kernfs_vnops.c revision 1.132.26.1 1 /* $NetBSD: kernfs_vnops.c,v 1.132.26.1 2007/12/08 18:21:01 mjf Exp $ */
2
3 /*
4 * Copyright (c) 1992, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software donated to Berkeley by
8 * Jan-Simon Pendry.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)kernfs_vnops.c 8.15 (Berkeley) 5/21/95
35 */
36
37 /*
38 * Kernel parameter filesystem (/kern)
39 */
40
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: kernfs_vnops.c,v 1.132.26.1 2007/12/08 18:21:01 mjf Exp $");
43
44 #ifdef _KERNEL_OPT
45 #include "opt_ipsec.h"
46 #endif
47
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/kernel.h>
51 #include <sys/vmmeter.h>
52 #include <sys/time.h>
53 #include <sys/proc.h>
54 #include <sys/vnode.h>
55 #include <sys/malloc.h>
56 #include <sys/file.h>
57 #include <sys/stat.h>
58 #include <sys/mount.h>
59 #include <sys/namei.h>
60 #include <sys/buf.h>
61 #include <sys/dirent.h>
62 #include <sys/msgbuf.h>
63
64 #include <miscfs/genfs/genfs.h>
65 #include <miscfs/kernfs/kernfs.h>
66
67 #ifdef IPSEC
68 #include <sys/mbuf.h>
69 #include <net/route.h>
70 #include <netinet/in.h>
71 #include <netinet6/ipsec.h>
72 #include <netkey/key.h>
73 #endif
74
75 #include <uvm/uvm_extern.h>
76
77 #define KSTRING 256 /* Largest I/O available via this filesystem */
78 #define UIO_MX 32
79
80 #define READ_MODE (S_IRUSR|S_IRGRP|S_IROTH)
81 #define WRITE_MODE (S_IWUSR|S_IRUSR|S_IRGRP|S_IROTH)
82 #define UREAD_MODE (S_IRUSR)
83 #define DIR_MODE (S_IRUSR|S_IXUSR|S_IRGRP|S_IXGRP|S_IROTH|S_IXOTH)
84 #define UDIR_MODE (S_IRUSR|S_IXUSR)
85
86 #define N(s) sizeof(s)-1, s
87 const struct kern_target kern_targets[] = {
88 /* NOTE: The name must be less than UIO_MX-16 chars in length */
89 /* name data tag type ro/rw */
90 { DT_DIR, N("."), 0, KFSkern, VDIR, DIR_MODE },
91 { DT_DIR, N(".."), 0, KFSroot, VDIR, DIR_MODE },
92 { DT_REG, N("boottime"), &boottime.tv_sec, KFSint, VREG, READ_MODE },
93 /* XXXUNCONST */
94 { DT_REG, N("copyright"), __UNCONST(copyright),
95 KFSstring, VREG, READ_MODE },
96 { DT_REG, N("hostname"), 0, KFShostname, VREG, WRITE_MODE },
97 { DT_REG, N("hz"), &hz, KFSint, VREG, READ_MODE },
98 #ifdef IPSEC
99 { DT_DIR, N("ipsecsa"), 0, KFSipsecsadir, VDIR, UDIR_MODE },
100 { DT_DIR, N("ipsecsp"), 0, KFSipsecspdir, VDIR, UDIR_MODE },
101 #endif
102 { DT_REG, N("loadavg"), 0, KFSavenrun, VREG, READ_MODE },
103 { DT_REG, N("msgbuf"), 0, KFSmsgbuf, VREG, READ_MODE },
104 { DT_REG, N("pagesize"), &uvmexp.pagesize, KFSint, VREG, READ_MODE },
105 { DT_REG, N("physmem"), &physmem, KFSint, VREG, READ_MODE },
106 #if 0
107 { DT_DIR, N("root"), 0, KFSnull, VDIR, DIR_MODE },
108 #endif
109 { DT_BLK, N("rootdev"), &rootdev, KFSdevice, VBLK, READ_MODE },
110 { DT_CHR, N("rrootdev"), &rrootdev, KFSdevice, VCHR, READ_MODE },
111 { DT_REG, N("time"), 0, KFStime, VREG, READ_MODE },
112 /* XXXUNCONST */
113 { DT_REG, N("version"), __UNCONST(version),
114 KFSstring, VREG, READ_MODE },
115 };
116 const struct kern_target subdir_targets[] = {
117 /* NOTE: The name must be less than UIO_MX-16 chars in length */
118 /* name data tag type ro/rw */
119 { DT_DIR, N("."), 0, KFSsubdir, VDIR, DIR_MODE },
120 { DT_DIR, N(".."), 0, KFSkern, VDIR, DIR_MODE },
121 };
122 #ifdef IPSEC
123 const struct kern_target ipsecsa_targets[] = {
124 /* NOTE: The name must be less than UIO_MX-16 chars in length */
125 /* name data tag type ro/rw */
126 { DT_DIR, N("."), 0, KFSipsecsadir, VDIR, DIR_MODE },
127 { DT_DIR, N(".."), 0, KFSkern, VDIR, DIR_MODE },
128 };
129 const struct kern_target ipsecsp_targets[] = {
130 /* NOTE: The name must be less than UIO_MX-16 chars in length */
131 /* name data tag type ro/rw */
132 { DT_DIR, N("."), 0, KFSipsecspdir, VDIR, DIR_MODE },
133 { DT_DIR, N(".."), 0, KFSkern, VDIR, DIR_MODE },
134 };
135 const struct kern_target ipsecsa_kt =
136 { DT_DIR, N(""), 0, KFSipsecsa, VREG, UREAD_MODE };
137 const struct kern_target ipsecsp_kt =
138 { DT_DIR, N(""), 0, KFSipsecsp, VREG, UREAD_MODE };
139 #endif
140 #undef N
141 SIMPLEQ_HEAD(,dyn_kern_target) dyn_kern_targets =
142 SIMPLEQ_HEAD_INITIALIZER(dyn_kern_targets);
143 int nkern_targets = sizeof(kern_targets) / sizeof(kern_targets[0]);
144 const int static_nkern_targets = sizeof(kern_targets) / sizeof(kern_targets[0]);
145 #ifdef IPSEC
146 int nipsecsa_targets = sizeof(ipsecsa_targets) / sizeof(ipsecsa_targets[0]);
147 int nipsecsp_targets = sizeof(ipsecsp_targets) / sizeof(ipsecsp_targets[0]);
148 int nkern_dirs = 4; /* 2 extra subdirs */
149 #else
150 int nkern_dirs = 2;
151 #endif
152
153 int kernfs_try_fileop(kfstype, kfsfileop, void *, int);
154 int kernfs_try_xread(kfstype, const struct kernfs_node *, char **,
155 size_t, int);
156 int kernfs_try_xwrite(kfstype, const struct kernfs_node *, char *,
157 size_t, int);
158
159 static int kernfs_default_xread(void *v);
160 static int kernfs_default_xwrite(void *v);
161 static int kernfs_default_fileop_getattr(void *);
162
163 /* must include all fileop's */
164 const struct kernfs_fileop kernfs_default_fileops[] = {
165 { .kf_fileop = KERNFS_XREAD },
166 { .kf_fileop = KERNFS_XWRITE },
167 { .kf_fileop = KERNFS_FILEOP_OPEN },
168 { .kf_fileop = KERNFS_FILEOP_GETATTR,
169 .kf_vop = kernfs_default_fileop_getattr },
170 { .kf_fileop = KERNFS_FILEOP_IOCTL },
171 { .kf_fileop = KERNFS_FILEOP_CLOSE },
172 { .kf_fileop = KERNFS_FILEOP_READ,
173 .kf_vop = kernfs_default_xread },
174 { .kf_fileop = KERNFS_FILEOP_WRITE,
175 .kf_vop = kernfs_default_xwrite },
176 };
177
178 int kernfs_lookup(void *);
179 #define kernfs_create genfs_eopnotsupp
180 #define kernfs_mknod genfs_eopnotsupp
181 int kernfs_open(void *);
182 int kernfs_close(void *);
183 int kernfs_access(void *);
184 int kernfs_getattr(void *);
185 int kernfs_setattr(void *);
186 int kernfs_read(void *);
187 int kernfs_write(void *);
188 #define kernfs_fcntl genfs_fcntl
189 int kernfs_ioctl(void *);
190 #define kernfs_poll genfs_poll
191 #define kernfs_revoke genfs_revoke
192 #define kernfs_fsync genfs_nullop
193 #define kernfs_seek genfs_nullop
194 #define kernfs_remove genfs_eopnotsupp
195 int kernfs_link(void *);
196 #define kernfs_rename genfs_eopnotsupp
197 #define kernfs_mkdir genfs_eopnotsupp
198 #define kernfs_rmdir genfs_eopnotsupp
199 int kernfs_symlink(void *);
200 int kernfs_readdir(void *);
201 #define kernfs_readlink genfs_eopnotsupp
202 #define kernfs_abortop genfs_abortop
203 int kernfs_inactive(void *);
204 int kernfs_reclaim(void *);
205 #define kernfs_lock genfs_lock
206 #define kernfs_unlock genfs_unlock
207 #define kernfs_bmap genfs_badop
208 #define kernfs_strategy genfs_badop
209 int kernfs_print(void *);
210 #define kernfs_islocked genfs_islocked
211 int kernfs_pathconf(void *);
212 #define kernfs_advlock genfs_einval
213 #define kernfs_bwrite genfs_eopnotsupp
214 #define kernfs_putpages genfs_putpages
215
216 static int kernfs_xread(struct kernfs_node *, int, char **,
217 size_t, size_t *);
218 static int kernfs_xwrite(const struct kernfs_node *, char *, size_t);
219
220 int (**kernfs_vnodeop_p)(void *);
221 const struct vnodeopv_entry_desc kernfs_vnodeop_entries[] = {
222 { &vop_default_desc, vn_default_error },
223 { &vop_lookup_desc, kernfs_lookup }, /* lookup */
224 { &vop_create_desc, kernfs_create }, /* create */
225 { &vop_mknod_desc, kernfs_mknod }, /* mknod */
226 { &vop_open_desc, kernfs_open }, /* open */
227 { &vop_close_desc, kernfs_close }, /* close */
228 { &vop_access_desc, kernfs_access }, /* access */
229 { &vop_getattr_desc, kernfs_getattr }, /* getattr */
230 { &vop_setattr_desc, kernfs_setattr }, /* setattr */
231 { &vop_read_desc, kernfs_read }, /* read */
232 { &vop_write_desc, kernfs_write }, /* write */
233 { &vop_fcntl_desc, kernfs_fcntl }, /* fcntl */
234 { &vop_ioctl_desc, kernfs_ioctl }, /* ioctl */
235 { &vop_poll_desc, kernfs_poll }, /* poll */
236 { &vop_revoke_desc, kernfs_revoke }, /* revoke */
237 { &vop_fsync_desc, kernfs_fsync }, /* fsync */
238 { &vop_seek_desc, kernfs_seek }, /* seek */
239 { &vop_remove_desc, kernfs_remove }, /* remove */
240 { &vop_link_desc, kernfs_link }, /* link */
241 { &vop_rename_desc, kernfs_rename }, /* rename */
242 { &vop_mkdir_desc, kernfs_mkdir }, /* mkdir */
243 { &vop_rmdir_desc, kernfs_rmdir }, /* rmdir */
244 { &vop_symlink_desc, kernfs_symlink }, /* symlink */
245 { &vop_readdir_desc, kernfs_readdir }, /* readdir */
246 { &vop_readlink_desc, kernfs_readlink }, /* readlink */
247 { &vop_abortop_desc, kernfs_abortop }, /* abortop */
248 { &vop_inactive_desc, kernfs_inactive }, /* inactive */
249 { &vop_reclaim_desc, kernfs_reclaim }, /* reclaim */
250 { &vop_lock_desc, kernfs_lock }, /* lock */
251 { &vop_unlock_desc, kernfs_unlock }, /* unlock */
252 { &vop_bmap_desc, kernfs_bmap }, /* bmap */
253 { &vop_strategy_desc, kernfs_strategy }, /* strategy */
254 { &vop_print_desc, kernfs_print }, /* print */
255 { &vop_islocked_desc, kernfs_islocked }, /* islocked */
256 { &vop_pathconf_desc, kernfs_pathconf }, /* pathconf */
257 { &vop_advlock_desc, kernfs_advlock }, /* advlock */
258 { &vop_bwrite_desc, kernfs_bwrite }, /* bwrite */
259 { &vop_putpages_desc, kernfs_putpages }, /* putpages */
260 { NULL, NULL }
261 };
262 const struct vnodeopv_desc kernfs_vnodeop_opv_desc =
263 { &kernfs_vnodeop_p, kernfs_vnodeop_entries };
264
265 static inline int
266 kernfs_fileop_compare(struct kernfs_fileop *a, struct kernfs_fileop *b)
267 {
268 if (a->kf_type < b->kf_type)
269 return -1;
270 if (a->kf_type > b->kf_type)
271 return 1;
272 if (a->kf_fileop < b->kf_fileop)
273 return -1;
274 if (a->kf_fileop > b->kf_fileop)
275 return 1;
276 return (0);
277 }
278
279 SPLAY_HEAD(kfsfileoptree, kernfs_fileop) kfsfileoptree =
280 SPLAY_INITIALIZER(kfsfileoptree);
281 SPLAY_PROTOTYPE(kfsfileoptree, kernfs_fileop, kf_node, kernfs_fileop_compare);
282 SPLAY_GENERATE(kfsfileoptree, kernfs_fileop, kf_node, kernfs_fileop_compare);
283
284 kfstype
285 kernfs_alloctype(int nkf, const struct kernfs_fileop *kf)
286 {
287 static u_char nextfreetype = KFSlasttype;
288 struct kernfs_fileop *dkf, *fkf, skf;
289 int i;
290
291 /* XXX need to keep track of dkf's memory if we support
292 deallocating types */
293 dkf = malloc(sizeof(kernfs_default_fileops), M_TEMP, M_WAITOK);
294 memcpy(dkf, kernfs_default_fileops, sizeof(kernfs_default_fileops));
295
296 for (i = 0; i < sizeof(kernfs_default_fileops) /
297 sizeof(kernfs_default_fileops[0]); i++) {
298 dkf[i].kf_type = nextfreetype;
299 SPLAY_INSERT(kfsfileoptree, &kfsfileoptree, &dkf[i]);
300 }
301
302 for (i = 0; i < nkf; i++) {
303 skf.kf_type = nextfreetype;
304 skf.kf_fileop = kf[i].kf_fileop;
305 if ((fkf = SPLAY_FIND(kfsfileoptree, &kfsfileoptree, &skf)))
306 fkf->kf_vop = kf[i].kf_vop;
307 }
308
309 return nextfreetype++;
310 }
311
312 int
313 kernfs_try_fileop(kfstype type, kfsfileop fileop, void *v, int error)
314 {
315 struct kernfs_fileop *kf, skf;
316
317 skf.kf_type = type;
318 skf.kf_fileop = fileop;
319 if ((kf = SPLAY_FIND(kfsfileoptree, &kfsfileoptree, &skf)))
320 if (kf->kf_vop)
321 return kf->kf_vop(v);
322 return error;
323 }
324
325 int
326 kernfs_try_xread(kfstype type, const struct kernfs_node *kfs, char **bfp,
327 size_t len, int error)
328 {
329 struct kernfs_fileop *kf, skf;
330
331 skf.kf_type = type;
332 skf.kf_fileop = KERNFS_XREAD;
333 if ((kf = SPLAY_FIND(kfsfileoptree, &kfsfileoptree, &skf)))
334 if (kf->kf_xread)
335 return kf->kf_xread(kfs, bfp, len);
336 return error;
337 }
338
339 int
340 kernfs_try_xwrite(kfstype type, const struct kernfs_node *kfs, char *bf,
341 size_t len, int error)
342 {
343 struct kernfs_fileop *kf, skf;
344
345 skf.kf_type = type;
346 skf.kf_fileop = KERNFS_XWRITE;
347 if ((kf = SPLAY_FIND(kfsfileoptree, &kfsfileoptree, &skf)))
348 if (kf->kf_xwrite)
349 return kf->kf_xwrite(kfs, bf, len);
350 return error;
351 }
352
353 int
354 kernfs_addentry(kernfs_parentdir_t *pkt, kernfs_entry_t *dkt)
355 {
356 struct kernfs_subdir *ks, *parent;
357
358 if (pkt == NULL) {
359 SIMPLEQ_INSERT_TAIL(&dyn_kern_targets, dkt, dkt_queue);
360 nkern_targets++;
361 if (dkt->dkt_kt.kt_vtype == VDIR)
362 nkern_dirs++;
363 } else {
364 parent = (struct kernfs_subdir *)pkt->kt_data;
365 SIMPLEQ_INSERT_TAIL(&parent->ks_entries, dkt, dkt_queue);
366 parent->ks_nentries++;
367 if (dkt->dkt_kt.kt_vtype == VDIR)
368 parent->ks_dirs++;
369 }
370 if (dkt->dkt_kt.kt_vtype == VDIR && dkt->dkt_kt.kt_data == NULL) {
371 ks = malloc(sizeof(struct kernfs_subdir),
372 M_TEMP, M_WAITOK);
373 SIMPLEQ_INIT(&ks->ks_entries);
374 ks->ks_nentries = 2; /* . and .. */
375 ks->ks_dirs = 2;
376 ks->ks_parent = pkt ? pkt : &kern_targets[0];
377 dkt->dkt_kt.kt_data = ks;
378 }
379 return 0;
380 }
381
382 static int
383 kernfs_xread(kfs, off, bufp, len, wrlen)
384 struct kernfs_node *kfs;
385 int off;
386 char **bufp;
387 size_t len;
388 size_t *wrlen;
389 {
390 const struct kern_target *kt;
391 #ifdef IPSEC
392 struct mbuf *m;
393 #endif
394 int err;
395
396 kt = kfs->kfs_kt;
397
398 switch (kfs->kfs_type) {
399 case KFStime: {
400 struct timeval tv;
401
402 microtime(&tv);
403 snprintf(*bufp, len, "%ld %ld\n", tv.tv_sec, tv.tv_usec);
404 break;
405 }
406
407 case KFSint: {
408 int *ip = kt->kt_data;
409
410 snprintf(*bufp, len, "%d\n", *ip);
411 break;
412 }
413
414 case KFSstring: {
415 char *cp = kt->kt_data;
416
417 *bufp = cp;
418 break;
419 }
420
421 case KFSmsgbuf: {
422 long n;
423
424 /*
425 * deal with cases where the message buffer has
426 * become corrupted.
427 */
428 if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) {
429 msgbufenabled = 0;
430 return (ENXIO);
431 }
432
433 /*
434 * Note that reads of /kern/msgbuf won't necessarily yield
435 * consistent results, if the message buffer is modified
436 * while the read is in progress. The worst that can happen
437 * is that incorrect data will be read. There's no way
438 * that this can crash the system unless the values in the
439 * message buffer header are corrupted, but that'll cause
440 * the system to die anyway.
441 */
442 if (off >= msgbufp->msg_bufs) {
443 *wrlen = 0;
444 return (0);
445 }
446 n = msgbufp->msg_bufx + off;
447 if (n >= msgbufp->msg_bufs)
448 n -= msgbufp->msg_bufs;
449 len = min(msgbufp->msg_bufs - n, msgbufp->msg_bufs - off);
450 *bufp = msgbufp->msg_bufc + n;
451 *wrlen = len;
452 return (0);
453 }
454
455 case KFShostname: {
456 char *cp = hostname;
457 size_t xlen = hostnamelen;
458
459 if (xlen >= (len - 2))
460 return (EINVAL);
461
462 memcpy(*bufp, cp, xlen);
463 (*bufp)[xlen] = '\n';
464 (*bufp)[xlen+1] = '\0';
465 len = strlen(*bufp);
466 break;
467 }
468
469 case KFSavenrun:
470 averunnable.fscale = FSCALE;
471 snprintf(*bufp, len, "%d %d %d %ld\n",
472 averunnable.ldavg[0], averunnable.ldavg[1],
473 averunnable.ldavg[2], averunnable.fscale);
474 break;
475
476 #ifdef IPSEC
477 case KFSipsecsa:
478 /*
479 * Note that SA configuration could be changed during the
480 * read operation, resulting in garbled output.
481 */
482 m = key_setdumpsa_spi(htonl(kfs->kfs_value));
483 if (!m)
484 return (ENOBUFS);
485 if (off >= m->m_pkthdr.len) {
486 *wrlen = 0;
487 m_freem(m);
488 return (0);
489 }
490 if (len > m->m_pkthdr.len - off)
491 len = m->m_pkthdr.len - off;
492 m_copydata(m, off, len, *bufp);
493 *wrlen = len;
494 m_freem(m);
495 return (0);
496
497 case KFSipsecsp:
498 /*
499 * Note that SP configuration could be changed during the
500 * read operation, resulting in garbled output.
501 */
502 if (!kfs->kfs_v) {
503 struct secpolicy *sp;
504
505 sp = key_getspbyid(kfs->kfs_value);
506 if (sp)
507 kfs->kfs_v = sp;
508 else
509 return (ENOENT);
510 }
511 m = key_setdumpsp((struct secpolicy *)kfs->kfs_v,
512 SADB_X_SPDGET, 0, 0);
513 if (!m)
514 return (ENOBUFS);
515 if (off >= m->m_pkthdr.len) {
516 *wrlen = 0;
517 m_freem(m);
518 return (0);
519 }
520 if (len > m->m_pkthdr.len - off)
521 len = m->m_pkthdr.len - off;
522 m_copydata(m, off, len, *bufp);
523 *wrlen = len;
524 m_freem(m);
525 return (0);
526 #endif
527
528 default:
529 err = kernfs_try_xread(kfs->kfs_type, kfs, bufp, len,
530 EOPNOTSUPP);
531 if (err)
532 return err;
533 }
534
535 len = strlen(*bufp);
536 if (len <= off)
537 *wrlen = 0;
538 else {
539 *bufp += off;
540 *wrlen = len - off;
541 }
542 return (0);
543 }
544
545 static int
546 kernfs_xwrite(kfs, bf, len)
547 const struct kernfs_node *kfs;
548 char *bf;
549 size_t len;
550 {
551
552 switch (kfs->kfs_type) {
553 case KFShostname:
554 if (bf[len-1] == '\n')
555 --len;
556 memcpy(hostname, bf, len);
557 hostname[len] = '\0';
558 hostnamelen = (size_t) len;
559 return (0);
560
561 default:
562 return kernfs_try_xwrite(kfs->kfs_type, kfs, bf, len, EIO);
563 }
564 }
565
566
567 /*
568 * vp is the current namei directory
569 * ndp is the name to locate in that directory...
570 */
571 int
572 kernfs_lookup(v)
573 void *v;
574 {
575 struct vop_lookup_args /* {
576 struct vnode * a_dvp;
577 struct vnode ** a_vpp;
578 struct componentname * a_cnp;
579 } */ *ap = v;
580 struct componentname *cnp = ap->a_cnp;
581 struct vnode **vpp = ap->a_vpp;
582 struct vnode *dvp = ap->a_dvp;
583 const char *pname = cnp->cn_nameptr;
584 const struct kernfs_node *kfs;
585 const struct kern_target *kt;
586 const struct dyn_kern_target *dkt;
587 const struct kernfs_subdir *ks;
588 int error, i;
589 #ifdef IPSEC
590 char *ep;
591 u_int32_t id;
592 #endif
593
594 *vpp = NULLVP;
595
596 if (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME)
597 return (EROFS);
598
599 if (cnp->cn_namelen == 1 && *pname == '.') {
600 *vpp = dvp;
601 VREF(dvp);
602 return (0);
603 }
604
605 kfs = VTOKERN(dvp);
606 switch (kfs->kfs_type) {
607 case KFSkern:
608 /*
609 * Shouldn't get here with .. in the root node.
610 */
611 if (cnp->cn_flags & ISDOTDOT)
612 return (EIO);
613
614 for (i = 0; i < static_nkern_targets; i++) {
615 kt = &kern_targets[i];
616 if (cnp->cn_namelen == kt->kt_namlen &&
617 memcmp(kt->kt_name, pname, cnp->cn_namelen) == 0)
618 goto found;
619 }
620 SIMPLEQ_FOREACH(dkt, &dyn_kern_targets, dkt_queue) {
621 if (cnp->cn_namelen == dkt->dkt_kt.kt_namlen &&
622 memcmp(dkt->dkt_kt.kt_name, pname, cnp->cn_namelen) == 0) {
623 kt = &dkt->dkt_kt;
624 goto found;
625 }
626 }
627 break;
628
629 found:
630 error = kernfs_allocvp(dvp->v_mount, vpp, kt->kt_tag, kt, 0);
631 return (error);
632
633 case KFSsubdir:
634 ks = (struct kernfs_subdir *)kfs->kfs_kt->kt_data;
635 if (cnp->cn_flags & ISDOTDOT) {
636 kt = ks->ks_parent;
637 goto found;
638 }
639
640 SIMPLEQ_FOREACH(dkt, &ks->ks_entries, dkt_queue) {
641 if (cnp->cn_namelen == dkt->dkt_kt.kt_namlen &&
642 memcmp(dkt->dkt_kt.kt_name, pname, cnp->cn_namelen) == 0) {
643 kt = &dkt->dkt_kt;
644 goto found;
645 }
646 }
647 break;
648
649 #ifdef IPSEC
650 case KFSipsecsadir:
651 if (cnp->cn_flags & ISDOTDOT) {
652 kt = &kern_targets[0];
653 goto found;
654 }
655
656 for (i = 2; i < nipsecsa_targets; i++) {
657 kt = &ipsecsa_targets[i];
658 if (cnp->cn_namelen == kt->kt_namlen &&
659 memcmp(kt->kt_name, pname, cnp->cn_namelen) == 0)
660 goto found;
661 }
662
663 ep = NULL;
664 id = strtoul(pname, &ep, 10);
665 if (!ep || *ep || ep == pname)
666 break;
667
668 error = kernfs_allocvp(dvp->v_mount, vpp, KFSipsecsa, &ipsecsa_kt, id);
669 return (error);
670
671 case KFSipsecspdir:
672 if (cnp->cn_flags & ISDOTDOT) {
673 kt = &kern_targets[0];
674 goto found;
675 }
676
677 for (i = 2; i < nipsecsp_targets; i++) {
678 kt = &ipsecsp_targets[i];
679 if (cnp->cn_namelen == kt->kt_namlen &&
680 memcmp(kt->kt_name, pname, cnp->cn_namelen) == 0)
681 goto found;
682 }
683
684 ep = NULL;
685 id = strtoul(pname, &ep, 10);
686 if (!ep || *ep || ep == pname)
687 break;
688
689 error = kernfs_allocvp(dvp->v_mount, vpp, KFSipsecsp, &ipsecsp_kt, id);
690 return (error);
691 #endif
692
693 default:
694 return (ENOTDIR);
695 }
696
697 return (cnp->cn_nameiop == LOOKUP ? ENOENT : EROFS);
698 }
699
700 int
701 kernfs_open(v)
702 void *v;
703 {
704 struct vop_open_args /* {
705 struct vnode *a_vp;
706 int a_mode;
707 kauth_cred_t a_cred;
708 } */ *ap = v;
709 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
710 #ifdef IPSEC
711 struct mbuf *m;
712 struct secpolicy *sp;
713 #endif
714
715 switch (kfs->kfs_type) {
716 #ifdef IPSEC
717 case KFSipsecsa:
718 m = key_setdumpsa_spi(htonl(kfs->kfs_value));
719 if (m) {
720 m_freem(m);
721 return (0);
722 } else
723 return (ENOENT);
724
725 case KFSipsecsp:
726 sp = key_getspbyid(kfs->kfs_value);
727 if (sp) {
728 kfs->kfs_v = sp;
729 return (0);
730 } else
731 return (ENOENT);
732 #endif
733
734 default:
735 return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_OPEN,
736 v, 0);
737 }
738 }
739
740 int
741 kernfs_close(v)
742 void *v;
743 {
744 struct vop_close_args /* {
745 struct vnode *a_vp;
746 int a_fflag;
747 kauth_cred_t a_cred;
748 } */ *ap = v;
749 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
750
751 switch (kfs->kfs_type) {
752 #ifdef IPSEC
753 case KFSipsecsp:
754 key_freesp((struct secpolicy *)kfs->kfs_v);
755 break;
756 #endif
757
758 default:
759 return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_CLOSE,
760 v, 0);
761 }
762
763 return (0);
764 }
765
766 int
767 kernfs_access(v)
768 void *v;
769 {
770 struct vop_access_args /* {
771 struct vnode *a_vp;
772 int a_mode;
773 kauth_cred_t a_cred;
774 } */ *ap = v;
775 struct vattr va;
776 int error;
777
778 if ((error = VOP_GETATTR(ap->a_vp, &va, ap->a_cred)) != 0)
779 return (error);
780
781 return (vaccess(va.va_type, va.va_mode, va.va_uid, va.va_gid,
782 ap->a_mode, ap->a_cred));
783 }
784
785 static int
786 kernfs_default_fileop_getattr(v)
787 void *v;
788 {
789 struct vop_getattr_args /* {
790 struct vnode *a_vp;
791 struct vattr *a_vap;
792 kauth_cred_t a_cred;
793 } */ *ap = v;
794 struct vattr *vap = ap->a_vap;
795
796 vap->va_nlink = 1;
797 vap->va_bytes = vap->va_size = 0;
798
799 return 0;
800 }
801
802 int
803 kernfs_getattr(v)
804 void *v;
805 {
806 struct vop_getattr_args /* {
807 struct vnode *a_vp;
808 struct vattr *a_vap;
809 kauth_cred_t a_cred;
810 } */ *ap = v;
811 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
812 struct kernfs_subdir *ks;
813 struct vattr *vap = ap->a_vap;
814 int error = 0;
815 char strbuf[KSTRING], *bf;
816 size_t nread, total;
817
818 VATTR_NULL(vap);
819 vap->va_type = ap->a_vp->v_type;
820 vap->va_uid = 0;
821 vap->va_gid = 0;
822 vap->va_mode = kfs->kfs_mode;
823 vap->va_fileid = kfs->kfs_fileno;
824 vap->va_flags = 0;
825 vap->va_size = 0;
826 vap->va_blocksize = DEV_BSIZE;
827 /* Make all times be current TOD, except for the "boottime" node. */
828 if (kfs->kfs_kt->kt_namlen == 8 &&
829 !memcmp(kfs->kfs_kt->kt_name, "boottime", 8)) {
830 TIMEVAL_TO_TIMESPEC(&boottime, &vap->va_ctime);
831 } else {
832 getnanotime(&vap->va_ctime);
833 }
834 vap->va_atime = vap->va_mtime = vap->va_ctime;
835 vap->va_gen = 0;
836 vap->va_flags = 0;
837 vap->va_rdev = 0;
838 vap->va_bytes = 0;
839
840 switch (kfs->kfs_type) {
841 case KFSkern:
842 vap->va_nlink = nkern_dirs;
843 vap->va_bytes = vap->va_size = DEV_BSIZE;
844 break;
845
846 case KFSroot:
847 vap->va_nlink = 1;
848 vap->va_bytes = vap->va_size = DEV_BSIZE;
849 break;
850
851 case KFSsubdir:
852 ks = (struct kernfs_subdir *)kfs->kfs_kt->kt_data;
853 vap->va_nlink = ks->ks_dirs;
854 vap->va_bytes = vap->va_size = DEV_BSIZE;
855 break;
856
857 case KFSnull:
858 case KFStime:
859 case KFSint:
860 case KFSstring:
861 case KFShostname:
862 case KFSavenrun:
863 case KFSdevice:
864 case KFSmsgbuf:
865 #ifdef IPSEC
866 case KFSipsecsa:
867 case KFSipsecsp:
868 #endif
869 vap->va_nlink = 1;
870 total = 0;
871 do {
872 bf = strbuf;
873 error = kernfs_xread(kfs, total, &bf,
874 sizeof(strbuf), &nread);
875 total += nread;
876 } while (error == 0 && nread != 0);
877 vap->va_bytes = vap->va_size = total;
878 break;
879
880 #ifdef IPSEC
881 case KFSipsecsadir:
882 case KFSipsecspdir:
883 vap->va_nlink = 2;
884 vap->va_bytes = vap->va_size = DEV_BSIZE;
885 break;
886 #endif
887
888 default:
889 error = kernfs_try_fileop(kfs->kfs_type,
890 KERNFS_FILEOP_GETATTR, v, EINVAL);
891 break;
892 }
893
894 return (error);
895 }
896
897 /*ARGSUSED*/
898 int
899 kernfs_setattr(void *v)
900 {
901
902 /*
903 * Silently ignore attribute changes.
904 * This allows for open with truncate to have no
905 * effect until some data is written. I want to
906 * do it this way because all writes are atomic.
907 */
908 return (0);
909 }
910
911 int
912 kernfs_default_xread(v)
913 void *v;
914 {
915 struct vop_read_args /* {
916 struct vnode *a_vp;
917 struct uio *a_uio;
918 int a_ioflag;
919 kauth_cred_t a_cred;
920 } */ *ap = v;
921 struct uio *uio = ap->a_uio;
922 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
923 char strbuf[KSTRING], *bf;
924 int off;
925 size_t len;
926 int error;
927
928 if (ap->a_vp->v_type == VDIR)
929 return (EOPNOTSUPP);
930
931 off = (int)uio->uio_offset;
932 /* Don't allow negative offsets */
933 if (off < 0)
934 return EINVAL;
935
936 bf = strbuf;
937 if ((error = kernfs_xread(kfs, off, &bf, sizeof(strbuf), &len)) == 0)
938 error = uiomove(bf, len, uio);
939 return (error);
940 }
941
942 int
943 kernfs_read(v)
944 void *v;
945 {
946 struct vop_read_args /* {
947 struct vnode *a_vp;
948 struct uio *a_uio;
949 int a_ioflag;
950 struct ucred *a_cred;
951 } */ *ap = v;
952 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
953
954 if (kfs->kfs_type < KFSlasttype) {
955 /* use default function */
956 return kernfs_default_xread(v);
957 }
958 return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_READ, v,
959 EOPNOTSUPP);
960 }
961
962 static int
963 kernfs_default_xwrite(v)
964 void *v;
965 {
966 struct vop_write_args /* {
967 struct vnode *a_vp;
968 struct uio *a_uio;
969 int a_ioflag;
970 kauth_cred_t a_cred;
971 } */ *ap = v;
972 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
973 struct uio *uio = ap->a_uio;
974 int error;
975 size_t xlen;
976 char strbuf[KSTRING];
977
978 if (uio->uio_offset != 0)
979 return (EINVAL);
980
981 xlen = min(uio->uio_resid, KSTRING-1);
982 if ((error = uiomove(strbuf, xlen, uio)) != 0)
983 return (error);
984
985 if (uio->uio_resid != 0)
986 return (EIO);
987
988 strbuf[xlen] = '\0';
989 xlen = strlen(strbuf);
990 return (kernfs_xwrite(kfs, strbuf, xlen));
991 }
992
993 int
994 kernfs_write(v)
995 void *v;
996 {
997 struct vop_write_args /* {
998 struct vnode *a_vp;
999 struct uio *a_uio;
1000 int a_ioflag;
1001 kauth_cred_t a_cred;
1002 } */ *ap = v;
1003 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
1004
1005 if (kfs->kfs_type < KFSlasttype) {
1006 /* use default function */
1007 return kernfs_default_xwrite(v);
1008 }
1009 return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_WRITE, v,
1010 EOPNOTSUPP);
1011 }
1012
1013 int
1014 kernfs_ioctl(v)
1015 void *v;
1016 {
1017 struct vop_ioctl_args /* {
1018 const struct vnodeop_desc *a_desc;
1019 struct vnode *a_vp;
1020 u_long a_command;
1021 void *a_data;
1022 int a_fflag;
1023 kauth_cred_t a_cred;
1024 } */ *ap = v;
1025 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
1026
1027 return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_IOCTL, v,
1028 EPASSTHROUGH);
1029 }
1030
1031 static int
1032 kernfs_setdirentfileno_kt(struct dirent *d, const struct kern_target *kt,
1033 u_int32_t value, struct vop_readdir_args *ap)
1034 {
1035 struct kernfs_node *kfs;
1036 struct vnode *vp;
1037 int error;
1038
1039 if ((error = kernfs_allocvp(ap->a_vp->v_mount, &vp, kt->kt_tag, kt,
1040 value)) != 0)
1041 return error;
1042 if (kt->kt_tag == KFSdevice) {
1043 struct vattr va;
1044
1045 error = VOP_GETATTR(vp, &va, ap->a_cred);
1046 if (error != 0) {
1047 return error;
1048 }
1049 d->d_fileno = va.va_fileid;
1050 } else {
1051 kfs = VTOKERN(vp);
1052 d->d_fileno = kfs->kfs_fileno;
1053 }
1054 vput(vp);
1055 return 0;
1056 }
1057
1058 static int
1059 kernfs_setdirentfileno(struct dirent *d, off_t entry,
1060 struct kernfs_node *thisdir_kfs, const struct kern_target *parent_kt,
1061 const struct kern_target *kt, struct vop_readdir_args *ap)
1062 {
1063 const struct kern_target *ikt;
1064 int error;
1065
1066 switch (entry) {
1067 case 0:
1068 d->d_fileno = thisdir_kfs->kfs_fileno;
1069 return 0;
1070 case 1:
1071 ikt = parent_kt;
1072 break;
1073 default:
1074 ikt = kt;
1075 break;
1076 }
1077 if (ikt != thisdir_kfs->kfs_kt) {
1078 if ((error = kernfs_setdirentfileno_kt(d, ikt, 0, ap)) != 0)
1079 return error;
1080 } else
1081 d->d_fileno = thisdir_kfs->kfs_fileno;
1082 return 0;
1083 }
1084
1085 int
1086 kernfs_readdir(v)
1087 void *v;
1088 {
1089 struct vop_readdir_args /* {
1090 struct vnode *a_vp;
1091 struct uio *a_uio;
1092 kauth_cred_t a_cred;
1093 int *a_eofflag;
1094 off_t **a_cookies;
1095 int a_*ncookies;
1096 } */ *ap = v;
1097 struct uio *uio = ap->a_uio;
1098 struct dirent d;
1099 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
1100 const struct kern_target *kt;
1101 const struct dyn_kern_target *dkt = NULL;
1102 const struct kernfs_subdir *ks;
1103 off_t i, j;
1104 int error;
1105 off_t *cookies = NULL;
1106 int ncookies = 0, n;
1107 #ifdef IPSEC
1108 struct secasvar *sav, *sav2;
1109 struct secpolicy *sp;
1110 #endif
1111
1112 if (uio->uio_resid < UIO_MX)
1113 return (EINVAL);
1114 if (uio->uio_offset < 0)
1115 return (EINVAL);
1116
1117 error = 0;
1118 i = uio->uio_offset;
1119 memset(&d, 0, sizeof(d));
1120 d.d_reclen = UIO_MX;
1121 ncookies = uio->uio_resid / UIO_MX;
1122
1123 switch (kfs->kfs_type) {
1124 case KFSkern:
1125 if (i >= nkern_targets)
1126 return (0);
1127
1128 if (ap->a_ncookies) {
1129 ncookies = min(ncookies, (nkern_targets - i));
1130 cookies = malloc(ncookies * sizeof(off_t), M_TEMP,
1131 M_WAITOK);
1132 *ap->a_cookies = cookies;
1133 }
1134
1135 n = 0;
1136 for (; i < nkern_targets && uio->uio_resid >= UIO_MX; i++) {
1137 if (i < static_nkern_targets)
1138 kt = &kern_targets[i];
1139 else {
1140 if (dkt == NULL) {
1141 dkt = SIMPLEQ_FIRST(&dyn_kern_targets);
1142 for (j = static_nkern_targets; j < i &&
1143 dkt != NULL; j++)
1144 dkt = SIMPLEQ_NEXT(dkt, dkt_queue);
1145 if (j != i)
1146 break;
1147 } else {
1148 dkt = SIMPLEQ_NEXT(dkt, dkt_queue);
1149 }
1150 if (dkt == NULL)
1151 break;
1152 kt = &dkt->dkt_kt;
1153 }
1154 if (kt->kt_tag == KFSdevice) {
1155 dev_t *dp = kt->kt_data;
1156 struct vnode *fvp;
1157
1158 if (*dp == NODEV ||
1159 !vfinddev(*dp, kt->kt_vtype, &fvp))
1160 continue;
1161 }
1162 d.d_namlen = kt->kt_namlen;
1163 if ((error = kernfs_setdirentfileno(&d, i, kfs,
1164 &kern_targets[0], kt, ap)) != 0)
1165 break;
1166 memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1);
1167 d.d_type = kt->kt_type;
1168 if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1169 break;
1170 if (cookies)
1171 *cookies++ = i + 1;
1172 n++;
1173 }
1174 ncookies = n;
1175 break;
1176
1177 case KFSroot:
1178 if (i >= 2)
1179 return 0;
1180
1181 if (ap->a_ncookies) {
1182 ncookies = min(ncookies, (2 - i));
1183 cookies = malloc(ncookies * sizeof(off_t), M_TEMP,
1184 M_WAITOK);
1185 *ap->a_cookies = cookies;
1186 }
1187
1188 n = 0;
1189 for (; i < 2 && uio->uio_resid >= UIO_MX; i++) {
1190 kt = &kern_targets[i];
1191 d.d_namlen = kt->kt_namlen;
1192 d.d_fileno = KERNFS_FILENO(kt, kt->kt_tag, 0);
1193 memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1);
1194 d.d_type = kt->kt_type;
1195 if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1196 break;
1197 if (cookies)
1198 *cookies++ = i + 1;
1199 n++;
1200 }
1201 ncookies = n;
1202 break;
1203
1204 case KFSsubdir:
1205 ks = (struct kernfs_subdir *)kfs->kfs_kt->kt_data;
1206 if (i >= ks->ks_nentries)
1207 return (0);
1208
1209 if (ap->a_ncookies) {
1210 ncookies = min(ncookies, (ks->ks_nentries - i));
1211 cookies = malloc(ncookies * sizeof(off_t), M_TEMP,
1212 M_WAITOK);
1213 *ap->a_cookies = cookies;
1214 }
1215
1216 dkt = SIMPLEQ_FIRST(&ks->ks_entries);
1217 for (j = 0; j < i && dkt != NULL; j++)
1218 dkt = SIMPLEQ_NEXT(dkt, dkt_queue);
1219 n = 0;
1220 for (; i < ks->ks_nentries && uio->uio_resid >= UIO_MX; i++) {
1221 if (i < 2)
1222 kt = &subdir_targets[i];
1223 else {
1224 /* check if ks_nentries lied to us */
1225 if (dkt == NULL)
1226 break;
1227 kt = &dkt->dkt_kt;
1228 dkt = SIMPLEQ_NEXT(dkt, dkt_queue);
1229 }
1230 if (kt->kt_tag == KFSdevice) {
1231 dev_t *dp = kt->kt_data;
1232 struct vnode *fvp;
1233
1234 if (*dp == NODEV ||
1235 !vfinddev(*dp, kt->kt_vtype, &fvp))
1236 continue;
1237 }
1238 d.d_namlen = kt->kt_namlen;
1239 if ((error = kernfs_setdirentfileno(&d, i, kfs,
1240 ks->ks_parent, kt, ap)) != 0)
1241 break;
1242 memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1);
1243 d.d_type = kt->kt_type;
1244 if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1245 break;
1246 if (cookies)
1247 *cookies++ = i + 1;
1248 n++;
1249 }
1250 ncookies = n;
1251 break;
1252
1253 #ifdef IPSEC
1254 case KFSipsecsadir:
1255 /* count SA in the system */
1256 n = 0;
1257 TAILQ_FOREACH(sav, &satailq, tailq) {
1258 for (sav2 = TAILQ_FIRST(&satailq);
1259 sav2 != sav;
1260 sav2 = TAILQ_NEXT(sav2, tailq)) {
1261 if (sav->spi == sav2->spi) {
1262 /* multiple SA with same SPI */
1263 break;
1264 }
1265 }
1266 if (sav == sav2 || sav->spi != sav2->spi)
1267 n++;
1268 }
1269
1270 if (i >= nipsecsa_targets + n)
1271 return (0);
1272
1273 if (ap->a_ncookies) {
1274 ncookies = min(ncookies, (n - i));
1275 cookies = malloc(ncookies * sizeof(off_t), M_TEMP,
1276 M_WAITOK);
1277 *ap->a_cookies = cookies;
1278 }
1279
1280 n = 0;
1281 for (; i < nipsecsa_targets && uio->uio_resid >= UIO_MX; i++) {
1282 kt = &ipsecsa_targets[i];
1283 d.d_namlen = kt->kt_namlen;
1284 if ((error = kernfs_setdirentfileno(&d, i, kfs,
1285 &kern_targets[0], kt, ap)) != 0)
1286 break;
1287 memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1);
1288 d.d_type = kt->kt_type;
1289 if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1290 break;
1291 if (cookies)
1292 *cookies++ = i + 1;
1293 n++;
1294 }
1295 if (error) {
1296 ncookies = n;
1297 break;
1298 }
1299
1300 TAILQ_FOREACH(sav, &satailq, tailq) {
1301 for (sav2 = TAILQ_FIRST(&satailq);
1302 sav2 != sav;
1303 sav2 = TAILQ_NEXT(sav2, tailq)) {
1304 if (sav->spi == sav2->spi) {
1305 /* multiple SA with same SPI */
1306 break;
1307 }
1308 }
1309 if (sav != sav2 && sav->spi == sav2->spi)
1310 continue;
1311 if (uio->uio_resid < UIO_MX)
1312 break;
1313 if ((error = kernfs_setdirentfileno_kt(&d, &ipsecsa_kt,
1314 sav->spi, ap)) != 0)
1315 break;
1316 d.d_namlen = snprintf(d.d_name, sizeof(d.d_name),
1317 "%u", ntohl(sav->spi));
1318 d.d_type = DT_REG;
1319 if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1320 break;
1321 if (cookies)
1322 *cookies++ = i + 1;
1323 n++;
1324 i++;
1325 }
1326 ncookies = n;
1327 break;
1328
1329 case KFSipsecspdir:
1330 /* count SP in the system */
1331 n = 0;
1332 TAILQ_FOREACH(sp, &sptailq, tailq)
1333 n++;
1334
1335 if (i >= nipsecsp_targets + n)
1336 return (0);
1337
1338 if (ap->a_ncookies) {
1339 ncookies = min(ncookies, (n - i));
1340 cookies = malloc(ncookies * sizeof(off_t), M_TEMP,
1341 M_WAITOK);
1342 *ap->a_cookies = cookies;
1343 }
1344
1345 n = 0;
1346 for (; i < nipsecsp_targets && uio->uio_resid >= UIO_MX; i++) {
1347 kt = &ipsecsp_targets[i];
1348 d.d_namlen = kt->kt_namlen;
1349 if ((error = kernfs_setdirentfileno(&d, i, kfs,
1350 &kern_targets[0], kt, ap)) != 0)
1351 break;
1352 memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1);
1353 d.d_type = kt->kt_type;
1354 if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1355 break;
1356 if (cookies)
1357 *cookies++ = i + 1;
1358 n++;
1359 }
1360 if (error) {
1361 ncookies = n;
1362 break;
1363 }
1364
1365 TAILQ_FOREACH(sp, &sptailq, tailq) {
1366 if (uio->uio_resid < UIO_MX)
1367 break;
1368 if ((error = kernfs_setdirentfileno_kt(&d, &ipsecsp_kt,
1369 sp->id, ap)) != 0)
1370 break;
1371 d.d_namlen = snprintf(d.d_name, sizeof(d.d_name),
1372 "%u", sp->id);
1373 d.d_type = DT_REG;
1374 if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1375 break;
1376 if (cookies)
1377 *cookies++ = i + 1;
1378 n++;
1379 i++;
1380 }
1381 ncookies = n;
1382 break;
1383 #endif
1384
1385 default:
1386 error = ENOTDIR;
1387 break;
1388 }
1389
1390 if (ap->a_ncookies) {
1391 if (error) {
1392 if (cookies)
1393 free(*ap->a_cookies, M_TEMP);
1394 *ap->a_ncookies = 0;
1395 *ap->a_cookies = NULL;
1396 } else
1397 *ap->a_ncookies = ncookies;
1398 }
1399
1400 uio->uio_offset = i;
1401 return (error);
1402 }
1403
1404 int
1405 kernfs_inactive(v)
1406 void *v;
1407 {
1408 struct vop_inactive_args /* {
1409 struct vnode *a_vp;
1410 } */ *ap = v;
1411 struct vnode *vp = ap->a_vp;
1412 const struct kernfs_node *kfs = VTOKERN(ap->a_vp);
1413 #ifdef IPSEC
1414 struct mbuf *m;
1415 struct secpolicy *sp;
1416 #endif
1417
1418 VOP_UNLOCK(vp, 0);
1419 switch (kfs->kfs_type) {
1420 #ifdef IPSEC
1421 case KFSipsecsa:
1422 m = key_setdumpsa_spi(htonl(kfs->kfs_value));
1423 if (m)
1424 m_freem(m);
1425 else
1426 vgone(vp);
1427 break;
1428 case KFSipsecsp:
1429 sp = key_getspbyid(kfs->kfs_value);
1430 if (sp)
1431 key_freesp(sp);
1432 else {
1433 /* should never happen as we hold a refcnt */
1434 vgone(vp);
1435 }
1436 break;
1437 #endif
1438 default:
1439 break;
1440 }
1441 return (0);
1442 }
1443
1444 int
1445 kernfs_reclaim(v)
1446 void *v;
1447 {
1448 struct vop_reclaim_args /* {
1449 struct vnode *a_vp;
1450 } */ *ap = v;
1451
1452 return (kernfs_freevp(ap->a_vp));
1453 }
1454
1455 /*
1456 * Return POSIX pathconf information applicable to special devices.
1457 */
1458 int
1459 kernfs_pathconf(v)
1460 void *v;
1461 {
1462 struct vop_pathconf_args /* {
1463 struct vnode *a_vp;
1464 int a_name;
1465 register_t *a_retval;
1466 } */ *ap = v;
1467
1468 switch (ap->a_name) {
1469 case _PC_LINK_MAX:
1470 *ap->a_retval = LINK_MAX;
1471 return (0);
1472 case _PC_MAX_CANON:
1473 *ap->a_retval = MAX_CANON;
1474 return (0);
1475 case _PC_MAX_INPUT:
1476 *ap->a_retval = MAX_INPUT;
1477 return (0);
1478 case _PC_PIPE_BUF:
1479 *ap->a_retval = PIPE_BUF;
1480 return (0);
1481 case _PC_CHOWN_RESTRICTED:
1482 *ap->a_retval = 1;
1483 return (0);
1484 case _PC_VDISABLE:
1485 *ap->a_retval = _POSIX_VDISABLE;
1486 return (0);
1487 case _PC_SYNC_IO:
1488 *ap->a_retval = 1;
1489 return (0);
1490 default:
1491 return (EINVAL);
1492 }
1493 /* NOTREACHED */
1494 }
1495
1496 /*
1497 * Print out the contents of a /dev/fd vnode.
1498 */
1499 /* ARGSUSED */
1500 int
1501 kernfs_print(void *v)
1502 {
1503
1504 printf("tag VT_KERNFS, kernfs vnode\n");
1505 return (0);
1506 }
1507
1508 int
1509 kernfs_link(v)
1510 void *v;
1511 {
1512 struct vop_link_args /* {
1513 struct vnode *a_dvp;
1514 struct vnode *a_vp;
1515 struct componentname *a_cnp;
1516 } */ *ap = v;
1517
1518 VOP_ABORTOP(ap->a_dvp, ap->a_cnp);
1519 vput(ap->a_dvp);
1520 return (EROFS);
1521 }
1522
1523 int
1524 kernfs_symlink(v)
1525 void *v;
1526 {
1527 struct vop_symlink_args /* {
1528 struct vnode *a_dvp;
1529 struct vnode **a_vpp;
1530 struct componentname *a_cnp;
1531 struct vattr *a_vap;
1532 char *a_target;
1533 } */ *ap = v;
1534
1535 VOP_ABORTOP(ap->a_dvp, ap->a_cnp);
1536 vput(ap->a_dvp);
1537 return (EROFS);
1538 }
1539