kernfs_vnops.c revision 1.134.8.1 1 /* $NetBSD: kernfs_vnops.c,v 1.134.8.1 2008/03/29 20:47:01 christos Exp $ */
2
3 /*
4 * Copyright (c) 1992, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software donated to Berkeley by
8 * Jan-Simon Pendry.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)kernfs_vnops.c 8.15 (Berkeley) 5/21/95
35 */
36
37 /*
38 * Kernel parameter filesystem (/kern)
39 */
40
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: kernfs_vnops.c,v 1.134.8.1 2008/03/29 20:47:01 christos Exp $");
43
44 #ifdef _KERNEL_OPT
45 #include "opt_ipsec.h"
46 #endif
47
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/kernel.h>
51 #include <sys/vmmeter.h>
52 #include <sys/time.h>
53 #include <sys/proc.h>
54 #include <sys/vnode.h>
55 #include <sys/malloc.h>
56 #include <sys/file.h>
57 #include <sys/stat.h>
58 #include <sys/mount.h>
59 #include <sys/namei.h>
60 #include <sys/buf.h>
61 #include <sys/dirent.h>
62 #include <sys/msgbuf.h>
63
64 #include <miscfs/genfs/genfs.h>
65 #include <miscfs/kernfs/kernfs.h>
66
67 #ifdef IPSEC
68 #include <sys/mbuf.h>
69 #include <net/route.h>
70 #include <netinet/in.h>
71 #include <netinet6/ipsec.h>
72 #include <netkey/key.h>
73 #endif
74
75 #include <uvm/uvm_extern.h>
76
77 #define KSTRING 256 /* Largest I/O available via this filesystem */
78 #define UIO_MX 32
79
80 #define READ_MODE (S_IRUSR|S_IRGRP|S_IROTH)
81 #define WRITE_MODE (S_IWUSR|S_IRUSR|S_IRGRP|S_IROTH)
82 #define UREAD_MODE (S_IRUSR)
83 #define DIR_MODE (S_IRUSR|S_IXUSR|S_IRGRP|S_IXGRP|S_IROTH|S_IXOTH)
84 #define UDIR_MODE (S_IRUSR|S_IXUSR)
85
86 #define N(s) sizeof(s)-1, s
87 const struct kern_target kern_targets[] = {
88 /* NOTE: The name must be less than UIO_MX-16 chars in length */
89 /* name data tag type ro/rw */
90 { DT_DIR, N("."), 0, KFSkern, VDIR, DIR_MODE },
91 { DT_DIR, N(".."), 0, KFSroot, VDIR, DIR_MODE },
92 { DT_REG, N("boottime"), &boottime.tv_sec, KFSint, VREG, READ_MODE },
93 /* XXXUNCONST */
94 { DT_REG, N("copyright"), __UNCONST(copyright),
95 KFSstring, VREG, READ_MODE },
96 { DT_REG, N("hostname"), 0, KFShostname, VREG, WRITE_MODE },
97 { DT_REG, N("hz"), &hz, KFSint, VREG, READ_MODE },
98 #ifdef IPSEC
99 { DT_DIR, N("ipsecsa"), 0, KFSipsecsadir, VDIR, UDIR_MODE },
100 { DT_DIR, N("ipsecsp"), 0, KFSipsecspdir, VDIR, UDIR_MODE },
101 #endif
102 { DT_REG, N("loadavg"), 0, KFSavenrun, VREG, READ_MODE },
103 { DT_REG, N("msgbuf"), 0, KFSmsgbuf, VREG, READ_MODE },
104 { DT_REG, N("pagesize"), &uvmexp.pagesize, KFSint, VREG, READ_MODE },
105 { DT_REG, N("physmem"), &physmem, KFSint, VREG, READ_MODE },
106 #if 0
107 { DT_DIR, N("root"), 0, KFSnull, VDIR, DIR_MODE },
108 #endif
109 { DT_BLK, N("rootdev"), &rootdev, KFSdevice, VBLK, READ_MODE },
110 { DT_CHR, N("rrootdev"), &rrootdev, KFSdevice, VCHR, READ_MODE },
111 { DT_REG, N("time"), 0, KFStime, VREG, READ_MODE },
112 /* XXXUNCONST */
113 { DT_REG, N("version"), __UNCONST(version),
114 KFSstring, VREG, READ_MODE },
115 };
116 const struct kern_target subdir_targets[] = {
117 /* NOTE: The name must be less than UIO_MX-16 chars in length */
118 /* name data tag type ro/rw */
119 { DT_DIR, N("."), 0, KFSsubdir, VDIR, DIR_MODE },
120 { DT_DIR, N(".."), 0, KFSkern, VDIR, DIR_MODE },
121 };
122 #ifdef IPSEC
123 const struct kern_target ipsecsa_targets[] = {
124 /* NOTE: The name must be less than UIO_MX-16 chars in length */
125 /* name data tag type ro/rw */
126 { DT_DIR, N("."), 0, KFSipsecsadir, VDIR, DIR_MODE },
127 { DT_DIR, N(".."), 0, KFSkern, VDIR, DIR_MODE },
128 };
129 const struct kern_target ipsecsp_targets[] = {
130 /* NOTE: The name must be less than UIO_MX-16 chars in length */
131 /* name data tag type ro/rw */
132 { DT_DIR, N("."), 0, KFSipsecspdir, VDIR, DIR_MODE },
133 { DT_DIR, N(".."), 0, KFSkern, VDIR, DIR_MODE },
134 };
135 const struct kern_target ipsecsa_kt =
136 { DT_DIR, N(""), 0, KFSipsecsa, VREG, UREAD_MODE };
137 const struct kern_target ipsecsp_kt =
138 { DT_DIR, N(""), 0, KFSipsecsp, VREG, UREAD_MODE };
139 #endif
140 #undef N
141 SIMPLEQ_HEAD(,dyn_kern_target) dyn_kern_targets =
142 SIMPLEQ_HEAD_INITIALIZER(dyn_kern_targets);
143 int nkern_targets = sizeof(kern_targets) / sizeof(kern_targets[0]);
144 const int static_nkern_targets = sizeof(kern_targets) / sizeof(kern_targets[0]);
145 #ifdef IPSEC
146 int nipsecsa_targets = sizeof(ipsecsa_targets) / sizeof(ipsecsa_targets[0]);
147 int nipsecsp_targets = sizeof(ipsecsp_targets) / sizeof(ipsecsp_targets[0]);
148 int nkern_dirs = 4; /* 2 extra subdirs */
149 #else
150 int nkern_dirs = 2;
151 #endif
152
153 int kernfs_try_fileop(kfstype, kfsfileop, void *, int);
154 int kernfs_try_xread(kfstype, const struct kernfs_node *, char **,
155 size_t, int);
156 int kernfs_try_xwrite(kfstype, const struct kernfs_node *, char *,
157 size_t, int);
158
159 static int kernfs_default_xread(void *v);
160 static int kernfs_default_xwrite(void *v);
161 static int kernfs_default_fileop_getattr(void *);
162
163 /* must include all fileop's */
164 const struct kernfs_fileop kernfs_default_fileops[] = {
165 { .kf_fileop = KERNFS_XREAD },
166 { .kf_fileop = KERNFS_XWRITE },
167 { .kf_fileop = KERNFS_FILEOP_OPEN },
168 { .kf_fileop = KERNFS_FILEOP_GETATTR,
169 .kf_vop = kernfs_default_fileop_getattr },
170 { .kf_fileop = KERNFS_FILEOP_IOCTL },
171 { .kf_fileop = KERNFS_FILEOP_CLOSE },
172 { .kf_fileop = KERNFS_FILEOP_READ,
173 .kf_vop = kernfs_default_xread },
174 { .kf_fileop = KERNFS_FILEOP_WRITE,
175 .kf_vop = kernfs_default_xwrite },
176 };
177
178 int kernfs_lookup(void *);
179 #define kernfs_create genfs_eopnotsupp
180 #define kernfs_mknod genfs_eopnotsupp
181 int kernfs_open(void *);
182 int kernfs_close(void *);
183 int kernfs_access(void *);
184 int kernfs_getattr(void *);
185 int kernfs_setattr(void *);
186 int kernfs_read(void *);
187 int kernfs_write(void *);
188 #define kernfs_fcntl genfs_fcntl
189 int kernfs_ioctl(void *);
190 #define kernfs_poll genfs_poll
191 #define kernfs_revoke genfs_revoke
192 #define kernfs_fsync genfs_nullop
193 #define kernfs_seek genfs_nullop
194 #define kernfs_remove genfs_eopnotsupp
195 int kernfs_link(void *);
196 #define kernfs_rename genfs_eopnotsupp
197 #define kernfs_mkdir genfs_eopnotsupp
198 #define kernfs_rmdir genfs_eopnotsupp
199 int kernfs_symlink(void *);
200 int kernfs_readdir(void *);
201 #define kernfs_readlink genfs_eopnotsupp
202 #define kernfs_abortop genfs_abortop
203 int kernfs_inactive(void *);
204 int kernfs_reclaim(void *);
205 #define kernfs_lock genfs_lock
206 #define kernfs_unlock genfs_unlock
207 #define kernfs_bmap genfs_badop
208 #define kernfs_strategy genfs_badop
209 int kernfs_print(void *);
210 #define kernfs_islocked genfs_islocked
211 int kernfs_pathconf(void *);
212 #define kernfs_advlock genfs_einval
213 #define kernfs_bwrite genfs_eopnotsupp
214 #define kernfs_putpages genfs_putpages
215
216 static int kernfs_xread(struct kernfs_node *, int, char **,
217 size_t, size_t *);
218 static int kernfs_xwrite(const struct kernfs_node *, char *, size_t);
219
220 int (**kernfs_vnodeop_p)(void *);
221 const struct vnodeopv_entry_desc kernfs_vnodeop_entries[] = {
222 { &vop_default_desc, vn_default_error },
223 { &vop_lookup_desc, kernfs_lookup }, /* lookup */
224 { &vop_create_desc, kernfs_create }, /* create */
225 { &vop_mknod_desc, kernfs_mknod }, /* mknod */
226 { &vop_open_desc, kernfs_open }, /* open */
227 { &vop_close_desc, kernfs_close }, /* close */
228 { &vop_access_desc, kernfs_access }, /* access */
229 { &vop_getattr_desc, kernfs_getattr }, /* getattr */
230 { &vop_setattr_desc, kernfs_setattr }, /* setattr */
231 { &vop_read_desc, kernfs_read }, /* read */
232 { &vop_write_desc, kernfs_write }, /* write */
233 { &vop_fcntl_desc, kernfs_fcntl }, /* fcntl */
234 { &vop_ioctl_desc, kernfs_ioctl }, /* ioctl */
235 { &vop_poll_desc, kernfs_poll }, /* poll */
236 { &vop_revoke_desc, kernfs_revoke }, /* revoke */
237 { &vop_fsync_desc, kernfs_fsync }, /* fsync */
238 { &vop_seek_desc, kernfs_seek }, /* seek */
239 { &vop_remove_desc, kernfs_remove }, /* remove */
240 { &vop_link_desc, kernfs_link }, /* link */
241 { &vop_rename_desc, kernfs_rename }, /* rename */
242 { &vop_mkdir_desc, kernfs_mkdir }, /* mkdir */
243 { &vop_rmdir_desc, kernfs_rmdir }, /* rmdir */
244 { &vop_symlink_desc, kernfs_symlink }, /* symlink */
245 { &vop_readdir_desc, kernfs_readdir }, /* readdir */
246 { &vop_readlink_desc, kernfs_readlink }, /* readlink */
247 { &vop_abortop_desc, kernfs_abortop }, /* abortop */
248 { &vop_inactive_desc, kernfs_inactive }, /* inactive */
249 { &vop_reclaim_desc, kernfs_reclaim }, /* reclaim */
250 { &vop_lock_desc, kernfs_lock }, /* lock */
251 { &vop_unlock_desc, kernfs_unlock }, /* unlock */
252 { &vop_bmap_desc, kernfs_bmap }, /* bmap */
253 { &vop_strategy_desc, kernfs_strategy }, /* strategy */
254 { &vop_print_desc, kernfs_print }, /* print */
255 { &vop_islocked_desc, kernfs_islocked }, /* islocked */
256 { &vop_pathconf_desc, kernfs_pathconf }, /* pathconf */
257 { &vop_advlock_desc, kernfs_advlock }, /* advlock */
258 { &vop_bwrite_desc, kernfs_bwrite }, /* bwrite */
259 { &vop_putpages_desc, kernfs_putpages }, /* putpages */
260 { NULL, NULL }
261 };
262 const struct vnodeopv_desc kernfs_vnodeop_opv_desc =
263 { &kernfs_vnodeop_p, kernfs_vnodeop_entries };
264
265 static inline int
266 kernfs_fileop_compare(struct kernfs_fileop *a, struct kernfs_fileop *b)
267 {
268 if (a->kf_type < b->kf_type)
269 return -1;
270 if (a->kf_type > b->kf_type)
271 return 1;
272 if (a->kf_fileop < b->kf_fileop)
273 return -1;
274 if (a->kf_fileop > b->kf_fileop)
275 return 1;
276 return (0);
277 }
278
279 SPLAY_HEAD(kfsfileoptree, kernfs_fileop) kfsfileoptree =
280 SPLAY_INITIALIZER(kfsfileoptree);
281 SPLAY_PROTOTYPE(kfsfileoptree, kernfs_fileop, kf_node, kernfs_fileop_compare);
282 SPLAY_GENERATE(kfsfileoptree, kernfs_fileop, kf_node, kernfs_fileop_compare);
283
284 kfstype
285 kernfs_alloctype(int nkf, const struct kernfs_fileop *kf)
286 {
287 static u_char nextfreetype = KFSlasttype;
288 struct kernfs_fileop *dkf, *fkf, skf;
289 int i;
290
291 /* XXX need to keep track of dkf's memory if we support
292 deallocating types */
293 dkf = malloc(sizeof(kernfs_default_fileops), M_TEMP, M_WAITOK);
294 memcpy(dkf, kernfs_default_fileops, sizeof(kernfs_default_fileops));
295
296 for (i = 0; i < sizeof(kernfs_default_fileops) /
297 sizeof(kernfs_default_fileops[0]); i++) {
298 dkf[i].kf_type = nextfreetype;
299 SPLAY_INSERT(kfsfileoptree, &kfsfileoptree, &dkf[i]);
300 }
301
302 for (i = 0; i < nkf; i++) {
303 skf.kf_type = nextfreetype;
304 skf.kf_fileop = kf[i].kf_fileop;
305 if ((fkf = SPLAY_FIND(kfsfileoptree, &kfsfileoptree, &skf)))
306 fkf->kf_vop = kf[i].kf_vop;
307 }
308
309 return nextfreetype++;
310 }
311
312 int
313 kernfs_try_fileop(kfstype type, kfsfileop fileop, void *v, int error)
314 {
315 struct kernfs_fileop *kf, skf;
316
317 skf.kf_type = type;
318 skf.kf_fileop = fileop;
319 if ((kf = SPLAY_FIND(kfsfileoptree, &kfsfileoptree, &skf)))
320 if (kf->kf_vop)
321 return kf->kf_vop(v);
322 return error;
323 }
324
325 int
326 kernfs_try_xread(kfstype type, const struct kernfs_node *kfs, char **bfp,
327 size_t len, int error)
328 {
329 struct kernfs_fileop *kf, skf;
330
331 skf.kf_type = type;
332 skf.kf_fileop = KERNFS_XREAD;
333 if ((kf = SPLAY_FIND(kfsfileoptree, &kfsfileoptree, &skf)))
334 if (kf->kf_xread)
335 return kf->kf_xread(kfs, bfp, len);
336 return error;
337 }
338
339 int
340 kernfs_try_xwrite(kfstype type, const struct kernfs_node *kfs, char *bf,
341 size_t len, int error)
342 {
343 struct kernfs_fileop *kf, skf;
344
345 skf.kf_type = type;
346 skf.kf_fileop = KERNFS_XWRITE;
347 if ((kf = SPLAY_FIND(kfsfileoptree, &kfsfileoptree, &skf)))
348 if (kf->kf_xwrite)
349 return kf->kf_xwrite(kfs, bf, len);
350 return error;
351 }
352
353 int
354 kernfs_addentry(kernfs_parentdir_t *pkt, kernfs_entry_t *dkt)
355 {
356 struct kernfs_subdir *ks, *parent;
357
358 if (pkt == NULL) {
359 SIMPLEQ_INSERT_TAIL(&dyn_kern_targets, dkt, dkt_queue);
360 nkern_targets++;
361 if (dkt->dkt_kt.kt_vtype == VDIR)
362 nkern_dirs++;
363 } else {
364 parent = (struct kernfs_subdir *)pkt->kt_data;
365 SIMPLEQ_INSERT_TAIL(&parent->ks_entries, dkt, dkt_queue);
366 parent->ks_nentries++;
367 if (dkt->dkt_kt.kt_vtype == VDIR)
368 parent->ks_dirs++;
369 }
370 if (dkt->dkt_kt.kt_vtype == VDIR && dkt->dkt_kt.kt_data == NULL) {
371 ks = malloc(sizeof(struct kernfs_subdir),
372 M_TEMP, M_WAITOK);
373 SIMPLEQ_INIT(&ks->ks_entries);
374 ks->ks_nentries = 2; /* . and .. */
375 ks->ks_dirs = 2;
376 ks->ks_parent = pkt ? pkt : &kern_targets[0];
377 dkt->dkt_kt.kt_data = ks;
378 }
379 return 0;
380 }
381
382 static int
383 kernfs_xread(kfs, off, bufp, len, wrlen)
384 struct kernfs_node *kfs;
385 int off;
386 char **bufp;
387 size_t len;
388 size_t *wrlen;
389 {
390 const struct kern_target *kt;
391 #ifdef IPSEC
392 struct mbuf *m;
393 #endif
394 int err;
395
396 kt = kfs->kfs_kt;
397
398 switch (kfs->kfs_type) {
399 case KFStime: {
400 struct timeval tv;
401
402 microtime(&tv);
403 snprintf(*bufp, len, "%lld %ld\n", (long long)tv.tv_sec,
404 (long)tv.tv_usec);
405 break;
406 }
407
408 case KFSint: {
409 int *ip = kt->kt_data;
410
411 snprintf(*bufp, len, "%d\n", *ip);
412 break;
413 }
414
415 case KFSstring: {
416 char *cp = kt->kt_data;
417
418 *bufp = cp;
419 break;
420 }
421
422 case KFSmsgbuf: {
423 long n;
424
425 /*
426 * deal with cases where the message buffer has
427 * become corrupted.
428 */
429 if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) {
430 msgbufenabled = 0;
431 return (ENXIO);
432 }
433
434 /*
435 * Note that reads of /kern/msgbuf won't necessarily yield
436 * consistent results, if the message buffer is modified
437 * while the read is in progress. The worst that can happen
438 * is that incorrect data will be read. There's no way
439 * that this can crash the system unless the values in the
440 * message buffer header are corrupted, but that'll cause
441 * the system to die anyway.
442 */
443 if (off >= msgbufp->msg_bufs) {
444 *wrlen = 0;
445 return (0);
446 }
447 n = msgbufp->msg_bufx + off;
448 if (n >= msgbufp->msg_bufs)
449 n -= msgbufp->msg_bufs;
450 len = min(msgbufp->msg_bufs - n, msgbufp->msg_bufs - off);
451 *bufp = msgbufp->msg_bufc + n;
452 *wrlen = len;
453 return (0);
454 }
455
456 case KFShostname: {
457 char *cp = hostname;
458 size_t xlen = hostnamelen;
459
460 if (xlen >= (len - 2))
461 return (EINVAL);
462
463 memcpy(*bufp, cp, xlen);
464 (*bufp)[xlen] = '\n';
465 (*bufp)[xlen+1] = '\0';
466 len = strlen(*bufp);
467 break;
468 }
469
470 case KFSavenrun:
471 averunnable.fscale = FSCALE;
472 snprintf(*bufp, len, "%d %d %d %ld\n",
473 averunnable.ldavg[0], averunnable.ldavg[1],
474 averunnable.ldavg[2], averunnable.fscale);
475 break;
476
477 #ifdef IPSEC
478 case KFSipsecsa:
479 /*
480 * Note that SA configuration could be changed during the
481 * read operation, resulting in garbled output.
482 */
483 m = key_setdumpsa_spi(htonl(kfs->kfs_value));
484 if (!m)
485 return (ENOBUFS);
486 if (off >= m->m_pkthdr.len) {
487 *wrlen = 0;
488 m_freem(m);
489 return (0);
490 }
491 if (len > m->m_pkthdr.len - off)
492 len = m->m_pkthdr.len - off;
493 m_copydata(m, off, len, *bufp);
494 *wrlen = len;
495 m_freem(m);
496 return (0);
497
498 case KFSipsecsp:
499 /*
500 * Note that SP configuration could be changed during the
501 * read operation, resulting in garbled output.
502 */
503 if (!kfs->kfs_v) {
504 struct secpolicy *sp;
505
506 sp = key_getspbyid(kfs->kfs_value);
507 if (sp)
508 kfs->kfs_v = sp;
509 else
510 return (ENOENT);
511 }
512 m = key_setdumpsp((struct secpolicy *)kfs->kfs_v,
513 SADB_X_SPDGET, 0, 0);
514 if (!m)
515 return (ENOBUFS);
516 if (off >= m->m_pkthdr.len) {
517 *wrlen = 0;
518 m_freem(m);
519 return (0);
520 }
521 if (len > m->m_pkthdr.len - off)
522 len = m->m_pkthdr.len - off;
523 m_copydata(m, off, len, *bufp);
524 *wrlen = len;
525 m_freem(m);
526 return (0);
527 #endif
528
529 default:
530 err = kernfs_try_xread(kfs->kfs_type, kfs, bufp, len,
531 EOPNOTSUPP);
532 if (err)
533 return err;
534 }
535
536 len = strlen(*bufp);
537 if (len <= off)
538 *wrlen = 0;
539 else {
540 *bufp += off;
541 *wrlen = len - off;
542 }
543 return (0);
544 }
545
546 static int
547 kernfs_xwrite(kfs, bf, len)
548 const struct kernfs_node *kfs;
549 char *bf;
550 size_t len;
551 {
552
553 switch (kfs->kfs_type) {
554 case KFShostname:
555 if (bf[len-1] == '\n')
556 --len;
557 memcpy(hostname, bf, len);
558 hostname[len] = '\0';
559 hostnamelen = (size_t) len;
560 return (0);
561
562 default:
563 return kernfs_try_xwrite(kfs->kfs_type, kfs, bf, len, EIO);
564 }
565 }
566
567
568 /*
569 * vp is the current namei directory
570 * ndp is the name to locate in that directory...
571 */
572 int
573 kernfs_lookup(v)
574 void *v;
575 {
576 struct vop_lookup_args /* {
577 struct vnode * a_dvp;
578 struct vnode ** a_vpp;
579 struct componentname * a_cnp;
580 } */ *ap = v;
581 struct componentname *cnp = ap->a_cnp;
582 struct vnode **vpp = ap->a_vpp;
583 struct vnode *dvp = ap->a_dvp;
584 const char *pname = cnp->cn_nameptr;
585 const struct kernfs_node *kfs;
586 const struct kern_target *kt;
587 const struct dyn_kern_target *dkt;
588 const struct kernfs_subdir *ks;
589 int error, i;
590 #ifdef IPSEC
591 char *ep;
592 u_int32_t id;
593 #endif
594
595 *vpp = NULLVP;
596
597 if (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME)
598 return (EROFS);
599
600 if (cnp->cn_namelen == 1 && *pname == '.') {
601 *vpp = dvp;
602 VREF(dvp);
603 return (0);
604 }
605
606 kfs = VTOKERN(dvp);
607 switch (kfs->kfs_type) {
608 case KFSkern:
609 /*
610 * Shouldn't get here with .. in the root node.
611 */
612 if (cnp->cn_flags & ISDOTDOT)
613 return (EIO);
614
615 for (i = 0; i < static_nkern_targets; i++) {
616 kt = &kern_targets[i];
617 if (cnp->cn_namelen == kt->kt_namlen &&
618 memcmp(kt->kt_name, pname, cnp->cn_namelen) == 0)
619 goto found;
620 }
621 SIMPLEQ_FOREACH(dkt, &dyn_kern_targets, dkt_queue) {
622 if (cnp->cn_namelen == dkt->dkt_kt.kt_namlen &&
623 memcmp(dkt->dkt_kt.kt_name, pname, cnp->cn_namelen) == 0) {
624 kt = &dkt->dkt_kt;
625 goto found;
626 }
627 }
628 break;
629
630 found:
631 error = kernfs_allocvp(dvp->v_mount, vpp, kt->kt_tag, kt, 0);
632 return (error);
633
634 case KFSsubdir:
635 ks = (struct kernfs_subdir *)kfs->kfs_kt->kt_data;
636 if (cnp->cn_flags & ISDOTDOT) {
637 kt = ks->ks_parent;
638 goto found;
639 }
640
641 SIMPLEQ_FOREACH(dkt, &ks->ks_entries, dkt_queue) {
642 if (cnp->cn_namelen == dkt->dkt_kt.kt_namlen &&
643 memcmp(dkt->dkt_kt.kt_name, pname, cnp->cn_namelen) == 0) {
644 kt = &dkt->dkt_kt;
645 goto found;
646 }
647 }
648 break;
649
650 #ifdef IPSEC
651 case KFSipsecsadir:
652 if (cnp->cn_flags & ISDOTDOT) {
653 kt = &kern_targets[0];
654 goto found;
655 }
656
657 for (i = 2; i < nipsecsa_targets; i++) {
658 kt = &ipsecsa_targets[i];
659 if (cnp->cn_namelen == kt->kt_namlen &&
660 memcmp(kt->kt_name, pname, cnp->cn_namelen) == 0)
661 goto found;
662 }
663
664 ep = NULL;
665 id = strtoul(pname, &ep, 10);
666 if (!ep || *ep || ep == pname)
667 break;
668
669 error = kernfs_allocvp(dvp->v_mount, vpp, KFSipsecsa, &ipsecsa_kt, id);
670 return (error);
671
672 case KFSipsecspdir:
673 if (cnp->cn_flags & ISDOTDOT) {
674 kt = &kern_targets[0];
675 goto found;
676 }
677
678 for (i = 2; i < nipsecsp_targets; i++) {
679 kt = &ipsecsp_targets[i];
680 if (cnp->cn_namelen == kt->kt_namlen &&
681 memcmp(kt->kt_name, pname, cnp->cn_namelen) == 0)
682 goto found;
683 }
684
685 ep = NULL;
686 id = strtoul(pname, &ep, 10);
687 if (!ep || *ep || ep == pname)
688 break;
689
690 error = kernfs_allocvp(dvp->v_mount, vpp, KFSipsecsp, &ipsecsp_kt, id);
691 return (error);
692 #endif
693
694 default:
695 return (ENOTDIR);
696 }
697
698 return (cnp->cn_nameiop == LOOKUP ? ENOENT : EROFS);
699 }
700
701 int
702 kernfs_open(v)
703 void *v;
704 {
705 struct vop_open_args /* {
706 struct vnode *a_vp;
707 int a_mode;
708 kauth_cred_t a_cred;
709 } */ *ap = v;
710 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
711 #ifdef IPSEC
712 struct mbuf *m;
713 struct secpolicy *sp;
714 #endif
715
716 switch (kfs->kfs_type) {
717 #ifdef IPSEC
718 case KFSipsecsa:
719 m = key_setdumpsa_spi(htonl(kfs->kfs_value));
720 if (m) {
721 m_freem(m);
722 return (0);
723 } else
724 return (ENOENT);
725
726 case KFSipsecsp:
727 sp = key_getspbyid(kfs->kfs_value);
728 if (sp) {
729 kfs->kfs_v = sp;
730 return (0);
731 } else
732 return (ENOENT);
733 #endif
734
735 default:
736 return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_OPEN,
737 v, 0);
738 }
739 }
740
741 int
742 kernfs_close(v)
743 void *v;
744 {
745 struct vop_close_args /* {
746 struct vnode *a_vp;
747 int a_fflag;
748 kauth_cred_t a_cred;
749 } */ *ap = v;
750 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
751
752 switch (kfs->kfs_type) {
753 #ifdef IPSEC
754 case KFSipsecsp:
755 key_freesp((struct secpolicy *)kfs->kfs_v);
756 break;
757 #endif
758
759 default:
760 return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_CLOSE,
761 v, 0);
762 }
763
764 return (0);
765 }
766
767 int
768 kernfs_access(v)
769 void *v;
770 {
771 struct vop_access_args /* {
772 struct vnode *a_vp;
773 int a_mode;
774 kauth_cred_t a_cred;
775 } */ *ap = v;
776 struct vattr va;
777 int error;
778
779 if ((error = VOP_GETATTR(ap->a_vp, &va, ap->a_cred)) != 0)
780 return (error);
781
782 return (vaccess(va.va_type, va.va_mode, va.va_uid, va.va_gid,
783 ap->a_mode, ap->a_cred));
784 }
785
786 static int
787 kernfs_default_fileop_getattr(v)
788 void *v;
789 {
790 struct vop_getattr_args /* {
791 struct vnode *a_vp;
792 struct vattr *a_vap;
793 kauth_cred_t a_cred;
794 } */ *ap = v;
795 struct vattr *vap = ap->a_vap;
796
797 vap->va_nlink = 1;
798 vap->va_bytes = vap->va_size = 0;
799
800 return 0;
801 }
802
803 int
804 kernfs_getattr(v)
805 void *v;
806 {
807 struct vop_getattr_args /* {
808 struct vnode *a_vp;
809 struct vattr *a_vap;
810 kauth_cred_t a_cred;
811 } */ *ap = v;
812 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
813 struct kernfs_subdir *ks;
814 struct vattr *vap = ap->a_vap;
815 int error = 0;
816 char strbuf[KSTRING], *bf;
817 size_t nread, total;
818
819 VATTR_NULL(vap);
820 vap->va_type = ap->a_vp->v_type;
821 vap->va_uid = 0;
822 vap->va_gid = 0;
823 vap->va_mode = kfs->kfs_mode;
824 vap->va_fileid = kfs->kfs_fileno;
825 vap->va_flags = 0;
826 vap->va_size = 0;
827 vap->va_blocksize = DEV_BSIZE;
828 /* Make all times be current TOD, except for the "boottime" node. */
829 if (kfs->kfs_kt->kt_namlen == 8 &&
830 !memcmp(kfs->kfs_kt->kt_name, "boottime", 8)) {
831 vap->va_ctime = boottime;
832 } else {
833 getnanotime(&vap->va_ctime);
834 }
835 vap->va_atime = vap->va_mtime = vap->va_ctime;
836 vap->va_gen = 0;
837 vap->va_flags = 0;
838 vap->va_rdev = 0;
839 vap->va_bytes = 0;
840
841 switch (kfs->kfs_type) {
842 case KFSkern:
843 vap->va_nlink = nkern_dirs;
844 vap->va_bytes = vap->va_size = DEV_BSIZE;
845 break;
846
847 case KFSroot:
848 vap->va_nlink = 1;
849 vap->va_bytes = vap->va_size = DEV_BSIZE;
850 break;
851
852 case KFSsubdir:
853 ks = (struct kernfs_subdir *)kfs->kfs_kt->kt_data;
854 vap->va_nlink = ks->ks_dirs;
855 vap->va_bytes = vap->va_size = DEV_BSIZE;
856 break;
857
858 case KFSnull:
859 case KFStime:
860 case KFSint:
861 case KFSstring:
862 case KFShostname:
863 case KFSavenrun:
864 case KFSdevice:
865 case KFSmsgbuf:
866 #ifdef IPSEC
867 case KFSipsecsa:
868 case KFSipsecsp:
869 #endif
870 vap->va_nlink = 1;
871 total = 0;
872 do {
873 bf = strbuf;
874 error = kernfs_xread(kfs, total, &bf,
875 sizeof(strbuf), &nread);
876 total += nread;
877 } while (error == 0 && nread != 0);
878 vap->va_bytes = vap->va_size = total;
879 break;
880
881 #ifdef IPSEC
882 case KFSipsecsadir:
883 case KFSipsecspdir:
884 vap->va_nlink = 2;
885 vap->va_bytes = vap->va_size = DEV_BSIZE;
886 break;
887 #endif
888
889 default:
890 error = kernfs_try_fileop(kfs->kfs_type,
891 KERNFS_FILEOP_GETATTR, v, EINVAL);
892 break;
893 }
894
895 return (error);
896 }
897
898 /*ARGSUSED*/
899 int
900 kernfs_setattr(void *v)
901 {
902
903 /*
904 * Silently ignore attribute changes.
905 * This allows for open with truncate to have no
906 * effect until some data is written. I want to
907 * do it this way because all writes are atomic.
908 */
909 return (0);
910 }
911
912 int
913 kernfs_default_xread(v)
914 void *v;
915 {
916 struct vop_read_args /* {
917 struct vnode *a_vp;
918 struct uio *a_uio;
919 int a_ioflag;
920 kauth_cred_t a_cred;
921 } */ *ap = v;
922 struct uio *uio = ap->a_uio;
923 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
924 char strbuf[KSTRING], *bf;
925 int off;
926 size_t len;
927 int error;
928
929 if (ap->a_vp->v_type == VDIR)
930 return (EOPNOTSUPP);
931
932 off = (int)uio->uio_offset;
933 /* Don't allow negative offsets */
934 if (off < 0)
935 return EINVAL;
936
937 bf = strbuf;
938 if ((error = kernfs_xread(kfs, off, &bf, sizeof(strbuf), &len)) == 0)
939 error = uiomove(bf, len, uio);
940 return (error);
941 }
942
943 int
944 kernfs_read(v)
945 void *v;
946 {
947 struct vop_read_args /* {
948 struct vnode *a_vp;
949 struct uio *a_uio;
950 int a_ioflag;
951 struct ucred *a_cred;
952 } */ *ap = v;
953 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
954
955 if (kfs->kfs_type < KFSlasttype) {
956 /* use default function */
957 return kernfs_default_xread(v);
958 }
959 return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_READ, v,
960 EOPNOTSUPP);
961 }
962
963 static int
964 kernfs_default_xwrite(v)
965 void *v;
966 {
967 struct vop_write_args /* {
968 struct vnode *a_vp;
969 struct uio *a_uio;
970 int a_ioflag;
971 kauth_cred_t a_cred;
972 } */ *ap = v;
973 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
974 struct uio *uio = ap->a_uio;
975 int error;
976 size_t xlen;
977 char strbuf[KSTRING];
978
979 if (uio->uio_offset != 0)
980 return (EINVAL);
981
982 xlen = min(uio->uio_resid, KSTRING-1);
983 if ((error = uiomove(strbuf, xlen, uio)) != 0)
984 return (error);
985
986 if (uio->uio_resid != 0)
987 return (EIO);
988
989 strbuf[xlen] = '\0';
990 xlen = strlen(strbuf);
991 return (kernfs_xwrite(kfs, strbuf, xlen));
992 }
993
994 int
995 kernfs_write(v)
996 void *v;
997 {
998 struct vop_write_args /* {
999 struct vnode *a_vp;
1000 struct uio *a_uio;
1001 int a_ioflag;
1002 kauth_cred_t a_cred;
1003 } */ *ap = v;
1004 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
1005
1006 if (kfs->kfs_type < KFSlasttype) {
1007 /* use default function */
1008 return kernfs_default_xwrite(v);
1009 }
1010 return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_WRITE, v,
1011 EOPNOTSUPP);
1012 }
1013
1014 int
1015 kernfs_ioctl(v)
1016 void *v;
1017 {
1018 struct vop_ioctl_args /* {
1019 const struct vnodeop_desc *a_desc;
1020 struct vnode *a_vp;
1021 u_long a_command;
1022 void *a_data;
1023 int a_fflag;
1024 kauth_cred_t a_cred;
1025 } */ *ap = v;
1026 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
1027
1028 return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_IOCTL, v,
1029 EPASSTHROUGH);
1030 }
1031
1032 static int
1033 kernfs_setdirentfileno_kt(struct dirent *d, const struct kern_target *kt,
1034 u_int32_t value, struct vop_readdir_args *ap)
1035 {
1036 struct kernfs_node *kfs;
1037 struct vnode *vp;
1038 int error;
1039
1040 if ((error = kernfs_allocvp(ap->a_vp->v_mount, &vp, kt->kt_tag, kt,
1041 value)) != 0)
1042 return error;
1043 if (kt->kt_tag == KFSdevice) {
1044 struct vattr va;
1045
1046 error = VOP_GETATTR(vp, &va, ap->a_cred);
1047 if (error != 0) {
1048 return error;
1049 }
1050 d->d_fileno = va.va_fileid;
1051 } else {
1052 kfs = VTOKERN(vp);
1053 d->d_fileno = kfs->kfs_fileno;
1054 }
1055 vput(vp);
1056 return 0;
1057 }
1058
1059 static int
1060 kernfs_setdirentfileno(struct dirent *d, off_t entry,
1061 struct kernfs_node *thisdir_kfs, const struct kern_target *parent_kt,
1062 const struct kern_target *kt, struct vop_readdir_args *ap)
1063 {
1064 const struct kern_target *ikt;
1065 int error;
1066
1067 switch (entry) {
1068 case 0:
1069 d->d_fileno = thisdir_kfs->kfs_fileno;
1070 return 0;
1071 case 1:
1072 ikt = parent_kt;
1073 break;
1074 default:
1075 ikt = kt;
1076 break;
1077 }
1078 if (ikt != thisdir_kfs->kfs_kt) {
1079 if ((error = kernfs_setdirentfileno_kt(d, ikt, 0, ap)) != 0)
1080 return error;
1081 } else
1082 d->d_fileno = thisdir_kfs->kfs_fileno;
1083 return 0;
1084 }
1085
1086 int
1087 kernfs_readdir(v)
1088 void *v;
1089 {
1090 struct vop_readdir_args /* {
1091 struct vnode *a_vp;
1092 struct uio *a_uio;
1093 kauth_cred_t a_cred;
1094 int *a_eofflag;
1095 off_t **a_cookies;
1096 int a_*ncookies;
1097 } */ *ap = v;
1098 struct uio *uio = ap->a_uio;
1099 struct dirent d;
1100 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
1101 const struct kern_target *kt;
1102 const struct dyn_kern_target *dkt = NULL;
1103 const struct kernfs_subdir *ks;
1104 off_t i, j;
1105 int error;
1106 off_t *cookies = NULL;
1107 int ncookies = 0, n;
1108 #ifdef IPSEC
1109 struct secasvar *sav, *sav2;
1110 struct secpolicy *sp;
1111 #endif
1112
1113 if (uio->uio_resid < UIO_MX)
1114 return (EINVAL);
1115 if (uio->uio_offset < 0)
1116 return (EINVAL);
1117
1118 error = 0;
1119 i = uio->uio_offset;
1120 memset(&d, 0, sizeof(d));
1121 d.d_reclen = UIO_MX;
1122 ncookies = uio->uio_resid / UIO_MX;
1123
1124 switch (kfs->kfs_type) {
1125 case KFSkern:
1126 if (i >= nkern_targets)
1127 return (0);
1128
1129 if (ap->a_ncookies) {
1130 ncookies = min(ncookies, (nkern_targets - i));
1131 cookies = malloc(ncookies * sizeof(off_t), M_TEMP,
1132 M_WAITOK);
1133 *ap->a_cookies = cookies;
1134 }
1135
1136 n = 0;
1137 for (; i < nkern_targets && uio->uio_resid >= UIO_MX; i++) {
1138 if (i < static_nkern_targets)
1139 kt = &kern_targets[i];
1140 else {
1141 if (dkt == NULL) {
1142 dkt = SIMPLEQ_FIRST(&dyn_kern_targets);
1143 for (j = static_nkern_targets; j < i &&
1144 dkt != NULL; j++)
1145 dkt = SIMPLEQ_NEXT(dkt, dkt_queue);
1146 if (j != i)
1147 break;
1148 } else {
1149 dkt = SIMPLEQ_NEXT(dkt, dkt_queue);
1150 }
1151 if (dkt == NULL)
1152 break;
1153 kt = &dkt->dkt_kt;
1154 }
1155 if (kt->kt_tag == KFSdevice) {
1156 dev_t *dp = kt->kt_data;
1157 struct vnode *fvp;
1158
1159 if (*dp == NODEV ||
1160 !vfinddev(*dp, kt->kt_vtype, &fvp))
1161 continue;
1162 }
1163 d.d_namlen = kt->kt_namlen;
1164 if ((error = kernfs_setdirentfileno(&d, i, kfs,
1165 &kern_targets[0], kt, ap)) != 0)
1166 break;
1167 memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1);
1168 d.d_type = kt->kt_type;
1169 if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1170 break;
1171 if (cookies)
1172 *cookies++ = i + 1;
1173 n++;
1174 }
1175 ncookies = n;
1176 break;
1177
1178 case KFSroot:
1179 if (i >= 2)
1180 return 0;
1181
1182 if (ap->a_ncookies) {
1183 ncookies = min(ncookies, (2 - i));
1184 cookies = malloc(ncookies * sizeof(off_t), M_TEMP,
1185 M_WAITOK);
1186 *ap->a_cookies = cookies;
1187 }
1188
1189 n = 0;
1190 for (; i < 2 && uio->uio_resid >= UIO_MX; i++) {
1191 kt = &kern_targets[i];
1192 d.d_namlen = kt->kt_namlen;
1193 d.d_fileno = KERNFS_FILENO(kt, kt->kt_tag, 0);
1194 memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1);
1195 d.d_type = kt->kt_type;
1196 if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1197 break;
1198 if (cookies)
1199 *cookies++ = i + 1;
1200 n++;
1201 }
1202 ncookies = n;
1203 break;
1204
1205 case KFSsubdir:
1206 ks = (struct kernfs_subdir *)kfs->kfs_kt->kt_data;
1207 if (i >= ks->ks_nentries)
1208 return (0);
1209
1210 if (ap->a_ncookies) {
1211 ncookies = min(ncookies, (ks->ks_nentries - i));
1212 cookies = malloc(ncookies * sizeof(off_t), M_TEMP,
1213 M_WAITOK);
1214 *ap->a_cookies = cookies;
1215 }
1216
1217 dkt = SIMPLEQ_FIRST(&ks->ks_entries);
1218 for (j = 0; j < i && dkt != NULL; j++)
1219 dkt = SIMPLEQ_NEXT(dkt, dkt_queue);
1220 n = 0;
1221 for (; i < ks->ks_nentries && uio->uio_resid >= UIO_MX; i++) {
1222 if (i < 2)
1223 kt = &subdir_targets[i];
1224 else {
1225 /* check if ks_nentries lied to us */
1226 if (dkt == NULL)
1227 break;
1228 kt = &dkt->dkt_kt;
1229 dkt = SIMPLEQ_NEXT(dkt, dkt_queue);
1230 }
1231 if (kt->kt_tag == KFSdevice) {
1232 dev_t *dp = kt->kt_data;
1233 struct vnode *fvp;
1234
1235 if (*dp == NODEV ||
1236 !vfinddev(*dp, kt->kt_vtype, &fvp))
1237 continue;
1238 }
1239 d.d_namlen = kt->kt_namlen;
1240 if ((error = kernfs_setdirentfileno(&d, i, kfs,
1241 ks->ks_parent, kt, ap)) != 0)
1242 break;
1243 memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1);
1244 d.d_type = kt->kt_type;
1245 if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1246 break;
1247 if (cookies)
1248 *cookies++ = i + 1;
1249 n++;
1250 }
1251 ncookies = n;
1252 break;
1253
1254 #ifdef IPSEC
1255 case KFSipsecsadir:
1256 /* count SA in the system */
1257 n = 0;
1258 TAILQ_FOREACH(sav, &satailq, tailq) {
1259 for (sav2 = TAILQ_FIRST(&satailq);
1260 sav2 != sav;
1261 sav2 = TAILQ_NEXT(sav2, tailq)) {
1262 if (sav->spi == sav2->spi) {
1263 /* multiple SA with same SPI */
1264 break;
1265 }
1266 }
1267 if (sav == sav2 || sav->spi != sav2->spi)
1268 n++;
1269 }
1270
1271 if (i >= nipsecsa_targets + n)
1272 return (0);
1273
1274 if (ap->a_ncookies) {
1275 ncookies = min(ncookies, (n - i));
1276 cookies = malloc(ncookies * sizeof(off_t), M_TEMP,
1277 M_WAITOK);
1278 *ap->a_cookies = cookies;
1279 }
1280
1281 n = 0;
1282 for (; i < nipsecsa_targets && uio->uio_resid >= UIO_MX; i++) {
1283 kt = &ipsecsa_targets[i];
1284 d.d_namlen = kt->kt_namlen;
1285 if ((error = kernfs_setdirentfileno(&d, i, kfs,
1286 &kern_targets[0], kt, ap)) != 0)
1287 break;
1288 memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1);
1289 d.d_type = kt->kt_type;
1290 if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1291 break;
1292 if (cookies)
1293 *cookies++ = i + 1;
1294 n++;
1295 }
1296 if (error) {
1297 ncookies = n;
1298 break;
1299 }
1300
1301 TAILQ_FOREACH(sav, &satailq, tailq) {
1302 for (sav2 = TAILQ_FIRST(&satailq);
1303 sav2 != sav;
1304 sav2 = TAILQ_NEXT(sav2, tailq)) {
1305 if (sav->spi == sav2->spi) {
1306 /* multiple SA with same SPI */
1307 break;
1308 }
1309 }
1310 if (sav != sav2 && sav->spi == sav2->spi)
1311 continue;
1312 if (uio->uio_resid < UIO_MX)
1313 break;
1314 if ((error = kernfs_setdirentfileno_kt(&d, &ipsecsa_kt,
1315 sav->spi, ap)) != 0)
1316 break;
1317 d.d_namlen = snprintf(d.d_name, sizeof(d.d_name),
1318 "%u", ntohl(sav->spi));
1319 d.d_type = DT_REG;
1320 if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1321 break;
1322 if (cookies)
1323 *cookies++ = i + 1;
1324 n++;
1325 i++;
1326 }
1327 ncookies = n;
1328 break;
1329
1330 case KFSipsecspdir:
1331 /* count SP in the system */
1332 n = 0;
1333 TAILQ_FOREACH(sp, &sptailq, tailq)
1334 n++;
1335
1336 if (i >= nipsecsp_targets + n)
1337 return (0);
1338
1339 if (ap->a_ncookies) {
1340 ncookies = min(ncookies, (n - i));
1341 cookies = malloc(ncookies * sizeof(off_t), M_TEMP,
1342 M_WAITOK);
1343 *ap->a_cookies = cookies;
1344 }
1345
1346 n = 0;
1347 for (; i < nipsecsp_targets && uio->uio_resid >= UIO_MX; i++) {
1348 kt = &ipsecsp_targets[i];
1349 d.d_namlen = kt->kt_namlen;
1350 if ((error = kernfs_setdirentfileno(&d, i, kfs,
1351 &kern_targets[0], kt, ap)) != 0)
1352 break;
1353 memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1);
1354 d.d_type = kt->kt_type;
1355 if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1356 break;
1357 if (cookies)
1358 *cookies++ = i + 1;
1359 n++;
1360 }
1361 if (error) {
1362 ncookies = n;
1363 break;
1364 }
1365
1366 TAILQ_FOREACH(sp, &sptailq, tailq) {
1367 if (uio->uio_resid < UIO_MX)
1368 break;
1369 if ((error = kernfs_setdirentfileno_kt(&d, &ipsecsp_kt,
1370 sp->id, ap)) != 0)
1371 break;
1372 d.d_namlen = snprintf(d.d_name, sizeof(d.d_name),
1373 "%u", sp->id);
1374 d.d_type = DT_REG;
1375 if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1376 break;
1377 if (cookies)
1378 *cookies++ = i + 1;
1379 n++;
1380 i++;
1381 }
1382 ncookies = n;
1383 break;
1384 #endif
1385
1386 default:
1387 error = ENOTDIR;
1388 break;
1389 }
1390
1391 if (ap->a_ncookies) {
1392 if (error) {
1393 if (cookies)
1394 free(*ap->a_cookies, M_TEMP);
1395 *ap->a_ncookies = 0;
1396 *ap->a_cookies = NULL;
1397 } else
1398 *ap->a_ncookies = ncookies;
1399 }
1400
1401 uio->uio_offset = i;
1402 return (error);
1403 }
1404
1405 int
1406 kernfs_inactive(v)
1407 void *v;
1408 {
1409 struct vop_inactive_args /* {
1410 struct vnode *a_vp;
1411 bool *a_recycle;
1412 } */ *ap = v;
1413 struct vnode *vp = ap->a_vp;
1414 const struct kernfs_node *kfs = VTOKERN(ap->a_vp);
1415 #ifdef IPSEC
1416 struct mbuf *m;
1417 struct secpolicy *sp;
1418 #endif
1419
1420 *ap->a_recycle = false;
1421 switch (kfs->kfs_type) {
1422 #ifdef IPSEC
1423 case KFSipsecsa:
1424 m = key_setdumpsa_spi(htonl(kfs->kfs_value));
1425 if (m)
1426 m_freem(m);
1427 else
1428 *ap->a_recycle = true;
1429 break;
1430 case KFSipsecsp:
1431 sp = key_getspbyid(kfs->kfs_value);
1432 if (sp)
1433 key_freesp(sp);
1434 else {
1435 *ap->a_recycle = true;
1436 }
1437 break;
1438 #endif
1439 default:
1440 break;
1441 }
1442 VOP_UNLOCK(vp, 0);
1443 return (0);
1444 }
1445
1446 int
1447 kernfs_reclaim(v)
1448 void *v;
1449 {
1450 struct vop_reclaim_args /* {
1451 struct vnode *a_vp;
1452 } */ *ap = v;
1453
1454 return (kernfs_freevp(ap->a_vp));
1455 }
1456
1457 /*
1458 * Return POSIX pathconf information applicable to special devices.
1459 */
1460 int
1461 kernfs_pathconf(v)
1462 void *v;
1463 {
1464 struct vop_pathconf_args /* {
1465 struct vnode *a_vp;
1466 int a_name;
1467 register_t *a_retval;
1468 } */ *ap = v;
1469
1470 switch (ap->a_name) {
1471 case _PC_LINK_MAX:
1472 *ap->a_retval = LINK_MAX;
1473 return (0);
1474 case _PC_MAX_CANON:
1475 *ap->a_retval = MAX_CANON;
1476 return (0);
1477 case _PC_MAX_INPUT:
1478 *ap->a_retval = MAX_INPUT;
1479 return (0);
1480 case _PC_PIPE_BUF:
1481 *ap->a_retval = PIPE_BUF;
1482 return (0);
1483 case _PC_CHOWN_RESTRICTED:
1484 *ap->a_retval = 1;
1485 return (0);
1486 case _PC_VDISABLE:
1487 *ap->a_retval = _POSIX_VDISABLE;
1488 return (0);
1489 case _PC_SYNC_IO:
1490 *ap->a_retval = 1;
1491 return (0);
1492 default:
1493 return (EINVAL);
1494 }
1495 /* NOTREACHED */
1496 }
1497
1498 /*
1499 * Print out the contents of a /dev/fd vnode.
1500 */
1501 /* ARGSUSED */
1502 int
1503 kernfs_print(void *v)
1504 {
1505
1506 printf("tag VT_KERNFS, kernfs vnode\n");
1507 return (0);
1508 }
1509
1510 int
1511 kernfs_link(v)
1512 void *v;
1513 {
1514 struct vop_link_args /* {
1515 struct vnode *a_dvp;
1516 struct vnode *a_vp;
1517 struct componentname *a_cnp;
1518 } */ *ap = v;
1519
1520 VOP_ABORTOP(ap->a_dvp, ap->a_cnp);
1521 vput(ap->a_dvp);
1522 return (EROFS);
1523 }
1524
1525 int
1526 kernfs_symlink(v)
1527 void *v;
1528 {
1529 struct vop_symlink_args /* {
1530 struct vnode *a_dvp;
1531 struct vnode **a_vpp;
1532 struct componentname *a_cnp;
1533 struct vattr *a_vap;
1534 char *a_target;
1535 } */ *ap = v;
1536
1537 VOP_ABORTOP(ap->a_dvp, ap->a_cnp);
1538 vput(ap->a_dvp);
1539 return (EROFS);
1540 }
1541