Home | History | Annotate | Line # | Download | only in kernfs
kernfs_vnops.c revision 1.111
      1 /*	$NetBSD: kernfs_vnops.c,v 1.111 2005/08/31 09:54:54 christos Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1992, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * This code is derived from software donated to Berkeley by
      8  * Jan-Simon Pendry.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. Neither the name of the University nor the names of its contributors
     19  *    may be used to endorse or promote products derived from this software
     20  *    without specific prior written permission.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     32  * SUCH DAMAGE.
     33  *
     34  *	@(#)kernfs_vnops.c	8.15 (Berkeley) 5/21/95
     35  */
     36 
     37 /*
     38  * Kernel parameter filesystem (/kern)
     39  */
     40 
     41 #include <sys/cdefs.h>
     42 __KERNEL_RCSID(0, "$NetBSD: kernfs_vnops.c,v 1.111 2005/08/31 09:54:54 christos Exp $");
     43 
     44 #ifdef _KERNEL_OPT
     45 #include "opt_ipsec.h"
     46 #endif
     47 
     48 #include <sys/param.h>
     49 #include <sys/systm.h>
     50 #include <sys/kernel.h>
     51 #include <sys/vmmeter.h>
     52 #include <sys/time.h>
     53 #include <sys/proc.h>
     54 #include <sys/vnode.h>
     55 #include <sys/malloc.h>
     56 #include <sys/file.h>
     57 #include <sys/stat.h>
     58 #include <sys/mount.h>
     59 #include <sys/namei.h>
     60 #include <sys/buf.h>
     61 #include <sys/dirent.h>
     62 #include <sys/msgbuf.h>
     63 
     64 #include <miscfs/genfs/genfs.h>
     65 #include <miscfs/kernfs/kernfs.h>
     66 
     67 #ifdef IPSEC
     68 #include <sys/mbuf.h>
     69 #include <net/route.h>
     70 #include <netinet/in.h>
     71 #include <netinet6/ipsec.h>
     72 #include <netkey/key.h>
     73 #endif
     74 
     75 #include <uvm/uvm_extern.h>
     76 
     77 #define KSTRING	256		/* Largest I/O available via this filesystem */
     78 #define	UIO_MX 32
     79 
     80 #define	READ_MODE	(S_IRUSR|S_IRGRP|S_IROTH)
     81 #define	WRITE_MODE	(S_IWUSR|S_IRUSR|S_IRGRP|S_IROTH)
     82 #define	UREAD_MODE	(S_IRUSR)
     83 #define	DIR_MODE	(S_IRUSR|S_IXUSR|S_IRGRP|S_IXGRP|S_IROTH|S_IXOTH)
     84 #define	UDIR_MODE	(S_IRUSR|S_IXUSR)
     85 
     86 #define N(s) sizeof(s)-1, s
     87 const struct kern_target kern_targets[] = {
     88 /* NOTE: The name must be less than UIO_MX-16 chars in length */
     89      /*        name            data          tag           type  ro/rw */
     90      { DT_DIR, N("."),         0,            KFSkern,        VDIR, DIR_MODE   },
     91      { DT_DIR, N(".."),        0,            KFSroot,        VDIR, DIR_MODE   },
     92      { DT_REG, N("boottime"),  &boottime.tv_sec, KFSint,     VREG, READ_MODE  },
     93 			/* XXXUNCONST */
     94      { DT_REG, N("copyright"), __UNCONST(copyright),
     95      					     KFSstring,      VREG, READ_MODE  },
     96      { DT_REG, N("hostname"),  0,            KFShostname,    VREG, WRITE_MODE },
     97      { DT_REG, N("hz"),        &hz,          KFSint,         VREG, READ_MODE  },
     98 #ifdef IPSEC
     99      { DT_DIR, N("ipsecsa"),   0,	     KFSipsecsadir,  VDIR, UDIR_MODE  },
    100      { DT_DIR, N("ipsecsp"),   0,	     KFSipsecspdir,  VDIR, UDIR_MODE  },
    101 #endif
    102      { DT_REG, N("loadavg"),   0,            KFSavenrun,     VREG, READ_MODE  },
    103      { DT_REG, N("msgbuf"),    0,	     KFSmsgbuf,      VREG, READ_MODE  },
    104      { DT_REG, N("pagesize"),  &uvmexp.pagesize, KFSint,     VREG, READ_MODE  },
    105      { DT_REG, N("physmem"),   &physmem,     KFSint,         VREG, READ_MODE  },
    106 #if 0
    107      { DT_DIR, N("root"),      0,            KFSnull,        VDIR, DIR_MODE   },
    108 #endif
    109      { DT_BLK, N("rootdev"),   &rootdev,     KFSdevice,      VBLK, READ_MODE  },
    110      { DT_CHR, N("rrootdev"),  &rrootdev,    KFSdevice,      VCHR, READ_MODE  },
    111      { DT_REG, N("time"),      0,            KFStime,        VREG, READ_MODE  },
    112 			/* XXXUNCONST */
    113      { DT_REG, N("version"),   __UNCONST(version),
    114      					     KFSstring,      VREG, READ_MODE  },
    115 };
    116 const struct kern_target subdir_targets[] = {
    117 /* NOTE: The name must be less than UIO_MX-16 chars in length */
    118      /*        name            data          tag           type  ro/rw */
    119      { DT_DIR, N("."),         0,            KFSsubdir,      VDIR, DIR_MODE   },
    120      { DT_DIR, N(".."),        0,            KFSkern,        VDIR, DIR_MODE   },
    121 };
    122 #ifdef IPSEC
    123 const struct kern_target ipsecsa_targets[] = {
    124 /* NOTE: The name must be less than UIO_MX-16 chars in length */
    125      /*        name            data          tag           type  ro/rw */
    126      { DT_DIR, N("."),         0,            KFSipsecsadir,  VDIR, DIR_MODE   },
    127      { DT_DIR, N(".."),        0,            KFSkern,        VDIR, DIR_MODE   },
    128 };
    129 const struct kern_target ipsecsp_targets[] = {
    130 /* NOTE: The name must be less than UIO_MX-16 chars in length */
    131      /*        name            data          tag           type  ro/rw */
    132      { DT_DIR, N("."),         0,            KFSipsecspdir,  VDIR, DIR_MODE   },
    133      { DT_DIR, N(".."),        0,            KFSkern,        VDIR, DIR_MODE   },
    134 };
    135 const struct kern_target ipsecsa_kt =
    136      { DT_DIR, N(""),          0,            KFSipsecsa,     VREG, UREAD_MODE };
    137 const struct kern_target ipsecsp_kt =
    138      { DT_DIR, N(""),          0,            KFSipsecsp,     VREG, UREAD_MODE };
    139 #endif
    140 #undef N
    141 SIMPLEQ_HEAD(,dyn_kern_target) dyn_kern_targets =
    142 	SIMPLEQ_HEAD_INITIALIZER(dyn_kern_targets);
    143 int nkern_targets = sizeof(kern_targets) / sizeof(kern_targets[0]);
    144 const int static_nkern_targets = sizeof(kern_targets) / sizeof(kern_targets[0]);
    145 #ifdef IPSEC
    146 int nipsecsa_targets = sizeof(ipsecsa_targets) / sizeof(ipsecsa_targets[0]);
    147 int nipsecsp_targets = sizeof(ipsecsp_targets) / sizeof(ipsecsp_targets[0]);
    148 int nkern_dirs = 4; /* 2 extra subdirs */
    149 #else
    150 int nkern_dirs = 2;
    151 #endif
    152 
    153 int kernfs_try_fileop(kfstype, kfsfileop, void *, int);
    154 int kernfs_try_xwrite(kfstype, const struct kernfs_node *, char *,
    155     size_t, int);
    156 
    157 static int kernfs_default_xwrite(void *v);
    158 static int kernfs_default_fileop_getattr(void *);
    159 
    160 /* must include all fileop's */
    161 const struct kernfs_fileop kernfs_default_fileops[] = {
    162   { .kf_fileop = KERNFS_XWRITE },
    163   { .kf_fileop = KERNFS_FILEOP_OPEN },
    164   { .kf_fileop = KERNFS_FILEOP_GETATTR,
    165     .kf_genop = {kernfs_default_fileop_getattr} },
    166   { .kf_fileop = KERNFS_FILEOP_IOCTL },
    167   { .kf_fileop = KERNFS_FILEOP_CLOSE },
    168   { .kf_fileop = KERNFS_FILEOP_WRITE, .kf_genop = {kernfs_default_xwrite} },
    169 };
    170 
    171 int	kernfs_lookup(void *);
    172 #define	kernfs_create	genfs_eopnotsupp
    173 #define	kernfs_mknod	genfs_eopnotsupp
    174 int	kernfs_open(void *);
    175 int	kernfs_close(void *);
    176 int	kernfs_access(void *);
    177 int	kernfs_getattr(void *);
    178 int	kernfs_setattr(void *);
    179 int	kernfs_read(void *);
    180 int	kernfs_write(void *);
    181 #define	kernfs_fcntl	genfs_fcntl
    182 int	kernfs_ioctl(void *);
    183 #define	kernfs_poll	genfs_poll
    184 #define kernfs_revoke	genfs_revoke
    185 #define	kernfs_fsync	genfs_nullop
    186 #define	kernfs_seek	genfs_nullop
    187 #define	kernfs_remove	genfs_eopnotsupp
    188 int	kernfs_link(void *);
    189 #define	kernfs_rename	genfs_eopnotsupp
    190 #define	kernfs_mkdir	genfs_eopnotsupp
    191 #define	kernfs_rmdir	genfs_eopnotsupp
    192 int	kernfs_symlink(void *);
    193 int	kernfs_readdir(void *);
    194 #define	kernfs_readlink	genfs_eopnotsupp
    195 #define	kernfs_abortop	genfs_abortop
    196 int	kernfs_inactive(void *);
    197 int	kernfs_reclaim(void *);
    198 #define	kernfs_lock	genfs_lock
    199 #define	kernfs_unlock	genfs_unlock
    200 #define	kernfs_bmap	genfs_badop
    201 #define	kernfs_strategy	genfs_badop
    202 int	kernfs_print(void *);
    203 #define	kernfs_islocked	genfs_islocked
    204 int	kernfs_pathconf(void *);
    205 #define	kernfs_advlock	genfs_einval
    206 #define	kernfs_blkatoff	genfs_eopnotsupp
    207 #define	kernfs_valloc	genfs_eopnotsupp
    208 #define	kernfs_vfree	genfs_nullop
    209 #define	kernfs_truncate	genfs_eopnotsupp
    210 #define	kernfs_update	genfs_nullop
    211 #define	kernfs_bwrite	genfs_eopnotsupp
    212 #define	kernfs_putpages	genfs_putpages
    213 
    214 static int	kernfs_xread(struct kernfs_node *, int, char **,
    215 				size_t, size_t *);
    216 static int	kernfs_xwrite(const struct kernfs_node *, char *, size_t);
    217 
    218 int (**kernfs_vnodeop_p)(void *);
    219 const struct vnodeopv_entry_desc kernfs_vnodeop_entries[] = {
    220 	{ &vop_default_desc, vn_default_error },
    221 	{ &vop_lookup_desc, kernfs_lookup },		/* lookup */
    222 	{ &vop_create_desc, kernfs_create },		/* create */
    223 	{ &vop_mknod_desc, kernfs_mknod },		/* mknod */
    224 	{ &vop_open_desc, kernfs_open },		/* open */
    225 	{ &vop_close_desc, kernfs_close },		/* close */
    226 	{ &vop_access_desc, kernfs_access },		/* access */
    227 	{ &vop_getattr_desc, kernfs_getattr },		/* getattr */
    228 	{ &vop_setattr_desc, kernfs_setattr },		/* setattr */
    229 	{ &vop_read_desc, kernfs_read },		/* read */
    230 	{ &vop_write_desc, kernfs_write },		/* write */
    231 	{ &vop_fcntl_desc, kernfs_fcntl },		/* fcntl */
    232 	{ &vop_ioctl_desc, kernfs_ioctl },		/* ioctl */
    233 	{ &vop_poll_desc, kernfs_poll },		/* poll */
    234 	{ &vop_revoke_desc, kernfs_revoke },		/* revoke */
    235 	{ &vop_fsync_desc, kernfs_fsync },		/* fsync */
    236 	{ &vop_seek_desc, kernfs_seek },		/* seek */
    237 	{ &vop_remove_desc, kernfs_remove },		/* remove */
    238 	{ &vop_link_desc, kernfs_link },		/* link */
    239 	{ &vop_rename_desc, kernfs_rename },		/* rename */
    240 	{ &vop_mkdir_desc, kernfs_mkdir },		/* mkdir */
    241 	{ &vop_rmdir_desc, kernfs_rmdir },		/* rmdir */
    242 	{ &vop_symlink_desc, kernfs_symlink },		/* symlink */
    243 	{ &vop_readdir_desc, kernfs_readdir },		/* readdir */
    244 	{ &vop_readlink_desc, kernfs_readlink },	/* readlink */
    245 	{ &vop_abortop_desc, kernfs_abortop },		/* abortop */
    246 	{ &vop_inactive_desc, kernfs_inactive },	/* inactive */
    247 	{ &vop_reclaim_desc, kernfs_reclaim },		/* reclaim */
    248 	{ &vop_lock_desc, kernfs_lock },		/* lock */
    249 	{ &vop_unlock_desc, kernfs_unlock },		/* unlock */
    250 	{ &vop_bmap_desc, kernfs_bmap },		/* bmap */
    251 	{ &vop_strategy_desc, kernfs_strategy },	/* strategy */
    252 	{ &vop_print_desc, kernfs_print },		/* print */
    253 	{ &vop_islocked_desc, kernfs_islocked },	/* islocked */
    254 	{ &vop_pathconf_desc, kernfs_pathconf },	/* pathconf */
    255 	{ &vop_advlock_desc, kernfs_advlock },		/* advlock */
    256 	{ &vop_blkatoff_desc, kernfs_blkatoff },	/* blkatoff */
    257 	{ &vop_valloc_desc, kernfs_valloc },		/* valloc */
    258 	{ &vop_vfree_desc, kernfs_vfree },		/* vfree */
    259 	{ &vop_truncate_desc, kernfs_truncate },	/* truncate */
    260 	{ &vop_update_desc, kernfs_update },		/* update */
    261 	{ &vop_bwrite_desc, kernfs_bwrite },		/* bwrite */
    262 	{ &vop_putpages_desc, kernfs_putpages },	/* putpages */
    263 	{ NULL, NULL }
    264 };
    265 const struct vnodeopv_desc kernfs_vnodeop_opv_desc =
    266 	{ &kernfs_vnodeop_p, kernfs_vnodeop_entries };
    267 
    268 static __inline int
    269 kernfs_fileop_compare(struct kernfs_fileop *a, struct kernfs_fileop *b)
    270 {
    271 	if (a->kf_type < b->kf_type)
    272 		return -1;
    273 	if (a->kf_type > b->kf_type)
    274 		return 1;
    275 	if (a->kf_fileop < b->kf_fileop)
    276 		return -1;
    277 	if (a->kf_fileop > b->kf_fileop)
    278 		return 1;
    279 	return (0);
    280 }
    281 
    282 SPLAY_HEAD(kfsfileoptree, kernfs_fileop) kfsfileoptree =
    283 	SPLAY_INITIALIZER(kfsfileoptree);
    284 SPLAY_PROTOTYPE(kfsfileoptree, kernfs_fileop, kf_node, kernfs_fileop_compare);
    285 SPLAY_GENERATE(kfsfileoptree, kernfs_fileop, kf_node, kernfs_fileop_compare);
    286 
    287 kfstype
    288 kernfs_alloctype(int nkf, const struct kernfs_fileop *kf)
    289 {
    290 	static u_char nextfreetype = KFSlasttype;
    291 	struct kernfs_fileop *dkf, *fkf, skf;
    292 	int i;
    293 
    294 	/* XXX need to keep track of dkf's memory if we support
    295            deallocating types */
    296 	dkf = malloc(sizeof(kernfs_default_fileops), M_TEMP, M_WAITOK);
    297 	memcpy(dkf, kernfs_default_fileops, sizeof(kernfs_default_fileops));
    298 
    299 	for (i = 0; i < sizeof(kernfs_default_fileops) /
    300 		     sizeof(kernfs_default_fileops[0]); i++) {
    301 		dkf[i].kf_type = nextfreetype;
    302 		SPLAY_INSERT(kfsfileoptree, &kfsfileoptree, &dkf[i]);
    303 	}
    304 
    305 	for (i = 0; i < nkf; i++) {
    306 		skf.kf_type = nextfreetype;
    307 		skf.kf_fileop = kf[i].kf_fileop;
    308 		if ((fkf = SPLAY_FIND(kfsfileoptree, &kfsfileoptree, &skf)))
    309 			fkf->kf_genop = kf[i].kf_genop;
    310 	}
    311 
    312 	return nextfreetype++;
    313 }
    314 
    315 int
    316 kernfs_try_fileop(kfstype type, kfsfileop fileop, void *v, int error)
    317 {
    318 	struct kernfs_fileop *kf, skf;
    319 
    320 	skf.kf_type = type;
    321 	skf.kf_fileop = fileop;
    322 	if ((kf = SPLAY_FIND(kfsfileoptree, &kfsfileoptree, &skf)))
    323 		if (kf->kf_vop)
    324 			return kf->kf_vop(v);
    325 	return error;
    326 }
    327 
    328 int
    329 kernfs_try_xwrite(kfstype type, const struct kernfs_node *kfs, char *bf,
    330     size_t len, int error)
    331 {
    332 	struct kernfs_fileop *kf, skf;
    333 
    334 	skf.kf_type = type;
    335 	skf.kf_fileop = KERNFS_XWRITE;
    336 	if ((kf = SPLAY_FIND(kfsfileoptree, &kfsfileoptree, &skf)))
    337 		if (kf->kf_xwrite)
    338 			return kf->kf_xwrite(kfs, bf, len);
    339 	return error;
    340 }
    341 
    342 int
    343 kernfs_addentry(kernfs_parentdir_t *pkt, kernfs_entry_t *dkt)
    344 {
    345 	struct kernfs_subdir *ks, *parent;
    346 
    347 	if (pkt == NULL) {
    348 		SIMPLEQ_INSERT_TAIL(&dyn_kern_targets, dkt, dkt_queue);
    349 		nkern_targets++;
    350 		if (dkt->dkt_kt.kt_vtype == VDIR)
    351 			nkern_dirs++;
    352 	} else {
    353 		parent = (struct kernfs_subdir *)pkt->kt_data;
    354 		SIMPLEQ_INSERT_TAIL(&parent->ks_entries, dkt, dkt_queue);
    355 		parent->ks_nentries++;
    356 		if (dkt->dkt_kt.kt_vtype == VDIR)
    357 			parent->ks_dirs++;
    358 	}
    359 	if (dkt->dkt_kt.kt_vtype == VDIR && dkt->dkt_kt.kt_data == NULL) {
    360 		ks = malloc(sizeof(struct kernfs_subdir),
    361 		    M_TEMP, M_WAITOK);
    362 		SIMPLEQ_INIT(&ks->ks_entries);
    363 		ks->ks_nentries = 2; /* . and .. */
    364 		ks->ks_dirs = 2;
    365 		ks->ks_parent = pkt ? pkt : &kern_targets[0];
    366 		dkt->dkt_kt.kt_data = ks;
    367 	}
    368 	return 0;
    369 }
    370 
    371 static int
    372 kernfs_xread(kfs, off, bufp, len, wrlen)
    373 	struct kernfs_node *kfs;
    374 	int off;
    375 	char **bufp;
    376 	size_t len;
    377 	size_t *wrlen;
    378 {
    379 	const struct kern_target *kt;
    380 #ifdef IPSEC
    381 	struct mbuf *m;
    382 #endif
    383 
    384 	kt = kfs->kfs_kt;
    385 
    386 	switch (kfs->kfs_type) {
    387 	case KFStime: {
    388 		struct timeval tv;
    389 
    390 		microtime(&tv);
    391 		snprintf(*bufp, len, "%ld %ld\n", tv.tv_sec, tv.tv_usec);
    392 		break;
    393 	}
    394 
    395 	case KFSint: {
    396 		int *ip = kt->kt_data;
    397 
    398 		snprintf(*bufp, len, "%d\n", *ip);
    399 		break;
    400 	}
    401 
    402 	case KFSstring: {
    403 		char *cp = kt->kt_data;
    404 
    405 		*bufp = cp;
    406 		break;
    407 	}
    408 
    409 	case KFSmsgbuf: {
    410 		long n;
    411 
    412 		/*
    413 		 * deal with cases where the message buffer has
    414 		 * become corrupted.
    415 		 */
    416 		if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) {
    417 			msgbufenabled = 0;
    418 			return (ENXIO);
    419 		}
    420 
    421 		/*
    422 		 * Note that reads of /kern/msgbuf won't necessarily yield
    423 		 * consistent results, if the message buffer is modified
    424 		 * while the read is in progress.  The worst that can happen
    425 		 * is that incorrect data will be read.  There's no way
    426 		 * that this can crash the system unless the values in the
    427 		 * message buffer header are corrupted, but that'll cause
    428 		 * the system to die anyway.
    429 		 */
    430 		if (off < 0) {
    431 			*wrlen = 0;
    432 			return EINVAL;
    433 		}
    434 		if (off >= msgbufp->msg_bufs) {
    435 			*wrlen = 0;
    436 			return (0);
    437 		}
    438 		n = msgbufp->msg_bufx + off;
    439 		if (n >= msgbufp->msg_bufs)
    440 			n -= msgbufp->msg_bufs;
    441 		len = min(msgbufp->msg_bufs - n, msgbufp->msg_bufs - off);
    442 		*bufp = msgbufp->msg_bufc + n;
    443 		*wrlen = len;
    444 		return (0);
    445 	}
    446 
    447 	case KFShostname: {
    448 		char *cp = hostname;
    449 		int xlen = hostnamelen;
    450 
    451 		if (xlen >= (len - 2))
    452 			return (EINVAL);
    453 
    454 		memcpy(*bufp, cp, xlen);
    455 		(*bufp)[xlen] = '\n';
    456 		(*bufp)[xlen+1] = '\0';
    457 		len = strlen(*bufp);
    458 		break;
    459 	}
    460 
    461 	case KFSavenrun:
    462 		averunnable.fscale = FSCALE;
    463 		snprintf(*bufp, len, "%d %d %d %ld\n",
    464 		    averunnable.ldavg[0], averunnable.ldavg[1],
    465 		    averunnable.ldavg[2], averunnable.fscale);
    466 		break;
    467 
    468 #ifdef IPSEC
    469 	case KFSipsecsa:
    470 		/*
    471 		 * Note that SA configuration could be changed during the
    472 		 * read operation, resulting in garbled output.
    473 		 */
    474 		m = key_setdumpsa_spi(htonl(kfs->kfs_value));
    475 		if (!m)
    476 			return (ENOBUFS);
    477 		if (off >= m->m_pkthdr.len) {
    478 			*wrlen = 0;
    479 			m_freem(m);
    480 			return (0);
    481 		}
    482 		if (len > m->m_pkthdr.len - off)
    483 			len = m->m_pkthdr.len - off;
    484 		m_copydata(m, off, len, *bufp);
    485 		*wrlen = len;
    486 		m_freem(m);
    487 		return (0);
    488 
    489 	case KFSipsecsp:
    490 		/*
    491 		 * Note that SP configuration could be changed during the
    492 		 * read operation, resulting in garbled output.
    493 		 */
    494 		if (!kfs->kfs_v) {
    495 			struct secpolicy *sp;
    496 
    497 			sp = key_getspbyid(kfs->kfs_value);
    498 			if (sp)
    499 				kfs->kfs_v = sp;
    500 			else
    501 				return (ENOENT);
    502 		}
    503 		m = key_setdumpsp((struct secpolicy *)kfs->kfs_v,
    504 		    SADB_X_SPDGET, 0, 0);
    505 		if (!m)
    506 			return (ENOBUFS);
    507 		if (off >= m->m_pkthdr.len) {
    508 			*wrlen = 0;
    509 			m_freem(m);
    510 			return (0);
    511 		}
    512 		if (len > m->m_pkthdr.len - off)
    513 			len = m->m_pkthdr.len - off;
    514 		m_copydata(m, off, len, *bufp);
    515 		*wrlen = len;
    516 		m_freem(m);
    517 		return (0);
    518 #endif
    519 
    520 	default:
    521 		*wrlen = 0;
    522 		return (0);
    523 	}
    524 
    525 	len = strlen(*bufp);
    526 	if (len <= off)
    527 		*wrlen = 0;
    528 	else {
    529 		*bufp += off;
    530 		*wrlen = len - off;
    531 	}
    532 	return (0);
    533 }
    534 
    535 static int
    536 kernfs_xwrite(kfs, bf, len)
    537 	const struct kernfs_node *kfs;
    538 	char *bf;
    539 	size_t len;
    540 {
    541 
    542 	switch (kfs->kfs_type) {
    543 	case KFShostname:
    544 		if (bf[len-1] == '\n')
    545 			--len;
    546 		memcpy(hostname, bf, len);
    547 		hostname[len] = '\0';
    548 		hostnamelen = (size_t) len;
    549 		return (0);
    550 
    551 	default:
    552 		return kernfs_try_xwrite(kfs->kfs_type, kfs, bf, len, EIO);
    553 	}
    554 }
    555 
    556 
    557 /*
    558  * vp is the current namei directory
    559  * ndp is the name to locate in that directory...
    560  */
    561 int
    562 kernfs_lookup(v)
    563 	void *v;
    564 {
    565 	struct vop_lookup_args /* {
    566 		struct vnode * a_dvp;
    567 		struct vnode ** a_vpp;
    568 		struct componentname * a_cnp;
    569 	} */ *ap = v;
    570 	struct componentname *cnp = ap->a_cnp;
    571 	struct vnode **vpp = ap->a_vpp;
    572 	struct vnode *dvp = ap->a_dvp;
    573 	const char *pname = cnp->cn_nameptr;
    574 	const struct kernfs_node *kfs;
    575 	const struct kern_target *kt;
    576 	const struct dyn_kern_target *dkt;
    577 	const struct kernfs_subdir *ks;
    578 	int error, i, wantpunlock;
    579 #ifdef IPSEC
    580 	char *ep;
    581 	u_int32_t id;
    582 #endif
    583 
    584 	*vpp = NULLVP;
    585 	cnp->cn_flags &= ~PDIRUNLOCK;
    586 
    587 	if (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME)
    588 		return (EROFS);
    589 
    590 	if (cnp->cn_namelen == 1 && *pname == '.') {
    591 		*vpp = dvp;
    592 		VREF(dvp);
    593 		return (0);
    594 	}
    595 
    596 	wantpunlock = (~cnp->cn_flags & (LOCKPARENT | ISLASTCN));
    597 	kfs = VTOKERN(dvp);
    598 	switch (kfs->kfs_type) {
    599 	case KFSkern:
    600 		/*
    601 		 * Shouldn't get here with .. in the root node.
    602 		 */
    603 		if (cnp->cn_flags & ISDOTDOT)
    604 			return (EIO);
    605 
    606 		for (i = 0; i < static_nkern_targets; i++) {
    607 			kt = &kern_targets[i];
    608 			if (cnp->cn_namelen == kt->kt_namlen &&
    609 			    memcmp(kt->kt_name, pname, cnp->cn_namelen) == 0)
    610 				goto found;
    611 		}
    612 		SIMPLEQ_FOREACH(dkt, &dyn_kern_targets, dkt_queue) {
    613 			if (cnp->cn_namelen == dkt->dkt_kt.kt_namlen &&
    614 			    memcmp(dkt->dkt_kt.kt_name, pname, cnp->cn_namelen) == 0) {
    615 				kt = &dkt->dkt_kt;
    616 				goto found;
    617 			}
    618 		}
    619 		break;
    620 
    621 	found:
    622 		error = kernfs_allocvp(dvp->v_mount, vpp, kt->kt_tag, kt, 0);
    623 		if ((error == 0) && wantpunlock) {
    624 			VOP_UNLOCK(dvp, 0);
    625 			cnp->cn_flags |= PDIRUNLOCK;
    626 		}
    627 		return (error);
    628 
    629 	case KFSsubdir:
    630 		ks = (struct kernfs_subdir *)kfs->kfs_kt->kt_data;
    631 		if (cnp->cn_flags & ISDOTDOT) {
    632 			kt = ks->ks_parent;
    633 			goto found;
    634 		}
    635 
    636 		SIMPLEQ_FOREACH(dkt, &ks->ks_entries, dkt_queue) {
    637 			if (cnp->cn_namelen == dkt->dkt_kt.kt_namlen &&
    638 			    memcmp(dkt->dkt_kt.kt_name, pname, cnp->cn_namelen) == 0) {
    639 				kt = &dkt->dkt_kt;
    640 				goto found;
    641 			}
    642 		}
    643 		break;
    644 
    645 #ifdef IPSEC
    646 	case KFSipsecsadir:
    647 		if (cnp->cn_flags & ISDOTDOT) {
    648 			kt = &kern_targets[0];
    649 			goto found;
    650 		}
    651 
    652 		for (i = 2; i < nipsecsa_targets; i++) {
    653 			kt = &ipsecsa_targets[i];
    654 			if (cnp->cn_namelen == kt->kt_namlen &&
    655 			    memcmp(kt->kt_name, pname, cnp->cn_namelen) == 0)
    656 				goto found;
    657 		}
    658 
    659 		ep = NULL;
    660 		id = strtoul(pname, &ep, 10);
    661 		if (!ep || *ep || ep == pname)
    662 			break;
    663 
    664 		error = kernfs_allocvp(dvp->v_mount, vpp, KFSipsecsa, &ipsecsa_kt, id);
    665 		if ((error == 0) && wantpunlock) {
    666 			VOP_UNLOCK(dvp, 0);
    667 			cnp->cn_flags |= PDIRUNLOCK;
    668 		}
    669 		return (error);
    670 
    671 	case KFSipsecspdir:
    672 		if (cnp->cn_flags & ISDOTDOT) {
    673 			kt = &kern_targets[0];
    674 			goto found;
    675 		}
    676 
    677 		for (i = 2; i < nipsecsp_targets; i++) {
    678 			kt = &ipsecsp_targets[i];
    679 			if (cnp->cn_namelen == kt->kt_namlen &&
    680 			    memcmp(kt->kt_name, pname, cnp->cn_namelen) == 0)
    681 				goto found;
    682 		}
    683 
    684 		ep = NULL;
    685 		id = strtoul(pname, &ep, 10);
    686 		if (!ep || *ep || ep == pname)
    687 			break;
    688 
    689 		error = kernfs_allocvp(dvp->v_mount, vpp, KFSipsecsp, &ipsecsp_kt, id);
    690 		if ((error == 0) && wantpunlock) {
    691 			VOP_UNLOCK(dvp, 0);
    692 			cnp->cn_flags |= PDIRUNLOCK;
    693 		}
    694 		return (error);
    695 #endif
    696 
    697 	default:
    698 		return (ENOTDIR);
    699 	}
    700 
    701 	return (cnp->cn_nameiop == LOOKUP ? ENOENT : EROFS);
    702 }
    703 
    704 int
    705 kernfs_open(v)
    706 	void *v;
    707 {
    708 	struct vop_open_args /* {
    709 		struct vnode *a_vp;
    710 		int a_mode;
    711 		struct ucred *a_cred;
    712 		struct proc *a_p;
    713 	} */ *ap = v;
    714 	struct kernfs_node *kfs = VTOKERN(ap->a_vp);
    715 #ifdef IPSEC
    716 	struct mbuf *m;
    717 	struct secpolicy *sp;
    718 #endif
    719 
    720 	switch (kfs->kfs_type) {
    721 #ifdef IPSEC
    722 	case KFSipsecsa:
    723 		m = key_setdumpsa_spi(htonl(kfs->kfs_value));
    724 		if (m) {
    725 			m_freem(m);
    726 			return (0);
    727 		} else
    728 			return (ENOENT);
    729 
    730 	case KFSipsecsp:
    731 		sp = key_getspbyid(kfs->kfs_value);
    732 		if (sp) {
    733 			kfs->kfs_v = sp;
    734 			return (0);
    735 		} else
    736 			return (ENOENT);
    737 #endif
    738 
    739 	default:
    740 		return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_OPEN,
    741 		    v, 0);
    742 	}
    743 }
    744 
    745 int
    746 kernfs_close(v)
    747 	void *v;
    748 {
    749 	struct vop_close_args /* {
    750 		struct vnode *a_vp;
    751 		int a_fflag;
    752 		struct ucred *a_cred;
    753 		struct proc *a_p;
    754 	} */ *ap = v;
    755 	struct kernfs_node *kfs = VTOKERN(ap->a_vp);
    756 
    757 	switch (kfs->kfs_type) {
    758 #ifdef IPSEC
    759 	case KFSipsecsp:
    760 		key_freesp((struct secpolicy *)kfs->kfs_v);
    761 		break;
    762 #endif
    763 
    764 	default:
    765 		return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_CLOSE,
    766 		    v, 0);
    767 	}
    768 
    769 	return (0);
    770 }
    771 
    772 int
    773 kernfs_access(v)
    774 	void *v;
    775 {
    776 	struct vop_access_args /* {
    777 		struct vnode *a_vp;
    778 		int a_mode;
    779 		struct ucred *a_cred;
    780 		struct proc *a_p;
    781 	} */ *ap = v;
    782 	struct vattr va;
    783 	int error;
    784 
    785 	if ((error = VOP_GETATTR(ap->a_vp, &va, ap->a_cred, ap->a_p)) != 0)
    786 		return (error);
    787 
    788 	return (vaccess(va.va_type, va.va_mode, va.va_uid, va.va_gid,
    789 	    ap->a_mode, ap->a_cred));
    790 }
    791 
    792 static int
    793 kernfs_default_fileop_getattr(v)
    794 	void *v;
    795 {
    796 	struct vop_getattr_args /* {
    797 		struct vnode *a_vp;
    798 		struct vattr *a_vap;
    799 		struct ucred *a_cred;
    800 		struct proc *a_p;
    801 	} */ *ap = v;
    802 	struct vattr *vap = ap->a_vap;
    803 
    804 	vap->va_nlink = 1;
    805 	vap->va_bytes = vap->va_size = 0;
    806 
    807 	return 0;
    808 }
    809 
    810 int
    811 kernfs_getattr(v)
    812 	void *v;
    813 {
    814 	struct vop_getattr_args /* {
    815 		struct vnode *a_vp;
    816 		struct vattr *a_vap;
    817 		struct ucred *a_cred;
    818 		struct proc *a_p;
    819 	} */ *ap = v;
    820 	struct kernfs_node *kfs = VTOKERN(ap->a_vp);
    821 	struct kernfs_subdir *ks;
    822 	struct vattr *vap = ap->a_vap;
    823 	int error = 0;
    824 	char strbuf[KSTRING], *bf;
    825 	size_t nread, total;
    826 
    827 	VATTR_NULL(vap);
    828 	vap->va_type = ap->a_vp->v_type;
    829 	vap->va_uid = 0;
    830 	vap->va_gid = 0;
    831 	vap->va_mode = kfs->kfs_mode;
    832 	vap->va_fileid = kfs->kfs_fileno;
    833 	vap->va_flags = 0;
    834 	vap->va_size = 0;
    835 	vap->va_blocksize = DEV_BSIZE;
    836 	/*
    837 	 * Make all times be current TOD, except for the "boottime" node.
    838 	 * Avoid microtime(9), it's slow.
    839 	 * We don't guard the read from time(9) with splclock(9) since we
    840 	 * don't actually need to be THAT sure the access is atomic.
    841 	 */
    842 	if (kfs->kfs_kt && kfs->kfs_kt->kt_namlen == 8 &&
    843 	    !memcmp(kfs->kfs_kt->kt_name, "boottime", 8)) {
    844 		TIMEVAL_TO_TIMESPEC(&boottime, &vap->va_ctime);
    845 	} else {
    846 		TIMEVAL_TO_TIMESPEC(&time, &vap->va_ctime);
    847 	}
    848 	vap->va_atime = vap->va_mtime = vap->va_ctime;
    849 	vap->va_gen = 0;
    850 	vap->va_flags = 0;
    851 	vap->va_rdev = 0;
    852 	vap->va_bytes = 0;
    853 
    854 	switch (kfs->kfs_type) {
    855 	case KFSkern:
    856 		vap->va_nlink = nkern_dirs;
    857 		vap->va_bytes = vap->va_size = DEV_BSIZE;
    858 		break;
    859 
    860 	case KFSroot:
    861 		vap->va_nlink = 1;
    862 		vap->va_bytes = vap->va_size = DEV_BSIZE;
    863 		break;
    864 
    865 	case KFSsubdir:
    866 		ks = (struct kernfs_subdir *)kfs->kfs_kt->kt_data;
    867 		vap->va_nlink = ks->ks_dirs;
    868 		vap->va_bytes = vap->va_size = DEV_BSIZE;
    869 		break;
    870 
    871 	case KFSnull:
    872 	case KFStime:
    873 	case KFSint:
    874 	case KFSstring:
    875 	case KFShostname:
    876 	case KFSavenrun:
    877 	case KFSdevice:
    878 	case KFSmsgbuf:
    879 #ifdef IPSEC
    880 	case KFSipsecsa:
    881 	case KFSipsecsp:
    882 #endif
    883 		vap->va_nlink = 1;
    884 		total = 0;
    885 		do {
    886 			bf = strbuf;
    887 			error = kernfs_xread(kfs, total, &bf,
    888 			    sizeof(strbuf), &nread);
    889 			total += nread;
    890 		} while (error == 0 && nread != 0);
    891 		vap->va_bytes = vap->va_size = total;
    892 		break;
    893 
    894 #ifdef IPSEC
    895 	case KFSipsecsadir:
    896 	case KFSipsecspdir:
    897 		vap->va_nlink = 2;
    898 		vap->va_bytes = vap->va_size = DEV_BSIZE;
    899 		break;
    900 #endif
    901 
    902 	default:
    903 		error = kernfs_try_fileop(kfs->kfs_type,
    904 		    KERNFS_FILEOP_GETATTR, v, EINVAL);
    905 		break;
    906 	}
    907 
    908 	return (error);
    909 }
    910 
    911 /*ARGSUSED*/
    912 int
    913 kernfs_setattr(v)
    914 	void *v;
    915 {
    916 
    917 	/*
    918 	 * Silently ignore attribute changes.
    919 	 * This allows for open with truncate to have no
    920 	 * effect until some data is written.  I want to
    921 	 * do it this way because all writes are atomic.
    922 	 */
    923 	return (0);
    924 }
    925 
    926 int
    927 kernfs_read(v)
    928 	void *v;
    929 {
    930 	struct vop_read_args /* {
    931 		struct vnode *a_vp;
    932 		struct uio *a_uio;
    933 		int  a_ioflag;
    934 		struct ucred *a_cred;
    935 	} */ *ap = v;
    936 	struct uio *uio = ap->a_uio;
    937 	struct kernfs_node *kfs = VTOKERN(ap->a_vp);
    938 	char strbuf[KSTRING], *bf;
    939 	off_t off;
    940 	size_t len;
    941 	int error;
    942 
    943 	if (ap->a_vp->v_type == VDIR)
    944 		return (EOPNOTSUPP);
    945 
    946 	off = uio->uio_offset;
    947 	bf = strbuf;
    948 	if ((error = kernfs_xread(kfs, off, &bf, sizeof(strbuf), &len)) == 0)
    949 		error = uiomove(bf, len, uio);
    950 	return (error);
    951 }
    952 
    953 static int
    954 kernfs_default_xwrite(v)
    955 	void *v;
    956 {
    957 	struct vop_write_args /* {
    958 		struct vnode *a_vp;
    959 		struct uio *a_uio;
    960 		int  a_ioflag;
    961 		struct ucred *a_cred;
    962 	} */ *ap = v;
    963 	struct kernfs_node *kfs = VTOKERN(ap->a_vp);
    964 	struct uio *uio = ap->a_uio;
    965 	int error, xlen;
    966 	char strbuf[KSTRING];
    967 
    968 	if (uio->uio_offset != 0)
    969 		return (EINVAL);
    970 
    971 	xlen = min(uio->uio_resid, KSTRING-1);
    972 	if ((error = uiomove(strbuf, xlen, uio)) != 0)
    973 		return (error);
    974 
    975 	if (uio->uio_resid != 0)
    976 		return (EIO);
    977 
    978 	strbuf[xlen] = '\0';
    979 	xlen = strlen(strbuf);
    980 	return (kernfs_xwrite(kfs, strbuf, xlen));
    981 }
    982 
    983 int
    984 kernfs_write(v)
    985 	void *v;
    986 {
    987 	struct vop_write_args /* {
    988 		struct vnode *a_vp;
    989 		struct uio *a_uio;
    990 		int  a_ioflag;
    991 		struct ucred *a_cred;
    992 	} */ *ap = v;
    993 	struct kernfs_node *kfs = VTOKERN(ap->a_vp);
    994 
    995 	return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_WRITE, v, 0);
    996 }
    997 
    998 int
    999 kernfs_ioctl(v)
   1000 	void *v;
   1001 {
   1002 	struct vop_ioctl_args /* {
   1003 		const struct vnodeop_desc *a_desc;
   1004 		struct vnode *a_vp;
   1005 		u_long a_command;
   1006 		void *a_data;
   1007 		int a_fflag;
   1008 		struct ucred *a_cred;
   1009 		struct proc *a_p;
   1010 	} */ *ap = v;
   1011 	struct kernfs_node *kfs = VTOKERN(ap->a_vp);
   1012 
   1013 	return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_IOCTL, v,
   1014 	    EPASSTHROUGH);
   1015 }
   1016 
   1017 static int
   1018 kernfs_setdirentfileno_kt(struct dirent *d, const struct kern_target *kt,
   1019     u_int32_t value, struct vop_readdir_args *ap)
   1020 {
   1021 	struct kernfs_node *kfs;
   1022 	struct vnode *vp;
   1023 	int error;
   1024 
   1025 	if ((error = kernfs_allocvp(ap->a_vp->v_mount, &vp, kt->kt_tag, kt,
   1026 	    value)) != 0)
   1027 		return error;
   1028 	if (kt->kt_tag == KFSdevice) {
   1029 		struct vattr va;
   1030 		if ((error = VOP_GETATTR(vp, &va, ap->a_cred,
   1031 		    ap->a_uio->uio_segflg == UIO_USERSPACE ?
   1032 		    ap->a_uio->uio_procp : &proc0)) != 0)
   1033 			return (error);
   1034 		d->d_fileno = va.va_fileid;
   1035 	} else {
   1036 		kfs = VTOKERN(vp);
   1037 		d->d_fileno = kfs->kfs_fileno;
   1038 	}
   1039 	vput(vp);
   1040 	return 0;
   1041 }
   1042 
   1043 static int
   1044 kernfs_setdirentfileno(struct dirent *d, off_t entry,
   1045     struct kernfs_node *thisdir_kfs, const struct kern_target *parent_kt,
   1046     const struct kern_target *kt, struct vop_readdir_args *ap)
   1047 {
   1048 	const struct kern_target *ikt;
   1049 	int error;
   1050 
   1051 	switch (entry) {
   1052 	case 0:
   1053 		d->d_fileno = thisdir_kfs->kfs_fileno;
   1054 		return 0;
   1055 	case 1:
   1056 		ikt = parent_kt;
   1057 		break;
   1058 	default:
   1059 		ikt = kt;
   1060 		break;
   1061 	}
   1062 	if (ikt != thisdir_kfs->kfs_kt) {
   1063 		if ((error = kernfs_setdirentfileno_kt(d, ikt, 0, ap)) != 0)
   1064 			return error;
   1065 	} else
   1066 		d->d_fileno = thisdir_kfs->kfs_fileno;
   1067 	return 0;
   1068 }
   1069 
   1070 int
   1071 kernfs_readdir(v)
   1072 	void *v;
   1073 {
   1074 	struct vop_readdir_args /* {
   1075 		struct vnode *a_vp;
   1076 		struct uio *a_uio;
   1077 		struct ucred *a_cred;
   1078 		int *a_eofflag;
   1079 		off_t **a_cookies;
   1080 		int a_*ncookies;
   1081 	} */ *ap = v;
   1082 	struct uio *uio = ap->a_uio;
   1083 	struct dirent d;
   1084 	struct kernfs_node *kfs = VTOKERN(ap->a_vp);
   1085 	const struct kern_target *kt;
   1086 	const struct dyn_kern_target *dkt = NULL;
   1087 	const struct kernfs_subdir *ks;
   1088 	off_t i, j;
   1089 	int error;
   1090 	off_t *cookies = NULL;
   1091 	int ncookies = 0, n;
   1092 #ifdef IPSEC
   1093 	struct secasvar *sav, *sav2;
   1094 	struct secpolicy *sp;
   1095 #endif
   1096 
   1097 	if (uio->uio_resid < UIO_MX)
   1098 		return (EINVAL);
   1099 	if (uio->uio_offset < 0)
   1100 		return (EINVAL);
   1101 
   1102 	error = 0;
   1103 	i = uio->uio_offset;
   1104 	memset(&d, 0, sizeof(d));
   1105 	d.d_reclen = UIO_MX;
   1106 	ncookies = uio->uio_resid / UIO_MX;
   1107 
   1108 	switch (kfs->kfs_type) {
   1109 	case KFSkern:
   1110 		if (i >= nkern_targets)
   1111 			return (0);
   1112 
   1113 		if (ap->a_ncookies) {
   1114 			ncookies = min(ncookies, (nkern_targets - i));
   1115 			cookies = malloc(ncookies * sizeof(off_t), M_TEMP,
   1116 			    M_WAITOK);
   1117 			*ap->a_cookies = cookies;
   1118 		}
   1119 
   1120 		n = 0;
   1121 		for (; i < nkern_targets && uio->uio_resid >= UIO_MX; i++) {
   1122 			if (i < static_nkern_targets)
   1123 				kt = &kern_targets[i];
   1124 			else {
   1125 				if (dkt == NULL) {
   1126 					dkt = SIMPLEQ_FIRST(&dyn_kern_targets);
   1127 					for (j = static_nkern_targets; j < i &&
   1128 						     dkt != NULL; j++)
   1129 						dkt = SIMPLEQ_NEXT(dkt, dkt_queue);
   1130 					if (j != i)
   1131 						break;
   1132 				} else {
   1133 					dkt = SIMPLEQ_NEXT(dkt, dkt_queue);
   1134 					if (dkt == NULL)
   1135 						break;
   1136 				}
   1137 				kt = &dkt->dkt_kt;
   1138 			}
   1139 			if (kt->kt_tag == KFSdevice) {
   1140 				dev_t *dp = kt->kt_data;
   1141 				struct vnode *fvp;
   1142 
   1143 				if (*dp == NODEV ||
   1144 				    !vfinddev(*dp, kt->kt_vtype, &fvp))
   1145 					continue;
   1146 			}
   1147 			d.d_namlen = kt->kt_namlen;
   1148 			if ((error = kernfs_setdirentfileno(&d, i, kfs,
   1149 			    &kern_targets[0], kt, ap)) != 0)
   1150 				break;
   1151 			memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1);
   1152 			d.d_type = kt->kt_type;
   1153 			if ((error = uiomove(&d, UIO_MX, uio)) != 0)
   1154 				break;
   1155 			if (cookies)
   1156 				*cookies++ = i + 1;
   1157 			n++;
   1158 		}
   1159 		ncookies = n;
   1160 		break;
   1161 
   1162 	case KFSroot:
   1163 		if (i >= 2)
   1164 			return 0;
   1165 
   1166 		if (ap->a_ncookies) {
   1167 			ncookies = min(ncookies, (2 - i));
   1168 			cookies = malloc(ncookies * sizeof(off_t), M_TEMP,
   1169 			    M_WAITOK);
   1170 			*ap->a_cookies = cookies;
   1171 		}
   1172 
   1173 		n = 0;
   1174 		for (; i < 2 && uio->uio_resid >= UIO_MX; i++) {
   1175 			kt = &kern_targets[i];
   1176 			d.d_namlen = kt->kt_namlen;
   1177 			d.d_fileno = KERNFS_FILENO(kt, kt->kt_tag, 0);
   1178 			memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1);
   1179 			d.d_type = kt->kt_type;
   1180 			if ((error = uiomove(&d, UIO_MX, uio)) != 0)
   1181 				break;
   1182 			if (cookies)
   1183 				*cookies++ = i + 1;
   1184 			n++;
   1185 		}
   1186 		ncookies = n;
   1187 		break;
   1188 
   1189 	case KFSsubdir:
   1190 		ks = (struct kernfs_subdir *)kfs->kfs_kt->kt_data;
   1191 		if (i >= ks->ks_nentries)
   1192 			return (0);
   1193 
   1194 		if (ap->a_ncookies) {
   1195 			ncookies = min(ncookies, (ks->ks_nentries - i));
   1196 			cookies = malloc(ncookies * sizeof(off_t), M_TEMP,
   1197 			    M_WAITOK);
   1198 			*ap->a_cookies = cookies;
   1199 		}
   1200 
   1201 		dkt = SIMPLEQ_FIRST(&ks->ks_entries);
   1202 		for (j = 0; j < i && dkt != NULL; j++)
   1203 			dkt = SIMPLEQ_NEXT(dkt, dkt_queue);
   1204 		n = 0;
   1205 		for (; i < ks->ks_nentries && uio->uio_resid >= UIO_MX; i++) {
   1206 			if (i < 2)
   1207 				kt = &subdir_targets[i];
   1208 			else {
   1209 				/* check if ks_nentries lied to us */
   1210 				if (dkt == NULL)
   1211 					break;
   1212 				kt = &dkt->dkt_kt;
   1213 				dkt = SIMPLEQ_NEXT(dkt, dkt_queue);
   1214 			}
   1215 			if (kt->kt_tag == KFSdevice) {
   1216 				dev_t *dp = kt->kt_data;
   1217 				struct vnode *fvp;
   1218 
   1219 				if (*dp == NODEV ||
   1220 				    !vfinddev(*dp, kt->kt_vtype, &fvp))
   1221 					continue;
   1222 			}
   1223 			d.d_namlen = kt->kt_namlen;
   1224 			if ((error = kernfs_setdirentfileno(&d, i, kfs,
   1225 			    ks->ks_parent, kt, ap)) != 0)
   1226 				break;
   1227 			memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1);
   1228 			d.d_type = kt->kt_type;
   1229 			if ((error = uiomove(&d, UIO_MX, uio)) != 0)
   1230 				break;
   1231 			if (cookies)
   1232 				*cookies++ = i + 1;
   1233 			n++;
   1234 		}
   1235 		ncookies = n;
   1236 		break;
   1237 
   1238 #ifdef IPSEC
   1239 	case KFSipsecsadir:
   1240 		/* count SA in the system */
   1241 		n = 0;
   1242 		TAILQ_FOREACH(sav, &satailq, tailq) {
   1243 			for (sav2 = TAILQ_FIRST(&satailq);
   1244 			    sav2 != sav;
   1245 			    sav2 = TAILQ_NEXT(sav2, tailq)) {
   1246 				if (sav->spi == sav2->spi) {
   1247 					/* multiple SA with same SPI */
   1248 					break;
   1249 				}
   1250 			}
   1251 			if (sav == sav2 || sav->spi != sav2->spi)
   1252 				n++;
   1253 		}
   1254 
   1255 		if (i >= nipsecsa_targets + n)
   1256 			return (0);
   1257 
   1258 		if (ap->a_ncookies) {
   1259 			ncookies = min(ncookies, (n - i));
   1260 			cookies = malloc(ncookies * sizeof(off_t), M_TEMP,
   1261 			    M_WAITOK);
   1262 			*ap->a_cookies = cookies;
   1263 		}
   1264 
   1265 		n = 0;
   1266 		for (; i < nipsecsa_targets && uio->uio_resid >= UIO_MX; i++) {
   1267 			kt = &ipsecsa_targets[i];
   1268 			d.d_namlen = kt->kt_namlen;
   1269 			if ((error = kernfs_setdirentfileno(&d, i, kfs,
   1270 			    &kern_targets[0], kt, ap)) != 0)
   1271 				break;
   1272 			memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1);
   1273 			d.d_type = kt->kt_type;
   1274 			if ((error = uiomove(&d, UIO_MX, uio)) != 0)
   1275 				break;
   1276 			if (cookies)
   1277 				*cookies++ = i + 1;
   1278 			n++;
   1279 		}
   1280 		if (error) {
   1281 			ncookies = n;
   1282 			break;
   1283 		}
   1284 
   1285 		TAILQ_FOREACH(sav, &satailq, tailq) {
   1286 			for (sav2 = TAILQ_FIRST(&satailq);
   1287 			    sav2 != sav;
   1288 			    sav2 = TAILQ_NEXT(sav2, tailq)) {
   1289 				if (sav->spi == sav2->spi) {
   1290 					/* multiple SA with same SPI */
   1291 					break;
   1292 				}
   1293 			}
   1294 			if (sav != sav2 && sav->spi == sav2->spi)
   1295 				continue;
   1296 			if (uio->uio_resid < UIO_MX)
   1297 				break;
   1298 			if ((error = kernfs_setdirentfileno_kt(&d, &ipsecsa_kt,
   1299 			    sav->spi, ap)) != 0)
   1300 				break;
   1301 			d.d_namlen = snprintf(d.d_name, sizeof(d.d_name),
   1302 			    "%u", ntohl(sav->spi));
   1303 			d.d_type = DT_REG;
   1304 			if ((error = uiomove(&d, UIO_MX, uio)) != 0)
   1305 				break;
   1306 			if (cookies)
   1307 				*cookies++ = i + 1;
   1308 			n++;
   1309 			i++;
   1310 		}
   1311 		ncookies = n;
   1312 		break;
   1313 
   1314 	case KFSipsecspdir:
   1315 		/* count SP in the system */
   1316 		n = 0;
   1317 		TAILQ_FOREACH(sp, &sptailq, tailq)
   1318 			n++;
   1319 
   1320 		if (i >= nipsecsp_targets + n)
   1321 			return (0);
   1322 
   1323 		if (ap->a_ncookies) {
   1324 			ncookies = min(ncookies, (n - i));
   1325 			cookies = malloc(ncookies * sizeof(off_t), M_TEMP,
   1326 			    M_WAITOK);
   1327 			*ap->a_cookies = cookies;
   1328 		}
   1329 
   1330 		n = 0;
   1331 		for (; i < nipsecsp_targets && uio->uio_resid >= UIO_MX; i++) {
   1332 			kt = &ipsecsp_targets[i];
   1333 			d.d_namlen = kt->kt_namlen;
   1334 			if ((error = kernfs_setdirentfileno(&d, i, kfs,
   1335 			    &kern_targets[0], kt, ap)) != 0)
   1336 				break;
   1337 			memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1);
   1338 			d.d_type = kt->kt_type;
   1339 			if ((error = uiomove(&d, UIO_MX, uio)) != 0)
   1340 				break;
   1341 			if (cookies)
   1342 				*cookies++ = i + 1;
   1343 			n++;
   1344 		}
   1345 		if (error) {
   1346 			ncookies = n;
   1347 			break;
   1348 		}
   1349 
   1350 		TAILQ_FOREACH(sp, &sptailq, tailq) {
   1351 			if (uio->uio_resid < UIO_MX)
   1352 				break;
   1353 			if ((error = kernfs_setdirentfileno_kt(&d, &ipsecsp_kt,
   1354 			    sp->id, ap)) != 0)
   1355 				break;
   1356 			d.d_namlen = snprintf(d.d_name, sizeof(d.d_name),
   1357 			    "%u", sp->id);
   1358 			d.d_type = DT_REG;
   1359 			if ((error = uiomove(&d, UIO_MX, uio)) != 0)
   1360 				break;
   1361 			if (cookies)
   1362 				*cookies++ = i + 1;
   1363 			n++;
   1364 			i++;
   1365 		}
   1366 		ncookies = n;
   1367 		break;
   1368 #endif
   1369 
   1370 	default:
   1371 		error = ENOTDIR;
   1372 		break;
   1373 	}
   1374 
   1375 	if (ap->a_ncookies) {
   1376 		if (error) {
   1377 			if (cookies)
   1378 				free(*ap->a_cookies, M_TEMP);
   1379 			*ap->a_ncookies = 0;
   1380 			*ap->a_cookies = NULL;
   1381 		} else
   1382 			*ap->a_ncookies = ncookies;
   1383 	}
   1384 
   1385 	uio->uio_offset = i;
   1386 	return (error);
   1387 }
   1388 
   1389 int
   1390 kernfs_inactive(v)
   1391 	void *v;
   1392 {
   1393 	struct vop_inactive_args /* {
   1394 		struct vnode *a_vp;
   1395 		struct proc *a_p;
   1396 	} */ *ap = v;
   1397 	struct vnode *vp = ap->a_vp;
   1398 	const struct kernfs_node *kfs = VTOKERN(ap->a_vp);
   1399 #ifdef IPSEC
   1400 	struct mbuf *m;
   1401 	struct secpolicy *sp;
   1402 #endif
   1403 
   1404 	VOP_UNLOCK(vp, 0);
   1405 	switch (kfs->kfs_type) {
   1406 #ifdef IPSEC
   1407 	case KFSipsecsa:
   1408 		m = key_setdumpsa_spi(htonl(kfs->kfs_value));
   1409 		if (m)
   1410 			m_freem(m);
   1411 		else
   1412 			vgone(vp);
   1413 		break;
   1414 	case KFSipsecsp:
   1415 		sp = key_getspbyid(kfs->kfs_value);
   1416 		if (sp)
   1417 			key_freesp(sp);
   1418 		else {
   1419 			/* should never happen as we hold a refcnt */
   1420 			vgone(vp);
   1421 		}
   1422 		break;
   1423 #endif
   1424 	default:
   1425 		break;
   1426 	}
   1427 	return (0);
   1428 }
   1429 
   1430 int
   1431 kernfs_reclaim(v)
   1432 	void *v;
   1433 {
   1434 	struct vop_reclaim_args /* {
   1435 		struct vnode *a_vp;
   1436 	} */ *ap = v;
   1437 
   1438 	return (kernfs_freevp(ap->a_vp));
   1439 }
   1440 
   1441 /*
   1442  * Return POSIX pathconf information applicable to special devices.
   1443  */
   1444 int
   1445 kernfs_pathconf(v)
   1446 	void *v;
   1447 {
   1448 	struct vop_pathconf_args /* {
   1449 		struct vnode *a_vp;
   1450 		int a_name;
   1451 		register_t *a_retval;
   1452 	} */ *ap = v;
   1453 
   1454 	switch (ap->a_name) {
   1455 	case _PC_LINK_MAX:
   1456 		*ap->a_retval = LINK_MAX;
   1457 		return (0);
   1458 	case _PC_MAX_CANON:
   1459 		*ap->a_retval = MAX_CANON;
   1460 		return (0);
   1461 	case _PC_MAX_INPUT:
   1462 		*ap->a_retval = MAX_INPUT;
   1463 		return (0);
   1464 	case _PC_PIPE_BUF:
   1465 		*ap->a_retval = PIPE_BUF;
   1466 		return (0);
   1467 	case _PC_CHOWN_RESTRICTED:
   1468 		*ap->a_retval = 1;
   1469 		return (0);
   1470 	case _PC_VDISABLE:
   1471 		*ap->a_retval = _POSIX_VDISABLE;
   1472 		return (0);
   1473 	case _PC_SYNC_IO:
   1474 		*ap->a_retval = 1;
   1475 		return (0);
   1476 	default:
   1477 		return (EINVAL);
   1478 	}
   1479 	/* NOTREACHED */
   1480 }
   1481 
   1482 /*
   1483  * Print out the contents of a /dev/fd vnode.
   1484  */
   1485 /* ARGSUSED */
   1486 int
   1487 kernfs_print(v)
   1488 	void *v;
   1489 {
   1490 
   1491 	printf("tag VT_KERNFS, kernfs vnode\n");
   1492 	return (0);
   1493 }
   1494 
   1495 int
   1496 kernfs_link(v)
   1497 	void *v;
   1498 {
   1499 	struct vop_link_args /* {
   1500 		struct vnode *a_dvp;
   1501 		struct vnode *a_vp;
   1502 		struct componentname *a_cnp;
   1503 	} */ *ap = v;
   1504 
   1505 	VOP_ABORTOP(ap->a_dvp, ap->a_cnp);
   1506 	vput(ap->a_dvp);
   1507 	return (EROFS);
   1508 }
   1509 
   1510 int
   1511 kernfs_symlink(v)
   1512 	void *v;
   1513 {
   1514 	struct vop_symlink_args /* {
   1515 		struct vnode *a_dvp;
   1516 		struct vnode **a_vpp;
   1517 		struct componentname *a_cnp;
   1518 		struct vattr *a_vap;
   1519 		char *a_target;
   1520 	} */ *ap = v;
   1521 
   1522 	VOP_ABORTOP(ap->a_dvp, ap->a_cnp);
   1523 	vput(ap->a_dvp);
   1524 	return (EROFS);
   1525 }
   1526