kernfs_vnops.c revision 1.70 1 /* $NetBSD: kernfs_vnops.c,v 1.70 2000/08/03 03:41:18 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 1992, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software donated to Berkeley by
8 * Jan-Simon Pendry.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * @(#)kernfs_vnops.c 8.15 (Berkeley) 5/21/95
39 */
40
41 /*
42 * Kernel parameter filesystem (/kern)
43 */
44
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/kernel.h>
48 #include <sys/vmmeter.h>
49 #include <sys/types.h>
50 #include <sys/time.h>
51 #include <sys/proc.h>
52 #include <sys/vnode.h>
53 #include <sys/malloc.h>
54 #include <sys/file.h>
55 #include <sys/stat.h>
56 #include <sys/mount.h>
57 #include <sys/namei.h>
58 #include <sys/buf.h>
59 #include <sys/dirent.h>
60 #include <sys/msgbuf.h>
61
62 #include <miscfs/genfs/genfs.h>
63 #include <miscfs/kernfs/kernfs.h>
64
65 #include <uvm/uvm_extern.h>
66
67 #define KSTRING 256 /* Largest I/O available via this filesystem */
68 #define UIO_MX 32
69
70 #define READ_MODE (S_IRUSR|S_IRGRP|S_IROTH)
71 #define WRITE_MODE (S_IWUSR|S_IRUSR|S_IRGRP|S_IROTH)
72 #define DIR_MODE (S_IRUSR|S_IXUSR|S_IRGRP|S_IXGRP|S_IROTH|S_IXOTH)
73
74 struct kern_target kern_targets[] = {
75 /* NOTE: The name must be less than UIO_MX-16 chars in length */
76 #define N(s) sizeof(s)-1, s
77 /* name data tag type ro/rw */
78 { DT_DIR, N("."), 0, KTT_NULL, VDIR, DIR_MODE },
79 { DT_DIR, N(".."), 0, KTT_NULL, VDIR, DIR_MODE },
80 { DT_REG, N("boottime"), &boottime.tv_sec, KTT_INT, VREG, READ_MODE },
81 /* XXX cast away const */
82 { DT_REG, N("copyright"), (void *)copyright,
83 KTT_STRING, VREG, READ_MODE },
84 { DT_REG, N("hostname"), 0, KTT_HOSTNAME, VREG, WRITE_MODE },
85 { DT_REG, N("hz"), &hz, KTT_INT, VREG, READ_MODE },
86 { DT_REG, N("loadavg"), 0, KTT_AVENRUN, VREG, READ_MODE },
87 { DT_REG, N("msgbuf"), 0, KTT_MSGBUF, VREG, READ_MODE },
88 { DT_REG, N("pagesize"), &uvmexp.pagesize, KTT_INT, VREG, READ_MODE },
89 { DT_REG, N("physmem"), &physmem, KTT_INT, VREG, READ_MODE },
90 #if 0
91 { DT_DIR, N("root"), 0, KTT_NULL, VDIR, DIR_MODE },
92 #endif
93 { DT_BLK, N("rootdev"), &rootdev, KTT_DEVICE, VBLK, READ_MODE },
94 { DT_CHR, N("rrootdev"), &rrootdev, KTT_DEVICE, VCHR, READ_MODE },
95 { DT_REG, N("time"), 0, KTT_TIME, VREG, READ_MODE },
96 /* XXX cast away const */
97 { DT_REG, N("version"), (void *)version,
98 KTT_STRING, VREG, READ_MODE },
99 #undef N
100 };
101 static int nkern_targets = sizeof(kern_targets) / sizeof(kern_targets[0]);
102
103 int kernfs_lookup __P((void *));
104 #define kernfs_create genfs_eopnotsupp_rele
105 #define kernfs_mknod genfs_eopnotsupp_rele
106 #define kernfs_open genfs_nullop
107 #define kernfs_close genfs_nullop
108 int kernfs_access __P((void *));
109 int kernfs_getattr __P((void *));
110 int kernfs_setattr __P((void *));
111 int kernfs_read __P((void *));
112 int kernfs_write __P((void *));
113 #define kernfs_fcntl genfs_fcntl
114 #define kernfs_ioctl genfs_enoioctl
115 #define kernfs_poll genfs_poll
116 #define kernfs_revoke genfs_revoke
117 #define kernfs_mmap genfs_eopnotsupp
118 #define kernfs_fsync genfs_nullop
119 #define kernfs_seek genfs_nullop
120 #define kernfs_remove genfs_eopnotsupp_rele
121 int kernfs_link __P((void *));
122 #define kernfs_rename genfs_eopnotsupp_rele
123 #define kernfs_mkdir genfs_eopnotsupp_rele
124 #define kernfs_rmdir genfs_eopnotsupp_rele
125 int kernfs_symlink __P((void *));
126 int kernfs_readdir __P((void *));
127 #define kernfs_readlink genfs_eopnotsupp
128 #define kernfs_abortop genfs_abortop
129 int kernfs_inactive __P((void *));
130 int kernfs_reclaim __P((void *));
131 #define kernfs_lock genfs_lock
132 #define kernfs_unlock genfs_unlock
133 #define kernfs_bmap genfs_badop
134 #define kernfs_strategy genfs_badop
135 int kernfs_print __P((void *));
136 #define kernfs_islocked genfs_islocked
137 int kernfs_pathconf __P((void *));
138 #define kernfs_advlock genfs_einval
139 #define kernfs_blkatoff genfs_eopnotsupp
140 #define kernfs_valloc genfs_eopnotsupp
141 #define kernfs_vfree genfs_nullop
142 #define kernfs_truncate genfs_eopnotsupp
143 #define kernfs_update genfs_nullop
144 #define kernfs_bwrite genfs_eopnotsupp
145
146 int kernfs_xread __P((struct kern_target *, int, char **, int));
147 int kernfs_xwrite __P((struct kern_target *, char *, int));
148
149 int (**kernfs_vnodeop_p) __P((void *));
150 struct vnodeopv_entry_desc kernfs_vnodeop_entries[] = {
151 { &vop_default_desc, vn_default_error },
152 { &vop_lookup_desc, kernfs_lookup }, /* lookup */
153 { &vop_create_desc, kernfs_create }, /* create */
154 { &vop_mknod_desc, kernfs_mknod }, /* mknod */
155 { &vop_open_desc, kernfs_open }, /* open */
156 { &vop_close_desc, kernfs_close }, /* close */
157 { &vop_access_desc, kernfs_access }, /* access */
158 { &vop_getattr_desc, kernfs_getattr }, /* getattr */
159 { &vop_setattr_desc, kernfs_setattr }, /* setattr */
160 { &vop_read_desc, kernfs_read }, /* read */
161 { &vop_write_desc, kernfs_write }, /* write */
162 { &vop_fcntl_desc, kernfs_fcntl }, /* fcntl */
163 { &vop_ioctl_desc, kernfs_ioctl }, /* ioctl */
164 { &vop_poll_desc, kernfs_poll }, /* poll */
165 { &vop_revoke_desc, kernfs_revoke }, /* revoke */
166 { &vop_mmap_desc, kernfs_mmap }, /* mmap */
167 { &vop_fsync_desc, kernfs_fsync }, /* fsync */
168 { &vop_seek_desc, kernfs_seek }, /* seek */
169 { &vop_remove_desc, kernfs_remove }, /* remove */
170 { &vop_link_desc, kernfs_link }, /* link */
171 { &vop_rename_desc, kernfs_rename }, /* rename */
172 { &vop_mkdir_desc, kernfs_mkdir }, /* mkdir */
173 { &vop_rmdir_desc, kernfs_rmdir }, /* rmdir */
174 { &vop_symlink_desc, kernfs_symlink }, /* symlink */
175 { &vop_readdir_desc, kernfs_readdir }, /* readdir */
176 { &vop_readlink_desc, kernfs_readlink }, /* readlink */
177 { &vop_abortop_desc, kernfs_abortop }, /* abortop */
178 { &vop_inactive_desc, kernfs_inactive }, /* inactive */
179 { &vop_reclaim_desc, kernfs_reclaim }, /* reclaim */
180 { &vop_lock_desc, kernfs_lock }, /* lock */
181 { &vop_unlock_desc, kernfs_unlock }, /* unlock */
182 { &vop_bmap_desc, kernfs_bmap }, /* bmap */
183 { &vop_strategy_desc, kernfs_strategy }, /* strategy */
184 { &vop_print_desc, kernfs_print }, /* print */
185 { &vop_islocked_desc, kernfs_islocked }, /* islocked */
186 { &vop_pathconf_desc, kernfs_pathconf }, /* pathconf */
187 { &vop_advlock_desc, kernfs_advlock }, /* advlock */
188 { &vop_blkatoff_desc, kernfs_blkatoff }, /* blkatoff */
189 { &vop_valloc_desc, kernfs_valloc }, /* valloc */
190 { &vop_vfree_desc, kernfs_vfree }, /* vfree */
191 { &vop_truncate_desc, kernfs_truncate }, /* truncate */
192 { &vop_update_desc, kernfs_update }, /* update */
193 { &vop_bwrite_desc, kernfs_bwrite }, /* bwrite */
194 { (struct vnodeop_desc*)NULL, (int(*) __P((void *)))NULL }
195 };
196 struct vnodeopv_desc kernfs_vnodeop_opv_desc =
197 { &kernfs_vnodeop_p, kernfs_vnodeop_entries };
198
199 int
200 kernfs_xread(kt, off, bufp, len)
201 struct kern_target *kt;
202 int off;
203 char **bufp;
204 int len;
205 {
206
207 switch (kt->kt_tag) {
208 case KTT_TIME: {
209 struct timeval tv;
210
211 microtime(&tv);
212 sprintf(*bufp, "%ld %ld\n", tv.tv_sec, tv.tv_usec);
213 break;
214 }
215
216 case KTT_INT: {
217 int *ip = kt->kt_data;
218
219 sprintf(*bufp, "%d\n", *ip);
220 break;
221 }
222
223 case KTT_STRING: {
224 char *cp = kt->kt_data;
225
226 *bufp = cp;
227 break;
228 }
229
230 case KTT_MSGBUF: {
231 long n;
232
233 /*
234 * deal with cases where the message buffer has
235 * become corrupted.
236 */
237 if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) {
238 msgbufenabled = 0;
239 return (ENXIO);
240 }
241
242 /*
243 * Note that reads of /kern/msgbuf won't necessarily yield
244 * consistent results, if the message buffer is modified
245 * while the read is in progress. The worst that can happen
246 * is that incorrect data will be read. There's no way
247 * that this can crash the system unless the values in the
248 * message buffer header are corrupted, but that'll cause
249 * the system to die anyway.
250 */
251 if (off >= msgbufp->msg_bufs)
252 return (0);
253 n = msgbufp->msg_bufx + off;
254 if (n >= msgbufp->msg_bufs)
255 n -= msgbufp->msg_bufs;
256 len = min(msgbufp->msg_bufs - n, msgbufp->msg_bufs - off);
257 *bufp = msgbufp->msg_bufc + n;
258 return (len);
259 }
260
261 case KTT_HOSTNAME: {
262 char *cp = hostname;
263 int xlen = hostnamelen;
264
265 if (xlen >= (len-2))
266 return (EINVAL);
267
268 memcpy(*bufp, cp, xlen);
269 (*bufp)[xlen] = '\n';
270 (*bufp)[xlen+1] = '\0';
271 break;
272 }
273
274 case KTT_AVENRUN:
275 averunnable.fscale = FSCALE;
276 sprintf(*bufp, "%d %d %d %ld\n",
277 averunnable.ldavg[0], averunnable.ldavg[1],
278 averunnable.ldavg[2], averunnable.fscale);
279 break;
280
281 default:
282 return (0);
283 }
284
285 len = strlen(*bufp);
286 if (len <= off)
287 return (0);
288 *bufp += off;
289 return (len - off);
290 }
291
292 int
293 kernfs_xwrite(kt, buf, len)
294 struct kern_target *kt;
295 char *buf;
296 int len;
297 {
298
299 switch (kt->kt_tag) {
300 case KTT_HOSTNAME:
301 if (buf[len-1] == '\n')
302 --len;
303 memcpy(hostname, buf, len);
304 hostname[len] = '\0';
305 hostnamelen = len;
306 return (0);
307
308 default:
309 return (EIO);
310 }
311 }
312
313
314 /*
315 * vp is the current namei directory
316 * ndp is the name to locate in that directory...
317 */
318 int
319 kernfs_lookup(v)
320 void *v;
321 {
322 struct vop_lookup_args /* {
323 struct vnode * a_dvp;
324 struct vnode ** a_vpp;
325 struct componentname * a_cnp;
326 } */ *ap = v;
327 struct componentname *cnp = ap->a_cnp;
328 struct vnode **vpp = ap->a_vpp;
329 struct vnode *dvp = ap->a_dvp;
330 const char *pname = cnp->cn_nameptr;
331 struct kern_target *kt;
332 struct vnode *fvp;
333 int error, i, wantpunlock;
334
335 #ifdef KERNFS_DIAGNOSTIC
336 printf("kernfs_lookup(%p)\n", ap);
337 printf("kernfs_lookup(dp = %p, vpp = %p, cnp = %p)\n", dvp, vpp, ap->a_cnp);
338 printf("kernfs_lookup(%s)\n", pname);
339 #endif
340
341 *vpp = NULLVP;
342 cnp->cn_flags &= ~PDIRUNLOCK;
343
344 if (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME)
345 return (EROFS);
346
347 if (cnp->cn_namelen == 1 && *pname == '.') {
348 *vpp = dvp;
349 VREF(dvp);
350 return (0);
351 }
352
353 /*
354 * This code only supports a flat directory, so we don't
355 * need to worry about ..
356 */
357
358 #if 0
359 if (cnp->cn_namelen == 4 && memcmp(pname, "root", 4) == 0) {
360 *vpp = rootdir;
361 VREF(rootdir);
362 vn_lock(rootdir, LK_SHARED | LK_RETRY);
363 return (0);
364 }
365 #endif
366
367 wantpunlock = (~cnp->cn_flags & (LOCKPARENT | ISLASTCN));
368
369 for (kt = kern_targets, i = 0; i < nkern_targets; kt++, i++) {
370 if (cnp->cn_namelen == kt->kt_namlen &&
371 memcmp(kt->kt_name, pname, cnp->cn_namelen) == 0)
372 goto found;
373 }
374
375 #ifdef KERNFS_DIAGNOSTIC
376 printf("kernfs_lookup: i = %d, failed", i);
377 #endif
378
379 return (cnp->cn_nameiop == LOOKUP ? ENOENT : EROFS);
380
381 found:
382 if (kt->kt_tag == KTT_DEVICE) {
383 dev_t *dp = kt->kt_data;
384 loop:
385 if (*dp == NODEV || !vfinddev(*dp, kt->kt_vtype, &fvp)) {
386 return (ENOENT);
387 }
388 *vpp = fvp;
389 if (vget(fvp, LK_EXCLUSIVE))
390 goto loop;
391 if (wantpunlock) {
392 VOP_UNLOCK(dvp, 0);
393 cnp->cn_flags |= PDIRUNLOCK;
394 }
395 return (0);
396 }
397
398 #ifdef KERNFS_DIAGNOSTIC
399 printf("kernfs_lookup: allocate new vnode\n");
400 #endif
401 error = getnewvnode(VT_KERNFS, dvp->v_mount, kernfs_vnodeop_p, &fvp);
402 if (error) {
403 return (error);
404 }
405
406 MALLOC(fvp->v_data, void *, sizeof(struct kernfs_node), M_TEMP,
407 M_WAITOK);
408 VTOKERN(fvp)->kf_kt = kt;
409 fvp->v_type = kt->kt_vtype;
410 vn_lock(fvp, LK_EXCLUSIVE | LK_RETRY);
411 *vpp = fvp;
412
413 #ifdef KERNFS_DIAGNOSTIC
414 printf("kernfs_lookup: newvp = %p\n", fvp);
415 #endif
416 if (wantpunlock) {
417 VOP_UNLOCK(dvp, 0);
418 cnp->cn_flags |= PDIRUNLOCK;
419 }
420 return (0);
421 }
422
423 int
424 kernfs_access(v)
425 void *v;
426 {
427 struct vop_access_args /* {
428 struct vnode *a_vp;
429 int a_mode;
430 struct ucred *a_cred;
431 struct proc *a_p;
432 } */ *ap = v;
433 struct vnode *vp = ap->a_vp;
434 mode_t mode;
435
436 if (vp->v_flag & VROOT) {
437 mode = DIR_MODE;
438 } else {
439 struct kern_target *kt = VTOKERN(vp)->kf_kt;
440 mode = kt->kt_mode;
441 }
442
443 return (vaccess(vp->v_type, mode, (uid_t)0, (gid_t)0, ap->a_mode,
444 ap->a_cred));
445 }
446
447 int
448 kernfs_getattr(v)
449 void *v;
450 {
451 struct vop_getattr_args /* {
452 struct vnode *a_vp;
453 struct vattr *a_vap;
454 struct ucred *a_cred;
455 struct proc *a_p;
456 } */ *ap = v;
457 struct vnode *vp = ap->a_vp;
458 struct vattr *vap = ap->a_vap;
459 struct timeval tv;
460 int error = 0;
461 char strbuf[KSTRING], *buf;
462
463 memset((caddr_t) vap, 0, sizeof(*vap));
464 vattr_null(vap);
465 vap->va_uid = 0;
466 vap->va_gid = 0;
467 vap->va_fsid = vp->v_mount->mnt_stat.f_fsid.val[0];
468 vap->va_size = 0;
469 vap->va_blocksize = DEV_BSIZE;
470 microtime(&tv);
471 TIMEVAL_TO_TIMESPEC(&tv, &vap->va_atime);
472 vap->va_mtime = vap->va_atime;
473 vap->va_ctime = vap->va_ctime;
474 vap->va_gen = 0;
475 vap->va_flags = 0;
476 vap->va_rdev = 0;
477 vap->va_bytes = 0;
478
479 if (vp->v_flag & VROOT) {
480 #ifdef KERNFS_DIAGNOSTIC
481 printf("kernfs_getattr: stat rootdir\n");
482 #endif
483 vap->va_type = VDIR;
484 vap->va_mode = DIR_MODE;
485 vap->va_nlink = 2;
486 vap->va_fileid = 2;
487 vap->va_size = DEV_BSIZE;
488 } else {
489 struct kern_target *kt = VTOKERN(vp)->kf_kt;
490 int nbytes, total;
491 #ifdef KERNFS_DIAGNOSTIC
492 printf("kernfs_getattr: stat target %s\n", kt->kt_name);
493 #endif
494 vap->va_type = kt->kt_vtype;
495 vap->va_mode = kt->kt_mode;
496 vap->va_nlink = 1;
497 vap->va_fileid = 1 + (kt - kern_targets);
498 total = 0;
499 while (buf = strbuf,
500 nbytes = kernfs_xread(kt, total, &buf, sizeof(strbuf)))
501 total += nbytes;
502 vap->va_size = total;
503 }
504
505 #ifdef KERNFS_DIAGNOSTIC
506 printf("kernfs_getattr: return error %d\n", error);
507 #endif
508 return (error);
509 }
510
511 /*ARGSUSED*/
512 int
513 kernfs_setattr(v)
514 void *v;
515 {
516 /*
517 * Silently ignore attribute changes.
518 * This allows for open with truncate to have no
519 * effect until some data is written. I want to
520 * do it this way because all writes are atomic.
521 */
522 return (0);
523 }
524
525 int
526 kernfs_read(v)
527 void *v;
528 {
529 struct vop_read_args /* {
530 struct vnode *a_vp;
531 struct uio *a_uio;
532 int a_ioflag;
533 struct ucred *a_cred;
534 } */ *ap = v;
535 struct vnode *vp = ap->a_vp;
536 struct uio *uio = ap->a_uio;
537 struct kern_target *kt;
538 char strbuf[KSTRING], *buf;
539 int off, len;
540 int error;
541
542 if (vp->v_type == VDIR)
543 return (EOPNOTSUPP);
544
545 kt = VTOKERN(vp)->kf_kt;
546
547 #ifdef KERNFS_DIAGNOSTIC
548 printf("kern_read %s\n", kt->kt_name);
549 #endif
550
551 off = uio->uio_offset;
552 #if 0
553 while (buf = strbuf,
554 #else
555 if (buf = strbuf,
556 #endif
557 len = kernfs_xread(kt, off, &buf, sizeof(strbuf))) {
558 if ((error = uiomove(buf, len, uio)) != 0)
559 return (error);
560 off += len;
561 }
562 return (0);
563 }
564
565 int
566 kernfs_write(v)
567 void *v;
568 {
569 struct vop_write_args /* {
570 struct vnode *a_vp;
571 struct uio *a_uio;
572 int a_ioflag;
573 struct ucred *a_cred;
574 } */ *ap = v;
575 struct vnode *vp = ap->a_vp;
576 struct uio *uio = ap->a_uio;
577 struct kern_target *kt;
578 int error, xlen;
579 char strbuf[KSTRING];
580
581 if (vp->v_type == VDIR)
582 return (EOPNOTSUPP);
583
584 kt = VTOKERN(vp)->kf_kt;
585
586 if (uio->uio_offset != 0)
587 return (EINVAL);
588
589 xlen = min(uio->uio_resid, KSTRING-1);
590 if ((error = uiomove(strbuf, xlen, uio)) != 0)
591 return (error);
592
593 if (uio->uio_resid != 0)
594 return (EIO);
595
596 strbuf[xlen] = '\0';
597 xlen = strlen(strbuf);
598 return (kernfs_xwrite(kt, strbuf, xlen));
599 }
600
601 int
602 kernfs_readdir(v)
603 void *v;
604 {
605 struct vop_readdir_args /* {
606 struct vnode *a_vp;
607 struct uio *a_uio;
608 struct ucred *a_cred;
609 int *a_eofflag;
610 off_t **a_cookies;
611 int a_*ncookies;
612 } */ *ap = v;
613 struct uio *uio = ap->a_uio;
614 struct dirent d;
615 struct kern_target *kt;
616 off_t i;
617 int error;
618 off_t *cookies = NULL;
619 int ncookies = 0, nc = 0;
620
621 if (ap->a_vp->v_type != VDIR)
622 return (ENOTDIR);
623
624 if (uio->uio_resid < UIO_MX)
625 return (EINVAL);
626 if (uio->uio_offset < 0)
627 return (EINVAL);
628
629 error = 0;
630 i = uio->uio_offset;
631
632 if (i >= nkern_targets)
633 return 0;
634
635 memset((caddr_t)&d, 0, UIO_MX);
636 d.d_reclen = UIO_MX;
637
638 if (ap->a_ncookies) {
639 nc = uio->uio_resid / UIO_MX;
640 nc = min(nc, (nkern_targets - i));
641 cookies = malloc(nc * sizeof(off_t), M_TEMP, M_WAITOK);
642 *ap->a_cookies = cookies;
643 }
644
645 for (kt = &kern_targets[i];
646 uio->uio_resid >= UIO_MX && i < nkern_targets; kt++, i++) {
647 #ifdef KERNFS_DIAGNOSTIC
648 printf("kernfs_readdir: i = %d\n", i);
649 #endif
650
651 if (kt->kt_tag == KTT_DEVICE) {
652 dev_t *dp = kt->kt_data;
653 struct vnode *fvp;
654
655 if (*dp == NODEV || !vfinddev(*dp, kt->kt_vtype, &fvp))
656 continue;
657 }
658
659 d.d_fileno = i + 3;
660 d.d_namlen = kt->kt_namlen;
661 memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1);
662 d.d_type = kt->kt_type;
663
664 if ((error = uiomove((caddr_t)&d, UIO_MX, uio)) != 0)
665 break;
666 if (cookies) {
667 *cookies++ = i + 1;
668 ncookies++;
669 }
670 }
671
672 if (ap->a_ncookies) {
673 if (error) {
674 free(*ap->a_cookies, M_TEMP);
675 *ap->a_ncookies = 0;
676 *ap->a_cookies = NULL;
677 } else
678 *ap->a_ncookies = ncookies;
679 }
680
681 uio->uio_offset = i;
682 return (error);
683 }
684
685 int
686 kernfs_inactive(v)
687 void *v;
688 {
689 struct vop_inactive_args /* {
690 struct vnode *a_vp;
691 struct proc *a_p;
692 } */ *ap = v;
693 struct vnode *vp = ap->a_vp;
694
695 #ifdef KERNFS_DIAGNOSTIC
696 printf("kernfs_inactive(%p)\n", vp);
697 #endif
698 /*
699 * Clear out the v_type field to avoid
700 * nasty things happening in vgone().
701 */
702 VOP_UNLOCK(vp, 0);
703 vp->v_type = VNON;
704 return (0);
705 }
706
707 int
708 kernfs_reclaim(v)
709 void *v;
710 {
711 struct vop_reclaim_args /* {
712 struct vnode *a_vp;
713 } */ *ap = v;
714 struct vnode *vp = ap->a_vp;
715
716 #ifdef KERNFS_DIAGNOSTIC
717 printf("kernfs_reclaim(%p)\n", vp);
718 #endif
719 if (vp->v_data) {
720 FREE(vp->v_data, M_TEMP);
721 vp->v_data = 0;
722 }
723 return (0);
724 }
725
726 /*
727 * Return POSIX pathconf information applicable to special devices.
728 */
729 int
730 kernfs_pathconf(v)
731 void *v;
732 {
733 struct vop_pathconf_args /* {
734 struct vnode *a_vp;
735 int a_name;
736 register_t *a_retval;
737 } */ *ap = v;
738
739 switch (ap->a_name) {
740 case _PC_LINK_MAX:
741 *ap->a_retval = LINK_MAX;
742 return (0);
743 case _PC_MAX_CANON:
744 *ap->a_retval = MAX_CANON;
745 return (0);
746 case _PC_MAX_INPUT:
747 *ap->a_retval = MAX_INPUT;
748 return (0);
749 case _PC_PIPE_BUF:
750 *ap->a_retval = PIPE_BUF;
751 return (0);
752 case _PC_CHOWN_RESTRICTED:
753 *ap->a_retval = 1;
754 return (0);
755 case _PC_VDISABLE:
756 *ap->a_retval = _POSIX_VDISABLE;
757 return (0);
758 case _PC_SYNC_IO:
759 *ap->a_retval = 1;
760 return (0);
761 default:
762 return (EINVAL);
763 }
764 /* NOTREACHED */
765 }
766
767 /*
768 * Print out the contents of a /dev/fd vnode.
769 */
770 /* ARGSUSED */
771 int
772 kernfs_print(v)
773 void *v;
774 {
775
776 printf("tag VT_KERNFS, kernfs vnode\n");
777 return (0);
778 }
779
780 int
781 kernfs_link(v)
782 void *v;
783 {
784 struct vop_link_args /* {
785 struct vnode *a_dvp;
786 struct vnode *a_vp;
787 struct componentname *a_cnp;
788 } */ *ap = v;
789
790 VOP_ABORTOP(ap->a_dvp, ap->a_cnp);
791 vput(ap->a_dvp);
792 return (EROFS);
793 }
794
795 int
796 kernfs_symlink(v)
797 void *v;
798 {
799 struct vop_symlink_args /* {
800 struct vnode *a_dvp;
801 struct vnode **a_vpp;
802 struct componentname *a_cnp;
803 struct vattr *a_vap;
804 char *a_target;
805 } */ *ap = v;
806
807 VOP_ABORTOP(ap->a_dvp, ap->a_cnp);
808 vput(ap->a_dvp);
809 return (EROFS);
810 }
811