kernfs_vnops.c revision 1.89 1 /* $NetBSD: kernfs_vnops.c,v 1.89 2003/08/07 16:32:37 agc Exp $ */
2
3 /*
4 * Copyright (c) 1992, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software donated to Berkeley by
8 * Jan-Simon Pendry.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)kernfs_vnops.c 8.15 (Berkeley) 5/21/95
35 */
36
37 /*
38 * Kernel parameter filesystem (/kern)
39 */
40
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: kernfs_vnops.c,v 1.89 2003/08/07 16:32:37 agc Exp $");
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/kernel.h>
47 #include <sys/vmmeter.h>
48 #include <sys/time.h>
49 #include <sys/proc.h>
50 #include <sys/vnode.h>
51 #include <sys/malloc.h>
52 #include <sys/file.h>
53 #include <sys/stat.h>
54 #include <sys/mount.h>
55 #include <sys/namei.h>
56 #include <sys/buf.h>
57 #include <sys/dirent.h>
58 #include <sys/msgbuf.h>
59
60 #include <miscfs/genfs/genfs.h>
61 #include <miscfs/kernfs/kernfs.h>
62
63 #include <uvm/uvm_extern.h>
64
65 #define KSTRING 256 /* Largest I/O available via this filesystem */
66 #define UIO_MX 32
67
68 #define READ_MODE (S_IRUSR|S_IRGRP|S_IROTH)
69 #define WRITE_MODE (S_IWUSR|S_IRUSR|S_IRGRP|S_IROTH)
70 #define DIR_MODE (S_IRUSR|S_IXUSR|S_IRGRP|S_IXGRP|S_IROTH|S_IXOTH)
71
72 const struct kern_target kern_targets[] = {
73 /* NOTE: The name must be less than UIO_MX-16 chars in length */
74 #define N(s) sizeof(s)-1, s
75 /* name data tag type ro/rw */
76 { DT_DIR, N("."), 0, KTT_NULL, VDIR, DIR_MODE },
77 { DT_DIR, N(".."), 0, KTT_NULL, VDIR, DIR_MODE },
78 { DT_REG, N("boottime"), &boottime.tv_sec, KTT_INT, VREG, READ_MODE },
79 /* XXX cast away const */
80 { DT_REG, N("copyright"), (void *)copyright,
81 KTT_STRING, VREG, READ_MODE },
82 { DT_REG, N("hostname"), 0, KTT_HOSTNAME, VREG, WRITE_MODE },
83 { DT_REG, N("hz"), &hz, KTT_INT, VREG, READ_MODE },
84 { DT_REG, N("loadavg"), 0, KTT_AVENRUN, VREG, READ_MODE },
85 { DT_REG, N("msgbuf"), 0, KTT_MSGBUF, VREG, READ_MODE },
86 { DT_REG, N("pagesize"), &uvmexp.pagesize, KTT_INT, VREG, READ_MODE },
87 { DT_REG, N("physmem"), &physmem, KTT_INT, VREG, READ_MODE },
88 #if 0
89 { DT_DIR, N("root"), 0, KTT_NULL, VDIR, DIR_MODE },
90 #endif
91 { DT_BLK, N("rootdev"), &rootdev, KTT_DEVICE, VBLK, READ_MODE },
92 { DT_CHR, N("rrootdev"), &rrootdev, KTT_DEVICE, VCHR, READ_MODE },
93 { DT_REG, N("time"), 0, KTT_TIME, VREG, READ_MODE },
94 /* XXX cast away const */
95 { DT_REG, N("version"), (void *)version,
96 KTT_STRING, VREG, READ_MODE },
97 #undef N
98 };
99 static int nkern_targets = sizeof(kern_targets) / sizeof(kern_targets[0]);
100
101 int kernfs_lookup __P((void *));
102 #define kernfs_create genfs_eopnotsupp
103 #define kernfs_mknod genfs_eopnotsupp
104 #define kernfs_open genfs_nullop
105 #define kernfs_close genfs_nullop
106 int kernfs_access __P((void *));
107 int kernfs_getattr __P((void *));
108 int kernfs_setattr __P((void *));
109 int kernfs_read __P((void *));
110 int kernfs_write __P((void *));
111 #define kernfs_fcntl genfs_fcntl
112 #define kernfs_ioctl genfs_enoioctl
113 #define kernfs_poll genfs_poll
114 #define kernfs_revoke genfs_revoke
115 #define kernfs_fsync genfs_nullop
116 #define kernfs_seek genfs_nullop
117 #define kernfs_remove genfs_eopnotsupp
118 int kernfs_link __P((void *));
119 #define kernfs_rename genfs_eopnotsupp
120 #define kernfs_mkdir genfs_eopnotsupp
121 #define kernfs_rmdir genfs_eopnotsupp
122 int kernfs_symlink __P((void *));
123 int kernfs_readdir __P((void *));
124 #define kernfs_readlink genfs_eopnotsupp
125 #define kernfs_abortop genfs_abortop
126 int kernfs_inactive __P((void *));
127 int kernfs_reclaim __P((void *));
128 #define kernfs_lock genfs_lock
129 #define kernfs_unlock genfs_unlock
130 #define kernfs_bmap genfs_badop
131 #define kernfs_strategy genfs_badop
132 int kernfs_print __P((void *));
133 #define kernfs_islocked genfs_islocked
134 int kernfs_pathconf __P((void *));
135 #define kernfs_advlock genfs_einval
136 #define kernfs_blkatoff genfs_eopnotsupp
137 #define kernfs_valloc genfs_eopnotsupp
138 #define kernfs_vfree genfs_nullop
139 #define kernfs_truncate genfs_eopnotsupp
140 #define kernfs_update genfs_nullop
141 #define kernfs_bwrite genfs_eopnotsupp
142 #define kernfs_putpages genfs_putpages
143
144 static int kernfs_xread __P((const struct kern_target *, int, char **, size_t, size_t *));
145 static int kernfs_xwrite __P((const struct kern_target *, char *, size_t));
146
147 int (**kernfs_vnodeop_p) __P((void *));
148 const struct vnodeopv_entry_desc kernfs_vnodeop_entries[] = {
149 { &vop_default_desc, vn_default_error },
150 { &vop_lookup_desc, kernfs_lookup }, /* lookup */
151 { &vop_create_desc, kernfs_create }, /* create */
152 { &vop_mknod_desc, kernfs_mknod }, /* mknod */
153 { &vop_open_desc, kernfs_open }, /* open */
154 { &vop_close_desc, kernfs_close }, /* close */
155 { &vop_access_desc, kernfs_access }, /* access */
156 { &vop_getattr_desc, kernfs_getattr }, /* getattr */
157 { &vop_setattr_desc, kernfs_setattr }, /* setattr */
158 { &vop_read_desc, kernfs_read }, /* read */
159 { &vop_write_desc, kernfs_write }, /* write */
160 { &vop_fcntl_desc, kernfs_fcntl }, /* fcntl */
161 { &vop_ioctl_desc, kernfs_ioctl }, /* ioctl */
162 { &vop_poll_desc, kernfs_poll }, /* poll */
163 { &vop_revoke_desc, kernfs_revoke }, /* revoke */
164 { &vop_fsync_desc, kernfs_fsync }, /* fsync */
165 { &vop_seek_desc, kernfs_seek }, /* seek */
166 { &vop_remove_desc, kernfs_remove }, /* remove */
167 { &vop_link_desc, kernfs_link }, /* link */
168 { &vop_rename_desc, kernfs_rename }, /* rename */
169 { &vop_mkdir_desc, kernfs_mkdir }, /* mkdir */
170 { &vop_rmdir_desc, kernfs_rmdir }, /* rmdir */
171 { &vop_symlink_desc, kernfs_symlink }, /* symlink */
172 { &vop_readdir_desc, kernfs_readdir }, /* readdir */
173 { &vop_readlink_desc, kernfs_readlink }, /* readlink */
174 { &vop_abortop_desc, kernfs_abortop }, /* abortop */
175 { &vop_inactive_desc, kernfs_inactive }, /* inactive */
176 { &vop_reclaim_desc, kernfs_reclaim }, /* reclaim */
177 { &vop_lock_desc, kernfs_lock }, /* lock */
178 { &vop_unlock_desc, kernfs_unlock }, /* unlock */
179 { &vop_bmap_desc, kernfs_bmap }, /* bmap */
180 { &vop_strategy_desc, kernfs_strategy }, /* strategy */
181 { &vop_print_desc, kernfs_print }, /* print */
182 { &vop_islocked_desc, kernfs_islocked }, /* islocked */
183 { &vop_pathconf_desc, kernfs_pathconf }, /* pathconf */
184 { &vop_advlock_desc, kernfs_advlock }, /* advlock */
185 { &vop_blkatoff_desc, kernfs_blkatoff }, /* blkatoff */
186 { &vop_valloc_desc, kernfs_valloc }, /* valloc */
187 { &vop_vfree_desc, kernfs_vfree }, /* vfree */
188 { &vop_truncate_desc, kernfs_truncate }, /* truncate */
189 { &vop_update_desc, kernfs_update }, /* update */
190 { &vop_bwrite_desc, kernfs_bwrite }, /* bwrite */
191 { &vop_putpages_desc, kernfs_putpages }, /* putpages */
192 { NULL, NULL }
193 };
194 const struct vnodeopv_desc kernfs_vnodeop_opv_desc =
195 { &kernfs_vnodeop_p, kernfs_vnodeop_entries };
196
197 static int
198 kernfs_xread(kt, off, bufp, len, wrlen)
199 const struct kern_target *kt;
200 int off;
201 char **bufp;
202 size_t len;
203 size_t *wrlen;
204 {
205
206 switch (kt->kt_tag) {
207 case KTT_TIME: {
208 struct timeval tv;
209
210 microtime(&tv);
211 sprintf(*bufp, "%ld %ld\n", tv.tv_sec, tv.tv_usec);
212 break;
213 }
214
215 case KTT_INT: {
216 int *ip = kt->kt_data;
217
218 sprintf(*bufp, "%d\n", *ip);
219 break;
220 }
221
222 case KTT_STRING: {
223 char *cp = kt->kt_data;
224
225 *bufp = cp;
226 break;
227 }
228
229 case KTT_MSGBUF: {
230 long n;
231
232 /*
233 * deal with cases where the message buffer has
234 * become corrupted.
235 */
236 if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) {
237 msgbufenabled = 0;
238 return (ENXIO);
239 }
240
241 /*
242 * Note that reads of /kern/msgbuf won't necessarily yield
243 * consistent results, if the message buffer is modified
244 * while the read is in progress. The worst that can happen
245 * is that incorrect data will be read. There's no way
246 * that this can crash the system unless the values in the
247 * message buffer header are corrupted, but that'll cause
248 * the system to die anyway.
249 */
250 if (off >= msgbufp->msg_bufs) {
251 *wrlen = 0;
252 return (0);
253 }
254 n = msgbufp->msg_bufx + off;
255 if (n >= msgbufp->msg_bufs)
256 n -= msgbufp->msg_bufs;
257 len = min(msgbufp->msg_bufs - n, msgbufp->msg_bufs - off);
258 *bufp = msgbufp->msg_bufc + n;
259 *wrlen = len;
260 return (0);
261 }
262
263 case KTT_HOSTNAME: {
264 char *cp = hostname;
265 int xlen = hostnamelen;
266
267 if (xlen >= (len-2))
268 return (EINVAL);
269
270 memcpy(*bufp, cp, xlen);
271 (*bufp)[xlen] = '\n';
272 (*bufp)[xlen+1] = '\0';
273 break;
274 }
275
276 case KTT_AVENRUN:
277 averunnable.fscale = FSCALE;
278 sprintf(*bufp, "%d %d %d %ld\n",
279 averunnable.ldavg[0], averunnable.ldavg[1],
280 averunnable.ldavg[2], averunnable.fscale);
281 break;
282
283 default:
284 *wrlen = 0;
285 return (0);
286 }
287
288 len = strlen(*bufp);
289 if (len <= off)
290 *wrlen = 0;
291 else {
292 *bufp += off;
293 *wrlen = len - off;
294 }
295 return (0);
296 }
297
298 static int
299 kernfs_xwrite(kt, buf, len)
300 const struct kern_target *kt;
301 char *buf;
302 size_t len;
303 {
304
305 switch (kt->kt_tag) {
306 case KTT_HOSTNAME:
307 if (buf[len-1] == '\n')
308 --len;
309 memcpy(hostname, buf, len);
310 hostname[len] = '\0';
311 hostnamelen = (size_t) len;
312 return (0);
313
314 default:
315 return (EIO);
316 }
317 }
318
319
320 /*
321 * vp is the current namei directory
322 * ndp is the name to locate in that directory...
323 */
324 int
325 kernfs_lookup(v)
326 void *v;
327 {
328 struct vop_lookup_args /* {
329 struct vnode * a_dvp;
330 struct vnode ** a_vpp;
331 struct componentname * a_cnp;
332 } */ *ap = v;
333 struct componentname *cnp = ap->a_cnp;
334 struct vnode **vpp = ap->a_vpp;
335 struct vnode *dvp = ap->a_dvp;
336 const char *pname = cnp->cn_nameptr;
337 const struct kern_target *kt;
338 struct vnode *fvp;
339 int error, i, wantpunlock;
340
341 #ifdef KERNFS_DIAGNOSTIC
342 printf("kernfs_lookup(%p)\n", ap);
343 printf("kernfs_lookup(dp = %p, vpp = %p, cnp = %p)\n", dvp, vpp, ap->a_cnp);
344 printf("kernfs_lookup(%s)\n", pname);
345 #endif
346
347 *vpp = NULLVP;
348 cnp->cn_flags &= ~PDIRUNLOCK;
349
350 if (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME)
351 return (EROFS);
352
353 if (cnp->cn_namelen == 1 && *pname == '.') {
354 *vpp = dvp;
355 VREF(dvp);
356 return (0);
357 }
358
359 /*
360 * This code only supports a flat directory, so we don't
361 * need to worry about ..
362 */
363
364 #if 0
365 if (cnp->cn_namelen == 4 && memcmp(pname, "root", 4) == 0) {
366 *vpp = rootdir;
367 VREF(rootdir);
368 vn_lock(rootdir, LK_SHARED | LK_RETRY);
369 return (0);
370 }
371 #endif
372
373 wantpunlock = (~cnp->cn_flags & (LOCKPARENT | ISLASTCN));
374
375 for (kt = kern_targets, i = 0; i < nkern_targets; kt++, i++) {
376 if (cnp->cn_namelen == kt->kt_namlen &&
377 memcmp(kt->kt_name, pname, cnp->cn_namelen) == 0)
378 goto found;
379 }
380
381 #ifdef KERNFS_DIAGNOSTIC
382 printf("kernfs_lookup: i = %d, failed", i);
383 #endif
384
385 return (cnp->cn_nameiop == LOOKUP ? ENOENT : EROFS);
386
387 found:
388 if (kt->kt_tag == KTT_DEVICE) {
389 dev_t *dp = kt->kt_data;
390 loop:
391 if (*dp == NODEV || !vfinddev(*dp, kt->kt_vtype, &fvp)) {
392 return (ENOENT);
393 }
394 *vpp = fvp;
395 if (vget(fvp, LK_EXCLUSIVE))
396 goto loop;
397 if (wantpunlock) {
398 VOP_UNLOCK(dvp, 0);
399 cnp->cn_flags |= PDIRUNLOCK;
400 }
401 return (0);
402 }
403
404 #ifdef KERNFS_DIAGNOSTIC
405 printf("kernfs_lookup: allocate new vnode\n");
406 #endif
407 error = getnewvnode(VT_KERNFS, dvp->v_mount, kernfs_vnodeop_p, &fvp);
408 if (error) {
409 return (error);
410 }
411
412 MALLOC(fvp->v_data, void *, sizeof(struct kernfs_node), M_TEMP,
413 M_WAITOK);
414 VTOKERN(fvp)->kf_kt = kt;
415 fvp->v_type = kt->kt_vtype;
416 vn_lock(fvp, LK_EXCLUSIVE | LK_RETRY);
417 *vpp = fvp;
418
419 #ifdef KERNFS_DIAGNOSTIC
420 printf("kernfs_lookup: newvp = %p\n", fvp);
421 #endif
422 if (wantpunlock) {
423 VOP_UNLOCK(dvp, 0);
424 cnp->cn_flags |= PDIRUNLOCK;
425 }
426 return (0);
427 }
428
429 int
430 kernfs_access(v)
431 void *v;
432 {
433 struct vop_access_args /* {
434 struct vnode *a_vp;
435 int a_mode;
436 struct ucred *a_cred;
437 struct proc *a_p;
438 } */ *ap = v;
439 struct vnode *vp = ap->a_vp;
440 mode_t mode;
441
442 if (vp->v_flag & VROOT) {
443 mode = DIR_MODE;
444 } else {
445 const struct kern_target *kt = VTOKERN(vp)->kf_kt;
446 mode = kt->kt_mode;
447 }
448
449 return (vaccess(vp->v_type, mode, (uid_t)0, (gid_t)0, ap->a_mode,
450 ap->a_cred));
451 }
452
453 int
454 kernfs_getattr(v)
455 void *v;
456 {
457 struct vop_getattr_args /* {
458 struct vnode *a_vp;
459 struct vattr *a_vap;
460 struct ucred *a_cred;
461 struct proc *a_p;
462 } */ *ap = v;
463 struct vnode *vp = ap->a_vp;
464 struct vattr *vap = ap->a_vap;
465 int error = 0;
466 char strbuf[KSTRING], *buf;
467
468 memset((caddr_t) vap, 0, sizeof(*vap));
469 vattr_null(vap);
470 vap->va_uid = 0;
471 vap->va_gid = 0;
472 vap->va_fsid = vp->v_mount->mnt_stat.f_fsid.val[0];
473 vap->va_size = 0;
474 vap->va_blocksize = DEV_BSIZE;
475 /*
476 * Make all times be current TOD. Avoid microtime(9), it's slow.
477 * We don't guard the read from time(9) with splclock(9) since we
478 * don't actually need to be THAT sure the access is atomic.
479 */
480 TIMEVAL_TO_TIMESPEC(&time, &vap->va_ctime);
481 vap->va_atime = vap->va_mtime = vap->va_ctime;
482 vap->va_gen = 0;
483 vap->va_flags = 0;
484 vap->va_rdev = 0;
485 vap->va_bytes = 0;
486
487 if (vp->v_flag & VROOT) {
488 #ifdef KERNFS_DIAGNOSTIC
489 printf("kernfs_getattr: stat rootdir\n");
490 #endif
491 vap->va_type = VDIR;
492 vap->va_mode = DIR_MODE;
493 vap->va_nlink = 2;
494 vap->va_fileid = 2;
495 vap->va_size = DEV_BSIZE;
496 } else {
497 const struct kern_target *kt = VTOKERN(vp)->kf_kt;
498 size_t nread, total;
499 #ifdef KERNFS_DIAGNOSTIC
500 printf("kernfs_getattr: stat target %s\n", kt->kt_name);
501 #endif
502 vap->va_type = kt->kt_vtype;
503 vap->va_mode = kt->kt_mode;
504 vap->va_nlink = 1;
505 vap->va_fileid = 1 + (kt - kern_targets);
506 total = 0;
507 do {
508 buf = strbuf;
509 error = kernfs_xread(kt, total, &buf,
510 sizeof(strbuf), &nread);
511 total += nread;
512 } while (error == 0 && nread != 0);
513 vap->va_size = total;
514 }
515
516 #ifdef KERNFS_DIAGNOSTIC
517 printf("kernfs_getattr: return error %d\n", error);
518 #endif
519 return (error);
520 }
521
522 /*ARGSUSED*/
523 int
524 kernfs_setattr(v)
525 void *v;
526 {
527 /*
528 * Silently ignore attribute changes.
529 * This allows for open with truncate to have no
530 * effect until some data is written. I want to
531 * do it this way because all writes are atomic.
532 */
533 return (0);
534 }
535
536 int
537 kernfs_read(v)
538 void *v;
539 {
540 struct vop_read_args /* {
541 struct vnode *a_vp;
542 struct uio *a_uio;
543 int a_ioflag;
544 struct ucred *a_cred;
545 } */ *ap = v;
546 struct vnode *vp = ap->a_vp;
547 struct uio *uio = ap->a_uio;
548 const struct kern_target *kt;
549 char strbuf[KSTRING], *buf;
550 off_t off;
551 size_t len;
552 int error;
553
554 if (vp->v_type == VDIR)
555 return (EOPNOTSUPP);
556
557 kt = VTOKERN(vp)->kf_kt;
558
559 #ifdef KERNFS_DIAGNOSTIC
560 printf("kern_read %s\n", kt->kt_name);
561 #endif
562
563 off = uio->uio_offset;
564 buf = strbuf;
565 if ((error = kernfs_xread(kt, off, &buf, sizeof(strbuf), &len)) == 0)
566 error = uiomove(buf, len, uio);
567 return (error);
568 }
569
570 int
571 kernfs_write(v)
572 void *v;
573 {
574 struct vop_write_args /* {
575 struct vnode *a_vp;
576 struct uio *a_uio;
577 int a_ioflag;
578 struct ucred *a_cred;
579 } */ *ap = v;
580 struct vnode *vp = ap->a_vp;
581 struct uio *uio = ap->a_uio;
582 const struct kern_target *kt;
583 int error, xlen;
584 char strbuf[KSTRING];
585
586 if (vp->v_type == VDIR)
587 return (EOPNOTSUPP);
588
589 kt = VTOKERN(vp)->kf_kt;
590
591 if (uio->uio_offset != 0)
592 return (EINVAL);
593
594 xlen = min(uio->uio_resid, KSTRING-1);
595 if ((error = uiomove(strbuf, xlen, uio)) != 0)
596 return (error);
597
598 if (uio->uio_resid != 0)
599 return (EIO);
600
601 strbuf[xlen] = '\0';
602 xlen = strlen(strbuf);
603 return (kernfs_xwrite(kt, strbuf, xlen));
604 }
605
606 int
607 kernfs_readdir(v)
608 void *v;
609 {
610 struct vop_readdir_args /* {
611 struct vnode *a_vp;
612 struct uio *a_uio;
613 struct ucred *a_cred;
614 int *a_eofflag;
615 off_t **a_cookies;
616 int a_*ncookies;
617 } */ *ap = v;
618 struct uio *uio = ap->a_uio;
619 struct dirent d;
620 const struct kern_target *kt;
621 off_t i;
622 int error;
623 off_t *cookies = NULL;
624 int ncookies = 0, nc = 0;
625
626 if (ap->a_vp->v_type != VDIR)
627 return (ENOTDIR);
628
629 if (uio->uio_resid < UIO_MX)
630 return (EINVAL);
631 if (uio->uio_offset < 0)
632 return (EINVAL);
633
634 error = 0;
635 i = uio->uio_offset;
636
637 if (i >= nkern_targets)
638 return 0;
639
640 memset((caddr_t)&d, 0, UIO_MX);
641 d.d_reclen = UIO_MX;
642
643 if (ap->a_ncookies) {
644 nc = uio->uio_resid / UIO_MX;
645 nc = min(nc, (nkern_targets - i));
646 cookies = malloc(nc * sizeof(off_t), M_TEMP, M_WAITOK);
647 *ap->a_cookies = cookies;
648 }
649
650 for (kt = &kern_targets[i];
651 uio->uio_resid >= UIO_MX && i < nkern_targets; kt++, i++) {
652 #ifdef KERNFS_DIAGNOSTIC
653 printf("kernfs_readdir: i = %d\n", (int)i);
654 #endif
655
656 if (kt->kt_tag == KTT_DEVICE) {
657 dev_t *dp = kt->kt_data;
658 struct vnode *fvp;
659
660 if (*dp == NODEV || !vfinddev(*dp, kt->kt_vtype, &fvp))
661 continue;
662 }
663
664 d.d_fileno = i + 3;
665 d.d_namlen = kt->kt_namlen;
666 memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1);
667 d.d_type = kt->kt_type;
668
669 if ((error = uiomove((caddr_t)&d, UIO_MX, uio)) != 0)
670 break;
671 if (cookies) {
672 *cookies++ = i + 1;
673 ncookies++;
674 }
675 }
676
677 if (ap->a_ncookies) {
678 if (error) {
679 free(*ap->a_cookies, M_TEMP);
680 *ap->a_ncookies = 0;
681 *ap->a_cookies = NULL;
682 } else
683 *ap->a_ncookies = ncookies;
684 }
685
686 uio->uio_offset = i;
687 return (error);
688 }
689
690 int
691 kernfs_inactive(v)
692 void *v;
693 {
694 struct vop_inactive_args /* {
695 struct vnode *a_vp;
696 struct proc *a_p;
697 } */ *ap = v;
698 struct vnode *vp = ap->a_vp;
699
700 #ifdef KERNFS_DIAGNOSTIC
701 printf("kernfs_inactive(%p)\n", vp);
702 #endif
703 /*
704 * Clear out the v_type field to avoid
705 * nasty things happening in vgone().
706 */
707 VOP_UNLOCK(vp, 0);
708 vp->v_type = VNON;
709 return (0);
710 }
711
712 int
713 kernfs_reclaim(v)
714 void *v;
715 {
716 struct vop_reclaim_args /* {
717 struct vnode *a_vp;
718 } */ *ap = v;
719 struct vnode *vp = ap->a_vp;
720
721 #ifdef KERNFS_DIAGNOSTIC
722 printf("kernfs_reclaim(%p)\n", vp);
723 #endif
724 if (vp->v_data) {
725 FREE(vp->v_data, M_TEMP);
726 vp->v_data = 0;
727 }
728 return (0);
729 }
730
731 /*
732 * Return POSIX pathconf information applicable to special devices.
733 */
734 int
735 kernfs_pathconf(v)
736 void *v;
737 {
738 struct vop_pathconf_args /* {
739 struct vnode *a_vp;
740 int a_name;
741 register_t *a_retval;
742 } */ *ap = v;
743
744 switch (ap->a_name) {
745 case _PC_LINK_MAX:
746 *ap->a_retval = LINK_MAX;
747 return (0);
748 case _PC_MAX_CANON:
749 *ap->a_retval = MAX_CANON;
750 return (0);
751 case _PC_MAX_INPUT:
752 *ap->a_retval = MAX_INPUT;
753 return (0);
754 case _PC_PIPE_BUF:
755 *ap->a_retval = PIPE_BUF;
756 return (0);
757 case _PC_CHOWN_RESTRICTED:
758 *ap->a_retval = 1;
759 return (0);
760 case _PC_VDISABLE:
761 *ap->a_retval = _POSIX_VDISABLE;
762 return (0);
763 case _PC_SYNC_IO:
764 *ap->a_retval = 1;
765 return (0);
766 default:
767 return (EINVAL);
768 }
769 /* NOTREACHED */
770 }
771
772 /*
773 * Print out the contents of a /dev/fd vnode.
774 */
775 /* ARGSUSED */
776 int
777 kernfs_print(v)
778 void *v;
779 {
780
781 printf("tag VT_KERNFS, kernfs vnode\n");
782 return (0);
783 }
784
785 int
786 kernfs_link(v)
787 void *v;
788 {
789 struct vop_link_args /* {
790 struct vnode *a_dvp;
791 struct vnode *a_vp;
792 struct componentname *a_cnp;
793 } */ *ap = v;
794
795 VOP_ABORTOP(ap->a_dvp, ap->a_cnp);
796 vput(ap->a_dvp);
797 return (EROFS);
798 }
799
800 int
801 kernfs_symlink(v)
802 void *v;
803 {
804 struct vop_symlink_args /* {
805 struct vnode *a_dvp;
806 struct vnode **a_vpp;
807 struct componentname *a_cnp;
808 struct vattr *a_vap;
809 char *a_target;
810 } */ *ap = v;
811
812 VOP_ABORTOP(ap->a_dvp, ap->a_cnp);
813 vput(ap->a_dvp);
814 return (EROFS);
815 }
816