kernfs_vnops.c revision 1.88.2.2 1 /* $NetBSD: kernfs_vnops.c,v 1.88.2.2 2004/08/03 10:54:06 skrll Exp $ */
2
3 /*
4 * Copyright (c) 1992, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software donated to Berkeley by
8 * Jan-Simon Pendry.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)kernfs_vnops.c 8.15 (Berkeley) 5/21/95
35 */
36
37 /*
38 * Kernel parameter filesystem (/kern)
39 */
40
41 #include <sys/cdefs.h>
42
43 #ifdef _KERNEL_OPT
44 #include "opt_ipsec.h"
45 #endif
46
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/kernel.h>
50 #include <sys/vmmeter.h>
51 #include <sys/time.h>
52 #include <sys/proc.h>
53 #include <sys/vnode.h>
54 #include <sys/malloc.h>
55 #include <sys/file.h>
56 #include <sys/stat.h>
57 #include <sys/mount.h>
58 #include <sys/namei.h>
59 #include <sys/buf.h>
60 #include <sys/dirent.h>
61 #include <sys/msgbuf.h>
62
63 #include <miscfs/genfs/genfs.h>
64 #include <miscfs/kernfs/kernfs.h>
65
66 #ifdef IPSEC
67 #include <sys/mbuf.h>
68 #include <net/route.h>
69 #include <netinet/in.h>
70 #include <netinet6/ipsec.h>
71 #include <netkey/key.h>
72 #endif
73
74 #include <uvm/uvm_extern.h>
75
76 #define KSTRING 256 /* Largest I/O available via this filesystem */
77 #define UIO_MX 32
78
79 #define READ_MODE (S_IRUSR|S_IRGRP|S_IROTH)
80 #define WRITE_MODE (S_IWUSR|S_IRUSR|S_IRGRP|S_IROTH)
81 #define UREAD_MODE (S_IRUSR)
82 #define DIR_MODE (S_IRUSR|S_IXUSR|S_IRGRP|S_IXGRP|S_IROTH|S_IXOTH)
83 #define UDIR_MODE (S_IRUSR|S_IXUSR)
84
85 #define N(s) sizeof(s)-1, s
86 const struct kern_target kern_targets[] = {
87 /* NOTE: The name must be less than UIO_MX-16 chars in length */
88 /* name data tag type ro/rw */
89 { DT_DIR, N("."), 0, KFSkern, VDIR, DIR_MODE },
90 { DT_DIR, N(".."), 0, KFSroot, VDIR, DIR_MODE },
91 { DT_REG, N("boottime"), &boottime.tv_sec, KFSint, VREG, READ_MODE },
92 /* XXX cast away const */
93 { DT_REG, N("copyright"), (void *)copyright,
94 KFSstring, VREG, READ_MODE },
95 { DT_REG, N("hostname"), 0, KFShostname, VREG, WRITE_MODE },
96 { DT_REG, N("hz"), &hz, KFSint, VREG, READ_MODE },
97 #ifdef IPSEC
98 { DT_DIR, N("ipsecsa"), 0, KFSipsecsadir, VDIR, UDIR_MODE },
99 { DT_DIR, N("ipsecsp"), 0, KFSipsecspdir, VDIR, UDIR_MODE },
100 #endif
101 { DT_REG, N("loadavg"), 0, KFSavenrun, VREG, READ_MODE },
102 { DT_REG, N("msgbuf"), 0, KFSmsgbuf, VREG, READ_MODE },
103 { DT_REG, N("pagesize"), &uvmexp.pagesize, KFSint, VREG, READ_MODE },
104 { DT_REG, N("physmem"), &physmem, KFSint, VREG, READ_MODE },
105 #if 0
106 { DT_DIR, N("root"), 0, KFSnull, VDIR, DIR_MODE },
107 #endif
108 { DT_BLK, N("rootdev"), &rootdev, KFSdevice, VBLK, READ_MODE },
109 { DT_CHR, N("rrootdev"), &rrootdev, KFSdevice, VCHR, READ_MODE },
110 { DT_REG, N("time"), 0, KFStime, VREG, READ_MODE },
111 /* XXX cast away const */
112 { DT_REG, N("version"), (void *)version,
113 KFSstring, VREG, READ_MODE },
114 };
115 const struct kern_target subdir_targets[] = {
116 /* NOTE: The name must be less than UIO_MX-16 chars in length */
117 /* name data tag type ro/rw */
118 { DT_DIR, N("."), 0, KFSsubdir, VDIR, DIR_MODE },
119 { DT_DIR, N(".."), 0, KFSkern, VDIR, DIR_MODE },
120 };
121 #ifdef IPSEC
122 const struct kern_target ipsecsa_targets[] = {
123 /* NOTE: The name must be less than UIO_MX-16 chars in length */
124 /* name data tag type ro/rw */
125 { DT_DIR, N("."), 0, KFSipsecsadir, VDIR, DIR_MODE },
126 { DT_DIR, N(".."), 0, KFSkern, VDIR, DIR_MODE },
127 };
128 const struct kern_target ipsecsp_targets[] = {
129 /* NOTE: The name must be less than UIO_MX-16 chars in length */
130 /* name data tag type ro/rw */
131 { DT_DIR, N("."), 0, KFSipsecspdir, VDIR, DIR_MODE },
132 { DT_DIR, N(".."), 0, KFSkern, VDIR, DIR_MODE },
133 };
134 const struct kern_target ipsecsa_kt =
135 { DT_DIR, N(""), 0, KFSipsecsa, VREG, UREAD_MODE };
136 const struct kern_target ipsecsp_kt =
137 { DT_DIR, N(""), 0, KFSipsecsp, VREG, UREAD_MODE };
138 #endif
139 #undef N
140 SIMPLEQ_HEAD(,dyn_kern_target) dyn_kern_targets =
141 SIMPLEQ_HEAD_INITIALIZER(dyn_kern_targets);
142 int nkern_targets = sizeof(kern_targets) / sizeof(kern_targets[0]);
143 const int static_nkern_targets = sizeof(kern_targets) / sizeof(kern_targets[0]);
144 #ifdef IPSEC
145 int nipsecsa_targets = sizeof(ipsecsa_targets) / sizeof(ipsecsa_targets[0]);
146 int nipsecsp_targets = sizeof(ipsecsp_targets) / sizeof(ipsecsp_targets[0]);
147 int nkern_dirs = 4; /* 2 extra subdirs */
148 #else
149 int nkern_dirs = 2;
150 #endif
151
152 int kernfs_try_fileop(kfstype, kfsfileop, void *, int);
153 int kernfs_try_xwrite(kfstype, const struct kernfs_node *, char *,
154 size_t, int);
155
156 static int kernfs_default_xwrite(void *v);
157 static int kernfs_default_fileop_getattr(void *);
158
159 /* must include all fileop's */
160 const struct kernfs_fileop kernfs_default_fileops[] = {
161 { .kf_fileop = KERNFS_XWRITE },
162 { .kf_fileop = KERNFS_FILEOP_OPEN },
163 { .kf_fileop = KERNFS_FILEOP_GETATTR,
164 .kf_genop = {kernfs_default_fileop_getattr} },
165 { .kf_fileop = KERNFS_FILEOP_IOCTL },
166 { .kf_fileop = KERNFS_FILEOP_MMAP },
167 { .kf_fileop = KERNFS_FILEOP_CLOSE },
168 { .kf_fileop = KERNFS_FILEOP_WRITE, .kf_genop = {kernfs_default_xwrite} },
169 };
170
171 int kernfs_lookup __P((void *));
172 #define kernfs_create genfs_eopnotsupp
173 #define kernfs_mknod genfs_eopnotsupp
174 int kernfs_open __P((void *));
175 int kernfs_close __P((void *));
176 int kernfs_access __P((void *));
177 int kernfs_getattr __P((void *));
178 int kernfs_setattr __P((void *));
179 int kernfs_read __P((void *));
180 int kernfs_write __P((void *));
181 #define kernfs_fcntl genfs_fcntl
182 int kernfs_ioctl __P((void *));
183 #define kernfs_poll genfs_poll
184 #define kernfs_revoke genfs_revoke
185 int kernfs_mmap __P((void *));
186 #define kernfs_fsync genfs_nullop
187 #define kernfs_seek genfs_nullop
188 #define kernfs_remove genfs_eopnotsupp
189 int kernfs_link __P((void *));
190 #define kernfs_rename genfs_eopnotsupp
191 #define kernfs_mkdir genfs_eopnotsupp
192 #define kernfs_rmdir genfs_eopnotsupp
193 int kernfs_symlink __P((void *));
194 int kernfs_readdir __P((void *));
195 #define kernfs_readlink genfs_eopnotsupp
196 #define kernfs_abortop genfs_abortop
197 int kernfs_inactive __P((void *));
198 int kernfs_reclaim __P((void *));
199 #define kernfs_lock genfs_lock
200 #define kernfs_unlock genfs_unlock
201 #define kernfs_bmap genfs_badop
202 #define kernfs_strategy genfs_badop
203 int kernfs_print __P((void *));
204 #define kernfs_islocked genfs_islocked
205 int kernfs_pathconf __P((void *));
206 #define kernfs_advlock genfs_einval
207 #define kernfs_blkatoff genfs_eopnotsupp
208 #define kernfs_valloc genfs_eopnotsupp
209 #define kernfs_vfree genfs_nullop
210 #define kernfs_truncate genfs_eopnotsupp
211 #define kernfs_update genfs_nullop
212 #define kernfs_bwrite genfs_eopnotsupp
213 #define kernfs_putpages genfs_putpages
214
215 static int kernfs_xread __P((struct kernfs_node *, int, char **, size_t, size_t *));
216 static int kernfs_xwrite __P((const struct kernfs_node *, char *, size_t));
217
218 int (**kernfs_vnodeop_p) __P((void *));
219 const struct vnodeopv_entry_desc kernfs_vnodeop_entries[] = {
220 { &vop_default_desc, vn_default_error },
221 { &vop_lookup_desc, kernfs_lookup }, /* lookup */
222 { &vop_create_desc, kernfs_create }, /* create */
223 { &vop_mknod_desc, kernfs_mknod }, /* mknod */
224 { &vop_open_desc, kernfs_open }, /* open */
225 { &vop_close_desc, kernfs_close }, /* close */
226 { &vop_access_desc, kernfs_access }, /* access */
227 { &vop_getattr_desc, kernfs_getattr }, /* getattr */
228 { &vop_setattr_desc, kernfs_setattr }, /* setattr */
229 { &vop_read_desc, kernfs_read }, /* read */
230 { &vop_write_desc, kernfs_write }, /* write */
231 { &vop_fcntl_desc, kernfs_fcntl }, /* fcntl */
232 { &vop_ioctl_desc, kernfs_ioctl }, /* ioctl */
233 { &vop_poll_desc, kernfs_poll }, /* poll */
234 { &vop_revoke_desc, kernfs_revoke }, /* revoke */
235 { &vop_mmap_desc, kernfs_mmap }, /* mmap */
236 { &vop_fsync_desc, kernfs_fsync }, /* fsync */
237 { &vop_seek_desc, kernfs_seek }, /* seek */
238 { &vop_remove_desc, kernfs_remove }, /* remove */
239 { &vop_link_desc, kernfs_link }, /* link */
240 { &vop_rename_desc, kernfs_rename }, /* rename */
241 { &vop_mkdir_desc, kernfs_mkdir }, /* mkdir */
242 { &vop_rmdir_desc, kernfs_rmdir }, /* rmdir */
243 { &vop_symlink_desc, kernfs_symlink }, /* symlink */
244 { &vop_readdir_desc, kernfs_readdir }, /* readdir */
245 { &vop_readlink_desc, kernfs_readlink }, /* readlink */
246 { &vop_abortop_desc, kernfs_abortop }, /* abortop */
247 { &vop_inactive_desc, kernfs_inactive }, /* inactive */
248 { &vop_reclaim_desc, kernfs_reclaim }, /* reclaim */
249 { &vop_lock_desc, kernfs_lock }, /* lock */
250 { &vop_unlock_desc, kernfs_unlock }, /* unlock */
251 { &vop_bmap_desc, kernfs_bmap }, /* bmap */
252 { &vop_strategy_desc, kernfs_strategy }, /* strategy */
253 { &vop_print_desc, kernfs_print }, /* print */
254 { &vop_islocked_desc, kernfs_islocked }, /* islocked */
255 { &vop_pathconf_desc, kernfs_pathconf }, /* pathconf */
256 { &vop_advlock_desc, kernfs_advlock }, /* advlock */
257 { &vop_blkatoff_desc, kernfs_blkatoff }, /* blkatoff */
258 { &vop_valloc_desc, kernfs_valloc }, /* valloc */
259 { &vop_vfree_desc, kernfs_vfree }, /* vfree */
260 { &vop_truncate_desc, kernfs_truncate }, /* truncate */
261 { &vop_update_desc, kernfs_update }, /* update */
262 { &vop_bwrite_desc, kernfs_bwrite }, /* bwrite */
263 { &vop_putpages_desc, kernfs_putpages }, /* putpages */
264 { NULL, NULL }
265 };
266 const struct vnodeopv_desc kernfs_vnodeop_opv_desc =
267 { &kernfs_vnodeop_p, kernfs_vnodeop_entries };
268
269 static __inline int
270 kernfs_fileop_compare(struct kernfs_fileop *a, struct kernfs_fileop *b)
271 {
272 if (a->kf_type < b->kf_type)
273 return -1;
274 if (a->kf_type > b->kf_type)
275 return 1;
276 if (a->kf_fileop < b->kf_fileop)
277 return -1;
278 if (a->kf_fileop > b->kf_fileop)
279 return 1;
280 return (0);
281 }
282
283 SPLAY_HEAD(kfsfileoptree, kernfs_fileop) kfsfileoptree =
284 SPLAY_INITIALIZER(kfsfileoptree);
285 SPLAY_PROTOTYPE(kfsfileoptree, kernfs_fileop, kf_node, kernfs_fileop_compare);
286 SPLAY_GENERATE(kfsfileoptree, kernfs_fileop, kf_node, kernfs_fileop_compare);
287
288 kfstype
289 kernfs_alloctype(int nkf, const struct kernfs_fileop *kf)
290 {
291 static u_char nextfreetype = KFSlasttype;
292 struct kernfs_fileop *dkf, *fkf, skf;
293 int i;
294
295 /* XXX need to keep track of dkf's memory if we support
296 deallocating types */
297 dkf = malloc(sizeof(kernfs_default_fileops), M_TEMP, M_WAITOK);
298 memcpy(dkf, kernfs_default_fileops, sizeof(kernfs_default_fileops));
299
300 for (i = 0; i < sizeof(kernfs_default_fileops) /
301 sizeof(kernfs_default_fileops[0]); i++) {
302 dkf[i].kf_type = nextfreetype;
303 SPLAY_INSERT(kfsfileoptree, &kfsfileoptree, &dkf[i]);
304 }
305
306 for (i = 0; i < nkf; i++) {
307 skf.kf_type = nextfreetype;
308 skf.kf_fileop = kf[i].kf_fileop;
309 if ((fkf = SPLAY_FIND(kfsfileoptree, &kfsfileoptree, &skf)))
310 fkf->kf_genop = kf[i].kf_genop;
311 }
312
313 return nextfreetype++;
314 }
315
316 int
317 kernfs_try_fileop(kfstype type, kfsfileop fileop, void *v, int error)
318 {
319 struct kernfs_fileop *kf, skf;
320
321 skf.kf_type = type;
322 skf.kf_fileop = fileop;
323 if ((kf = SPLAY_FIND(kfsfileoptree, &kfsfileoptree, &skf)))
324 if (kf->kf_vop)
325 return kf->kf_vop(v);
326 return error;
327 }
328
329 int
330 kernfs_try_xwrite(kfstype type, const struct kernfs_node *kfs, char *buf,
331 size_t len, int error)
332 {
333 struct kernfs_fileop *kf, skf;
334
335 skf.kf_type = type;
336 skf.kf_fileop = KERNFS_XWRITE;
337 if ((kf = SPLAY_FIND(kfsfileoptree, &kfsfileoptree, &skf)))
338 if (kf->kf_xwrite)
339 return kf->kf_xwrite(kfs, buf, len);
340 return error;
341 }
342
343 int
344 kernfs_addentry(kernfs_parentdir_t *pkt, kernfs_entry_t *dkt)
345 {
346 struct kernfs_subdir *ks, *parent;
347
348 if (pkt == NULL) {
349 SIMPLEQ_INSERT_TAIL(&dyn_kern_targets, dkt, dkt_queue);
350 nkern_targets++;
351 if (dkt->dkt_kt.kt_vtype == VDIR)
352 nkern_dirs++;
353 } else {
354 parent = (struct kernfs_subdir *)pkt->kt_data;
355 SIMPLEQ_INSERT_TAIL(&parent->ks_entries, dkt, dkt_queue);
356 parent->ks_nentries++;
357 if (dkt->dkt_kt.kt_vtype == VDIR)
358 parent->ks_dirs++;
359 }
360 if (dkt->dkt_kt.kt_vtype == VDIR && dkt->dkt_kt.kt_data == NULL) {
361 ks = malloc(sizeof(struct kernfs_subdir),
362 M_TEMP, M_WAITOK);
363 SIMPLEQ_INIT(&ks->ks_entries);
364 ks->ks_nentries = 2; /* . and .. */
365 ks->ks_dirs = 2;
366 ks->ks_parent = pkt ? pkt : &kern_targets[0];
367 dkt->dkt_kt.kt_data = ks;
368 }
369 return 0;
370 }
371
372 static int
373 kernfs_xread(kfs, off, bufp, len, wrlen)
374 struct kernfs_node *kfs;
375 int off;
376 char **bufp;
377 size_t len;
378 size_t *wrlen;
379 {
380 const struct kern_target *kt;
381 #ifdef IPSEC
382 struct mbuf *m;
383 #endif
384
385 kt = kfs->kfs_kt;
386
387 switch (kfs->kfs_type) {
388 case KFStime: {
389 struct timeval tv;
390
391 microtime(&tv);
392 snprintf(*bufp, len, "%ld %ld\n", tv.tv_sec, tv.tv_usec);
393 break;
394 }
395
396 case KFSint: {
397 int *ip = kt->kt_data;
398
399 snprintf(*bufp, len, "%d\n", *ip);
400 break;
401 }
402
403 case KFSstring: {
404 char *cp = kt->kt_data;
405
406 *bufp = cp;
407 break;
408 }
409
410 case KFSmsgbuf: {
411 long n;
412
413 /*
414 * deal with cases where the message buffer has
415 * become corrupted.
416 */
417 if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) {
418 msgbufenabled = 0;
419 return (ENXIO);
420 }
421
422 /*
423 * Note that reads of /kern/msgbuf won't necessarily yield
424 * consistent results, if the message buffer is modified
425 * while the read is in progress. The worst that can happen
426 * is that incorrect data will be read. There's no way
427 * that this can crash the system unless the values in the
428 * message buffer header are corrupted, but that'll cause
429 * the system to die anyway.
430 */
431 if (off >= msgbufp->msg_bufs) {
432 *wrlen = 0;
433 return (0);
434 }
435 n = msgbufp->msg_bufx + off;
436 if (n >= msgbufp->msg_bufs)
437 n -= msgbufp->msg_bufs;
438 len = min(msgbufp->msg_bufs - n, msgbufp->msg_bufs - off);
439 *bufp = msgbufp->msg_bufc + n;
440 *wrlen = len;
441 return (0);
442 }
443
444 case KFShostname: {
445 char *cp = hostname;
446 int xlen = hostnamelen;
447
448 if (xlen >= (len - 2))
449 return (EINVAL);
450
451 memcpy(*bufp, cp, xlen);
452 (*bufp)[xlen] = '\n';
453 (*bufp)[xlen+1] = '\0';
454 len = strlen(*bufp);
455 break;
456 }
457
458 case KFSavenrun:
459 averunnable.fscale = FSCALE;
460 snprintf(*bufp, len, "%d %d %d %ld\n",
461 averunnable.ldavg[0], averunnable.ldavg[1],
462 averunnable.ldavg[2], averunnable.fscale);
463 break;
464
465 #ifdef IPSEC
466 case KFSipsecsa:
467 /*
468 * Note that SA configuration could be changed during the
469 * read operation, resulting in garbled output.
470 */
471 m = key_setdumpsa_spi(htonl(kfs->kfs_value));
472 if (!m)
473 return (ENOBUFS);
474 if (off >= m->m_pkthdr.len) {
475 *wrlen = 0;
476 m_freem(m);
477 return (0);
478 }
479 if (len > m->m_pkthdr.len - off)
480 len = m->m_pkthdr.len - off;
481 m_copydata(m, off, len, *bufp);
482 *wrlen = len;
483 m_freem(m);
484 return (0);
485
486 case KFSipsecsp:
487 /*
488 * Note that SP configuration could be changed during the
489 * read operation, resulting in garbled output.
490 */
491 if (!kfs->kfs_v) {
492 struct secpolicy *sp;
493
494 sp = key_getspbyid(kfs->kfs_value);
495 if (sp)
496 kfs->kfs_v = sp;
497 else
498 return (ENOENT);
499 }
500 m = key_setdumpsp((struct secpolicy *)kfs->kfs_v,
501 SADB_X_SPDGET, 0, 0);
502 if (!m)
503 return (ENOBUFS);
504 if (off >= m->m_pkthdr.len) {
505 *wrlen = 0;
506 m_freem(m);
507 return (0);
508 }
509 if (len > m->m_pkthdr.len - off)
510 len = m->m_pkthdr.len - off;
511 m_copydata(m, off, len, *bufp);
512 *wrlen = len;
513 m_freem(m);
514 return (0);
515 #endif
516
517 default:
518 *wrlen = 0;
519 return (0);
520 }
521
522 len = strlen(*bufp);
523 if (len <= off)
524 *wrlen = 0;
525 else {
526 *bufp += off;
527 *wrlen = len - off;
528 }
529 return (0);
530 }
531
532 static int
533 kernfs_xwrite(kfs, buf, len)
534 const struct kernfs_node *kfs;
535 char *buf;
536 size_t len;
537 {
538
539 switch (kfs->kfs_type) {
540 case KFShostname:
541 if (buf[len-1] == '\n')
542 --len;
543 memcpy(hostname, buf, len);
544 hostname[len] = '\0';
545 hostnamelen = (size_t) len;
546 return (0);
547
548 default:
549 return kernfs_try_xwrite(kfs->kfs_type, kfs, buf, len, EIO);
550 }
551 }
552
553
554 /*
555 * vp is the current namei directory
556 * ndp is the name to locate in that directory...
557 */
558 int
559 kernfs_lookup(v)
560 void *v;
561 {
562 struct vop_lookup_args /* {
563 struct vnode * a_dvp;
564 struct vnode ** a_vpp;
565 struct componentname * a_cnp;
566 } */ *ap = v;
567 struct componentname *cnp = ap->a_cnp;
568 struct vnode **vpp = ap->a_vpp;
569 struct vnode *dvp = ap->a_dvp;
570 const char *pname = cnp->cn_nameptr;
571 const struct kernfs_node *kfs;
572 const struct kern_target *kt;
573 const struct dyn_kern_target *dkt;
574 const struct kernfs_subdir *ks;
575 int error, i, wantpunlock;
576 #ifdef IPSEC
577 char *ep;
578 u_int32_t id;
579 #endif
580
581 *vpp = NULLVP;
582 cnp->cn_flags &= ~PDIRUNLOCK;
583
584 if (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME)
585 return (EROFS);
586
587 if (cnp->cn_namelen == 1 && *pname == '.') {
588 *vpp = dvp;
589 VREF(dvp);
590 return (0);
591 }
592
593 wantpunlock = (~cnp->cn_flags & (LOCKPARENT | ISLASTCN));
594 kfs = VTOKERN(dvp);
595 switch (kfs->kfs_type) {
596 case KFSkern:
597 /*
598 * Shouldn't get here with .. in the root node.
599 */
600 if (cnp->cn_flags & ISDOTDOT)
601 return (EIO);
602
603 for (i = 0; i < static_nkern_targets; i++) {
604 kt = &kern_targets[i];
605 if (cnp->cn_namelen == kt->kt_namlen &&
606 memcmp(kt->kt_name, pname, cnp->cn_namelen) == 0)
607 goto found;
608 }
609 SIMPLEQ_FOREACH(dkt, &dyn_kern_targets, dkt_queue) {
610 if (cnp->cn_namelen == dkt->dkt_kt.kt_namlen &&
611 memcmp(dkt->dkt_kt.kt_name, pname, cnp->cn_namelen) == 0) {
612 kt = &dkt->dkt_kt;
613 goto found;
614 }
615 }
616 break;
617
618 found:
619 error = kernfs_allocvp(dvp->v_mount, vpp, kt->kt_tag, kt, 0, curlwp); /* XXX curlwp */
620 if ((error == 0) && wantpunlock) {
621 VOP_UNLOCK(dvp, 0);
622 cnp->cn_flags |= PDIRUNLOCK;
623 }
624 return (error);
625
626 case KFSsubdir:
627 ks = (struct kernfs_subdir *)kfs->kfs_kt->kt_data;
628 if (cnp->cn_flags & ISDOTDOT) {
629 kt = ks->ks_parent;
630 goto found;
631 }
632
633 SIMPLEQ_FOREACH(dkt, &ks->ks_entries, dkt_queue) {
634 if (cnp->cn_namelen == dkt->dkt_kt.kt_namlen &&
635 memcmp(dkt->dkt_kt.kt_name, pname, cnp->cn_namelen) == 0) {
636 kt = &dkt->dkt_kt;
637 goto found;
638 }
639 }
640 break;
641
642 #ifdef IPSEC
643 case KFSipsecsadir:
644 if (cnp->cn_flags & ISDOTDOT) {
645 kt = &kern_targets[0];
646 goto found;
647 }
648
649 for (i = 2; i < nipsecsa_targets; i++) {
650 kt = &ipsecsa_targets[i];
651 if (cnp->cn_namelen == kt->kt_namlen &&
652 memcmp(kt->kt_name, pname, cnp->cn_namelen) == 0)
653 goto found;
654 }
655
656 ep = NULL;
657 id = strtoul(pname, &ep, 10);
658 if (!ep || *ep || ep == pname)
659 break;
660
661 error = kernfs_allocvp(dvp->v_mount, vpp, KFSipsecsa, &ipsecsa_kt, id);
662 if ((error == 0) && wantpunlock) {
663 VOP_UNLOCK(dvp, 0);
664 cnp->cn_flags |= PDIRUNLOCK;
665 }
666 return (error);
667
668 case KFSipsecspdir:
669 if (cnp->cn_flags & ISDOTDOT) {
670 kt = &kern_targets[0];
671 goto found;
672 }
673
674 for (i = 2; i < nipsecsp_targets; i++) {
675 kt = &ipsecsp_targets[i];
676 if (cnp->cn_namelen == kt->kt_namlen &&
677 memcmp(kt->kt_name, pname, cnp->cn_namelen) == 0)
678 goto found;
679 }
680
681 ep = NULL;
682 id = strtoul(pname, &ep, 10);
683 if (!ep || *ep || ep == pname)
684 break;
685
686 error = kernfs_allocvp(dvp->v_mount, vpp, KFSipsecsp, &ipsecsp_kt, id);
687 if ((error == 0) && wantpunlock) {
688 VOP_UNLOCK(dvp, 0);
689 cnp->cn_flags |= PDIRUNLOCK;
690 }
691 return (error);
692 #endif
693
694 default:
695 return (ENOTDIR);
696 }
697
698 return (cnp->cn_nameiop == LOOKUP ? ENOENT : EROFS);
699 }
700
701 int
702 kernfs_open(v)
703 void *v;
704 {
705 struct vop_open_args /* {
706 struct vnode *a_vp;
707 int a_mode;
708 struct ucred *a_cred;
709 struct proc *a_p;
710 } */ *ap = v;
711 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
712 #ifdef IPSEC
713 struct mbuf *m;
714 struct secpolicy *sp;
715 #endif
716
717 switch (kfs->kfs_type) {
718 #ifdef IPSEC
719 case KFSipsecsa:
720 m = key_setdumpsa_spi(htonl(kfs->kfs_value));
721 if (m) {
722 m_freem(m);
723 return (0);
724 } else
725 return (ENOENT);
726
727 case KFSipsecsp:
728 sp = key_getspbyid(kfs->kfs_value);
729 if (sp) {
730 kfs->kfs_v = sp;
731 return (0);
732 } else
733 return (ENOENT);
734 #endif
735
736 default:
737 return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_OPEN,
738 v, 0);
739 }
740 }
741
742 int
743 kernfs_close(v)
744 void *v;
745 {
746 struct vop_close_args /* {
747 struct vnode *a_vp;
748 int a_fflag;
749 struct ucred *a_cred;
750 struct proc *a_p;
751 } */ *ap = v;
752 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
753
754 switch (kfs->kfs_type) {
755 #ifdef IPSEC
756 case KFSipsecsp:
757 key_freesp((struct secpolicy *)kfs->kfs_v);
758 break;
759 #endif
760
761 default:
762 return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_CLOSE,
763 v, 0);
764 }
765
766 return (0);
767 }
768
769 int
770 kernfs_access(v)
771 void *v;
772 {
773 struct vop_access_args /* {
774 struct vnode *a_vp;
775 int a_mode;
776 struct ucred *a_cred;
777 struct proc *a_p;
778 } */ *ap = v;
779 struct vattr va;
780 int error;
781
782 if ((error = VOP_GETATTR(ap->a_vp, &va, ap->a_cred, ap->a_l)) != 0)
783 return (error);
784
785 return (vaccess(va.va_type, va.va_mode, va.va_uid, va.va_gid,
786 ap->a_mode, ap->a_cred));
787 }
788
789 static int
790 kernfs_default_fileop_getattr(v)
791 void *v;
792 {
793 struct vop_getattr_args /* {
794 struct vnode *a_vp;
795 struct vattr *a_vap;
796 struct ucred *a_cred;
797 struct proc *a_p;
798 } */ *ap = v;
799 struct vattr *vap = ap->a_vap;
800
801 vap->va_nlink = 1;
802 vap->va_bytes = vap->va_size = 0;
803
804 return 0;
805 }
806
807 int
808 kernfs_getattr(v)
809 void *v;
810 {
811 struct vop_getattr_args /* {
812 struct vnode *a_vp;
813 struct vattr *a_vap;
814 struct ucred *a_cred;
815 struct proc *a_p;
816 } */ *ap = v;
817 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
818 struct kernfs_subdir *ks;
819 struct vattr *vap = ap->a_vap;
820 int error = 0;
821 char strbuf[KSTRING], *buf;
822 size_t nread, total;
823
824 VATTR_NULL(vap);
825 vap->va_type = ap->a_vp->v_type;
826 vap->va_uid = 0;
827 vap->va_gid = 0;
828 vap->va_mode = kfs->kfs_mode;
829 vap->va_fileid = kfs->kfs_fileno;
830 vap->va_flags = 0;
831 vap->va_size = 0;
832 vap->va_blocksize = DEV_BSIZE;
833 /*
834 * Make all times be current TOD, except for the "boottime" node.
835 * Avoid microtime(9), it's slow.
836 * We don't guard the read from time(9) with splclock(9) since we
837 * don't actually need to be THAT sure the access is atomic.
838 */
839 if (kfs->kfs_kt && kfs->kfs_kt->kt_namlen == 8 &&
840 !memcmp(kfs->kfs_kt->kt_name, "boottime", 8)) {
841 TIMEVAL_TO_TIMESPEC(&boottime, &vap->va_ctime);
842 } else {
843 TIMEVAL_TO_TIMESPEC(&time, &vap->va_ctime);
844 }
845 vap->va_atime = vap->va_mtime = vap->va_ctime;
846 vap->va_gen = 0;
847 vap->va_flags = 0;
848 vap->va_rdev = 0;
849 vap->va_bytes = 0;
850
851 switch (kfs->kfs_type) {
852 case KFSkern:
853 vap->va_nlink = nkern_dirs;
854 vap->va_bytes = vap->va_size = DEV_BSIZE;
855 break;
856
857 case KFSroot:
858 vap->va_nlink = 1;
859 vap->va_bytes = vap->va_size = DEV_BSIZE;
860 break;
861
862 case KFSsubdir:
863 ks = (struct kernfs_subdir *)kfs->kfs_kt->kt_data;
864 vap->va_nlink = ks->ks_dirs;
865 vap->va_bytes = vap->va_size = DEV_BSIZE;
866 break;
867
868 case KFSnull:
869 case KFStime:
870 case KFSint:
871 case KFSstring:
872 case KFShostname:
873 case KFSavenrun:
874 case KFSdevice:
875 case KFSmsgbuf:
876 #ifdef IPSEC
877 case KFSipsecsa:
878 case KFSipsecsp:
879 #endif
880 vap->va_nlink = 1;
881 total = 0;
882 do {
883 buf = strbuf;
884 error = kernfs_xread(kfs, total, &buf,
885 sizeof(strbuf), &nread);
886 total += nread;
887 } while (error == 0 && nread != 0);
888 vap->va_bytes = vap->va_size = total;
889 break;
890
891 #ifdef IPSEC
892 case KFSipsecsadir:
893 case KFSipsecspdir:
894 vap->va_nlink = 2;
895 vap->va_bytes = vap->va_size = DEV_BSIZE;
896 break;
897 #endif
898
899 default:
900 error = kernfs_try_fileop(kfs->kfs_type,
901 KERNFS_FILEOP_GETATTR, v, EINVAL);
902 break;
903 }
904
905 return (error);
906 }
907
908 /*ARGSUSED*/
909 int
910 kernfs_setattr(v)
911 void *v;
912 {
913
914 /*
915 * Silently ignore attribute changes.
916 * This allows for open with truncate to have no
917 * effect until some data is written. I want to
918 * do it this way because all writes are atomic.
919 */
920 return (0);
921 }
922
923 int
924 kernfs_read(v)
925 void *v;
926 {
927 struct vop_read_args /* {
928 struct vnode *a_vp;
929 struct uio *a_uio;
930 int a_ioflag;
931 struct ucred *a_cred;
932 } */ *ap = v;
933 struct uio *uio = ap->a_uio;
934 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
935 char strbuf[KSTRING], *buf;
936 off_t off;
937 size_t len;
938 int error;
939
940 if (ap->a_vp->v_type == VDIR)
941 return (EOPNOTSUPP);
942
943 off = uio->uio_offset;
944 buf = strbuf;
945 if ((error = kernfs_xread(kfs, off, &buf, sizeof(strbuf), &len)) == 0)
946 error = uiomove(buf, len, uio);
947 return (error);
948 }
949
950 static int
951 kernfs_default_xwrite(v)
952 void *v;
953 {
954 struct vop_write_args /* {
955 struct vnode *a_vp;
956 struct uio *a_uio;
957 int a_ioflag;
958 struct ucred *a_cred;
959 } */ *ap = v;
960 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
961 struct uio *uio = ap->a_uio;
962 int error, xlen;
963 char strbuf[KSTRING];
964
965 if (uio->uio_offset != 0)
966 return (EINVAL);
967
968 xlen = min(uio->uio_resid, KSTRING-1);
969 if ((error = uiomove(strbuf, xlen, uio)) != 0)
970 return (error);
971
972 if (uio->uio_resid != 0)
973 return (EIO);
974
975 strbuf[xlen] = '\0';
976 xlen = strlen(strbuf);
977 return (kernfs_xwrite(kfs, strbuf, xlen));
978 }
979
980 int
981 kernfs_write(v)
982 void *v;
983 {
984 struct vop_write_args /* {
985 struct vnode *a_vp;
986 struct uio *a_uio;
987 int a_ioflag;
988 struct ucred *a_cred;
989 } */ *ap = v;
990 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
991
992 return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_WRITE, v, 0);
993 }
994
995 int
996 kernfs_ioctl(v)
997 void *v;
998 {
999 struct vop_ioctl_args /* {
1000 const struct vnodeop_desc *a_desc;
1001 struct vnode *a_vp;
1002 u_long a_command;
1003 void *a_data;
1004 int a_fflag;
1005 struct ucred *a_cred;
1006 struct proc *a_p;
1007 } */ *ap = v;
1008 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
1009
1010 return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_IOCTL, v,
1011 EPASSTHROUGH);
1012 }
1013
1014 int
1015 kernfs_mmap(v)
1016 void *v;
1017 {
1018 struct vop_mmap_args /* {
1019 const struct vnodeop_desc *a_desc;
1020 struct vnode *a_vp;
1021 int a_fflags;
1022 struct ucred *a_cred;
1023 struct proc *a_p;
1024 } */ *ap = v;
1025 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
1026
1027 return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_MMAP, v, 0);
1028 }
1029
1030 static int
1031 kernfs_setdirentfileno_kt(struct dirent *d, const struct kern_target *kt,
1032 u_int32_t value, struct vop_readdir_args *ap)
1033 {
1034 struct kernfs_node *kfs;
1035 struct vnode *vp;
1036 int error;
1037
1038 if ((error = kernfs_allocvp(ap->a_vp->v_mount, &vp, kt->kt_tag, kt,
1039 value, curlwp)) != 0) /* XXX curlwp */
1040 return error;
1041 if (kt->kt_tag == KFSdevice) {
1042 struct vattr va;
1043 if ((error = VOP_GETATTR(vp, &va, ap->a_cred,
1044 ap->a_uio->uio_segflg == UIO_USERSPACE ?
1045 ap->a_uio->uio_lwp : &lwp0)) != 0)
1046 return (error);
1047 d->d_fileno = va.va_fileid;
1048 } else {
1049 kfs = VTOKERN(vp);
1050 d->d_fileno = kfs->kfs_fileno;
1051 }
1052 vput(vp);
1053 return 0;
1054 }
1055
1056 static int
1057 kernfs_setdirentfileno(struct dirent *d, off_t entry,
1058 struct kernfs_node *thisdir_kfs, const struct kern_target *parent_kt,
1059 const struct kern_target *kt, struct vop_readdir_args *ap)
1060 {
1061 const struct kern_target *ikt;
1062 int error;
1063
1064 switch (entry) {
1065 case 0:
1066 d->d_fileno = thisdir_kfs->kfs_fileno;
1067 return 0;
1068 case 1:
1069 ikt = parent_kt;
1070 break;
1071 default:
1072 ikt = kt;
1073 break;
1074 }
1075 if (ikt != thisdir_kfs->kfs_kt) {
1076 if ((error = kernfs_setdirentfileno_kt(d, ikt, 0, ap)) != 0)
1077 return error;
1078 } else
1079 d->d_fileno = thisdir_kfs->kfs_fileno;
1080 return 0;
1081 }
1082
1083 int
1084 kernfs_readdir(v)
1085 void *v;
1086 {
1087 struct vop_readdir_args /* {
1088 struct vnode *a_vp;
1089 struct uio *a_uio;
1090 struct ucred *a_cred;
1091 int *a_eofflag;
1092 off_t **a_cookies;
1093 int a_*ncookies;
1094 } */ *ap = v;
1095 struct uio *uio = ap->a_uio;
1096 struct dirent d;
1097 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
1098 const struct kern_target *kt;
1099 const struct dyn_kern_target *dkt = NULL;
1100 const struct kernfs_subdir *ks;
1101 off_t i, j;
1102 int error;
1103 off_t *cookies = NULL;
1104 int ncookies = 0, n;
1105 #ifdef IPSEC
1106 struct secasvar *sav, *sav2;
1107 struct secpolicy *sp;
1108 #endif
1109
1110 if (uio->uio_resid < UIO_MX)
1111 return (EINVAL);
1112 if (uio->uio_offset < 0)
1113 return (EINVAL);
1114
1115 error = 0;
1116 i = uio->uio_offset;
1117 memset(&d, 0, sizeof(d));
1118 d.d_reclen = UIO_MX;
1119 ncookies = uio->uio_resid / UIO_MX;
1120
1121 switch (kfs->kfs_type) {
1122 case KFSkern:
1123 if (i >= nkern_targets)
1124 return (0);
1125
1126 if (ap->a_ncookies) {
1127 ncookies = min(ncookies, (nkern_targets - i));
1128 cookies = malloc(ncookies * sizeof(off_t), M_TEMP,
1129 M_WAITOK);
1130 *ap->a_cookies = cookies;
1131 }
1132
1133 n = 0;
1134 for (; i < nkern_targets && uio->uio_resid >= UIO_MX; i++) {
1135 if (i < static_nkern_targets)
1136 kt = &kern_targets[i];
1137 else {
1138 if (dkt == NULL) {
1139 dkt = SIMPLEQ_FIRST(&dyn_kern_targets);
1140 for (j = static_nkern_targets; j < i &&
1141 dkt != NULL; j++)
1142 dkt = SIMPLEQ_NEXT(dkt, dkt_queue);
1143 if (j != i)
1144 break;
1145 } else {
1146 dkt = SIMPLEQ_NEXT(dkt, dkt_queue);
1147 if (dkt == NULL)
1148 break;
1149 }
1150 kt = &dkt->dkt_kt;
1151 }
1152 if (kt->kt_tag == KFSdevice) {
1153 dev_t *dp = kt->kt_data;
1154 struct vnode *fvp;
1155
1156 if (*dp == NODEV ||
1157 !vfinddev(*dp, kt->kt_vtype, &fvp))
1158 continue;
1159 }
1160 d.d_namlen = kt->kt_namlen;
1161 if ((error = kernfs_setdirentfileno(&d, i, kfs,
1162 &kern_targets[0], kt, ap)) != 0)
1163 break;
1164 memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1);
1165 d.d_type = kt->kt_type;
1166 if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1167 break;
1168 if (cookies)
1169 *cookies++ = i + 1;
1170 n++;
1171 }
1172 ncookies = n;
1173 break;
1174
1175 case KFSroot:
1176 if (i >= 2)
1177 return 0;
1178
1179 if (ap->a_ncookies) {
1180 ncookies = min(ncookies, (2 - i));
1181 cookies = malloc(ncookies * sizeof(off_t), M_TEMP,
1182 M_WAITOK);
1183 *ap->a_cookies = cookies;
1184 }
1185
1186 n = 0;
1187 for (; i < 2 && uio->uio_resid >= UIO_MX; i++) {
1188 kt = &kern_targets[i];
1189 d.d_namlen = kt->kt_namlen;
1190 d.d_fileno = KERNFS_FILENO(kt, kt->kt_tag, 0);
1191 memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1);
1192 d.d_type = kt->kt_type;
1193 if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1194 break;
1195 if (cookies)
1196 *cookies++ = i + 1;
1197 n++;
1198 }
1199 ncookies = n;
1200 break;
1201
1202 case KFSsubdir:
1203 ks = (struct kernfs_subdir *)kfs->kfs_kt->kt_data;
1204 if (i >= ks->ks_nentries)
1205 return (0);
1206
1207 if (ap->a_ncookies) {
1208 ncookies = min(ncookies, (ks->ks_nentries - i));
1209 cookies = malloc(ncookies * sizeof(off_t), M_TEMP,
1210 M_WAITOK);
1211 *ap->a_cookies = cookies;
1212 }
1213
1214 dkt = SIMPLEQ_FIRST(&ks->ks_entries);
1215 for (j = 0; j < i && dkt != NULL; j++)
1216 dkt = SIMPLEQ_NEXT(dkt, dkt_queue);
1217 n = 0;
1218 for (; i < ks->ks_nentries && uio->uio_resid >= UIO_MX; i++) {
1219 if (i < 2)
1220 kt = &subdir_targets[i];
1221 else {
1222 /* check if ks_nentries lied to us */
1223 if (dkt == NULL)
1224 break;
1225 kt = &dkt->dkt_kt;
1226 dkt = SIMPLEQ_NEXT(dkt, dkt_queue);
1227 }
1228 if (kt->kt_tag == KFSdevice) {
1229 dev_t *dp = kt->kt_data;
1230 struct vnode *fvp;
1231
1232 if (*dp == NODEV ||
1233 !vfinddev(*dp, kt->kt_vtype, &fvp))
1234 continue;
1235 }
1236 d.d_namlen = kt->kt_namlen;
1237 if ((error = kernfs_setdirentfileno(&d, i, kfs,
1238 ks->ks_parent, kt, ap)) != 0)
1239 break;
1240 memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1);
1241 d.d_type = kt->kt_type;
1242 if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1243 break;
1244 if (cookies)
1245 *cookies++ = i + 1;
1246 n++;
1247 }
1248 ncookies = n;
1249 break;
1250
1251 #ifdef IPSEC
1252 case KFSipsecsadir:
1253 /* count SA in the system */
1254 n = 0;
1255 TAILQ_FOREACH(sav, &satailq, tailq) {
1256 for (sav2 = TAILQ_FIRST(&satailq);
1257 sav2 != sav;
1258 sav2 = TAILQ_NEXT(sav2, tailq)) {
1259 if (sav->spi == sav2->spi) {
1260 /* multiple SA with same SPI */
1261 break;
1262 }
1263 }
1264 if (sav == sav2 || sav->spi != sav2->spi)
1265 n++;
1266 }
1267
1268 if (i >= nipsecsa_targets + n)
1269 return (0);
1270
1271 if (ap->a_ncookies) {
1272 ncookies = min(ncookies, (n - i));
1273 cookies = malloc(ncookies * sizeof(off_t), M_TEMP,
1274 M_WAITOK);
1275 *ap->a_cookies = cookies;
1276 }
1277
1278 n = 0;
1279 for (; i < nipsecsa_targets && uio->uio_resid >= UIO_MX; i++) {
1280 kt = &ipsecsa_targets[i];
1281 d.d_namlen = kt->kt_namlen;
1282 if ((error = kernfs_setdirentfileno(&d, i, kfs,
1283 &kern_targets[0], kt, ap)) != 0)
1284 break;
1285 memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1);
1286 d.d_type = kt->kt_type;
1287 if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1288 break;
1289 if (cookies)
1290 *cookies++ = i + 1;
1291 n++;
1292 }
1293 if (error) {
1294 ncookies = n;
1295 break;
1296 }
1297
1298 TAILQ_FOREACH(sav, &satailq, tailq) {
1299 for (sav2 = TAILQ_FIRST(&satailq);
1300 sav2 != sav;
1301 sav2 = TAILQ_NEXT(sav2, tailq)) {
1302 if (sav->spi == sav2->spi) {
1303 /* multiple SA with same SPI */
1304 break;
1305 }
1306 }
1307 if (sav != sav2 && sav->spi == sav2->spi)
1308 continue;
1309 if (uio->uio_resid < UIO_MX)
1310 break;
1311 if ((error = kernfs_setdirentfileno_kt(&d, &ipsecsa_kt,
1312 sav->spi, ap)) != 0)
1313 break;
1314 d.d_namlen = snprintf(d.d_name, sizeof(d.d_name),
1315 "%u", ntohl(sav->spi));
1316 d.d_type = DT_REG;
1317 if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1318 break;
1319 if (cookies)
1320 *cookies++ = i + 1;
1321 n++;
1322 i++;
1323 }
1324 ncookies = n;
1325 break;
1326
1327 case KFSipsecspdir:
1328 /* count SP in the system */
1329 n = 0;
1330 TAILQ_FOREACH(sp, &sptailq, tailq)
1331 n++;
1332
1333 if (i >= nipsecsp_targets + n)
1334 return (0);
1335
1336 if (ap->a_ncookies) {
1337 ncookies = min(ncookies, (n - i));
1338 cookies = malloc(ncookies * sizeof(off_t), M_TEMP,
1339 M_WAITOK);
1340 *ap->a_cookies = cookies;
1341 }
1342
1343 n = 0;
1344 for (; i < nipsecsp_targets && uio->uio_resid >= UIO_MX; i++) {
1345 kt = &ipsecsp_targets[i];
1346 d.d_namlen = kt->kt_namlen;
1347 if ((error = kernfs_setdirentfileno(&d, i, kfs,
1348 &kern_targets[0], kt, ap)) != 0)
1349 break;
1350 memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1);
1351 d.d_type = kt->kt_type;
1352 if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1353 break;
1354 if (cookies)
1355 *cookies++ = i + 1;
1356 n++;
1357 }
1358 if (error) {
1359 ncookies = n;
1360 break;
1361 }
1362
1363 TAILQ_FOREACH(sp, &sptailq, tailq) {
1364 if (uio->uio_resid < UIO_MX)
1365 break;
1366 if ((error = kernfs_setdirentfileno_kt(&d, &ipsecsp_kt,
1367 sp->id, ap)) != 0)
1368 break;
1369 d.d_namlen = snprintf(d.d_name, sizeof(d.d_name),
1370 "%u", sp->id);
1371 d.d_type = DT_REG;
1372 if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1373 break;
1374 if (cookies)
1375 *cookies++ = i + 1;
1376 n++;
1377 i++;
1378 }
1379 ncookies = n;
1380 break;
1381 #endif
1382
1383 default:
1384 error = ENOTDIR;
1385 break;
1386 }
1387
1388 if (ap->a_ncookies) {
1389 if (error) {
1390 if (cookies)
1391 free(*ap->a_cookies, M_TEMP);
1392 *ap->a_ncookies = 0;
1393 *ap->a_cookies = NULL;
1394 } else
1395 *ap->a_ncookies = ncookies;
1396 }
1397
1398 uio->uio_offset = i;
1399 return (error);
1400 }
1401
1402 int
1403 kernfs_inactive(v)
1404 void *v;
1405 {
1406 struct vop_inactive_args /* {
1407 struct vnode *a_vp;
1408 struct proc *a_p;
1409 } */ *ap = v;
1410 struct vnode *vp = ap->a_vp;
1411 const struct kernfs_node *kfs = VTOKERN(ap->a_vp);
1412 #ifdef IPSEC
1413 struct mbuf *m;
1414 struct secpolicy *sp;
1415 #endif
1416
1417 VOP_UNLOCK(vp, 0);
1418 switch (kfs->kfs_type) {
1419 #ifdef IPSEC
1420 case KFSipsecsa:
1421 m = key_setdumpsa_spi(htonl(kfs->kfs_value));
1422 if (m)
1423 m_freem(m);
1424 else
1425 vgone(vp);
1426 break;
1427 case KFSipsecsp:
1428 sp = key_getspbyid(kfs->kfs_value);
1429 if (sp)
1430 key_freesp(sp);
1431 else {
1432 /* should never happen as we hold a refcnt */
1433 vgone(vp);
1434 }
1435 break;
1436 #endif
1437 default:
1438 break;
1439 }
1440 return (0);
1441 }
1442
1443 int
1444 kernfs_reclaim(v)
1445 void *v;
1446 {
1447 struct vop_reclaim_args /* {
1448 struct vnode *a_vp;
1449 } */ *ap = v;
1450
1451 return (kernfs_freevp(ap->a_vp));
1452 }
1453
1454 /*
1455 * Return POSIX pathconf information applicable to special devices.
1456 */
1457 int
1458 kernfs_pathconf(v)
1459 void *v;
1460 {
1461 struct vop_pathconf_args /* {
1462 struct vnode *a_vp;
1463 int a_name;
1464 register_t *a_retval;
1465 } */ *ap = v;
1466
1467 switch (ap->a_name) {
1468 case _PC_LINK_MAX:
1469 *ap->a_retval = LINK_MAX;
1470 return (0);
1471 case _PC_MAX_CANON:
1472 *ap->a_retval = MAX_CANON;
1473 return (0);
1474 case _PC_MAX_INPUT:
1475 *ap->a_retval = MAX_INPUT;
1476 return (0);
1477 case _PC_PIPE_BUF:
1478 *ap->a_retval = PIPE_BUF;
1479 return (0);
1480 case _PC_CHOWN_RESTRICTED:
1481 *ap->a_retval = 1;
1482 return (0);
1483 case _PC_VDISABLE:
1484 *ap->a_retval = _POSIX_VDISABLE;
1485 return (0);
1486 case _PC_SYNC_IO:
1487 *ap->a_retval = 1;
1488 return (0);
1489 default:
1490 return (EINVAL);
1491 }
1492 /* NOTREACHED */
1493 }
1494
1495 /*
1496 * Print out the contents of a /dev/fd vnode.
1497 */
1498 /* ARGSUSED */
1499 int
1500 kernfs_print(v)
1501 void *v;
1502 {
1503
1504 printf("tag VT_KERNFS, kernfs vnode\n");
1505 return (0);
1506 }
1507
1508 int
1509 kernfs_link(v)
1510 void *v;
1511 {
1512 struct vop_link_args /* {
1513 struct vnode *a_dvp;
1514 struct vnode *a_vp;
1515 struct componentname *a_cnp;
1516 } */ *ap = v;
1517
1518 VOP_ABORTOP(ap->a_dvp, ap->a_cnp);
1519 vput(ap->a_dvp);
1520 return (EROFS);
1521 }
1522
1523 int
1524 kernfs_symlink(v)
1525 void *v;
1526 {
1527 struct vop_symlink_args /* {
1528 struct vnode *a_dvp;
1529 struct vnode **a_vpp;
1530 struct componentname *a_cnp;
1531 struct vattr *a_vap;
1532 char *a_target;
1533 } */ *ap = v;
1534
1535 VOP_ABORTOP(ap->a_dvp, ap->a_cnp);
1536 vput(ap->a_dvp);
1537 return (EROFS);
1538 }
1539