kernfs_vnops.c revision 1.130 1 /* $NetBSD: kernfs_vnops.c,v 1.130 2006/12/26 00:01:48 alc Exp $ */
2
3 /*
4 * Copyright (c) 1992, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software donated to Berkeley by
8 * Jan-Simon Pendry.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)kernfs_vnops.c 8.15 (Berkeley) 5/21/95
35 */
36
37 /*
38 * Kernel parameter filesystem (/kern)
39 */
40
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: kernfs_vnops.c,v 1.130 2006/12/26 00:01:48 alc Exp $");
43
44 #ifdef _KERNEL_OPT
45 #include "opt_ipsec.h"
46 #endif
47
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/kernel.h>
51 #include <sys/vmmeter.h>
52 #include <sys/time.h>
53 #include <sys/proc.h>
54 #include <sys/vnode.h>
55 #include <sys/malloc.h>
56 #include <sys/file.h>
57 #include <sys/stat.h>
58 #include <sys/mount.h>
59 #include <sys/namei.h>
60 #include <sys/buf.h>
61 #include <sys/dirent.h>
62 #include <sys/msgbuf.h>
63
64 #include <miscfs/genfs/genfs.h>
65 #include <miscfs/kernfs/kernfs.h>
66
67 #ifdef IPSEC
68 #include <sys/mbuf.h>
69 #include <net/route.h>
70 #include <netinet/in.h>
71 #include <netinet6/ipsec.h>
72 #include <netkey/key.h>
73 #endif
74
75 #include <uvm/uvm_extern.h>
76
77 #define KSTRING 256 /* Largest I/O available via this filesystem */
78 #define UIO_MX 32
79
80 #define READ_MODE (S_IRUSR|S_IRGRP|S_IROTH)
81 #define WRITE_MODE (S_IWUSR|S_IRUSR|S_IRGRP|S_IROTH)
82 #define UREAD_MODE (S_IRUSR)
83 #define DIR_MODE (S_IRUSR|S_IXUSR|S_IRGRP|S_IXGRP|S_IROTH|S_IXOTH)
84 #define UDIR_MODE (S_IRUSR|S_IXUSR)
85
86 #define N(s) sizeof(s)-1, s
87 const struct kern_target kern_targets[] = {
88 /* NOTE: The name must be less than UIO_MX-16 chars in length */
89 /* name data tag type ro/rw */
90 { DT_DIR, N("."), 0, KFSkern, VDIR, DIR_MODE },
91 { DT_DIR, N(".."), 0, KFSroot, VDIR, DIR_MODE },
92 { DT_REG, N("boottime"), &boottime.tv_sec, KFSint, VREG, READ_MODE },
93 /* XXXUNCONST */
94 { DT_REG, N("copyright"), __UNCONST(copyright),
95 KFSstring, VREG, READ_MODE },
96 { DT_REG, N("hostname"), 0, KFShostname, VREG, WRITE_MODE },
97 { DT_REG, N("hz"), &hz, KFSint, VREG, READ_MODE },
98 #ifdef IPSEC
99 { DT_DIR, N("ipsecsa"), 0, KFSipsecsadir, VDIR, UDIR_MODE },
100 { DT_DIR, N("ipsecsp"), 0, KFSipsecspdir, VDIR, UDIR_MODE },
101 #endif
102 { DT_REG, N("loadavg"), 0, KFSavenrun, VREG, READ_MODE },
103 { DT_REG, N("msgbuf"), 0, KFSmsgbuf, VREG, READ_MODE },
104 { DT_REG, N("pagesize"), &uvmexp.pagesize, KFSint, VREG, READ_MODE },
105 { DT_REG, N("physmem"), &physmem, KFSint, VREG, READ_MODE },
106 #if 0
107 { DT_DIR, N("root"), 0, KFSnull, VDIR, DIR_MODE },
108 #endif
109 { DT_BLK, N("rootdev"), &rootdev, KFSdevice, VBLK, READ_MODE },
110 { DT_CHR, N("rrootdev"), &rrootdev, KFSdevice, VCHR, READ_MODE },
111 { DT_REG, N("time"), 0, KFStime, VREG, READ_MODE },
112 /* XXXUNCONST */
113 { DT_REG, N("version"), __UNCONST(version),
114 KFSstring, VREG, READ_MODE },
115 };
116 const struct kern_target subdir_targets[] = {
117 /* NOTE: The name must be less than UIO_MX-16 chars in length */
118 /* name data tag type ro/rw */
119 { DT_DIR, N("."), 0, KFSsubdir, VDIR, DIR_MODE },
120 { DT_DIR, N(".."), 0, KFSkern, VDIR, DIR_MODE },
121 };
122 #ifdef IPSEC
123 const struct kern_target ipsecsa_targets[] = {
124 /* NOTE: The name must be less than UIO_MX-16 chars in length */
125 /* name data tag type ro/rw */
126 { DT_DIR, N("."), 0, KFSipsecsadir, VDIR, DIR_MODE },
127 { DT_DIR, N(".."), 0, KFSkern, VDIR, DIR_MODE },
128 };
129 const struct kern_target ipsecsp_targets[] = {
130 /* NOTE: The name must be less than UIO_MX-16 chars in length */
131 /* name data tag type ro/rw */
132 { DT_DIR, N("."), 0, KFSipsecspdir, VDIR, DIR_MODE },
133 { DT_DIR, N(".."), 0, KFSkern, VDIR, DIR_MODE },
134 };
135 const struct kern_target ipsecsa_kt =
136 { DT_DIR, N(""), 0, KFSipsecsa, VREG, UREAD_MODE };
137 const struct kern_target ipsecsp_kt =
138 { DT_DIR, N(""), 0, KFSipsecsp, VREG, UREAD_MODE };
139 #endif
140 #undef N
141 SIMPLEQ_HEAD(,dyn_kern_target) dyn_kern_targets =
142 SIMPLEQ_HEAD_INITIALIZER(dyn_kern_targets);
143 int nkern_targets = sizeof(kern_targets) / sizeof(kern_targets[0]);
144 const int static_nkern_targets = sizeof(kern_targets) / sizeof(kern_targets[0]);
145 #ifdef IPSEC
146 int nipsecsa_targets = sizeof(ipsecsa_targets) / sizeof(ipsecsa_targets[0]);
147 int nipsecsp_targets = sizeof(ipsecsp_targets) / sizeof(ipsecsp_targets[0]);
148 int nkern_dirs = 4; /* 2 extra subdirs */
149 #else
150 int nkern_dirs = 2;
151 #endif
152
153 int kernfs_try_fileop(kfstype, kfsfileop, void *, int);
154 int kernfs_try_xread(kfstype, const struct kernfs_node *, char **,
155 size_t, int);
156 int kernfs_try_xwrite(kfstype, const struct kernfs_node *, char *,
157 size_t, int);
158
159 static int kernfs_default_xread(void *v);
160 static int kernfs_default_xwrite(void *v);
161 static int kernfs_default_fileop_getattr(void *);
162
163 /* must include all fileop's */
164 const struct kernfs_fileop kernfs_default_fileops[] = {
165 { .kf_fileop = KERNFS_XREAD },
166 { .kf_fileop = KERNFS_XWRITE },
167 { .kf_fileop = KERNFS_FILEOP_OPEN },
168 { .kf_fileop = KERNFS_FILEOP_GETATTR,
169 .kf_vop = kernfs_default_fileop_getattr },
170 { .kf_fileop = KERNFS_FILEOP_IOCTL },
171 { .kf_fileop = KERNFS_FILEOP_CLOSE },
172 { .kf_fileop = KERNFS_FILEOP_READ,
173 .kf_vop = kernfs_default_xread },
174 { .kf_fileop = KERNFS_FILEOP_WRITE,
175 .kf_vop = kernfs_default_xwrite },
176 };
177
178 int kernfs_lookup(void *);
179 #define kernfs_create genfs_eopnotsupp
180 #define kernfs_mknod genfs_eopnotsupp
181 int kernfs_open(void *);
182 int kernfs_close(void *);
183 int kernfs_access(void *);
184 int kernfs_getattr(void *);
185 int kernfs_setattr(void *);
186 int kernfs_read(void *);
187 int kernfs_write(void *);
188 #define kernfs_fcntl genfs_fcntl
189 int kernfs_ioctl(void *);
190 #define kernfs_poll genfs_poll
191 #define kernfs_revoke genfs_revoke
192 #define kernfs_fsync genfs_nullop
193 #define kernfs_seek genfs_nullop
194 #define kernfs_remove genfs_eopnotsupp
195 int kernfs_link(void *);
196 #define kernfs_rename genfs_eopnotsupp
197 #define kernfs_mkdir genfs_eopnotsupp
198 #define kernfs_rmdir genfs_eopnotsupp
199 int kernfs_symlink(void *);
200 int kernfs_readdir(void *);
201 #define kernfs_readlink genfs_eopnotsupp
202 #define kernfs_abortop genfs_abortop
203 int kernfs_inactive(void *);
204 int kernfs_reclaim(void *);
205 #define kernfs_lock genfs_lock
206 #define kernfs_unlock genfs_unlock
207 #define kernfs_bmap genfs_badop
208 #define kernfs_strategy genfs_badop
209 int kernfs_print(void *);
210 #define kernfs_islocked genfs_islocked
211 int kernfs_pathconf(void *);
212 #define kernfs_advlock genfs_einval
213 #define kernfs_bwrite genfs_eopnotsupp
214 #define kernfs_putpages genfs_putpages
215
216 static int kernfs_xread(struct kernfs_node *, int, char **,
217 size_t, size_t *);
218 static int kernfs_xwrite(const struct kernfs_node *, char *, size_t);
219
220 int (**kernfs_vnodeop_p)(void *);
221 const struct vnodeopv_entry_desc kernfs_vnodeop_entries[] = {
222 { &vop_default_desc, vn_default_error },
223 { &vop_lookup_desc, kernfs_lookup }, /* lookup */
224 { &vop_create_desc, kernfs_create }, /* create */
225 { &vop_mknod_desc, kernfs_mknod }, /* mknod */
226 { &vop_open_desc, kernfs_open }, /* open */
227 { &vop_close_desc, kernfs_close }, /* close */
228 { &vop_access_desc, kernfs_access }, /* access */
229 { &vop_getattr_desc, kernfs_getattr }, /* getattr */
230 { &vop_setattr_desc, kernfs_setattr }, /* setattr */
231 { &vop_read_desc, kernfs_read }, /* read */
232 { &vop_write_desc, kernfs_write }, /* write */
233 { &vop_fcntl_desc, kernfs_fcntl }, /* fcntl */
234 { &vop_ioctl_desc, kernfs_ioctl }, /* ioctl */
235 { &vop_poll_desc, kernfs_poll }, /* poll */
236 { &vop_revoke_desc, kernfs_revoke }, /* revoke */
237 { &vop_fsync_desc, kernfs_fsync }, /* fsync */
238 { &vop_seek_desc, kernfs_seek }, /* seek */
239 { &vop_remove_desc, kernfs_remove }, /* remove */
240 { &vop_link_desc, kernfs_link }, /* link */
241 { &vop_rename_desc, kernfs_rename }, /* rename */
242 { &vop_mkdir_desc, kernfs_mkdir }, /* mkdir */
243 { &vop_rmdir_desc, kernfs_rmdir }, /* rmdir */
244 { &vop_symlink_desc, kernfs_symlink }, /* symlink */
245 { &vop_readdir_desc, kernfs_readdir }, /* readdir */
246 { &vop_readlink_desc, kernfs_readlink }, /* readlink */
247 { &vop_abortop_desc, kernfs_abortop }, /* abortop */
248 { &vop_inactive_desc, kernfs_inactive }, /* inactive */
249 { &vop_reclaim_desc, kernfs_reclaim }, /* reclaim */
250 { &vop_lock_desc, kernfs_lock }, /* lock */
251 { &vop_unlock_desc, kernfs_unlock }, /* unlock */
252 { &vop_bmap_desc, kernfs_bmap }, /* bmap */
253 { &vop_strategy_desc, kernfs_strategy }, /* strategy */
254 { &vop_print_desc, kernfs_print }, /* print */
255 { &vop_islocked_desc, kernfs_islocked }, /* islocked */
256 { &vop_pathconf_desc, kernfs_pathconf }, /* pathconf */
257 { &vop_advlock_desc, kernfs_advlock }, /* advlock */
258 { &vop_bwrite_desc, kernfs_bwrite }, /* bwrite */
259 { &vop_putpages_desc, kernfs_putpages }, /* putpages */
260 { NULL, NULL }
261 };
262 const struct vnodeopv_desc kernfs_vnodeop_opv_desc =
263 { &kernfs_vnodeop_p, kernfs_vnodeop_entries };
264
265 static inline int
266 kernfs_fileop_compare(struct kernfs_fileop *a, struct kernfs_fileop *b)
267 {
268 if (a->kf_type < b->kf_type)
269 return -1;
270 if (a->kf_type > b->kf_type)
271 return 1;
272 if (a->kf_fileop < b->kf_fileop)
273 return -1;
274 if (a->kf_fileop > b->kf_fileop)
275 return 1;
276 return (0);
277 }
278
279 SPLAY_HEAD(kfsfileoptree, kernfs_fileop) kfsfileoptree =
280 SPLAY_INITIALIZER(kfsfileoptree);
281 SPLAY_PROTOTYPE(kfsfileoptree, kernfs_fileop, kf_node, kernfs_fileop_compare);
282 SPLAY_GENERATE(kfsfileoptree, kernfs_fileop, kf_node, kernfs_fileop_compare);
283
284 kfstype
285 kernfs_alloctype(int nkf, const struct kernfs_fileop *kf)
286 {
287 static u_char nextfreetype = KFSlasttype;
288 struct kernfs_fileop *dkf, *fkf, skf;
289 int i;
290
291 /* XXX need to keep track of dkf's memory if we support
292 deallocating types */
293 dkf = malloc(sizeof(kernfs_default_fileops), M_TEMP, M_WAITOK);
294 memcpy(dkf, kernfs_default_fileops, sizeof(kernfs_default_fileops));
295
296 for (i = 0; i < sizeof(kernfs_default_fileops) /
297 sizeof(kernfs_default_fileops[0]); i++) {
298 dkf[i].kf_type = nextfreetype;
299 SPLAY_INSERT(kfsfileoptree, &kfsfileoptree, &dkf[i]);
300 }
301
302 for (i = 0; i < nkf; i++) {
303 skf.kf_type = nextfreetype;
304 skf.kf_fileop = kf[i].kf_fileop;
305 if ((fkf = SPLAY_FIND(kfsfileoptree, &kfsfileoptree, &skf)))
306 fkf->kf_vop = kf[i].kf_vop;
307 }
308
309 return nextfreetype++;
310 }
311
312 int
313 kernfs_try_fileop(kfstype type, kfsfileop fileop, void *v, int error)
314 {
315 struct kernfs_fileop *kf, skf;
316
317 skf.kf_type = type;
318 skf.kf_fileop = fileop;
319 if ((kf = SPLAY_FIND(kfsfileoptree, &kfsfileoptree, &skf)))
320 if (kf->kf_vop)
321 return kf->kf_vop(v);
322 return error;
323 }
324
325 int
326 kernfs_try_xread(kfstype type, const struct kernfs_node *kfs, char **bfp,
327 size_t len, int error)
328 {
329 struct kernfs_fileop *kf, skf;
330
331 skf.kf_type = type;
332 skf.kf_fileop = KERNFS_XREAD;
333 if ((kf = SPLAY_FIND(kfsfileoptree, &kfsfileoptree, &skf)))
334 if (kf->kf_xread)
335 return kf->kf_xread(kfs, bfp, len);
336 return error;
337 }
338
339 int
340 kernfs_try_xwrite(kfstype type, const struct kernfs_node *kfs, char *bf,
341 size_t len, int error)
342 {
343 struct kernfs_fileop *kf, skf;
344
345 skf.kf_type = type;
346 skf.kf_fileop = KERNFS_XWRITE;
347 if ((kf = SPLAY_FIND(kfsfileoptree, &kfsfileoptree, &skf)))
348 if (kf->kf_xwrite)
349 return kf->kf_xwrite(kfs, bf, len);
350 return error;
351 }
352
353 int
354 kernfs_addentry(kernfs_parentdir_t *pkt, kernfs_entry_t *dkt)
355 {
356 struct kernfs_subdir *ks, *parent;
357
358 if (pkt == NULL) {
359 SIMPLEQ_INSERT_TAIL(&dyn_kern_targets, dkt, dkt_queue);
360 nkern_targets++;
361 if (dkt->dkt_kt.kt_vtype == VDIR)
362 nkern_dirs++;
363 } else {
364 parent = (struct kernfs_subdir *)pkt->kt_data;
365 SIMPLEQ_INSERT_TAIL(&parent->ks_entries, dkt, dkt_queue);
366 parent->ks_nentries++;
367 if (dkt->dkt_kt.kt_vtype == VDIR)
368 parent->ks_dirs++;
369 }
370 if (dkt->dkt_kt.kt_vtype == VDIR && dkt->dkt_kt.kt_data == NULL) {
371 ks = malloc(sizeof(struct kernfs_subdir),
372 M_TEMP, M_WAITOK);
373 SIMPLEQ_INIT(&ks->ks_entries);
374 ks->ks_nentries = 2; /* . and .. */
375 ks->ks_dirs = 2;
376 ks->ks_parent = pkt ? pkt : &kern_targets[0];
377 dkt->dkt_kt.kt_data = ks;
378 }
379 return 0;
380 }
381
382 static int
383 kernfs_xread(kfs, off, bufp, len, wrlen)
384 struct kernfs_node *kfs;
385 int off;
386 char **bufp;
387 size_t len;
388 size_t *wrlen;
389 {
390 const struct kern_target *kt;
391 #ifdef IPSEC
392 struct mbuf *m;
393 #endif
394 int err;
395
396 kt = kfs->kfs_kt;
397
398 switch (kfs->kfs_type) {
399 case KFStime: {
400 struct timeval tv;
401
402 microtime(&tv);
403 snprintf(*bufp, len, "%ld %ld\n", tv.tv_sec, tv.tv_usec);
404 break;
405 }
406
407 case KFSint: {
408 int *ip = kt->kt_data;
409
410 snprintf(*bufp, len, "%d\n", *ip);
411 break;
412 }
413
414 case KFSstring: {
415 char *cp = kt->kt_data;
416
417 *bufp = cp;
418 break;
419 }
420
421 case KFSmsgbuf: {
422 long n;
423
424 /*
425 * deal with cases where the message buffer has
426 * become corrupted.
427 */
428 if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) {
429 msgbufenabled = 0;
430 return (ENXIO);
431 }
432
433 /*
434 * Note that reads of /kern/msgbuf won't necessarily yield
435 * consistent results, if the message buffer is modified
436 * while the read is in progress. The worst that can happen
437 * is that incorrect data will be read. There's no way
438 * that this can crash the system unless the values in the
439 * message buffer header are corrupted, but that'll cause
440 * the system to die anyway.
441 */
442 if (off >= msgbufp->msg_bufs) {
443 *wrlen = 0;
444 return (0);
445 }
446 n = msgbufp->msg_bufx + off;
447 if (n >= msgbufp->msg_bufs)
448 n -= msgbufp->msg_bufs;
449 len = min(msgbufp->msg_bufs - n, msgbufp->msg_bufs - off);
450 *bufp = msgbufp->msg_bufc + n;
451 *wrlen = len;
452 return (0);
453 }
454
455 case KFShostname: {
456 char *cp = hostname;
457 size_t xlen = hostnamelen;
458
459 if (xlen >= (len - 2))
460 return (EINVAL);
461
462 memcpy(*bufp, cp, xlen);
463 (*bufp)[xlen] = '\n';
464 (*bufp)[xlen+1] = '\0';
465 len = strlen(*bufp);
466 break;
467 }
468
469 case KFSavenrun:
470 averunnable.fscale = FSCALE;
471 snprintf(*bufp, len, "%d %d %d %ld\n",
472 averunnable.ldavg[0], averunnable.ldavg[1],
473 averunnable.ldavg[2], averunnable.fscale);
474 break;
475
476 #ifdef IPSEC
477 case KFSipsecsa:
478 /*
479 * Note that SA configuration could be changed during the
480 * read operation, resulting in garbled output.
481 */
482 m = key_setdumpsa_spi(htonl(kfs->kfs_value));
483 if (!m)
484 return (ENOBUFS);
485 if (off >= m->m_pkthdr.len) {
486 *wrlen = 0;
487 m_freem(m);
488 return (0);
489 }
490 if (len > m->m_pkthdr.len - off)
491 len = m->m_pkthdr.len - off;
492 m_copydata(m, off, len, *bufp);
493 *wrlen = len;
494 m_freem(m);
495 return (0);
496
497 case KFSipsecsp:
498 /*
499 * Note that SP configuration could be changed during the
500 * read operation, resulting in garbled output.
501 */
502 if (!kfs->kfs_v) {
503 struct secpolicy *sp;
504
505 sp = key_getspbyid(kfs->kfs_value);
506 if (sp)
507 kfs->kfs_v = sp;
508 else
509 return (ENOENT);
510 }
511 m = key_setdumpsp((struct secpolicy *)kfs->kfs_v,
512 SADB_X_SPDGET, 0, 0);
513 if (!m)
514 return (ENOBUFS);
515 if (off >= m->m_pkthdr.len) {
516 *wrlen = 0;
517 m_freem(m);
518 return (0);
519 }
520 if (len > m->m_pkthdr.len - off)
521 len = m->m_pkthdr.len - off;
522 m_copydata(m, off, len, *bufp);
523 *wrlen = len;
524 m_freem(m);
525 return (0);
526 #endif
527
528 default:
529 err = kernfs_try_xread(kfs->kfs_type, kfs, bufp, len,
530 EOPNOTSUPP);
531 if (err)
532 return err;
533 }
534
535 len = strlen(*bufp);
536 if (len <= off)
537 *wrlen = 0;
538 else {
539 *bufp += off;
540 *wrlen = len - off;
541 }
542 return (0);
543 }
544
545 static int
546 kernfs_xwrite(kfs, bf, len)
547 const struct kernfs_node *kfs;
548 char *bf;
549 size_t len;
550 {
551
552 switch (kfs->kfs_type) {
553 case KFShostname:
554 if (bf[len-1] == '\n')
555 --len;
556 memcpy(hostname, bf, len);
557 hostname[len] = '\0';
558 hostnamelen = (size_t) len;
559 return (0);
560
561 default:
562 return kernfs_try_xwrite(kfs->kfs_type, kfs, bf, len, EIO);
563 }
564 }
565
566
567 /*
568 * vp is the current namei directory
569 * ndp is the name to locate in that directory...
570 */
571 int
572 kernfs_lookup(v)
573 void *v;
574 {
575 struct vop_lookup_args /* {
576 struct vnode * a_dvp;
577 struct vnode ** a_vpp;
578 struct componentname * a_cnp;
579 } */ *ap = v;
580 struct componentname *cnp = ap->a_cnp;
581 struct vnode **vpp = ap->a_vpp;
582 struct vnode *dvp = ap->a_dvp;
583 const char *pname = cnp->cn_nameptr;
584 const struct kernfs_node *kfs;
585 const struct kern_target *kt;
586 const struct dyn_kern_target *dkt;
587 const struct kernfs_subdir *ks;
588 int error, i;
589 #ifdef IPSEC
590 char *ep;
591 u_int32_t id;
592 #endif
593
594 *vpp = NULLVP;
595
596 if (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME)
597 return (EROFS);
598
599 if (cnp->cn_namelen == 1 && *pname == '.') {
600 *vpp = dvp;
601 VREF(dvp);
602 return (0);
603 }
604
605 kfs = VTOKERN(dvp);
606 switch (kfs->kfs_type) {
607 case KFSkern:
608 /*
609 * Shouldn't get here with .. in the root node.
610 */
611 if (cnp->cn_flags & ISDOTDOT)
612 return (EIO);
613
614 for (i = 0; i < static_nkern_targets; i++) {
615 kt = &kern_targets[i];
616 if (cnp->cn_namelen == kt->kt_namlen &&
617 memcmp(kt->kt_name, pname, cnp->cn_namelen) == 0)
618 goto found;
619 }
620 SIMPLEQ_FOREACH(dkt, &dyn_kern_targets, dkt_queue) {
621 if (cnp->cn_namelen == dkt->dkt_kt.kt_namlen &&
622 memcmp(dkt->dkt_kt.kt_name, pname, cnp->cn_namelen) == 0) {
623 kt = &dkt->dkt_kt;
624 goto found;
625 }
626 }
627 break;
628
629 found:
630 error = kernfs_allocvp(dvp->v_mount, vpp, kt->kt_tag, kt, 0);
631 return (error);
632
633 case KFSsubdir:
634 ks = (struct kernfs_subdir *)kfs->kfs_kt->kt_data;
635 if (cnp->cn_flags & ISDOTDOT) {
636 kt = ks->ks_parent;
637 goto found;
638 }
639
640 SIMPLEQ_FOREACH(dkt, &ks->ks_entries, dkt_queue) {
641 if (cnp->cn_namelen == dkt->dkt_kt.kt_namlen &&
642 memcmp(dkt->dkt_kt.kt_name, pname, cnp->cn_namelen) == 0) {
643 kt = &dkt->dkt_kt;
644 goto found;
645 }
646 }
647 break;
648
649 #ifdef IPSEC
650 case KFSipsecsadir:
651 if (cnp->cn_flags & ISDOTDOT) {
652 kt = &kern_targets[0];
653 goto found;
654 }
655
656 for (i = 2; i < nipsecsa_targets; i++) {
657 kt = &ipsecsa_targets[i];
658 if (cnp->cn_namelen == kt->kt_namlen &&
659 memcmp(kt->kt_name, pname, cnp->cn_namelen) == 0)
660 goto found;
661 }
662
663 ep = NULL;
664 id = strtoul(pname, &ep, 10);
665 if (!ep || *ep || ep == pname)
666 break;
667
668 error = kernfs_allocvp(dvp->v_mount, vpp, KFSipsecsa, &ipsecsa_kt, id);
669 return (error);
670
671 case KFSipsecspdir:
672 if (cnp->cn_flags & ISDOTDOT) {
673 kt = &kern_targets[0];
674 goto found;
675 }
676
677 for (i = 2; i < nipsecsp_targets; i++) {
678 kt = &ipsecsp_targets[i];
679 if (cnp->cn_namelen == kt->kt_namlen &&
680 memcmp(kt->kt_name, pname, cnp->cn_namelen) == 0)
681 goto found;
682 }
683
684 ep = NULL;
685 id = strtoul(pname, &ep, 10);
686 if (!ep || *ep || ep == pname)
687 break;
688
689 error = kernfs_allocvp(dvp->v_mount, vpp, KFSipsecsp, &ipsecsp_kt, id);
690 return (error);
691 #endif
692
693 default:
694 return (ENOTDIR);
695 }
696
697 return (cnp->cn_nameiop == LOOKUP ? ENOENT : EROFS);
698 }
699
700 int
701 kernfs_open(v)
702 void *v;
703 {
704 struct vop_open_args /* {
705 struct vnode *a_vp;
706 int a_mode;
707 kauth_cred_t a_cred;
708 struct lwp *a_l;
709 } */ *ap = v;
710 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
711 #ifdef IPSEC
712 struct mbuf *m;
713 struct secpolicy *sp;
714 #endif
715
716 switch (kfs->kfs_type) {
717 #ifdef IPSEC
718 case KFSipsecsa:
719 m = key_setdumpsa_spi(htonl(kfs->kfs_value));
720 if (m) {
721 m_freem(m);
722 return (0);
723 } else
724 return (ENOENT);
725
726 case KFSipsecsp:
727 sp = key_getspbyid(kfs->kfs_value);
728 if (sp) {
729 kfs->kfs_v = sp;
730 return (0);
731 } else
732 return (ENOENT);
733 #endif
734
735 default:
736 return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_OPEN,
737 v, 0);
738 }
739 }
740
741 int
742 kernfs_close(v)
743 void *v;
744 {
745 struct vop_close_args /* {
746 struct vnode *a_vp;
747 int a_fflag;
748 kauth_cred_t a_cred;
749 struct lwp *a_l;
750 } */ *ap = v;
751 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
752
753 switch (kfs->kfs_type) {
754 #ifdef IPSEC
755 case KFSipsecsp:
756 key_freesp((struct secpolicy *)kfs->kfs_v);
757 break;
758 #endif
759
760 default:
761 return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_CLOSE,
762 v, 0);
763 }
764
765 return (0);
766 }
767
768 int
769 kernfs_access(v)
770 void *v;
771 {
772 struct vop_access_args /* {
773 struct vnode *a_vp;
774 int a_mode;
775 kauth_cred_t a_cred;
776 struct lwp *a_l;
777 } */ *ap = v;
778 struct vattr va;
779 int error;
780
781 if ((error = VOP_GETATTR(ap->a_vp, &va, ap->a_cred, ap->a_l)) != 0)
782 return (error);
783
784 return (vaccess(va.va_type, va.va_mode, va.va_uid, va.va_gid,
785 ap->a_mode, ap->a_cred));
786 }
787
788 static int
789 kernfs_default_fileop_getattr(v)
790 void *v;
791 {
792 struct vop_getattr_args /* {
793 struct vnode *a_vp;
794 struct vattr *a_vap;
795 kauth_cred_t a_cred;
796 struct lwp *a_l;
797 } */ *ap = v;
798 struct vattr *vap = ap->a_vap;
799
800 vap->va_nlink = 1;
801 vap->va_bytes = vap->va_size = 0;
802
803 return 0;
804 }
805
806 int
807 kernfs_getattr(v)
808 void *v;
809 {
810 struct vop_getattr_args /* {
811 struct vnode *a_vp;
812 struct vattr *a_vap;
813 kauth_cred_t a_cred;
814 struct lwp *a_l;
815 } */ *ap = v;
816 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
817 struct kernfs_subdir *ks;
818 struct vattr *vap = ap->a_vap;
819 int error = 0;
820 char strbuf[KSTRING], *bf;
821 size_t nread, total;
822
823 VATTR_NULL(vap);
824 vap->va_type = ap->a_vp->v_type;
825 vap->va_uid = 0;
826 vap->va_gid = 0;
827 vap->va_mode = kfs->kfs_mode;
828 vap->va_fileid = kfs->kfs_fileno;
829 vap->va_flags = 0;
830 vap->va_size = 0;
831 vap->va_blocksize = DEV_BSIZE;
832 /* Make all times be current TOD, except for the "boottime" node. */
833 if (kfs->kfs_kt && kfs->kfs_kt->kt_namlen == 8 &&
834 !memcmp(kfs->kfs_kt->kt_name, "boottime", 8)) {
835 TIMEVAL_TO_TIMESPEC(&boottime, &vap->va_ctime);
836 } else {
837 getnanotime(&vap->va_ctime);
838 }
839 vap->va_atime = vap->va_mtime = vap->va_ctime;
840 vap->va_gen = 0;
841 vap->va_flags = 0;
842 vap->va_rdev = 0;
843 vap->va_bytes = 0;
844
845 switch (kfs->kfs_type) {
846 case KFSkern:
847 vap->va_nlink = nkern_dirs;
848 vap->va_bytes = vap->va_size = DEV_BSIZE;
849 break;
850
851 case KFSroot:
852 vap->va_nlink = 1;
853 vap->va_bytes = vap->va_size = DEV_BSIZE;
854 break;
855
856 case KFSsubdir:
857 KASSERT(kfs->kfs_kt != NULL);
858 ks = (struct kernfs_subdir *)kfs->kfs_kt->kt_data;
859 vap->va_nlink = ks->ks_dirs;
860 vap->va_bytes = vap->va_size = DEV_BSIZE;
861 break;
862
863 case KFSnull:
864 case KFStime:
865 case KFSint:
866 case KFSstring:
867 case KFShostname:
868 case KFSavenrun:
869 case KFSdevice:
870 case KFSmsgbuf:
871 #ifdef IPSEC
872 case KFSipsecsa:
873 case KFSipsecsp:
874 #endif
875 vap->va_nlink = 1;
876 total = 0;
877 do {
878 bf = strbuf;
879 error = kernfs_xread(kfs, total, &bf,
880 sizeof(strbuf), &nread);
881 total += nread;
882 } while (error == 0 && nread != 0);
883 vap->va_bytes = vap->va_size = total;
884 break;
885
886 #ifdef IPSEC
887 case KFSipsecsadir:
888 case KFSipsecspdir:
889 vap->va_nlink = 2;
890 vap->va_bytes = vap->va_size = DEV_BSIZE;
891 break;
892 #endif
893
894 default:
895 error = kernfs_try_fileop(kfs->kfs_type,
896 KERNFS_FILEOP_GETATTR, v, EINVAL);
897 break;
898 }
899
900 return (error);
901 }
902
903 /*ARGSUSED*/
904 int
905 kernfs_setattr(void *v)
906 {
907
908 /*
909 * Silently ignore attribute changes.
910 * This allows for open with truncate to have no
911 * effect until some data is written. I want to
912 * do it this way because all writes are atomic.
913 */
914 return (0);
915 }
916
917 int
918 kernfs_default_xread(v)
919 void *v;
920 {
921 struct vop_read_args /* {
922 struct vnode *a_vp;
923 struct uio *a_uio;
924 int a_ioflag;
925 kauth_cred_t a_cred;
926 } */ *ap = v;
927 struct uio *uio = ap->a_uio;
928 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
929 char strbuf[KSTRING], *bf;
930 int off;
931 size_t len;
932 int error;
933
934 if (ap->a_vp->v_type == VDIR)
935 return (EOPNOTSUPP);
936
937 off = (int)uio->uio_offset;
938 /* Don't allow negative offsets */
939 if (off < 0)
940 return EINVAL;
941
942 bf = strbuf;
943 if ((error = kernfs_xread(kfs, off, &bf, sizeof(strbuf), &len)) == 0)
944 error = uiomove(bf, len, uio);
945 return (error);
946 }
947
948 int
949 kernfs_read(v)
950 void *v;
951 {
952 struct vop_read_args /* {
953 struct vnode *a_vp;
954 struct uio *a_uio;
955 int a_ioflag;
956 struct ucred *a_cred;
957 } */ *ap = v;
958 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
959
960 if (kfs->kfs_type < KFSlasttype) {
961 /* use default function */
962 return kernfs_default_xread(v);
963 }
964 return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_READ, v,
965 EOPNOTSUPP);
966 }
967
968 static int
969 kernfs_default_xwrite(v)
970 void *v;
971 {
972 struct vop_write_args /* {
973 struct vnode *a_vp;
974 struct uio *a_uio;
975 int a_ioflag;
976 kauth_cred_t a_cred;
977 } */ *ap = v;
978 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
979 struct uio *uio = ap->a_uio;
980 int error;
981 size_t xlen;
982 char strbuf[KSTRING];
983
984 if (uio->uio_offset != 0)
985 return (EINVAL);
986
987 xlen = min(uio->uio_resid, KSTRING-1);
988 if ((error = uiomove(strbuf, xlen, uio)) != 0)
989 return (error);
990
991 if (uio->uio_resid != 0)
992 return (EIO);
993
994 strbuf[xlen] = '\0';
995 xlen = strlen(strbuf);
996 return (kernfs_xwrite(kfs, strbuf, xlen));
997 }
998
999 int
1000 kernfs_write(v)
1001 void *v;
1002 {
1003 struct vop_write_args /* {
1004 struct vnode *a_vp;
1005 struct uio *a_uio;
1006 int a_ioflag;
1007 kauth_cred_t a_cred;
1008 } */ *ap = v;
1009 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
1010
1011 if (kfs->kfs_type < KFSlasttype) {
1012 /* use default function */
1013 return kernfs_default_xwrite(v);
1014 }
1015 return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_WRITE, v,
1016 EOPNOTSUPP);
1017 }
1018
1019 int
1020 kernfs_ioctl(v)
1021 void *v;
1022 {
1023 struct vop_ioctl_args /* {
1024 const struct vnodeop_desc *a_desc;
1025 struct vnode *a_vp;
1026 u_long a_command;
1027 void *a_data;
1028 int a_fflag;
1029 kauth_cred_t a_cred;
1030 struct lwp *a_l;
1031 } */ *ap = v;
1032 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
1033
1034 return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_IOCTL, v,
1035 EPASSTHROUGH);
1036 }
1037
1038 static int
1039 kernfs_setdirentfileno_kt(struct dirent *d, const struct kern_target *kt,
1040 u_int32_t value, struct vop_readdir_args *ap)
1041 {
1042 struct kernfs_node *kfs;
1043 struct vnode *vp;
1044 int error;
1045
1046 if ((error = kernfs_allocvp(ap->a_vp->v_mount, &vp, kt->kt_tag, kt,
1047 value)) != 0)
1048 return error;
1049 if (kt->kt_tag == KFSdevice) {
1050 struct vattr va;
1051
1052 error = VOP_GETATTR(vp, &va, ap->a_cred, curlwp);
1053 if (error != 0) {
1054 return error;
1055 }
1056 d->d_fileno = va.va_fileid;
1057 } else {
1058 kfs = VTOKERN(vp);
1059 d->d_fileno = kfs->kfs_fileno;
1060 }
1061 vput(vp);
1062 return 0;
1063 }
1064
1065 static int
1066 kernfs_setdirentfileno(struct dirent *d, off_t entry,
1067 struct kernfs_node *thisdir_kfs, const struct kern_target *parent_kt,
1068 const struct kern_target *kt, struct vop_readdir_args *ap)
1069 {
1070 const struct kern_target *ikt;
1071 int error;
1072
1073 switch (entry) {
1074 case 0:
1075 d->d_fileno = thisdir_kfs->kfs_fileno;
1076 return 0;
1077 case 1:
1078 ikt = parent_kt;
1079 break;
1080 default:
1081 ikt = kt;
1082 break;
1083 }
1084 if (ikt != thisdir_kfs->kfs_kt) {
1085 if ((error = kernfs_setdirentfileno_kt(d, ikt, 0, ap)) != 0)
1086 return error;
1087 } else
1088 d->d_fileno = thisdir_kfs->kfs_fileno;
1089 return 0;
1090 }
1091
1092 int
1093 kernfs_readdir(v)
1094 void *v;
1095 {
1096 struct vop_readdir_args /* {
1097 struct vnode *a_vp;
1098 struct uio *a_uio;
1099 kauth_cred_t a_cred;
1100 int *a_eofflag;
1101 off_t **a_cookies;
1102 int a_*ncookies;
1103 } */ *ap = v;
1104 struct uio *uio = ap->a_uio;
1105 struct dirent d;
1106 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
1107 const struct kern_target *kt;
1108 const struct dyn_kern_target *dkt = NULL;
1109 const struct kernfs_subdir *ks;
1110 off_t i, j;
1111 int error;
1112 off_t *cookies = NULL;
1113 int ncookies = 0, n;
1114 #ifdef IPSEC
1115 struct secasvar *sav, *sav2;
1116 struct secpolicy *sp;
1117 #endif
1118
1119 if (uio->uio_resid < UIO_MX)
1120 return (EINVAL);
1121 if (uio->uio_offset < 0)
1122 return (EINVAL);
1123
1124 error = 0;
1125 i = uio->uio_offset;
1126 memset(&d, 0, sizeof(d));
1127 d.d_reclen = UIO_MX;
1128 ncookies = uio->uio_resid / UIO_MX;
1129
1130 switch (kfs->kfs_type) {
1131 case KFSkern:
1132 if (i >= nkern_targets)
1133 return (0);
1134
1135 if (ap->a_ncookies) {
1136 ncookies = min(ncookies, (nkern_targets - i));
1137 cookies = malloc(ncookies * sizeof(off_t), M_TEMP,
1138 M_WAITOK);
1139 *ap->a_cookies = cookies;
1140 }
1141
1142 n = 0;
1143 for (; i < nkern_targets && uio->uio_resid >= UIO_MX; i++) {
1144 if (i < static_nkern_targets)
1145 kt = &kern_targets[i];
1146 else {
1147 if (dkt == NULL) {
1148 dkt = SIMPLEQ_FIRST(&dyn_kern_targets);
1149 for (j = static_nkern_targets; j < i &&
1150 dkt != NULL; j++)
1151 dkt = SIMPLEQ_NEXT(dkt, dkt_queue);
1152 if (j != i)
1153 break;
1154 } else {
1155 dkt = SIMPLEQ_NEXT(dkt, dkt_queue);
1156 }
1157 if (dkt == NULL)
1158 break;
1159 kt = &dkt->dkt_kt;
1160 }
1161 if (kt->kt_tag == KFSdevice) {
1162 dev_t *dp = kt->kt_data;
1163 struct vnode *fvp;
1164
1165 if (*dp == NODEV ||
1166 !vfinddev(*dp, kt->kt_vtype, &fvp))
1167 continue;
1168 }
1169 d.d_namlen = kt->kt_namlen;
1170 if ((error = kernfs_setdirentfileno(&d, i, kfs,
1171 &kern_targets[0], kt, ap)) != 0)
1172 break;
1173 memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1);
1174 d.d_type = kt->kt_type;
1175 if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1176 break;
1177 if (cookies)
1178 *cookies++ = i + 1;
1179 n++;
1180 }
1181 ncookies = n;
1182 break;
1183
1184 case KFSroot:
1185 if (i >= 2)
1186 return 0;
1187
1188 if (ap->a_ncookies) {
1189 ncookies = min(ncookies, (2 - i));
1190 cookies = malloc(ncookies * sizeof(off_t), M_TEMP,
1191 M_WAITOK);
1192 *ap->a_cookies = cookies;
1193 }
1194
1195 n = 0;
1196 for (; i < 2 && uio->uio_resid >= UIO_MX; i++) {
1197 kt = &kern_targets[i];
1198 d.d_namlen = kt->kt_namlen;
1199 d.d_fileno = KERNFS_FILENO(kt, kt->kt_tag, 0);
1200 memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1);
1201 d.d_type = kt->kt_type;
1202 if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1203 break;
1204 if (cookies)
1205 *cookies++ = i + 1;
1206 n++;
1207 }
1208 ncookies = n;
1209 break;
1210
1211 case KFSsubdir:
1212 ks = (struct kernfs_subdir *)kfs->kfs_kt->kt_data;
1213 if (i >= ks->ks_nentries)
1214 return (0);
1215
1216 if (ap->a_ncookies) {
1217 ncookies = min(ncookies, (ks->ks_nentries - i));
1218 cookies = malloc(ncookies * sizeof(off_t), M_TEMP,
1219 M_WAITOK);
1220 *ap->a_cookies = cookies;
1221 }
1222
1223 dkt = SIMPLEQ_FIRST(&ks->ks_entries);
1224 for (j = 0; j < i && dkt != NULL; j++)
1225 dkt = SIMPLEQ_NEXT(dkt, dkt_queue);
1226 n = 0;
1227 for (; i < ks->ks_nentries && uio->uio_resid >= UIO_MX; i++) {
1228 if (i < 2)
1229 kt = &subdir_targets[i];
1230 else {
1231 /* check if ks_nentries lied to us */
1232 if (dkt == NULL)
1233 break;
1234 kt = &dkt->dkt_kt;
1235 dkt = SIMPLEQ_NEXT(dkt, dkt_queue);
1236 }
1237 if (kt->kt_tag == KFSdevice) {
1238 dev_t *dp = kt->kt_data;
1239 struct vnode *fvp;
1240
1241 if (*dp == NODEV ||
1242 !vfinddev(*dp, kt->kt_vtype, &fvp))
1243 continue;
1244 }
1245 d.d_namlen = kt->kt_namlen;
1246 if ((error = kernfs_setdirentfileno(&d, i, kfs,
1247 ks->ks_parent, kt, ap)) != 0)
1248 break;
1249 memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1);
1250 d.d_type = kt->kt_type;
1251 if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1252 break;
1253 if (cookies)
1254 *cookies++ = i + 1;
1255 n++;
1256 }
1257 ncookies = n;
1258 break;
1259
1260 #ifdef IPSEC
1261 case KFSipsecsadir:
1262 /* count SA in the system */
1263 n = 0;
1264 TAILQ_FOREACH(sav, &satailq, tailq) {
1265 for (sav2 = TAILQ_FIRST(&satailq);
1266 sav2 != sav;
1267 sav2 = TAILQ_NEXT(sav2, tailq)) {
1268 if (sav->spi == sav2->spi) {
1269 /* multiple SA with same SPI */
1270 break;
1271 }
1272 }
1273 if (sav == sav2 || sav->spi != sav2->spi)
1274 n++;
1275 }
1276
1277 if (i >= nipsecsa_targets + n)
1278 return (0);
1279
1280 if (ap->a_ncookies) {
1281 ncookies = min(ncookies, (n - i));
1282 cookies = malloc(ncookies * sizeof(off_t), M_TEMP,
1283 M_WAITOK);
1284 *ap->a_cookies = cookies;
1285 }
1286
1287 n = 0;
1288 for (; i < nipsecsa_targets && uio->uio_resid >= UIO_MX; i++) {
1289 kt = &ipsecsa_targets[i];
1290 d.d_namlen = kt->kt_namlen;
1291 if ((error = kernfs_setdirentfileno(&d, i, kfs,
1292 &kern_targets[0], kt, ap)) != 0)
1293 break;
1294 memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1);
1295 d.d_type = kt->kt_type;
1296 if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1297 break;
1298 if (cookies)
1299 *cookies++ = i + 1;
1300 n++;
1301 }
1302 if (error) {
1303 ncookies = n;
1304 break;
1305 }
1306
1307 TAILQ_FOREACH(sav, &satailq, tailq) {
1308 for (sav2 = TAILQ_FIRST(&satailq);
1309 sav2 != sav;
1310 sav2 = TAILQ_NEXT(sav2, tailq)) {
1311 if (sav->spi == sav2->spi) {
1312 /* multiple SA with same SPI */
1313 break;
1314 }
1315 }
1316 if (sav != sav2 && sav->spi == sav2->spi)
1317 continue;
1318 if (uio->uio_resid < UIO_MX)
1319 break;
1320 if ((error = kernfs_setdirentfileno_kt(&d, &ipsecsa_kt,
1321 sav->spi, ap)) != 0)
1322 break;
1323 d.d_namlen = snprintf(d.d_name, sizeof(d.d_name),
1324 "%u", ntohl(sav->spi));
1325 d.d_type = DT_REG;
1326 if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1327 break;
1328 if (cookies)
1329 *cookies++ = i + 1;
1330 n++;
1331 i++;
1332 }
1333 ncookies = n;
1334 break;
1335
1336 case KFSipsecspdir:
1337 /* count SP in the system */
1338 n = 0;
1339 TAILQ_FOREACH(sp, &sptailq, tailq)
1340 n++;
1341
1342 if (i >= nipsecsp_targets + n)
1343 return (0);
1344
1345 if (ap->a_ncookies) {
1346 ncookies = min(ncookies, (n - i));
1347 cookies = malloc(ncookies * sizeof(off_t), M_TEMP,
1348 M_WAITOK);
1349 *ap->a_cookies = cookies;
1350 }
1351
1352 n = 0;
1353 for (; i < nipsecsp_targets && uio->uio_resid >= UIO_MX; i++) {
1354 kt = &ipsecsp_targets[i];
1355 d.d_namlen = kt->kt_namlen;
1356 if ((error = kernfs_setdirentfileno(&d, i, kfs,
1357 &kern_targets[0], kt, ap)) != 0)
1358 break;
1359 memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1);
1360 d.d_type = kt->kt_type;
1361 if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1362 break;
1363 if (cookies)
1364 *cookies++ = i + 1;
1365 n++;
1366 }
1367 if (error) {
1368 ncookies = n;
1369 break;
1370 }
1371
1372 TAILQ_FOREACH(sp, &sptailq, tailq) {
1373 if (uio->uio_resid < UIO_MX)
1374 break;
1375 if ((error = kernfs_setdirentfileno_kt(&d, &ipsecsp_kt,
1376 sp->id, ap)) != 0)
1377 break;
1378 d.d_namlen = snprintf(d.d_name, sizeof(d.d_name),
1379 "%u", sp->id);
1380 d.d_type = DT_REG;
1381 if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1382 break;
1383 if (cookies)
1384 *cookies++ = i + 1;
1385 n++;
1386 i++;
1387 }
1388 ncookies = n;
1389 break;
1390 #endif
1391
1392 default:
1393 error = ENOTDIR;
1394 break;
1395 }
1396
1397 if (ap->a_ncookies) {
1398 if (error) {
1399 if (cookies)
1400 free(*ap->a_cookies, M_TEMP);
1401 *ap->a_ncookies = 0;
1402 *ap->a_cookies = NULL;
1403 } else
1404 *ap->a_ncookies = ncookies;
1405 }
1406
1407 uio->uio_offset = i;
1408 return (error);
1409 }
1410
1411 int
1412 kernfs_inactive(v)
1413 void *v;
1414 {
1415 struct vop_inactive_args /* {
1416 struct vnode *a_vp;
1417 struct lwp *a_l;
1418 } */ *ap = v;
1419 struct vnode *vp = ap->a_vp;
1420 const struct kernfs_node *kfs = VTOKERN(ap->a_vp);
1421 #ifdef IPSEC
1422 struct mbuf *m;
1423 struct secpolicy *sp;
1424 #endif
1425
1426 VOP_UNLOCK(vp, 0);
1427 switch (kfs->kfs_type) {
1428 #ifdef IPSEC
1429 case KFSipsecsa:
1430 m = key_setdumpsa_spi(htonl(kfs->kfs_value));
1431 if (m)
1432 m_freem(m);
1433 else
1434 vgone(vp);
1435 break;
1436 case KFSipsecsp:
1437 sp = key_getspbyid(kfs->kfs_value);
1438 if (sp)
1439 key_freesp(sp);
1440 else {
1441 /* should never happen as we hold a refcnt */
1442 vgone(vp);
1443 }
1444 break;
1445 #endif
1446 default:
1447 break;
1448 }
1449 return (0);
1450 }
1451
1452 int
1453 kernfs_reclaim(v)
1454 void *v;
1455 {
1456 struct vop_reclaim_args /* {
1457 struct vnode *a_vp;
1458 } */ *ap = v;
1459
1460 return (kernfs_freevp(ap->a_vp));
1461 }
1462
1463 /*
1464 * Return POSIX pathconf information applicable to special devices.
1465 */
1466 int
1467 kernfs_pathconf(v)
1468 void *v;
1469 {
1470 struct vop_pathconf_args /* {
1471 struct vnode *a_vp;
1472 int a_name;
1473 register_t *a_retval;
1474 } */ *ap = v;
1475
1476 switch (ap->a_name) {
1477 case _PC_LINK_MAX:
1478 *ap->a_retval = LINK_MAX;
1479 return (0);
1480 case _PC_MAX_CANON:
1481 *ap->a_retval = MAX_CANON;
1482 return (0);
1483 case _PC_MAX_INPUT:
1484 *ap->a_retval = MAX_INPUT;
1485 return (0);
1486 case _PC_PIPE_BUF:
1487 *ap->a_retval = PIPE_BUF;
1488 return (0);
1489 case _PC_CHOWN_RESTRICTED:
1490 *ap->a_retval = 1;
1491 return (0);
1492 case _PC_VDISABLE:
1493 *ap->a_retval = _POSIX_VDISABLE;
1494 return (0);
1495 case _PC_SYNC_IO:
1496 *ap->a_retval = 1;
1497 return (0);
1498 default:
1499 return (EINVAL);
1500 }
1501 /* NOTREACHED */
1502 }
1503
1504 /*
1505 * Print out the contents of a /dev/fd vnode.
1506 */
1507 /* ARGSUSED */
1508 int
1509 kernfs_print(void *v)
1510 {
1511
1512 printf("tag VT_KERNFS, kernfs vnode\n");
1513 return (0);
1514 }
1515
1516 int
1517 kernfs_link(v)
1518 void *v;
1519 {
1520 struct vop_link_args /* {
1521 struct vnode *a_dvp;
1522 struct vnode *a_vp;
1523 struct componentname *a_cnp;
1524 } */ *ap = v;
1525
1526 VOP_ABORTOP(ap->a_dvp, ap->a_cnp);
1527 vput(ap->a_dvp);
1528 return (EROFS);
1529 }
1530
1531 int
1532 kernfs_symlink(v)
1533 void *v;
1534 {
1535 struct vop_symlink_args /* {
1536 struct vnode *a_dvp;
1537 struct vnode **a_vpp;
1538 struct componentname *a_cnp;
1539 struct vattr *a_vap;
1540 char *a_target;
1541 } */ *ap = v;
1542
1543 VOP_ABORTOP(ap->a_dvp, ap->a_cnp);
1544 vput(ap->a_dvp);
1545 return (EROFS);
1546 }
1547