kernfs_vnops.c revision 1.158.2.1 1 /* $NetBSD: kernfs_vnops.c,v 1.158.2.1 2019/08/29 16:28:47 martin Exp $ */
2
3 /*
4 * Copyright (c) 1992, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software donated to Berkeley by
8 * Jan-Simon Pendry.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)kernfs_vnops.c 8.15 (Berkeley) 5/21/95
35 */
36
37 /*
38 * Kernel parameter filesystem (/kern)
39 */
40
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: kernfs_vnops.c,v 1.158.2.1 2019/08/29 16:28:47 martin Exp $");
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/kernel.h>
47 #include <sys/vmmeter.h>
48 #include <sys/time.h>
49 #include <sys/proc.h>
50 #include <sys/vnode.h>
51 #include <sys/malloc.h>
52 #include <sys/file.h>
53 #include <sys/stat.h>
54 #include <sys/mount.h>
55 #include <sys/namei.h>
56 #include <sys/buf.h>
57 #include <sys/dirent.h>
58 #include <sys/msgbuf.h>
59
60 #include <miscfs/genfs/genfs.h>
61 #include <miscfs/kernfs/kernfs.h>
62 #include <miscfs/specfs/specdev.h>
63
64 #include <uvm/uvm_extern.h>
65
66 #define KSTRING 256 /* Largest I/O available via this filesystem */
67 #define UIO_MX 32
68
69 #define READ_MODE (S_IRUSR|S_IRGRP|S_IROTH)
70 #define WRITE_MODE (S_IWUSR|S_IRUSR|S_IRGRP|S_IROTH)
71 #define UREAD_MODE (S_IRUSR)
72 #define DIR_MODE (S_IRUSR|S_IXUSR|S_IRGRP|S_IXGRP|S_IROTH|S_IXOTH)
73 #define UDIR_MODE (S_IRUSR|S_IXUSR)
74
75 #define N(s) sizeof(s)-1, s
76 const struct kern_target kern_targets[] = {
77 /* NOTE: The name must be less than UIO_MX-16 chars in length */
78 /* name data tag type ro/rw */
79 { DT_DIR, N("."), 0, KFSkern, VDIR, DIR_MODE },
80 { DT_DIR, N(".."), 0, KFSroot, VDIR, DIR_MODE },
81 { DT_REG, N("boottime"), &boottime.tv_sec, KFSint, VREG, READ_MODE },
82 /* XXXUNCONST */
83 { DT_REG, N("copyright"), __UNCONST(copyright),
84 KFSstring, VREG, READ_MODE },
85 { DT_REG, N("hostname"), 0, KFShostname, VREG, WRITE_MODE },
86 { DT_REG, N("hz"), &hz, KFSint, VREG, READ_MODE },
87 { DT_REG, N("loadavg"), 0, KFSavenrun, VREG, READ_MODE },
88 { DT_REG, N("msgbuf"), 0, KFSmsgbuf, VREG, READ_MODE },
89 { DT_REG, N("pagesize"), &uvmexp.pagesize, KFSint, VREG, READ_MODE },
90 { DT_REG, N("physmem"), &physmem, KFSint, VREG, READ_MODE },
91 #if 0
92 { DT_DIR, N("root"), 0, KFSnull, VDIR, DIR_MODE },
93 #endif
94 { DT_BLK, N("rootdev"), &rootdev, KFSdevice, VBLK, READ_MODE },
95 { DT_CHR, N("rrootdev"), &rrootdev, KFSdevice, VCHR, READ_MODE },
96 { DT_REG, N("time"), 0, KFStime, VREG, READ_MODE },
97 /* XXXUNCONST */
98 { DT_REG, N("version"), __UNCONST(version),
99 KFSstring, VREG, READ_MODE },
100 };
101 const struct kern_target subdir_targets[] = {
102 /* NOTE: The name must be less than UIO_MX-16 chars in length */
103 /* name data tag type ro/rw */
104 { DT_DIR, N("."), 0, KFSsubdir, VDIR, DIR_MODE },
105 { DT_DIR, N(".."), 0, KFSkern, VDIR, DIR_MODE },
106 };
107 #undef N
108 SIMPLEQ_HEAD(,dyn_kern_target) dyn_kern_targets =
109 SIMPLEQ_HEAD_INITIALIZER(dyn_kern_targets);
110 int nkern_targets = sizeof(kern_targets) / sizeof(kern_targets[0]);
111 const int static_nkern_targets = sizeof(kern_targets) / sizeof(kern_targets[0]);
112 int nkern_dirs = 2;
113
114 int kernfs_try_fileop(kfstype, kfsfileop, void *, int);
115 int kernfs_try_xread(kfstype, const struct kernfs_node *, char **,
116 size_t, int);
117 int kernfs_try_xwrite(kfstype, const struct kernfs_node *, char *,
118 size_t, int);
119
120 static int kernfs_default_xread(void *v);
121 static int kernfs_default_xwrite(void *v);
122 static int kernfs_default_fileop_getattr(void *);
123
124 /* must include all fileop's */
125 const struct kernfs_fileop kernfs_default_fileops[] = {
126 { .kf_fileop = KERNFS_XREAD },
127 { .kf_fileop = KERNFS_XWRITE },
128 { .kf_fileop = KERNFS_FILEOP_OPEN },
129 { .kf_fileop = KERNFS_FILEOP_GETATTR,
130 .kf_vop = kernfs_default_fileop_getattr },
131 { .kf_fileop = KERNFS_FILEOP_IOCTL },
132 { .kf_fileop = KERNFS_FILEOP_CLOSE },
133 { .kf_fileop = KERNFS_FILEOP_READ,
134 .kf_vop = kernfs_default_xread },
135 { .kf_fileop = KERNFS_FILEOP_WRITE,
136 .kf_vop = kernfs_default_xwrite },
137 };
138
139 int kernfs_lookup(void *);
140 #define kernfs_create genfs_eopnotsupp
141 #define kernfs_mknod genfs_eopnotsupp
142 int kernfs_open(void *);
143 int kernfs_close(void *);
144 int kernfs_access(void *);
145 int kernfs_getattr(void *);
146 int kernfs_setattr(void *);
147 int kernfs_read(void *);
148 int kernfs_write(void *);
149 #define kernfs_fcntl genfs_fcntl
150 int kernfs_ioctl(void *);
151 #define kernfs_poll genfs_poll
152 #define kernfs_revoke genfs_revoke
153 #define kernfs_fsync genfs_nullop
154 #define kernfs_seek genfs_nullop
155 #define kernfs_remove genfs_eopnotsupp
156 int kernfs_link(void *);
157 #define kernfs_rename genfs_eopnotsupp
158 #define kernfs_mkdir genfs_eopnotsupp
159 #define kernfs_rmdir genfs_eopnotsupp
160 int kernfs_symlink(void *);
161 int kernfs_readdir(void *);
162 #define kernfs_readlink genfs_eopnotsupp
163 #define kernfs_abortop genfs_abortop
164 int kernfs_inactive(void *);
165 int kernfs_reclaim(void *);
166 #define kernfs_lock genfs_lock
167 #define kernfs_unlock genfs_unlock
168 #define kernfs_bmap genfs_badop
169 #define kernfs_strategy genfs_badop
170 int kernfs_print(void *);
171 #define kernfs_islocked genfs_islocked
172 int kernfs_pathconf(void *);
173 #define kernfs_advlock genfs_einval
174 #define kernfs_bwrite genfs_eopnotsupp
175 int kernfs_getpages(void *);
176 #define kernfs_putpages genfs_putpages
177
178 static int kernfs_xread(struct kernfs_node *, int, char **,
179 size_t, size_t *);
180 static int kernfs_xwrite(const struct kernfs_node *, char *, size_t);
181
182 int (**kernfs_vnodeop_p)(void *);
183 const struct vnodeopv_entry_desc kernfs_vnodeop_entries[] = {
184 { &vop_default_desc, vn_default_error },
185 { &vop_lookup_desc, kernfs_lookup }, /* lookup */
186 { &vop_create_desc, kernfs_create }, /* create */
187 { &vop_mknod_desc, kernfs_mknod }, /* mknod */
188 { &vop_open_desc, kernfs_open }, /* open */
189 { &vop_close_desc, kernfs_close }, /* close */
190 { &vop_access_desc, kernfs_access }, /* access */
191 { &vop_getattr_desc, kernfs_getattr }, /* getattr */
192 { &vop_setattr_desc, kernfs_setattr }, /* setattr */
193 { &vop_read_desc, kernfs_read }, /* read */
194 { &vop_write_desc, kernfs_write }, /* write */
195 { &vop_fallocate_desc, genfs_eopnotsupp }, /* fallocate */
196 { &vop_fdiscard_desc, genfs_eopnotsupp }, /* fdiscard */
197 { &vop_fcntl_desc, kernfs_fcntl }, /* fcntl */
198 { &vop_ioctl_desc, kernfs_ioctl }, /* ioctl */
199 { &vop_poll_desc, kernfs_poll }, /* poll */
200 { &vop_revoke_desc, kernfs_revoke }, /* revoke */
201 { &vop_fsync_desc, kernfs_fsync }, /* fsync */
202 { &vop_seek_desc, kernfs_seek }, /* seek */
203 { &vop_remove_desc, kernfs_remove }, /* remove */
204 { &vop_link_desc, kernfs_link }, /* link */
205 { &vop_rename_desc, kernfs_rename }, /* rename */
206 { &vop_mkdir_desc, kernfs_mkdir }, /* mkdir */
207 { &vop_rmdir_desc, kernfs_rmdir }, /* rmdir */
208 { &vop_symlink_desc, kernfs_symlink }, /* symlink */
209 { &vop_readdir_desc, kernfs_readdir }, /* readdir */
210 { &vop_readlink_desc, kernfs_readlink }, /* readlink */
211 { &vop_abortop_desc, kernfs_abortop }, /* abortop */
212 { &vop_inactive_desc, kernfs_inactive }, /* inactive */
213 { &vop_reclaim_desc, kernfs_reclaim }, /* reclaim */
214 { &vop_lock_desc, kernfs_lock }, /* lock */
215 { &vop_unlock_desc, kernfs_unlock }, /* unlock */
216 { &vop_bmap_desc, kernfs_bmap }, /* bmap */
217 { &vop_strategy_desc, kernfs_strategy }, /* strategy */
218 { &vop_print_desc, kernfs_print }, /* print */
219 { &vop_islocked_desc, kernfs_islocked }, /* islocked */
220 { &vop_pathconf_desc, kernfs_pathconf }, /* pathconf */
221 { &vop_advlock_desc, kernfs_advlock }, /* advlock */
222 { &vop_bwrite_desc, kernfs_bwrite }, /* bwrite */
223 { &vop_getpages_desc, kernfs_getpages }, /* getpages */
224 { &vop_putpages_desc, kernfs_putpages }, /* putpages */
225 { NULL, NULL }
226 };
227 const struct vnodeopv_desc kernfs_vnodeop_opv_desc =
228 { &kernfs_vnodeop_p, kernfs_vnodeop_entries };
229
230 static inline int
231 kernfs_fileop_compare(struct kernfs_fileop *a, struct kernfs_fileop *b)
232 {
233 if (a->kf_type < b->kf_type)
234 return -1;
235 if (a->kf_type > b->kf_type)
236 return 1;
237 if (a->kf_fileop < b->kf_fileop)
238 return -1;
239 if (a->kf_fileop > b->kf_fileop)
240 return 1;
241 return (0);
242 }
243
244 SPLAY_HEAD(kfsfileoptree, kernfs_fileop) kfsfileoptree =
245 SPLAY_INITIALIZER(kfsfileoptree);
246 SPLAY_PROTOTYPE(kfsfileoptree, kernfs_fileop, kf_node, kernfs_fileop_compare);
247 SPLAY_GENERATE(kfsfileoptree, kernfs_fileop, kf_node, kernfs_fileop_compare);
248
249 kfstype
250 kernfs_alloctype(int nkf, const struct kernfs_fileop *kf)
251 {
252 static u_char nextfreetype = KFSlasttype;
253 struct kernfs_fileop *dkf, *fkf, skf;
254 int i;
255
256 /* XXX need to keep track of dkf's memory if we support
257 deallocating types */
258 dkf = malloc(sizeof(kernfs_default_fileops), M_TEMP, M_WAITOK);
259 memcpy(dkf, kernfs_default_fileops, sizeof(kernfs_default_fileops));
260
261 for (i = 0; i < sizeof(kernfs_default_fileops) /
262 sizeof(kernfs_default_fileops[0]); i++) {
263 dkf[i].kf_type = nextfreetype;
264 SPLAY_INSERT(kfsfileoptree, &kfsfileoptree, &dkf[i]);
265 }
266
267 for (i = 0; i < nkf; i++) {
268 skf.kf_type = nextfreetype;
269 skf.kf_fileop = kf[i].kf_fileop;
270 if ((fkf = SPLAY_FIND(kfsfileoptree, &kfsfileoptree, &skf)))
271 fkf->kf_vop = kf[i].kf_vop;
272 }
273
274 return nextfreetype++;
275 }
276
277 int
278 kernfs_try_fileop(kfstype type, kfsfileop fileop, void *v, int error)
279 {
280 struct kernfs_fileop *kf, skf;
281
282 skf.kf_type = type;
283 skf.kf_fileop = fileop;
284 if ((kf = SPLAY_FIND(kfsfileoptree, &kfsfileoptree, &skf)))
285 if (kf->kf_vop)
286 return kf->kf_vop(v);
287 return error;
288 }
289
290 int
291 kernfs_try_xread(kfstype type, const struct kernfs_node *kfs, char **bfp,
292 size_t len, int error)
293 {
294 struct kernfs_fileop *kf, skf;
295
296 skf.kf_type = type;
297 skf.kf_fileop = KERNFS_XREAD;
298 if ((kf = SPLAY_FIND(kfsfileoptree, &kfsfileoptree, &skf)))
299 if (kf->kf_xread)
300 return kf->kf_xread(kfs, bfp, len);
301 return error;
302 }
303
304 int
305 kernfs_try_xwrite(kfstype type, const struct kernfs_node *kfs, char *bf,
306 size_t len, int error)
307 {
308 struct kernfs_fileop *kf, skf;
309
310 skf.kf_type = type;
311 skf.kf_fileop = KERNFS_XWRITE;
312 if ((kf = SPLAY_FIND(kfsfileoptree, &kfsfileoptree, &skf)))
313 if (kf->kf_xwrite)
314 return kf->kf_xwrite(kfs, bf, len);
315 return error;
316 }
317
318 int
319 kernfs_addentry(kernfs_parentdir_t *pkt, kernfs_entry_t *dkt)
320 {
321 struct kernfs_subdir *ks, *parent;
322
323 if (pkt == NULL) {
324 SIMPLEQ_INSERT_TAIL(&dyn_kern_targets, dkt, dkt_queue);
325 nkern_targets++;
326 if (dkt->dkt_kt.kt_vtype == VDIR)
327 nkern_dirs++;
328 } else {
329 parent = (struct kernfs_subdir *)pkt->kt_data;
330 SIMPLEQ_INSERT_TAIL(&parent->ks_entries, dkt, dkt_queue);
331 parent->ks_nentries++;
332 if (dkt->dkt_kt.kt_vtype == VDIR)
333 parent->ks_dirs++;
334 }
335 if (dkt->dkt_kt.kt_vtype == VDIR && dkt->dkt_kt.kt_data == NULL) {
336 ks = malloc(sizeof(struct kernfs_subdir),
337 M_TEMP, M_WAITOK);
338 SIMPLEQ_INIT(&ks->ks_entries);
339 ks->ks_nentries = 2; /* . and .. */
340 ks->ks_dirs = 2;
341 ks->ks_parent = pkt ? pkt : &kern_targets[0];
342 dkt->dkt_kt.kt_data = ks;
343 }
344 return 0;
345 }
346
347 static int
348 kernfs_xread(struct kernfs_node *kfs, int off, char **bufp, size_t len, size_t *wrlen)
349 {
350 const struct kern_target *kt;
351 int err;
352
353 kt = kfs->kfs_kt;
354
355 switch (kfs->kfs_type) {
356 case KFStime: {
357 struct timeval tv;
358
359 microtime(&tv);
360 snprintf(*bufp, len, "%lld %ld\n", (long long)tv.tv_sec,
361 (long)tv.tv_usec);
362 break;
363 }
364
365 case KFSint: {
366 int *ip = kt->kt_data;
367
368 snprintf(*bufp, len, "%d\n", *ip);
369 break;
370 }
371
372 case KFSstring: {
373 char *cp = kt->kt_data;
374
375 *bufp = cp;
376 break;
377 }
378
379 case KFSmsgbuf: {
380 long n;
381
382 /*
383 * deal with cases where the message buffer has
384 * become corrupted.
385 */
386 if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) {
387 msgbufenabled = 0;
388 return (ENXIO);
389 }
390
391 /*
392 * Note that reads of /kern/msgbuf won't necessarily yield
393 * consistent results, if the message buffer is modified
394 * while the read is in progress. The worst that can happen
395 * is that incorrect data will be read. There's no way
396 * that this can crash the system unless the values in the
397 * message buffer header are corrupted, but that'll cause
398 * the system to die anyway.
399 */
400 if (off >= msgbufp->msg_bufs) {
401 *wrlen = 0;
402 return (0);
403 }
404 n = msgbufp->msg_bufx + off;
405 if (n >= msgbufp->msg_bufs)
406 n -= msgbufp->msg_bufs;
407 len = min(msgbufp->msg_bufs - n, msgbufp->msg_bufs - off);
408 *bufp = msgbufp->msg_bufc + n;
409 *wrlen = len;
410 return (0);
411 }
412
413 case KFShostname: {
414 char *cp = hostname;
415 size_t xlen = hostnamelen;
416
417 if (xlen >= (len - 2))
418 return (EINVAL);
419
420 memcpy(*bufp, cp, xlen);
421 (*bufp)[xlen] = '\n';
422 (*bufp)[xlen+1] = '\0';
423 break;
424 }
425
426 case KFSavenrun:
427 averunnable.fscale = FSCALE;
428 snprintf(*bufp, len, "%d %d %d %ld\n",
429 averunnable.ldavg[0], averunnable.ldavg[1],
430 averunnable.ldavg[2], averunnable.fscale);
431 break;
432
433 default:
434 err = kernfs_try_xread(kfs->kfs_type, kfs, bufp, len,
435 EOPNOTSUPP);
436 if (err)
437 return err;
438 }
439
440 len = strlen(*bufp);
441 if (len <= off)
442 *wrlen = 0;
443 else {
444 *bufp += off;
445 *wrlen = len - off;
446 }
447 return (0);
448 }
449
450 static int
451 kernfs_xwrite(const struct kernfs_node *kfs, char *bf, size_t len)
452 {
453
454 switch (kfs->kfs_type) {
455 case KFShostname:
456 if (bf[len-1] == '\n')
457 --len;
458 memcpy(hostname, bf, len);
459 hostname[len] = '\0';
460 hostnamelen = (size_t) len;
461 return (0);
462
463 default:
464 return kernfs_try_xwrite(kfs->kfs_type, kfs, bf, len, EIO);
465 }
466 }
467
468
469 /*
470 * vp is the current namei directory
471 * ndp is the name to locate in that directory...
472 */
473 int
474 kernfs_lookup(void *v)
475 {
476 struct vop_lookup_v2_args /* {
477 struct vnode * a_dvp;
478 struct vnode ** a_vpp;
479 struct componentname * a_cnp;
480 } */ *ap = v;
481 struct componentname *cnp = ap->a_cnp;
482 struct vnode **vpp = ap->a_vpp;
483 struct vnode *dvp = ap->a_dvp;
484 const char *pname = cnp->cn_nameptr;
485 const struct kernfs_node *kfs;
486 const struct kern_target *kt;
487 const struct dyn_kern_target *dkt;
488 const struct kernfs_subdir *ks;
489 int error, i;
490
491 *vpp = NULLVP;
492
493 if (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME)
494 return (EROFS);
495
496 if (cnp->cn_namelen == 1 && *pname == '.') {
497 *vpp = dvp;
498 vref(dvp);
499 return (0);
500 }
501
502 kfs = VTOKERN(dvp);
503 switch (kfs->kfs_type) {
504 case KFSkern:
505 /*
506 * Shouldn't get here with .. in the root node.
507 */
508 if (cnp->cn_flags & ISDOTDOT)
509 return (EIO);
510
511 for (i = 0; i < static_nkern_targets; i++) {
512 kt = &kern_targets[i];
513 if (cnp->cn_namelen == kt->kt_namlen &&
514 memcmp(kt->kt_name, pname, cnp->cn_namelen) == 0)
515 goto found;
516 }
517 SIMPLEQ_FOREACH(dkt, &dyn_kern_targets, dkt_queue) {
518 if (cnp->cn_namelen == dkt->dkt_kt.kt_namlen &&
519 memcmp(dkt->dkt_kt.kt_name, pname, cnp->cn_namelen) == 0) {
520 kt = &dkt->dkt_kt;
521 goto found;
522 }
523 }
524 break;
525
526 found:
527 error = vcache_get(dvp->v_mount, &kt, sizeof(kt), vpp);
528 return error;
529
530 case KFSsubdir:
531 ks = (struct kernfs_subdir *)kfs->kfs_kt->kt_data;
532 if (cnp->cn_flags & ISDOTDOT) {
533 kt = ks->ks_parent;
534 goto found;
535 }
536
537 SIMPLEQ_FOREACH(dkt, &ks->ks_entries, dkt_queue) {
538 if (cnp->cn_namelen == dkt->dkt_kt.kt_namlen &&
539 memcmp(dkt->dkt_kt.kt_name, pname, cnp->cn_namelen) == 0) {
540 kt = &dkt->dkt_kt;
541 goto found;
542 }
543 }
544 break;
545
546 default:
547 return (ENOTDIR);
548 }
549
550 return (cnp->cn_nameiop == LOOKUP ? ENOENT : EROFS);
551 }
552
553 int
554 kernfs_open(void *v)
555 {
556 struct vop_open_args /* {
557 struct vnode *a_vp;
558 int a_mode;
559 kauth_cred_t a_cred;
560 } */ *ap = v;
561 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
562
563 return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_OPEN, v, 0);
564 }
565
566 int
567 kernfs_close(void *v)
568 {
569 struct vop_close_args /* {
570 struct vnode *a_vp;
571 int a_fflag;
572 kauth_cred_t a_cred;
573 } */ *ap = v;
574 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
575
576 return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_CLOSE, v, 0);
577 }
578
579 int
580 kernfs_access(void *v)
581 {
582 struct vop_access_args /* {
583 struct vnode *a_vp;
584 int a_mode;
585 kauth_cred_t a_cred;
586 } */ *ap = v;
587 struct vattr va;
588 int error;
589
590 if ((error = VOP_GETATTR(ap->a_vp, &va, ap->a_cred)) != 0)
591 return (error);
592
593 return kauth_authorize_vnode(ap->a_cred,
594 KAUTH_ACCESS_ACTION(ap->a_mode, ap->a_vp->v_type, va.va_mode),
595 ap->a_vp, NULL, genfs_can_access(va.va_type, va.va_mode,
596 va.va_uid, va.va_gid, ap->a_mode, ap->a_cred));
597 }
598
599 static int
600 kernfs_default_fileop_getattr(void *v)
601 {
602 struct vop_getattr_args /* {
603 struct vnode *a_vp;
604 struct vattr *a_vap;
605 kauth_cred_t a_cred;
606 } */ *ap = v;
607 struct vattr *vap = ap->a_vap;
608
609 vap->va_nlink = 1;
610 vap->va_bytes = vap->va_size = 0;
611
612 return 0;
613 }
614
615 int
616 kernfs_getattr(void *v)
617 {
618 struct vop_getattr_args /* {
619 struct vnode *a_vp;
620 struct vattr *a_vap;
621 kauth_cred_t a_cred;
622 } */ *ap = v;
623 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
624 struct kernfs_subdir *ks;
625 struct vattr *vap = ap->a_vap;
626 int error = 0;
627 char strbuf[KSTRING], *bf;
628 size_t nread, total;
629
630 vattr_null(vap);
631 vap->va_type = ap->a_vp->v_type;
632 vap->va_uid = 0;
633 vap->va_gid = 0;
634 vap->va_mode = kfs->kfs_mode;
635 vap->va_fileid = kfs->kfs_fileno;
636 vap->va_flags = 0;
637 vap->va_size = 0;
638 vap->va_blocksize = DEV_BSIZE;
639 /* Make all times be current TOD, except for the "boottime" node. */
640 if (kfs->kfs_kt->kt_namlen == 8 &&
641 !memcmp(kfs->kfs_kt->kt_name, "boottime", 8)) {
642 vap->va_ctime = boottime;
643 } else {
644 getnanotime(&vap->va_ctime);
645 }
646 vap->va_atime = vap->va_mtime = vap->va_ctime;
647 vap->va_gen = 0;
648 vap->va_flags = 0;
649 vap->va_rdev = 0;
650 vap->va_bytes = 0;
651
652 switch (kfs->kfs_type) {
653 case KFSkern:
654 vap->va_nlink = nkern_dirs;
655 vap->va_bytes = vap->va_size = DEV_BSIZE;
656 break;
657
658 case KFSdevice:
659 vap->va_nlink = 1;
660 vap->va_rdev = ap->a_vp->v_rdev;
661 break;
662
663 case KFSroot:
664 vap->va_nlink = 1;
665 vap->va_bytes = vap->va_size = DEV_BSIZE;
666 break;
667
668 case KFSsubdir:
669 ks = (struct kernfs_subdir *)kfs->kfs_kt->kt_data;
670 vap->va_nlink = ks->ks_dirs;
671 vap->va_bytes = vap->va_size = DEV_BSIZE;
672 break;
673
674 case KFSnull:
675 case KFStime:
676 case KFSint:
677 case KFSstring:
678 case KFShostname:
679 case KFSavenrun:
680 case KFSmsgbuf:
681 vap->va_nlink = 1;
682 total = 0;
683 do {
684 bf = strbuf;
685 error = kernfs_xread(kfs, total, &bf,
686 sizeof(strbuf), &nread);
687 total += nread;
688 } while (error == 0 && nread != 0);
689 vap->va_bytes = vap->va_size = total;
690 break;
691
692 default:
693 error = kernfs_try_fileop(kfs->kfs_type,
694 KERNFS_FILEOP_GETATTR, v, EINVAL);
695 break;
696 }
697
698 return (error);
699 }
700
701 /*ARGSUSED*/
702 int
703 kernfs_setattr(void *v)
704 {
705
706 /*
707 * Silently ignore attribute changes.
708 * This allows for open with truncate to have no
709 * effect until some data is written. I want to
710 * do it this way because all writes are atomic.
711 */
712 return (0);
713 }
714
715 int
716 kernfs_default_xread(void *v)
717 {
718 struct vop_read_args /* {
719 struct vnode *a_vp;
720 struct uio *a_uio;
721 int a_ioflag;
722 kauth_cred_t a_cred;
723 } */ *ap = v;
724 struct uio *uio = ap->a_uio;
725 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
726 char strbuf[KSTRING], *bf;
727 int off;
728 size_t len;
729 int error;
730
731 if (ap->a_vp->v_type == VDIR)
732 return EISDIR;
733
734 off = (int)uio->uio_offset;
735 /* Don't allow negative offsets */
736 if (off < 0)
737 return EINVAL;
738
739 bf = strbuf;
740 if ((error = kernfs_xread(kfs, off, &bf, sizeof(strbuf), &len)) == 0)
741 error = uiomove(bf, len, uio);
742 return (error);
743 }
744
745 int
746 kernfs_read(void *v)
747 {
748 struct vop_read_args /* {
749 struct vnode *a_vp;
750 struct uio *a_uio;
751 int a_ioflag;
752 struct ucred *a_cred;
753 } */ *ap = v;
754 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
755
756 if (kfs->kfs_type < KFSlasttype) {
757 /* use default function */
758 return kernfs_default_xread(v);
759 }
760 return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_READ, v,
761 EOPNOTSUPP);
762 }
763
764 static int
765 kernfs_default_xwrite(void *v)
766 {
767 struct vop_write_args /* {
768 struct vnode *a_vp;
769 struct uio *a_uio;
770 int a_ioflag;
771 kauth_cred_t a_cred;
772 } */ *ap = v;
773 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
774 struct uio *uio = ap->a_uio;
775 int error;
776 size_t xlen;
777 char strbuf[KSTRING];
778
779 if (uio->uio_offset != 0)
780 return (EINVAL);
781
782 xlen = min(uio->uio_resid, KSTRING-1);
783 if ((error = uiomove(strbuf, xlen, uio)) != 0)
784 return (error);
785
786 if (uio->uio_resid != 0)
787 return (EIO);
788
789 strbuf[xlen] = '\0';
790 xlen = strlen(strbuf);
791 return (kernfs_xwrite(kfs, strbuf, xlen));
792 }
793
794 int
795 kernfs_write(void *v)
796 {
797 struct vop_write_args /* {
798 struct vnode *a_vp;
799 struct uio *a_uio;
800 int a_ioflag;
801 kauth_cred_t a_cred;
802 } */ *ap = v;
803 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
804
805 if (kfs->kfs_type < KFSlasttype) {
806 /* use default function */
807 return kernfs_default_xwrite(v);
808 }
809 return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_WRITE, v,
810 EOPNOTSUPP);
811 }
812
813 int
814 kernfs_ioctl(void *v)
815 {
816 struct vop_ioctl_args /* {
817 const struct vnodeop_desc *a_desc;
818 struct vnode *a_vp;
819 u_long a_command;
820 void *a_data;
821 int a_fflag;
822 kauth_cred_t a_cred;
823 } */ *ap = v;
824 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
825
826 return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_IOCTL, v,
827 EPASSTHROUGH);
828 }
829
830 static int
831 kernfs_setdirentfileno_kt(struct dirent *d, const struct kern_target *kt,
832 struct vop_readdir_args *ap)
833 {
834 struct kernfs_node *kfs;
835 struct vnode *vp;
836 int error;
837
838 if ((error = vcache_get(ap->a_vp->v_mount, &kt, sizeof(kt), &vp)) != 0)
839 return error;
840 kfs = VTOKERN(vp);
841 d->d_fileno = kfs->kfs_fileno;
842 vrele(vp);
843 return 0;
844 }
845
846 static int
847 kernfs_setdirentfileno(struct dirent *d, off_t entry,
848 struct kernfs_node *thisdir_kfs, const struct kern_target *parent_kt,
849 const struct kern_target *kt, struct vop_readdir_args *ap)
850 {
851 const struct kern_target *ikt;
852 int error;
853
854 switch (entry) {
855 case 0:
856 d->d_fileno = thisdir_kfs->kfs_fileno;
857 return 0;
858 case 1:
859 ikt = parent_kt;
860 break;
861 default:
862 ikt = kt;
863 break;
864 }
865 if (ikt != thisdir_kfs->kfs_kt) {
866 if ((error = kernfs_setdirentfileno_kt(d, ikt, ap)) != 0)
867 return error;
868 } else
869 d->d_fileno = thisdir_kfs->kfs_fileno;
870 return 0;
871 }
872
873 int
874 kernfs_readdir(void *v)
875 {
876 struct vop_readdir_args /* {
877 struct vnode *a_vp;
878 struct uio *a_uio;
879 kauth_cred_t a_cred;
880 int *a_eofflag;
881 off_t **a_cookies;
882 int a_*ncookies;
883 } */ *ap = v;
884 struct uio *uio = ap->a_uio;
885 struct dirent d;
886 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
887 const struct kern_target *kt;
888 const struct dyn_kern_target *dkt = NULL;
889 const struct kernfs_subdir *ks;
890 off_t i, j;
891 int error;
892 off_t *cookies = NULL;
893 int ncookies = 0, n;
894
895 if (uio->uio_resid < UIO_MX)
896 return (EINVAL);
897 if (uio->uio_offset < 0)
898 return (EINVAL);
899
900 error = 0;
901 i = uio->uio_offset;
902 memset(&d, 0, sizeof(d));
903 d.d_reclen = UIO_MX;
904 ncookies = uio->uio_resid / UIO_MX;
905
906 switch (kfs->kfs_type) {
907 case KFSkern:
908 if (i >= nkern_targets)
909 return (0);
910
911 if (ap->a_ncookies) {
912 ncookies = min(ncookies, (nkern_targets - i));
913 cookies = malloc(ncookies * sizeof(off_t), M_TEMP,
914 M_WAITOK);
915 *ap->a_cookies = cookies;
916 }
917
918 n = 0;
919 for (; i < nkern_targets && uio->uio_resid >= UIO_MX; i++) {
920 if (i < static_nkern_targets)
921 kt = &kern_targets[i];
922 else {
923 if (dkt == NULL) {
924 dkt = SIMPLEQ_FIRST(&dyn_kern_targets);
925 for (j = static_nkern_targets; j < i &&
926 dkt != NULL; j++)
927 dkt = SIMPLEQ_NEXT(dkt, dkt_queue);
928 if (j != i)
929 break;
930 } else {
931 dkt = SIMPLEQ_NEXT(dkt, dkt_queue);
932 }
933 if (dkt == NULL)
934 break;
935 kt = &dkt->dkt_kt;
936 }
937 if (kt->kt_tag == KFSdevice) {
938 dev_t *dp = kt->kt_data;
939 struct vnode *fvp;
940
941 if (*dp == NODEV ||
942 !vfinddev(*dp, kt->kt_vtype, &fvp))
943 continue;
944 vrele(fvp);
945 }
946 if (kt->kt_tag == KFSmsgbuf) {
947 if (!msgbufenabled
948 || msgbufp->msg_magic != MSG_MAGIC) {
949 continue;
950 }
951 }
952 d.d_namlen = kt->kt_namlen;
953 if ((error = kernfs_setdirentfileno(&d, i, kfs,
954 &kern_targets[0], kt, ap)) != 0)
955 break;
956 memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1);
957 d.d_type = kt->kt_type;
958 if ((error = uiomove(&d, UIO_MX, uio)) != 0)
959 break;
960 if (cookies)
961 *cookies++ = i + 1;
962 n++;
963 }
964 ncookies = n;
965 break;
966
967 case KFSroot:
968 if (i >= 2)
969 return 0;
970
971 if (ap->a_ncookies) {
972 ncookies = min(ncookies, (2 - i));
973 cookies = malloc(ncookies * sizeof(off_t), M_TEMP,
974 M_WAITOK);
975 *ap->a_cookies = cookies;
976 }
977
978 n = 0;
979 for (; i < 2 && uio->uio_resid >= UIO_MX; i++) {
980 kt = &kern_targets[i];
981 d.d_namlen = kt->kt_namlen;
982 d.d_fileno = KERNFS_FILENO(kt, kt->kt_tag, 0);
983 memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1);
984 d.d_type = kt->kt_type;
985 if ((error = uiomove(&d, UIO_MX, uio)) != 0)
986 break;
987 if (cookies)
988 *cookies++ = i + 1;
989 n++;
990 }
991 ncookies = n;
992 break;
993
994 case KFSsubdir:
995 ks = (struct kernfs_subdir *)kfs->kfs_kt->kt_data;
996 if (i >= ks->ks_nentries)
997 return (0);
998
999 if (ap->a_ncookies) {
1000 ncookies = min(ncookies, (ks->ks_nentries - i));
1001 cookies = malloc(ncookies * sizeof(off_t), M_TEMP,
1002 M_WAITOK);
1003 *ap->a_cookies = cookies;
1004 }
1005
1006 dkt = SIMPLEQ_FIRST(&ks->ks_entries);
1007 for (j = 0; j < i && dkt != NULL; j++)
1008 dkt = SIMPLEQ_NEXT(dkt, dkt_queue);
1009 n = 0;
1010 for (; i < ks->ks_nentries && uio->uio_resid >= UIO_MX; i++) {
1011 if (i < 2)
1012 kt = &subdir_targets[i];
1013 else {
1014 /* check if ks_nentries lied to us */
1015 if (dkt == NULL)
1016 break;
1017 kt = &dkt->dkt_kt;
1018 dkt = SIMPLEQ_NEXT(dkt, dkt_queue);
1019 }
1020 if (kt->kt_tag == KFSdevice) {
1021 dev_t *dp = kt->kt_data;
1022 struct vnode *fvp;
1023
1024 if (*dp == NODEV ||
1025 !vfinddev(*dp, kt->kt_vtype, &fvp))
1026 continue;
1027 vrele(fvp);
1028 }
1029 d.d_namlen = kt->kt_namlen;
1030 if ((error = kernfs_setdirentfileno(&d, i, kfs,
1031 ks->ks_parent, kt, ap)) != 0)
1032 break;
1033 memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1);
1034 d.d_type = kt->kt_type;
1035 if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1036 break;
1037 if (cookies)
1038 *cookies++ = i + 1;
1039 n++;
1040 }
1041 ncookies = n;
1042 break;
1043
1044 default:
1045 error = ENOTDIR;
1046 break;
1047 }
1048
1049 if (ap->a_ncookies) {
1050 if (error) {
1051 if (cookies)
1052 free(*ap->a_cookies, M_TEMP);
1053 *ap->a_ncookies = 0;
1054 *ap->a_cookies = NULL;
1055 } else
1056 *ap->a_ncookies = ncookies;
1057 }
1058
1059 uio->uio_offset = i;
1060 return (error);
1061 }
1062
1063 int
1064 kernfs_inactive(void *v)
1065 {
1066 struct vop_inactive_v2_args /* {
1067 struct vnode *a_vp;
1068 bool *a_recycle;
1069 } */ *ap = v;
1070
1071 *ap->a_recycle = false;
1072
1073 return (0);
1074 }
1075
1076 int
1077 kernfs_reclaim(void *v)
1078 {
1079 struct vop_reclaim_v2_args /* {
1080 struct vnode *a_vp;
1081 } */ *ap = v;
1082 struct vnode *vp = ap->a_vp;
1083 struct kernfs_node *kfs = VTOKERN(vp);
1084
1085 VOP_UNLOCK(vp);
1086
1087 vp->v_data = NULL;
1088 mutex_enter(&kfs_lock);
1089 TAILQ_REMOVE(&VFSTOKERNFS(vp->v_mount)->nodelist, kfs, kfs_list);
1090 mutex_exit(&kfs_lock);
1091 kmem_free(kfs, sizeof(struct kernfs_node));
1092
1093 return 0;
1094 }
1095
1096 /*
1097 * Return POSIX pathconf information applicable to special devices.
1098 */
1099 int
1100 kernfs_pathconf(void *v)
1101 {
1102 struct vop_pathconf_args /* {
1103 struct vnode *a_vp;
1104 int a_name;
1105 register_t *a_retval;
1106 } */ *ap = v;
1107
1108 switch (ap->a_name) {
1109 case _PC_LINK_MAX:
1110 *ap->a_retval = LINK_MAX;
1111 return (0);
1112 case _PC_MAX_CANON:
1113 *ap->a_retval = MAX_CANON;
1114 return (0);
1115 case _PC_MAX_INPUT:
1116 *ap->a_retval = MAX_INPUT;
1117 return (0);
1118 case _PC_PIPE_BUF:
1119 *ap->a_retval = PIPE_BUF;
1120 return (0);
1121 case _PC_CHOWN_RESTRICTED:
1122 *ap->a_retval = 1;
1123 return (0);
1124 case _PC_VDISABLE:
1125 *ap->a_retval = _POSIX_VDISABLE;
1126 return (0);
1127 case _PC_SYNC_IO:
1128 *ap->a_retval = 1;
1129 return (0);
1130 default:
1131 return (EINVAL);
1132 }
1133 /* NOTREACHED */
1134 }
1135
1136 /*
1137 * Print out the contents of a /dev/fd vnode.
1138 */
1139 /* ARGSUSED */
1140 int
1141 kernfs_print(void *v)
1142 {
1143
1144 printf("tag VT_KERNFS, kernfs vnode\n");
1145 return (0);
1146 }
1147
1148 int
1149 kernfs_link(void *v)
1150 {
1151 struct vop_link_v2_args /* {
1152 struct vnode *a_dvp;
1153 struct vnode *a_vp;
1154 struct componentname *a_cnp;
1155 } */ *ap = v;
1156
1157 VOP_ABORTOP(ap->a_dvp, ap->a_cnp);
1158 return (EROFS);
1159 }
1160
1161 int
1162 kernfs_symlink(void *v)
1163 {
1164 struct vop_symlink_v3_args /* {
1165 struct vnode *a_dvp;
1166 struct vnode **a_vpp;
1167 struct componentname *a_cnp;
1168 struct vattr *a_vap;
1169 char *a_target;
1170 } */ *ap = v;
1171
1172 VOP_ABORTOP(ap->a_dvp, ap->a_cnp);
1173 return (EROFS);
1174 }
1175
1176 int
1177 kernfs_getpages(void *v)
1178 {
1179 struct vop_getpages_args /* {
1180 struct vnode *a_vp;
1181 voff_t a_offset;
1182 struct vm_page **a_m;
1183 int *a_count;
1184 int a_centeridx;
1185 vm_prot_t a_access_type;
1186 int a_advice;
1187 int a_flags;
1188 } */ *ap = v;
1189
1190 if ((ap->a_flags & PGO_LOCKED) == 0)
1191 mutex_exit(ap->a_vp->v_interlock);
1192
1193 return (EFAULT);
1194 }
1195