(vp);
1408 break;
1409 case KFSipsecsp:
1410 sp = key_getspbyid(kfs->kfs_value);
1411 if (sp)
1412 key_freesp(sp);
1413 else {
1414 /* should never happen as we hold a refcnt */
1415 vgone(vp);
1416 }
1417 break;
1418 #endif
1419 default:
1420 break;
1421 }
1422 return (0);
1423 }
1424
1425 int
1426 kernfs_reclaim(v)
1427 void *v;
1428 {
1429 struct vop_reclaim_args /* {
1430 struct vnode *a_vp;
1431 } */ *ap = v;
1432
1433 return (kernfs_freevp(ap->a_vp));
1434 }
1435
1436 /*
1437 * Return POSIX pathconf information applicable to special devices.
1438 */
1439 int
1440 kernfs_pathconf(v)
1441 void *v;
1442 {
1443 struct vop_pathconf_args /* {
1444 struct vnode *a_vp;
1445 int a_name;
1446 register_t *a_retval;
1447 } */ *ap = v;
1448
1449 switch (ap->a_name) {
1450 case _PC_LINK_MAX:
1451 *ap->a_retval = LINK_MAX;
1452 return (0);
1453 case _PC_MAX_CANON:
1454 *ap->a_retval = MAX_CANON;
1455 return (0);
1456 case _PC_MAX_INPUT:
1457 *ap->a_retval = MAX_INPUT;
1458 return (0);
1459 case _PC_PIPE_BUF:
1460 *ap->a_retval = PIPE_BUF;
1461 return (0);
1462 case _PC_CHOWN_RESTRICTED:
1463 *ap->a_retval = 1;
1464 return (0);
1465 case _PC_VDISABLE:
1466 *ap->a_retval = _POSIX_VDISABLE;
1467 return (0);
1468 case _PC_SYNC_IO:
1469 *ap->a_retval = 1;
1470 return (0);
1471 default:
1472 return (EINVAL);
1473 }
1474 /* NOTREACHED */
1475 }
1476
1477 /*
1478 * Print out the contents of a /dev/fd vnode.
1479 */
1480 /* ARGSUSED */
1481 int
1482 kernfs_print(v)
1483 void *v;
1484 {
1485
1486 printf("tag VT_KERNFS, kernfs vnode\n");
1487 return (0);
1488 }
1489
1490 int
1491 kernfs_link(v)
1492 void *v;
1493 {
1494 struct vop_link_args /* {
1495 struct vnode *a_dvp;
1496 struct vnode *a_vp;
1497 struct componentname *a_cnp;
1498 } */ *ap = v;
1499
1500 VOP_ABORTOP(ap->a_dvp, ap->a_cnp);
1501 vput(ap->a_dvp);
1502 return (EROFS);
1503 }
1504
1505 int
1506 kernfs_symlink(v)
1507 void *v;
1508 {
1509 struct vop_symlink_args /* {
1510 struct vnode *a_dvp;
1511 struct vnode **a_vpp;
1512 struct componentname *a_cnp;
1513 struct vattr *a_vap;
1514 char *a_target;
1515 } */ *ap = v;
1516
1517 VOP_ABORTOP(ap->a_dvp, ap->a_cnp);
1518 vput(ap->a_dvp);
1519 return (EROFS);
1520 }
1521