Home | History | Annotate | Line # | Download | only in kernfs
kernfs_vnops.c revision 1.110
      1 /*	$NetBSD: kernfs_vnops.c,v 1.110 2005/08/30 20:08:01 xtraeme Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1992, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * This code is derived from software donated to Berkeley by
      8  * Jan-Simon Pendry.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. Neither the name of the University nor the names of its contributors
     19  *    may be used to endorse or promote products derived from this software
     20  *    without specific prior written permission.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     32  * SUCH DAMAGE.
     33  *
     34  *	@(#)kernfs_vnops.c	8.15 (Berkeley) 5/21/95
     35  */
     36 
     37 /*
     38  * Kernel parameter filesystem (/kern)
     39  */
     40 
     41 #include <sys/cdefs.h>
     42 __KERNEL_RCSID(0, "$NetBSD: kernfs_vnops.c,v 1.110 2005/08/30 20:08:01 xtraeme Exp $");
     43 
     44 #ifdef _KERNEL_OPT
     45 #include "opt_ipsec.h"
     46 #endif
     47 
     48 #include <sys/param.h>
     49 #include <sys/systm.h>
     50 #include <sys/kernel.h>
     51 #include <sys/vmmeter.h>
     52 #include <sys/time.h>
     53 #include <sys/proc.h>
     54 #include <sys/vnode.h>
     55 #include <sys/malloc.h>
     56 #include <sys/file.h>
     57 #include <sys/stat.h>
     58 #include <sys/mount.h>
     59 #include <sys/namei.h>
     60 #include <sys/buf.h>
     61 #include <sys/dirent.h>
     62 #include <sys/msgbuf.h>
     63 
     64 #include <miscfs/genfs/genfs.h>
     65 #include <miscfs/kernfs/kernfs.h>
     66 
     67 #ifdef IPSEC
     68 #include <sys/mbuf.h>
     69 #include <net/route.h>
     70 #include <netinet/in.h>
     71 #include <netinet6/ipsec.h>
     72 #include <netkey/key.h>
     73 #endif
     74 
     75 #include <uvm/uvm_extern.h>
     76 
     77 #define KSTRING	256		/* Largest I/O available via this filesystem */
     78 #define	UIO_MX 32
     79 
     80 #define	READ_MODE	(S_IRUSR|S_IRGRP|S_IROTH)
     81 #define	WRITE_MODE	(S_IWUSR|S_IRUSR|S_IRGRP|S_IROTH)
     82 #define	UREAD_MODE	(S_IRUSR)
     83 #define	DIR_MODE	(S_IRUSR|S_IXUSR|S_IRGRP|S_IXGRP|S_IROTH|S_IXOTH)
     84 #define	UDIR_MODE	(S_IRUSR|S_IXUSR)
     85 
     86 #define N(s) sizeof(s)-1, s
     87 const struct kern_target kern_targets[] = {
     88 /* NOTE: The name must be less than UIO_MX-16 chars in length */
     89      /*        name            data          tag           type  ro/rw */
     90      { DT_DIR, N("."),         0,            KFSkern,        VDIR, DIR_MODE   },
     91      { DT_DIR, N(".."),        0,            KFSroot,        VDIR, DIR_MODE   },
     92      { DT_REG, N("boottime"),  &boottime.tv_sec, KFSint,     VREG, READ_MODE  },
     93 			/* XXXUNCONST */
     94      { DT_REG, N("copyright"), __UNCONST(copyright),
     95      					     KFSstring,      VREG, READ_MODE  },
     96      { DT_REG, N("hostname"),  0,            KFShostname,    VREG, WRITE_MODE },
     97      { DT_REG, N("hz"),        &hz,          KFSint,         VREG, READ_MODE  },
     98 #ifdef IPSEC
     99      { DT_DIR, N("ipsecsa"),   0,	     KFSipsecsadir,  VDIR, UDIR_MODE  },
    100      { DT_DIR, N("ipsecsp"),   0,	     KFSipsecspdir,  VDIR, UDIR_MODE  },
    101 #endif
    102      { DT_REG, N("loadavg"),   0,            KFSavenrun,     VREG, READ_MODE  },
    103      { DT_REG, N("msgbuf"),    0,	     KFSmsgbuf,      VREG, READ_MODE  },
    104      { DT_REG, N("pagesize"),  &uvmexp.pagesize, KFSint,     VREG, READ_MODE  },
    105      { DT_REG, N("physmem"),   &physmem,     KFSint,         VREG, READ_MODE  },
    106 #if 0
    107      { DT_DIR, N("root"),      0,            KFSnull,        VDIR, DIR_MODE   },
    108 #endif
    109      { DT_BLK, N("rootdev"),   &rootdev,     KFSdevice,      VBLK, READ_MODE  },
    110      { DT_CHR, N("rrootdev"),  &rrootdev,    KFSdevice,      VCHR, READ_MODE  },
    111      { DT_REG, N("time"),      0,            KFStime,        VREG, READ_MODE  },
    112 			/* XXXUNCONST */
    113      { DT_REG, N("version"),   __UNCONST(version),
    114      					     KFSstring,      VREG, READ_MODE  },
    115 };
    116 const struct kern_target subdir_targets[] = {
    117 /* NOTE: The name must be less than UIO_MX-16 chars in length */
    118      /*        name            data          tag           type  ro/rw */
    119      { DT_DIR, N("."),         0,            KFSsubdir,      VDIR, DIR_MODE   },
    120      { DT_DIR, N(".."),        0,            KFSkern,        VDIR, DIR_MODE   },
    121 };
    122 #ifdef IPSEC
    123 const struct kern_target ipsecsa_targets[] = {
    124 /* NOTE: The name must be less than UIO_MX-16 chars in length */
    125      /*        name            data          tag           type  ro/rw */
    126      { DT_DIR, N("."),         0,            KFSipsecsadir,  VDIR, DIR_MODE   },
    127      { DT_DIR, N(".."),        0,            KFSkern,        VDIR, DIR_MODE   },
    128 };
    129 const struct kern_target ipsecsp_targets[] = {
    130 /* NOTE: The name must be less than UIO_MX-16 chars in length */
    131      /*        name            data          tag           type  ro/rw */
    132      { DT_DIR, N("."),         0,            KFSipsecspdir,  VDIR, DIR_MODE   },
    133      { DT_DIR, N(".."),        0,            KFSkern,        VDIR, DIR_MODE   },
    134 };
    135 const struct kern_target ipsecsa_kt =
    136      { DT_DIR, N(""),          0,            KFSipsecsa,     VREG, UREAD_MODE };
    137 const struct kern_target ipsecsp_kt =
    138      { DT_DIR, N(""),          0,            KFSipsecsp,     VREG, UREAD_MODE };
    139 #endif
    140 #undef N
    141 SIMPLEQ_HEAD(,dyn_kern_target) dyn_kern_targets =
    142 	SIMPLEQ_HEAD_INITIALIZER(dyn_kern_targets);
    143 int nkern_targets = sizeof(kern_targets) / sizeof(kern_targets[0]);
    144 const int static_nkern_targets = sizeof(kern_targets) / sizeof(kern_targets[0]);
    145 #ifdef IPSEC
    146 int nipsecsa_targets = sizeof(ipsecsa_targets) / sizeof(ipsecsa_targets[0]);
    147 int nipsecsp_targets = sizeof(ipsecsp_targets) / sizeof(ipsecsp_targets[0]);
    148 int nkern_dirs = 4; /* 2 extra subdirs */
    149 #else
    150 int nkern_dirs = 2;
    151 #endif
    152 
    153 int kernfs_try_fileop(kfstype, kfsfileop, void *, int);
    154 int kernfs_try_xwrite(kfstype, const struct kernfs_node *, char *,
    155     size_t, int);
    156 
    157 static int kernfs_default_xwrite(void *v);
    158 static int kernfs_default_fileop_getattr(void *);
    159 
    160 /* must include all fileop's */
    161 const struct kernfs_fileop kernfs_default_fileops[] = {
    162   { .kf_fileop = KERNFS_XWRITE },
    163   { .kf_fileop = KERNFS_FILEOP_OPEN },
    164   { .kf_fileop = KERNFS_FILEOP_GETATTR,
    165     .kf_genop = {kernfs_default_fileop_getattr} },
    166   { .kf_fileop = KERNFS_FILEOP_IOCTL },
    167   { .kf_fileop = KERNFS_FILEOP_CLOSE },
    168   { .kf_fileop = KERNFS_FILEOP_WRITE, .kf_genop = {kernfs_default_xwrite} },
    169 };
    170 
    171 int	kernfs_lookup(void *);
    172 #define	kernfs_create	genfs_eopnotsupp
    173 #define	kernfs_mknod	genfs_eopnotsupp
    174 int	kernfs_open(void *);
    175 int	kernfs_close(void *);
    176 int	kernfs_access(void *);
    177 int	kernfs_getattr(void *);
    178 int	kernfs_setattr(void *);
    179 int	kernfs_read(void *);
    180 int	kernfs_write(void *);
    181 #define	kernfs_fcntl	genfs_fcntl
    182 int	kernfs_ioctl(void *);
    183 #define	kernfs_poll	genfs_poll
    184 #define kernfs_revoke	genfs_revoke
    185 #define	kernfs_fsync	genfs_nullop
    186 #define	kernfs_seek	genfs_nullop
    187 #define	kernfs_remove	genfs_eopnotsupp
    188 int	kernfs_link(void *);
    189 #define	kernfs_rename	genfs_eopnotsupp
    190 #define	kernfs_mkdir	genfs_eopnotsupp
    191 #define	kernfs_rmdir	genfs_eopnotsupp
    192 int	kernfs_symlink(void *);
    193 int	kernfs_readdir(void *);
    194 #define	kernfs_readlink	genfs_eopnotsupp
    195 #define	kernfs_abortop	genfs_abortop
    196 int	kernfs_inactive(void *);
    197 int	kernfs_reclaim(void *);
    198 #define	kernfs_lock	genfs_lock
    199 #define	kernfs_unlock	genfs_unlock
    200 #define	kernfs_bmap	genfs_badop
    201 #define	kernfs_strategy	genfs_badop
    202 int	kernfs_print(void *);
    203 #define	kernfs_islocked	genfs_islocked
    204 int	kernfs_pathconf(void *);
    205 #define	kernfs_advlock	genfs_einval
    206 #define	kernfs_blkatoff	genfs_eopnotsupp
    207 #define	kernfs_valloc	genfs_eopnotsupp
    208 #define	kernfs_vfree	genfs_nullop
    209 #define	kernfs_truncate	genfs_eopnotsupp
    210 #define	kernfs_update	genfs_nullop
    211 #define	kernfs_bwrite	genfs_eopnotsupp
    212 #define	kernfs_putpages	genfs_putpages
    213 
    214 static int	kernfs_xread(struct kernfs_node *, int, char **,
    215 				size_t, size_t *);
    216 static int	kernfs_xwrite(const struct kernfs_node *, char *, size_t);
    217 
    218 int (**kernfs_vnodeop_p)(void *);
    219 const struct vnodeopv_entry_desc kernfs_vnodeop_entries[] = {
    220 	{ &vop_default_desc, vn_default_error },
    221 	{ &vop_lookup_desc, kernfs_lookup },		/* lookup */
    222 	{ &vop_create_desc, kernfs_create },		/* create */
    223 	{ &vop_mknod_desc, kernfs_mknod },		/* mknod */
    224 	{ &vop_open_desc, kernfs_open },		/* open */
    225 	{ &vop_close_desc, kernfs_close },		/* close */
    226 	{ &vop_access_desc, kernfs_access },		/* access */
    227 	{ &vop_getattr_desc, kernfs_getattr },		/* getattr */
    228 	{ &vop_setattr_desc, kernfs_setattr },		/* setattr */
    229 	{ &vop_read_desc, kernfs_read },		/* read */
    230 	{ &vop_write_desc, kernfs_write },		/* write */
    231 	{ &vop_fcntl_desc, kernfs_fcntl },		/* fcntl */
    232 	{ &vop_ioctl_desc, kernfs_ioctl },		/* ioctl */
    233 	{ &vop_poll_desc, kernfs_poll },		/* poll */
    234 	{ &vop_revoke_desc, kernfs_revoke },		/* revoke */
    235 	{ &vop_fsync_desc, kernfs_fsync },		/* fsync */
    236 	{ &vop_seek_desc, kernfs_seek },		/* seek */
    237 	{ &vop_remove_desc, kernfs_remove },		/* remove */
    238 	{ &vop_link_desc, kernfs_link },		/* link */
    239 	{ &vop_rename_desc, kernfs_rename },		/* rename */
    240 	{ &vop_mkdir_desc, kernfs_mkdir },		/* mkdir */
    241 	{ &vop_rmdir_desc, kernfs_rmdir },		/* rmdir */
    242 	{ &vop_symlink_desc, kernfs_symlink },		/* symlink */
    243 	{ &vop_readdir_desc, kernfs_readdir },		/* readdir */
    244 	{ &vop_readlink_desc, kernfs_readlink },	/* readlink */
    245 	{ &vop_abortop_desc, kernfs_abortop },		/* abortop */
    246 	{ &vop_inactive_desc, kernfs_inactive },	/* inactive */
    247 	{ &vop_reclaim_desc, kernfs_reclaim },		/* reclaim */
    248 	{ &vop_lock_desc, kernfs_lock },		/* lock */
    249 	{ &vop_unlock_desc, kernfs_unlock },		/* unlock */
    250 	{ &vop_bmap_desc, kernfs_bmap },		/* bmap */
    251 	{ &vop_strategy_desc, kernfs_strategy },	/* strategy */
    252 	{ &vop_print_desc, kernfs_print },		/* print */
    253 	{ &vop_islocked_desc, kernfs_islocked },	/* islocked */
    254 	{ &vop_pathconf_desc, kernfs_pathconf },	/* pathconf */
    255 	{ &vop_advlock_desc, kernfs_advlock },		/* advlock */
    256 	{ &vop_blkatoff_desc, kernfs_blkatoff },	/* blkatoff */
    257 	{ &vop_valloc_desc, kernfs_valloc },		/* valloc */
    258 	{ &vop_vfree_desc, kernfs_vfree },		/* vfree */
    259 	{ &vop_truncate_desc, kernfs_truncate },	/* truncate */
    260 	{ &vop_update_desc, kernfs_update },		/* update */
    261 	{ &vop_bwrite_desc, kernfs_bwrite },		/* bwrite */
    262 	{ &vop_putpages_desc, kernfs_putpages },	/* putpages */
    263 	{ NULL, NULL }
    264 };
    265 const struct vnodeopv_desc kernfs_vnodeop_opv_desc =
    266 	{ &kernfs_vnodeop_p, kernfs_vnodeop_entries };
    267 
    268 static __inline int
    269 kernfs_fileop_compare(struct kernfs_fileop *a, struct kernfs_fileop *b)
    270 {
    271 	if (a->kf_type < b->kf_type)
    272 		return -1;
    273 	if (a->kf_type > b->kf_type)
    274 		return 1;
    275 	if (a->kf_fileop < b->kf_fileop)
    276 		return -1;
    277 	if (a->kf_fileop > b->kf_fileop)
    278 		return 1;
    279 	return (0);
    280 }
    281 
    282 SPLAY_HEAD(kfsfileoptree, kernfs_fileop) kfsfileoptree =
    283 	SPLAY_INITIALIZER(kfsfileoptree);
    284 SPLAY_PROTOTYPE(kfsfileoptree, kernfs_fileop, kf_node, kernfs_fileop_compare);
    285 SPLAY_GENERATE(kfsfileoptree, kernfs_fileop, kf_node, kernfs_fileop_compare);
    286 
    287 kfstype
    288 kernfs_alloctype(int nkf, const struct kernfs_fileop *kf)
    289 {
    290 	static u_char nextfreetype = KFSlasttype;
    291 	struct kernfs_fileop *dkf, *fkf, skf;
    292 	int i;
    293 
    294 	/* XXX need to keep track of dkf's memory if we support
    295            deallocating types */
    296 	dkf = malloc(sizeof(kernfs_default_fileops), M_TEMP, M_WAITOK);
    297 	memcpy(dkf, kernfs_default_fileops, sizeof(kernfs_default_fileops));
    298 
    299 	for (i = 0; i < sizeof(kernfs_default_fileops) /
    300 		     sizeof(kernfs_default_fileops[0]); i++) {
    301 		dkf[i].kf_type = nextfreetype;
    302 		SPLAY_INSERT(kfsfileoptree, &kfsfileoptree, &dkf[i]);
    303 	}
    304 
    305 	for (i = 0; i < nkf; i++) {
    306 		skf.kf_type = nextfreetype;
    307 		skf.kf_fileop = kf[i].kf_fileop;
    308 		if ((fkf = SPLAY_FIND(kfsfileoptree, &kfsfileoptree, &skf)))
    309 			fkf->kf_genop = kf[i].kf_genop;
    310 	}
    311 
    312 	return nextfreetype++;
    313 }
    314 
    315 int
    316 kernfs_try_fileop(kfstype type, kfsfileop fileop, void *v, int error)
    317 {
    318 	struct kernfs_fileop *kf, skf;
    319 
    320 	skf.kf_type = type;
    321 	skf.kf_fileop = fileop;
    322 	if ((kf = SPLAY_FIND(kfsfileoptree, &kfsfileoptree, &skf)))
    323 		if (kf->kf_vop)
    324 			return kf->kf_vop(v);
    325 	return error;
    326 }
    327 
    328 int
    329 kernfs_try_xwrite(kfstype type, const struct kernfs_node *kfs, char *bf,
    330     size_t len, int error)
    331 {
    332 	struct kernfs_fileop *kf, skf;
    333 
    334 	skf.kf_type = type;
    335 	skf.kf_fileop = KERNFS_XWRITE;
    336 	if ((kf = SPLAY_FIND(kfsfileoptree, &kfsfileoptree, &skf)))
    337 		if (kf->kf_xwrite)
    338 			return kf->kf_xwrite(kfs, bf, len);
    339 	return error;
    340 }
    341 
    342 int
    343 kernfs_addentry(kernfs_parentdir_t *pkt, kernfs_entry_t *dkt)
    344 {
    345 	struct kernfs_subdir *ks, *parent;
    346 
    347 	if (pkt == NULL) {
    348 		SIMPLEQ_INSERT_TAIL(&dyn_kern_targets, dkt, dkt_queue);
    349 		nkern_targets++;
    350 		if (dkt->dkt_kt.kt_vtype == VDIR)
    351 			nkern_dirs++;
    352 	} else {
    353 		parent = (struct kernfs_subdir *)pkt->kt_data;
    354 		SIMPLEQ_INSERT_TAIL(&parent->ks_entries, dkt, dkt_queue);
    355 		parent->ks_nentries++;
    356 		if (dkt->dkt_kt.kt_vtype == VDIR)
    357 			parent->ks_dirs++;
    358 	}
    359 	if (dkt->dkt_kt.kt_vtype == VDIR && dkt->dkt_kt.kt_data == NULL) {
    360 		ks = malloc(sizeof(struct kernfs_subdir),
    361 		    M_TEMP, M_WAITOK);
    362 		SIMPLEQ_INIT(&ks->ks_entries);
    363 		ks->ks_nentries = 2; /* . and .. */
    364 		ks->ks_dirs = 2;
    365 		ks->ks_parent = pkt ? pkt : &kern_targets[0];
    366 		dkt->dkt_kt.kt_data = ks;
    367 	}
    368 	return 0;
    369 }
    370 
    371 static int
    372 kernfs_xread(kfs, off, bufp, len, wrlen)
    373 	struct kernfs_node *kfs;
    374 	int off;
    375 	char **bufp;
    376 	size_t len;
    377 	size_t *wrlen;
    378 {
    379 	const struct kern_target *kt;
    380 #ifdef IPSEC
    381 	struct mbuf *m;
    382 #endif
    383 
    384 	kt = kfs->kfs_kt;
    385 
    386 	switch (kfs->kfs_type) {
    387 	case KFStime: {
    388 		struct timeval tv;
    389 
    390 		microtime(&tv);
    391 		snprintf(*bufp, len, "%ld %ld\n", tv.tv_sec, tv.tv_usec);
    392 		break;
    393 	}
    394 
    395 	case KFSint: {
    396 		int *ip = kt->kt_data;
    397 
    398 		snprintf(*bufp, len, "%d\n", *ip);
    399 		break;
    400 	}
    401 
    402 	case KFSstring: {
    403 		char *cp = kt->kt_data;
    404 
    405 		*bufp = cp;
    406 		break;
    407 	}
    408 
    409 	case KFSmsgbuf: {
    410 		long n;
    411 
    412 		/*
    413 		 * deal with cases where the message buffer has
    414 		 * become corrupted.
    415 		 */
    416 		if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) {
    417 			msgbufenabled = 0;
    418 			return (ENXIO);
    419 		}
    420 
    421 		/*
    422 		 * Note that reads of /kern/msgbuf won't necessarily yield
    423 		 * consistent results, if the message buffer is modified
    424 		 * while the read is in progress.  The worst that can happen
    425 		 * is that incorrect data will be read.  There's no way
    426 		 * that this can crash the system unless the values in the
    427 		 * message buffer header are corrupted, but that'll cause
    428 		 * the system to die anyway.
    429 		 */
    430 		if (off >= msgbufp->msg_bufs) {
    431 			*wrlen = 0;
    432 			return (0);
    433 		}
    434 		n = msgbufp->msg_bufx + off;
    435 		if (n >= msgbufp->msg_bufs)
    436 			n -= msgbufp->msg_bufs;
    437 		len = min(msgbufp->msg_bufs - n, msgbufp->msg_bufs - off);
    438 		*bufp = msgbufp->msg_bufc + n;
    439 		*wrlen = len;
    440 		return (0);
    441 	}
    442 
    443 	case KFShostname: {
    444 		char *cp = hostname;
    445 		int xlen = hostnamelen;
    446 
    447 		if (xlen >= (len - 2))
    448 			return (EINVAL);
    449 
    450 		memcpy(*bufp, cp, xlen);
    451 		(*bufp)[xlen] = '\n';
    452 		(*bufp)[xlen+1] = '\0';
    453 		len = strlen(*bufp);
    454 		break;
    455 	}
    456 
    457 	case KFSavenrun:
    458 		averunnable.fscale = FSCALE;
    459 		snprintf(*bufp, len, "%d %d %d %ld\n",
    460 		    averunnable.ldavg[0], averunnable.ldavg[1],
    461 		    averunnable.ldavg[2], averunnable.fscale);
    462 		break;
    463 
    464 #ifdef IPSEC
    465 	case KFSipsecsa:
    466 		/*
    467 		 * Note that SA configuration could be changed during the
    468 		 * read operation, resulting in garbled output.
    469 		 */
    470 		m = key_setdumpsa_spi(htonl(kfs->kfs_value));
    471 		if (!m)
    472 			return (ENOBUFS);
    473 		if (off >= m->m_pkthdr.len) {
    474 			*wrlen = 0;
    475 			m_freem(m);
    476 			return (0);
    477 		}
    478 		if (len > m->m_pkthdr.len - off)
    479 			len = m->m_pkthdr.len - off;
    480 		m_copydata(m, off, len, *bufp);
    481 		*wrlen = len;
    482 		m_freem(m);
    483 		return (0);
    484 
    485 	case KFSipsecsp:
    486 		/*
    487 		 * Note that SP configuration could be changed during the
    488 		 * read operation, resulting in garbled output.
    489 		 */
    490 		if (!kfs->kfs_v) {
    491 			struct secpolicy *sp;
    492 
    493 			sp = key_getspbyid(kfs->kfs_value);
    494 			if (sp)
    495 				kfs->kfs_v = sp;
    496 			else
    497 				return (ENOENT);
    498 		}
    499 		m = key_setdumpsp((struct secpolicy *)kfs->kfs_v,
    500 		    SADB_X_SPDGET, 0, 0);
    501 		if (!m)
    502 			return (ENOBUFS);
    503 		if (off >= m->m_pkthdr.len) {
    504 			*wrlen = 0;
    505 			m_freem(m);
    506 			return (0);
    507 		}
    508 		if (len > m->m_pkthdr.len - off)
    509 			len = m->m_pkthdr.len - off;
    510 		m_copydata(m, off, len, *bufp);
    511 		*wrlen = len;
    512 		m_freem(m);
    513 		return (0);
    514 #endif
    515 
    516 	default:
    517 		*wrlen = 0;
    518 		return (0);
    519 	}
    520 
    521 	len = strlen(*bufp);
    522 	if (len <= off)
    523 		*wrlen = 0;
    524 	else {
    525 		*bufp += off;
    526 		*wrlen = len - off;
    527 	}
    528 	return (0);
    529 }
    530 
    531 static int
    532 kernfs_xwrite(kfs, bf, len)
    533 	const struct kernfs_node *kfs;
    534 	char *bf;
    535 	size_t len;
    536 {
    537 
    538 	switch (kfs->kfs_type) {
    539 	case KFShostname:
    540 		if (bf[len-1] == '\n')
    541 			--len;
    542 		memcpy(hostname, bf, len);
    543 		hostname[len] = '\0';
    544 		hostnamelen = (size_t) len;
    545 		return (0);
    546 
    547 	default:
    548 		return kernfs_try_xwrite(kfs->kfs_type, kfs, bf, len, EIO);
    549 	}
    550 }
    551 
    552 
    553 /*
    554  * vp is the current namei directory
    555  * ndp is the name to locate in that directory...
    556  */
    557 int
    558 kernfs_lookup(v)
    559 	void *v;
    560 {
    561 	struct vop_lookup_args /* {
    562 		struct vnode * a_dvp;
    563 		struct vnode ** a_vpp;
    564 		struct componentname * a_cnp;
    565 	} */ *ap = v;
    566 	struct componentname *cnp = ap->a_cnp;
    567 	struct vnode **vpp = ap->a_vpp;
    568 	struct vnode *dvp = ap->a_dvp;
    569 	const char *pname = cnp->cn_nameptr;
    570 	const struct kernfs_node *kfs;
    571 	const struct kern_target *kt;
    572 	const struct dyn_kern_target *dkt;
    573 	const struct kernfs_subdir *ks;
    574 	int error, i, wantpunlock;
    575 #ifdef IPSEC
    576 	char *ep;
    577 	u_int32_t id;
    578 #endif
    579 
    580 	*vpp = NULLVP;
    581 	cnp->cn_flags &= ~PDIRUNLOCK;
    582 
    583 	if (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME)
    584 		return (EROFS);
    585 
    586 	if (cnp->cn_namelen == 1 && *pname == '.') {
    587 		*vpp = dvp;
    588 		VREF(dvp);
    589 		return (0);
    590 	}
    591 
    592 	wantpunlock = (~cnp->cn_flags & (LOCKPARENT | ISLASTCN));
    593 	kfs = VTOKERN(dvp);
    594 	switch (kfs->kfs_type) {
    595 	case KFSkern:
    596 		/*
    597 		 * Shouldn't get here with .. in the root node.
    598 		 */
    599 		if (cnp->cn_flags & ISDOTDOT)
    600 			return (EIO);
    601 
    602 		for (i = 0; i < static_nkern_targets; i++) {
    603 			kt = &kern_targets[i];
    604 			if (cnp->cn_namelen == kt->kt_namlen &&
    605 			    memcmp(kt->kt_name, pname, cnp->cn_namelen) == 0)
    606 				goto found;
    607 		}
    608 		SIMPLEQ_FOREACH(dkt, &dyn_kern_targets, dkt_queue) {
    609 			if (cnp->cn_namelen == dkt->dkt_kt.kt_namlen &&
    610 			    memcmp(dkt->dkt_kt.kt_name, pname, cnp->cn_namelen) == 0) {
    611 				kt = &dkt->dkt_kt;
    612 				goto found;
    613 			}
    614 		}
    615 		break;
    616 
    617 	found:
    618 		error = kernfs_allocvp(dvp->v_mount, vpp, kt->kt_tag, kt, 0);
    619 		if ((error == 0) && wantpunlock) {
    620 			VOP_UNLOCK(dvp, 0);
    621 			cnp->cn_flags |= PDIRUNLOCK;
    622 		}
    623 		return (error);
    624 
    625 	case KFSsubdir:
    626 		ks = (struct kernfs_subdir *)kfs->kfs_kt->kt_data;
    627 		if (cnp->cn_flags & ISDOTDOT) {
    628 			kt = ks->ks_parent;
    629 			goto found;
    630 		}
    631 
    632 		SIMPLEQ_FOREACH(dkt, &ks->ks_entries, dkt_queue) {
    633 			if (cnp->cn_namelen == dkt->dkt_kt.kt_namlen &&
    634 			    memcmp(dkt->dkt_kt.kt_name, pname, cnp->cn_namelen) == 0) {
    635 				kt = &dkt->dkt_kt;
    636 				goto found;
    637 			}
    638 		}
    639 		break;
    640 
    641 #ifdef IPSEC
    642 	case KFSipsecsadir:
    643 		if (cnp->cn_flags & ISDOTDOT) {
    644 			kt = &kern_targets[0];
    645 			goto found;
    646 		}
    647 
    648 		for (i = 2; i < nipsecsa_targets; i++) {
    649 			kt = &ipsecsa_targets[i];
    650 			if (cnp->cn_namelen == kt->kt_namlen &&
    651 			    memcmp(kt->kt_name, pname, cnp->cn_namelen) == 0)
    652 				goto found;
    653 		}
    654 
    655 		ep = NULL;
    656 		id = strtoul(pname, &ep, 10);
    657 		if (!ep || *ep || ep == pname)
    658 			break;
    659 
    660 		error = kernfs_allocvp(dvp->v_mount, vpp, KFSipsecsa, &ipsecsa_kt, id);
    661 		if ((error == 0) && wantpunlock) {
    662 			VOP_UNLOCK(dvp, 0);
    663 			cnp->cn_flags |= PDIRUNLOCK;
    664 		}
    665 		return (error);
    666 
    667 	case KFSipsecspdir:
    668 		if (cnp->cn_flags & ISDOTDOT) {
    669 			kt = &kern_targets[0];
    670 			goto found;
    671 		}
    672 
    673 		for (i = 2; i < nipsecsp_targets; i++) {
    674 			kt = &ipsecsp_targets[i];
    675 			if (cnp->cn_namelen == kt->kt_namlen &&
    676 			    memcmp(kt->kt_name, pname, cnp->cn_namelen) == 0)
    677 				goto found;
    678 		}
    679 
    680 		ep = NULL;
    681 		id = strtoul(pname, &ep, 10);
    682 		if (!ep || *ep || ep == pname)
    683 			break;
    684 
    685 		error = kernfs_allocvp(dvp->v_mount, vpp, KFSipsecsp, &ipsecsp_kt, id);
    686 		if ((error == 0) && wantpunlock) {
    687 			VOP_UNLOCK(dvp, 0);
    688 			cnp->cn_flags |= PDIRUNLOCK;
    689 		}
    690 		return (error);
    691 #endif
    692 
    693 	default:
    694 		return (ENOTDIR);
    695 	}
    696 
    697 	return (cnp->cn_nameiop == LOOKUP ? ENOENT : EROFS);
    698 }
    699 
    700 int
    701 kernfs_open(v)
    702 	void *v;
    703 {
    704 	struct vop_open_args /* {
    705 		struct vnode *a_vp;
    706 		int a_mode;
    707 		struct ucred *a_cred;
    708 		struct proc *a_p;
    709 	} */ *ap = v;
    710 	struct kernfs_node *kfs = VTOKERN(ap->a_vp);
    711 #ifdef IPSEC
    712 	struct mbuf *m;
    713 	struct secpolicy *sp;
    714 #endif
    715 
    716 	switch (kfs->kfs_type) {
    717 #ifdef IPSEC
    718 	case KFSipsecsa:
    719 		m = key_setdumpsa_spi(htonl(kfs->kfs_value));
    720 		if (m) {
    721 			m_freem(m);
    722 			return (0);
    723 		} else
    724 			return (ENOENT);
    725 
    726 	case KFSipsecsp:
    727 		sp = key_getspbyid(kfs->kfs_value);
    728 		if (sp) {
    729 			kfs->kfs_v = sp;
    730 			return (0);
    731 		} else
    732 			return (ENOENT);
    733 #endif
    734 
    735 	default:
    736 		return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_OPEN,
    737 		    v, 0);
    738 	}
    739 }
    740 
    741 int
    742 kernfs_close(v)
    743 	void *v;
    744 {
    745 	struct vop_close_args /* {
    746 		struct vnode *a_vp;
    747 		int a_fflag;
    748 		struct ucred *a_cred;
    749 		struct proc *a_p;
    750 	} */ *ap = v;
    751 	struct kernfs_node *kfs = VTOKERN(ap->a_vp);
    752 
    753 	switch (kfs->kfs_type) {
    754 #ifdef IPSEC
    755 	case KFSipsecsp:
    756 		key_freesp((struct secpolicy *)kfs->kfs_v);
    757 		break;
    758 #endif
    759 
    760 	default:
    761 		return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_CLOSE,
    762 		    v, 0);
    763 	}
    764 
    765 	return (0);
    766 }
    767 
    768 int
    769 kernfs_access(v)
    770 	void *v;
    771 {
    772 	struct vop_access_args /* {
    773 		struct vnode *a_vp;
    774 		int a_mode;
    775 		struct ucred *a_cred;
    776 		struct proc *a_p;
    777 	} */ *ap = v;
    778 	struct vattr va;
    779 	int error;
    780 
    781 	if ((error = VOP_GETATTR(ap->a_vp, &va, ap->a_cred, ap->a_p)) != 0)
    782 		return (error);
    783 
    784 	return (vaccess(va.va_type, va.va_mode, va.va_uid, va.va_gid,
    785 	    ap->a_mode, ap->a_cred));
    786 }
    787 
    788 static int
    789 kernfs_default_fileop_getattr(v)
    790 	void *v;
    791 {
    792 	struct vop_getattr_args /* {
    793 		struct vnode *a_vp;
    794 		struct vattr *a_vap;
    795 		struct ucred *a_cred;
    796 		struct proc *a_p;
    797 	} */ *ap = v;
    798 	struct vattr *vap = ap->a_vap;
    799 
    800 	vap->va_nlink = 1;
    801 	vap->va_bytes = vap->va_size = 0;
    802 
    803 	return 0;
    804 }
    805 
    806 int
    807 kernfs_getattr(v)
    808 	void *v;
    809 {
    810 	struct vop_getattr_args /* {
    811 		struct vnode *a_vp;
    812 		struct vattr *a_vap;
    813 		struct ucred *a_cred;
    814 		struct proc *a_p;
    815 	} */ *ap = v;
    816 	struct kernfs_node *kfs = VTOKERN(ap->a_vp);
    817 	struct kernfs_subdir *ks;
    818 	struct vattr *vap = ap->a_vap;
    819 	int error = 0;
    820 	char strbuf[KSTRING], *bf;
    821 	size_t nread, total;
    822 
    823 	VATTR_NULL(vap);
    824 	vap->va_type = ap->a_vp->v_type;
    825 	vap->va_uid = 0;
    826 	vap->va_gid = 0;
    827 	vap->va_mode = kfs->kfs_mode;
    828 	vap->va_fileid = kfs->kfs_fileno;
    829 	vap->va_flags = 0;
    830 	vap->va_size = 0;
    831 	vap->va_blocksize = DEV_BSIZE;
    832 	/*
    833 	 * Make all times be current TOD, except for the "boottime" node.
    834 	 * Avoid microtime(9), it's slow.
    835 	 * We don't guard the read from time(9) with splclock(9) since we
    836 	 * don't actually need to be THAT sure the access is atomic.
    837 	 */
    838 	if (kfs->kfs_kt && kfs->kfs_kt->kt_namlen == 8 &&
    839 	    !memcmp(kfs->kfs_kt->kt_name, "boottime", 8)) {
    840 		TIMEVAL_TO_TIMESPEC(&boottime, &vap->va_ctime);
    841 	} else {
    842 		TIMEVAL_TO_TIMESPEC(&time, &vap->va_ctime);
    843 	}
    844 	vap->va_atime = vap->va_mtime = vap->va_ctime;
    845 	vap->va_gen = 0;
    846 	vap->va_flags = 0;
    847 	vap->va_rdev = 0;
    848 	vap->va_bytes = 0;
    849 
    850 	switch (kfs->kfs_type) {
    851 	case KFSkern:
    852 		vap->va_nlink = nkern_dirs;
    853 		vap->va_bytes = vap->va_size = DEV_BSIZE;
    854 		break;
    855 
    856 	case KFSroot:
    857 		vap->va_nlink = 1;
    858 		vap->va_bytes = vap->va_size = DEV_BSIZE;
    859 		break;
    860 
    861 	case KFSsubdir:
    862 		ks = (struct kernfs_subdir *)kfs->kfs_kt->kt_data;
    863 		vap->va_nlink = ks->ks_dirs;
    864 		vap->va_bytes = vap->va_size = DEV_BSIZE;
    865 		break;
    866 
    867 	case KFSnull:
    868 	case KFStime:
    869 	case KFSint:
    870 	case KFSstring:
    871 	case KFShostname:
    872 	case KFSavenrun:
    873 	case KFSdevice:
    874 	case KFSmsgbuf:
    875 #ifdef IPSEC
    876 	case KFSipsecsa:
    877 	case KFSipsecsp:
    878 #endif
    879 		vap->va_nlink = 1;
    880 		total = 0;
    881 		do {
    882 			bf = strbuf;
    883 			error = kernfs_xread(kfs, total, &bf,
    884 			    sizeof(strbuf), &nread);
    885 			total += nread;
    886 		} while (error == 0 && nread != 0);
    887 		vap->va_bytes = vap->va_size = total;
    888 		break;
    889 
    890 #ifdef IPSEC
    891 	case KFSipsecsadir:
    892 	case KFSipsecspdir:
    893 		vap->va_nlink = 2;
    894 		vap->va_bytes = vap->va_size = DEV_BSIZE;
    895 		break;
    896 #endif
    897 
    898 	default:
    899 		error = kernfs_try_fileop(kfs->kfs_type,
    900 		    KERNFS_FILEOP_GETATTR, v, EINVAL);
    901 		break;
    902 	}
    903 
    904 	return (error);
    905 }
    906 
    907 /*ARGSUSED*/
    908 int
    909 kernfs_setattr(v)
    910 	void *v;
    911 {
    912 
    913 	/*
    914 	 * Silently ignore attribute changes.
    915 	 * This allows for open with truncate to have no
    916 	 * effect until some data is written.  I want to
    917 	 * do it this way because all writes are atomic.
    918 	 */
    919 	return (0);
    920 }
    921 
    922 int
    923 kernfs_read(v)
    924 	void *v;
    925 {
    926 	struct vop_read_args /* {
    927 		struct vnode *a_vp;
    928 		struct uio *a_uio;
    929 		int  a_ioflag;
    930 		struct ucred *a_cred;
    931 	} */ *ap = v;
    932 	struct uio *uio = ap->a_uio;
    933 	struct kernfs_node *kfs = VTOKERN(ap->a_vp);
    934 	char strbuf[KSTRING], *bf;
    935 	off_t off;
    936 	size_t len;
    937 	int error;
    938 
    939 	if (ap->a_vp->v_type == VDIR)
    940 		return (EOPNOTSUPP);
    941 
    942 	off = uio->uio_offset;
    943 	bf = strbuf;
    944 	if ((error = kernfs_xread(kfs, off, &bf, sizeof(strbuf), &len)) == 0)
    945 		error = uiomove(bf, len, uio);
    946 	return (error);
    947 }
    948 
    949 static int
    950 kernfs_default_xwrite(v)
    951 	void *v;
    952 {
    953 	struct vop_write_args /* {
    954 		struct vnode *a_vp;
    955 		struct uio *a_uio;
    956 		int  a_ioflag;
    957 		struct ucred *a_cred;
    958 	} */ *ap = v;
    959 	struct kernfs_node *kfs = VTOKERN(ap->a_vp);
    960 	struct uio *uio = ap->a_uio;
    961 	int error, xlen;
    962 	char strbuf[KSTRING];
    963 
    964 	if (uio->uio_offset != 0)
    965 		return (EINVAL);
    966 
    967 	xlen = min(uio->uio_resid, KSTRING-1);
    968 	if ((error = uiomove(strbuf, xlen, uio)) != 0)
    969 		return (error);
    970 
    971 	if (uio->uio_resid != 0)
    972 		return (EIO);
    973 
    974 	strbuf[xlen] = '\0';
    975 	xlen = strlen(strbuf);
    976 	return (kernfs_xwrite(kfs, strbuf, xlen));
    977 }
    978 
    979 int
    980 kernfs_write(v)
    981 	void *v;
    982 {
    983 	struct vop_write_args /* {
    984 		struct vnode *a_vp;
    985 		struct uio *a_uio;
    986 		int  a_ioflag;
    987 		struct ucred *a_cred;
    988 	} */ *ap = v;
    989 	struct kernfs_node *kfs = VTOKERN(ap->a_vp);
    990 
    991 	return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_WRITE, v, 0);
    992 }
    993 
    994 int
    995 kernfs_ioctl(v)
    996 	void *v;
    997 {
    998 	struct vop_ioctl_args /* {
    999 		const struct vnodeop_desc *a_desc;
   1000 		struct vnode *a_vp;
   1001 		u_long a_command;
   1002 		void *a_data;
   1003 		int a_fflag;
   1004 		struct ucred *a_cred;
   1005 		struct proc *a_p;
   1006 	} */ *ap = v;
   1007 	struct kernfs_node *kfs = VTOKERN(ap->a_vp);
   1008 
   1009 	return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_IOCTL, v,
   1010 	    EPASSTHROUGH);
   1011 }
   1012 
   1013 static int
   1014 kernfs_setdirentfileno_kt(struct dirent *d, const struct kern_target *kt,
   1015     u_int32_t value, struct vop_readdir_args *ap)
   1016 {
   1017 	struct kernfs_node *kfs;
   1018 	struct vnode *vp;
   1019 	int error;
   1020 
   1021 	if ((error = kernfs_allocvp(ap->a_vp->v_mount, &vp, kt->kt_tag, kt,
   1022 	    value)) != 0)
   1023 		return error;
   1024 	if (kt->kt_tag == KFSdevice) {
   1025 		struct vattr va;
   1026 		if ((error = VOP_GETATTR(vp, &va, ap->a_cred,
   1027 		    ap->a_uio->uio_segflg == UIO_USERSPACE ?
   1028 		    ap->a_uio->uio_procp : &proc0)) != 0)
   1029 			return (error);
   1030 		d->d_fileno = va.va_fileid;
   1031 	} else {
   1032 		kfs = VTOKERN(vp);
   1033 		d->d_fileno = kfs->kfs_fileno;
   1034 	}
   1035 	vput(vp);
   1036 	return 0;
   1037 }
   1038 
   1039 static int
   1040 kernfs_setdirentfileno(struct dirent *d, off_t entry,
   1041     struct kernfs_node *thisdir_kfs, const struct kern_target *parent_kt,
   1042     const struct kern_target *kt, struct vop_readdir_args *ap)
   1043 {
   1044 	const struct kern_target *ikt;
   1045 	int error;
   1046 
   1047 	switch (entry) {
   1048 	case 0:
   1049 		d->d_fileno = thisdir_kfs->kfs_fileno;
   1050 		return 0;
   1051 	case 1:
   1052 		ikt = parent_kt;
   1053 		break;
   1054 	default:
   1055 		ikt = kt;
   1056 		break;
   1057 	}
   1058 	if (ikt != thisdir_kfs->kfs_kt) {
   1059 		if ((error = kernfs_setdirentfileno_kt(d, ikt, 0, ap)) != 0)
   1060 			return error;
   1061 	} else
   1062 		d->d_fileno = thisdir_kfs->kfs_fileno;
   1063 	return 0;
   1064 }
   1065 
   1066 int
   1067 kernfs_readdir(v)
   1068 	void *v;
   1069 {
   1070 	struct vop_readdir_args /* {
   1071 		struct vnode *a_vp;
   1072 		struct uio *a_uio;
   1073 		struct ucred *a_cred;
   1074 		int *a_eofflag;
   1075 		off_t **a_cookies;
   1076 		int a_*ncookies;
   1077 	} */ *ap = v;
   1078 	struct uio *uio = ap->a_uio;
   1079 	struct dirent d;
   1080 	struct kernfs_node *kfs = VTOKERN(ap->a_vp);
   1081 	const struct kern_target *kt;
   1082 	const struct dyn_kern_target *dkt = NULL;
   1083 	const struct kernfs_subdir *ks;
   1084 	off_t i, j;
   1085 	int error;
   1086 	off_t *cookies = NULL;
   1087 	int ncookies = 0, n;
   1088 #ifdef IPSEC
   1089 	struct secasvar *sav, *sav2;
   1090 	struct secpolicy *sp;
   1091 #endif
   1092 
   1093 	if (uio->uio_resid < UIO_MX)
   1094 		return (EINVAL);
   1095 	if (uio->uio_offset < 0)
   1096 		return (EINVAL);
   1097 
   1098 	error = 0;
   1099 	i = uio->uio_offset;
   1100 	memset(&d, 0, sizeof(d));
   1101 	d.d_reclen = UIO_MX;
   1102 	ncookies = uio->uio_resid / UIO_MX;
   1103 
   1104 	switch (kfs->kfs_type) {
   1105 	case KFSkern:
   1106 		if (i >= nkern_targets)
   1107 			return (0);
   1108 
   1109 		if (ap->a_ncookies) {
   1110 			ncookies = min(ncookies, (nkern_targets - i));
   1111 			cookies = malloc(ncookies * sizeof(off_t), M_TEMP,
   1112 			    M_WAITOK);
   1113 			*ap->a_cookies = cookies;
   1114 		}
   1115 
   1116 		n = 0;
   1117 		for (; i < nkern_targets && uio->uio_resid >= UIO_MX; i++) {
   1118 			if (i < static_nkern_targets)
   1119 				kt = &kern_targets[i];
   1120 			else {
   1121 				if (dkt == NULL) {
   1122 					dkt = SIMPLEQ_FIRST(&dyn_kern_targets);
   1123 					for (j = static_nkern_targets; j < i &&
   1124 						     dkt != NULL; j++)
   1125 						dkt = SIMPLEQ_NEXT(dkt, dkt_queue);
   1126 					if (j != i)
   1127 						break;
   1128 				} else {
   1129 					dkt = SIMPLEQ_NEXT(dkt, dkt_queue);
   1130 					if (dkt == NULL)
   1131 						break;
   1132 				}
   1133 				kt = &dkt->dkt_kt;
   1134 			}
   1135 			if (kt->kt_tag == KFSdevice) {
   1136 				dev_t *dp = kt->kt_data;
   1137 				struct vnode *fvp;
   1138 
   1139 				if (*dp == NODEV ||
   1140 				    !vfinddev(*dp, kt->kt_vtype, &fvp))
   1141 					continue;
   1142 			}
   1143 			d.d_namlen = kt->kt_namlen;
   1144 			if ((error = kernfs_setdirentfileno(&d, i, kfs,
   1145 			    &kern_targets[0], kt, ap)) != 0)
   1146 				break;
   1147 			memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1);
   1148 			d.d_type = kt->kt_type;
   1149 			if ((error = uiomove(&d, UIO_MX, uio)) != 0)
   1150 				break;
   1151 			if (cookies)
   1152 				*cookies++ = i + 1;
   1153 			n++;
   1154 		}
   1155 		ncookies = n;
   1156 		break;
   1157 
   1158 	case KFSroot:
   1159 		if (i >= 2)
   1160 			return 0;
   1161 
   1162 		if (ap->a_ncookies) {
   1163 			ncookies = min(ncookies, (2 - i));
   1164 			cookies = malloc(ncookies * sizeof(off_t), M_TEMP,
   1165 			    M_WAITOK);
   1166 			*ap->a_cookies = cookies;
   1167 		}
   1168 
   1169 		n = 0;
   1170 		for (; i < 2 && uio->uio_resid >= UIO_MX; i++) {
   1171 			kt = &kern_targets[i];
   1172 			d.d_namlen = kt->kt_namlen;
   1173 			d.d_fileno = KERNFS_FILENO(kt, kt->kt_tag, 0);
   1174 			memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1);
   1175 			d.d_type = kt->kt_type;
   1176 			if ((error = uiomove(&d, UIO_MX, uio)) != 0)
   1177 				break;
   1178 			if (cookies)
   1179 				*cookies++ = i + 1;
   1180 			n++;
   1181 		}
   1182 		ncookies = n;
   1183 		break;
   1184 
   1185 	case KFSsubdir:
   1186 		ks = (struct kernfs_subdir *)kfs->kfs_kt->kt_data;
   1187 		if (i >= ks->ks_nentries)
   1188 			return (0);
   1189 
   1190 		if (ap->a_ncookies) {
   1191 			ncookies = min(ncookies, (ks->ks_nentries - i));
   1192 			cookies = malloc(ncookies * sizeof(off_t), M_TEMP,
   1193 			    M_WAITOK);
   1194 			*ap->a_cookies = cookies;
   1195 		}
   1196 
   1197 		dkt = SIMPLEQ_FIRST(&ks->ks_entries);
   1198 		for (j = 0; j < i && dkt != NULL; j++)
   1199 			dkt = SIMPLEQ_NEXT(dkt, dkt_queue);
   1200 		n = 0;
   1201 		for (; i < ks->ks_nentries && uio->uio_resid >= UIO_MX; i++) {
   1202 			if (i < 2)
   1203 				kt = &subdir_targets[i];
   1204 			else {
   1205 				/* check if ks_nentries lied to us */
   1206 				if (dkt == NULL)
   1207 					break;
   1208 				kt = &dkt->dkt_kt;
   1209 				dkt = SIMPLEQ_NEXT(dkt, dkt_queue);
   1210 			}
   1211 			if (kt->kt_tag == KFSdevice) {
   1212 				dev_t *dp = kt->kt_data;
   1213 				struct vnode *fvp;
   1214 
   1215 				if (*dp == NODEV ||
   1216 				    !vfinddev(*dp, kt->kt_vtype, &fvp))
   1217 					continue;
   1218 			}
   1219 			d.d_namlen = kt->kt_namlen;
   1220 			if ((error = kernfs_setdirentfileno(&d, i, kfs,
   1221 			    ks->ks_parent, kt, ap)) != 0)
   1222 				break;
   1223 			memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1);
   1224 			d.d_type = kt->kt_type;
   1225 			if ((error = uiomove(&d, UIO_MX, uio)) != 0)
   1226 				break;
   1227 			if (cookies)
   1228 				*cookies++ = i + 1;
   1229 			n++;
   1230 		}
   1231 		ncookies = n;
   1232 		break;
   1233 
   1234 #ifdef IPSEC
   1235 	case KFSipsecsadir:
   1236 		/* count SA in the system */
   1237 		n = 0;
   1238 		TAILQ_FOREACH(sav, &satailq, tailq) {
   1239 			for (sav2 = TAILQ_FIRST(&satailq);
   1240 			    sav2 != sav;
   1241 			    sav2 = TAILQ_NEXT(sav2, tailq)) {
   1242 				if (sav->spi == sav2->spi) {
   1243 					/* multiple SA with same SPI */
   1244 					break;
   1245 				}
   1246 			}
   1247 			if (sav == sav2 || sav->spi != sav2->spi)
   1248 				n++;
   1249 		}
   1250 
   1251 		if (i >= nipsecsa_targets + n)
   1252 			return (0);
   1253 
   1254 		if (ap->a_ncookies) {
   1255 			ncookies = min(ncookies, (n - i));
   1256 			cookies = malloc(ncookies * sizeof(off_t), M_TEMP,
   1257 			    M_WAITOK);
   1258 			*ap->a_cookies = cookies;
   1259 		}
   1260 
   1261 		n = 0;
   1262 		for (; i < nipsecsa_targets && uio->uio_resid >= UIO_MX; i++) {
   1263 			kt = &ipsecsa_targets[i];
   1264 			d.d_namlen = kt->kt_namlen;
   1265 			if ((error = kernfs_setdirentfileno(&d, i, kfs,
   1266 			    &kern_targets[0], kt, ap)) != 0)
   1267 				break;
   1268 			memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1);
   1269 			d.d_type = kt->kt_type;
   1270 			if ((error = uiomove(&d, UIO_MX, uio)) != 0)
   1271 				break;
   1272 			if (cookies)
   1273 				*cookies++ = i + 1;
   1274 			n++;
   1275 		}
   1276 		if (error) {
   1277 			ncookies = n;
   1278 			break;
   1279 		}
   1280 
   1281 		TAILQ_FOREACH(sav, &satailq, tailq) {
   1282 			for (sav2 = TAILQ_FIRST(&satailq);
   1283 			    sav2 != sav;
   1284 			    sav2 = TAILQ_NEXT(sav2, tailq)) {
   1285 				if (sav->spi == sav2->spi) {
   1286 					/* multiple SA with same SPI */
   1287 					break;
   1288 				}
   1289 			}
   1290 			if (sav != sav2 && sav->spi == sav2->spi)
   1291 				continue;
   1292 			if (uio->uio_resid < UIO_MX)
   1293 				break;
   1294 			if ((error = kernfs_setdirentfileno_kt(&d, &ipsecsa_kt,
   1295 			    sav->spi, ap)) != 0)
   1296 				break;
   1297 			d.d_namlen = snprintf(d.d_name, sizeof(d.d_name),
   1298 			    "%u", ntohl(sav->spi));
   1299 			d.d_type = DT_REG;
   1300 			if ((error = uiomove(&d, UIO_MX, uio)) != 0)
   1301 				break;
   1302 			if (cookies)
   1303 				*cookies++ = i + 1;
   1304 			n++;
   1305 			i++;
   1306 		}
   1307 		ncookies = n;
   1308 		break;
   1309 
   1310 	case KFSipsecspdir:
   1311 		/* count SP in the system */
   1312 		n = 0;
   1313 		TAILQ_FOREACH(sp, &sptailq, tailq)
   1314 			n++;
   1315 
   1316 		if (i >= nipsecsp_targets + n)
   1317 			return (0);
   1318 
   1319 		if (ap->a_ncookies) {
   1320 			ncookies = min(ncookies, (n - i));
   1321 			cookies = malloc(ncookies * sizeof(off_t), M_TEMP,
   1322 			    M_WAITOK);
   1323 			*ap->a_cookies = cookies;
   1324 		}
   1325 
   1326 		n = 0;
   1327 		for (; i < nipsecsp_targets && uio->uio_resid >= UIO_MX; i++) {
   1328 			kt = &ipsecsp_targets[i];
   1329 			d.d_namlen = kt->kt_namlen;
   1330 			if ((error = kernfs_setdirentfileno(&d, i, kfs,
   1331 			    &kern_targets[0], kt, ap)) != 0)
   1332 				break;
   1333 			memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1);
   1334 			d.d_type = kt->kt_type;
   1335 			if ((error = uiomove(&d, UIO_MX, uio)) != 0)
   1336 				break;
   1337 			if (cookies)
   1338 				*cookies++ = i + 1;
   1339 			n++;
   1340 		}
   1341 		if (error) {
   1342 			ncookies = n;
   1343 			break;
   1344 		}
   1345 
   1346 		TAILQ_FOREACH(sp, &sptailq, tailq) {
   1347 			if (uio->uio_resid < UIO_MX)
   1348 				break;
   1349 			if ((error = kernfs_setdirentfileno_kt(&d, &ipsecsp_kt,
   1350 			    sp->id, ap)) != 0)
   1351 				break;
   1352 			d.d_namlen = snprintf(d.d_name, sizeof(d.d_name),
   1353 			    "%u", sp->id);
   1354 			d.d_type = DT_REG;
   1355 			if ((error = uiomove(&d, UIO_MX, uio)) != 0)
   1356 				break;
   1357 			if (cookies)
   1358 				*cookies++ = i + 1;
   1359 			n++;
   1360 			i++;
   1361 		}
   1362 		ncookies = n;
   1363 		break;
   1364 #endif
   1365 
   1366 	default:
   1367 		error = ENOTDIR;
   1368 		break;
   1369 	}
   1370 
   1371 	if (ap->a_ncookies) {
   1372 		if (error) {
   1373 			if (cookies)
   1374 				free(*ap->a_cookies, M_TEMP);
   1375 			*ap->a_ncookies = 0;
   1376 			*ap->a_cookies = NULL;
   1377 		} else
   1378 			*ap->a_ncookies = ncookies;
   1379 	}
   1380 
   1381 	uio->uio_offset = i;
   1382 	return (error);
   1383 }
   1384 
   1385 int
   1386 kernfs_inactive(v)
   1387 	void *v;
   1388 {
   1389 	struct vop_inactive_args /* {
   1390 		struct vnode *a_vp;
   1391 		struct proc *a_p;
   1392 	} */ *ap = v;
   1393 	struct vnode *vp = ap->a_vp;
   1394 	const struct kernfs_node *kfs = VTOKERN(ap->a_vp);
   1395 #ifdef IPSEC
   1396 	struct mbuf *m;
   1397 	struct secpolicy *sp;
   1398 #endif
   1399 
   1400 	VOP_UNLOCK(vp, 0);
   1401 	switch (kfs->kfs_type) {
   1402 #ifdef IPSEC
   1403 	case KFSipsecsa:
   1404 		m = key_setdumpsa_spi(htonl(kfs->kfs_value));
   1405 		if (m)
   1406 			m_freem(m);
   1407 		else
   1408 			vgone(vp);
   1409 		break;
   1410 	case KFSipsecsp:
   1411 		sp = key_getspbyid(kfs->kfs_value);
   1412 		if (sp)
   1413 			key_freesp(sp);
   1414 		else {
   1415 			/* should never happen as we hold a refcnt */
   1416 			vgone(vp);
   1417 		}
   1418 		break;
   1419 #endif
   1420 	default:
   1421 		break;
   1422 	}
   1423 	return (0);
   1424 }
   1425 
   1426 int
   1427 kernfs_reclaim(v)
   1428 	void *v;
   1429 {
   1430 	struct vop_reclaim_args /* {
   1431 		struct vnode *a_vp;
   1432 	} */ *ap = v;
   1433 
   1434 	return (kernfs_freevp(ap->a_vp));
   1435 }
   1436 
   1437 /*
   1438  * Return POSIX pathconf information applicable to special devices.
   1439  */
   1440 int
   1441 kernfs_pathconf(v)
   1442 	void *v;
   1443 {
   1444 	struct vop_pathconf_args /* {
   1445 		struct vnode *a_vp;
   1446 		int a_name;
   1447 		register_t *a_retval;
   1448 	} */ *ap = v;
   1449 
   1450 	switch (ap->a_name) {
   1451 	case _PC_LINK_MAX:
   1452 		*ap->a_retval = LINK_MAX;
   1453 		return (0);
   1454 	case _PC_MAX_CANON:
   1455 		*ap->a_retval = MAX_CANON;
   1456 		return (0);
   1457 	case _PC_MAX_INPUT:
   1458 		*ap->a_retval = MAX_INPUT;
   1459 		return (0);
   1460 	case _PC_PIPE_BUF:
   1461 		*ap->a_retval = PIPE_BUF;
   1462 		return (0);
   1463 	case _PC_CHOWN_RESTRICTED:
   1464 		*ap->a_retval = 1;
   1465 		return (0);
   1466 	case _PC_VDISABLE:
   1467 		*ap->a_retval = _POSIX_VDISABLE;
   1468 		return (0);
   1469 	case _PC_SYNC_IO:
   1470 		*ap->a_retval = 1;
   1471 		return (0);
   1472 	default:
   1473 		return (EINVAL);
   1474 	}
   1475 	/* NOTREACHED */
   1476 }
   1477 
   1478 /*
   1479  * Print out the contents of a /dev/fd vnode.
   1480  */
   1481 /* ARGSUSED */
   1482 int
   1483 kernfs_print(v)
   1484 	void *v;
   1485 {
   1486 
   1487 	printf("tag VT_KERNFS, kernfs vnode\n");
   1488 	return (0);
   1489 }
   1490 
   1491 int
   1492 kernfs_link(v)
   1493 	void *v;
   1494 {
   1495 	struct vop_link_args /* {
   1496 		struct vnode *a_dvp;
   1497 		struct vnode *a_vp;
   1498 		struct componentname *a_cnp;
   1499 	} */ *ap = v;
   1500 
   1501 	VOP_ABORTOP(ap->a_dvp, ap->a_cnp);
   1502 	vput(ap->a_dvp);
   1503 	return (EROFS);
   1504 }
   1505 
   1506 int
   1507 kernfs_symlink(v)
   1508 	void *v;
   1509 {
   1510 	struct vop_symlink_args /* {
   1511 		struct vnode *a_dvp;
   1512 		struct vnode **a_vpp;
   1513 		struct componentname *a_cnp;
   1514 		struct vattr *a_vap;
   1515 		char *a_target;
   1516 	} */ *ap = v;
   1517 
   1518 	VOP_ABORTOP(ap->a_dvp, ap->a_cnp);
   1519 	vput(ap->a_dvp);
   1520 	return (EROFS);
   1521 }
   1522