kernfs_vnops.c revision 1.140.2.1 1 /* $NetBSD: kernfs_vnops.c,v 1.140.2.1 2010/04/30 14:44:15 uebayasi Exp $ */
2
3 /*
4 * Copyright (c) 1992, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software donated to Berkeley by
8 * Jan-Simon Pendry.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)kernfs_vnops.c 8.15 (Berkeley) 5/21/95
35 */
36
37 /*
38 * Kernel parameter filesystem (/kern)
39 */
40
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: kernfs_vnops.c,v 1.140.2.1 2010/04/30 14:44:15 uebayasi Exp $");
43
44 #ifdef _KERNEL_OPT
45 #include "opt_ipsec.h"
46 #endif
47
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/kernel.h>
51 #include <sys/vmmeter.h>
52 #include <sys/time.h>
53 #include <sys/proc.h>
54 #include <sys/vnode.h>
55 #include <sys/malloc.h>
56 #include <sys/file.h>
57 #include <sys/stat.h>
58 #include <sys/mount.h>
59 #include <sys/namei.h>
60 #include <sys/buf.h>
61 #include <sys/dirent.h>
62 #include <sys/msgbuf.h>
63
64 #include <miscfs/genfs/genfs.h>
65 #include <miscfs/kernfs/kernfs.h>
66
67 #ifdef IPSEC
68 #include <sys/mbuf.h>
69 #include <net/route.h>
70 #include <netinet/in.h>
71 #include <netinet6/ipsec.h>
72 #include <netkey/key.h>
73 #endif
74
75 #include <uvm/uvm_extern.h>
76
77 #define KSTRING 256 /* Largest I/O available via this filesystem */
78 #define UIO_MX 32
79
80 #define READ_MODE (S_IRUSR|S_IRGRP|S_IROTH)
81 #define WRITE_MODE (S_IWUSR|S_IRUSR|S_IRGRP|S_IROTH)
82 #define UREAD_MODE (S_IRUSR)
83 #define DIR_MODE (S_IRUSR|S_IXUSR|S_IRGRP|S_IXGRP|S_IROTH|S_IXOTH)
84 #define UDIR_MODE (S_IRUSR|S_IXUSR)
85
86 #define N(s) sizeof(s)-1, s
87 const struct kern_target kern_targets[] = {
88 /* NOTE: The name must be less than UIO_MX-16 chars in length */
89 /* name data tag type ro/rw */
90 { DT_DIR, N("."), 0, KFSkern, VDIR, DIR_MODE },
91 { DT_DIR, N(".."), 0, KFSroot, VDIR, DIR_MODE },
92 { DT_REG, N("boottime"), &boottime.tv_sec, KFSint, VREG, READ_MODE },
93 /* XXXUNCONST */
94 { DT_REG, N("copyright"), __UNCONST(copyright),
95 KFSstring, VREG, READ_MODE },
96 { DT_REG, N("hostname"), 0, KFShostname, VREG, WRITE_MODE },
97 { DT_REG, N("hz"), &hz, KFSint, VREG, READ_MODE },
98 #ifdef IPSEC
99 { DT_DIR, N("ipsecsa"), 0, KFSipsecsadir, VDIR, UDIR_MODE },
100 { DT_DIR, N("ipsecsp"), 0, KFSipsecspdir, VDIR, UDIR_MODE },
101 #endif
102 { DT_REG, N("loadavg"), 0, KFSavenrun, VREG, READ_MODE },
103 { DT_REG, N("msgbuf"), 0, KFSmsgbuf, VREG, READ_MODE },
104 { DT_REG, N("pagesize"), &uvmexp.pagesize, KFSint, VREG, READ_MODE },
105 { DT_REG, N("physmem"), &physmem, KFSint, VREG, READ_MODE },
106 #if 0
107 { DT_DIR, N("root"), 0, KFSnull, VDIR, DIR_MODE },
108 #endif
109 { DT_BLK, N("rootdev"), &rootdev, KFSdevice, VBLK, READ_MODE },
110 { DT_CHR, N("rrootdev"), &rrootdev, KFSdevice, VCHR, READ_MODE },
111 { DT_REG, N("time"), 0, KFStime, VREG, READ_MODE },
112 /* XXXUNCONST */
113 { DT_REG, N("version"), __UNCONST(version),
114 KFSstring, VREG, READ_MODE },
115 };
116 const struct kern_target subdir_targets[] = {
117 /* NOTE: The name must be less than UIO_MX-16 chars in length */
118 /* name data tag type ro/rw */
119 { DT_DIR, N("."), 0, KFSsubdir, VDIR, DIR_MODE },
120 { DT_DIR, N(".."), 0, KFSkern, VDIR, DIR_MODE },
121 };
122 #ifdef IPSEC
123 const struct kern_target ipsecsa_targets[] = {
124 /* NOTE: The name must be less than UIO_MX-16 chars in length */
125 /* name data tag type ro/rw */
126 { DT_DIR, N("."), 0, KFSipsecsadir, VDIR, DIR_MODE },
127 { DT_DIR, N(".."), 0, KFSkern, VDIR, DIR_MODE },
128 };
129 const struct kern_target ipsecsp_targets[] = {
130 /* NOTE: The name must be less than UIO_MX-16 chars in length */
131 /* name data tag type ro/rw */
132 { DT_DIR, N("."), 0, KFSipsecspdir, VDIR, DIR_MODE },
133 { DT_DIR, N(".."), 0, KFSkern, VDIR, DIR_MODE },
134 };
135 const struct kern_target ipsecsa_kt =
136 { DT_DIR, N(""), 0, KFSipsecsa, VREG, UREAD_MODE };
137 const struct kern_target ipsecsp_kt =
138 { DT_DIR, N(""), 0, KFSipsecsp, VREG, UREAD_MODE };
139 #endif
140 #undef N
141 SIMPLEQ_HEAD(,dyn_kern_target) dyn_kern_targets =
142 SIMPLEQ_HEAD_INITIALIZER(dyn_kern_targets);
143 int nkern_targets = sizeof(kern_targets) / sizeof(kern_targets[0]);
144 const int static_nkern_targets = sizeof(kern_targets) / sizeof(kern_targets[0]);
145 #ifdef IPSEC
146 int nipsecsa_targets = sizeof(ipsecsa_targets) / sizeof(ipsecsa_targets[0]);
147 int nipsecsp_targets = sizeof(ipsecsp_targets) / sizeof(ipsecsp_targets[0]);
148 int nkern_dirs = 4; /* 2 extra subdirs */
149 #else
150 int nkern_dirs = 2;
151 #endif
152
153 int kernfs_try_fileop(kfstype, kfsfileop, void *, int);
154 int kernfs_try_xread(kfstype, const struct kernfs_node *, char **,
155 size_t, int);
156 int kernfs_try_xwrite(kfstype, const struct kernfs_node *, char *,
157 size_t, int);
158
159 static int kernfs_default_xread(void *v);
160 static int kernfs_default_xwrite(void *v);
161 static int kernfs_default_fileop_getattr(void *);
162
163 /* must include all fileop's */
164 const struct kernfs_fileop kernfs_default_fileops[] = {
165 { .kf_fileop = KERNFS_XREAD },
166 { .kf_fileop = KERNFS_XWRITE },
167 { .kf_fileop = KERNFS_FILEOP_OPEN },
168 { .kf_fileop = KERNFS_FILEOP_GETATTR,
169 .kf_vop = kernfs_default_fileop_getattr },
170 { .kf_fileop = KERNFS_FILEOP_IOCTL },
171 { .kf_fileop = KERNFS_FILEOP_CLOSE },
172 { .kf_fileop = KERNFS_FILEOP_READ,
173 .kf_vop = kernfs_default_xread },
174 { .kf_fileop = KERNFS_FILEOP_WRITE,
175 .kf_vop = kernfs_default_xwrite },
176 };
177
178 int kernfs_lookup(void *);
179 #define kernfs_create genfs_eopnotsupp
180 #define kernfs_mknod genfs_eopnotsupp
181 int kernfs_open(void *);
182 int kernfs_close(void *);
183 int kernfs_access(void *);
184 int kernfs_getattr(void *);
185 int kernfs_setattr(void *);
186 int kernfs_read(void *);
187 int kernfs_write(void *);
188 #define kernfs_fcntl genfs_fcntl
189 int kernfs_ioctl(void *);
190 #define kernfs_poll genfs_poll
191 #define kernfs_revoke genfs_revoke
192 #define kernfs_fsync genfs_nullop
193 #define kernfs_seek genfs_nullop
194 #define kernfs_remove genfs_eopnotsupp
195 int kernfs_link(void *);
196 #define kernfs_rename genfs_eopnotsupp
197 #define kernfs_mkdir genfs_eopnotsupp
198 #define kernfs_rmdir genfs_eopnotsupp
199 int kernfs_symlink(void *);
200 int kernfs_readdir(void *);
201 #define kernfs_readlink genfs_eopnotsupp
202 #define kernfs_abortop genfs_abortop
203 int kernfs_inactive(void *);
204 int kernfs_reclaim(void *);
205 #define kernfs_lock genfs_lock
206 #define kernfs_unlock genfs_unlock
207 #define kernfs_bmap genfs_badop
208 #define kernfs_strategy genfs_badop
209 int kernfs_print(void *);
210 #define kernfs_islocked genfs_islocked
211 int kernfs_pathconf(void *);
212 #define kernfs_advlock genfs_einval
213 #define kernfs_bwrite genfs_eopnotsupp
214 #define kernfs_putpages genfs_putpages
215
216 static int kernfs_xread(struct kernfs_node *, int, char **,
217 size_t, size_t *);
218 static int kernfs_xwrite(const struct kernfs_node *, char *, size_t);
219
220 int (**kernfs_vnodeop_p)(void *);
221 const struct vnodeopv_entry_desc kernfs_vnodeop_entries[] = {
222 { &vop_default_desc, vn_default_error },
223 { &vop_lookup_desc, kernfs_lookup }, /* lookup */
224 { &vop_create_desc, kernfs_create }, /* create */
225 { &vop_mknod_desc, kernfs_mknod }, /* mknod */
226 { &vop_open_desc, kernfs_open }, /* open */
227 { &vop_close_desc, kernfs_close }, /* close */
228 { &vop_access_desc, kernfs_access }, /* access */
229 { &vop_getattr_desc, kernfs_getattr }, /* getattr */
230 { &vop_setattr_desc, kernfs_setattr }, /* setattr */
231 { &vop_read_desc, kernfs_read }, /* read */
232 { &vop_write_desc, kernfs_write }, /* write */
233 { &vop_fcntl_desc, kernfs_fcntl }, /* fcntl */
234 { &vop_ioctl_desc, kernfs_ioctl }, /* ioctl */
235 { &vop_poll_desc, kernfs_poll }, /* poll */
236 { &vop_revoke_desc, kernfs_revoke }, /* revoke */
237 { &vop_fsync_desc, kernfs_fsync }, /* fsync */
238 { &vop_seek_desc, kernfs_seek }, /* seek */
239 { &vop_remove_desc, kernfs_remove }, /* remove */
240 { &vop_link_desc, kernfs_link }, /* link */
241 { &vop_rename_desc, kernfs_rename }, /* rename */
242 { &vop_mkdir_desc, kernfs_mkdir }, /* mkdir */
243 { &vop_rmdir_desc, kernfs_rmdir }, /* rmdir */
244 { &vop_symlink_desc, kernfs_symlink }, /* symlink */
245 { &vop_readdir_desc, kernfs_readdir }, /* readdir */
246 { &vop_readlink_desc, kernfs_readlink }, /* readlink */
247 { &vop_abortop_desc, kernfs_abortop }, /* abortop */
248 { &vop_inactive_desc, kernfs_inactive }, /* inactive */
249 { &vop_reclaim_desc, kernfs_reclaim }, /* reclaim */
250 { &vop_lock_desc, kernfs_lock }, /* lock */
251 { &vop_unlock_desc, kernfs_unlock }, /* unlock */
252 { &vop_bmap_desc, kernfs_bmap }, /* bmap */
253 { &vop_strategy_desc, kernfs_strategy }, /* strategy */
254 { &vop_print_desc, kernfs_print }, /* print */
255 { &vop_islocked_desc, kernfs_islocked }, /* islocked */
256 { &vop_pathconf_desc, kernfs_pathconf }, /* pathconf */
257 { &vop_advlock_desc, kernfs_advlock }, /* advlock */
258 { &vop_bwrite_desc, kernfs_bwrite }, /* bwrite */
259 { &vop_putpages_desc, kernfs_putpages }, /* putpages */
260 { NULL, NULL }
261 };
262 const struct vnodeopv_desc kernfs_vnodeop_opv_desc =
263 { &kernfs_vnodeop_p, kernfs_vnodeop_entries };
264
265 static inline int
266 kernfs_fileop_compare(struct kernfs_fileop *a, struct kernfs_fileop *b)
267 {
268 if (a->kf_type < b->kf_type)
269 return -1;
270 if (a->kf_type > b->kf_type)
271 return 1;
272 if (a->kf_fileop < b->kf_fileop)
273 return -1;
274 if (a->kf_fileop > b->kf_fileop)
275 return 1;
276 return (0);
277 }
278
279 SPLAY_HEAD(kfsfileoptree, kernfs_fileop) kfsfileoptree =
280 SPLAY_INITIALIZER(kfsfileoptree);
281 SPLAY_PROTOTYPE(kfsfileoptree, kernfs_fileop, kf_node, kernfs_fileop_compare);
282 SPLAY_GENERATE(kfsfileoptree, kernfs_fileop, kf_node, kernfs_fileop_compare);
283
284 kfstype
285 kernfs_alloctype(int nkf, const struct kernfs_fileop *kf)
286 {
287 static u_char nextfreetype = KFSlasttype;
288 struct kernfs_fileop *dkf, *fkf, skf;
289 int i;
290
291 /* XXX need to keep track of dkf's memory if we support
292 deallocating types */
293 dkf = malloc(sizeof(kernfs_default_fileops), M_TEMP, M_WAITOK);
294 memcpy(dkf, kernfs_default_fileops, sizeof(kernfs_default_fileops));
295
296 for (i = 0; i < sizeof(kernfs_default_fileops) /
297 sizeof(kernfs_default_fileops[0]); i++) {
298 dkf[i].kf_type = nextfreetype;
299 SPLAY_INSERT(kfsfileoptree, &kfsfileoptree, &dkf[i]);
300 }
301
302 for (i = 0; i < nkf; i++) {
303 skf.kf_type = nextfreetype;
304 skf.kf_fileop = kf[i].kf_fileop;
305 if ((fkf = SPLAY_FIND(kfsfileoptree, &kfsfileoptree, &skf)))
306 fkf->kf_vop = kf[i].kf_vop;
307 }
308
309 return nextfreetype++;
310 }
311
312 int
313 kernfs_try_fileop(kfstype type, kfsfileop fileop, void *v, int error)
314 {
315 struct kernfs_fileop *kf, skf;
316
317 skf.kf_type = type;
318 skf.kf_fileop = fileop;
319 if ((kf = SPLAY_FIND(kfsfileoptree, &kfsfileoptree, &skf)))
320 if (kf->kf_vop)
321 return kf->kf_vop(v);
322 return error;
323 }
324
325 int
326 kernfs_try_xread(kfstype type, const struct kernfs_node *kfs, char **bfp,
327 size_t len, int error)
328 {
329 struct kernfs_fileop *kf, skf;
330
331 skf.kf_type = type;
332 skf.kf_fileop = KERNFS_XREAD;
333 if ((kf = SPLAY_FIND(kfsfileoptree, &kfsfileoptree, &skf)))
334 if (kf->kf_xread)
335 return kf->kf_xread(kfs, bfp, len);
336 return error;
337 }
338
339 int
340 kernfs_try_xwrite(kfstype type, const struct kernfs_node *kfs, char *bf,
341 size_t len, int error)
342 {
343 struct kernfs_fileop *kf, skf;
344
345 skf.kf_type = type;
346 skf.kf_fileop = KERNFS_XWRITE;
347 if ((kf = SPLAY_FIND(kfsfileoptree, &kfsfileoptree, &skf)))
348 if (kf->kf_xwrite)
349 return kf->kf_xwrite(kfs, bf, len);
350 return error;
351 }
352
353 int
354 kernfs_addentry(kernfs_parentdir_t *pkt, kernfs_entry_t *dkt)
355 {
356 struct kernfs_subdir *ks, *parent;
357
358 if (pkt == NULL) {
359 SIMPLEQ_INSERT_TAIL(&dyn_kern_targets, dkt, dkt_queue);
360 nkern_targets++;
361 if (dkt->dkt_kt.kt_vtype == VDIR)
362 nkern_dirs++;
363 } else {
364 parent = (struct kernfs_subdir *)pkt->kt_data;
365 SIMPLEQ_INSERT_TAIL(&parent->ks_entries, dkt, dkt_queue);
366 parent->ks_nentries++;
367 if (dkt->dkt_kt.kt_vtype == VDIR)
368 parent->ks_dirs++;
369 }
370 if (dkt->dkt_kt.kt_vtype == VDIR && dkt->dkt_kt.kt_data == NULL) {
371 ks = malloc(sizeof(struct kernfs_subdir),
372 M_TEMP, M_WAITOK);
373 SIMPLEQ_INIT(&ks->ks_entries);
374 ks->ks_nentries = 2; /* . and .. */
375 ks->ks_dirs = 2;
376 ks->ks_parent = pkt ? pkt : &kern_targets[0];
377 dkt->dkt_kt.kt_data = ks;
378 }
379 return 0;
380 }
381
382 static int
383 kernfs_xread(struct kernfs_node *kfs, int off, char **bufp, size_t len, size_t *wrlen)
384 {
385 const struct kern_target *kt;
386 #ifdef IPSEC
387 struct mbuf *m;
388 #endif
389 int err;
390
391 kt = kfs->kfs_kt;
392
393 switch (kfs->kfs_type) {
394 case KFStime: {
395 struct timeval tv;
396
397 microtime(&tv);
398 snprintf(*bufp, len, "%lld %ld\n", (long long)tv.tv_sec,
399 (long)tv.tv_usec);
400 break;
401 }
402
403 case KFSint: {
404 int *ip = kt->kt_data;
405
406 snprintf(*bufp, len, "%d\n", *ip);
407 break;
408 }
409
410 case KFSstring: {
411 char *cp = kt->kt_data;
412
413 *bufp = cp;
414 break;
415 }
416
417 case KFSmsgbuf: {
418 long n;
419
420 /*
421 * deal with cases where the message buffer has
422 * become corrupted.
423 */
424 if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) {
425 msgbufenabled = 0;
426 return (ENXIO);
427 }
428
429 /*
430 * Note that reads of /kern/msgbuf won't necessarily yield
431 * consistent results, if the message buffer is modified
432 * while the read is in progress. The worst that can happen
433 * is that incorrect data will be read. There's no way
434 * that this can crash the system unless the values in the
435 * message buffer header are corrupted, but that'll cause
436 * the system to die anyway.
437 */
438 if (off >= msgbufp->msg_bufs) {
439 *wrlen = 0;
440 return (0);
441 }
442 n = msgbufp->msg_bufx + off;
443 if (n >= msgbufp->msg_bufs)
444 n -= msgbufp->msg_bufs;
445 len = min(msgbufp->msg_bufs - n, msgbufp->msg_bufs - off);
446 *bufp = msgbufp->msg_bufc + n;
447 *wrlen = len;
448 return (0);
449 }
450
451 case KFShostname: {
452 char *cp = hostname;
453 size_t xlen = hostnamelen;
454
455 if (xlen >= (len - 2))
456 return (EINVAL);
457
458 memcpy(*bufp, cp, xlen);
459 (*bufp)[xlen] = '\n';
460 (*bufp)[xlen+1] = '\0';
461 break;
462 }
463
464 case KFSavenrun:
465 averunnable.fscale = FSCALE;
466 snprintf(*bufp, len, "%d %d %d %ld\n",
467 averunnable.ldavg[0], averunnable.ldavg[1],
468 averunnable.ldavg[2], averunnable.fscale);
469 break;
470
471 #ifdef IPSEC
472 case KFSipsecsa:
473 if (key_setdumpsa_spi == NULL)
474 return 0;
475 /*
476 * Note that SA configuration could be changed during the
477 * read operation, resulting in garbled output.
478 */
479 m = key_setdumpsa_spi(htonl(kfs->kfs_value));
480 if (!m)
481 return (ENOBUFS);
482 if (off >= m->m_pkthdr.len) {
483 *wrlen = 0;
484 m_freem(m);
485 return (0);
486 }
487 if (len > m->m_pkthdr.len - off)
488 len = m->m_pkthdr.len - off;
489 m_copydata(m, off, len, *bufp);
490 *wrlen = len;
491 m_freem(m);
492 return (0);
493
494 case KFSipsecsp:
495 /*
496 * Note that SP configuration could be changed during the
497 * read operation, resulting in garbled output.
498 */
499 if (key_getspbyid == NULL)
500 return 0;
501 if (!kfs->kfs_v) {
502 struct secpolicy *sp;
503
504 sp = key_getspbyid(kfs->kfs_value);
505 if (sp)
506 kfs->kfs_v = sp;
507 else
508 return (ENOENT);
509 }
510 m = key_setdumpsp((struct secpolicy *)kfs->kfs_v,
511 SADB_X_SPDGET, 0, 0);
512 if (!m)
513 return (ENOBUFS);
514 if (off >= m->m_pkthdr.len) {
515 *wrlen = 0;
516 m_freem(m);
517 return (0);
518 }
519 if (len > m->m_pkthdr.len - off)
520 len = m->m_pkthdr.len - off;
521 m_copydata(m, off, len, *bufp);
522 *wrlen = len;
523 m_freem(m);
524 return (0);
525 #endif
526
527 default:
528 err = kernfs_try_xread(kfs->kfs_type, kfs, bufp, len,
529 EOPNOTSUPP);
530 if (err)
531 return err;
532 }
533
534 len = strlen(*bufp);
535 if (len <= off)
536 *wrlen = 0;
537 else {
538 *bufp += off;
539 *wrlen = len - off;
540 }
541 return (0);
542 }
543
544 static int
545 kernfs_xwrite(const struct kernfs_node *kfs, char *bf, size_t len)
546 {
547
548 switch (kfs->kfs_type) {
549 case KFShostname:
550 if (bf[len-1] == '\n')
551 --len;
552 memcpy(hostname, bf, len);
553 hostname[len] = '\0';
554 hostnamelen = (size_t) len;
555 return (0);
556
557 default:
558 return kernfs_try_xwrite(kfs->kfs_type, kfs, bf, len, EIO);
559 }
560 }
561
562
563 /*
564 * vp is the current namei directory
565 * ndp is the name to locate in that directory...
566 */
567 int
568 kernfs_lookup(void *v)
569 {
570 struct vop_lookup_args /* {
571 struct vnode * a_dvp;
572 struct vnode ** a_vpp;
573 struct componentname * a_cnp;
574 } */ *ap = v;
575 struct componentname *cnp = ap->a_cnp;
576 struct vnode **vpp = ap->a_vpp;
577 struct vnode *dvp = ap->a_dvp;
578 const char *pname = cnp->cn_nameptr;
579 const struct kernfs_node *kfs;
580 const struct kern_target *kt;
581 const struct dyn_kern_target *dkt;
582 const struct kernfs_subdir *ks;
583 int error, i;
584 #ifdef IPSEC
585 char *ep;
586 u_int32_t id;
587 #endif
588
589 *vpp = NULLVP;
590
591 if (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME)
592 return (EROFS);
593
594 if (cnp->cn_namelen == 1 && *pname == '.') {
595 *vpp = dvp;
596 vref(dvp);
597 return (0);
598 }
599
600 kfs = VTOKERN(dvp);
601 switch (kfs->kfs_type) {
602 case KFSkern:
603 /*
604 * Shouldn't get here with .. in the root node.
605 */
606 if (cnp->cn_flags & ISDOTDOT)
607 return (EIO);
608
609 for (i = 0; i < static_nkern_targets; i++) {
610 kt = &kern_targets[i];
611 if (cnp->cn_namelen == kt->kt_namlen &&
612 memcmp(kt->kt_name, pname, cnp->cn_namelen) == 0)
613 goto found;
614 }
615 SIMPLEQ_FOREACH(dkt, &dyn_kern_targets, dkt_queue) {
616 if (cnp->cn_namelen == dkt->dkt_kt.kt_namlen &&
617 memcmp(dkt->dkt_kt.kt_name, pname, cnp->cn_namelen) == 0) {
618 kt = &dkt->dkt_kt;
619 goto found;
620 }
621 }
622 break;
623
624 found:
625 error = kernfs_allocvp(dvp->v_mount, vpp, kt->kt_tag, kt, 0);
626 return (error);
627
628 case KFSsubdir:
629 ks = (struct kernfs_subdir *)kfs->kfs_kt->kt_data;
630 if (cnp->cn_flags & ISDOTDOT) {
631 kt = ks->ks_parent;
632 goto found;
633 }
634
635 SIMPLEQ_FOREACH(dkt, &ks->ks_entries, dkt_queue) {
636 if (cnp->cn_namelen == dkt->dkt_kt.kt_namlen &&
637 memcmp(dkt->dkt_kt.kt_name, pname, cnp->cn_namelen) == 0) {
638 kt = &dkt->dkt_kt;
639 goto found;
640 }
641 }
642 break;
643
644 #ifdef IPSEC
645 case KFSipsecsadir:
646 if (cnp->cn_flags & ISDOTDOT) {
647 kt = &kern_targets[0];
648 goto found;
649 }
650
651 for (i = 2; i < nipsecsa_targets; i++) {
652 kt = &ipsecsa_targets[i];
653 if (cnp->cn_namelen == kt->kt_namlen &&
654 memcmp(kt->kt_name, pname, cnp->cn_namelen) == 0)
655 goto found;
656 }
657
658 ep = NULL;
659 id = strtoul(pname, &ep, 10);
660 if (!ep || *ep || ep == pname)
661 break;
662
663 error = kernfs_allocvp(dvp->v_mount, vpp, KFSipsecsa, &ipsecsa_kt, id);
664 return (error);
665
666 case KFSipsecspdir:
667 if (cnp->cn_flags & ISDOTDOT) {
668 kt = &kern_targets[0];
669 goto found;
670 }
671
672 for (i = 2; i < nipsecsp_targets; i++) {
673 kt = &ipsecsp_targets[i];
674 if (cnp->cn_namelen == kt->kt_namlen &&
675 memcmp(kt->kt_name, pname, cnp->cn_namelen) == 0)
676 goto found;
677 }
678
679 ep = NULL;
680 id = strtoul(pname, &ep, 10);
681 if (!ep || *ep || ep == pname)
682 break;
683
684 error = kernfs_allocvp(dvp->v_mount, vpp, KFSipsecsp, &ipsecsp_kt, id);
685 return (error);
686 #endif
687
688 default:
689 return (ENOTDIR);
690 }
691
692 return (cnp->cn_nameiop == LOOKUP ? ENOENT : EROFS);
693 }
694
695 int
696 kernfs_open(void *v)
697 {
698 struct vop_open_args /* {
699 struct vnode *a_vp;
700 int a_mode;
701 kauth_cred_t a_cred;
702 } */ *ap = v;
703 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
704 #ifdef IPSEC
705 struct mbuf *m;
706 struct secpolicy *sp;
707 #endif
708
709 switch (kfs->kfs_type) {
710 #ifdef IPSEC
711 case KFSipsecsa:
712 if (key_setdumpsa_spi == NULL)
713 return 0;
714 m = key_setdumpsa_spi(htonl(kfs->kfs_value));
715 if (m) {
716 m_freem(m);
717 return (0);
718 } else
719 return (ENOENT);
720
721 case KFSipsecsp:
722 if (key_getspbyid == NULL)
723 return 0;
724 sp = key_getspbyid(kfs->kfs_value);
725 if (sp) {
726 kfs->kfs_v = sp;
727 return (0);
728 } else
729 return (ENOENT);
730 #endif
731
732 default:
733 return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_OPEN,
734 v, 0);
735 }
736 }
737
738 int
739 kernfs_close(void *v)
740 {
741 struct vop_close_args /* {
742 struct vnode *a_vp;
743 int a_fflag;
744 kauth_cred_t a_cred;
745 } */ *ap = v;
746 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
747
748 switch (kfs->kfs_type) {
749 #ifdef IPSEC
750 case KFSipsecsp:
751 if (key_freesp == NULL)
752 return 0;
753 key_freesp((struct secpolicy *)kfs->kfs_v);
754 break;
755 #endif
756
757 default:
758 return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_CLOSE,
759 v, 0);
760 }
761
762 return (0);
763 }
764
765 static int
766 kernfs_check_possible(struct vnode *vp, mode_t mode)
767 {
768
769 return 0;
770 }
771
772 static int
773 kernfs_check_permitted(struct vattr *va, mode_t mode, kauth_cred_t cred)
774 {
775
776 return genfs_can_access(va->va_type, va->va_mode, va->va_uid, va->va_gid,
777 mode, cred);
778 }
779
780 int
781 kernfs_access(void *v)
782 {
783 struct vop_access_args /* {
784 struct vnode *a_vp;
785 int a_mode;
786 kauth_cred_t a_cred;
787 } */ *ap = v;
788 struct vattr va;
789 int error;
790
791 if ((error = VOP_GETATTR(ap->a_vp, &va, ap->a_cred)) != 0)
792 return (error);
793
794 error = kernfs_check_possible(ap->a_vp, ap->a_mode);
795 if (error)
796 return error;
797
798 error = kernfs_check_permitted(&va, ap->a_mode, ap->a_cred);
799
800 return error;
801 }
802
803 static int
804 kernfs_default_fileop_getattr(void *v)
805 {
806 struct vop_getattr_args /* {
807 struct vnode *a_vp;
808 struct vattr *a_vap;
809 kauth_cred_t a_cred;
810 } */ *ap = v;
811 struct vattr *vap = ap->a_vap;
812
813 vap->va_nlink = 1;
814 vap->va_bytes = vap->va_size = 0;
815
816 return 0;
817 }
818
819 int
820 kernfs_getattr(void *v)
821 {
822 struct vop_getattr_args /* {
823 struct vnode *a_vp;
824 struct vattr *a_vap;
825 kauth_cred_t a_cred;
826 } */ *ap = v;
827 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
828 struct kernfs_subdir *ks;
829 struct vattr *vap = ap->a_vap;
830 int error = 0;
831 char strbuf[KSTRING], *bf;
832 size_t nread, total;
833
834 vattr_null(vap);
835 vap->va_type = ap->a_vp->v_type;
836 vap->va_uid = 0;
837 vap->va_gid = 0;
838 vap->va_mode = kfs->kfs_mode;
839 vap->va_fileid = kfs->kfs_fileno;
840 vap->va_flags = 0;
841 vap->va_size = 0;
842 vap->va_blocksize = DEV_BSIZE;
843 /* Make all times be current TOD, except for the "boottime" node. */
844 if (kfs->kfs_kt->kt_namlen == 8 &&
845 !memcmp(kfs->kfs_kt->kt_name, "boottime", 8)) {
846 vap->va_ctime = boottime;
847 } else {
848 getnanotime(&vap->va_ctime);
849 }
850 vap->va_atime = vap->va_mtime = vap->va_ctime;
851 vap->va_gen = 0;
852 vap->va_flags = 0;
853 vap->va_rdev = 0;
854 vap->va_bytes = 0;
855
856 switch (kfs->kfs_type) {
857 case KFSkern:
858 vap->va_nlink = nkern_dirs;
859 vap->va_bytes = vap->va_size = DEV_BSIZE;
860 break;
861
862 case KFSroot:
863 vap->va_nlink = 1;
864 vap->va_bytes = vap->va_size = DEV_BSIZE;
865 break;
866
867 case KFSsubdir:
868 ks = (struct kernfs_subdir *)kfs->kfs_kt->kt_data;
869 vap->va_nlink = ks->ks_dirs;
870 vap->va_bytes = vap->va_size = DEV_BSIZE;
871 break;
872
873 case KFSnull:
874 case KFStime:
875 case KFSint:
876 case KFSstring:
877 case KFShostname:
878 case KFSavenrun:
879 case KFSdevice:
880 case KFSmsgbuf:
881 #ifdef IPSEC
882 case KFSipsecsa:
883 case KFSipsecsp:
884 #endif
885 vap->va_nlink = 1;
886 total = 0;
887 do {
888 bf = strbuf;
889 error = kernfs_xread(kfs, total, &bf,
890 sizeof(strbuf), &nread);
891 total += nread;
892 } while (error == 0 && nread != 0);
893 vap->va_bytes = vap->va_size = total;
894 break;
895
896 #ifdef IPSEC
897 case KFSipsecsadir:
898 case KFSipsecspdir:
899 vap->va_nlink = 2;
900 vap->va_bytes = vap->va_size = DEV_BSIZE;
901 break;
902 #endif
903
904 default:
905 error = kernfs_try_fileop(kfs->kfs_type,
906 KERNFS_FILEOP_GETATTR, v, EINVAL);
907 break;
908 }
909
910 return (error);
911 }
912
913 /*ARGSUSED*/
914 int
915 kernfs_setattr(void *v)
916 {
917
918 /*
919 * Silently ignore attribute changes.
920 * This allows for open with truncate to have no
921 * effect until some data is written. I want to
922 * do it this way because all writes are atomic.
923 */
924 return (0);
925 }
926
927 int
928 kernfs_default_xread(void *v)
929 {
930 struct vop_read_args /* {
931 struct vnode *a_vp;
932 struct uio *a_uio;
933 int a_ioflag;
934 kauth_cred_t a_cred;
935 } */ *ap = v;
936 struct uio *uio = ap->a_uio;
937 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
938 char strbuf[KSTRING], *bf;
939 int off;
940 size_t len;
941 int error;
942
943 if (ap->a_vp->v_type == VDIR)
944 return (EOPNOTSUPP);
945
946 off = (int)uio->uio_offset;
947 /* Don't allow negative offsets */
948 if (off < 0)
949 return EINVAL;
950
951 bf = strbuf;
952 if ((error = kernfs_xread(kfs, off, &bf, sizeof(strbuf), &len)) == 0)
953 error = uiomove(bf, len, uio);
954 return (error);
955 }
956
957 int
958 kernfs_read(void *v)
959 {
960 struct vop_read_args /* {
961 struct vnode *a_vp;
962 struct uio *a_uio;
963 int a_ioflag;
964 struct ucred *a_cred;
965 } */ *ap = v;
966 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
967
968 if (kfs->kfs_type < KFSlasttype) {
969 /* use default function */
970 return kernfs_default_xread(v);
971 }
972 return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_READ, v,
973 EOPNOTSUPP);
974 }
975
976 static int
977 kernfs_default_xwrite(void *v)
978 {
979 struct vop_write_args /* {
980 struct vnode *a_vp;
981 struct uio *a_uio;
982 int a_ioflag;
983 kauth_cred_t a_cred;
984 } */ *ap = v;
985 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
986 struct uio *uio = ap->a_uio;
987 int error;
988 size_t xlen;
989 char strbuf[KSTRING];
990
991 if (uio->uio_offset != 0)
992 return (EINVAL);
993
994 xlen = min(uio->uio_resid, KSTRING-1);
995 if ((error = uiomove(strbuf, xlen, uio)) != 0)
996 return (error);
997
998 if (uio->uio_resid != 0)
999 return (EIO);
1000
1001 strbuf[xlen] = '\0';
1002 xlen = strlen(strbuf);
1003 return (kernfs_xwrite(kfs, strbuf, xlen));
1004 }
1005
1006 int
1007 kernfs_write(void *v)
1008 {
1009 struct vop_write_args /* {
1010 struct vnode *a_vp;
1011 struct uio *a_uio;
1012 int a_ioflag;
1013 kauth_cred_t a_cred;
1014 } */ *ap = v;
1015 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
1016
1017 if (kfs->kfs_type < KFSlasttype) {
1018 /* use default function */
1019 return kernfs_default_xwrite(v);
1020 }
1021 return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_WRITE, v,
1022 EOPNOTSUPP);
1023 }
1024
1025 int
1026 kernfs_ioctl(void *v)
1027 {
1028 struct vop_ioctl_args /* {
1029 const struct vnodeop_desc *a_desc;
1030 struct vnode *a_vp;
1031 u_long a_command;
1032 void *a_data;
1033 int a_fflag;
1034 kauth_cred_t a_cred;
1035 } */ *ap = v;
1036 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
1037
1038 return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_IOCTL, v,
1039 EPASSTHROUGH);
1040 }
1041
1042 static int
1043 kernfs_setdirentfileno_kt(struct dirent *d, const struct kern_target *kt,
1044 u_int32_t value, struct vop_readdir_args *ap)
1045 {
1046 struct kernfs_node *kfs;
1047 struct vnode *vp;
1048 int error;
1049
1050 if ((error = kernfs_allocvp(ap->a_vp->v_mount, &vp, kt->kt_tag, kt,
1051 value)) != 0)
1052 return error;
1053 if (kt->kt_tag == KFSdevice) {
1054 struct vattr va;
1055
1056 error = VOP_GETATTR(vp, &va, ap->a_cred);
1057 if (error != 0) {
1058 return error;
1059 }
1060 d->d_fileno = va.va_fileid;
1061 } else {
1062 kfs = VTOKERN(vp);
1063 d->d_fileno = kfs->kfs_fileno;
1064 }
1065 vput(vp);
1066 return 0;
1067 }
1068
1069 static int
1070 kernfs_setdirentfileno(struct dirent *d, off_t entry,
1071 struct kernfs_node *thisdir_kfs, const struct kern_target *parent_kt,
1072 const struct kern_target *kt, struct vop_readdir_args *ap)
1073 {
1074 const struct kern_target *ikt;
1075 int error;
1076
1077 switch (entry) {
1078 case 0:
1079 d->d_fileno = thisdir_kfs->kfs_fileno;
1080 return 0;
1081 case 1:
1082 ikt = parent_kt;
1083 break;
1084 default:
1085 ikt = kt;
1086 break;
1087 }
1088 if (ikt != thisdir_kfs->kfs_kt) {
1089 if ((error = kernfs_setdirentfileno_kt(d, ikt, 0, ap)) != 0)
1090 return error;
1091 } else
1092 d->d_fileno = thisdir_kfs->kfs_fileno;
1093 return 0;
1094 }
1095
1096 int
1097 kernfs_readdir(void *v)
1098 {
1099 struct vop_readdir_args /* {
1100 struct vnode *a_vp;
1101 struct uio *a_uio;
1102 kauth_cred_t a_cred;
1103 int *a_eofflag;
1104 off_t **a_cookies;
1105 int a_*ncookies;
1106 } */ *ap = v;
1107 struct uio *uio = ap->a_uio;
1108 struct dirent d;
1109 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
1110 const struct kern_target *kt;
1111 const struct dyn_kern_target *dkt = NULL;
1112 const struct kernfs_subdir *ks;
1113 off_t i, j;
1114 int error;
1115 off_t *cookies = NULL;
1116 int ncookies = 0, n;
1117 #ifdef IPSEC
1118 struct secasvar *sav, *sav2;
1119 struct secpolicy *sp;
1120 #endif
1121
1122 if (uio->uio_resid < UIO_MX)
1123 return (EINVAL);
1124 if (uio->uio_offset < 0)
1125 return (EINVAL);
1126
1127 error = 0;
1128 i = uio->uio_offset;
1129 memset(&d, 0, sizeof(d));
1130 d.d_reclen = UIO_MX;
1131 ncookies = uio->uio_resid / UIO_MX;
1132
1133 switch (kfs->kfs_type) {
1134 case KFSkern:
1135 if (i >= nkern_targets)
1136 return (0);
1137
1138 if (ap->a_ncookies) {
1139 ncookies = min(ncookies, (nkern_targets - i));
1140 cookies = malloc(ncookies * sizeof(off_t), M_TEMP,
1141 M_WAITOK);
1142 *ap->a_cookies = cookies;
1143 }
1144
1145 n = 0;
1146 for (; i < nkern_targets && uio->uio_resid >= UIO_MX; i++) {
1147 if (i < static_nkern_targets)
1148 kt = &kern_targets[i];
1149 else {
1150 if (dkt == NULL) {
1151 dkt = SIMPLEQ_FIRST(&dyn_kern_targets);
1152 for (j = static_nkern_targets; j < i &&
1153 dkt != NULL; j++)
1154 dkt = SIMPLEQ_NEXT(dkt, dkt_queue);
1155 if (j != i)
1156 break;
1157 } else {
1158 dkt = SIMPLEQ_NEXT(dkt, dkt_queue);
1159 }
1160 if (dkt == NULL)
1161 break;
1162 kt = &dkt->dkt_kt;
1163 }
1164 if (kt->kt_tag == KFSdevice) {
1165 dev_t *dp = kt->kt_data;
1166 struct vnode *fvp;
1167
1168 if (*dp == NODEV ||
1169 !vfinddev(*dp, kt->kt_vtype, &fvp))
1170 continue;
1171 }
1172 if (kt->kt_tag == KFSmsgbuf) {
1173 if (!msgbufenabled
1174 || msgbufp->msg_magic != MSG_MAGIC) {
1175 continue;
1176 }
1177 }
1178 d.d_namlen = kt->kt_namlen;
1179 if ((error = kernfs_setdirentfileno(&d, i, kfs,
1180 &kern_targets[0], kt, ap)) != 0)
1181 break;
1182 memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1);
1183 d.d_type = kt->kt_type;
1184 if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1185 break;
1186 if (cookies)
1187 *cookies++ = i + 1;
1188 n++;
1189 }
1190 ncookies = n;
1191 break;
1192
1193 case KFSroot:
1194 if (i >= 2)
1195 return 0;
1196
1197 if (ap->a_ncookies) {
1198 ncookies = min(ncookies, (2 - i));
1199 cookies = malloc(ncookies * sizeof(off_t), M_TEMP,
1200 M_WAITOK);
1201 *ap->a_cookies = cookies;
1202 }
1203
1204 n = 0;
1205 for (; i < 2 && uio->uio_resid >= UIO_MX; i++) {
1206 kt = &kern_targets[i];
1207 d.d_namlen = kt->kt_namlen;
1208 d.d_fileno = KERNFS_FILENO(kt, kt->kt_tag, 0);
1209 memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1);
1210 d.d_type = kt->kt_type;
1211 if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1212 break;
1213 if (cookies)
1214 *cookies++ = i + 1;
1215 n++;
1216 }
1217 ncookies = n;
1218 break;
1219
1220 case KFSsubdir:
1221 ks = (struct kernfs_subdir *)kfs->kfs_kt->kt_data;
1222 if (i >= ks->ks_nentries)
1223 return (0);
1224
1225 if (ap->a_ncookies) {
1226 ncookies = min(ncookies, (ks->ks_nentries - i));
1227 cookies = malloc(ncookies * sizeof(off_t), M_TEMP,
1228 M_WAITOK);
1229 *ap->a_cookies = cookies;
1230 }
1231
1232 dkt = SIMPLEQ_FIRST(&ks->ks_entries);
1233 for (j = 0; j < i && dkt != NULL; j++)
1234 dkt = SIMPLEQ_NEXT(dkt, dkt_queue);
1235 n = 0;
1236 for (; i < ks->ks_nentries && uio->uio_resid >= UIO_MX; i++) {
1237 if (i < 2)
1238 kt = &subdir_targets[i];
1239 else {
1240 /* check if ks_nentries lied to us */
1241 if (dkt == NULL)
1242 break;
1243 kt = &dkt->dkt_kt;
1244 dkt = SIMPLEQ_NEXT(dkt, dkt_queue);
1245 }
1246 if (kt->kt_tag == KFSdevice) {
1247 dev_t *dp = kt->kt_data;
1248 struct vnode *fvp;
1249
1250 if (*dp == NODEV ||
1251 !vfinddev(*dp, kt->kt_vtype, &fvp))
1252 continue;
1253 }
1254 d.d_namlen = kt->kt_namlen;
1255 if ((error = kernfs_setdirentfileno(&d, i, kfs,
1256 ks->ks_parent, kt, ap)) != 0)
1257 break;
1258 memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1);
1259 d.d_type = kt->kt_type;
1260 if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1261 break;
1262 if (cookies)
1263 *cookies++ = i + 1;
1264 n++;
1265 }
1266 ncookies = n;
1267 break;
1268
1269 #ifdef IPSEC
1270 case KFSipsecsadir:
1271 /* count SA in the system */
1272 n = 0;
1273 if (&satailq == NULL)
1274 return 0;
1275 TAILQ_FOREACH(sav, &satailq, tailq) {
1276 for (sav2 = TAILQ_FIRST(&satailq);
1277 sav2 != sav;
1278 sav2 = TAILQ_NEXT(sav2, tailq)) {
1279 if (sav->spi == sav2->spi) {
1280 /* multiple SA with same SPI */
1281 break;
1282 }
1283 }
1284 if (sav == sav2 || sav->spi != sav2->spi)
1285 n++;
1286 }
1287
1288 if (i >= nipsecsa_targets + n)
1289 return (0);
1290
1291 if (ap->a_ncookies) {
1292 ncookies = min(ncookies, (n - i));
1293 cookies = malloc(ncookies * sizeof(off_t), M_TEMP,
1294 M_WAITOK);
1295 *ap->a_cookies = cookies;
1296 }
1297
1298 n = 0;
1299 for (; i < nipsecsa_targets && uio->uio_resid >= UIO_MX; i++) {
1300 kt = &ipsecsa_targets[i];
1301 d.d_namlen = kt->kt_namlen;
1302 if ((error = kernfs_setdirentfileno(&d, i, kfs,
1303 &kern_targets[0], kt, ap)) != 0)
1304 break;
1305 memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1);
1306 d.d_type = kt->kt_type;
1307 if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1308 break;
1309 if (cookies)
1310 *cookies++ = i + 1;
1311 n++;
1312 }
1313 if (error) {
1314 ncookies = n;
1315 break;
1316 }
1317
1318 TAILQ_FOREACH(sav, &satailq, tailq) {
1319 for (sav2 = TAILQ_FIRST(&satailq);
1320 sav2 != sav;
1321 sav2 = TAILQ_NEXT(sav2, tailq)) {
1322 if (sav->spi == sav2->spi) {
1323 /* multiple SA with same SPI */
1324 break;
1325 }
1326 }
1327 if (sav != sav2 && sav->spi == sav2->spi)
1328 continue;
1329 if (uio->uio_resid < UIO_MX)
1330 break;
1331 if ((error = kernfs_setdirentfileno_kt(&d, &ipsecsa_kt,
1332 sav->spi, ap)) != 0)
1333 break;
1334 d.d_namlen = snprintf(d.d_name, sizeof(d.d_name),
1335 "%u", ntohl(sav->spi));
1336 d.d_type = DT_REG;
1337 if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1338 break;
1339 if (cookies)
1340 *cookies++ = i + 1;
1341 n++;
1342 i++;
1343 }
1344 ncookies = n;
1345 break;
1346
1347 case KFSipsecspdir:
1348 /* count SP in the system */
1349 if (&sptailq == NULL)
1350 return 0;
1351
1352 n = 0;
1353 TAILQ_FOREACH(sp, &sptailq, tailq)
1354 n++;
1355
1356 if (i >= nipsecsp_targets + n)
1357 return (0);
1358
1359 if (ap->a_ncookies) {
1360 ncookies = min(ncookies, (n - i));
1361 cookies = malloc(ncookies * sizeof(off_t), M_TEMP,
1362 M_WAITOK);
1363 *ap->a_cookies = cookies;
1364 }
1365
1366 n = 0;
1367 for (; i < nipsecsp_targets && uio->uio_resid >= UIO_MX; i++) {
1368 kt = &ipsecsp_targets[i];
1369 d.d_namlen = kt->kt_namlen;
1370 if ((error = kernfs_setdirentfileno(&d, i, kfs,
1371 &kern_targets[0], kt, ap)) != 0)
1372 break;
1373 memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1);
1374 d.d_type = kt->kt_type;
1375 if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1376 break;
1377 if (cookies)
1378 *cookies++ = i + 1;
1379 n++;
1380 }
1381 if (error) {
1382 ncookies = n;
1383 break;
1384 }
1385
1386 TAILQ_FOREACH(sp, &sptailq, tailq) {
1387 if (uio->uio_resid < UIO_MX)
1388 break;
1389 if ((error = kernfs_setdirentfileno_kt(&d, &ipsecsp_kt,
1390 sp->id, ap)) != 0)
1391 break;
1392 d.d_namlen = snprintf(d.d_name, sizeof(d.d_name),
1393 "%u", sp->id);
1394 d.d_type = DT_REG;
1395 if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1396 break;
1397 if (cookies)
1398 *cookies++ = i + 1;
1399 n++;
1400 i++;
1401 }
1402 ncookies = n;
1403 break;
1404 #endif
1405
1406 default:
1407 error = ENOTDIR;
1408 break;
1409 }
1410
1411 if (ap->a_ncookies) {
1412 if (error) {
1413 if (cookies)
1414 free(*ap->a_cookies, M_TEMP);
1415 *ap->a_ncookies = 0;
1416 *ap->a_cookies = NULL;
1417 } else
1418 *ap->a_ncookies = ncookies;
1419 }
1420
1421 uio->uio_offset = i;
1422 return (error);
1423 }
1424
1425 int
1426 kernfs_inactive(void *v)
1427 {
1428 struct vop_inactive_args /* {
1429 struct vnode *a_vp;
1430 bool *a_recycle;
1431 } */ *ap = v;
1432 struct vnode *vp = ap->a_vp;
1433 const struct kernfs_node *kfs = VTOKERN(ap->a_vp);
1434 #ifdef IPSEC
1435 struct mbuf *m;
1436 struct secpolicy *sp;
1437 #endif
1438
1439 *ap->a_recycle = false;
1440 switch (kfs->kfs_type) {
1441 #ifdef IPSEC
1442 case KFSipsecsa:
1443 if (key_setdumpsa_spi == NULL)
1444 return 0;
1445 m = key_setdumpsa_spi(htonl(kfs->kfs_value));
1446 if (m)
1447 m_freem(m);
1448 else
1449 *ap->a_recycle = true;
1450 break;
1451 case KFSipsecsp:
1452 if (key_getspbyid == NULL)
1453 return 0;
1454 sp = key_getspbyid(kfs->kfs_value);
1455 if (sp)
1456 key_freesp(sp);
1457 else {
1458 *ap->a_recycle = true;
1459 }
1460 break;
1461 #endif
1462 default:
1463 break;
1464 }
1465 VOP_UNLOCK(vp, 0);
1466 return (0);
1467 }
1468
1469 int
1470 kernfs_reclaim(void *v)
1471 {
1472 struct vop_reclaim_args /* {
1473 struct vnode *a_vp;
1474 } */ *ap = v;
1475
1476 return (kernfs_freevp(ap->a_vp));
1477 }
1478
1479 /*
1480 * Return POSIX pathconf information applicable to special devices.
1481 */
1482 int
1483 kernfs_pathconf(void *v)
1484 {
1485 struct vop_pathconf_args /* {
1486 struct vnode *a_vp;
1487 int a_name;
1488 register_t *a_retval;
1489 } */ *ap = v;
1490
1491 switch (ap->a_name) {
1492 case _PC_LINK_MAX:
1493 *ap->a_retval = LINK_MAX;
1494 return (0);
1495 case _PC_MAX_CANON:
1496 *ap->a_retval = MAX_CANON;
1497 return (0);
1498 case _PC_MAX_INPUT:
1499 *ap->a_retval = MAX_INPUT;
1500 return (0);
1501 case _PC_PIPE_BUF:
1502 *ap->a_retval = PIPE_BUF;
1503 return (0);
1504 case _PC_CHOWN_RESTRICTED:
1505 *ap->a_retval = 1;
1506 return (0);
1507 case _PC_VDISABLE:
1508 *ap->a_retval = _POSIX_VDISABLE;
1509 return (0);
1510 case _PC_SYNC_IO:
1511 *ap->a_retval = 1;
1512 return (0);
1513 default:
1514 return (EINVAL);
1515 }
1516 /* NOTREACHED */
1517 }
1518
1519 /*
1520 * Print out the contents of a /dev/fd vnode.
1521 */
1522 /* ARGSUSED */
1523 int
1524 kernfs_print(void *v)
1525 {
1526
1527 printf("tag VT_KERNFS, kernfs vnode\n");
1528 return (0);
1529 }
1530
1531 int
1532 kernfs_link(void *v)
1533 {
1534 struct vop_link_args /* {
1535 struct vnode *a_dvp;
1536 struct vnode *a_vp;
1537 struct componentname *a_cnp;
1538 } */ *ap = v;
1539
1540 VOP_ABORTOP(ap->a_dvp, ap->a_cnp);
1541 vput(ap->a_dvp);
1542 return (EROFS);
1543 }
1544
1545 int
1546 kernfs_symlink(void *v)
1547 {
1548 struct vop_symlink_args /* {
1549 struct vnode *a_dvp;
1550 struct vnode **a_vpp;
1551 struct componentname *a_cnp;
1552 struct vattr *a_vap;
1553 char *a_target;
1554 } */ *ap = v;
1555
1556 VOP_ABORTOP(ap->a_dvp, ap->a_cnp);
1557 vput(ap->a_dvp);
1558 return (EROFS);
1559 }
1560