kernfs_vnops.c revision 1.61 1 /* $NetBSD: kernfs_vnops.c,v 1.61 1998/08/10 08:11:12 matthias Exp $ */
2
3 /*
4 * Copyright (c) 1992, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software donated to Berkeley by
8 * Jan-Simon Pendry.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * @(#)kernfs_vnops.c 8.15 (Berkeley) 5/21/95
39 */
40
41 /*
42 * Kernel parameter filesystem (/kern)
43 */
44
45 #if defined(_KERNEL) && !defined(_LKM)
46 #include "opt_uvm.h"
47 #endif
48
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/kernel.h>
52 #include <sys/vmmeter.h>
53 #include <sys/types.h>
54 #include <sys/time.h>
55 #include <sys/proc.h>
56 #include <sys/vnode.h>
57 #include <sys/malloc.h>
58 #include <sys/file.h>
59 #include <sys/stat.h>
60 #include <sys/mount.h>
61 #include <sys/namei.h>
62 #include <sys/buf.h>
63 #include <sys/dirent.h>
64 #include <sys/msgbuf.h>
65
66 #include <miscfs/genfs/genfs.h>
67 #include <miscfs/kernfs/kernfs.h>
68
69 #if defined(UVM)
70 #include <vm/vm.h>
71 #include <uvm/uvm_extern.h>
72 #endif
73
74 #define KSTRING 256 /* Largest I/O available via this filesystem */
75 #define UIO_MX 32
76
77 #define READ_MODE (S_IRUSR|S_IRGRP|S_IROTH)
78 #define WRITE_MODE (S_IWUSR|S_IRUSR|S_IRGRP|S_IROTH)
79 #define DIR_MODE (S_IRUSR|S_IXUSR|S_IRGRP|S_IXGRP|S_IROTH|S_IXOTH)
80
81 struct kern_target kern_targets[] = {
82 /* NOTE: The name must be less than UIO_MX-16 chars in length */
83 #define N(s) sizeof(s)-1, s
84 /* name data tag type ro/rw */
85 { DT_DIR, N("."), 0, KTT_NULL, VDIR, DIR_MODE },
86 { DT_DIR, N(".."), 0, KTT_NULL, VDIR, DIR_MODE },
87 { DT_REG, N("boottime"), &boottime.tv_sec, KTT_INT, VREG, READ_MODE },
88 { DT_REG, N("copyright"), copyright, KTT_STRING, VREG, READ_MODE },
89 { DT_REG, N("hostname"), 0, KTT_HOSTNAME, VREG, WRITE_MODE },
90 { DT_REG, N("hz"), &hz, KTT_INT, VREG, READ_MODE },
91 { DT_REG, N("loadavg"), 0, KTT_AVENRUN, VREG, READ_MODE },
92 { DT_REG, N("msgbuf"), 0, KTT_MSGBUF, VREG, READ_MODE },
93 #if defined(UVM)
94 { DT_REG, N("pagesize"), &uvmexp.pagesize, KTT_INT, VREG, READ_MODE },
95 #else
96 { DT_REG, N("pagesize"), &cnt.v_page_size, KTT_INT, VREG, READ_MODE },
97 #endif
98 { DT_REG, N("physmem"), &physmem, KTT_INT, VREG, READ_MODE },
99 #if 0
100 { DT_DIR, N("root"), 0, KTT_NULL, VDIR, DIR_MODE },
101 #endif
102 { DT_BLK, N("rootdev"), &rootdev, KTT_DEVICE, VBLK, READ_MODE },
103 { DT_CHR, N("rrootdev"), &rrootdev, KTT_DEVICE, VCHR, READ_MODE },
104 { DT_REG, N("time"), 0, KTT_TIME, VREG, READ_MODE },
105 { DT_REG, N("version"), version, KTT_STRING, VREG, READ_MODE },
106 #undef N
107 };
108 static int nkern_targets = sizeof(kern_targets) / sizeof(kern_targets[0]);
109
110 int kernfs_lookup __P((void *));
111 #define kernfs_create genfs_eopnotsupp
112 #define kernfs_mknod genfs_eopnotsupp
113 #define kernfs_open genfs_nullop
114 #define kernfs_close genfs_nullop
115 int kernfs_access __P((void *));
116 int kernfs_getattr __P((void *));
117 int kernfs_setattr __P((void *));
118 int kernfs_read __P((void *));
119 int kernfs_write __P((void *));
120 #define kernfs_ioctl genfs_enoioctl
121 #define kernfs_poll genfs_poll
122 #define kernfs_revoke genfs_revoke
123 #define kernfs_mmap genfs_eopnotsupp
124 #define kernfs_fsync genfs_nullop
125 #define kernfs_seek genfs_nullop
126 #define kernfs_remove genfs_eopnotsupp
127 int kernfs_link __P((void *));
128 #define kernfs_rename genfs_eopnotsupp
129 #define kernfs_mkdir genfs_eopnotsupp
130 #define kernfs_rmdir genfs_eopnotsupp
131 int kernfs_symlink __P((void *));
132 int kernfs_readdir __P((void *));
133 #define kernfs_readlink genfs_eopnotsupp
134 #define kernfs_abortop genfs_abortop
135 int kernfs_inactive __P((void *));
136 int kernfs_reclaim __P((void *));
137 #define kernfs_lock genfs_nolock
138 #define kernfs_unlock genfs_nounlock
139 #define kernfs_bmap genfs_badop
140 #define kernfs_strategy genfs_badop
141 int kernfs_print __P((void *));
142 #define kernfs_islocked genfs_noislocked
143 int kernfs_pathconf __P((void *));
144 #define kernfs_advlock genfs_eopnotsupp
145 #define kernfs_blkatoff genfs_eopnotsupp
146 #define kernfs_valloc genfs_eopnotsupp
147 #define kernfs_vfree genfs_nullop
148 #define kernfs_truncate genfs_eopnotsupp
149 #define kernfs_update genfs_nullop
150 #define kernfs_bwrite genfs_eopnotsupp
151
152 int kernfs_xread __P((struct kern_target *, int, char **, int));
153 int kernfs_xwrite __P((struct kern_target *, char *, int));
154
155 int (**kernfs_vnodeop_p) __P((void *));
156 struct vnodeopv_entry_desc kernfs_vnodeop_entries[] = {
157 { &vop_default_desc, vn_default_error },
158 { &vop_lookup_desc, kernfs_lookup }, /* lookup */
159 { &vop_create_desc, kernfs_create }, /* create */
160 { &vop_mknod_desc, kernfs_mknod }, /* mknod */
161 { &vop_open_desc, kernfs_open }, /* open */
162 { &vop_close_desc, kernfs_close }, /* close */
163 { &vop_access_desc, kernfs_access }, /* access */
164 { &vop_getattr_desc, kernfs_getattr }, /* getattr */
165 { &vop_setattr_desc, kernfs_setattr }, /* setattr */
166 { &vop_read_desc, kernfs_read }, /* read */
167 { &vop_write_desc, kernfs_write }, /* write */
168 { &vop_ioctl_desc, kernfs_ioctl }, /* ioctl */
169 { &vop_poll_desc, kernfs_poll }, /* poll */
170 { &vop_revoke_desc, kernfs_revoke }, /* revoke */
171 { &vop_mmap_desc, kernfs_mmap }, /* mmap */
172 { &vop_fsync_desc, kernfs_fsync }, /* fsync */
173 { &vop_seek_desc, kernfs_seek }, /* seek */
174 { &vop_remove_desc, kernfs_remove }, /* remove */
175 { &vop_link_desc, kernfs_link }, /* link */
176 { &vop_rename_desc, kernfs_rename }, /* rename */
177 { &vop_mkdir_desc, kernfs_mkdir }, /* mkdir */
178 { &vop_rmdir_desc, kernfs_rmdir }, /* rmdir */
179 { &vop_symlink_desc, kernfs_symlink }, /* symlink */
180 { &vop_readdir_desc, kernfs_readdir }, /* readdir */
181 { &vop_readlink_desc, kernfs_readlink }, /* readlink */
182 { &vop_abortop_desc, kernfs_abortop }, /* abortop */
183 { &vop_inactive_desc, kernfs_inactive }, /* inactive */
184 { &vop_reclaim_desc, kernfs_reclaim }, /* reclaim */
185 { &vop_lock_desc, kernfs_lock }, /* lock */
186 { &vop_unlock_desc, kernfs_unlock }, /* unlock */
187 { &vop_bmap_desc, kernfs_bmap }, /* bmap */
188 { &vop_strategy_desc, kernfs_strategy }, /* strategy */
189 { &vop_print_desc, kernfs_print }, /* print */
190 { &vop_islocked_desc, kernfs_islocked }, /* islocked */
191 { &vop_pathconf_desc, kernfs_pathconf }, /* pathconf */
192 { &vop_advlock_desc, kernfs_advlock }, /* advlock */
193 { &vop_blkatoff_desc, kernfs_blkatoff }, /* blkatoff */
194 { &vop_valloc_desc, kernfs_valloc }, /* valloc */
195 { &vop_vfree_desc, kernfs_vfree }, /* vfree */
196 { &vop_truncate_desc, kernfs_truncate }, /* truncate */
197 { &vop_update_desc, kernfs_update }, /* update */
198 { &vop_bwrite_desc, kernfs_bwrite }, /* bwrite */
199 { (struct vnodeop_desc*)NULL, (int(*) __P((void *)))NULL }
200 };
201 struct vnodeopv_desc kernfs_vnodeop_opv_desc =
202 { &kernfs_vnodeop_p, kernfs_vnodeop_entries };
203
204 int
205 kernfs_xread(kt, off, bufp, len)
206 struct kern_target *kt;
207 int off;
208 char **bufp;
209 int len;
210 {
211
212 switch (kt->kt_tag) {
213 case KTT_TIME: {
214 struct timeval tv;
215
216 microtime(&tv);
217 sprintf(*bufp, "%ld %ld\n", tv.tv_sec, tv.tv_usec);
218 break;
219 }
220
221 case KTT_INT: {
222 int *ip = kt->kt_data;
223
224 sprintf(*bufp, "%d\n", *ip);
225 break;
226 }
227
228 case KTT_STRING: {
229 char *cp = kt->kt_data;
230
231 *bufp = cp;
232 break;
233 }
234
235 case KTT_MSGBUF: {
236 long n;
237
238 /*
239 * deal with cases where the message buffer has
240 * become corrupted.
241 */
242 if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) {
243 msgbufenabled = 0;
244 return (ENXIO);
245 }
246
247 /*
248 * Note that reads of /kern/msgbuf won't necessarily yield
249 * consistent results, if the message buffer is modified
250 * while the read is in progress. The worst that can happen
251 * is that incorrect data will be read. There's no way
252 * that this can crash the system unless the values in the
253 * message buffer header are corrupted, but that'll cause
254 * the system to die anyway.
255 */
256 if (off >= msgbufp->msg_bufs)
257 return (0);
258 n = msgbufp->msg_bufx + off;
259 if (n >= msgbufp->msg_bufs)
260 n -= msgbufp->msg_bufs;
261 len = min(msgbufp->msg_bufs - n, msgbufp->msg_bufs - off);
262 *bufp = msgbufp->msg_bufc + n;
263 return (len);
264 }
265
266 case KTT_HOSTNAME: {
267 char *cp = hostname;
268 int xlen = hostnamelen;
269
270 if (xlen >= (len-2))
271 return (EINVAL);
272
273 memcpy(*bufp, cp, xlen);
274 (*bufp)[xlen] = '\n';
275 (*bufp)[xlen+1] = '\0';
276 break;
277 }
278
279 case KTT_AVENRUN:
280 averunnable.fscale = FSCALE;
281 sprintf(*bufp, "%d %d %d %ld\n",
282 averunnable.ldavg[0], averunnable.ldavg[1],
283 averunnable.ldavg[2], averunnable.fscale);
284 break;
285
286 default:
287 return (0);
288 }
289
290 len = strlen(*bufp);
291 if (len <= off)
292 return (0);
293 *bufp += off;
294 return (len - off);
295 }
296
297 int
298 kernfs_xwrite(kt, buf, len)
299 struct kern_target *kt;
300 char *buf;
301 int len;
302 {
303
304 switch (kt->kt_tag) {
305 case KTT_HOSTNAME:
306 if (buf[len-1] == '\n')
307 --len;
308 memcpy(hostname, buf, len);
309 hostname[len] = '\0';
310 hostnamelen = len;
311 return (0);
312
313 default:
314 return (EIO);
315 }
316 }
317
318
319 /*
320 * vp is the current namei directory
321 * ndp is the name to locate in that directory...
322 */
323 int
324 kernfs_lookup(v)
325 void *v;
326 {
327 struct vop_lookup_args /* {
328 struct vnode * a_dvp;
329 struct vnode ** a_vpp;
330 struct componentname * a_cnp;
331 } */ *ap = v;
332 struct componentname *cnp = ap->a_cnp;
333 struct vnode **vpp = ap->a_vpp;
334 struct vnode *dvp = ap->a_dvp;
335 const char *pname = cnp->cn_nameptr;
336 struct kern_target *kt;
337 struct vnode *fvp;
338 int error, i;
339
340 #ifdef KERNFS_DIAGNOSTIC
341 printf("kernfs_lookup(%p)\n", ap);
342 printf("kernfs_lookup(dp = %p, vpp = %p, cnp = %p)\n", dvp, vpp, ap->a_cnp);
343 printf("kernfs_lookup(%s)\n", pname);
344 #endif
345
346 *vpp = NULLVP;
347
348 if (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME)
349 return (EROFS);
350
351 VOP_UNLOCK(dvp, 0);
352 if (cnp->cn_namelen == 1 && *pname == '.') {
353 *vpp = dvp;
354 VREF(dvp);
355 vn_lock(dvp, LK_SHARED | LK_RETRY);
356 return (0);
357 }
358
359 #if 0
360 if (cnp->cn_namelen == 4 && memcmp(pname, "root", 4) == 0) {
361 *vpp = rootdir;
362 VREF(rootdir);
363 vn_lock(rootdir, LK_SHARED | LK_RETRY);
364 return (0);
365 }
366 #endif
367
368 for (kt = kern_targets, i = 0; i < nkern_targets; kt++, i++) {
369 if (cnp->cn_namelen == kt->kt_namlen &&
370 memcmp(kt->kt_name, pname, cnp->cn_namelen) == 0)
371 goto found;
372 }
373
374 #ifdef KERNFS_DIAGNOSTIC
375 printf("kernfs_lookup: i = %d, failed", i);
376 #endif
377
378 vn_lock(dvp, LK_SHARED | LK_RETRY);
379 return (cnp->cn_nameiop == LOOKUP ? ENOENT : EROFS);
380
381 found:
382 if (kt->kt_tag == KTT_DEVICE) {
383 dev_t *dp = kt->kt_data;
384 loop:
385 if (*dp == NODEV || !vfinddev(*dp, kt->kt_vtype, &fvp)) {
386 vn_lock(dvp, LK_SHARED | LK_RETRY);
387 return (ENOENT);
388 }
389 *vpp = fvp;
390 if (vget(fvp, LK_EXCLUSIVE))
391 goto loop;
392 return (0);
393 }
394
395 #ifdef KERNFS_DIAGNOSTIC
396 printf("kernfs_lookup: allocate new vnode\n");
397 #endif
398 error = getnewvnode(VT_KERNFS, dvp->v_mount, kernfs_vnodeop_p, &fvp);
399 if (error) {
400 vn_lock(dvp, LK_SHARED | LK_RETRY);
401 return (error);
402 }
403
404 MALLOC(fvp->v_data, void *, sizeof(struct kernfs_node), M_TEMP,
405 M_WAITOK);
406 VTOKERN(fvp)->kf_kt = kt;
407 fvp->v_type = kt->kt_vtype;
408 vn_lock(fvp, LK_SHARED | LK_RETRY);
409 *vpp = fvp;
410
411 #ifdef KERNFS_DIAGNOSTIC
412 printf("kernfs_lookup: newvp = %p\n", fvp);
413 #endif
414 return (0);
415 }
416
417 int
418 kernfs_access(v)
419 void *v;
420 {
421 struct vop_access_args /* {
422 struct vnode *a_vp;
423 int a_mode;
424 struct ucred *a_cred;
425 struct proc *a_p;
426 } */ *ap = v;
427 struct vnode *vp = ap->a_vp;
428 mode_t mode;
429
430 if (vp->v_flag & VROOT) {
431 mode = DIR_MODE;
432 } else {
433 struct kern_target *kt = VTOKERN(vp)->kf_kt;
434 mode = kt->kt_mode;
435 }
436
437 return (vaccess(vp->v_type, mode, (uid_t)0, (gid_t)0, ap->a_mode,
438 ap->a_cred));
439 }
440
441 int
442 kernfs_getattr(v)
443 void *v;
444 {
445 struct vop_getattr_args /* {
446 struct vnode *a_vp;
447 struct vattr *a_vap;
448 struct ucred *a_cred;
449 struct proc *a_p;
450 } */ *ap = v;
451 struct vnode *vp = ap->a_vp;
452 struct vattr *vap = ap->a_vap;
453 struct timeval tv;
454 int error = 0;
455 char strbuf[KSTRING], *buf;
456
457 memset((caddr_t) vap, 0, sizeof(*vap));
458 vattr_null(vap);
459 vap->va_uid = 0;
460 vap->va_gid = 0;
461 vap->va_fsid = vp->v_mount->mnt_stat.f_fsid.val[0];
462 vap->va_size = 0;
463 vap->va_blocksize = DEV_BSIZE;
464 microtime(&tv);
465 TIMEVAL_TO_TIMESPEC(&tv, &vap->va_atime);
466 vap->va_mtime = vap->va_atime;
467 vap->va_ctime = vap->va_ctime;
468 vap->va_gen = 0;
469 vap->va_flags = 0;
470 vap->va_rdev = 0;
471 vap->va_bytes = 0;
472
473 if (vp->v_flag & VROOT) {
474 #ifdef KERNFS_DIAGNOSTIC
475 printf("kernfs_getattr: stat rootdir\n");
476 #endif
477 vap->va_type = VDIR;
478 vap->va_mode = DIR_MODE;
479 vap->va_nlink = 2;
480 vap->va_fileid = 2;
481 vap->va_size = DEV_BSIZE;
482 } else {
483 struct kern_target *kt = VTOKERN(vp)->kf_kt;
484 int nbytes, total;
485 #ifdef KERNFS_DIAGNOSTIC
486 printf("kernfs_getattr: stat target %s\n", kt->kt_name);
487 #endif
488 vap->va_type = kt->kt_vtype;
489 vap->va_mode = kt->kt_mode;
490 vap->va_nlink = 1;
491 vap->va_fileid = 1 + (kt - kern_targets);
492 total = 0;
493 while (buf = strbuf,
494 nbytes = kernfs_xread(kt, total, &buf, sizeof(strbuf)))
495 total += nbytes;
496 vap->va_size = total;
497 }
498
499 #ifdef KERNFS_DIAGNOSTIC
500 printf("kernfs_getattr: return error %d\n", error);
501 #endif
502 return (error);
503 }
504
505 /*ARGSUSED*/
506 int
507 kernfs_setattr(v)
508 void *v;
509 {
510 /*
511 * Silently ignore attribute changes.
512 * This allows for open with truncate to have no
513 * effect until some data is written. I want to
514 * do it this way because all writes are atomic.
515 */
516 return (0);
517 }
518
519 int
520 kernfs_read(v)
521 void *v;
522 {
523 struct vop_read_args /* {
524 struct vnode *a_vp;
525 struct uio *a_uio;
526 int a_ioflag;
527 struct ucred *a_cred;
528 } */ *ap = v;
529 struct vnode *vp = ap->a_vp;
530 struct uio *uio = ap->a_uio;
531 struct kern_target *kt;
532 char strbuf[KSTRING], *buf;
533 int off, len;
534 int error;
535
536 if (vp->v_type == VDIR)
537 return (EOPNOTSUPP);
538
539 kt = VTOKERN(vp)->kf_kt;
540
541 #ifdef KERNFS_DIAGNOSTIC
542 printf("kern_read %s\n", kt->kt_name);
543 #endif
544
545 off = uio->uio_offset;
546 #if 0
547 while (buf = strbuf,
548 #else
549 if (buf = strbuf,
550 #endif
551 len = kernfs_xread(kt, off, &buf, sizeof(strbuf))) {
552 if ((error = uiomove(buf, len, uio)) != 0)
553 return (error);
554 off += len;
555 }
556 return (0);
557 }
558
559 int
560 kernfs_write(v)
561 void *v;
562 {
563 struct vop_write_args /* {
564 struct vnode *a_vp;
565 struct uio *a_uio;
566 int a_ioflag;
567 struct ucred *a_cred;
568 } */ *ap = v;
569 struct vnode *vp = ap->a_vp;
570 struct uio *uio = ap->a_uio;
571 struct kern_target *kt;
572 int error, xlen;
573 char strbuf[KSTRING];
574
575 if (vp->v_type == VDIR)
576 return (EOPNOTSUPP);
577
578 kt = VTOKERN(vp)->kf_kt;
579
580 if (uio->uio_offset != 0)
581 return (EINVAL);
582
583 xlen = min(uio->uio_resid, KSTRING-1);
584 if ((error = uiomove(strbuf, xlen, uio)) != 0)
585 return (error);
586
587 if (uio->uio_resid != 0)
588 return (EIO);
589
590 strbuf[xlen] = '\0';
591 xlen = strlen(strbuf);
592 return (kernfs_xwrite(kt, strbuf, xlen));
593 }
594
595 int
596 kernfs_readdir(v)
597 void *v;
598 {
599 struct vop_readdir_args /* {
600 struct vnode *a_vp;
601 struct uio *a_uio;
602 struct ucred *a_cred;
603 int *a_eofflag;
604 off_t **a_cookies;
605 int a_*ncookies;
606 } */ *ap = v;
607 struct uio *uio = ap->a_uio;
608 struct dirent d;
609 struct kern_target *kt;
610 int i;
611 int error;
612 off_t *cookies = NULL;
613 int ncookies = 0, nc = 0;
614
615 if (ap->a_vp->v_type != VDIR)
616 return (ENOTDIR);
617
618 if (uio->uio_resid < UIO_MX)
619 return (EINVAL);
620 if (uio->uio_offset < 0)
621 return (EINVAL);
622
623 error = 0;
624 i = uio->uio_offset;
625 memset((caddr_t)&d, 0, UIO_MX);
626 d.d_reclen = UIO_MX;
627
628 if (ap->a_ncookies) {
629 nc = uio->uio_resid / UIO_MX;
630 nc = min(nc, (nkern_targets - i));
631 MALLOC(cookies, off_t *, nc * sizeof(off_t), M_TEMP,
632 M_WAITOK);
633 *ap->a_cookies = cookies;
634 }
635
636 for (kt = &kern_targets[i];
637 uio->uio_resid >= UIO_MX && i < nkern_targets; kt++, i++) {
638 #ifdef KERNFS_DIAGNOSTIC
639 printf("kernfs_readdir: i = %d\n", i);
640 #endif
641
642 if (kt->kt_tag == KTT_DEVICE) {
643 dev_t *dp = kt->kt_data;
644 struct vnode *fvp;
645
646 if (*dp == NODEV || !vfinddev(*dp, kt->kt_vtype, &fvp))
647 continue;
648 }
649
650 d.d_fileno = i + 3;
651 d.d_namlen = kt->kt_namlen;
652 memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1);
653 d.d_type = kt->kt_type;
654
655 if ((error = uiomove((caddr_t)&d, UIO_MX, uio)) != 0)
656 break;
657 if (cookies) {
658 *cookies++ = i + 1;
659 ncookies++;
660 }
661 }
662
663 if (ap->a_ncookies) {
664 if (error) {
665 FREE(*ap->a_cookies, M_TEMP);
666 *ap->a_ncookies = 0;
667 *ap->a_cookies = NULL;
668 } else
669 *ap->a_ncookies = ncookies;
670 }
671
672 uio->uio_offset = i;
673 return (error);
674 }
675
676 int
677 kernfs_inactive(v)
678 void *v;
679 {
680 struct vop_inactive_args /* {
681 struct vnode *a_vp;
682 struct proc *a_p;
683 } */ *ap = v;
684 struct vnode *vp = ap->a_vp;
685
686 #ifdef KERNFS_DIAGNOSTIC
687 printf("kernfs_inactive(%p)\n", vp);
688 #endif
689 /*
690 * Clear out the v_type field to avoid
691 * nasty things happening in vgone().
692 */
693 VOP_UNLOCK(vp, 0);
694 vp->v_type = VNON;
695 return (0);
696 }
697
698 int
699 kernfs_reclaim(v)
700 void *v;
701 {
702 struct vop_reclaim_args /* {
703 struct vnode *a_vp;
704 } */ *ap = v;
705 struct vnode *vp = ap->a_vp;
706
707 #ifdef KERNFS_DIAGNOSTIC
708 printf("kernfs_reclaim(%p)\n", vp);
709 #endif
710 if (vp->v_data) {
711 FREE(vp->v_data, M_TEMP);
712 vp->v_data = 0;
713 }
714 return (0);
715 }
716
717 /*
718 * Return POSIX pathconf information applicable to special devices.
719 */
720 int
721 kernfs_pathconf(v)
722 void *v;
723 {
724 struct vop_pathconf_args /* {
725 struct vnode *a_vp;
726 int a_name;
727 register_t *a_retval;
728 } */ *ap = v;
729
730 switch (ap->a_name) {
731 case _PC_LINK_MAX:
732 *ap->a_retval = LINK_MAX;
733 return (0);
734 case _PC_MAX_CANON:
735 *ap->a_retval = MAX_CANON;
736 return (0);
737 case _PC_MAX_INPUT:
738 *ap->a_retval = MAX_INPUT;
739 return (0);
740 case _PC_PIPE_BUF:
741 *ap->a_retval = PIPE_BUF;
742 return (0);
743 case _PC_CHOWN_RESTRICTED:
744 *ap->a_retval = 1;
745 return (0);
746 case _PC_VDISABLE:
747 *ap->a_retval = _POSIX_VDISABLE;
748 return (0);
749 case _PC_SYNC_IO:
750 *ap->a_retval = 1;
751 return (0);
752 default:
753 return (EINVAL);
754 }
755 /* NOTREACHED */
756 }
757
758 /*
759 * Print out the contents of a /dev/fd vnode.
760 */
761 /* ARGSUSED */
762 int
763 kernfs_print(v)
764 void *v;
765 {
766
767 printf("tag VT_KERNFS, kernfs vnode\n");
768 return (0);
769 }
770
771 int
772 kernfs_link(v)
773 void *v;
774 {
775 struct vop_link_args /* {
776 struct vnode *a_dvp;
777 struct vnode *a_vp;
778 struct componentname *a_cnp;
779 } */ *ap = v;
780
781 VOP_ABORTOP(ap->a_dvp, ap->a_cnp);
782 vput(ap->a_dvp);
783 return (EROFS);
784 }
785
786 int
787 kernfs_symlink(v)
788 void *v;
789 {
790 struct vop_symlink_args /* {
791 struct vnode *a_dvp;
792 struct vnode **a_vpp;
793 struct componentname *a_cnp;
794 struct vattr *a_vap;
795 char *a_target;
796 } */ *ap = v;
797
798 VOP_ABORTOP(ap->a_dvp, ap->a_cnp);
799 vput(ap->a_dvp);
800 return (EROFS);
801 }
802