kernfs_vnops.c revision 1.110 1 /* $NetBSD: kernfs_vnops.c,v 1.110 2005/08/30 20:08:01 xtraeme Exp $ */
2
3 /*
4 * Copyright (c) 1992, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software donated to Berkeley by
8 * Jan-Simon Pendry.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)kernfs_vnops.c 8.15 (Berkeley) 5/21/95
35 */
36
37 /*
38 * Kernel parameter filesystem (/kern)
39 */
40
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: kernfs_vnops.c,v 1.110 2005/08/30 20:08:01 xtraeme Exp $");
43
44 #ifdef _KERNEL_OPT
45 #include "opt_ipsec.h"
46 #endif
47
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/kernel.h>
51 #include <sys/vmmeter.h>
52 #include <sys/time.h>
53 #include <sys/proc.h>
54 #include <sys/vnode.h>
55 #include <sys/malloc.h>
56 #include <sys/file.h>
57 #include <sys/stat.h>
58 #include <sys/mount.h>
59 #include <sys/namei.h>
60 #include <sys/buf.h>
61 #include <sys/dirent.h>
62 #include <sys/msgbuf.h>
63
64 #include <miscfs/genfs/genfs.h>
65 #include <miscfs/kernfs/kernfs.h>
66
67 #ifdef IPSEC
68 #include <sys/mbuf.h>
69 #include <net/route.h>
70 #include <netinet/in.h>
71 #include <netinet6/ipsec.h>
72 #include <netkey/key.h>
73 #endif
74
75 #include <uvm/uvm_extern.h>
76
77 #define KSTRING 256 /* Largest I/O available via this filesystem */
78 #define UIO_MX 32
79
80 #define READ_MODE (S_IRUSR|S_IRGRP|S_IROTH)
81 #define WRITE_MODE (S_IWUSR|S_IRUSR|S_IRGRP|S_IROTH)
82 #define UREAD_MODE (S_IRUSR)
83 #define DIR_MODE (S_IRUSR|S_IXUSR|S_IRGRP|S_IXGRP|S_IROTH|S_IXOTH)
84 #define UDIR_MODE (S_IRUSR|S_IXUSR)
85
86 #define N(s) sizeof(s)-1, s
87 const struct kern_target kern_targets[] = {
88 /* NOTE: The name must be less than UIO_MX-16 chars in length */
89 /* name data tag type ro/rw */
90 { DT_DIR, N("."), 0, KFSkern, VDIR, DIR_MODE },
91 { DT_DIR, N(".."), 0, KFSroot, VDIR, DIR_MODE },
92 { DT_REG, N("boottime"), &boottime.tv_sec, KFSint, VREG, READ_MODE },
93 /* XXXUNCONST */
94 { DT_REG, N("copyright"), __UNCONST(copyright),
95 KFSstring, VREG, READ_MODE },
96 { DT_REG, N("hostname"), 0, KFShostname, VREG, WRITE_MODE },
97 { DT_REG, N("hz"), &hz, KFSint, VREG, READ_MODE },
98 #ifdef IPSEC
99 { DT_DIR, N("ipsecsa"), 0, KFSipsecsadir, VDIR, UDIR_MODE },
100 { DT_DIR, N("ipsecsp"), 0, KFSipsecspdir, VDIR, UDIR_MODE },
101 #endif
102 { DT_REG, N("loadavg"), 0, KFSavenrun, VREG, READ_MODE },
103 { DT_REG, N("msgbuf"), 0, KFSmsgbuf, VREG, READ_MODE },
104 { DT_REG, N("pagesize"), &uvmexp.pagesize, KFSint, VREG, READ_MODE },
105 { DT_REG, N("physmem"), &physmem, KFSint, VREG, READ_MODE },
106 #if 0
107 { DT_DIR, N("root"), 0, KFSnull, VDIR, DIR_MODE },
108 #endif
109 { DT_BLK, N("rootdev"), &rootdev, KFSdevice, VBLK, READ_MODE },
110 { DT_CHR, N("rrootdev"), &rrootdev, KFSdevice, VCHR, READ_MODE },
111 { DT_REG, N("time"), 0, KFStime, VREG, READ_MODE },
112 /* XXXUNCONST */
113 { DT_REG, N("version"), __UNCONST(version),
114 KFSstring, VREG, READ_MODE },
115 };
116 const struct kern_target subdir_targets[] = {
117 /* NOTE: The name must be less than UIO_MX-16 chars in length */
118 /* name data tag type ro/rw */
119 { DT_DIR, N("."), 0, KFSsubdir, VDIR, DIR_MODE },
120 { DT_DIR, N(".."), 0, KFSkern, VDIR, DIR_MODE },
121 };
122 #ifdef IPSEC
123 const struct kern_target ipsecsa_targets[] = {
124 /* NOTE: The name must be less than UIO_MX-16 chars in length */
125 /* name data tag type ro/rw */
126 { DT_DIR, N("."), 0, KFSipsecsadir, VDIR, DIR_MODE },
127 { DT_DIR, N(".."), 0, KFSkern, VDIR, DIR_MODE },
128 };
129 const struct kern_target ipsecsp_targets[] = {
130 /* NOTE: The name must be less than UIO_MX-16 chars in length */
131 /* name data tag type ro/rw */
132 { DT_DIR, N("."), 0, KFSipsecspdir, VDIR, DIR_MODE },
133 { DT_DIR, N(".."), 0, KFSkern, VDIR, DIR_MODE },
134 };
135 const struct kern_target ipsecsa_kt =
136 { DT_DIR, N(""), 0, KFSipsecsa, VREG, UREAD_MODE };
137 const struct kern_target ipsecsp_kt =
138 { DT_DIR, N(""), 0, KFSipsecsp, VREG, UREAD_MODE };
139 #endif
140 #undef N
141 SIMPLEQ_HEAD(,dyn_kern_target) dyn_kern_targets =
142 SIMPLEQ_HEAD_INITIALIZER(dyn_kern_targets);
143 int nkern_targets = sizeof(kern_targets) / sizeof(kern_targets[0]);
144 const int static_nkern_targets = sizeof(kern_targets) / sizeof(kern_targets[0]);
145 #ifdef IPSEC
146 int nipsecsa_targets = sizeof(ipsecsa_targets) / sizeof(ipsecsa_targets[0]);
147 int nipsecsp_targets = sizeof(ipsecsp_targets) / sizeof(ipsecsp_targets[0]);
148 int nkern_dirs = 4; /* 2 extra subdirs */
149 #else
150 int nkern_dirs = 2;
151 #endif
152
153 int kernfs_try_fileop(kfstype, kfsfileop, void *, int);
154 int kernfs_try_xwrite(kfstype, const struct kernfs_node *, char *,
155 size_t, int);
156
157 static int kernfs_default_xwrite(void *v);
158 static int kernfs_default_fileop_getattr(void *);
159
160 /* must include all fileop's */
161 const struct kernfs_fileop kernfs_default_fileops[] = {
162 { .kf_fileop = KERNFS_XWRITE },
163 { .kf_fileop = KERNFS_FILEOP_OPEN },
164 { .kf_fileop = KERNFS_FILEOP_GETATTR,
165 .kf_genop = {kernfs_default_fileop_getattr} },
166 { .kf_fileop = KERNFS_FILEOP_IOCTL },
167 { .kf_fileop = KERNFS_FILEOP_CLOSE },
168 { .kf_fileop = KERNFS_FILEOP_WRITE, .kf_genop = {kernfs_default_xwrite} },
169 };
170
171 int kernfs_lookup(void *);
172 #define kernfs_create genfs_eopnotsupp
173 #define kernfs_mknod genfs_eopnotsupp
174 int kernfs_open(void *);
175 int kernfs_close(void *);
176 int kernfs_access(void *);
177 int kernfs_getattr(void *);
178 int kernfs_setattr(void *);
179 int kernfs_read(void *);
180 int kernfs_write(void *);
181 #define kernfs_fcntl genfs_fcntl
182 int kernfs_ioctl(void *);
183 #define kernfs_poll genfs_poll
184 #define kernfs_revoke genfs_revoke
185 #define kernfs_fsync genfs_nullop
186 #define kernfs_seek genfs_nullop
187 #define kernfs_remove genfs_eopnotsupp
188 int kernfs_link(void *);
189 #define kernfs_rename genfs_eopnotsupp
190 #define kernfs_mkdir genfs_eopnotsupp
191 #define kernfs_rmdir genfs_eopnotsupp
192 int kernfs_symlink(void *);
193 int kernfs_readdir(void *);
194 #define kernfs_readlink genfs_eopnotsupp
195 #define kernfs_abortop genfs_abortop
196 int kernfs_inactive(void *);
197 int kernfs_reclaim(void *);
198 #define kernfs_lock genfs_lock
199 #define kernfs_unlock genfs_unlock
200 #define kernfs_bmap genfs_badop
201 #define kernfs_strategy genfs_badop
202 int kernfs_print(void *);
203 #define kernfs_islocked genfs_islocked
204 int kernfs_pathconf(void *);
205 #define kernfs_advlock genfs_einval
206 #define kernfs_blkatoff genfs_eopnotsupp
207 #define kernfs_valloc genfs_eopnotsupp
208 #define kernfs_vfree genfs_nullop
209 #define kernfs_truncate genfs_eopnotsupp
210 #define kernfs_update genfs_nullop
211 #define kernfs_bwrite genfs_eopnotsupp
212 #define kernfs_putpages genfs_putpages
213
214 static int kernfs_xread(struct kernfs_node *, int, char **,
215 size_t, size_t *);
216 static int kernfs_xwrite(const struct kernfs_node *, char *, size_t);
217
218 int (**kernfs_vnodeop_p)(void *);
219 const struct vnodeopv_entry_desc kernfs_vnodeop_entries[] = {
220 { &vop_default_desc, vn_default_error },
221 { &vop_lookup_desc, kernfs_lookup }, /* lookup */
222 { &vop_create_desc, kernfs_create }, /* create */
223 { &vop_mknod_desc, kernfs_mknod }, /* mknod */
224 { &vop_open_desc, kernfs_open }, /* open */
225 { &vop_close_desc, kernfs_close }, /* close */
226 { &vop_access_desc, kernfs_access }, /* access */
227 { &vop_getattr_desc, kernfs_getattr }, /* getattr */
228 { &vop_setattr_desc, kernfs_setattr }, /* setattr */
229 { &vop_read_desc, kernfs_read }, /* read */
230 { &vop_write_desc, kernfs_write }, /* write */
231 { &vop_fcntl_desc, kernfs_fcntl }, /* fcntl */
232 { &vop_ioctl_desc, kernfs_ioctl }, /* ioctl */
233 { &vop_poll_desc, kernfs_poll }, /* poll */
234 { &vop_revoke_desc, kernfs_revoke }, /* revoke */
235 { &vop_fsync_desc, kernfs_fsync }, /* fsync */
236 { &vop_seek_desc, kernfs_seek }, /* seek */
237 { &vop_remove_desc, kernfs_remove }, /* remove */
238 { &vop_link_desc, kernfs_link }, /* link */
239 { &vop_rename_desc, kernfs_rename }, /* rename */
240 { &vop_mkdir_desc, kernfs_mkdir }, /* mkdir */
241 { &vop_rmdir_desc, kernfs_rmdir }, /* rmdir */
242 { &vop_symlink_desc, kernfs_symlink }, /* symlink */
243 { &vop_readdir_desc, kernfs_readdir }, /* readdir */
244 { &vop_readlink_desc, kernfs_readlink }, /* readlink */
245 { &vop_abortop_desc, kernfs_abortop }, /* abortop */
246 { &vop_inactive_desc, kernfs_inactive }, /* inactive */
247 { &vop_reclaim_desc, kernfs_reclaim }, /* reclaim */
248 { &vop_lock_desc, kernfs_lock }, /* lock */
249 { &vop_unlock_desc, kernfs_unlock }, /* unlock */
250 { &vop_bmap_desc, kernfs_bmap }, /* bmap */
251 { &vop_strategy_desc, kernfs_strategy }, /* strategy */
252 { &vop_print_desc, kernfs_print }, /* print */
253 { &vop_islocked_desc, kernfs_islocked }, /* islocked */
254 { &vop_pathconf_desc, kernfs_pathconf }, /* pathconf */
255 { &vop_advlock_desc, kernfs_advlock }, /* advlock */
256 { &vop_blkatoff_desc, kernfs_blkatoff }, /* blkatoff */
257 { &vop_valloc_desc, kernfs_valloc }, /* valloc */
258 { &vop_vfree_desc, kernfs_vfree }, /* vfree */
259 { &vop_truncate_desc, kernfs_truncate }, /* truncate */
260 { &vop_update_desc, kernfs_update }, /* update */
261 { &vop_bwrite_desc, kernfs_bwrite }, /* bwrite */
262 { &vop_putpages_desc, kernfs_putpages }, /* putpages */
263 { NULL, NULL }
264 };
265 const struct vnodeopv_desc kernfs_vnodeop_opv_desc =
266 { &kernfs_vnodeop_p, kernfs_vnodeop_entries };
267
268 static __inline int
269 kernfs_fileop_compare(struct kernfs_fileop *a, struct kernfs_fileop *b)
270 {
271 if (a->kf_type < b->kf_type)
272 return -1;
273 if (a->kf_type > b->kf_type)
274 return 1;
275 if (a->kf_fileop < b->kf_fileop)
276 return -1;
277 if (a->kf_fileop > b->kf_fileop)
278 return 1;
279 return (0);
280 }
281
282 SPLAY_HEAD(kfsfileoptree, kernfs_fileop) kfsfileoptree =
283 SPLAY_INITIALIZER(kfsfileoptree);
284 SPLAY_PROTOTYPE(kfsfileoptree, kernfs_fileop, kf_node, kernfs_fileop_compare);
285 SPLAY_GENERATE(kfsfileoptree, kernfs_fileop, kf_node, kernfs_fileop_compare);
286
287 kfstype
288 kernfs_alloctype(int nkf, const struct kernfs_fileop *kf)
289 {
290 static u_char nextfreetype = KFSlasttype;
291 struct kernfs_fileop *dkf, *fkf, skf;
292 int i;
293
294 /* XXX need to keep track of dkf's memory if we support
295 deallocating types */
296 dkf = malloc(sizeof(kernfs_default_fileops), M_TEMP, M_WAITOK);
297 memcpy(dkf, kernfs_default_fileops, sizeof(kernfs_default_fileops));
298
299 for (i = 0; i < sizeof(kernfs_default_fileops) /
300 sizeof(kernfs_default_fileops[0]); i++) {
301 dkf[i].kf_type = nextfreetype;
302 SPLAY_INSERT(kfsfileoptree, &kfsfileoptree, &dkf[i]);
303 }
304
305 for (i = 0; i < nkf; i++) {
306 skf.kf_type = nextfreetype;
307 skf.kf_fileop = kf[i].kf_fileop;
308 if ((fkf = SPLAY_FIND(kfsfileoptree, &kfsfileoptree, &skf)))
309 fkf->kf_genop = kf[i].kf_genop;
310 }
311
312 return nextfreetype++;
313 }
314
315 int
316 kernfs_try_fileop(kfstype type, kfsfileop fileop, void *v, int error)
317 {
318 struct kernfs_fileop *kf, skf;
319
320 skf.kf_type = type;
321 skf.kf_fileop = fileop;
322 if ((kf = SPLAY_FIND(kfsfileoptree, &kfsfileoptree, &skf)))
323 if (kf->kf_vop)
324 return kf->kf_vop(v);
325 return error;
326 }
327
328 int
329 kernfs_try_xwrite(kfstype type, const struct kernfs_node *kfs, char *bf,
330 size_t len, int error)
331 {
332 struct kernfs_fileop *kf, skf;
333
334 skf.kf_type = type;
335 skf.kf_fileop = KERNFS_XWRITE;
336 if ((kf = SPLAY_FIND(kfsfileoptree, &kfsfileoptree, &skf)))
337 if (kf->kf_xwrite)
338 return kf->kf_xwrite(kfs, bf, len);
339 return error;
340 }
341
342 int
343 kernfs_addentry(kernfs_parentdir_t *pkt, kernfs_entry_t *dkt)
344 {
345 struct kernfs_subdir *ks, *parent;
346
347 if (pkt == NULL) {
348 SIMPLEQ_INSERT_TAIL(&dyn_kern_targets, dkt, dkt_queue);
349 nkern_targets++;
350 if (dkt->dkt_kt.kt_vtype == VDIR)
351 nkern_dirs++;
352 } else {
353 parent = (struct kernfs_subdir *)pkt->kt_data;
354 SIMPLEQ_INSERT_TAIL(&parent->ks_entries, dkt, dkt_queue);
355 parent->ks_nentries++;
356 if (dkt->dkt_kt.kt_vtype == VDIR)
357 parent->ks_dirs++;
358 }
359 if (dkt->dkt_kt.kt_vtype == VDIR && dkt->dkt_kt.kt_data == NULL) {
360 ks = malloc(sizeof(struct kernfs_subdir),
361 M_TEMP, M_WAITOK);
362 SIMPLEQ_INIT(&ks->ks_entries);
363 ks->ks_nentries = 2; /* . and .. */
364 ks->ks_dirs = 2;
365 ks->ks_parent = pkt ? pkt : &kern_targets[0];
366 dkt->dkt_kt.kt_data = ks;
367 }
368 return 0;
369 }
370
371 static int
372 kernfs_xread(kfs, off, bufp, len, wrlen)
373 struct kernfs_node *kfs;
374 int off;
375 char **bufp;
376 size_t len;
377 size_t *wrlen;
378 {
379 const struct kern_target *kt;
380 #ifdef IPSEC
381 struct mbuf *m;
382 #endif
383
384 kt = kfs->kfs_kt;
385
386 switch (kfs->kfs_type) {
387 case KFStime: {
388 struct timeval tv;
389
390 microtime(&tv);
391 snprintf(*bufp, len, "%ld %ld\n", tv.tv_sec, tv.tv_usec);
392 break;
393 }
394
395 case KFSint: {
396 int *ip = kt->kt_data;
397
398 snprintf(*bufp, len, "%d\n", *ip);
399 break;
400 }
401
402 case KFSstring: {
403 char *cp = kt->kt_data;
404
405 *bufp = cp;
406 break;
407 }
408
409 case KFSmsgbuf: {
410 long n;
411
412 /*
413 * deal with cases where the message buffer has
414 * become corrupted.
415 */
416 if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) {
417 msgbufenabled = 0;
418 return (ENXIO);
419 }
420
421 /*
422 * Note that reads of /kern/msgbuf won't necessarily yield
423 * consistent results, if the message buffer is modified
424 * while the read is in progress. The worst that can happen
425 * is that incorrect data will be read. There's no way
426 * that this can crash the system unless the values in the
427 * message buffer header are corrupted, but that'll cause
428 * the system to die anyway.
429 */
430 if (off >= msgbufp->msg_bufs) {
431 *wrlen = 0;
432 return (0);
433 }
434 n = msgbufp->msg_bufx + off;
435 if (n >= msgbufp->msg_bufs)
436 n -= msgbufp->msg_bufs;
437 len = min(msgbufp->msg_bufs - n, msgbufp->msg_bufs - off);
438 *bufp = msgbufp->msg_bufc + n;
439 *wrlen = len;
440 return (0);
441 }
442
443 case KFShostname: {
444 char *cp = hostname;
445 int xlen = hostnamelen;
446
447 if (xlen >= (len - 2))
448 return (EINVAL);
449
450 memcpy(*bufp, cp, xlen);
451 (*bufp)[xlen] = '\n';
452 (*bufp)[xlen+1] = '\0';
453 len = strlen(*bufp);
454 break;
455 }
456
457 case KFSavenrun:
458 averunnable.fscale = FSCALE;
459 snprintf(*bufp, len, "%d %d %d %ld\n",
460 averunnable.ldavg[0], averunnable.ldavg[1],
461 averunnable.ldavg[2], averunnable.fscale);
462 break;
463
464 #ifdef IPSEC
465 case KFSipsecsa:
466 /*
467 * Note that SA configuration could be changed during the
468 * read operation, resulting in garbled output.
469 */
470 m = key_setdumpsa_spi(htonl(kfs->kfs_value));
471 if (!m)
472 return (ENOBUFS);
473 if (off >= m->m_pkthdr.len) {
474 *wrlen = 0;
475 m_freem(m);
476 return (0);
477 }
478 if (len > m->m_pkthdr.len - off)
479 len = m->m_pkthdr.len - off;
480 m_copydata(m, off, len, *bufp);
481 *wrlen = len;
482 m_freem(m);
483 return (0);
484
485 case KFSipsecsp:
486 /*
487 * Note that SP configuration could be changed during the
488 * read operation, resulting in garbled output.
489 */
490 if (!kfs->kfs_v) {
491 struct secpolicy *sp;
492
493 sp = key_getspbyid(kfs->kfs_value);
494 if (sp)
495 kfs->kfs_v = sp;
496 else
497 return (ENOENT);
498 }
499 m = key_setdumpsp((struct secpolicy *)kfs->kfs_v,
500 SADB_X_SPDGET, 0, 0);
501 if (!m)
502 return (ENOBUFS);
503 if (off >= m->m_pkthdr.len) {
504 *wrlen = 0;
505 m_freem(m);
506 return (0);
507 }
508 if (len > m->m_pkthdr.len - off)
509 len = m->m_pkthdr.len - off;
510 m_copydata(m, off, len, *bufp);
511 *wrlen = len;
512 m_freem(m);
513 return (0);
514 #endif
515
516 default:
517 *wrlen = 0;
518 return (0);
519 }
520
521 len = strlen(*bufp);
522 if (len <= off)
523 *wrlen = 0;
524 else {
525 *bufp += off;
526 *wrlen = len - off;
527 }
528 return (0);
529 }
530
531 static int
532 kernfs_xwrite(kfs, bf, len)
533 const struct kernfs_node *kfs;
534 char *bf;
535 size_t len;
536 {
537
538 switch (kfs->kfs_type) {
539 case KFShostname:
540 if (bf[len-1] == '\n')
541 --len;
542 memcpy(hostname, bf, len);
543 hostname[len] = '\0';
544 hostnamelen = (size_t) len;
545 return (0);
546
547 default:
548 return kernfs_try_xwrite(kfs->kfs_type, kfs, bf, len, EIO);
549 }
550 }
551
552
553 /*
554 * vp is the current namei directory
555 * ndp is the name to locate in that directory...
556 */
557 int
558 kernfs_lookup(v)
559 void *v;
560 {
561 struct vop_lookup_args /* {
562 struct vnode * a_dvp;
563 struct vnode ** a_vpp;
564 struct componentname * a_cnp;
565 } */ *ap = v;
566 struct componentname *cnp = ap->a_cnp;
567 struct vnode **vpp = ap->a_vpp;
568 struct vnode *dvp = ap->a_dvp;
569 const char *pname = cnp->cn_nameptr;
570 const struct kernfs_node *kfs;
571 const struct kern_target *kt;
572 const struct dyn_kern_target *dkt;
573 const struct kernfs_subdir *ks;
574 int error, i, wantpunlock;
575 #ifdef IPSEC
576 char *ep;
577 u_int32_t id;
578 #endif
579
580 *vpp = NULLVP;
581 cnp->cn_flags &= ~PDIRUNLOCK;
582
583 if (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME)
584 return (EROFS);
585
586 if (cnp->cn_namelen == 1 && *pname == '.') {
587 *vpp = dvp;
588 VREF(dvp);
589 return (0);
590 }
591
592 wantpunlock = (~cnp->cn_flags & (LOCKPARENT | ISLASTCN));
593 kfs = VTOKERN(dvp);
594 switch (kfs->kfs_type) {
595 case KFSkern:
596 /*
597 * Shouldn't get here with .. in the root node.
598 */
599 if (cnp->cn_flags & ISDOTDOT)
600 return (EIO);
601
602 for (i = 0; i < static_nkern_targets; i++) {
603 kt = &kern_targets[i];
604 if (cnp->cn_namelen == kt->kt_namlen &&
605 memcmp(kt->kt_name, pname, cnp->cn_namelen) == 0)
606 goto found;
607 }
608 SIMPLEQ_FOREACH(dkt, &dyn_kern_targets, dkt_queue) {
609 if (cnp->cn_namelen == dkt->dkt_kt.kt_namlen &&
610 memcmp(dkt->dkt_kt.kt_name, pname, cnp->cn_namelen) == 0) {
611 kt = &dkt->dkt_kt;
612 goto found;
613 }
614 }
615 break;
616
617 found:
618 error = kernfs_allocvp(dvp->v_mount, vpp, kt->kt_tag, kt, 0);
619 if ((error == 0) && wantpunlock) {
620 VOP_UNLOCK(dvp, 0);
621 cnp->cn_flags |= PDIRUNLOCK;
622 }
623 return (error);
624
625 case KFSsubdir:
626 ks = (struct kernfs_subdir *)kfs->kfs_kt->kt_data;
627 if (cnp->cn_flags & ISDOTDOT) {
628 kt = ks->ks_parent;
629 goto found;
630 }
631
632 SIMPLEQ_FOREACH(dkt, &ks->ks_entries, dkt_queue) {
633 if (cnp->cn_namelen == dkt->dkt_kt.kt_namlen &&
634 memcmp(dkt->dkt_kt.kt_name, pname, cnp->cn_namelen) == 0) {
635 kt = &dkt->dkt_kt;
636 goto found;
637 }
638 }
639 break;
640
641 #ifdef IPSEC
642 case KFSipsecsadir:
643 if (cnp->cn_flags & ISDOTDOT) {
644 kt = &kern_targets[0];
645 goto found;
646 }
647
648 for (i = 2; i < nipsecsa_targets; i++) {
649 kt = &ipsecsa_targets[i];
650 if (cnp->cn_namelen == kt->kt_namlen &&
651 memcmp(kt->kt_name, pname, cnp->cn_namelen) == 0)
652 goto found;
653 }
654
655 ep = NULL;
656 id = strtoul(pname, &ep, 10);
657 if (!ep || *ep || ep == pname)
658 break;
659
660 error = kernfs_allocvp(dvp->v_mount, vpp, KFSipsecsa, &ipsecsa_kt, id);
661 if ((error == 0) && wantpunlock) {
662 VOP_UNLOCK(dvp, 0);
663 cnp->cn_flags |= PDIRUNLOCK;
664 }
665 return (error);
666
667 case KFSipsecspdir:
668 if (cnp->cn_flags & ISDOTDOT) {
669 kt = &kern_targets[0];
670 goto found;
671 }
672
673 for (i = 2; i < nipsecsp_targets; i++) {
674 kt = &ipsecsp_targets[i];
675 if (cnp->cn_namelen == kt->kt_namlen &&
676 memcmp(kt->kt_name, pname, cnp->cn_namelen) == 0)
677 goto found;
678 }
679
680 ep = NULL;
681 id = strtoul(pname, &ep, 10);
682 if (!ep || *ep || ep == pname)
683 break;
684
685 error = kernfs_allocvp(dvp->v_mount, vpp, KFSipsecsp, &ipsecsp_kt, id);
686 if ((error == 0) && wantpunlock) {
687 VOP_UNLOCK(dvp, 0);
688 cnp->cn_flags |= PDIRUNLOCK;
689 }
690 return (error);
691 #endif
692
693 default:
694 return (ENOTDIR);
695 }
696
697 return (cnp->cn_nameiop == LOOKUP ? ENOENT : EROFS);
698 }
699
700 int
701 kernfs_open(v)
702 void *v;
703 {
704 struct vop_open_args /* {
705 struct vnode *a_vp;
706 int a_mode;
707 struct ucred *a_cred;
708 struct proc *a_p;
709 } */ *ap = v;
710 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
711 #ifdef IPSEC
712 struct mbuf *m;
713 struct secpolicy *sp;
714 #endif
715
716 switch (kfs->kfs_type) {
717 #ifdef IPSEC
718 case KFSipsecsa:
719 m = key_setdumpsa_spi(htonl(kfs->kfs_value));
720 if (m) {
721 m_freem(m);
722 return (0);
723 } else
724 return (ENOENT);
725
726 case KFSipsecsp:
727 sp = key_getspbyid(kfs->kfs_value);
728 if (sp) {
729 kfs->kfs_v = sp;
730 return (0);
731 } else
732 return (ENOENT);
733 #endif
734
735 default:
736 return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_OPEN,
737 v, 0);
738 }
739 }
740
741 int
742 kernfs_close(v)
743 void *v;
744 {
745 struct vop_close_args /* {
746 struct vnode *a_vp;
747 int a_fflag;
748 struct ucred *a_cred;
749 struct proc *a_p;
750 } */ *ap = v;
751 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
752
753 switch (kfs->kfs_type) {
754 #ifdef IPSEC
755 case KFSipsecsp:
756 key_freesp((struct secpolicy *)kfs->kfs_v);
757 break;
758 #endif
759
760 default:
761 return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_CLOSE,
762 v, 0);
763 }
764
765 return (0);
766 }
767
768 int
769 kernfs_access(v)
770 void *v;
771 {
772 struct vop_access_args /* {
773 struct vnode *a_vp;
774 int a_mode;
775 struct ucred *a_cred;
776 struct proc *a_p;
777 } */ *ap = v;
778 struct vattr va;
779 int error;
780
781 if ((error = VOP_GETATTR(ap->a_vp, &va, ap->a_cred, ap->a_p)) != 0)
782 return (error);
783
784 return (vaccess(va.va_type, va.va_mode, va.va_uid, va.va_gid,
785 ap->a_mode, ap->a_cred));
786 }
787
788 static int
789 kernfs_default_fileop_getattr(v)
790 void *v;
791 {
792 struct vop_getattr_args /* {
793 struct vnode *a_vp;
794 struct vattr *a_vap;
795 struct ucred *a_cred;
796 struct proc *a_p;
797 } */ *ap = v;
798 struct vattr *vap = ap->a_vap;
799
800 vap->va_nlink = 1;
801 vap->va_bytes = vap->va_size = 0;
802
803 return 0;
804 }
805
806 int
807 kernfs_getattr(v)
808 void *v;
809 {
810 struct vop_getattr_args /* {
811 struct vnode *a_vp;
812 struct vattr *a_vap;
813 struct ucred *a_cred;
814 struct proc *a_p;
815 } */ *ap = v;
816 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
817 struct kernfs_subdir *ks;
818 struct vattr *vap = ap->a_vap;
819 int error = 0;
820 char strbuf[KSTRING], *bf;
821 size_t nread, total;
822
823 VATTR_NULL(vap);
824 vap->va_type = ap->a_vp->v_type;
825 vap->va_uid = 0;
826 vap->va_gid = 0;
827 vap->va_mode = kfs->kfs_mode;
828 vap->va_fileid = kfs->kfs_fileno;
829 vap->va_flags = 0;
830 vap->va_size = 0;
831 vap->va_blocksize = DEV_BSIZE;
832 /*
833 * Make all times be current TOD, except for the "boottime" node.
834 * Avoid microtime(9), it's slow.
835 * We don't guard the read from time(9) with splclock(9) since we
836 * don't actually need to be THAT sure the access is atomic.
837 */
838 if (kfs->kfs_kt && kfs->kfs_kt->kt_namlen == 8 &&
839 !memcmp(kfs->kfs_kt->kt_name, "boottime", 8)) {
840 TIMEVAL_TO_TIMESPEC(&boottime, &vap->va_ctime);
841 } else {
842 TIMEVAL_TO_TIMESPEC(&time, &vap->va_ctime);
843 }
844 vap->va_atime = vap->va_mtime = vap->va_ctime;
845 vap->va_gen = 0;
846 vap->va_flags = 0;
847 vap->va_rdev = 0;
848 vap->va_bytes = 0;
849
850 switch (kfs->kfs_type) {
851 case KFSkern:
852 vap->va_nlink = nkern_dirs;
853 vap->va_bytes = vap->va_size = DEV_BSIZE;
854 break;
855
856 case KFSroot:
857 vap->va_nlink = 1;
858 vap->va_bytes = vap->va_size = DEV_BSIZE;
859 break;
860
861 case KFSsubdir:
862 ks = (struct kernfs_subdir *)kfs->kfs_kt->kt_data;
863 vap->va_nlink = ks->ks_dirs;
864 vap->va_bytes = vap->va_size = DEV_BSIZE;
865 break;
866
867 case KFSnull:
868 case KFStime:
869 case KFSint:
870 case KFSstring:
871 case KFShostname:
872 case KFSavenrun:
873 case KFSdevice:
874 case KFSmsgbuf:
875 #ifdef IPSEC
876 case KFSipsecsa:
877 case KFSipsecsp:
878 #endif
879 vap->va_nlink = 1;
880 total = 0;
881 do {
882 bf = strbuf;
883 error = kernfs_xread(kfs, total, &bf,
884 sizeof(strbuf), &nread);
885 total += nread;
886 } while (error == 0 && nread != 0);
887 vap->va_bytes = vap->va_size = total;
888 break;
889
890 #ifdef IPSEC
891 case KFSipsecsadir:
892 case KFSipsecspdir:
893 vap->va_nlink = 2;
894 vap->va_bytes = vap->va_size = DEV_BSIZE;
895 break;
896 #endif
897
898 default:
899 error = kernfs_try_fileop(kfs->kfs_type,
900 KERNFS_FILEOP_GETATTR, v, EINVAL);
901 break;
902 }
903
904 return (error);
905 }
906
907 /*ARGSUSED*/
908 int
909 kernfs_setattr(v)
910 void *v;
911 {
912
913 /*
914 * Silently ignore attribute changes.
915 * This allows for open with truncate to have no
916 * effect until some data is written. I want to
917 * do it this way because all writes are atomic.
918 */
919 return (0);
920 }
921
922 int
923 kernfs_read(v)
924 void *v;
925 {
926 struct vop_read_args /* {
927 struct vnode *a_vp;
928 struct uio *a_uio;
929 int a_ioflag;
930 struct ucred *a_cred;
931 } */ *ap = v;
932 struct uio *uio = ap->a_uio;
933 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
934 char strbuf[KSTRING], *bf;
935 off_t off;
936 size_t len;
937 int error;
938
939 if (ap->a_vp->v_type == VDIR)
940 return (EOPNOTSUPP);
941
942 off = uio->uio_offset;
943 bf = strbuf;
944 if ((error = kernfs_xread(kfs, off, &bf, sizeof(strbuf), &len)) == 0)
945 error = uiomove(bf, len, uio);
946 return (error);
947 }
948
949 static int
950 kernfs_default_xwrite(v)
951 void *v;
952 {
953 struct vop_write_args /* {
954 struct vnode *a_vp;
955 struct uio *a_uio;
956 int a_ioflag;
957 struct ucred *a_cred;
958 } */ *ap = v;
959 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
960 struct uio *uio = ap->a_uio;
961 int error, xlen;
962 char strbuf[KSTRING];
963
964 if (uio->uio_offset != 0)
965 return (EINVAL);
966
967 xlen = min(uio->uio_resid, KSTRING-1);
968 if ((error = uiomove(strbuf, xlen, uio)) != 0)
969 return (error);
970
971 if (uio->uio_resid != 0)
972 return (EIO);
973
974 strbuf[xlen] = '\0';
975 xlen = strlen(strbuf);
976 return (kernfs_xwrite(kfs, strbuf, xlen));
977 }
978
979 int
980 kernfs_write(v)
981 void *v;
982 {
983 struct vop_write_args /* {
984 struct vnode *a_vp;
985 struct uio *a_uio;
986 int a_ioflag;
987 struct ucred *a_cred;
988 } */ *ap = v;
989 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
990
991 return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_WRITE, v, 0);
992 }
993
994 int
995 kernfs_ioctl(v)
996 void *v;
997 {
998 struct vop_ioctl_args /* {
999 const struct vnodeop_desc *a_desc;
1000 struct vnode *a_vp;
1001 u_long a_command;
1002 void *a_data;
1003 int a_fflag;
1004 struct ucred *a_cred;
1005 struct proc *a_p;
1006 } */ *ap = v;
1007 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
1008
1009 return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_IOCTL, v,
1010 EPASSTHROUGH);
1011 }
1012
1013 static int
1014 kernfs_setdirentfileno_kt(struct dirent *d, const struct kern_target *kt,
1015 u_int32_t value, struct vop_readdir_args *ap)
1016 {
1017 struct kernfs_node *kfs;
1018 struct vnode *vp;
1019 int error;
1020
1021 if ((error = kernfs_allocvp(ap->a_vp->v_mount, &vp, kt->kt_tag, kt,
1022 value)) != 0)
1023 return error;
1024 if (kt->kt_tag == KFSdevice) {
1025 struct vattr va;
1026 if ((error = VOP_GETATTR(vp, &va, ap->a_cred,
1027 ap->a_uio->uio_segflg == UIO_USERSPACE ?
1028 ap->a_uio->uio_procp : &proc0)) != 0)
1029 return (error);
1030 d->d_fileno = va.va_fileid;
1031 } else {
1032 kfs = VTOKERN(vp);
1033 d->d_fileno = kfs->kfs_fileno;
1034 }
1035 vput(vp);
1036 return 0;
1037 }
1038
1039 static int
1040 kernfs_setdirentfileno(struct dirent *d, off_t entry,
1041 struct kernfs_node *thisdir_kfs, const struct kern_target *parent_kt,
1042 const struct kern_target *kt, struct vop_readdir_args *ap)
1043 {
1044 const struct kern_target *ikt;
1045 int error;
1046
1047 switch (entry) {
1048 case 0:
1049 d->d_fileno = thisdir_kfs->kfs_fileno;
1050 return 0;
1051 case 1:
1052 ikt = parent_kt;
1053 break;
1054 default:
1055 ikt = kt;
1056 break;
1057 }
1058 if (ikt != thisdir_kfs->kfs_kt) {
1059 if ((error = kernfs_setdirentfileno_kt(d, ikt, 0, ap)) != 0)
1060 return error;
1061 } else
1062 d->d_fileno = thisdir_kfs->kfs_fileno;
1063 return 0;
1064 }
1065
1066 int
1067 kernfs_readdir(v)
1068 void *v;
1069 {
1070 struct vop_readdir_args /* {
1071 struct vnode *a_vp;
1072 struct uio *a_uio;
1073 struct ucred *a_cred;
1074 int *a_eofflag;
1075 off_t **a_cookies;
1076 int a_*ncookies;
1077 } */ *ap = v;
1078 struct uio *uio = ap->a_uio;
1079 struct dirent d;
1080 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
1081 const struct kern_target *kt;
1082 const struct dyn_kern_target *dkt = NULL;
1083 const struct kernfs_subdir *ks;
1084 off_t i, j;
1085 int error;
1086 off_t *cookies = NULL;
1087 int ncookies = 0, n;
1088 #ifdef IPSEC
1089 struct secasvar *sav, *sav2;
1090 struct secpolicy *sp;
1091 #endif
1092
1093 if (uio->uio_resid < UIO_MX)
1094 return (EINVAL);
1095 if (uio->uio_offset < 0)
1096 return (EINVAL);
1097
1098 error = 0;
1099 i = uio->uio_offset;
1100 memset(&d, 0, sizeof(d));
1101 d.d_reclen = UIO_MX;
1102 ncookies = uio->uio_resid / UIO_MX;
1103
1104 switch (kfs->kfs_type) {
1105 case KFSkern:
1106 if (i >= nkern_targets)
1107 return (0);
1108
1109 if (ap->a_ncookies) {
1110 ncookies = min(ncookies, (nkern_targets - i));
1111 cookies = malloc(ncookies * sizeof(off_t), M_TEMP,
1112 M_WAITOK);
1113 *ap->a_cookies = cookies;
1114 }
1115
1116 n = 0;
1117 for (; i < nkern_targets && uio->uio_resid >= UIO_MX; i++) {
1118 if (i < static_nkern_targets)
1119 kt = &kern_targets[i];
1120 else {
1121 if (dkt == NULL) {
1122 dkt = SIMPLEQ_FIRST(&dyn_kern_targets);
1123 for (j = static_nkern_targets; j < i &&
1124 dkt != NULL; j++)
1125 dkt = SIMPLEQ_NEXT(dkt, dkt_queue);
1126 if (j != i)
1127 break;
1128 } else {
1129 dkt = SIMPLEQ_NEXT(dkt, dkt_queue);
1130 if (dkt == NULL)
1131 break;
1132 }
1133 kt = &dkt->dkt_kt;
1134 }
1135 if (kt->kt_tag == KFSdevice) {
1136 dev_t *dp = kt->kt_data;
1137 struct vnode *fvp;
1138
1139 if (*dp == NODEV ||
1140 !vfinddev(*dp, kt->kt_vtype, &fvp))
1141 continue;
1142 }
1143 d.d_namlen = kt->kt_namlen;
1144 if ((error = kernfs_setdirentfileno(&d, i, kfs,
1145 &kern_targets[0], kt, ap)) != 0)
1146 break;
1147 memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1);
1148 d.d_type = kt->kt_type;
1149 if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1150 break;
1151 if (cookies)
1152 *cookies++ = i + 1;
1153 n++;
1154 }
1155 ncookies = n;
1156 break;
1157
1158 case KFSroot:
1159 if (i >= 2)
1160 return 0;
1161
1162 if (ap->a_ncookies) {
1163 ncookies = min(ncookies, (2 - i));
1164 cookies = malloc(ncookies * sizeof(off_t), M_TEMP,
1165 M_WAITOK);
1166 *ap->a_cookies = cookies;
1167 }
1168
1169 n = 0;
1170 for (; i < 2 && uio->uio_resid >= UIO_MX; i++) {
1171 kt = &kern_targets[i];
1172 d.d_namlen = kt->kt_namlen;
1173 d.d_fileno = KERNFS_FILENO(kt, kt->kt_tag, 0);
1174 memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1);
1175 d.d_type = kt->kt_type;
1176 if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1177 break;
1178 if (cookies)
1179 *cookies++ = i + 1;
1180 n++;
1181 }
1182 ncookies = n;
1183 break;
1184
1185 case KFSsubdir:
1186 ks = (struct kernfs_subdir *)kfs->kfs_kt->kt_data;
1187 if (i >= ks->ks_nentries)
1188 return (0);
1189
1190 if (ap->a_ncookies) {
1191 ncookies = min(ncookies, (ks->ks_nentries - i));
1192 cookies = malloc(ncookies * sizeof(off_t), M_TEMP,
1193 M_WAITOK);
1194 *ap->a_cookies = cookies;
1195 }
1196
1197 dkt = SIMPLEQ_FIRST(&ks->ks_entries);
1198 for (j = 0; j < i && dkt != NULL; j++)
1199 dkt = SIMPLEQ_NEXT(dkt, dkt_queue);
1200 n = 0;
1201 for (; i < ks->ks_nentries && uio->uio_resid >= UIO_MX; i++) {
1202 if (i < 2)
1203 kt = &subdir_targets[i];
1204 else {
1205 /* check if ks_nentries lied to us */
1206 if (dkt == NULL)
1207 break;
1208 kt = &dkt->dkt_kt;
1209 dkt = SIMPLEQ_NEXT(dkt, dkt_queue);
1210 }
1211 if (kt->kt_tag == KFSdevice) {
1212 dev_t *dp = kt->kt_data;
1213 struct vnode *fvp;
1214
1215 if (*dp == NODEV ||
1216 !vfinddev(*dp, kt->kt_vtype, &fvp))
1217 continue;
1218 }
1219 d.d_namlen = kt->kt_namlen;
1220 if ((error = kernfs_setdirentfileno(&d, i, kfs,
1221 ks->ks_parent, kt, ap)) != 0)
1222 break;
1223 memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1);
1224 d.d_type = kt->kt_type;
1225 if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1226 break;
1227 if (cookies)
1228 *cookies++ = i + 1;
1229 n++;
1230 }
1231 ncookies = n;
1232 break;
1233
1234 #ifdef IPSEC
1235 case KFSipsecsadir:
1236 /* count SA in the system */
1237 n = 0;
1238 TAILQ_FOREACH(sav, &satailq, tailq) {
1239 for (sav2 = TAILQ_FIRST(&satailq);
1240 sav2 != sav;
1241 sav2 = TAILQ_NEXT(sav2, tailq)) {
1242 if (sav->spi == sav2->spi) {
1243 /* multiple SA with same SPI */
1244 break;
1245 }
1246 }
1247 if (sav == sav2 || sav->spi != sav2->spi)
1248 n++;
1249 }
1250
1251 if (i >= nipsecsa_targets + n)
1252 return (0);
1253
1254 if (ap->a_ncookies) {
1255 ncookies = min(ncookies, (n - i));
1256 cookies = malloc(ncookies * sizeof(off_t), M_TEMP,
1257 M_WAITOK);
1258 *ap->a_cookies = cookies;
1259 }
1260
1261 n = 0;
1262 for (; i < nipsecsa_targets && uio->uio_resid >= UIO_MX; i++) {
1263 kt = &ipsecsa_targets[i];
1264 d.d_namlen = kt->kt_namlen;
1265 if ((error = kernfs_setdirentfileno(&d, i, kfs,
1266 &kern_targets[0], kt, ap)) != 0)
1267 break;
1268 memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1);
1269 d.d_type = kt->kt_type;
1270 if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1271 break;
1272 if (cookies)
1273 *cookies++ = i + 1;
1274 n++;
1275 }
1276 if (error) {
1277 ncookies = n;
1278 break;
1279 }
1280
1281 TAILQ_FOREACH(sav, &satailq, tailq) {
1282 for (sav2 = TAILQ_FIRST(&satailq);
1283 sav2 != sav;
1284 sav2 = TAILQ_NEXT(sav2, tailq)) {
1285 if (sav->spi == sav2->spi) {
1286 /* multiple SA with same SPI */
1287 break;
1288 }
1289 }
1290 if (sav != sav2 && sav->spi == sav2->spi)
1291 continue;
1292 if (uio->uio_resid < UIO_MX)
1293 break;
1294 if ((error = kernfs_setdirentfileno_kt(&d, &ipsecsa_kt,
1295 sav->spi, ap)) != 0)
1296 break;
1297 d.d_namlen = snprintf(d.d_name, sizeof(d.d_name),
1298 "%u", ntohl(sav->spi));
1299 d.d_type = DT_REG;
1300 if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1301 break;
1302 if (cookies)
1303 *cookies++ = i + 1;
1304 n++;
1305 i++;
1306 }
1307 ncookies = n;
1308 break;
1309
1310 case KFSipsecspdir:
1311 /* count SP in the system */
1312 n = 0;
1313 TAILQ_FOREACH(sp, &sptailq, tailq)
1314 n++;
1315
1316 if (i >= nipsecsp_targets + n)
1317 return (0);
1318
1319 if (ap->a_ncookies) {
1320 ncookies = min(ncookies, (n - i));
1321 cookies = malloc(ncookies * sizeof(off_t), M_TEMP,
1322 M_WAITOK);
1323 *ap->a_cookies = cookies;
1324 }
1325
1326 n = 0;
1327 for (; i < nipsecsp_targets && uio->uio_resid >= UIO_MX; i++) {
1328 kt = &ipsecsp_targets[i];
1329 d.d_namlen = kt->kt_namlen;
1330 if ((error = kernfs_setdirentfileno(&d, i, kfs,
1331 &kern_targets[0], kt, ap)) != 0)
1332 break;
1333 memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1);
1334 d.d_type = kt->kt_type;
1335 if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1336 break;
1337 if (cookies)
1338 *cookies++ = i + 1;
1339 n++;
1340 }
1341 if (error) {
1342 ncookies = n;
1343 break;
1344 }
1345
1346 TAILQ_FOREACH(sp, &sptailq, tailq) {
1347 if (uio->uio_resid < UIO_MX)
1348 break;
1349 if ((error = kernfs_setdirentfileno_kt(&d, &ipsecsp_kt,
1350 sp->id, ap)) != 0)
1351 break;
1352 d.d_namlen = snprintf(d.d_name, sizeof(d.d_name),
1353 "%u", sp->id);
1354 d.d_type = DT_REG;
1355 if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1356 break;
1357 if (cookies)
1358 *cookies++ = i + 1;
1359 n++;
1360 i++;
1361 }
1362 ncookies = n;
1363 break;
1364 #endif
1365
1366 default:
1367 error = ENOTDIR;
1368 break;
1369 }
1370
1371 if (ap->a_ncookies) {
1372 if (error) {
1373 if (cookies)
1374 free(*ap->a_cookies, M_TEMP);
1375 *ap->a_ncookies = 0;
1376 *ap->a_cookies = NULL;
1377 } else
1378 *ap->a_ncookies = ncookies;
1379 }
1380
1381 uio->uio_offset = i;
1382 return (error);
1383 }
1384
1385 int
1386 kernfs_inactive(v)
1387 void *v;
1388 {
1389 struct vop_inactive_args /* {
1390 struct vnode *a_vp;
1391 struct proc *a_p;
1392 } */ *ap = v;
1393 struct vnode *vp = ap->a_vp;
1394 const struct kernfs_node *kfs = VTOKERN(ap->a_vp);
1395 #ifdef IPSEC
1396 struct mbuf *m;
1397 struct secpolicy *sp;
1398 #endif
1399
1400 VOP_UNLOCK(vp, 0);
1401 switch (kfs->kfs_type) {
1402 #ifdef IPSEC
1403 case KFSipsecsa:
1404 m = key_setdumpsa_spi(htonl(kfs->kfs_value));
1405 if (m)
1406 m_freem(m);
1407 else
1408 vgone(vp);
1409 break;
1410 case KFSipsecsp:
1411 sp = key_getspbyid(kfs->kfs_value);
1412 if (sp)
1413 key_freesp(sp);
1414 else {
1415 /* should never happen as we hold a refcnt */
1416 vgone(vp);
1417 }
1418 break;
1419 #endif
1420 default:
1421 break;
1422 }
1423 return (0);
1424 }
1425
1426 int
1427 kernfs_reclaim(v)
1428 void *v;
1429 {
1430 struct vop_reclaim_args /* {
1431 struct vnode *a_vp;
1432 } */ *ap = v;
1433
1434 return (kernfs_freevp(ap->a_vp));
1435 }
1436
1437 /*
1438 * Return POSIX pathconf information applicable to special devices.
1439 */
1440 int
1441 kernfs_pathconf(v)
1442 void *v;
1443 {
1444 struct vop_pathconf_args /* {
1445 struct vnode *a_vp;
1446 int a_name;
1447 register_t *a_retval;
1448 } */ *ap = v;
1449
1450 switch (ap->a_name) {
1451 case _PC_LINK_MAX:
1452 *ap->a_retval = LINK_MAX;
1453 return (0);
1454 case _PC_MAX_CANON:
1455 *ap->a_retval = MAX_CANON;
1456 return (0);
1457 case _PC_MAX_INPUT:
1458 *ap->a_retval = MAX_INPUT;
1459 return (0);
1460 case _PC_PIPE_BUF:
1461 *ap->a_retval = PIPE_BUF;
1462 return (0);
1463 case _PC_CHOWN_RESTRICTED:
1464 *ap->a_retval = 1;
1465 return (0);
1466 case _PC_VDISABLE:
1467 *ap->a_retval = _POSIX_VDISABLE;
1468 return (0);
1469 case _PC_SYNC_IO:
1470 *ap->a_retval = 1;
1471 return (0);
1472 default:
1473 return (EINVAL);
1474 }
1475 /* NOTREACHED */
1476 }
1477
1478 /*
1479 * Print out the contents of a /dev/fd vnode.
1480 */
1481 /* ARGSUSED */
1482 int
1483 kernfs_print(v)
1484 void *v;
1485 {
1486
1487 printf("tag VT_KERNFS, kernfs vnode\n");
1488 return (0);
1489 }
1490
1491 int
1492 kernfs_link(v)
1493 void *v;
1494 {
1495 struct vop_link_args /* {
1496 struct vnode *a_dvp;
1497 struct vnode *a_vp;
1498 struct componentname *a_cnp;
1499 } */ *ap = v;
1500
1501 VOP_ABORTOP(ap->a_dvp, ap->a_cnp);
1502 vput(ap->a_dvp);
1503 return (EROFS);
1504 }
1505
1506 int
1507 kernfs_symlink(v)
1508 void *v;
1509 {
1510 struct vop_symlink_args /* {
1511 struct vnode *a_dvp;
1512 struct vnode **a_vpp;
1513 struct componentname *a_cnp;
1514 struct vattr *a_vap;
1515 char *a_target;
1516 } */ *ap = v;
1517
1518 VOP_ABORTOP(ap->a_dvp, ap->a_cnp);
1519 vput(ap->a_dvp);
1520 return (EROFS);
1521 }
1522