kernfs_vnops.c revision 1.136 1 /* $NetBSD: kernfs_vnops.c,v 1.136 2009/03/14 15:36:22 dsl Exp $ */
2
3 /*
4 * Copyright (c) 1992, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software donated to Berkeley by
8 * Jan-Simon Pendry.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)kernfs_vnops.c 8.15 (Berkeley) 5/21/95
35 */
36
37 /*
38 * Kernel parameter filesystem (/kern)
39 */
40
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: kernfs_vnops.c,v 1.136 2009/03/14 15:36:22 dsl Exp $");
43
44 #ifdef _KERNEL_OPT
45 #include "opt_ipsec.h"
46 #endif
47
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/kernel.h>
51 #include <sys/vmmeter.h>
52 #include <sys/time.h>
53 #include <sys/proc.h>
54 #include <sys/vnode.h>
55 #include <sys/malloc.h>
56 #include <sys/file.h>
57 #include <sys/stat.h>
58 #include <sys/mount.h>
59 #include <sys/namei.h>
60 #include <sys/buf.h>
61 #include <sys/dirent.h>
62 #include <sys/msgbuf.h>
63
64 #include <miscfs/genfs/genfs.h>
65 #include <miscfs/kernfs/kernfs.h>
66
67 #ifdef IPSEC
68 #include <sys/mbuf.h>
69 #include <net/route.h>
70 #include <netinet/in.h>
71 #include <netinet6/ipsec.h>
72 #include <netkey/key.h>
73 #endif
74
75 #include <uvm/uvm_extern.h>
76
77 #define KSTRING 256 /* Largest I/O available via this filesystem */
78 #define UIO_MX 32
79
80 #define READ_MODE (S_IRUSR|S_IRGRP|S_IROTH)
81 #define WRITE_MODE (S_IWUSR|S_IRUSR|S_IRGRP|S_IROTH)
82 #define UREAD_MODE (S_IRUSR)
83 #define DIR_MODE (S_IRUSR|S_IXUSR|S_IRGRP|S_IXGRP|S_IROTH|S_IXOTH)
84 #define UDIR_MODE (S_IRUSR|S_IXUSR)
85
86 #define N(s) sizeof(s)-1, s
87 const struct kern_target kern_targets[] = {
88 /* NOTE: The name must be less than UIO_MX-16 chars in length */
89 /* name data tag type ro/rw */
90 { DT_DIR, N("."), 0, KFSkern, VDIR, DIR_MODE },
91 { DT_DIR, N(".."), 0, KFSroot, VDIR, DIR_MODE },
92 { DT_REG, N("boottime"), &boottime.tv_sec, KFSint, VREG, READ_MODE },
93 /* XXXUNCONST */
94 { DT_REG, N("copyright"), __UNCONST(copyright),
95 KFSstring, VREG, READ_MODE },
96 { DT_REG, N("hostname"), 0, KFShostname, VREG, WRITE_MODE },
97 { DT_REG, N("hz"), &hz, KFSint, VREG, READ_MODE },
98 #ifdef IPSEC
99 { DT_DIR, N("ipsecsa"), 0, KFSipsecsadir, VDIR, UDIR_MODE },
100 { DT_DIR, N("ipsecsp"), 0, KFSipsecspdir, VDIR, UDIR_MODE },
101 #endif
102 { DT_REG, N("loadavg"), 0, KFSavenrun, VREG, READ_MODE },
103 { DT_REG, N("msgbuf"), 0, KFSmsgbuf, VREG, READ_MODE },
104 { DT_REG, N("pagesize"), &uvmexp.pagesize, KFSint, VREG, READ_MODE },
105 { DT_REG, N("physmem"), &physmem, KFSint, VREG, READ_MODE },
106 #if 0
107 { DT_DIR, N("root"), 0, KFSnull, VDIR, DIR_MODE },
108 #endif
109 { DT_BLK, N("rootdev"), &rootdev, KFSdevice, VBLK, READ_MODE },
110 { DT_CHR, N("rrootdev"), &rrootdev, KFSdevice, VCHR, READ_MODE },
111 { DT_REG, N("time"), 0, KFStime, VREG, READ_MODE },
112 /* XXXUNCONST */
113 { DT_REG, N("version"), __UNCONST(version),
114 KFSstring, VREG, READ_MODE },
115 };
116 const struct kern_target subdir_targets[] = {
117 /* NOTE: The name must be less than UIO_MX-16 chars in length */
118 /* name data tag type ro/rw */
119 { DT_DIR, N("."), 0, KFSsubdir, VDIR, DIR_MODE },
120 { DT_DIR, N(".."), 0, KFSkern, VDIR, DIR_MODE },
121 };
122 #ifdef IPSEC
123 const struct kern_target ipsecsa_targets[] = {
124 /* NOTE: The name must be less than UIO_MX-16 chars in length */
125 /* name data tag type ro/rw */
126 { DT_DIR, N("."), 0, KFSipsecsadir, VDIR, DIR_MODE },
127 { DT_DIR, N(".."), 0, KFSkern, VDIR, DIR_MODE },
128 };
129 const struct kern_target ipsecsp_targets[] = {
130 /* NOTE: The name must be less than UIO_MX-16 chars in length */
131 /* name data tag type ro/rw */
132 { DT_DIR, N("."), 0, KFSipsecspdir, VDIR, DIR_MODE },
133 { DT_DIR, N(".."), 0, KFSkern, VDIR, DIR_MODE },
134 };
135 const struct kern_target ipsecsa_kt =
136 { DT_DIR, N(""), 0, KFSipsecsa, VREG, UREAD_MODE };
137 const struct kern_target ipsecsp_kt =
138 { DT_DIR, N(""), 0, KFSipsecsp, VREG, UREAD_MODE };
139 #endif
140 #undef N
141 SIMPLEQ_HEAD(,dyn_kern_target) dyn_kern_targets =
142 SIMPLEQ_HEAD_INITIALIZER(dyn_kern_targets);
143 int nkern_targets = sizeof(kern_targets) / sizeof(kern_targets[0]);
144 const int static_nkern_targets = sizeof(kern_targets) / sizeof(kern_targets[0]);
145 #ifdef IPSEC
146 int nipsecsa_targets = sizeof(ipsecsa_targets) / sizeof(ipsecsa_targets[0]);
147 int nipsecsp_targets = sizeof(ipsecsp_targets) / sizeof(ipsecsp_targets[0]);
148 int nkern_dirs = 4; /* 2 extra subdirs */
149 #else
150 int nkern_dirs = 2;
151 #endif
152
153 int kernfs_try_fileop(kfstype, kfsfileop, void *, int);
154 int kernfs_try_xread(kfstype, const struct kernfs_node *, char **,
155 size_t, int);
156 int kernfs_try_xwrite(kfstype, const struct kernfs_node *, char *,
157 size_t, int);
158
159 static int kernfs_default_xread(void *v);
160 static int kernfs_default_xwrite(void *v);
161 static int kernfs_default_fileop_getattr(void *);
162
163 /* must include all fileop's */
164 const struct kernfs_fileop kernfs_default_fileops[] = {
165 { .kf_fileop = KERNFS_XREAD },
166 { .kf_fileop = KERNFS_XWRITE },
167 { .kf_fileop = KERNFS_FILEOP_OPEN },
168 { .kf_fileop = KERNFS_FILEOP_GETATTR,
169 .kf_vop = kernfs_default_fileop_getattr },
170 { .kf_fileop = KERNFS_FILEOP_IOCTL },
171 { .kf_fileop = KERNFS_FILEOP_CLOSE },
172 { .kf_fileop = KERNFS_FILEOP_READ,
173 .kf_vop = kernfs_default_xread },
174 { .kf_fileop = KERNFS_FILEOP_WRITE,
175 .kf_vop = kernfs_default_xwrite },
176 };
177
178 int kernfs_lookup(void *);
179 #define kernfs_create genfs_eopnotsupp
180 #define kernfs_mknod genfs_eopnotsupp
181 int kernfs_open(void *);
182 int kernfs_close(void *);
183 int kernfs_access(void *);
184 int kernfs_getattr(void *);
185 int kernfs_setattr(void *);
186 int kernfs_read(void *);
187 int kernfs_write(void *);
188 #define kernfs_fcntl genfs_fcntl
189 int kernfs_ioctl(void *);
190 #define kernfs_poll genfs_poll
191 #define kernfs_revoke genfs_revoke
192 #define kernfs_fsync genfs_nullop
193 #define kernfs_seek genfs_nullop
194 #define kernfs_remove genfs_eopnotsupp
195 int kernfs_link(void *);
196 #define kernfs_rename genfs_eopnotsupp
197 #define kernfs_mkdir genfs_eopnotsupp
198 #define kernfs_rmdir genfs_eopnotsupp
199 int kernfs_symlink(void *);
200 int kernfs_readdir(void *);
201 #define kernfs_readlink genfs_eopnotsupp
202 #define kernfs_abortop genfs_abortop
203 int kernfs_inactive(void *);
204 int kernfs_reclaim(void *);
205 #define kernfs_lock genfs_lock
206 #define kernfs_unlock genfs_unlock
207 #define kernfs_bmap genfs_badop
208 #define kernfs_strategy genfs_badop
209 int kernfs_print(void *);
210 #define kernfs_islocked genfs_islocked
211 int kernfs_pathconf(void *);
212 #define kernfs_advlock genfs_einval
213 #define kernfs_bwrite genfs_eopnotsupp
214 #define kernfs_putpages genfs_putpages
215
216 static int kernfs_xread(struct kernfs_node *, int, char **,
217 size_t, size_t *);
218 static int kernfs_xwrite(const struct kernfs_node *, char *, size_t);
219
220 int (**kernfs_vnodeop_p)(void *);
221 const struct vnodeopv_entry_desc kernfs_vnodeop_entries[] = {
222 { &vop_default_desc, vn_default_error },
223 { &vop_lookup_desc, kernfs_lookup }, /* lookup */
224 { &vop_create_desc, kernfs_create }, /* create */
225 { &vop_mknod_desc, kernfs_mknod }, /* mknod */
226 { &vop_open_desc, kernfs_open }, /* open */
227 { &vop_close_desc, kernfs_close }, /* close */
228 { &vop_access_desc, kernfs_access }, /* access */
229 { &vop_getattr_desc, kernfs_getattr }, /* getattr */
230 { &vop_setattr_desc, kernfs_setattr }, /* setattr */
231 { &vop_read_desc, kernfs_read }, /* read */
232 { &vop_write_desc, kernfs_write }, /* write */
233 { &vop_fcntl_desc, kernfs_fcntl }, /* fcntl */
234 { &vop_ioctl_desc, kernfs_ioctl }, /* ioctl */
235 { &vop_poll_desc, kernfs_poll }, /* poll */
236 { &vop_revoke_desc, kernfs_revoke }, /* revoke */
237 { &vop_fsync_desc, kernfs_fsync }, /* fsync */
238 { &vop_seek_desc, kernfs_seek }, /* seek */
239 { &vop_remove_desc, kernfs_remove }, /* remove */
240 { &vop_link_desc, kernfs_link }, /* link */
241 { &vop_rename_desc, kernfs_rename }, /* rename */
242 { &vop_mkdir_desc, kernfs_mkdir }, /* mkdir */
243 { &vop_rmdir_desc, kernfs_rmdir }, /* rmdir */
244 { &vop_symlink_desc, kernfs_symlink }, /* symlink */
245 { &vop_readdir_desc, kernfs_readdir }, /* readdir */
246 { &vop_readlink_desc, kernfs_readlink }, /* readlink */
247 { &vop_abortop_desc, kernfs_abortop }, /* abortop */
248 { &vop_inactive_desc, kernfs_inactive }, /* inactive */
249 { &vop_reclaim_desc, kernfs_reclaim }, /* reclaim */
250 { &vop_lock_desc, kernfs_lock }, /* lock */
251 { &vop_unlock_desc, kernfs_unlock }, /* unlock */
252 { &vop_bmap_desc, kernfs_bmap }, /* bmap */
253 { &vop_strategy_desc, kernfs_strategy }, /* strategy */
254 { &vop_print_desc, kernfs_print }, /* print */
255 { &vop_islocked_desc, kernfs_islocked }, /* islocked */
256 { &vop_pathconf_desc, kernfs_pathconf }, /* pathconf */
257 { &vop_advlock_desc, kernfs_advlock }, /* advlock */
258 { &vop_bwrite_desc, kernfs_bwrite }, /* bwrite */
259 { &vop_putpages_desc, kernfs_putpages }, /* putpages */
260 { NULL, NULL }
261 };
262 const struct vnodeopv_desc kernfs_vnodeop_opv_desc =
263 { &kernfs_vnodeop_p, kernfs_vnodeop_entries };
264
265 static inline int
266 kernfs_fileop_compare(struct kernfs_fileop *a, struct kernfs_fileop *b)
267 {
268 if (a->kf_type < b->kf_type)
269 return -1;
270 if (a->kf_type > b->kf_type)
271 return 1;
272 if (a->kf_fileop < b->kf_fileop)
273 return -1;
274 if (a->kf_fileop > b->kf_fileop)
275 return 1;
276 return (0);
277 }
278
279 SPLAY_HEAD(kfsfileoptree, kernfs_fileop) kfsfileoptree =
280 SPLAY_INITIALIZER(kfsfileoptree);
281 SPLAY_PROTOTYPE(kfsfileoptree, kernfs_fileop, kf_node, kernfs_fileop_compare);
282 SPLAY_GENERATE(kfsfileoptree, kernfs_fileop, kf_node, kernfs_fileop_compare);
283
284 kfstype
285 kernfs_alloctype(int nkf, const struct kernfs_fileop *kf)
286 {
287 static u_char nextfreetype = KFSlasttype;
288 struct kernfs_fileop *dkf, *fkf, skf;
289 int i;
290
291 /* XXX need to keep track of dkf's memory if we support
292 deallocating types */
293 dkf = malloc(sizeof(kernfs_default_fileops), M_TEMP, M_WAITOK);
294 memcpy(dkf, kernfs_default_fileops, sizeof(kernfs_default_fileops));
295
296 for (i = 0; i < sizeof(kernfs_default_fileops) /
297 sizeof(kernfs_default_fileops[0]); i++) {
298 dkf[i].kf_type = nextfreetype;
299 SPLAY_INSERT(kfsfileoptree, &kfsfileoptree, &dkf[i]);
300 }
301
302 for (i = 0; i < nkf; i++) {
303 skf.kf_type = nextfreetype;
304 skf.kf_fileop = kf[i].kf_fileop;
305 if ((fkf = SPLAY_FIND(kfsfileoptree, &kfsfileoptree, &skf)))
306 fkf->kf_vop = kf[i].kf_vop;
307 }
308
309 return nextfreetype++;
310 }
311
312 int
313 kernfs_try_fileop(kfstype type, kfsfileop fileop, void *v, int error)
314 {
315 struct kernfs_fileop *kf, skf;
316
317 skf.kf_type = type;
318 skf.kf_fileop = fileop;
319 if ((kf = SPLAY_FIND(kfsfileoptree, &kfsfileoptree, &skf)))
320 if (kf->kf_vop)
321 return kf->kf_vop(v);
322 return error;
323 }
324
325 int
326 kernfs_try_xread(kfstype type, const struct kernfs_node *kfs, char **bfp,
327 size_t len, int error)
328 {
329 struct kernfs_fileop *kf, skf;
330
331 skf.kf_type = type;
332 skf.kf_fileop = KERNFS_XREAD;
333 if ((kf = SPLAY_FIND(kfsfileoptree, &kfsfileoptree, &skf)))
334 if (kf->kf_xread)
335 return kf->kf_xread(kfs, bfp, len);
336 return error;
337 }
338
339 int
340 kernfs_try_xwrite(kfstype type, const struct kernfs_node *kfs, char *bf,
341 size_t len, int error)
342 {
343 struct kernfs_fileop *kf, skf;
344
345 skf.kf_type = type;
346 skf.kf_fileop = KERNFS_XWRITE;
347 if ((kf = SPLAY_FIND(kfsfileoptree, &kfsfileoptree, &skf)))
348 if (kf->kf_xwrite)
349 return kf->kf_xwrite(kfs, bf, len);
350 return error;
351 }
352
353 int
354 kernfs_addentry(kernfs_parentdir_t *pkt, kernfs_entry_t *dkt)
355 {
356 struct kernfs_subdir *ks, *parent;
357
358 if (pkt == NULL) {
359 SIMPLEQ_INSERT_TAIL(&dyn_kern_targets, dkt, dkt_queue);
360 nkern_targets++;
361 if (dkt->dkt_kt.kt_vtype == VDIR)
362 nkern_dirs++;
363 } else {
364 parent = (struct kernfs_subdir *)pkt->kt_data;
365 SIMPLEQ_INSERT_TAIL(&parent->ks_entries, dkt, dkt_queue);
366 parent->ks_nentries++;
367 if (dkt->dkt_kt.kt_vtype == VDIR)
368 parent->ks_dirs++;
369 }
370 if (dkt->dkt_kt.kt_vtype == VDIR && dkt->dkt_kt.kt_data == NULL) {
371 ks = malloc(sizeof(struct kernfs_subdir),
372 M_TEMP, M_WAITOK);
373 SIMPLEQ_INIT(&ks->ks_entries);
374 ks->ks_nentries = 2; /* . and .. */
375 ks->ks_dirs = 2;
376 ks->ks_parent = pkt ? pkt : &kern_targets[0];
377 dkt->dkt_kt.kt_data = ks;
378 }
379 return 0;
380 }
381
382 static int
383 kernfs_xread(struct kernfs_node *kfs, int off, char **bufp, size_t len, size_t *wrlen)
384 {
385 const struct kern_target *kt;
386 #ifdef IPSEC
387 struct mbuf *m;
388 #endif
389 int err;
390
391 kt = kfs->kfs_kt;
392
393 switch (kfs->kfs_type) {
394 case KFStime: {
395 struct timeval tv;
396
397 microtime(&tv);
398 snprintf(*bufp, len, "%lld %ld\n", (long long)tv.tv_sec,
399 (long)tv.tv_usec);
400 break;
401 }
402
403 case KFSint: {
404 int *ip = kt->kt_data;
405
406 snprintf(*bufp, len, "%d\n", *ip);
407 break;
408 }
409
410 case KFSstring: {
411 char *cp = kt->kt_data;
412
413 *bufp = cp;
414 break;
415 }
416
417 case KFSmsgbuf: {
418 long n;
419
420 /*
421 * deal with cases where the message buffer has
422 * become corrupted.
423 */
424 if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) {
425 msgbufenabled = 0;
426 return (ENXIO);
427 }
428
429 /*
430 * Note that reads of /kern/msgbuf won't necessarily yield
431 * consistent results, if the message buffer is modified
432 * while the read is in progress. The worst that can happen
433 * is that incorrect data will be read. There's no way
434 * that this can crash the system unless the values in the
435 * message buffer header are corrupted, but that'll cause
436 * the system to die anyway.
437 */
438 if (off >= msgbufp->msg_bufs) {
439 *wrlen = 0;
440 return (0);
441 }
442 n = msgbufp->msg_bufx + off;
443 if (n >= msgbufp->msg_bufs)
444 n -= msgbufp->msg_bufs;
445 len = min(msgbufp->msg_bufs - n, msgbufp->msg_bufs - off);
446 *bufp = msgbufp->msg_bufc + n;
447 *wrlen = len;
448 return (0);
449 }
450
451 case KFShostname: {
452 char *cp = hostname;
453 size_t xlen = hostnamelen;
454
455 if (xlen >= (len - 2))
456 return (EINVAL);
457
458 memcpy(*bufp, cp, xlen);
459 (*bufp)[xlen] = '\n';
460 (*bufp)[xlen+1] = '\0';
461 len = strlen(*bufp);
462 break;
463 }
464
465 case KFSavenrun:
466 averunnable.fscale = FSCALE;
467 snprintf(*bufp, len, "%d %d %d %ld\n",
468 averunnable.ldavg[0], averunnable.ldavg[1],
469 averunnable.ldavg[2], averunnable.fscale);
470 break;
471
472 #ifdef IPSEC
473 case KFSipsecsa:
474 if (key_setdumpsa_spi == NULL)
475 return 0;
476 /*
477 * Note that SA configuration could be changed during the
478 * read operation, resulting in garbled output.
479 */
480 m = key_setdumpsa_spi(htonl(kfs->kfs_value));
481 if (!m)
482 return (ENOBUFS);
483 if (off >= m->m_pkthdr.len) {
484 *wrlen = 0;
485 m_freem(m);
486 return (0);
487 }
488 if (len > m->m_pkthdr.len - off)
489 len = m->m_pkthdr.len - off;
490 m_copydata(m, off, len, *bufp);
491 *wrlen = len;
492 m_freem(m);
493 return (0);
494
495 case KFSipsecsp:
496 /*
497 * Note that SP configuration could be changed during the
498 * read operation, resulting in garbled output.
499 */
500 if (key_getspbyid == NULL)
501 return 0;
502 if (!kfs->kfs_v) {
503 struct secpolicy *sp;
504
505 sp = key_getspbyid(kfs->kfs_value);
506 if (sp)
507 kfs->kfs_v = sp;
508 else
509 return (ENOENT);
510 }
511 m = key_setdumpsp((struct secpolicy *)kfs->kfs_v,
512 SADB_X_SPDGET, 0, 0);
513 if (!m)
514 return (ENOBUFS);
515 if (off >= m->m_pkthdr.len) {
516 *wrlen = 0;
517 m_freem(m);
518 return (0);
519 }
520 if (len > m->m_pkthdr.len - off)
521 len = m->m_pkthdr.len - off;
522 m_copydata(m, off, len, *bufp);
523 *wrlen = len;
524 m_freem(m);
525 return (0);
526 #endif
527
528 default:
529 err = kernfs_try_xread(kfs->kfs_type, kfs, bufp, len,
530 EOPNOTSUPP);
531 if (err)
532 return err;
533 }
534
535 len = strlen(*bufp);
536 if (len <= off)
537 *wrlen = 0;
538 else {
539 *bufp += off;
540 *wrlen = len - off;
541 }
542 return (0);
543 }
544
545 static int
546 kernfs_xwrite(const struct kernfs_node *kfs, char *bf, size_t len)
547 {
548
549 switch (kfs->kfs_type) {
550 case KFShostname:
551 if (bf[len-1] == '\n')
552 --len;
553 memcpy(hostname, bf, len);
554 hostname[len] = '\0';
555 hostnamelen = (size_t) len;
556 return (0);
557
558 default:
559 return kernfs_try_xwrite(kfs->kfs_type, kfs, bf, len, EIO);
560 }
561 }
562
563
564 /*
565 * vp is the current namei directory
566 * ndp is the name to locate in that directory...
567 */
568 int
569 kernfs_lookup(void *v)
570 {
571 struct vop_lookup_args /* {
572 struct vnode * a_dvp;
573 struct vnode ** a_vpp;
574 struct componentname * a_cnp;
575 } */ *ap = v;
576 struct componentname *cnp = ap->a_cnp;
577 struct vnode **vpp = ap->a_vpp;
578 struct vnode *dvp = ap->a_dvp;
579 const char *pname = cnp->cn_nameptr;
580 const struct kernfs_node *kfs;
581 const struct kern_target *kt;
582 const struct dyn_kern_target *dkt;
583 const struct kernfs_subdir *ks;
584 int error, i;
585 #ifdef IPSEC
586 char *ep;
587 u_int32_t id;
588 #endif
589
590 *vpp = NULLVP;
591
592 if (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME)
593 return (EROFS);
594
595 if (cnp->cn_namelen == 1 && *pname == '.') {
596 *vpp = dvp;
597 VREF(dvp);
598 return (0);
599 }
600
601 kfs = VTOKERN(dvp);
602 switch (kfs->kfs_type) {
603 case KFSkern:
604 /*
605 * Shouldn't get here with .. in the root node.
606 */
607 if (cnp->cn_flags & ISDOTDOT)
608 return (EIO);
609
610 for (i = 0; i < static_nkern_targets; i++) {
611 kt = &kern_targets[i];
612 if (cnp->cn_namelen == kt->kt_namlen &&
613 memcmp(kt->kt_name, pname, cnp->cn_namelen) == 0)
614 goto found;
615 }
616 SIMPLEQ_FOREACH(dkt, &dyn_kern_targets, dkt_queue) {
617 if (cnp->cn_namelen == dkt->dkt_kt.kt_namlen &&
618 memcmp(dkt->dkt_kt.kt_name, pname, cnp->cn_namelen) == 0) {
619 kt = &dkt->dkt_kt;
620 goto found;
621 }
622 }
623 break;
624
625 found:
626 error = kernfs_allocvp(dvp->v_mount, vpp, kt->kt_tag, kt, 0);
627 return (error);
628
629 case KFSsubdir:
630 ks = (struct kernfs_subdir *)kfs->kfs_kt->kt_data;
631 if (cnp->cn_flags & ISDOTDOT) {
632 kt = ks->ks_parent;
633 goto found;
634 }
635
636 SIMPLEQ_FOREACH(dkt, &ks->ks_entries, dkt_queue) {
637 if (cnp->cn_namelen == dkt->dkt_kt.kt_namlen &&
638 memcmp(dkt->dkt_kt.kt_name, pname, cnp->cn_namelen) == 0) {
639 kt = &dkt->dkt_kt;
640 goto found;
641 }
642 }
643 break;
644
645 #ifdef IPSEC
646 case KFSipsecsadir:
647 if (cnp->cn_flags & ISDOTDOT) {
648 kt = &kern_targets[0];
649 goto found;
650 }
651
652 for (i = 2; i < nipsecsa_targets; i++) {
653 kt = &ipsecsa_targets[i];
654 if (cnp->cn_namelen == kt->kt_namlen &&
655 memcmp(kt->kt_name, pname, cnp->cn_namelen) == 0)
656 goto found;
657 }
658
659 ep = NULL;
660 id = strtoul(pname, &ep, 10);
661 if (!ep || *ep || ep == pname)
662 break;
663
664 error = kernfs_allocvp(dvp->v_mount, vpp, KFSipsecsa, &ipsecsa_kt, id);
665 return (error);
666
667 case KFSipsecspdir:
668 if (cnp->cn_flags & ISDOTDOT) {
669 kt = &kern_targets[0];
670 goto found;
671 }
672
673 for (i = 2; i < nipsecsp_targets; i++) {
674 kt = &ipsecsp_targets[i];
675 if (cnp->cn_namelen == kt->kt_namlen &&
676 memcmp(kt->kt_name, pname, cnp->cn_namelen) == 0)
677 goto found;
678 }
679
680 ep = NULL;
681 id = strtoul(pname, &ep, 10);
682 if (!ep || *ep || ep == pname)
683 break;
684
685 error = kernfs_allocvp(dvp->v_mount, vpp, KFSipsecsp, &ipsecsp_kt, id);
686 return (error);
687 #endif
688
689 default:
690 return (ENOTDIR);
691 }
692
693 return (cnp->cn_nameiop == LOOKUP ? ENOENT : EROFS);
694 }
695
696 int
697 kernfs_open(void *v)
698 {
699 struct vop_open_args /* {
700 struct vnode *a_vp;
701 int a_mode;
702 kauth_cred_t a_cred;
703 } */ *ap = v;
704 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
705 #ifdef IPSEC
706 struct mbuf *m;
707 struct secpolicy *sp;
708 #endif
709
710 switch (kfs->kfs_type) {
711 #ifdef IPSEC
712 case KFSipsecsa:
713 if (key_setdumpsa_spi == NULL)
714 return 0;
715 m = key_setdumpsa_spi(htonl(kfs->kfs_value));
716 if (m) {
717 m_freem(m);
718 return (0);
719 } else
720 return (ENOENT);
721
722 case KFSipsecsp:
723 if (key_getspbyid == NULL)
724 return 0;
725 sp = key_getspbyid(kfs->kfs_value);
726 if (sp) {
727 kfs->kfs_v = sp;
728 return (0);
729 } else
730 return (ENOENT);
731 #endif
732
733 default:
734 return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_OPEN,
735 v, 0);
736 }
737 }
738
739 int
740 kernfs_close(void *v)
741 {
742 struct vop_close_args /* {
743 struct vnode *a_vp;
744 int a_fflag;
745 kauth_cred_t a_cred;
746 } */ *ap = v;
747 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
748
749 switch (kfs->kfs_type) {
750 #ifdef IPSEC
751 case KFSipsecsp:
752 if (key_freesp == NULL)
753 return 0;
754 key_freesp((struct secpolicy *)kfs->kfs_v);
755 break;
756 #endif
757
758 default:
759 return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_CLOSE,
760 v, 0);
761 }
762
763 return (0);
764 }
765
766 int
767 kernfs_access(void *v)
768 {
769 struct vop_access_args /* {
770 struct vnode *a_vp;
771 int a_mode;
772 kauth_cred_t a_cred;
773 } */ *ap = v;
774 struct vattr va;
775 int error;
776
777 if ((error = VOP_GETATTR(ap->a_vp, &va, ap->a_cred)) != 0)
778 return (error);
779
780 return (vaccess(va.va_type, va.va_mode, va.va_uid, va.va_gid,
781 ap->a_mode, ap->a_cred));
782 }
783
784 static int
785 kernfs_default_fileop_getattr(void *v)
786 {
787 struct vop_getattr_args /* {
788 struct vnode *a_vp;
789 struct vattr *a_vap;
790 kauth_cred_t a_cred;
791 } */ *ap = v;
792 struct vattr *vap = ap->a_vap;
793
794 vap->va_nlink = 1;
795 vap->va_bytes = vap->va_size = 0;
796
797 return 0;
798 }
799
800 int
801 kernfs_getattr(void *v)
802 {
803 struct vop_getattr_args /* {
804 struct vnode *a_vp;
805 struct vattr *a_vap;
806 kauth_cred_t a_cred;
807 } */ *ap = v;
808 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
809 struct kernfs_subdir *ks;
810 struct vattr *vap = ap->a_vap;
811 int error = 0;
812 char strbuf[KSTRING], *bf;
813 size_t nread, total;
814
815 VATTR_NULL(vap);
816 vap->va_type = ap->a_vp->v_type;
817 vap->va_uid = 0;
818 vap->va_gid = 0;
819 vap->va_mode = kfs->kfs_mode;
820 vap->va_fileid = kfs->kfs_fileno;
821 vap->va_flags = 0;
822 vap->va_size = 0;
823 vap->va_blocksize = DEV_BSIZE;
824 /* Make all times be current TOD, except for the "boottime" node. */
825 if (kfs->kfs_kt->kt_namlen == 8 &&
826 !memcmp(kfs->kfs_kt->kt_name, "boottime", 8)) {
827 vap->va_ctime = boottime;
828 } else {
829 getnanotime(&vap->va_ctime);
830 }
831 vap->va_atime = vap->va_mtime = vap->va_ctime;
832 vap->va_gen = 0;
833 vap->va_flags = 0;
834 vap->va_rdev = 0;
835 vap->va_bytes = 0;
836
837 switch (kfs->kfs_type) {
838 case KFSkern:
839 vap->va_nlink = nkern_dirs;
840 vap->va_bytes = vap->va_size = DEV_BSIZE;
841 break;
842
843 case KFSroot:
844 vap->va_nlink = 1;
845 vap->va_bytes = vap->va_size = DEV_BSIZE;
846 break;
847
848 case KFSsubdir:
849 ks = (struct kernfs_subdir *)kfs->kfs_kt->kt_data;
850 vap->va_nlink = ks->ks_dirs;
851 vap->va_bytes = vap->va_size = DEV_BSIZE;
852 break;
853
854 case KFSnull:
855 case KFStime:
856 case KFSint:
857 case KFSstring:
858 case KFShostname:
859 case KFSavenrun:
860 case KFSdevice:
861 case KFSmsgbuf:
862 #ifdef IPSEC
863 case KFSipsecsa:
864 case KFSipsecsp:
865 #endif
866 vap->va_nlink = 1;
867 total = 0;
868 do {
869 bf = strbuf;
870 error = kernfs_xread(kfs, total, &bf,
871 sizeof(strbuf), &nread);
872 total += nread;
873 } while (error == 0 && nread != 0);
874 vap->va_bytes = vap->va_size = total;
875 break;
876
877 #ifdef IPSEC
878 case KFSipsecsadir:
879 case KFSipsecspdir:
880 vap->va_nlink = 2;
881 vap->va_bytes = vap->va_size = DEV_BSIZE;
882 break;
883 #endif
884
885 default:
886 error = kernfs_try_fileop(kfs->kfs_type,
887 KERNFS_FILEOP_GETATTR, v, EINVAL);
888 break;
889 }
890
891 return (error);
892 }
893
894 /*ARGSUSED*/
895 int
896 kernfs_setattr(void *v)
897 {
898
899 /*
900 * Silently ignore attribute changes.
901 * This allows for open with truncate to have no
902 * effect until some data is written. I want to
903 * do it this way because all writes are atomic.
904 */
905 return (0);
906 }
907
908 int
909 kernfs_default_xread(void *v)
910 {
911 struct vop_read_args /* {
912 struct vnode *a_vp;
913 struct uio *a_uio;
914 int a_ioflag;
915 kauth_cred_t a_cred;
916 } */ *ap = v;
917 struct uio *uio = ap->a_uio;
918 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
919 char strbuf[KSTRING], *bf;
920 int off;
921 size_t len;
922 int error;
923
924 if (ap->a_vp->v_type == VDIR)
925 return (EOPNOTSUPP);
926
927 off = (int)uio->uio_offset;
928 /* Don't allow negative offsets */
929 if (off < 0)
930 return EINVAL;
931
932 bf = strbuf;
933 if ((error = kernfs_xread(kfs, off, &bf, sizeof(strbuf), &len)) == 0)
934 error = uiomove(bf, len, uio);
935 return (error);
936 }
937
938 int
939 kernfs_read(void *v)
940 {
941 struct vop_read_args /* {
942 struct vnode *a_vp;
943 struct uio *a_uio;
944 int a_ioflag;
945 struct ucred *a_cred;
946 } */ *ap = v;
947 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
948
949 if (kfs->kfs_type < KFSlasttype) {
950 /* use default function */
951 return kernfs_default_xread(v);
952 }
953 return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_READ, v,
954 EOPNOTSUPP);
955 }
956
957 static int
958 kernfs_default_xwrite(void *v)
959 {
960 struct vop_write_args /* {
961 struct vnode *a_vp;
962 struct uio *a_uio;
963 int a_ioflag;
964 kauth_cred_t a_cred;
965 } */ *ap = v;
966 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
967 struct uio *uio = ap->a_uio;
968 int error;
969 size_t xlen;
970 char strbuf[KSTRING];
971
972 if (uio->uio_offset != 0)
973 return (EINVAL);
974
975 xlen = min(uio->uio_resid, KSTRING-1);
976 if ((error = uiomove(strbuf, xlen, uio)) != 0)
977 return (error);
978
979 if (uio->uio_resid != 0)
980 return (EIO);
981
982 strbuf[xlen] = '\0';
983 xlen = strlen(strbuf);
984 return (kernfs_xwrite(kfs, strbuf, xlen));
985 }
986
987 int
988 kernfs_write(void *v)
989 {
990 struct vop_write_args /* {
991 struct vnode *a_vp;
992 struct uio *a_uio;
993 int a_ioflag;
994 kauth_cred_t a_cred;
995 } */ *ap = v;
996 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
997
998 if (kfs->kfs_type < KFSlasttype) {
999 /* use default function */
1000 return kernfs_default_xwrite(v);
1001 }
1002 return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_WRITE, v,
1003 EOPNOTSUPP);
1004 }
1005
1006 int
1007 kernfs_ioctl(void *v)
1008 {
1009 struct vop_ioctl_args /* {
1010 const struct vnodeop_desc *a_desc;
1011 struct vnode *a_vp;
1012 u_long a_command;
1013 void *a_data;
1014 int a_fflag;
1015 kauth_cred_t a_cred;
1016 } */ *ap = v;
1017 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
1018
1019 return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_IOCTL, v,
1020 EPASSTHROUGH);
1021 }
1022
1023 static int
1024 kernfs_setdirentfileno_kt(struct dirent *d, const struct kern_target *kt,
1025 u_int32_t value, struct vop_readdir_args *ap)
1026 {
1027 struct kernfs_node *kfs;
1028 struct vnode *vp;
1029 int error;
1030
1031 if ((error = kernfs_allocvp(ap->a_vp->v_mount, &vp, kt->kt_tag, kt,
1032 value)) != 0)
1033 return error;
1034 if (kt->kt_tag == KFSdevice) {
1035 struct vattr va;
1036
1037 error = VOP_GETATTR(vp, &va, ap->a_cred);
1038 if (error != 0) {
1039 return error;
1040 }
1041 d->d_fileno = va.va_fileid;
1042 } else {
1043 kfs = VTOKERN(vp);
1044 d->d_fileno = kfs->kfs_fileno;
1045 }
1046 vput(vp);
1047 return 0;
1048 }
1049
1050 static int
1051 kernfs_setdirentfileno(struct dirent *d, off_t entry,
1052 struct kernfs_node *thisdir_kfs, const struct kern_target *parent_kt,
1053 const struct kern_target *kt, struct vop_readdir_args *ap)
1054 {
1055 const struct kern_target *ikt;
1056 int error;
1057
1058 switch (entry) {
1059 case 0:
1060 d->d_fileno = thisdir_kfs->kfs_fileno;
1061 return 0;
1062 case 1:
1063 ikt = parent_kt;
1064 break;
1065 default:
1066 ikt = kt;
1067 break;
1068 }
1069 if (ikt != thisdir_kfs->kfs_kt) {
1070 if ((error = kernfs_setdirentfileno_kt(d, ikt, 0, ap)) != 0)
1071 return error;
1072 } else
1073 d->d_fileno = thisdir_kfs->kfs_fileno;
1074 return 0;
1075 }
1076
1077 int
1078 kernfs_readdir(void *v)
1079 {
1080 struct vop_readdir_args /* {
1081 struct vnode *a_vp;
1082 struct uio *a_uio;
1083 kauth_cred_t a_cred;
1084 int *a_eofflag;
1085 off_t **a_cookies;
1086 int a_*ncookies;
1087 } */ *ap = v;
1088 struct uio *uio = ap->a_uio;
1089 struct dirent d;
1090 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
1091 const struct kern_target *kt;
1092 const struct dyn_kern_target *dkt = NULL;
1093 const struct kernfs_subdir *ks;
1094 off_t i, j;
1095 int error;
1096 off_t *cookies = NULL;
1097 int ncookies = 0, n;
1098 #ifdef IPSEC
1099 struct secasvar *sav, *sav2;
1100 struct secpolicy *sp;
1101 #endif
1102
1103 if (uio->uio_resid < UIO_MX)
1104 return (EINVAL);
1105 if (uio->uio_offset < 0)
1106 return (EINVAL);
1107
1108 error = 0;
1109 i = uio->uio_offset;
1110 memset(&d, 0, sizeof(d));
1111 d.d_reclen = UIO_MX;
1112 ncookies = uio->uio_resid / UIO_MX;
1113
1114 switch (kfs->kfs_type) {
1115 case KFSkern:
1116 if (i >= nkern_targets)
1117 return (0);
1118
1119 if (ap->a_ncookies) {
1120 ncookies = min(ncookies, (nkern_targets - i));
1121 cookies = malloc(ncookies * sizeof(off_t), M_TEMP,
1122 M_WAITOK);
1123 *ap->a_cookies = cookies;
1124 }
1125
1126 n = 0;
1127 for (; i < nkern_targets && uio->uio_resid >= UIO_MX; i++) {
1128 if (i < static_nkern_targets)
1129 kt = &kern_targets[i];
1130 else {
1131 if (dkt == NULL) {
1132 dkt = SIMPLEQ_FIRST(&dyn_kern_targets);
1133 for (j = static_nkern_targets; j < i &&
1134 dkt != NULL; j++)
1135 dkt = SIMPLEQ_NEXT(dkt, dkt_queue);
1136 if (j != i)
1137 break;
1138 } else {
1139 dkt = SIMPLEQ_NEXT(dkt, dkt_queue);
1140 }
1141 if (dkt == NULL)
1142 break;
1143 kt = &dkt->dkt_kt;
1144 }
1145 if (kt->kt_tag == KFSdevice) {
1146 dev_t *dp = kt->kt_data;
1147 struct vnode *fvp;
1148
1149 if (*dp == NODEV ||
1150 !vfinddev(*dp, kt->kt_vtype, &fvp))
1151 continue;
1152 }
1153 d.d_namlen = kt->kt_namlen;
1154 if ((error = kernfs_setdirentfileno(&d, i, kfs,
1155 &kern_targets[0], kt, ap)) != 0)
1156 break;
1157 memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1);
1158 d.d_type = kt->kt_type;
1159 if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1160 break;
1161 if (cookies)
1162 *cookies++ = i + 1;
1163 n++;
1164 }
1165 ncookies = n;
1166 break;
1167
1168 case KFSroot:
1169 if (i >= 2)
1170 return 0;
1171
1172 if (ap->a_ncookies) {
1173 ncookies = min(ncookies, (2 - i));
1174 cookies = malloc(ncookies * sizeof(off_t), M_TEMP,
1175 M_WAITOK);
1176 *ap->a_cookies = cookies;
1177 }
1178
1179 n = 0;
1180 for (; i < 2 && uio->uio_resid >= UIO_MX; i++) {
1181 kt = &kern_targets[i];
1182 d.d_namlen = kt->kt_namlen;
1183 d.d_fileno = KERNFS_FILENO(kt, kt->kt_tag, 0);
1184 memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1);
1185 d.d_type = kt->kt_type;
1186 if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1187 break;
1188 if (cookies)
1189 *cookies++ = i + 1;
1190 n++;
1191 }
1192 ncookies = n;
1193 break;
1194
1195 case KFSsubdir:
1196 ks = (struct kernfs_subdir *)kfs->kfs_kt->kt_data;
1197 if (i >= ks->ks_nentries)
1198 return (0);
1199
1200 if (ap->a_ncookies) {
1201 ncookies = min(ncookies, (ks->ks_nentries - i));
1202 cookies = malloc(ncookies * sizeof(off_t), M_TEMP,
1203 M_WAITOK);
1204 *ap->a_cookies = cookies;
1205 }
1206
1207 dkt = SIMPLEQ_FIRST(&ks->ks_entries);
1208 for (j = 0; j < i && dkt != NULL; j++)
1209 dkt = SIMPLEQ_NEXT(dkt, dkt_queue);
1210 n = 0;
1211 for (; i < ks->ks_nentries && uio->uio_resid >= UIO_MX; i++) {
1212 if (i < 2)
1213 kt = &subdir_targets[i];
1214 else {
1215 /* check if ks_nentries lied to us */
1216 if (dkt == NULL)
1217 break;
1218 kt = &dkt->dkt_kt;
1219 dkt = SIMPLEQ_NEXT(dkt, dkt_queue);
1220 }
1221 if (kt->kt_tag == KFSdevice) {
1222 dev_t *dp = kt->kt_data;
1223 struct vnode *fvp;
1224
1225 if (*dp == NODEV ||
1226 !vfinddev(*dp, kt->kt_vtype, &fvp))
1227 continue;
1228 }
1229 d.d_namlen = kt->kt_namlen;
1230 if ((error = kernfs_setdirentfileno(&d, i, kfs,
1231 ks->ks_parent, kt, ap)) != 0)
1232 break;
1233 memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1);
1234 d.d_type = kt->kt_type;
1235 if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1236 break;
1237 if (cookies)
1238 *cookies++ = i + 1;
1239 n++;
1240 }
1241 ncookies = n;
1242 break;
1243
1244 #ifdef IPSEC
1245 case KFSipsecsadir:
1246 /* count SA in the system */
1247 n = 0;
1248 if (&satailq == NULL)
1249 return 0;
1250 TAILQ_FOREACH(sav, &satailq, tailq) {
1251 for (sav2 = TAILQ_FIRST(&satailq);
1252 sav2 != sav;
1253 sav2 = TAILQ_NEXT(sav2, tailq)) {
1254 if (sav->spi == sav2->spi) {
1255 /* multiple SA with same SPI */
1256 break;
1257 }
1258 }
1259 if (sav == sav2 || sav->spi != sav2->spi)
1260 n++;
1261 }
1262
1263 if (i >= nipsecsa_targets + n)
1264 return (0);
1265
1266 if (ap->a_ncookies) {
1267 ncookies = min(ncookies, (n - i));
1268 cookies = malloc(ncookies * sizeof(off_t), M_TEMP,
1269 M_WAITOK);
1270 *ap->a_cookies = cookies;
1271 }
1272
1273 n = 0;
1274 for (; i < nipsecsa_targets && uio->uio_resid >= UIO_MX; i++) {
1275 kt = &ipsecsa_targets[i];
1276 d.d_namlen = kt->kt_namlen;
1277 if ((error = kernfs_setdirentfileno(&d, i, kfs,
1278 &kern_targets[0], kt, ap)) != 0)
1279 break;
1280 memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1);
1281 d.d_type = kt->kt_type;
1282 if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1283 break;
1284 if (cookies)
1285 *cookies++ = i + 1;
1286 n++;
1287 }
1288 if (error) {
1289 ncookies = n;
1290 break;
1291 }
1292
1293 TAILQ_FOREACH(sav, &satailq, tailq) {
1294 for (sav2 = TAILQ_FIRST(&satailq);
1295 sav2 != sav;
1296 sav2 = TAILQ_NEXT(sav2, tailq)) {
1297 if (sav->spi == sav2->spi) {
1298 /* multiple SA with same SPI */
1299 break;
1300 }
1301 }
1302 if (sav != sav2 && sav->spi == sav2->spi)
1303 continue;
1304 if (uio->uio_resid < UIO_MX)
1305 break;
1306 if ((error = kernfs_setdirentfileno_kt(&d, &ipsecsa_kt,
1307 sav->spi, ap)) != 0)
1308 break;
1309 d.d_namlen = snprintf(d.d_name, sizeof(d.d_name),
1310 "%u", ntohl(sav->spi));
1311 d.d_type = DT_REG;
1312 if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1313 break;
1314 if (cookies)
1315 *cookies++ = i + 1;
1316 n++;
1317 i++;
1318 }
1319 ncookies = n;
1320 break;
1321
1322 case KFSipsecspdir:
1323 /* count SP in the system */
1324 if (&sptailq == NULL)
1325 return 0;
1326
1327 n = 0;
1328 TAILQ_FOREACH(sp, &sptailq, tailq)
1329 n++;
1330
1331 if (i >= nipsecsp_targets + n)
1332 return (0);
1333
1334 if (ap->a_ncookies) {
1335 ncookies = min(ncookies, (n - i));
1336 cookies = malloc(ncookies * sizeof(off_t), M_TEMP,
1337 M_WAITOK);
1338 *ap->a_cookies = cookies;
1339 }
1340
1341 n = 0;
1342 for (; i < nipsecsp_targets && uio->uio_resid >= UIO_MX; i++) {
1343 kt = &ipsecsp_targets[i];
1344 d.d_namlen = kt->kt_namlen;
1345 if ((error = kernfs_setdirentfileno(&d, i, kfs,
1346 &kern_targets[0], kt, ap)) != 0)
1347 break;
1348 memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1);
1349 d.d_type = kt->kt_type;
1350 if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1351 break;
1352 if (cookies)
1353 *cookies++ = i + 1;
1354 n++;
1355 }
1356 if (error) {
1357 ncookies = n;
1358 break;
1359 }
1360
1361 TAILQ_FOREACH(sp, &sptailq, tailq) {
1362 if (uio->uio_resid < UIO_MX)
1363 break;
1364 if ((error = kernfs_setdirentfileno_kt(&d, &ipsecsp_kt,
1365 sp->id, ap)) != 0)
1366 break;
1367 d.d_namlen = snprintf(d.d_name, sizeof(d.d_name),
1368 "%u", sp->id);
1369 d.d_type = DT_REG;
1370 if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1371 break;
1372 if (cookies)
1373 *cookies++ = i + 1;
1374 n++;
1375 i++;
1376 }
1377 ncookies = n;
1378 break;
1379 #endif
1380
1381 default:
1382 error = ENOTDIR;
1383 break;
1384 }
1385
1386 if (ap->a_ncookies) {
1387 if (error) {
1388 if (cookies)
1389 free(*ap->a_cookies, M_TEMP);
1390 *ap->a_ncookies = 0;
1391 *ap->a_cookies = NULL;
1392 } else
1393 *ap->a_ncookies = ncookies;
1394 }
1395
1396 uio->uio_offset = i;
1397 return (error);
1398 }
1399
1400 int
1401 kernfs_inactive(void *v)
1402 {
1403 struct vop_inactive_args /* {
1404 struct vnode *a_vp;
1405 bool *a_recycle;
1406 } */ *ap = v;
1407 struct vnode *vp = ap->a_vp;
1408 const struct kernfs_node *kfs = VTOKERN(ap->a_vp);
1409 #ifdef IPSEC
1410 struct mbuf *m;
1411 struct secpolicy *sp;
1412 #endif
1413
1414 *ap->a_recycle = false;
1415 switch (kfs->kfs_type) {
1416 #ifdef IPSEC
1417 case KFSipsecsa:
1418 if (key_setdumpsa_spi == NULL)
1419 return 0;
1420 m = key_setdumpsa_spi(htonl(kfs->kfs_value));
1421 if (m)
1422 m_freem(m);
1423 else
1424 *ap->a_recycle = true;
1425 break;
1426 case KFSipsecsp:
1427 if (key_getspbyid == NULL)
1428 return 0;
1429 sp = key_getspbyid(kfs->kfs_value);
1430 if (sp)
1431 key_freesp(sp);
1432 else {
1433 *ap->a_recycle = true;
1434 }
1435 break;
1436 #endif
1437 default:
1438 break;
1439 }
1440 VOP_UNLOCK(vp, 0);
1441 return (0);
1442 }
1443
1444 int
1445 kernfs_reclaim(void *v)
1446 {
1447 struct vop_reclaim_args /* {
1448 struct vnode *a_vp;
1449 } */ *ap = v;
1450
1451 return (kernfs_freevp(ap->a_vp));
1452 }
1453
1454 /*
1455 * Return POSIX pathconf information applicable to special devices.
1456 */
1457 int
1458 kernfs_pathconf(void *v)
1459 {
1460 struct vop_pathconf_args /* {
1461 struct vnode *a_vp;
1462 int a_name;
1463 register_t *a_retval;
1464 } */ *ap = v;
1465
1466 switch (ap->a_name) {
1467 case _PC_LINK_MAX:
1468 *ap->a_retval = LINK_MAX;
1469 return (0);
1470 case _PC_MAX_CANON:
1471 *ap->a_retval = MAX_CANON;
1472 return (0);
1473 case _PC_MAX_INPUT:
1474 *ap->a_retval = MAX_INPUT;
1475 return (0);
1476 case _PC_PIPE_BUF:
1477 *ap->a_retval = PIPE_BUF;
1478 return (0);
1479 case _PC_CHOWN_RESTRICTED:
1480 *ap->a_retval = 1;
1481 return (0);
1482 case _PC_VDISABLE:
1483 *ap->a_retval = _POSIX_VDISABLE;
1484 return (0);
1485 case _PC_SYNC_IO:
1486 *ap->a_retval = 1;
1487 return (0);
1488 default:
1489 return (EINVAL);
1490 }
1491 /* NOTREACHED */
1492 }
1493
1494 /*
1495 * Print out the contents of a /dev/fd vnode.
1496 */
1497 /* ARGSUSED */
1498 int
1499 kernfs_print(void *v)
1500 {
1501
1502 printf("tag VT_KERNFS, kernfs vnode\n");
1503 return (0);
1504 }
1505
1506 int
1507 kernfs_link(void *v)
1508 {
1509 struct vop_link_args /* {
1510 struct vnode *a_dvp;
1511 struct vnode *a_vp;
1512 struct componentname *a_cnp;
1513 } */ *ap = v;
1514
1515 VOP_ABORTOP(ap->a_dvp, ap->a_cnp);
1516 vput(ap->a_dvp);
1517 return (EROFS);
1518 }
1519
1520 int
1521 kernfs_symlink(void *v)
1522 {
1523 struct vop_symlink_args /* {
1524 struct vnode *a_dvp;
1525 struct vnode **a_vpp;
1526 struct componentname *a_cnp;
1527 struct vattr *a_vap;
1528 char *a_target;
1529 } */ *ap = v;
1530
1531 VOP_ABORTOP(ap->a_dvp, ap->a_cnp);
1532 vput(ap->a_dvp);
1533 return (EROFS);
1534 }
1535