kernfs_vnops.c revision 1.116 1 /* $NetBSD: kernfs_vnops.c,v 1.116 2005/12/24 20:45:09 perry Exp $ */
2
3 /*
4 * Copyright (c) 1992, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software donated to Berkeley by
8 * Jan-Simon Pendry.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)kernfs_vnops.c 8.15 (Berkeley) 5/21/95
35 */
36
37 /*
38 * Kernel parameter filesystem (/kern)
39 */
40
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: kernfs_vnops.c,v 1.116 2005/12/24 20:45:09 perry Exp $");
43
44 #ifdef _KERNEL_OPT
45 #include "opt_ipsec.h"
46 #endif
47
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/kernel.h>
51 #include <sys/vmmeter.h>
52 #include <sys/time.h>
53 #include <sys/proc.h>
54 #include <sys/vnode.h>
55 #include <sys/malloc.h>
56 #include <sys/file.h>
57 #include <sys/stat.h>
58 #include <sys/mount.h>
59 #include <sys/namei.h>
60 #include <sys/buf.h>
61 #include <sys/dirent.h>
62 #include <sys/msgbuf.h>
63
64 #include <miscfs/genfs/genfs.h>
65 #include <miscfs/kernfs/kernfs.h>
66
67 #ifdef IPSEC
68 #include <sys/mbuf.h>
69 #include <net/route.h>
70 #include <netinet/in.h>
71 #include <netinet6/ipsec.h>
72 #include <netkey/key.h>
73 #endif
74
75 #include <uvm/uvm_extern.h>
76
77 #define KSTRING 256 /* Largest I/O available via this filesystem */
78 #define UIO_MX 32
79
80 #define READ_MODE (S_IRUSR|S_IRGRP|S_IROTH)
81 #define WRITE_MODE (S_IWUSR|S_IRUSR|S_IRGRP|S_IROTH)
82 #define UREAD_MODE (S_IRUSR)
83 #define DIR_MODE (S_IRUSR|S_IXUSR|S_IRGRP|S_IXGRP|S_IROTH|S_IXOTH)
84 #define UDIR_MODE (S_IRUSR|S_IXUSR)
85
86 #define N(s) sizeof(s)-1, s
87 const struct kern_target kern_targets[] = {
88 /* NOTE: The name must be less than UIO_MX-16 chars in length */
89 /* name data tag type ro/rw */
90 { DT_DIR, N("."), 0, KFSkern, VDIR, DIR_MODE },
91 { DT_DIR, N(".."), 0, KFSroot, VDIR, DIR_MODE },
92 { DT_REG, N("boottime"), &boottime.tv_sec, KFSint, VREG, READ_MODE },
93 /* XXXUNCONST */
94 { DT_REG, N("copyright"), __UNCONST(copyright),
95 KFSstring, VREG, READ_MODE },
96 { DT_REG, N("hostname"), 0, KFShostname, VREG, WRITE_MODE },
97 { DT_REG, N("hz"), &hz, KFSint, VREG, READ_MODE },
98 #ifdef IPSEC
99 { DT_DIR, N("ipsecsa"), 0, KFSipsecsadir, VDIR, UDIR_MODE },
100 { DT_DIR, N("ipsecsp"), 0, KFSipsecspdir, VDIR, UDIR_MODE },
101 #endif
102 { DT_REG, N("loadavg"), 0, KFSavenrun, VREG, READ_MODE },
103 { DT_REG, N("msgbuf"), 0, KFSmsgbuf, VREG, READ_MODE },
104 { DT_REG, N("pagesize"), &uvmexp.pagesize, KFSint, VREG, READ_MODE },
105 { DT_REG, N("physmem"), &physmem, KFSint, VREG, READ_MODE },
106 #if 0
107 { DT_DIR, N("root"), 0, KFSnull, VDIR, DIR_MODE },
108 #endif
109 { DT_BLK, N("rootdev"), &rootdev, KFSdevice, VBLK, READ_MODE },
110 { DT_CHR, N("rrootdev"), &rrootdev, KFSdevice, VCHR, READ_MODE },
111 { DT_REG, N("time"), 0, KFStime, VREG, READ_MODE },
112 /* XXXUNCONST */
113 { DT_REG, N("version"), __UNCONST(version),
114 KFSstring, VREG, READ_MODE },
115 };
116 const struct kern_target subdir_targets[] = {
117 /* NOTE: The name must be less than UIO_MX-16 chars in length */
118 /* name data tag type ro/rw */
119 { DT_DIR, N("."), 0, KFSsubdir, VDIR, DIR_MODE },
120 { DT_DIR, N(".."), 0, KFSkern, VDIR, DIR_MODE },
121 };
122 #ifdef IPSEC
123 const struct kern_target ipsecsa_targets[] = {
124 /* NOTE: The name must be less than UIO_MX-16 chars in length */
125 /* name data tag type ro/rw */
126 { DT_DIR, N("."), 0, KFSipsecsadir, VDIR, DIR_MODE },
127 { DT_DIR, N(".."), 0, KFSkern, VDIR, DIR_MODE },
128 };
129 const struct kern_target ipsecsp_targets[] = {
130 /* NOTE: The name must be less than UIO_MX-16 chars in length */
131 /* name data tag type ro/rw */
132 { DT_DIR, N("."), 0, KFSipsecspdir, VDIR, DIR_MODE },
133 { DT_DIR, N(".."), 0, KFSkern, VDIR, DIR_MODE },
134 };
135 const struct kern_target ipsecsa_kt =
136 { DT_DIR, N(""), 0, KFSipsecsa, VREG, UREAD_MODE };
137 const struct kern_target ipsecsp_kt =
138 { DT_DIR, N(""), 0, KFSipsecsp, VREG, UREAD_MODE };
139 #endif
140 #undef N
141 SIMPLEQ_HEAD(,dyn_kern_target) dyn_kern_targets =
142 SIMPLEQ_HEAD_INITIALIZER(dyn_kern_targets);
143 int nkern_targets = sizeof(kern_targets) / sizeof(kern_targets[0]);
144 const int static_nkern_targets = sizeof(kern_targets) / sizeof(kern_targets[0]);
145 #ifdef IPSEC
146 int nipsecsa_targets = sizeof(ipsecsa_targets) / sizeof(ipsecsa_targets[0]);
147 int nipsecsp_targets = sizeof(ipsecsp_targets) / sizeof(ipsecsp_targets[0]);
148 int nkern_dirs = 4; /* 2 extra subdirs */
149 #else
150 int nkern_dirs = 2;
151 #endif
152
153 int kernfs_try_fileop(kfstype, kfsfileop, void *, int);
154 int kernfs_try_xwrite(kfstype, const struct kernfs_node *, char *,
155 size_t, int);
156
157 static int kernfs_default_xwrite(void *v);
158 static int kernfs_default_fileop_getattr(void *);
159
160 /* must include all fileop's */
161 const struct kernfs_fileop kernfs_default_fileops[] = {
162 { .kf_fileop = KERNFS_XWRITE },
163 { .kf_fileop = KERNFS_FILEOP_OPEN },
164 { .kf_fileop = KERNFS_FILEOP_GETATTR,
165 .kf_genop = {kernfs_default_fileop_getattr} },
166 { .kf_fileop = KERNFS_FILEOP_IOCTL },
167 { .kf_fileop = KERNFS_FILEOP_CLOSE },
168 { .kf_fileop = KERNFS_FILEOP_WRITE, .kf_genop = {kernfs_default_xwrite} },
169 };
170
171 int kernfs_lookup(void *);
172 #define kernfs_create genfs_eopnotsupp
173 #define kernfs_mknod genfs_eopnotsupp
174 int kernfs_open(void *);
175 int kernfs_close(void *);
176 int kernfs_access(void *);
177 int kernfs_getattr(void *);
178 int kernfs_setattr(void *);
179 int kernfs_read(void *);
180 int kernfs_write(void *);
181 #define kernfs_fcntl genfs_fcntl
182 int kernfs_ioctl(void *);
183 #define kernfs_poll genfs_poll
184 #define kernfs_revoke genfs_revoke
185 #define kernfs_fsync genfs_nullop
186 #define kernfs_seek genfs_nullop
187 #define kernfs_remove genfs_eopnotsupp
188 int kernfs_link(void *);
189 #define kernfs_rename genfs_eopnotsupp
190 #define kernfs_mkdir genfs_eopnotsupp
191 #define kernfs_rmdir genfs_eopnotsupp
192 int kernfs_symlink(void *);
193 int kernfs_readdir(void *);
194 #define kernfs_readlink genfs_eopnotsupp
195 #define kernfs_abortop genfs_abortop
196 int kernfs_inactive(void *);
197 int kernfs_reclaim(void *);
198 #define kernfs_lock genfs_lock
199 #define kernfs_unlock genfs_unlock
200 #define kernfs_bmap genfs_badop
201 #define kernfs_strategy genfs_badop
202 int kernfs_print(void *);
203 #define kernfs_islocked genfs_islocked
204 int kernfs_pathconf(void *);
205 #define kernfs_advlock genfs_einval
206 #define kernfs_bwrite genfs_eopnotsupp
207 #define kernfs_putpages genfs_putpages
208
209 static int kernfs_xread(struct kernfs_node *, int, char **,
210 size_t, size_t *);
211 static int kernfs_xwrite(const struct kernfs_node *, char *, size_t);
212
213 int (**kernfs_vnodeop_p)(void *);
214 const struct vnodeopv_entry_desc kernfs_vnodeop_entries[] = {
215 { &vop_default_desc, vn_default_error },
216 { &vop_lookup_desc, kernfs_lookup }, /* lookup */
217 { &vop_create_desc, kernfs_create }, /* create */
218 { &vop_mknod_desc, kernfs_mknod }, /* mknod */
219 { &vop_open_desc, kernfs_open }, /* open */
220 { &vop_close_desc, kernfs_close }, /* close */
221 { &vop_access_desc, kernfs_access }, /* access */
222 { &vop_getattr_desc, kernfs_getattr }, /* getattr */
223 { &vop_setattr_desc, kernfs_setattr }, /* setattr */
224 { &vop_read_desc, kernfs_read }, /* read */
225 { &vop_write_desc, kernfs_write }, /* write */
226 { &vop_fcntl_desc, kernfs_fcntl }, /* fcntl */
227 { &vop_ioctl_desc, kernfs_ioctl }, /* ioctl */
228 { &vop_poll_desc, kernfs_poll }, /* poll */
229 { &vop_revoke_desc, kernfs_revoke }, /* revoke */
230 { &vop_fsync_desc, kernfs_fsync }, /* fsync */
231 { &vop_seek_desc, kernfs_seek }, /* seek */
232 { &vop_remove_desc, kernfs_remove }, /* remove */
233 { &vop_link_desc, kernfs_link }, /* link */
234 { &vop_rename_desc, kernfs_rename }, /* rename */
235 { &vop_mkdir_desc, kernfs_mkdir }, /* mkdir */
236 { &vop_rmdir_desc, kernfs_rmdir }, /* rmdir */
237 { &vop_symlink_desc, kernfs_symlink }, /* symlink */
238 { &vop_readdir_desc, kernfs_readdir }, /* readdir */
239 { &vop_readlink_desc, kernfs_readlink }, /* readlink */
240 { &vop_abortop_desc, kernfs_abortop }, /* abortop */
241 { &vop_inactive_desc, kernfs_inactive }, /* inactive */
242 { &vop_reclaim_desc, kernfs_reclaim }, /* reclaim */
243 { &vop_lock_desc, kernfs_lock }, /* lock */
244 { &vop_unlock_desc, kernfs_unlock }, /* unlock */
245 { &vop_bmap_desc, kernfs_bmap }, /* bmap */
246 { &vop_strategy_desc, kernfs_strategy }, /* strategy */
247 { &vop_print_desc, kernfs_print }, /* print */
248 { &vop_islocked_desc, kernfs_islocked }, /* islocked */
249 { &vop_pathconf_desc, kernfs_pathconf }, /* pathconf */
250 { &vop_advlock_desc, kernfs_advlock }, /* advlock */
251 { &vop_bwrite_desc, kernfs_bwrite }, /* bwrite */
252 { &vop_putpages_desc, kernfs_putpages }, /* putpages */
253 { NULL, NULL }
254 };
255 const struct vnodeopv_desc kernfs_vnodeop_opv_desc =
256 { &kernfs_vnodeop_p, kernfs_vnodeop_entries };
257
258 static inline int
259 kernfs_fileop_compare(struct kernfs_fileop *a, struct kernfs_fileop *b)
260 {
261 if (a->kf_type < b->kf_type)
262 return -1;
263 if (a->kf_type > b->kf_type)
264 return 1;
265 if (a->kf_fileop < b->kf_fileop)
266 return -1;
267 if (a->kf_fileop > b->kf_fileop)
268 return 1;
269 return (0);
270 }
271
272 SPLAY_HEAD(kfsfileoptree, kernfs_fileop) kfsfileoptree =
273 SPLAY_INITIALIZER(kfsfileoptree);
274 SPLAY_PROTOTYPE(kfsfileoptree, kernfs_fileop, kf_node, kernfs_fileop_compare);
275 SPLAY_GENERATE(kfsfileoptree, kernfs_fileop, kf_node, kernfs_fileop_compare);
276
277 kfstype
278 kernfs_alloctype(int nkf, const struct kernfs_fileop *kf)
279 {
280 static u_char nextfreetype = KFSlasttype;
281 struct kernfs_fileop *dkf, *fkf, skf;
282 int i;
283
284 /* XXX need to keep track of dkf's memory if we support
285 deallocating types */
286 dkf = malloc(sizeof(kernfs_default_fileops), M_TEMP, M_WAITOK);
287 memcpy(dkf, kernfs_default_fileops, sizeof(kernfs_default_fileops));
288
289 for (i = 0; i < sizeof(kernfs_default_fileops) /
290 sizeof(kernfs_default_fileops[0]); i++) {
291 dkf[i].kf_type = nextfreetype;
292 SPLAY_INSERT(kfsfileoptree, &kfsfileoptree, &dkf[i]);
293 }
294
295 for (i = 0; i < nkf; i++) {
296 skf.kf_type = nextfreetype;
297 skf.kf_fileop = kf[i].kf_fileop;
298 if ((fkf = SPLAY_FIND(kfsfileoptree, &kfsfileoptree, &skf)))
299 fkf->kf_genop = kf[i].kf_genop;
300 }
301
302 return nextfreetype++;
303 }
304
305 int
306 kernfs_try_fileop(kfstype type, kfsfileop fileop, void *v, int error)
307 {
308 struct kernfs_fileop *kf, skf;
309
310 skf.kf_type = type;
311 skf.kf_fileop = fileop;
312 if ((kf = SPLAY_FIND(kfsfileoptree, &kfsfileoptree, &skf)))
313 if (kf->kf_vop)
314 return kf->kf_vop(v);
315 return error;
316 }
317
318 int
319 kernfs_try_xwrite(kfstype type, const struct kernfs_node *kfs, char *bf,
320 size_t len, int error)
321 {
322 struct kernfs_fileop *kf, skf;
323
324 skf.kf_type = type;
325 skf.kf_fileop = KERNFS_XWRITE;
326 if ((kf = SPLAY_FIND(kfsfileoptree, &kfsfileoptree, &skf)))
327 if (kf->kf_xwrite)
328 return kf->kf_xwrite(kfs, bf, len);
329 return error;
330 }
331
332 int
333 kernfs_addentry(kernfs_parentdir_t *pkt, kernfs_entry_t *dkt)
334 {
335 struct kernfs_subdir *ks, *parent;
336
337 if (pkt == NULL) {
338 SIMPLEQ_INSERT_TAIL(&dyn_kern_targets, dkt, dkt_queue);
339 nkern_targets++;
340 if (dkt->dkt_kt.kt_vtype == VDIR)
341 nkern_dirs++;
342 } else {
343 parent = (struct kernfs_subdir *)pkt->kt_data;
344 SIMPLEQ_INSERT_TAIL(&parent->ks_entries, dkt, dkt_queue);
345 parent->ks_nentries++;
346 if (dkt->dkt_kt.kt_vtype == VDIR)
347 parent->ks_dirs++;
348 }
349 if (dkt->dkt_kt.kt_vtype == VDIR && dkt->dkt_kt.kt_data == NULL) {
350 ks = malloc(sizeof(struct kernfs_subdir),
351 M_TEMP, M_WAITOK);
352 SIMPLEQ_INIT(&ks->ks_entries);
353 ks->ks_nentries = 2; /* . and .. */
354 ks->ks_dirs = 2;
355 ks->ks_parent = pkt ? pkt : &kern_targets[0];
356 dkt->dkt_kt.kt_data = ks;
357 }
358 return 0;
359 }
360
361 static int
362 kernfs_xread(kfs, off, bufp, len, wrlen)
363 struct kernfs_node *kfs;
364 int off;
365 char **bufp;
366 size_t len;
367 size_t *wrlen;
368 {
369 const struct kern_target *kt;
370 #ifdef IPSEC
371 struct mbuf *m;
372 #endif
373
374 kt = kfs->kfs_kt;
375
376 switch (kfs->kfs_type) {
377 case KFStime: {
378 struct timeval tv;
379
380 microtime(&tv);
381 snprintf(*bufp, len, "%ld %ld\n", tv.tv_sec, tv.tv_usec);
382 break;
383 }
384
385 case KFSint: {
386 int *ip = kt->kt_data;
387
388 snprintf(*bufp, len, "%d\n", *ip);
389 break;
390 }
391
392 case KFSstring: {
393 char *cp = kt->kt_data;
394
395 *bufp = cp;
396 break;
397 }
398
399 case KFSmsgbuf: {
400 long n;
401
402 /*
403 * deal with cases where the message buffer has
404 * become corrupted.
405 */
406 if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) {
407 msgbufenabled = 0;
408 return (ENXIO);
409 }
410
411 /*
412 * Note that reads of /kern/msgbuf won't necessarily yield
413 * consistent results, if the message buffer is modified
414 * while the read is in progress. The worst that can happen
415 * is that incorrect data will be read. There's no way
416 * that this can crash the system unless the values in the
417 * message buffer header are corrupted, but that'll cause
418 * the system to die anyway.
419 */
420 if (off >= msgbufp->msg_bufs) {
421 *wrlen = 0;
422 return (0);
423 }
424 n = msgbufp->msg_bufx + off;
425 if (n >= msgbufp->msg_bufs)
426 n -= msgbufp->msg_bufs;
427 len = min(msgbufp->msg_bufs - n, msgbufp->msg_bufs - off);
428 *bufp = msgbufp->msg_bufc + n;
429 *wrlen = len;
430 return (0);
431 }
432
433 case KFShostname: {
434 char *cp = hostname;
435 int xlen = hostnamelen;
436
437 if (xlen >= (len - 2))
438 return (EINVAL);
439
440 memcpy(*bufp, cp, xlen);
441 (*bufp)[xlen] = '\n';
442 (*bufp)[xlen+1] = '\0';
443 len = strlen(*bufp);
444 break;
445 }
446
447 case KFSavenrun:
448 averunnable.fscale = FSCALE;
449 snprintf(*bufp, len, "%d %d %d %ld\n",
450 averunnable.ldavg[0], averunnable.ldavg[1],
451 averunnable.ldavg[2], averunnable.fscale);
452 break;
453
454 #ifdef IPSEC
455 case KFSipsecsa:
456 /*
457 * Note that SA configuration could be changed during the
458 * read operation, resulting in garbled output.
459 */
460 m = key_setdumpsa_spi(htonl(kfs->kfs_value));
461 if (!m)
462 return (ENOBUFS);
463 if (off >= m->m_pkthdr.len) {
464 *wrlen = 0;
465 m_freem(m);
466 return (0);
467 }
468 if (len > m->m_pkthdr.len - off)
469 len = m->m_pkthdr.len - off;
470 m_copydata(m, off, len, *bufp);
471 *wrlen = len;
472 m_freem(m);
473 return (0);
474
475 case KFSipsecsp:
476 /*
477 * Note that SP configuration could be changed during the
478 * read operation, resulting in garbled output.
479 */
480 if (!kfs->kfs_v) {
481 struct secpolicy *sp;
482
483 sp = key_getspbyid(kfs->kfs_value);
484 if (sp)
485 kfs->kfs_v = sp;
486 else
487 return (ENOENT);
488 }
489 m = key_setdumpsp((struct secpolicy *)kfs->kfs_v,
490 SADB_X_SPDGET, 0, 0);
491 if (!m)
492 return (ENOBUFS);
493 if (off >= m->m_pkthdr.len) {
494 *wrlen = 0;
495 m_freem(m);
496 return (0);
497 }
498 if (len > m->m_pkthdr.len - off)
499 len = m->m_pkthdr.len - off;
500 m_copydata(m, off, len, *bufp);
501 *wrlen = len;
502 m_freem(m);
503 return (0);
504 #endif
505
506 default:
507 *wrlen = 0;
508 return (0);
509 }
510
511 len = strlen(*bufp);
512 if (len <= off)
513 *wrlen = 0;
514 else {
515 *bufp += off;
516 *wrlen = len - off;
517 }
518 return (0);
519 }
520
521 static int
522 kernfs_xwrite(kfs, bf, len)
523 const struct kernfs_node *kfs;
524 char *bf;
525 size_t len;
526 {
527
528 switch (kfs->kfs_type) {
529 case KFShostname:
530 if (bf[len-1] == '\n')
531 --len;
532 memcpy(hostname, bf, len);
533 hostname[len] = '\0';
534 hostnamelen = (size_t) len;
535 return (0);
536
537 default:
538 return kernfs_try_xwrite(kfs->kfs_type, kfs, bf, len, EIO);
539 }
540 }
541
542
543 /*
544 * vp is the current namei directory
545 * ndp is the name to locate in that directory...
546 */
547 int
548 kernfs_lookup(v)
549 void *v;
550 {
551 struct vop_lookup_args /* {
552 struct vnode * a_dvp;
553 struct vnode ** a_vpp;
554 struct componentname * a_cnp;
555 } */ *ap = v;
556 struct componentname *cnp = ap->a_cnp;
557 struct vnode **vpp = ap->a_vpp;
558 struct vnode *dvp = ap->a_dvp;
559 const char *pname = cnp->cn_nameptr;
560 const struct kernfs_node *kfs;
561 const struct kern_target *kt;
562 const struct dyn_kern_target *dkt;
563 const struct kernfs_subdir *ks;
564 int error, i, wantpunlock;
565 #ifdef IPSEC
566 char *ep;
567 u_int32_t id;
568 #endif
569
570 *vpp = NULLVP;
571 cnp->cn_flags &= ~PDIRUNLOCK;
572
573 if (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME)
574 return (EROFS);
575
576 if (cnp->cn_namelen == 1 && *pname == '.') {
577 *vpp = dvp;
578 VREF(dvp);
579 return (0);
580 }
581
582 wantpunlock = (~cnp->cn_flags & (LOCKPARENT | ISLASTCN));
583 kfs = VTOKERN(dvp);
584 switch (kfs->kfs_type) {
585 case KFSkern:
586 /*
587 * Shouldn't get here with .. in the root node.
588 */
589 if (cnp->cn_flags & ISDOTDOT)
590 return (EIO);
591
592 for (i = 0; i < static_nkern_targets; i++) {
593 kt = &kern_targets[i];
594 if (cnp->cn_namelen == kt->kt_namlen &&
595 memcmp(kt->kt_name, pname, cnp->cn_namelen) == 0)
596 goto found;
597 }
598 SIMPLEQ_FOREACH(dkt, &dyn_kern_targets, dkt_queue) {
599 if (cnp->cn_namelen == dkt->dkt_kt.kt_namlen &&
600 memcmp(dkt->dkt_kt.kt_name, pname, cnp->cn_namelen) == 0) {
601 kt = &dkt->dkt_kt;
602 goto found;
603 }
604 }
605 break;
606
607 found:
608 error = kernfs_allocvp(dvp->v_mount, vpp, kt->kt_tag, kt, 0);
609 if ((error == 0) && wantpunlock) {
610 VOP_UNLOCK(dvp, 0);
611 cnp->cn_flags |= PDIRUNLOCK;
612 }
613 return (error);
614
615 case KFSsubdir:
616 ks = (struct kernfs_subdir *)kfs->kfs_kt->kt_data;
617 if (cnp->cn_flags & ISDOTDOT) {
618 kt = ks->ks_parent;
619 goto found;
620 }
621
622 SIMPLEQ_FOREACH(dkt, &ks->ks_entries, dkt_queue) {
623 if (cnp->cn_namelen == dkt->dkt_kt.kt_namlen &&
624 memcmp(dkt->dkt_kt.kt_name, pname, cnp->cn_namelen) == 0) {
625 kt = &dkt->dkt_kt;
626 goto found;
627 }
628 }
629 break;
630
631 #ifdef IPSEC
632 case KFSipsecsadir:
633 if (cnp->cn_flags & ISDOTDOT) {
634 kt = &kern_targets[0];
635 goto found;
636 }
637
638 for (i = 2; i < nipsecsa_targets; i++) {
639 kt = &ipsecsa_targets[i];
640 if (cnp->cn_namelen == kt->kt_namlen &&
641 memcmp(kt->kt_name, pname, cnp->cn_namelen) == 0)
642 goto found;
643 }
644
645 ep = NULL;
646 id = strtoul(pname, &ep, 10);
647 if (!ep || *ep || ep == pname)
648 break;
649
650 error = kernfs_allocvp(dvp->v_mount, vpp, KFSipsecsa, &ipsecsa_kt, id);
651 if ((error == 0) && wantpunlock) {
652 VOP_UNLOCK(dvp, 0);
653 cnp->cn_flags |= PDIRUNLOCK;
654 }
655 return (error);
656
657 case KFSipsecspdir:
658 if (cnp->cn_flags & ISDOTDOT) {
659 kt = &kern_targets[0];
660 goto found;
661 }
662
663 for (i = 2; i < nipsecsp_targets; i++) {
664 kt = &ipsecsp_targets[i];
665 if (cnp->cn_namelen == kt->kt_namlen &&
666 memcmp(kt->kt_name, pname, cnp->cn_namelen) == 0)
667 goto found;
668 }
669
670 ep = NULL;
671 id = strtoul(pname, &ep, 10);
672 if (!ep || *ep || ep == pname)
673 break;
674
675 error = kernfs_allocvp(dvp->v_mount, vpp, KFSipsecsp, &ipsecsp_kt, id);
676 if ((error == 0) && wantpunlock) {
677 VOP_UNLOCK(dvp, 0);
678 cnp->cn_flags |= PDIRUNLOCK;
679 }
680 return (error);
681 #endif
682
683 default:
684 return (ENOTDIR);
685 }
686
687 return (cnp->cn_nameiop == LOOKUP ? ENOENT : EROFS);
688 }
689
690 int
691 kernfs_open(v)
692 void *v;
693 {
694 struct vop_open_args /* {
695 struct vnode *a_vp;
696 int a_mode;
697 struct ucred *a_cred;
698 struct lwp *a_l;
699 } */ *ap = v;
700 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
701 #ifdef IPSEC
702 struct mbuf *m;
703 struct secpolicy *sp;
704 #endif
705
706 switch (kfs->kfs_type) {
707 #ifdef IPSEC
708 case KFSipsecsa:
709 m = key_setdumpsa_spi(htonl(kfs->kfs_value));
710 if (m) {
711 m_freem(m);
712 return (0);
713 } else
714 return (ENOENT);
715
716 case KFSipsecsp:
717 sp = key_getspbyid(kfs->kfs_value);
718 if (sp) {
719 kfs->kfs_v = sp;
720 return (0);
721 } else
722 return (ENOENT);
723 #endif
724
725 default:
726 return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_OPEN,
727 v, 0);
728 }
729 }
730
731 int
732 kernfs_close(v)
733 void *v;
734 {
735 struct vop_close_args /* {
736 struct vnode *a_vp;
737 int a_fflag;
738 struct ucred *a_cred;
739 struct lwp *a_l;
740 } */ *ap = v;
741 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
742
743 switch (kfs->kfs_type) {
744 #ifdef IPSEC
745 case KFSipsecsp:
746 key_freesp((struct secpolicy *)kfs->kfs_v);
747 break;
748 #endif
749
750 default:
751 return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_CLOSE,
752 v, 0);
753 }
754
755 return (0);
756 }
757
758 int
759 kernfs_access(v)
760 void *v;
761 {
762 struct vop_access_args /* {
763 struct vnode *a_vp;
764 int a_mode;
765 struct ucred *a_cred;
766 struct lwp *a_l;
767 } */ *ap = v;
768 struct vattr va;
769 int error;
770
771 if ((error = VOP_GETATTR(ap->a_vp, &va, ap->a_cred, ap->a_l)) != 0)
772 return (error);
773
774 return (vaccess(va.va_type, va.va_mode, va.va_uid, va.va_gid,
775 ap->a_mode, ap->a_cred));
776 }
777
778 static int
779 kernfs_default_fileop_getattr(v)
780 void *v;
781 {
782 struct vop_getattr_args /* {
783 struct vnode *a_vp;
784 struct vattr *a_vap;
785 struct ucred *a_cred;
786 struct lwp *a_l;
787 } */ *ap = v;
788 struct vattr *vap = ap->a_vap;
789
790 vap->va_nlink = 1;
791 vap->va_bytes = vap->va_size = 0;
792
793 return 0;
794 }
795
796 int
797 kernfs_getattr(v)
798 void *v;
799 {
800 struct vop_getattr_args /* {
801 struct vnode *a_vp;
802 struct vattr *a_vap;
803 struct ucred *a_cred;
804 struct lwp *a_l;
805 } */ *ap = v;
806 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
807 struct kernfs_subdir *ks;
808 struct vattr *vap = ap->a_vap;
809 int error = 0;
810 char strbuf[KSTRING], *bf;
811 size_t nread, total;
812
813 VATTR_NULL(vap);
814 vap->va_type = ap->a_vp->v_type;
815 vap->va_uid = 0;
816 vap->va_gid = 0;
817 vap->va_mode = kfs->kfs_mode;
818 vap->va_fileid = kfs->kfs_fileno;
819 vap->va_flags = 0;
820 vap->va_size = 0;
821 vap->va_blocksize = DEV_BSIZE;
822 /*
823 * Make all times be current TOD, except for the "boottime" node.
824 * Avoid microtime(9), it's slow.
825 * We don't guard the read from time(9) with splclock(9) since we
826 * don't actually need to be THAT sure the access is atomic.
827 */
828 if (kfs->kfs_kt && kfs->kfs_kt->kt_namlen == 8 &&
829 !memcmp(kfs->kfs_kt->kt_name, "boottime", 8)) {
830 TIMEVAL_TO_TIMESPEC(&boottime, &vap->va_ctime);
831 } else {
832 TIMEVAL_TO_TIMESPEC(&time, &vap->va_ctime);
833 }
834 vap->va_atime = vap->va_mtime = vap->va_ctime;
835 vap->va_gen = 0;
836 vap->va_flags = 0;
837 vap->va_rdev = 0;
838 vap->va_bytes = 0;
839
840 switch (kfs->kfs_type) {
841 case KFSkern:
842 vap->va_nlink = nkern_dirs;
843 vap->va_bytes = vap->va_size = DEV_BSIZE;
844 break;
845
846 case KFSroot:
847 vap->va_nlink = 1;
848 vap->va_bytes = vap->va_size = DEV_BSIZE;
849 break;
850
851 case KFSsubdir:
852 ks = (struct kernfs_subdir *)kfs->kfs_kt->kt_data;
853 vap->va_nlink = ks->ks_dirs;
854 vap->va_bytes = vap->va_size = DEV_BSIZE;
855 break;
856
857 case KFSnull:
858 case KFStime:
859 case KFSint:
860 case KFSstring:
861 case KFShostname:
862 case KFSavenrun:
863 case KFSdevice:
864 case KFSmsgbuf:
865 #ifdef IPSEC
866 case KFSipsecsa:
867 case KFSipsecsp:
868 #endif
869 vap->va_nlink = 1;
870 total = 0;
871 do {
872 bf = strbuf;
873 error = kernfs_xread(kfs, total, &bf,
874 sizeof(strbuf), &nread);
875 total += nread;
876 } while (error == 0 && nread != 0);
877 vap->va_bytes = vap->va_size = total;
878 break;
879
880 #ifdef IPSEC
881 case KFSipsecsadir:
882 case KFSipsecspdir:
883 vap->va_nlink = 2;
884 vap->va_bytes = vap->va_size = DEV_BSIZE;
885 break;
886 #endif
887
888 default:
889 error = kernfs_try_fileop(kfs->kfs_type,
890 KERNFS_FILEOP_GETATTR, v, EINVAL);
891 break;
892 }
893
894 return (error);
895 }
896
897 /*ARGSUSED*/
898 int
899 kernfs_setattr(v)
900 void *v;
901 {
902
903 /*
904 * Silently ignore attribute changes.
905 * This allows for open with truncate to have no
906 * effect until some data is written. I want to
907 * do it this way because all writes are atomic.
908 */
909 return (0);
910 }
911
912 int
913 kernfs_read(v)
914 void *v;
915 {
916 struct vop_read_args /* {
917 struct vnode *a_vp;
918 struct uio *a_uio;
919 int a_ioflag;
920 struct ucred *a_cred;
921 } */ *ap = v;
922 struct uio *uio = ap->a_uio;
923 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
924 char strbuf[KSTRING], *bf;
925 int off;
926 size_t len;
927 int error;
928
929 if (ap->a_vp->v_type == VDIR)
930 return (EOPNOTSUPP);
931
932 off = (int)uio->uio_offset;
933 /* Don't allow negative offsets */
934 if (off < 0)
935 return EINVAL;
936
937 bf = strbuf;
938 if ((error = kernfs_xread(kfs, off, &bf, sizeof(strbuf), &len)) == 0)
939 error = uiomove(bf, len, uio);
940 return (error);
941 }
942
943 static int
944 kernfs_default_xwrite(v)
945 void *v;
946 {
947 struct vop_write_args /* {
948 struct vnode *a_vp;
949 struct uio *a_uio;
950 int a_ioflag;
951 struct ucred *a_cred;
952 } */ *ap = v;
953 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
954 struct uio *uio = ap->a_uio;
955 int error, xlen;
956 char strbuf[KSTRING];
957
958 if (uio->uio_offset != 0)
959 return (EINVAL);
960
961 xlen = min(uio->uio_resid, KSTRING-1);
962 if ((error = uiomove(strbuf, xlen, uio)) != 0)
963 return (error);
964
965 if (uio->uio_resid != 0)
966 return (EIO);
967
968 strbuf[xlen] = '\0';
969 xlen = strlen(strbuf);
970 return (kernfs_xwrite(kfs, strbuf, xlen));
971 }
972
973 int
974 kernfs_write(v)
975 void *v;
976 {
977 struct vop_write_args /* {
978 struct vnode *a_vp;
979 struct uio *a_uio;
980 int a_ioflag;
981 struct ucred *a_cred;
982 } */ *ap = v;
983 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
984
985 return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_WRITE, v, 0);
986 }
987
988 int
989 kernfs_ioctl(v)
990 void *v;
991 {
992 struct vop_ioctl_args /* {
993 const struct vnodeop_desc *a_desc;
994 struct vnode *a_vp;
995 u_long a_command;
996 void *a_data;
997 int a_fflag;
998 struct ucred *a_cred;
999 struct lwp *a_l;
1000 } */ *ap = v;
1001 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
1002
1003 return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_IOCTL, v,
1004 EPASSTHROUGH);
1005 }
1006
1007 static int
1008 kernfs_setdirentfileno_kt(struct dirent *d, const struct kern_target *kt,
1009 u_int32_t value, struct vop_readdir_args *ap)
1010 {
1011 struct kernfs_node *kfs;
1012 struct vnode *vp;
1013 int error;
1014
1015 if ((error = kernfs_allocvp(ap->a_vp->v_mount, &vp, kt->kt_tag, kt,
1016 value)) != 0)
1017 return error;
1018 if (kt->kt_tag == KFSdevice) {
1019 struct vattr va;
1020 if ((error = VOP_GETATTR(vp, &va, ap->a_cred,
1021 ap->a_uio->uio_segflg == UIO_USERSPACE ?
1022 ap->a_uio->uio_lwp : &lwp0)) != 0)
1023 return (error);
1024 d->d_fileno = va.va_fileid;
1025 } else {
1026 kfs = VTOKERN(vp);
1027 d->d_fileno = kfs->kfs_fileno;
1028 }
1029 vput(vp);
1030 return 0;
1031 }
1032
1033 static int
1034 kernfs_setdirentfileno(struct dirent *d, off_t entry,
1035 struct kernfs_node *thisdir_kfs, const struct kern_target *parent_kt,
1036 const struct kern_target *kt, struct vop_readdir_args *ap)
1037 {
1038 const struct kern_target *ikt;
1039 int error;
1040
1041 switch (entry) {
1042 case 0:
1043 d->d_fileno = thisdir_kfs->kfs_fileno;
1044 return 0;
1045 case 1:
1046 ikt = parent_kt;
1047 break;
1048 default:
1049 ikt = kt;
1050 break;
1051 }
1052 if (ikt != thisdir_kfs->kfs_kt) {
1053 if ((error = kernfs_setdirentfileno_kt(d, ikt, 0, ap)) != 0)
1054 return error;
1055 } else
1056 d->d_fileno = thisdir_kfs->kfs_fileno;
1057 return 0;
1058 }
1059
1060 int
1061 kernfs_readdir(v)
1062 void *v;
1063 {
1064 struct vop_readdir_args /* {
1065 struct vnode *a_vp;
1066 struct uio *a_uio;
1067 struct ucred *a_cred;
1068 int *a_eofflag;
1069 off_t **a_cookies;
1070 int a_*ncookies;
1071 } */ *ap = v;
1072 struct uio *uio = ap->a_uio;
1073 struct dirent d;
1074 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
1075 const struct kern_target *kt;
1076 const struct dyn_kern_target *dkt = NULL;
1077 const struct kernfs_subdir *ks;
1078 off_t i, j;
1079 int error;
1080 off_t *cookies = NULL;
1081 int ncookies = 0, n;
1082 #ifdef IPSEC
1083 struct secasvar *sav, *sav2;
1084 struct secpolicy *sp;
1085 #endif
1086
1087 if (uio->uio_resid < UIO_MX)
1088 return (EINVAL);
1089 if (uio->uio_offset < 0)
1090 return (EINVAL);
1091
1092 error = 0;
1093 i = uio->uio_offset;
1094 memset(&d, 0, sizeof(d));
1095 d.d_reclen = UIO_MX;
1096 ncookies = uio->uio_resid / UIO_MX;
1097
1098 switch (kfs->kfs_type) {
1099 case KFSkern:
1100 if (i >= nkern_targets)
1101 return (0);
1102
1103 if (ap->a_ncookies) {
1104 ncookies = min(ncookies, (nkern_targets - i));
1105 cookies = malloc(ncookies * sizeof(off_t), M_TEMP,
1106 M_WAITOK);
1107 *ap->a_cookies = cookies;
1108 }
1109
1110 n = 0;
1111 for (; i < nkern_targets && uio->uio_resid >= UIO_MX; i++) {
1112 if (i < static_nkern_targets)
1113 kt = &kern_targets[i];
1114 else {
1115 if (dkt == NULL) {
1116 dkt = SIMPLEQ_FIRST(&dyn_kern_targets);
1117 for (j = static_nkern_targets; j < i &&
1118 dkt != NULL; j++)
1119 dkt = SIMPLEQ_NEXT(dkt, dkt_queue);
1120 if (j != i)
1121 break;
1122 } else {
1123 dkt = SIMPLEQ_NEXT(dkt, dkt_queue);
1124 if (dkt == NULL)
1125 break;
1126 }
1127 kt = &dkt->dkt_kt;
1128 }
1129 if (kt->kt_tag == KFSdevice) {
1130 dev_t *dp = kt->kt_data;
1131 struct vnode *fvp;
1132
1133 if (*dp == NODEV ||
1134 !vfinddev(*dp, kt->kt_vtype, &fvp))
1135 continue;
1136 }
1137 d.d_namlen = kt->kt_namlen;
1138 if ((error = kernfs_setdirentfileno(&d, i, kfs,
1139 &kern_targets[0], kt, ap)) != 0)
1140 break;
1141 memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1);
1142 d.d_type = kt->kt_type;
1143 if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1144 break;
1145 if (cookies)
1146 *cookies++ = i + 1;
1147 n++;
1148 }
1149 ncookies = n;
1150 break;
1151
1152 case KFSroot:
1153 if (i >= 2)
1154 return 0;
1155
1156 if (ap->a_ncookies) {
1157 ncookies = min(ncookies, (2 - i));
1158 cookies = malloc(ncookies * sizeof(off_t), M_TEMP,
1159 M_WAITOK);
1160 *ap->a_cookies = cookies;
1161 }
1162
1163 n = 0;
1164 for (; i < 2 && uio->uio_resid >= UIO_MX; i++) {
1165 kt = &kern_targets[i];
1166 d.d_namlen = kt->kt_namlen;
1167 d.d_fileno = KERNFS_FILENO(kt, kt->kt_tag, 0);
1168 memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1);
1169 d.d_type = kt->kt_type;
1170 if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1171 break;
1172 if (cookies)
1173 *cookies++ = i + 1;
1174 n++;
1175 }
1176 ncookies = n;
1177 break;
1178
1179 case KFSsubdir:
1180 ks = (struct kernfs_subdir *)kfs->kfs_kt->kt_data;
1181 if (i >= ks->ks_nentries)
1182 return (0);
1183
1184 if (ap->a_ncookies) {
1185 ncookies = min(ncookies, (ks->ks_nentries - i));
1186 cookies = malloc(ncookies * sizeof(off_t), M_TEMP,
1187 M_WAITOK);
1188 *ap->a_cookies = cookies;
1189 }
1190
1191 dkt = SIMPLEQ_FIRST(&ks->ks_entries);
1192 for (j = 0; j < i && dkt != NULL; j++)
1193 dkt = SIMPLEQ_NEXT(dkt, dkt_queue);
1194 n = 0;
1195 for (; i < ks->ks_nentries && uio->uio_resid >= UIO_MX; i++) {
1196 if (i < 2)
1197 kt = &subdir_targets[i];
1198 else {
1199 /* check if ks_nentries lied to us */
1200 if (dkt == NULL)
1201 break;
1202 kt = &dkt->dkt_kt;
1203 dkt = SIMPLEQ_NEXT(dkt, dkt_queue);
1204 }
1205 if (kt->kt_tag == KFSdevice) {
1206 dev_t *dp = kt->kt_data;
1207 struct vnode *fvp;
1208
1209 if (*dp == NODEV ||
1210 !vfinddev(*dp, kt->kt_vtype, &fvp))
1211 continue;
1212 }
1213 d.d_namlen = kt->kt_namlen;
1214 if ((error = kernfs_setdirentfileno(&d, i, kfs,
1215 ks->ks_parent, kt, ap)) != 0)
1216 break;
1217 memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1);
1218 d.d_type = kt->kt_type;
1219 if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1220 break;
1221 if (cookies)
1222 *cookies++ = i + 1;
1223 n++;
1224 }
1225 ncookies = n;
1226 break;
1227
1228 #ifdef IPSEC
1229 case KFSipsecsadir:
1230 /* count SA in the system */
1231 n = 0;
1232 TAILQ_FOREACH(sav, &satailq, tailq) {
1233 for (sav2 = TAILQ_FIRST(&satailq);
1234 sav2 != sav;
1235 sav2 = TAILQ_NEXT(sav2, tailq)) {
1236 if (sav->spi == sav2->spi) {
1237 /* multiple SA with same SPI */
1238 break;
1239 }
1240 }
1241 if (sav == sav2 || sav->spi != sav2->spi)
1242 n++;
1243 }
1244
1245 if (i >= nipsecsa_targets + n)
1246 return (0);
1247
1248 if (ap->a_ncookies) {
1249 ncookies = min(ncookies, (n - i));
1250 cookies = malloc(ncookies * sizeof(off_t), M_TEMP,
1251 M_WAITOK);
1252 *ap->a_cookies = cookies;
1253 }
1254
1255 n = 0;
1256 for (; i < nipsecsa_targets && uio->uio_resid >= UIO_MX; i++) {
1257 kt = &ipsecsa_targets[i];
1258 d.d_namlen = kt->kt_namlen;
1259 if ((error = kernfs_setdirentfileno(&d, i, kfs,
1260 &kern_targets[0], kt, ap)) != 0)
1261 break;
1262 memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1);
1263 d.d_type = kt->kt_type;
1264 if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1265 break;
1266 if (cookies)
1267 *cookies++ = i + 1;
1268 n++;
1269 }
1270 if (error) {
1271 ncookies = n;
1272 break;
1273 }
1274
1275 TAILQ_FOREACH(sav, &satailq, tailq) {
1276 for (sav2 = TAILQ_FIRST(&satailq);
1277 sav2 != sav;
1278 sav2 = TAILQ_NEXT(sav2, tailq)) {
1279 if (sav->spi == sav2->spi) {
1280 /* multiple SA with same SPI */
1281 break;
1282 }
1283 }
1284 if (sav != sav2 && sav->spi == sav2->spi)
1285 continue;
1286 if (uio->uio_resid < UIO_MX)
1287 break;
1288 if ((error = kernfs_setdirentfileno_kt(&d, &ipsecsa_kt,
1289 sav->spi, ap)) != 0)
1290 break;
1291 d.d_namlen = snprintf(d.d_name, sizeof(d.d_name),
1292 "%u", ntohl(sav->spi));
1293 d.d_type = DT_REG;
1294 if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1295 break;
1296 if (cookies)
1297 *cookies++ = i + 1;
1298 n++;
1299 i++;
1300 }
1301 ncookies = n;
1302 break;
1303
1304 case KFSipsecspdir:
1305 /* count SP in the system */
1306 n = 0;
1307 TAILQ_FOREACH(sp, &sptailq, tailq)
1308 n++;
1309
1310 if (i >= nipsecsp_targets + n)
1311 return (0);
1312
1313 if (ap->a_ncookies) {
1314 ncookies = min(ncookies, (n - i));
1315 cookies = malloc(ncookies * sizeof(off_t), M_TEMP,
1316 M_WAITOK);
1317 *ap->a_cookies = cookies;
1318 }
1319
1320 n = 0;
1321 for (; i < nipsecsp_targets && uio->uio_resid >= UIO_MX; i++) {
1322 kt = &ipsecsp_targets[i];
1323 d.d_namlen = kt->kt_namlen;
1324 if ((error = kernfs_setdirentfileno(&d, i, kfs,
1325 &kern_targets[0], kt, ap)) != 0)
1326 break;
1327 memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1);
1328 d.d_type = kt->kt_type;
1329 if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1330 break;
1331 if (cookies)
1332 *cookies++ = i + 1;
1333 n++;
1334 }
1335 if (error) {
1336 ncookies = n;
1337 break;
1338 }
1339
1340 TAILQ_FOREACH(sp, &sptailq, tailq) {
1341 if (uio->uio_resid < UIO_MX)
1342 break;
1343 if ((error = kernfs_setdirentfileno_kt(&d, &ipsecsp_kt,
1344 sp->id, ap)) != 0)
1345 break;
1346 d.d_namlen = snprintf(d.d_name, sizeof(d.d_name),
1347 "%u", sp->id);
1348 d.d_type = DT_REG;
1349 if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1350 break;
1351 if (cookies)
1352 *cookies++ = i + 1;
1353 n++;
1354 i++;
1355 }
1356 ncookies = n;
1357 break;
1358 #endif
1359
1360 default:
1361 error = ENOTDIR;
1362 break;
1363 }
1364
1365 if (ap->a_ncookies) {
1366 if (error) {
1367 if (cookies)
1368 free(*ap->a_cookies, M_TEMP);
1369 *ap->a_ncookies = 0;
1370 *ap->a_cookies = NULL;
1371 } else
1372 *ap->a_ncookies = ncookies;
1373 }
1374
1375 uio->uio_offset = i;
1376 return (error);
1377 }
1378
1379 int
1380 kernfs_inactive(v)
1381 void *v;
1382 {
1383 struct vop_inactive_args /* {
1384 struct vnode *a_vp;
1385 struct lwp *a_l;
1386 } */ *ap = v;
1387 struct vnode *vp = ap->a_vp;
1388 const struct kernfs_node *kfs = VTOKERN(ap->a_vp);
1389 #ifdef IPSEC
1390 struct mbuf *m;
1391 struct secpolicy *sp;
1392 #endif
1393
1394 VOP_UNLOCK(vp, 0);
1395 switch (kfs->kfs_type) {
1396 #ifdef IPSEC
1397 case KFSipsecsa:
1398 m = key_setdumpsa_spi(htonl(kfs->kfs_value));
1399 if (m)
1400 m_freem(m);
1401 else
1402 vgone(vp);
1403 break;
1404 case KFSipsecsp:
1405 sp = key_getspbyid(kfs->kfs_value);
1406 if (sp)
1407 key_freesp(sp);
1408 else {
1409 /* should never happen as we hold a refcnt */
1410 vgone(vp);
1411 }
1412 break;
1413 #endif
1414 default:
1415 break;
1416 }
1417 return (0);
1418 }
1419
1420 int
1421 kernfs_reclaim(v)
1422 void *v;
1423 {
1424 struct vop_reclaim_args /* {
1425 struct vnode *a_vp;
1426 } */ *ap = v;
1427
1428 return (kernfs_freevp(ap->a_vp));
1429 }
1430
1431 /*
1432 * Return POSIX pathconf information applicable to special devices.
1433 */
1434 int
1435 kernfs_pathconf(v)
1436 void *v;
1437 {
1438 struct vop_pathconf_args /* {
1439 struct vnode *a_vp;
1440 int a_name;
1441 register_t *a_retval;
1442 } */ *ap = v;
1443
1444 switch (ap->a_name) {
1445 case _PC_LINK_MAX:
1446 *ap->a_retval = LINK_MAX;
1447 return (0);
1448 case _PC_MAX_CANON:
1449 *ap->a_retval = MAX_CANON;
1450 return (0);
1451 case _PC_MAX_INPUT:
1452 *ap->a_retval = MAX_INPUT;
1453 return (0);
1454 case _PC_PIPE_BUF:
1455 *ap->a_retval = PIPE_BUF;
1456 return (0);
1457 case _PC_CHOWN_RESTRICTED:
1458 *ap->a_retval = 1;
1459 return (0);
1460 case _PC_VDISABLE:
1461 *ap->a_retval = _POSIX_VDISABLE;
1462 return (0);
1463 case _PC_SYNC_IO:
1464 *ap->a_retval = 1;
1465 return (0);
1466 default:
1467 return (EINVAL);
1468 }
1469 /* NOTREACHED */
1470 }
1471
1472 /*
1473 * Print out the contents of a /dev/fd vnode.
1474 */
1475 /* ARGSUSED */
1476 int
1477 kernfs_print(v)
1478 void *v;
1479 {
1480
1481 printf("tag VT_KERNFS, kernfs vnode\n");
1482 return (0);
1483 }
1484
1485 int
1486 kernfs_link(v)
1487 void *v;
1488 {
1489 struct vop_link_args /* {
1490 struct vnode *a_dvp;
1491 struct vnode *a_vp;
1492 struct componentname *a_cnp;
1493 } */ *ap = v;
1494
1495 VOP_ABORTOP(ap->a_dvp, ap->a_cnp);
1496 vput(ap->a_dvp);
1497 return (EROFS);
1498 }
1499
1500 int
1501 kernfs_symlink(v)
1502 void *v;
1503 {
1504 struct vop_symlink_args /* {
1505 struct vnode *a_dvp;
1506 struct vnode **a_vpp;
1507 struct componentname *a_cnp;
1508 struct vattr *a_vap;
1509 char *a_target;
1510 } */ *ap = v;
1511
1512 VOP_ABORTOP(ap->a_dvp, ap->a_cnp);
1513 vput(ap->a_dvp);
1514 return (EROFS);
1515 }
1516