kernfs_vnops.c revision 1.135 1 /* $NetBSD: kernfs_vnops.c,v 1.135 2009/01/11 02:45:53 christos Exp $ */
2
3 /*
4 * Copyright (c) 1992, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software donated to Berkeley by
8 * Jan-Simon Pendry.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)kernfs_vnops.c 8.15 (Berkeley) 5/21/95
35 */
36
37 /*
38 * Kernel parameter filesystem (/kern)
39 */
40
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: kernfs_vnops.c,v 1.135 2009/01/11 02:45:53 christos Exp $");
43
44 #ifdef _KERNEL_OPT
45 #include "opt_ipsec.h"
46 #endif
47
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/kernel.h>
51 #include <sys/vmmeter.h>
52 #include <sys/time.h>
53 #include <sys/proc.h>
54 #include <sys/vnode.h>
55 #include <sys/malloc.h>
56 #include <sys/file.h>
57 #include <sys/stat.h>
58 #include <sys/mount.h>
59 #include <sys/namei.h>
60 #include <sys/buf.h>
61 #include <sys/dirent.h>
62 #include <sys/msgbuf.h>
63
64 #include <miscfs/genfs/genfs.h>
65 #include <miscfs/kernfs/kernfs.h>
66
67 #ifdef IPSEC
68 #include <sys/mbuf.h>
69 #include <net/route.h>
70 #include <netinet/in.h>
71 #include <netinet6/ipsec.h>
72 #include <netkey/key.h>
73 #endif
74
75 #include <uvm/uvm_extern.h>
76
77 #define KSTRING 256 /* Largest I/O available via this filesystem */
78 #define UIO_MX 32
79
80 #define READ_MODE (S_IRUSR|S_IRGRP|S_IROTH)
81 #define WRITE_MODE (S_IWUSR|S_IRUSR|S_IRGRP|S_IROTH)
82 #define UREAD_MODE (S_IRUSR)
83 #define DIR_MODE (S_IRUSR|S_IXUSR|S_IRGRP|S_IXGRP|S_IROTH|S_IXOTH)
84 #define UDIR_MODE (S_IRUSR|S_IXUSR)
85
86 #define N(s) sizeof(s)-1, s
87 const struct kern_target kern_targets[] = {
88 /* NOTE: The name must be less than UIO_MX-16 chars in length */
89 /* name data tag type ro/rw */
90 { DT_DIR, N("."), 0, KFSkern, VDIR, DIR_MODE },
91 { DT_DIR, N(".."), 0, KFSroot, VDIR, DIR_MODE },
92 { DT_REG, N("boottime"), &boottime.tv_sec, KFSint, VREG, READ_MODE },
93 /* XXXUNCONST */
94 { DT_REG, N("copyright"), __UNCONST(copyright),
95 KFSstring, VREG, READ_MODE },
96 { DT_REG, N("hostname"), 0, KFShostname, VREG, WRITE_MODE },
97 { DT_REG, N("hz"), &hz, KFSint, VREG, READ_MODE },
98 #ifdef IPSEC
99 { DT_DIR, N("ipsecsa"), 0, KFSipsecsadir, VDIR, UDIR_MODE },
100 { DT_DIR, N("ipsecsp"), 0, KFSipsecspdir, VDIR, UDIR_MODE },
101 #endif
102 { DT_REG, N("loadavg"), 0, KFSavenrun, VREG, READ_MODE },
103 { DT_REG, N("msgbuf"), 0, KFSmsgbuf, VREG, READ_MODE },
104 { DT_REG, N("pagesize"), &uvmexp.pagesize, KFSint, VREG, READ_MODE },
105 { DT_REG, N("physmem"), &physmem, KFSint, VREG, READ_MODE },
106 #if 0
107 { DT_DIR, N("root"), 0, KFSnull, VDIR, DIR_MODE },
108 #endif
109 { DT_BLK, N("rootdev"), &rootdev, KFSdevice, VBLK, READ_MODE },
110 { DT_CHR, N("rrootdev"), &rrootdev, KFSdevice, VCHR, READ_MODE },
111 { DT_REG, N("time"), 0, KFStime, VREG, READ_MODE },
112 /* XXXUNCONST */
113 { DT_REG, N("version"), __UNCONST(version),
114 KFSstring, VREG, READ_MODE },
115 };
116 const struct kern_target subdir_targets[] = {
117 /* NOTE: The name must be less than UIO_MX-16 chars in length */
118 /* name data tag type ro/rw */
119 { DT_DIR, N("."), 0, KFSsubdir, VDIR, DIR_MODE },
120 { DT_DIR, N(".."), 0, KFSkern, VDIR, DIR_MODE },
121 };
122 #ifdef IPSEC
123 const struct kern_target ipsecsa_targets[] = {
124 /* NOTE: The name must be less than UIO_MX-16 chars in length */
125 /* name data tag type ro/rw */
126 { DT_DIR, N("."), 0, KFSipsecsadir, VDIR, DIR_MODE },
127 { DT_DIR, N(".."), 0, KFSkern, VDIR, DIR_MODE },
128 };
129 const struct kern_target ipsecsp_targets[] = {
130 /* NOTE: The name must be less than UIO_MX-16 chars in length */
131 /* name data tag type ro/rw */
132 { DT_DIR, N("."), 0, KFSipsecspdir, VDIR, DIR_MODE },
133 { DT_DIR, N(".."), 0, KFSkern, VDIR, DIR_MODE },
134 };
135 const struct kern_target ipsecsa_kt =
136 { DT_DIR, N(""), 0, KFSipsecsa, VREG, UREAD_MODE };
137 const struct kern_target ipsecsp_kt =
138 { DT_DIR, N(""), 0, KFSipsecsp, VREG, UREAD_MODE };
139 #endif
140 #undef N
141 SIMPLEQ_HEAD(,dyn_kern_target) dyn_kern_targets =
142 SIMPLEQ_HEAD_INITIALIZER(dyn_kern_targets);
143 int nkern_targets = sizeof(kern_targets) / sizeof(kern_targets[0]);
144 const int static_nkern_targets = sizeof(kern_targets) / sizeof(kern_targets[0]);
145 #ifdef IPSEC
146 int nipsecsa_targets = sizeof(ipsecsa_targets) / sizeof(ipsecsa_targets[0]);
147 int nipsecsp_targets = sizeof(ipsecsp_targets) / sizeof(ipsecsp_targets[0]);
148 int nkern_dirs = 4; /* 2 extra subdirs */
149 #else
150 int nkern_dirs = 2;
151 #endif
152
153 int kernfs_try_fileop(kfstype, kfsfileop, void *, int);
154 int kernfs_try_xread(kfstype, const struct kernfs_node *, char **,
155 size_t, int);
156 int kernfs_try_xwrite(kfstype, const struct kernfs_node *, char *,
157 size_t, int);
158
159 static int kernfs_default_xread(void *v);
160 static int kernfs_default_xwrite(void *v);
161 static int kernfs_default_fileop_getattr(void *);
162
163 /* must include all fileop's */
164 const struct kernfs_fileop kernfs_default_fileops[] = {
165 { .kf_fileop = KERNFS_XREAD },
166 { .kf_fileop = KERNFS_XWRITE },
167 { .kf_fileop = KERNFS_FILEOP_OPEN },
168 { .kf_fileop = KERNFS_FILEOP_GETATTR,
169 .kf_vop = kernfs_default_fileop_getattr },
170 { .kf_fileop = KERNFS_FILEOP_IOCTL },
171 { .kf_fileop = KERNFS_FILEOP_CLOSE },
172 { .kf_fileop = KERNFS_FILEOP_READ,
173 .kf_vop = kernfs_default_xread },
174 { .kf_fileop = KERNFS_FILEOP_WRITE,
175 .kf_vop = kernfs_default_xwrite },
176 };
177
178 int kernfs_lookup(void *);
179 #define kernfs_create genfs_eopnotsupp
180 #define kernfs_mknod genfs_eopnotsupp
181 int kernfs_open(void *);
182 int kernfs_close(void *);
183 int kernfs_access(void *);
184 int kernfs_getattr(void *);
185 int kernfs_setattr(void *);
186 int kernfs_read(void *);
187 int kernfs_write(void *);
188 #define kernfs_fcntl genfs_fcntl
189 int kernfs_ioctl(void *);
190 #define kernfs_poll genfs_poll
191 #define kernfs_revoke genfs_revoke
192 #define kernfs_fsync genfs_nullop
193 #define kernfs_seek genfs_nullop
194 #define kernfs_remove genfs_eopnotsupp
195 int kernfs_link(void *);
196 #define kernfs_rename genfs_eopnotsupp
197 #define kernfs_mkdir genfs_eopnotsupp
198 #define kernfs_rmdir genfs_eopnotsupp
199 int kernfs_symlink(void *);
200 int kernfs_readdir(void *);
201 #define kernfs_readlink genfs_eopnotsupp
202 #define kernfs_abortop genfs_abortop
203 int kernfs_inactive(void *);
204 int kernfs_reclaim(void *);
205 #define kernfs_lock genfs_lock
206 #define kernfs_unlock genfs_unlock
207 #define kernfs_bmap genfs_badop
208 #define kernfs_strategy genfs_badop
209 int kernfs_print(void *);
210 #define kernfs_islocked genfs_islocked
211 int kernfs_pathconf(void *);
212 #define kernfs_advlock genfs_einval
213 #define kernfs_bwrite genfs_eopnotsupp
214 #define kernfs_putpages genfs_putpages
215
216 static int kernfs_xread(struct kernfs_node *, int, char **,
217 size_t, size_t *);
218 static int kernfs_xwrite(const struct kernfs_node *, char *, size_t);
219
220 int (**kernfs_vnodeop_p)(void *);
221 const struct vnodeopv_entry_desc kernfs_vnodeop_entries[] = {
222 { &vop_default_desc, vn_default_error },
223 { &vop_lookup_desc, kernfs_lookup }, /* lookup */
224 { &vop_create_desc, kernfs_create }, /* create */
225 { &vop_mknod_desc, kernfs_mknod }, /* mknod */
226 { &vop_open_desc, kernfs_open }, /* open */
227 { &vop_close_desc, kernfs_close }, /* close */
228 { &vop_access_desc, kernfs_access }, /* access */
229 { &vop_getattr_desc, kernfs_getattr }, /* getattr */
230 { &vop_setattr_desc, kernfs_setattr }, /* setattr */
231 { &vop_read_desc, kernfs_read }, /* read */
232 { &vop_write_desc, kernfs_write }, /* write */
233 { &vop_fcntl_desc, kernfs_fcntl }, /* fcntl */
234 { &vop_ioctl_desc, kernfs_ioctl }, /* ioctl */
235 { &vop_poll_desc, kernfs_poll }, /* poll */
236 { &vop_revoke_desc, kernfs_revoke }, /* revoke */
237 { &vop_fsync_desc, kernfs_fsync }, /* fsync */
238 { &vop_seek_desc, kernfs_seek }, /* seek */
239 { &vop_remove_desc, kernfs_remove }, /* remove */
240 { &vop_link_desc, kernfs_link }, /* link */
241 { &vop_rename_desc, kernfs_rename }, /* rename */
242 { &vop_mkdir_desc, kernfs_mkdir }, /* mkdir */
243 { &vop_rmdir_desc, kernfs_rmdir }, /* rmdir */
244 { &vop_symlink_desc, kernfs_symlink }, /* symlink */
245 { &vop_readdir_desc, kernfs_readdir }, /* readdir */
246 { &vop_readlink_desc, kernfs_readlink }, /* readlink */
247 { &vop_abortop_desc, kernfs_abortop }, /* abortop */
248 { &vop_inactive_desc, kernfs_inactive }, /* inactive */
249 { &vop_reclaim_desc, kernfs_reclaim }, /* reclaim */
250 { &vop_lock_desc, kernfs_lock }, /* lock */
251 { &vop_unlock_desc, kernfs_unlock }, /* unlock */
252 { &vop_bmap_desc, kernfs_bmap }, /* bmap */
253 { &vop_strategy_desc, kernfs_strategy }, /* strategy */
254 { &vop_print_desc, kernfs_print }, /* print */
255 { &vop_islocked_desc, kernfs_islocked }, /* islocked */
256 { &vop_pathconf_desc, kernfs_pathconf }, /* pathconf */
257 { &vop_advlock_desc, kernfs_advlock }, /* advlock */
258 { &vop_bwrite_desc, kernfs_bwrite }, /* bwrite */
259 { &vop_putpages_desc, kernfs_putpages }, /* putpages */
260 { NULL, NULL }
261 };
262 const struct vnodeopv_desc kernfs_vnodeop_opv_desc =
263 { &kernfs_vnodeop_p, kernfs_vnodeop_entries };
264
265 static inline int
266 kernfs_fileop_compare(struct kernfs_fileop *a, struct kernfs_fileop *b)
267 {
268 if (a->kf_type < b->kf_type)
269 return -1;
270 if (a->kf_type > b->kf_type)
271 return 1;
272 if (a->kf_fileop < b->kf_fileop)
273 return -1;
274 if (a->kf_fileop > b->kf_fileop)
275 return 1;
276 return (0);
277 }
278
279 SPLAY_HEAD(kfsfileoptree, kernfs_fileop) kfsfileoptree =
280 SPLAY_INITIALIZER(kfsfileoptree);
281 SPLAY_PROTOTYPE(kfsfileoptree, kernfs_fileop, kf_node, kernfs_fileop_compare);
282 SPLAY_GENERATE(kfsfileoptree, kernfs_fileop, kf_node, kernfs_fileop_compare);
283
284 kfstype
285 kernfs_alloctype(int nkf, const struct kernfs_fileop *kf)
286 {
287 static u_char nextfreetype = KFSlasttype;
288 struct kernfs_fileop *dkf, *fkf, skf;
289 int i;
290
291 /* XXX need to keep track of dkf's memory if we support
292 deallocating types */
293 dkf = malloc(sizeof(kernfs_default_fileops), M_TEMP, M_WAITOK);
294 memcpy(dkf, kernfs_default_fileops, sizeof(kernfs_default_fileops));
295
296 for (i = 0; i < sizeof(kernfs_default_fileops) /
297 sizeof(kernfs_default_fileops[0]); i++) {
298 dkf[i].kf_type = nextfreetype;
299 SPLAY_INSERT(kfsfileoptree, &kfsfileoptree, &dkf[i]);
300 }
301
302 for (i = 0; i < nkf; i++) {
303 skf.kf_type = nextfreetype;
304 skf.kf_fileop = kf[i].kf_fileop;
305 if ((fkf = SPLAY_FIND(kfsfileoptree, &kfsfileoptree, &skf)))
306 fkf->kf_vop = kf[i].kf_vop;
307 }
308
309 return nextfreetype++;
310 }
311
312 int
313 kernfs_try_fileop(kfstype type, kfsfileop fileop, void *v, int error)
314 {
315 struct kernfs_fileop *kf, skf;
316
317 skf.kf_type = type;
318 skf.kf_fileop = fileop;
319 if ((kf = SPLAY_FIND(kfsfileoptree, &kfsfileoptree, &skf)))
320 if (kf->kf_vop)
321 return kf->kf_vop(v);
322 return error;
323 }
324
325 int
326 kernfs_try_xread(kfstype type, const struct kernfs_node *kfs, char **bfp,
327 size_t len, int error)
328 {
329 struct kernfs_fileop *kf, skf;
330
331 skf.kf_type = type;
332 skf.kf_fileop = KERNFS_XREAD;
333 if ((kf = SPLAY_FIND(kfsfileoptree, &kfsfileoptree, &skf)))
334 if (kf->kf_xread)
335 return kf->kf_xread(kfs, bfp, len);
336 return error;
337 }
338
339 int
340 kernfs_try_xwrite(kfstype type, const struct kernfs_node *kfs, char *bf,
341 size_t len, int error)
342 {
343 struct kernfs_fileop *kf, skf;
344
345 skf.kf_type = type;
346 skf.kf_fileop = KERNFS_XWRITE;
347 if ((kf = SPLAY_FIND(kfsfileoptree, &kfsfileoptree, &skf)))
348 if (kf->kf_xwrite)
349 return kf->kf_xwrite(kfs, bf, len);
350 return error;
351 }
352
353 int
354 kernfs_addentry(kernfs_parentdir_t *pkt, kernfs_entry_t *dkt)
355 {
356 struct kernfs_subdir *ks, *parent;
357
358 if (pkt == NULL) {
359 SIMPLEQ_INSERT_TAIL(&dyn_kern_targets, dkt, dkt_queue);
360 nkern_targets++;
361 if (dkt->dkt_kt.kt_vtype == VDIR)
362 nkern_dirs++;
363 } else {
364 parent = (struct kernfs_subdir *)pkt->kt_data;
365 SIMPLEQ_INSERT_TAIL(&parent->ks_entries, dkt, dkt_queue);
366 parent->ks_nentries++;
367 if (dkt->dkt_kt.kt_vtype == VDIR)
368 parent->ks_dirs++;
369 }
370 if (dkt->dkt_kt.kt_vtype == VDIR && dkt->dkt_kt.kt_data == NULL) {
371 ks = malloc(sizeof(struct kernfs_subdir),
372 M_TEMP, M_WAITOK);
373 SIMPLEQ_INIT(&ks->ks_entries);
374 ks->ks_nentries = 2; /* . and .. */
375 ks->ks_dirs = 2;
376 ks->ks_parent = pkt ? pkt : &kern_targets[0];
377 dkt->dkt_kt.kt_data = ks;
378 }
379 return 0;
380 }
381
382 static int
383 kernfs_xread(kfs, off, bufp, len, wrlen)
384 struct kernfs_node *kfs;
385 int off;
386 char **bufp;
387 size_t len;
388 size_t *wrlen;
389 {
390 const struct kern_target *kt;
391 #ifdef IPSEC
392 struct mbuf *m;
393 #endif
394 int err;
395
396 kt = kfs->kfs_kt;
397
398 switch (kfs->kfs_type) {
399 case KFStime: {
400 struct timeval tv;
401
402 microtime(&tv);
403 snprintf(*bufp, len, "%lld %ld\n", (long long)tv.tv_sec,
404 (long)tv.tv_usec);
405 break;
406 }
407
408 case KFSint: {
409 int *ip = kt->kt_data;
410
411 snprintf(*bufp, len, "%d\n", *ip);
412 break;
413 }
414
415 case KFSstring: {
416 char *cp = kt->kt_data;
417
418 *bufp = cp;
419 break;
420 }
421
422 case KFSmsgbuf: {
423 long n;
424
425 /*
426 * deal with cases where the message buffer has
427 * become corrupted.
428 */
429 if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) {
430 msgbufenabled = 0;
431 return (ENXIO);
432 }
433
434 /*
435 * Note that reads of /kern/msgbuf won't necessarily yield
436 * consistent results, if the message buffer is modified
437 * while the read is in progress. The worst that can happen
438 * is that incorrect data will be read. There's no way
439 * that this can crash the system unless the values in the
440 * message buffer header are corrupted, but that'll cause
441 * the system to die anyway.
442 */
443 if (off >= msgbufp->msg_bufs) {
444 *wrlen = 0;
445 return (0);
446 }
447 n = msgbufp->msg_bufx + off;
448 if (n >= msgbufp->msg_bufs)
449 n -= msgbufp->msg_bufs;
450 len = min(msgbufp->msg_bufs - n, msgbufp->msg_bufs - off);
451 *bufp = msgbufp->msg_bufc + n;
452 *wrlen = len;
453 return (0);
454 }
455
456 case KFShostname: {
457 char *cp = hostname;
458 size_t xlen = hostnamelen;
459
460 if (xlen >= (len - 2))
461 return (EINVAL);
462
463 memcpy(*bufp, cp, xlen);
464 (*bufp)[xlen] = '\n';
465 (*bufp)[xlen+1] = '\0';
466 len = strlen(*bufp);
467 break;
468 }
469
470 case KFSavenrun:
471 averunnable.fscale = FSCALE;
472 snprintf(*bufp, len, "%d %d %d %ld\n",
473 averunnable.ldavg[0], averunnable.ldavg[1],
474 averunnable.ldavg[2], averunnable.fscale);
475 break;
476
477 #ifdef IPSEC
478 case KFSipsecsa:
479 if (key_setdumpsa_spi == NULL)
480 return 0;
481 /*
482 * Note that SA configuration could be changed during the
483 * read operation, resulting in garbled output.
484 */
485 m = key_setdumpsa_spi(htonl(kfs->kfs_value));
486 if (!m)
487 return (ENOBUFS);
488 if (off >= m->m_pkthdr.len) {
489 *wrlen = 0;
490 m_freem(m);
491 return (0);
492 }
493 if (len > m->m_pkthdr.len - off)
494 len = m->m_pkthdr.len - off;
495 m_copydata(m, off, len, *bufp);
496 *wrlen = len;
497 m_freem(m);
498 return (0);
499
500 case KFSipsecsp:
501 /*
502 * Note that SP configuration could be changed during the
503 * read operation, resulting in garbled output.
504 */
505 if (key_getspbyid == NULL)
506 return 0;
507 if (!kfs->kfs_v) {
508 struct secpolicy *sp;
509
510 sp = key_getspbyid(kfs->kfs_value);
511 if (sp)
512 kfs->kfs_v = sp;
513 else
514 return (ENOENT);
515 }
516 m = key_setdumpsp((struct secpolicy *)kfs->kfs_v,
517 SADB_X_SPDGET, 0, 0);
518 if (!m)
519 return (ENOBUFS);
520 if (off >= m->m_pkthdr.len) {
521 *wrlen = 0;
522 m_freem(m);
523 return (0);
524 }
525 if (len > m->m_pkthdr.len - off)
526 len = m->m_pkthdr.len - off;
527 m_copydata(m, off, len, *bufp);
528 *wrlen = len;
529 m_freem(m);
530 return (0);
531 #endif
532
533 default:
534 err = kernfs_try_xread(kfs->kfs_type, kfs, bufp, len,
535 EOPNOTSUPP);
536 if (err)
537 return err;
538 }
539
540 len = strlen(*bufp);
541 if (len <= off)
542 *wrlen = 0;
543 else {
544 *bufp += off;
545 *wrlen = len - off;
546 }
547 return (0);
548 }
549
550 static int
551 kernfs_xwrite(kfs, bf, len)
552 const struct kernfs_node *kfs;
553 char *bf;
554 size_t len;
555 {
556
557 switch (kfs->kfs_type) {
558 case KFShostname:
559 if (bf[len-1] == '\n')
560 --len;
561 memcpy(hostname, bf, len);
562 hostname[len] = '\0';
563 hostnamelen = (size_t) len;
564 return (0);
565
566 default:
567 return kernfs_try_xwrite(kfs->kfs_type, kfs, bf, len, EIO);
568 }
569 }
570
571
572 /*
573 * vp is the current namei directory
574 * ndp is the name to locate in that directory...
575 */
576 int
577 kernfs_lookup(v)
578 void *v;
579 {
580 struct vop_lookup_args /* {
581 struct vnode * a_dvp;
582 struct vnode ** a_vpp;
583 struct componentname * a_cnp;
584 } */ *ap = v;
585 struct componentname *cnp = ap->a_cnp;
586 struct vnode **vpp = ap->a_vpp;
587 struct vnode *dvp = ap->a_dvp;
588 const char *pname = cnp->cn_nameptr;
589 const struct kernfs_node *kfs;
590 const struct kern_target *kt;
591 const struct dyn_kern_target *dkt;
592 const struct kernfs_subdir *ks;
593 int error, i;
594 #ifdef IPSEC
595 char *ep;
596 u_int32_t id;
597 #endif
598
599 *vpp = NULLVP;
600
601 if (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME)
602 return (EROFS);
603
604 if (cnp->cn_namelen == 1 && *pname == '.') {
605 *vpp = dvp;
606 VREF(dvp);
607 return (0);
608 }
609
610 kfs = VTOKERN(dvp);
611 switch (kfs->kfs_type) {
612 case KFSkern:
613 /*
614 * Shouldn't get here with .. in the root node.
615 */
616 if (cnp->cn_flags & ISDOTDOT)
617 return (EIO);
618
619 for (i = 0; i < static_nkern_targets; i++) {
620 kt = &kern_targets[i];
621 if (cnp->cn_namelen == kt->kt_namlen &&
622 memcmp(kt->kt_name, pname, cnp->cn_namelen) == 0)
623 goto found;
624 }
625 SIMPLEQ_FOREACH(dkt, &dyn_kern_targets, dkt_queue) {
626 if (cnp->cn_namelen == dkt->dkt_kt.kt_namlen &&
627 memcmp(dkt->dkt_kt.kt_name, pname, cnp->cn_namelen) == 0) {
628 kt = &dkt->dkt_kt;
629 goto found;
630 }
631 }
632 break;
633
634 found:
635 error = kernfs_allocvp(dvp->v_mount, vpp, kt->kt_tag, kt, 0);
636 return (error);
637
638 case KFSsubdir:
639 ks = (struct kernfs_subdir *)kfs->kfs_kt->kt_data;
640 if (cnp->cn_flags & ISDOTDOT) {
641 kt = ks->ks_parent;
642 goto found;
643 }
644
645 SIMPLEQ_FOREACH(dkt, &ks->ks_entries, dkt_queue) {
646 if (cnp->cn_namelen == dkt->dkt_kt.kt_namlen &&
647 memcmp(dkt->dkt_kt.kt_name, pname, cnp->cn_namelen) == 0) {
648 kt = &dkt->dkt_kt;
649 goto found;
650 }
651 }
652 break;
653
654 #ifdef IPSEC
655 case KFSipsecsadir:
656 if (cnp->cn_flags & ISDOTDOT) {
657 kt = &kern_targets[0];
658 goto found;
659 }
660
661 for (i = 2; i < nipsecsa_targets; i++) {
662 kt = &ipsecsa_targets[i];
663 if (cnp->cn_namelen == kt->kt_namlen &&
664 memcmp(kt->kt_name, pname, cnp->cn_namelen) == 0)
665 goto found;
666 }
667
668 ep = NULL;
669 id = strtoul(pname, &ep, 10);
670 if (!ep || *ep || ep == pname)
671 break;
672
673 error = kernfs_allocvp(dvp->v_mount, vpp, KFSipsecsa, &ipsecsa_kt, id);
674 return (error);
675
676 case KFSipsecspdir:
677 if (cnp->cn_flags & ISDOTDOT) {
678 kt = &kern_targets[0];
679 goto found;
680 }
681
682 for (i = 2; i < nipsecsp_targets; i++) {
683 kt = &ipsecsp_targets[i];
684 if (cnp->cn_namelen == kt->kt_namlen &&
685 memcmp(kt->kt_name, pname, cnp->cn_namelen) == 0)
686 goto found;
687 }
688
689 ep = NULL;
690 id = strtoul(pname, &ep, 10);
691 if (!ep || *ep || ep == pname)
692 break;
693
694 error = kernfs_allocvp(dvp->v_mount, vpp, KFSipsecsp, &ipsecsp_kt, id);
695 return (error);
696 #endif
697
698 default:
699 return (ENOTDIR);
700 }
701
702 return (cnp->cn_nameiop == LOOKUP ? ENOENT : EROFS);
703 }
704
705 int
706 kernfs_open(v)
707 void *v;
708 {
709 struct vop_open_args /* {
710 struct vnode *a_vp;
711 int a_mode;
712 kauth_cred_t a_cred;
713 } */ *ap = v;
714 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
715 #ifdef IPSEC
716 struct mbuf *m;
717 struct secpolicy *sp;
718 #endif
719
720 switch (kfs->kfs_type) {
721 #ifdef IPSEC
722 case KFSipsecsa:
723 if (key_setdumpsa_spi == NULL)
724 return 0;
725 m = key_setdumpsa_spi(htonl(kfs->kfs_value));
726 if (m) {
727 m_freem(m);
728 return (0);
729 } else
730 return (ENOENT);
731
732 case KFSipsecsp:
733 if (key_getspbyid == NULL)
734 return 0;
735 sp = key_getspbyid(kfs->kfs_value);
736 if (sp) {
737 kfs->kfs_v = sp;
738 return (0);
739 } else
740 return (ENOENT);
741 #endif
742
743 default:
744 return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_OPEN,
745 v, 0);
746 }
747 }
748
749 int
750 kernfs_close(v)
751 void *v;
752 {
753 struct vop_close_args /* {
754 struct vnode *a_vp;
755 int a_fflag;
756 kauth_cred_t a_cred;
757 } */ *ap = v;
758 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
759
760 switch (kfs->kfs_type) {
761 #ifdef IPSEC
762 case KFSipsecsp:
763 if (key_freesp == NULL)
764 return 0;
765 key_freesp((struct secpolicy *)kfs->kfs_v);
766 break;
767 #endif
768
769 default:
770 return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_CLOSE,
771 v, 0);
772 }
773
774 return (0);
775 }
776
777 int
778 kernfs_access(v)
779 void *v;
780 {
781 struct vop_access_args /* {
782 struct vnode *a_vp;
783 int a_mode;
784 kauth_cred_t a_cred;
785 } */ *ap = v;
786 struct vattr va;
787 int error;
788
789 if ((error = VOP_GETATTR(ap->a_vp, &va, ap->a_cred)) != 0)
790 return (error);
791
792 return (vaccess(va.va_type, va.va_mode, va.va_uid, va.va_gid,
793 ap->a_mode, ap->a_cred));
794 }
795
796 static int
797 kernfs_default_fileop_getattr(v)
798 void *v;
799 {
800 struct vop_getattr_args /* {
801 struct vnode *a_vp;
802 struct vattr *a_vap;
803 kauth_cred_t a_cred;
804 } */ *ap = v;
805 struct vattr *vap = ap->a_vap;
806
807 vap->va_nlink = 1;
808 vap->va_bytes = vap->va_size = 0;
809
810 return 0;
811 }
812
813 int
814 kernfs_getattr(v)
815 void *v;
816 {
817 struct vop_getattr_args /* {
818 struct vnode *a_vp;
819 struct vattr *a_vap;
820 kauth_cred_t a_cred;
821 } */ *ap = v;
822 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
823 struct kernfs_subdir *ks;
824 struct vattr *vap = ap->a_vap;
825 int error = 0;
826 char strbuf[KSTRING], *bf;
827 size_t nread, total;
828
829 VATTR_NULL(vap);
830 vap->va_type = ap->a_vp->v_type;
831 vap->va_uid = 0;
832 vap->va_gid = 0;
833 vap->va_mode = kfs->kfs_mode;
834 vap->va_fileid = kfs->kfs_fileno;
835 vap->va_flags = 0;
836 vap->va_size = 0;
837 vap->va_blocksize = DEV_BSIZE;
838 /* Make all times be current TOD, except for the "boottime" node. */
839 if (kfs->kfs_kt->kt_namlen == 8 &&
840 !memcmp(kfs->kfs_kt->kt_name, "boottime", 8)) {
841 vap->va_ctime = boottime;
842 } else {
843 getnanotime(&vap->va_ctime);
844 }
845 vap->va_atime = vap->va_mtime = vap->va_ctime;
846 vap->va_gen = 0;
847 vap->va_flags = 0;
848 vap->va_rdev = 0;
849 vap->va_bytes = 0;
850
851 switch (kfs->kfs_type) {
852 case KFSkern:
853 vap->va_nlink = nkern_dirs;
854 vap->va_bytes = vap->va_size = DEV_BSIZE;
855 break;
856
857 case KFSroot:
858 vap->va_nlink = 1;
859 vap->va_bytes = vap->va_size = DEV_BSIZE;
860 break;
861
862 case KFSsubdir:
863 ks = (struct kernfs_subdir *)kfs->kfs_kt->kt_data;
864 vap->va_nlink = ks->ks_dirs;
865 vap->va_bytes = vap->va_size = DEV_BSIZE;
866 break;
867
868 case KFSnull:
869 case KFStime:
870 case KFSint:
871 case KFSstring:
872 case KFShostname:
873 case KFSavenrun:
874 case KFSdevice:
875 case KFSmsgbuf:
876 #ifdef IPSEC
877 case KFSipsecsa:
878 case KFSipsecsp:
879 #endif
880 vap->va_nlink = 1;
881 total = 0;
882 do {
883 bf = strbuf;
884 error = kernfs_xread(kfs, total, &bf,
885 sizeof(strbuf), &nread);
886 total += nread;
887 } while (error == 0 && nread != 0);
888 vap->va_bytes = vap->va_size = total;
889 break;
890
891 #ifdef IPSEC
892 case KFSipsecsadir:
893 case KFSipsecspdir:
894 vap->va_nlink = 2;
895 vap->va_bytes = vap->va_size = DEV_BSIZE;
896 break;
897 #endif
898
899 default:
900 error = kernfs_try_fileop(kfs->kfs_type,
901 KERNFS_FILEOP_GETATTR, v, EINVAL);
902 break;
903 }
904
905 return (error);
906 }
907
908 /*ARGSUSED*/
909 int
910 kernfs_setattr(void *v)
911 {
912
913 /*
914 * Silently ignore attribute changes.
915 * This allows for open with truncate to have no
916 * effect until some data is written. I want to
917 * do it this way because all writes are atomic.
918 */
919 return (0);
920 }
921
922 int
923 kernfs_default_xread(v)
924 void *v;
925 {
926 struct vop_read_args /* {
927 struct vnode *a_vp;
928 struct uio *a_uio;
929 int a_ioflag;
930 kauth_cred_t a_cred;
931 } */ *ap = v;
932 struct uio *uio = ap->a_uio;
933 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
934 char strbuf[KSTRING], *bf;
935 int off;
936 size_t len;
937 int error;
938
939 if (ap->a_vp->v_type == VDIR)
940 return (EOPNOTSUPP);
941
942 off = (int)uio->uio_offset;
943 /* Don't allow negative offsets */
944 if (off < 0)
945 return EINVAL;
946
947 bf = strbuf;
948 if ((error = kernfs_xread(kfs, off, &bf, sizeof(strbuf), &len)) == 0)
949 error = uiomove(bf, len, uio);
950 return (error);
951 }
952
953 int
954 kernfs_read(v)
955 void *v;
956 {
957 struct vop_read_args /* {
958 struct vnode *a_vp;
959 struct uio *a_uio;
960 int a_ioflag;
961 struct ucred *a_cred;
962 } */ *ap = v;
963 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
964
965 if (kfs->kfs_type < KFSlasttype) {
966 /* use default function */
967 return kernfs_default_xread(v);
968 }
969 return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_READ, v,
970 EOPNOTSUPP);
971 }
972
973 static int
974 kernfs_default_xwrite(v)
975 void *v;
976 {
977 struct vop_write_args /* {
978 struct vnode *a_vp;
979 struct uio *a_uio;
980 int a_ioflag;
981 kauth_cred_t a_cred;
982 } */ *ap = v;
983 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
984 struct uio *uio = ap->a_uio;
985 int error;
986 size_t xlen;
987 char strbuf[KSTRING];
988
989 if (uio->uio_offset != 0)
990 return (EINVAL);
991
992 xlen = min(uio->uio_resid, KSTRING-1);
993 if ((error = uiomove(strbuf, xlen, uio)) != 0)
994 return (error);
995
996 if (uio->uio_resid != 0)
997 return (EIO);
998
999 strbuf[xlen] = '\0';
1000 xlen = strlen(strbuf);
1001 return (kernfs_xwrite(kfs, strbuf, xlen));
1002 }
1003
1004 int
1005 kernfs_write(v)
1006 void *v;
1007 {
1008 struct vop_write_args /* {
1009 struct vnode *a_vp;
1010 struct uio *a_uio;
1011 int a_ioflag;
1012 kauth_cred_t a_cred;
1013 } */ *ap = v;
1014 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
1015
1016 if (kfs->kfs_type < KFSlasttype) {
1017 /* use default function */
1018 return kernfs_default_xwrite(v);
1019 }
1020 return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_WRITE, v,
1021 EOPNOTSUPP);
1022 }
1023
1024 int
1025 kernfs_ioctl(v)
1026 void *v;
1027 {
1028 struct vop_ioctl_args /* {
1029 const struct vnodeop_desc *a_desc;
1030 struct vnode *a_vp;
1031 u_long a_command;
1032 void *a_data;
1033 int a_fflag;
1034 kauth_cred_t a_cred;
1035 } */ *ap = v;
1036 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
1037
1038 return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_IOCTL, v,
1039 EPASSTHROUGH);
1040 }
1041
1042 static int
1043 kernfs_setdirentfileno_kt(struct dirent *d, const struct kern_target *kt,
1044 u_int32_t value, struct vop_readdir_args *ap)
1045 {
1046 struct kernfs_node *kfs;
1047 struct vnode *vp;
1048 int error;
1049
1050 if ((error = kernfs_allocvp(ap->a_vp->v_mount, &vp, kt->kt_tag, kt,
1051 value)) != 0)
1052 return error;
1053 if (kt->kt_tag == KFSdevice) {
1054 struct vattr va;
1055
1056 error = VOP_GETATTR(vp, &va, ap->a_cred);
1057 if (error != 0) {
1058 return error;
1059 }
1060 d->d_fileno = va.va_fileid;
1061 } else {
1062 kfs = VTOKERN(vp);
1063 d->d_fileno = kfs->kfs_fileno;
1064 }
1065 vput(vp);
1066 return 0;
1067 }
1068
1069 static int
1070 kernfs_setdirentfileno(struct dirent *d, off_t entry,
1071 struct kernfs_node *thisdir_kfs, const struct kern_target *parent_kt,
1072 const struct kern_target *kt, struct vop_readdir_args *ap)
1073 {
1074 const struct kern_target *ikt;
1075 int error;
1076
1077 switch (entry) {
1078 case 0:
1079 d->d_fileno = thisdir_kfs->kfs_fileno;
1080 return 0;
1081 case 1:
1082 ikt = parent_kt;
1083 break;
1084 default:
1085 ikt = kt;
1086 break;
1087 }
1088 if (ikt != thisdir_kfs->kfs_kt) {
1089 if ((error = kernfs_setdirentfileno_kt(d, ikt, 0, ap)) != 0)
1090 return error;
1091 } else
1092 d->d_fileno = thisdir_kfs->kfs_fileno;
1093 return 0;
1094 }
1095
1096 int
1097 kernfs_readdir(v)
1098 void *v;
1099 {
1100 struct vop_readdir_args /* {
1101 struct vnode *a_vp;
1102 struct uio *a_uio;
1103 kauth_cred_t a_cred;
1104 int *a_eofflag;
1105 off_t **a_cookies;
1106 int a_*ncookies;
1107 } */ *ap = v;
1108 struct uio *uio = ap->a_uio;
1109 struct dirent d;
1110 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
1111 const struct kern_target *kt;
1112 const struct dyn_kern_target *dkt = NULL;
1113 const struct kernfs_subdir *ks;
1114 off_t i, j;
1115 int error;
1116 off_t *cookies = NULL;
1117 int ncookies = 0, n;
1118 #ifdef IPSEC
1119 struct secasvar *sav, *sav2;
1120 struct secpolicy *sp;
1121 #endif
1122
1123 if (uio->uio_resid < UIO_MX)
1124 return (EINVAL);
1125 if (uio->uio_offset < 0)
1126 return (EINVAL);
1127
1128 error = 0;
1129 i = uio->uio_offset;
1130 memset(&d, 0, sizeof(d));
1131 d.d_reclen = UIO_MX;
1132 ncookies = uio->uio_resid / UIO_MX;
1133
1134 switch (kfs->kfs_type) {
1135 case KFSkern:
1136 if (i >= nkern_targets)
1137 return (0);
1138
1139 if (ap->a_ncookies) {
1140 ncookies = min(ncookies, (nkern_targets - i));
1141 cookies = malloc(ncookies * sizeof(off_t), M_TEMP,
1142 M_WAITOK);
1143 *ap->a_cookies = cookies;
1144 }
1145
1146 n = 0;
1147 for (; i < nkern_targets && uio->uio_resid >= UIO_MX; i++) {
1148 if (i < static_nkern_targets)
1149 kt = &kern_targets[i];
1150 else {
1151 if (dkt == NULL) {
1152 dkt = SIMPLEQ_FIRST(&dyn_kern_targets);
1153 for (j = static_nkern_targets; j < i &&
1154 dkt != NULL; j++)
1155 dkt = SIMPLEQ_NEXT(dkt, dkt_queue);
1156 if (j != i)
1157 break;
1158 } else {
1159 dkt = SIMPLEQ_NEXT(dkt, dkt_queue);
1160 }
1161 if (dkt == NULL)
1162 break;
1163 kt = &dkt->dkt_kt;
1164 }
1165 if (kt->kt_tag == KFSdevice) {
1166 dev_t *dp = kt->kt_data;
1167 struct vnode *fvp;
1168
1169 if (*dp == NODEV ||
1170 !vfinddev(*dp, kt->kt_vtype, &fvp))
1171 continue;
1172 }
1173 d.d_namlen = kt->kt_namlen;
1174 if ((error = kernfs_setdirentfileno(&d, i, kfs,
1175 &kern_targets[0], kt, ap)) != 0)
1176 break;
1177 memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1);
1178 d.d_type = kt->kt_type;
1179 if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1180 break;
1181 if (cookies)
1182 *cookies++ = i + 1;
1183 n++;
1184 }
1185 ncookies = n;
1186 break;
1187
1188 case KFSroot:
1189 if (i >= 2)
1190 return 0;
1191
1192 if (ap->a_ncookies) {
1193 ncookies = min(ncookies, (2 - i));
1194 cookies = malloc(ncookies * sizeof(off_t), M_TEMP,
1195 M_WAITOK);
1196 *ap->a_cookies = cookies;
1197 }
1198
1199 n = 0;
1200 for (; i < 2 && uio->uio_resid >= UIO_MX; i++) {
1201 kt = &kern_targets[i];
1202 d.d_namlen = kt->kt_namlen;
1203 d.d_fileno = KERNFS_FILENO(kt, kt->kt_tag, 0);
1204 memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1);
1205 d.d_type = kt->kt_type;
1206 if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1207 break;
1208 if (cookies)
1209 *cookies++ = i + 1;
1210 n++;
1211 }
1212 ncookies = n;
1213 break;
1214
1215 case KFSsubdir:
1216 ks = (struct kernfs_subdir *)kfs->kfs_kt->kt_data;
1217 if (i >= ks->ks_nentries)
1218 return (0);
1219
1220 if (ap->a_ncookies) {
1221 ncookies = min(ncookies, (ks->ks_nentries - i));
1222 cookies = malloc(ncookies * sizeof(off_t), M_TEMP,
1223 M_WAITOK);
1224 *ap->a_cookies = cookies;
1225 }
1226
1227 dkt = SIMPLEQ_FIRST(&ks->ks_entries);
1228 for (j = 0; j < i && dkt != NULL; j++)
1229 dkt = SIMPLEQ_NEXT(dkt, dkt_queue);
1230 n = 0;
1231 for (; i < ks->ks_nentries && uio->uio_resid >= UIO_MX; i++) {
1232 if (i < 2)
1233 kt = &subdir_targets[i];
1234 else {
1235 /* check if ks_nentries lied to us */
1236 if (dkt == NULL)
1237 break;
1238 kt = &dkt->dkt_kt;
1239 dkt = SIMPLEQ_NEXT(dkt, dkt_queue);
1240 }
1241 if (kt->kt_tag == KFSdevice) {
1242 dev_t *dp = kt->kt_data;
1243 struct vnode *fvp;
1244
1245 if (*dp == NODEV ||
1246 !vfinddev(*dp, kt->kt_vtype, &fvp))
1247 continue;
1248 }
1249 d.d_namlen = kt->kt_namlen;
1250 if ((error = kernfs_setdirentfileno(&d, i, kfs,
1251 ks->ks_parent, kt, ap)) != 0)
1252 break;
1253 memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1);
1254 d.d_type = kt->kt_type;
1255 if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1256 break;
1257 if (cookies)
1258 *cookies++ = i + 1;
1259 n++;
1260 }
1261 ncookies = n;
1262 break;
1263
1264 #ifdef IPSEC
1265 case KFSipsecsadir:
1266 /* count SA in the system */
1267 n = 0;
1268 if (&satailq == NULL)
1269 return 0;
1270 TAILQ_FOREACH(sav, &satailq, tailq) {
1271 for (sav2 = TAILQ_FIRST(&satailq);
1272 sav2 != sav;
1273 sav2 = TAILQ_NEXT(sav2, tailq)) {
1274 if (sav->spi == sav2->spi) {
1275 /* multiple SA with same SPI */
1276 break;
1277 }
1278 }
1279 if (sav == sav2 || sav->spi != sav2->spi)
1280 n++;
1281 }
1282
1283 if (i >= nipsecsa_targets + n)
1284 return (0);
1285
1286 if (ap->a_ncookies) {
1287 ncookies = min(ncookies, (n - i));
1288 cookies = malloc(ncookies * sizeof(off_t), M_TEMP,
1289 M_WAITOK);
1290 *ap->a_cookies = cookies;
1291 }
1292
1293 n = 0;
1294 for (; i < nipsecsa_targets && uio->uio_resid >= UIO_MX; i++) {
1295 kt = &ipsecsa_targets[i];
1296 d.d_namlen = kt->kt_namlen;
1297 if ((error = kernfs_setdirentfileno(&d, i, kfs,
1298 &kern_targets[0], kt, ap)) != 0)
1299 break;
1300 memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1);
1301 d.d_type = kt->kt_type;
1302 if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1303 break;
1304 if (cookies)
1305 *cookies++ = i + 1;
1306 n++;
1307 }
1308 if (error) {
1309 ncookies = n;
1310 break;
1311 }
1312
1313 TAILQ_FOREACH(sav, &satailq, tailq) {
1314 for (sav2 = TAILQ_FIRST(&satailq);
1315 sav2 != sav;
1316 sav2 = TAILQ_NEXT(sav2, tailq)) {
1317 if (sav->spi == sav2->spi) {
1318 /* multiple SA with same SPI */
1319 break;
1320 }
1321 }
1322 if (sav != sav2 && sav->spi == sav2->spi)
1323 continue;
1324 if (uio->uio_resid < UIO_MX)
1325 break;
1326 if ((error = kernfs_setdirentfileno_kt(&d, &ipsecsa_kt,
1327 sav->spi, ap)) != 0)
1328 break;
1329 d.d_namlen = snprintf(d.d_name, sizeof(d.d_name),
1330 "%u", ntohl(sav->spi));
1331 d.d_type = DT_REG;
1332 if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1333 break;
1334 if (cookies)
1335 *cookies++ = i + 1;
1336 n++;
1337 i++;
1338 }
1339 ncookies = n;
1340 break;
1341
1342 case KFSipsecspdir:
1343 /* count SP in the system */
1344 if (&sptailq == NULL)
1345 return 0;
1346
1347 n = 0;
1348 TAILQ_FOREACH(sp, &sptailq, tailq)
1349 n++;
1350
1351 if (i >= nipsecsp_targets + n)
1352 return (0);
1353
1354 if (ap->a_ncookies) {
1355 ncookies = min(ncookies, (n - i));
1356 cookies = malloc(ncookies * sizeof(off_t), M_TEMP,
1357 M_WAITOK);
1358 *ap->a_cookies = cookies;
1359 }
1360
1361 n = 0;
1362 for (; i < nipsecsp_targets && uio->uio_resid >= UIO_MX; i++) {
1363 kt = &ipsecsp_targets[i];
1364 d.d_namlen = kt->kt_namlen;
1365 if ((error = kernfs_setdirentfileno(&d, i, kfs,
1366 &kern_targets[0], kt, ap)) != 0)
1367 break;
1368 memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1);
1369 d.d_type = kt->kt_type;
1370 if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1371 break;
1372 if (cookies)
1373 *cookies++ = i + 1;
1374 n++;
1375 }
1376 if (error) {
1377 ncookies = n;
1378 break;
1379 }
1380
1381 TAILQ_FOREACH(sp, &sptailq, tailq) {
1382 if (uio->uio_resid < UIO_MX)
1383 break;
1384 if ((error = kernfs_setdirentfileno_kt(&d, &ipsecsp_kt,
1385 sp->id, ap)) != 0)
1386 break;
1387 d.d_namlen = snprintf(d.d_name, sizeof(d.d_name),
1388 "%u", sp->id);
1389 d.d_type = DT_REG;
1390 if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1391 break;
1392 if (cookies)
1393 *cookies++ = i + 1;
1394 n++;
1395 i++;
1396 }
1397 ncookies = n;
1398 break;
1399 #endif
1400
1401 default:
1402 error = ENOTDIR;
1403 break;
1404 }
1405
1406 if (ap->a_ncookies) {
1407 if (error) {
1408 if (cookies)
1409 free(*ap->a_cookies, M_TEMP);
1410 *ap->a_ncookies = 0;
1411 *ap->a_cookies = NULL;
1412 } else
1413 *ap->a_ncookies = ncookies;
1414 }
1415
1416 uio->uio_offset = i;
1417 return (error);
1418 }
1419
1420 int
1421 kernfs_inactive(v)
1422 void *v;
1423 {
1424 struct vop_inactive_args /* {
1425 struct vnode *a_vp;
1426 bool *a_recycle;
1427 } */ *ap = v;
1428 struct vnode *vp = ap->a_vp;
1429 const struct kernfs_node *kfs = VTOKERN(ap->a_vp);
1430 #ifdef IPSEC
1431 struct mbuf *m;
1432 struct secpolicy *sp;
1433 #endif
1434
1435 *ap->a_recycle = false;
1436 switch (kfs->kfs_type) {
1437 #ifdef IPSEC
1438 case KFSipsecsa:
1439 if (key_setdumpsa_spi == NULL)
1440 return 0;
1441 m = key_setdumpsa_spi(htonl(kfs->kfs_value));
1442 if (m)
1443 m_freem(m);
1444 else
1445 *ap->a_recycle = true;
1446 break;
1447 case KFSipsecsp:
1448 if (key_getspbyid == NULL)
1449 return 0;
1450 sp = key_getspbyid(kfs->kfs_value);
1451 if (sp)
1452 key_freesp(sp);
1453 else {
1454 *ap->a_recycle = true;
1455 }
1456 break;
1457 #endif
1458 default:
1459 break;
1460 }
1461 VOP_UNLOCK(vp, 0);
1462 return (0);
1463 }
1464
1465 int
1466 kernfs_reclaim(v)
1467 void *v;
1468 {
1469 struct vop_reclaim_args /* {
1470 struct vnode *a_vp;
1471 } */ *ap = v;
1472
1473 return (kernfs_freevp(ap->a_vp));
1474 }
1475
1476 /*
1477 * Return POSIX pathconf information applicable to special devices.
1478 */
1479 int
1480 kernfs_pathconf(v)
1481 void *v;
1482 {
1483 struct vop_pathconf_args /* {
1484 struct vnode *a_vp;
1485 int a_name;
1486 register_t *a_retval;
1487 } */ *ap = v;
1488
1489 switch (ap->a_name) {
1490 case _PC_LINK_MAX:
1491 *ap->a_retval = LINK_MAX;
1492 return (0);
1493 case _PC_MAX_CANON:
1494 *ap->a_retval = MAX_CANON;
1495 return (0);
1496 case _PC_MAX_INPUT:
1497 *ap->a_retval = MAX_INPUT;
1498 return (0);
1499 case _PC_PIPE_BUF:
1500 *ap->a_retval = PIPE_BUF;
1501 return (0);
1502 case _PC_CHOWN_RESTRICTED:
1503 *ap->a_retval = 1;
1504 return (0);
1505 case _PC_VDISABLE:
1506 *ap->a_retval = _POSIX_VDISABLE;
1507 return (0);
1508 case _PC_SYNC_IO:
1509 *ap->a_retval = 1;
1510 return (0);
1511 default:
1512 return (EINVAL);
1513 }
1514 /* NOTREACHED */
1515 }
1516
1517 /*
1518 * Print out the contents of a /dev/fd vnode.
1519 */
1520 /* ARGSUSED */
1521 int
1522 kernfs_print(void *v)
1523 {
1524
1525 printf("tag VT_KERNFS, kernfs vnode\n");
1526 return (0);
1527 }
1528
1529 int
1530 kernfs_link(v)
1531 void *v;
1532 {
1533 struct vop_link_args /* {
1534 struct vnode *a_dvp;
1535 struct vnode *a_vp;
1536 struct componentname *a_cnp;
1537 } */ *ap = v;
1538
1539 VOP_ABORTOP(ap->a_dvp, ap->a_cnp);
1540 vput(ap->a_dvp);
1541 return (EROFS);
1542 }
1543
1544 int
1545 kernfs_symlink(v)
1546 void *v;
1547 {
1548 struct vop_symlink_args /* {
1549 struct vnode *a_dvp;
1550 struct vnode **a_vpp;
1551 struct componentname *a_cnp;
1552 struct vattr *a_vap;
1553 char *a_target;
1554 } */ *ap = v;
1555
1556 VOP_ABORTOP(ap->a_dvp, ap->a_cnp);
1557 vput(ap->a_dvp);
1558 return (EROFS);
1559 }
1560