Home | History | Annotate | Line # | Download | only in nullfs
null_vnops.c revision 1.13
      1  1.13      fvdl /*	$NetBSD: null_vnops.c,v 1.13 1998/03/01 02:21:43 fvdl Exp $	*/
      2   1.2       cgd 
      3   1.1   mycroft /*
      4   1.1   mycroft  * Copyright (c) 1992, 1993
      5   1.1   mycroft  *	The Regents of the University of California.  All rights reserved.
      6   1.1   mycroft  *
      7   1.1   mycroft  * This code is derived from software contributed to Berkeley by
      8   1.1   mycroft  * John Heidemann of the UCLA Ficus project.
      9   1.1   mycroft  *
     10   1.1   mycroft  * Redistribution and use in source and binary forms, with or without
     11   1.1   mycroft  * modification, are permitted provided that the following conditions
     12   1.1   mycroft  * are met:
     13   1.1   mycroft  * 1. Redistributions of source code must retain the above copyright
     14   1.1   mycroft  *    notice, this list of conditions and the following disclaimer.
     15   1.1   mycroft  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.1   mycroft  *    notice, this list of conditions and the following disclaimer in the
     17   1.1   mycroft  *    documentation and/or other materials provided with the distribution.
     18   1.1   mycroft  * 3. All advertising materials mentioning features or use of this software
     19   1.1   mycroft  *    must display the following acknowledgement:
     20   1.1   mycroft  *	This product includes software developed by the University of
     21   1.1   mycroft  *	California, Berkeley and its contributors.
     22   1.1   mycroft  * 4. Neither the name of the University nor the names of its contributors
     23   1.1   mycroft  *    may be used to endorse or promote products derived from this software
     24   1.1   mycroft  *    without specific prior written permission.
     25   1.1   mycroft  *
     26   1.1   mycroft  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     27   1.1   mycroft  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     28   1.1   mycroft  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     29   1.1   mycroft  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     30   1.1   mycroft  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     31   1.1   mycroft  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     32   1.1   mycroft  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     33   1.1   mycroft  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     34   1.1   mycroft  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     35   1.1   mycroft  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     36   1.1   mycroft  * SUCH DAMAGE.
     37   1.1   mycroft  *
     38  1.13      fvdl  *	@(#)null_vnops.c	8.6 (Berkeley) 5/27/95
     39   1.1   mycroft  *
     40   1.1   mycroft  * Ancestors:
     41   1.1   mycroft  *	@(#)lofs_vnops.c	1.2 (Berkeley) 6/18/92
     42  1.13      fvdl  *	$Id: null_vnops.c,v 1.13 1998/03/01 02:21:43 fvdl Exp $
     43   1.1   mycroft  *	...and...
     44   1.1   mycroft  *	@(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project
     45   1.1   mycroft  */
     46   1.1   mycroft 
     47   1.1   mycroft /*
     48   1.1   mycroft  * Null Layer
     49   1.1   mycroft  *
     50   1.1   mycroft  * (See mount_null(8) for more information.)
     51   1.1   mycroft  *
     52   1.1   mycroft  * The null layer duplicates a portion of the file system
     53   1.1   mycroft  * name space under a new name.  In this respect, it is
     54   1.1   mycroft  * similar to the loopback file system.  It differs from
     55   1.1   mycroft  * the loopback fs in two respects:  it is implemented using
     56   1.1   mycroft  * a stackable layers techniques, and it's "null-node"s stack above
     57   1.1   mycroft  * all lower-layer vnodes, not just over directory vnodes.
     58   1.1   mycroft  *
     59   1.1   mycroft  * The null layer has two purposes.  First, it serves as a demonstration
     60   1.1   mycroft  * of layering by proving a layer which does nothing.  (It actually
     61   1.1   mycroft  * does everything the loopback file system does, which is slightly
     62   1.1   mycroft  * more than nothing.)  Second, the null layer can serve as a prototype
     63   1.1   mycroft  * layer.  Since it provides all necessary layer framework,
     64   1.1   mycroft  * new file system layers can be created very easily be starting
     65   1.1   mycroft  * with a null layer.
     66   1.1   mycroft  *
     67   1.1   mycroft  * The remainder of this man page examines the null layer as a basis
     68   1.1   mycroft  * for constructing new layers.
     69   1.1   mycroft  *
     70   1.1   mycroft  *
     71   1.1   mycroft  * INSTANTIATING NEW NULL LAYERS
     72   1.1   mycroft  *
     73   1.1   mycroft  * New null layers are created with mount_null(8).
     74   1.1   mycroft  * Mount_null(8) takes two arguments, the pathname
     75   1.1   mycroft  * of the lower vfs (target-pn) and the pathname where the null
     76   1.1   mycroft  * layer will appear in the namespace (alias-pn).  After
     77   1.1   mycroft  * the null layer is put into place, the contents
     78   1.1   mycroft  * of target-pn subtree will be aliased under alias-pn.
     79   1.1   mycroft  *
     80   1.1   mycroft  *
     81   1.1   mycroft  * OPERATION OF A NULL LAYER
     82   1.1   mycroft  *
     83   1.1   mycroft  * The null layer is the minimum file system layer,
     84   1.1   mycroft  * simply bypassing all possible operations to the lower layer
     85   1.1   mycroft  * for processing there.  The majority of its activity centers
     86   1.1   mycroft  * on the bypass routine, though which nearly all vnode operations
     87   1.1   mycroft  * pass.
     88   1.1   mycroft  *
     89   1.1   mycroft  * The bypass routine accepts arbitrary vnode operations for
     90   1.1   mycroft  * handling by the lower layer.  It begins by examing vnode
     91   1.1   mycroft  * operation arguments and replacing any null-nodes by their
     92   1.1   mycroft  * lower-layer equivlants.  It then invokes the operation
     93   1.1   mycroft  * on the lower layer.  Finally, it replaces the null-nodes
     94   1.1   mycroft  * in the arguments and, if a vnode is return by the operation,
     95   1.1   mycroft  * stacks a null-node on top of the returned vnode.
     96   1.1   mycroft  *
     97  1.13      fvdl  * Although bypass handles most operations, vop_getattr, vop_lock,
     98  1.13      fvdl  * vop_unlock, vop_inactive, vop_reclaim, and vop_print are not
     99  1.13      fvdl  * bypassed. Vop_getattr must change the fsid being returned.
    100  1.13      fvdl  * Vop_lock and vop_unlock must handle any locking for the
    101  1.13      fvdl  * current vnode as well as pass the lock request down.
    102   1.1   mycroft  * Vop_inactive and vop_reclaim are not bypassed so that
    103  1.13      fvdl  * they can handle freeing null-layer specific data. Vop_print
    104  1.13      fvdl  * is not bypassed to avoid excessive debugging information.
    105  1.13      fvdl  * Also, certain vnode operations change the locking state within
    106  1.13      fvdl  * the operation (create, mknod, remove, link, rename, mkdir, rmdir,
    107  1.13      fvdl  * and symlink). Ideally these operations should not change the
    108  1.13      fvdl  * lock state, but should be changed to let the caller of the
    109  1.13      fvdl  * function unlock them. Otherwise all intermediate vnode layers
    110  1.13      fvdl  * (such as union, umapfs, etc) must catch these functions to do
    111  1.13      fvdl  * the necessary locking at their layer.
    112   1.1   mycroft  *
    113   1.1   mycroft  *
    114   1.1   mycroft  * INSTANTIATING VNODE STACKS
    115   1.1   mycroft  *
    116   1.1   mycroft  * Mounting associates the null layer with a lower layer,
    117   1.1   mycroft  * effect stacking two VFSes.  Vnode stacks are instead
    118   1.1   mycroft  * created on demand as files are accessed.
    119   1.1   mycroft  *
    120   1.1   mycroft  * The initial mount creates a single vnode stack for the
    121   1.1   mycroft  * root of the new null layer.  All other vnode stacks
    122   1.1   mycroft  * are created as a result of vnode operations on
    123   1.1   mycroft  * this or other null vnode stacks.
    124   1.1   mycroft  *
    125   1.1   mycroft  * New vnode stacks come into existance as a result of
    126   1.1   mycroft  * an operation which returns a vnode.
    127   1.1   mycroft  * The bypass routine stacks a null-node above the new
    128   1.1   mycroft  * vnode before returning it to the caller.
    129   1.1   mycroft  *
    130   1.1   mycroft  * For example, imagine mounting a null layer with
    131   1.1   mycroft  * "mount_null /usr/include /dev/layer/null".
    132   1.1   mycroft  * Changing directory to /dev/layer/null will assign
    133   1.1   mycroft  * the root null-node (which was created when the null layer was mounted).
    134   1.1   mycroft  * Now consider opening "sys".  A vop_lookup would be
    135   1.1   mycroft  * done on the root null-node.  This operation would bypass through
    136   1.1   mycroft  * to the lower layer which would return a vnode representing
    137   1.1   mycroft  * the UFS "sys".  Null_bypass then builds a null-node
    138   1.1   mycroft  * aliasing the UFS "sys" and returns this to the caller.
    139   1.1   mycroft  * Later operations on the null-node "sys" will repeat this
    140   1.1   mycroft  * process when constructing other vnode stacks.
    141   1.1   mycroft  *
    142   1.1   mycroft  *
    143   1.1   mycroft  * CREATING OTHER FILE SYSTEM LAYERS
    144   1.1   mycroft  *
    145   1.1   mycroft  * One of the easiest ways to construct new file system layers is to make
    146   1.1   mycroft  * a copy of the null layer, rename all files and variables, and
    147   1.1   mycroft  * then begin modifing the copy.  Sed can be used to easily rename
    148   1.1   mycroft  * all variables.
    149   1.1   mycroft  *
    150   1.1   mycroft  * The umap layer is an example of a layer descended from the
    151   1.1   mycroft  * null layer.
    152   1.1   mycroft  *
    153   1.1   mycroft  *
    154   1.1   mycroft  * INVOKING OPERATIONS ON LOWER LAYERS
    155   1.1   mycroft  *
    156   1.1   mycroft  * There are two techniques to invoke operations on a lower layer
    157   1.1   mycroft  * when the operation cannot be completely bypassed.  Each method
    158   1.1   mycroft  * is appropriate in different situations.  In both cases,
    159   1.1   mycroft  * it is the responsibility of the aliasing layer to make
    160   1.1   mycroft  * the operation arguments "correct" for the lower layer
    161   1.1   mycroft  * by mapping an vnode arguments to the lower layer.
    162   1.1   mycroft  *
    163   1.1   mycroft  * The first approach is to call the aliasing layer's bypass routine.
    164   1.1   mycroft  * This method is most suitable when you wish to invoke the operation
    165   1.1   mycroft  * currently being hanldled on the lower layer.  It has the advantage
    166   1.1   mycroft  * that the bypass routine already must do argument mapping.
    167   1.1   mycroft  * An example of this is null_getattrs in the null layer.
    168   1.1   mycroft  *
    169   1.1   mycroft  * A second approach is to directly invoked vnode operations on
    170   1.1   mycroft  * the lower layer with the VOP_OPERATIONNAME interface.
    171   1.1   mycroft  * The advantage of this method is that it is easy to invoke
    172   1.1   mycroft  * arbitrary operations on the lower layer.  The disadvantage
    173   1.1   mycroft  * is that vnodes arguments must be manualy mapped.
    174   1.1   mycroft  *
    175   1.1   mycroft  */
    176   1.1   mycroft 
    177   1.1   mycroft #include <sys/param.h>
    178   1.1   mycroft #include <sys/systm.h>
    179   1.1   mycroft #include <sys/proc.h>
    180   1.1   mycroft #include <sys/time.h>
    181   1.1   mycroft #include <sys/types.h>
    182   1.1   mycroft #include <sys/vnode.h>
    183   1.1   mycroft #include <sys/mount.h>
    184   1.1   mycroft #include <sys/namei.h>
    185   1.1   mycroft #include <sys/malloc.h>
    186   1.1   mycroft #include <sys/buf.h>
    187   1.1   mycroft #include <miscfs/nullfs/null.h>
    188  1.13      fvdl #include <miscfs/genfs/genfs.h>
    189   1.1   mycroft 
    190   1.1   mycroft 
    191   1.1   mycroft int null_bug_bypass = 0;   /* for debugging: enables bypass printf'ing */
    192   1.1   mycroft 
    193   1.5  christos int	null_bypass __P((void *));
    194   1.5  christos int	null_getattr __P((void *));
    195   1.5  christos int	null_inactive __P((void *));
    196   1.5  christos int	null_reclaim __P((void *));
    197   1.5  christos int	null_print __P((void *));
    198   1.5  christos int	null_strategy __P((void *));
    199   1.5  christos int	null_bwrite __P((void *));
    200   1.7       jtk int	null_lock __P((void *));
    201   1.7       jtk int	null_unlock __P((void *));
    202   1.7       jtk int	null_islocked __P((void *));
    203   1.7       jtk int	null_lookup __P((void *));
    204  1.13      fvdl int	null_setattr __P((void *));
    205  1.13      fvdl int	null_access __P((void *));
    206  1.13      fvdl 
    207   1.7       jtk 
    208   1.1   mycroft /*
    209   1.1   mycroft  * This is the 10-Apr-92 bypass routine.
    210   1.1   mycroft  *    This version has been optimized for speed, throwing away some
    211   1.1   mycroft  * safety checks.  It should still always work, but it's not as
    212   1.1   mycroft  * robust to programmer errors.
    213   1.1   mycroft  *    Define SAFETY to include some error checking code.
    214   1.1   mycroft  *
    215   1.1   mycroft  * In general, we map all vnodes going down and unmap them on the way back.
    216   1.1   mycroft  * As an exception to this, vnodes can be marked "unmapped" by setting
    217   1.1   mycroft  * the Nth bit in operation's vdesc_flags.
    218   1.1   mycroft  *
    219   1.1   mycroft  * Also, some BSD vnode operations have the side effect of vrele'ing
    220   1.1   mycroft  * their arguments.  With stacking, the reference counts are held
    221   1.1   mycroft  * by the upper node, not the lower one, so we must handle these
    222   1.1   mycroft  * side-effects here.  This is not of concern in Sun-derived systems
    223   1.1   mycroft  * since there are no such side-effects.
    224   1.1   mycroft  *
    225   1.1   mycroft  * This makes the following assumptions:
    226   1.1   mycroft  * - only one returned vpp
    227   1.1   mycroft  * - no INOUT vpp's (Sun's vop_open has one of these)
    228   1.1   mycroft  * - the vnode operation vector of the first vnode should be used
    229   1.1   mycroft  *   to determine what implementation of the op should be invoked
    230   1.1   mycroft  * - all mapped vnodes are of our vnode-type (NEEDSWORK:
    231   1.1   mycroft  *   problems on rmdir'ing mount points and renaming?)
    232   1.1   mycroft  */
    233   1.1   mycroft int
    234   1.5  christos null_bypass(v)
    235   1.5  christos 	void *v;
    236   1.5  christos {
    237   1.1   mycroft 	struct vop_generic_args /* {
    238   1.1   mycroft 		struct vnodeop_desc *a_desc;
    239   1.1   mycroft 		<other random data follows, presumably>
    240   1.5  christos 	} */ *ap = v;
    241  1.13      fvdl 	extern int (**null_vnodeop_p) __P((void *));
    242   1.1   mycroft 	register struct vnode **this_vp_p;
    243   1.1   mycroft 	int error;
    244   1.1   mycroft 	struct vnode *old_vps[VDESC_MAX_VPS];
    245   1.1   mycroft 	struct vnode **vps_p[VDESC_MAX_VPS];
    246   1.1   mycroft 	struct vnode ***vppp;
    247   1.1   mycroft 	struct vnodeop_desc *descp = ap->a_desc;
    248   1.1   mycroft 	int reles, i;
    249   1.1   mycroft 
    250   1.1   mycroft 	if (null_bug_bypass)
    251   1.9  christos 		printf ("null_bypass: %s\n", descp->vdesc_name);
    252   1.1   mycroft 
    253   1.1   mycroft #ifdef SAFETY
    254   1.1   mycroft 	/*
    255   1.1   mycroft 	 * We require at least one vp.
    256   1.1   mycroft 	 */
    257   1.1   mycroft 	if (descp->vdesc_vp_offsets == NULL ||
    258   1.1   mycroft 	    descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
    259   1.1   mycroft 		panic ("null_bypass: no vp's in map.\n");
    260   1.1   mycroft #endif
    261   1.1   mycroft 
    262   1.1   mycroft 	/*
    263   1.1   mycroft 	 * Map the vnodes going in.
    264   1.1   mycroft 	 * Later, we'll invoke the operation based on
    265   1.1   mycroft 	 * the first mapped vnode's operation vector.
    266   1.1   mycroft 	 */
    267   1.1   mycroft 	reles = descp->vdesc_flags;
    268   1.1   mycroft 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
    269   1.1   mycroft 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
    270   1.1   mycroft 			break;   /* bail out at end of list */
    271   1.1   mycroft 		vps_p[i] = this_vp_p =
    272   1.1   mycroft 			VOPARG_OFFSETTO(struct vnode**,descp->vdesc_vp_offsets[i],ap);
    273   1.1   mycroft 		/*
    274   1.1   mycroft 		 * We're not guaranteed that any but the first vnode
    275   1.1   mycroft 		 * are of our type.  Check for and don't map any
    276   1.1   mycroft 		 * that aren't.  (We must always map first vp or vclean fails.)
    277   1.1   mycroft 		 */
    278  1.13      fvdl 		if (i && (*this_vp_p == NULL ||
    279   1.3   mycroft 		    (*this_vp_p)->v_op != null_vnodeop_p)) {
    280  1.13      fvdl 			old_vps[i] = NULL;
    281   1.1   mycroft 		} else {
    282   1.1   mycroft 			old_vps[i] = *this_vp_p;
    283   1.1   mycroft 			*(vps_p[i]) = NULLVPTOLOWERVP(*this_vp_p);
    284   1.1   mycroft 			/*
    285   1.1   mycroft 			 * XXX - Several operations have the side effect
    286   1.1   mycroft 			 * of vrele'ing their vp's.  We must account for
    287   1.1   mycroft 			 * that.  (This should go away in the future.)
    288   1.1   mycroft 			 */
    289   1.1   mycroft 			if (reles & 1)
    290   1.1   mycroft 				VREF(*this_vp_p);
    291   1.1   mycroft 		}
    292   1.1   mycroft 
    293   1.1   mycroft 	}
    294   1.1   mycroft 
    295   1.1   mycroft 	/*
    296   1.1   mycroft 	 * Call the operation on the lower layer
    297   1.1   mycroft 	 * with the modified argument structure.
    298   1.1   mycroft 	 */
    299   1.1   mycroft 	error = VCALL(*(vps_p[0]), descp->vdesc_offset, ap);
    300   1.1   mycroft 
    301   1.1   mycroft 	/*
    302   1.1   mycroft 	 * Maintain the illusion of call-by-value
    303   1.1   mycroft 	 * by restoring vnodes in the argument structure
    304   1.1   mycroft 	 * to their original value.
    305   1.1   mycroft 	 */
    306   1.1   mycroft 	reles = descp->vdesc_flags;
    307   1.1   mycroft 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
    308   1.1   mycroft 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
    309   1.1   mycroft 			break;   /* bail out at end of list */
    310  1.13      fvdl 		if (old_vps[i]) {
    311   1.1   mycroft 			*(vps_p[i]) = old_vps[i];
    312  1.13      fvdl 			if (reles & 1)
    313  1.13      fvdl 				vrele(*(vps_p[i]));
    314   1.1   mycroft 		}
    315   1.1   mycroft 	}
    316   1.1   mycroft 
    317   1.1   mycroft 	/*
    318   1.1   mycroft 	 * Map the possible out-going vpp
    319   1.1   mycroft 	 * (Assumes that the lower layer always returns
    320   1.1   mycroft 	 * a VREF'ed vpp unless it gets an error.)
    321   1.1   mycroft 	 */
    322   1.1   mycroft 	if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET &&
    323   1.1   mycroft 	    !(descp->vdesc_flags & VDESC_NOMAP_VPP) &&
    324   1.1   mycroft 	    !error) {
    325   1.1   mycroft 		/*
    326   1.1   mycroft 		 * XXX - even though some ops have vpp returned vp's,
    327   1.1   mycroft 		 * several ops actually vrele this before returning.
    328   1.1   mycroft 		 * We must avoid these ops.
    329   1.1   mycroft 		 * (This should go away when these ops are regularized.)
    330   1.1   mycroft 		 */
    331   1.1   mycroft 		if (descp->vdesc_flags & VDESC_VPP_WILLRELE)
    332   1.1   mycroft 			goto out;
    333   1.1   mycroft 		vppp = VOPARG_OFFSETTO(struct vnode***,
    334   1.1   mycroft 				 descp->vdesc_vpp_offset,ap);
    335   1.7       jtk 		error = null_node_create(old_vps[0]->v_mount, **vppp, *vppp,
    336   1.7       jtk 					 descp == &vop_lookup_desc ? 0 : 1);
    337   1.1   mycroft 	}
    338   1.1   mycroft 
    339   1.1   mycroft  out:
    340   1.1   mycroft 	return (error);
    341   1.1   mycroft }
    342   1.1   mycroft 
    343  1.13      fvdl /*
    344  1.13      fvdl  * We have to carry on the locking protocol on the null layer vnodes
    345  1.13      fvdl  * as we progress through the tree. We also have to enforce read-only
    346  1.13      fvdl  * if this layer is mounted read-only.
    347  1.13      fvdl  */
    348  1.13      fvdl int
    349  1.13      fvdl null_lookup(v)
    350  1.13      fvdl 	void *v;
    351  1.13      fvdl {
    352  1.13      fvdl 	struct vop_lookup_args /* {
    353  1.13      fvdl 		struct vnode * a_dvp;
    354  1.13      fvdl 		struct vnode ** a_vpp;
    355  1.13      fvdl 		struct componentname * a_cnp;
    356  1.13      fvdl 	} */ *ap = v;
    357  1.13      fvdl 	struct componentname *cnp = ap->a_cnp;
    358  1.13      fvdl 	int flags = cnp->cn_flags;
    359  1.13      fvdl 	struct vop_lock_args lockargs;
    360  1.13      fvdl 	struct vop_unlock_args unlockargs;
    361  1.13      fvdl 	struct vnode *dvp, *vp;
    362  1.13      fvdl 	int error;
    363  1.13      fvdl 
    364  1.13      fvdl 	if ((flags & ISLASTCN) && (ap->a_dvp->v_mount->mnt_flag & MNT_RDONLY) &&
    365  1.13      fvdl 	    (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
    366  1.13      fvdl 		return (EROFS);
    367  1.13      fvdl 	error = null_bypass(ap);
    368  1.13      fvdl 	if (error == EJUSTRETURN && (flags & ISLASTCN) &&
    369  1.13      fvdl 	    (ap->a_dvp->v_mount->mnt_flag & MNT_RDONLY) &&
    370  1.13      fvdl 	    (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME))
    371  1.13      fvdl 		error = EROFS;
    372  1.13      fvdl 	/*
    373  1.13      fvdl 	 * We must do the same locking and unlocking at this layer as
    374  1.13      fvdl 	 * is done in the layers below us. We could figure this out
    375  1.13      fvdl 	 * based on the error return and the LASTCN, LOCKPARENT, and
    376  1.13      fvdl 	 * LOCKLEAF flags. However, it is more expidient to just find
    377  1.13      fvdl 	 * out the state of the lower level vnodes and set ours to the
    378  1.13      fvdl 	 * same state.
    379  1.13      fvdl 	 */
    380  1.13      fvdl 	dvp = ap->a_dvp;
    381  1.13      fvdl 	vp = *ap->a_vpp;
    382  1.13      fvdl 	if (dvp == vp)
    383  1.13      fvdl 		return (error);
    384  1.13      fvdl 	if (!VOP_ISLOCKED(dvp)) {
    385  1.13      fvdl 		unlockargs.a_vp = dvp;
    386  1.13      fvdl 		unlockargs.a_flags = 0;
    387  1.13      fvdl 		genfs_nounlock(&unlockargs);
    388  1.13      fvdl 	}
    389  1.13      fvdl 	if (vp != NULL && VOP_ISLOCKED(vp)) {
    390  1.13      fvdl 		lockargs.a_vp = vp;
    391  1.13      fvdl 		lockargs.a_flags = LK_SHARED;
    392  1.13      fvdl 		genfs_nolock(&lockargs);
    393  1.13      fvdl 	}
    394  1.13      fvdl 	return (error);
    395  1.13      fvdl }
    396  1.13      fvdl 
    397  1.13      fvdl /*
    398  1.13      fvdl  * Setattr call. Disallow write attempts if the layer is mounted read-only.
    399  1.13      fvdl  */
    400  1.13      fvdl int
    401  1.13      fvdl null_setattr(v)
    402  1.13      fvdl 	void *v;
    403  1.13      fvdl {
    404  1.13      fvdl 	struct vop_setattr_args /* {
    405  1.13      fvdl 		struct vnodeop_desc *a_desc;
    406  1.13      fvdl 		struct vnode *a_vp;
    407  1.13      fvdl 		struct vattr *a_vap;
    408  1.13      fvdl 		struct ucred *a_cred;
    409  1.13      fvdl 		struct proc *a_p;
    410  1.13      fvdl 	} */ *ap = v;
    411  1.13      fvdl 	struct vnode *vp = ap->a_vp;
    412  1.13      fvdl 	struct vattr *vap = ap->a_vap;
    413  1.13      fvdl 
    414  1.13      fvdl   	if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
    415  1.13      fvdl 	    vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
    416  1.13      fvdl 	    vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
    417  1.13      fvdl 	    (vp->v_mount->mnt_flag & MNT_RDONLY))
    418  1.13      fvdl 		return (EROFS);
    419  1.13      fvdl 	if (vap->va_size != VNOVAL) {
    420  1.13      fvdl  		switch (vp->v_type) {
    421  1.13      fvdl  		case VDIR:
    422  1.13      fvdl  			return (EISDIR);
    423  1.13      fvdl  		case VCHR:
    424  1.13      fvdl  		case VBLK:
    425  1.13      fvdl  		case VSOCK:
    426  1.13      fvdl  		case VFIFO:
    427  1.13      fvdl 			return (0);
    428  1.13      fvdl 		case VREG:
    429  1.13      fvdl 		case VLNK:
    430  1.13      fvdl  		default:
    431  1.13      fvdl 			/*
    432  1.13      fvdl 			 * Disallow write attempts if the filesystem is
    433  1.13      fvdl 			 * mounted read-only.
    434  1.13      fvdl 			 */
    435  1.13      fvdl 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
    436  1.13      fvdl 				return (EROFS);
    437  1.13      fvdl 		}
    438  1.13      fvdl 	}
    439  1.13      fvdl 	return (null_bypass(ap));
    440  1.13      fvdl }
    441   1.1   mycroft 
    442   1.1   mycroft /*
    443   1.1   mycroft  *  We handle getattr only to change the fsid.
    444   1.1   mycroft  */
    445   1.1   mycroft int
    446   1.5  christos null_getattr(v)
    447   1.5  christos 	void *v;
    448   1.5  christos {
    449   1.1   mycroft 	struct vop_getattr_args /* {
    450   1.1   mycroft 		struct vnode *a_vp;
    451   1.1   mycroft 		struct vattr *a_vap;
    452   1.1   mycroft 		struct ucred *a_cred;
    453   1.1   mycroft 		struct proc *a_p;
    454   1.5  christos 	} */ *ap = v;
    455   1.1   mycroft 	int error;
    456  1.13      fvdl 
    457  1.10        pk 	if ((error = null_bypass(ap)) != 0)
    458   1.1   mycroft 		return (error);
    459   1.1   mycroft 	/* Requires that arguments be restored. */
    460   1.1   mycroft 	ap->a_vap->va_fsid = ap->a_vp->v_mount->mnt_stat.f_fsid.val[0];
    461   1.1   mycroft 	return (0);
    462   1.1   mycroft }
    463   1.1   mycroft 
    464  1.13      fvdl int
    465  1.13      fvdl null_access(v)
    466  1.13      fvdl 	void *v;
    467  1.13      fvdl {
    468  1.13      fvdl 	struct vop_access_args /* {
    469  1.13      fvdl 		struct vnode *a_vp;
    470  1.13      fvdl 		int  a_mode;
    471  1.13      fvdl 		struct ucred *a_cred;
    472  1.13      fvdl 		struct proc *a_p;
    473  1.13      fvdl 	} */ *ap = v;
    474  1.13      fvdl 	struct vnode *vp = ap->a_vp;
    475  1.13      fvdl 	mode_t mode = ap->a_mode;
    476  1.13      fvdl 
    477  1.13      fvdl 	/*
    478  1.13      fvdl 	 * Disallow write attempts on read-only layers;
    479  1.13      fvdl 	 * unless the file is a socket, fifo, or a block or
    480  1.13      fvdl 	 * character device resident on the file system.
    481  1.13      fvdl 	 */
    482  1.13      fvdl 	if (mode & VWRITE) {
    483  1.13      fvdl 		switch (vp->v_type) {
    484  1.13      fvdl 		case VDIR:
    485  1.13      fvdl 		case VLNK:
    486  1.13      fvdl 		case VREG:
    487  1.13      fvdl 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
    488  1.13      fvdl 				return (EROFS);
    489  1.13      fvdl 			break;
    490  1.13      fvdl 		default:
    491  1.13      fvdl 			break;
    492  1.13      fvdl 		}
    493  1.13      fvdl 	}
    494  1.13      fvdl 	return (null_bypass(ap));
    495  1.13      fvdl }
    496  1.13      fvdl 
    497  1.13      fvdl /*
    498  1.13      fvdl  * We need to process our own vnode lock and then clear the
    499  1.13      fvdl  * interlock flag as it applies only to our vnode, not the
    500  1.13      fvdl  * vnodes below us on the stack.
    501  1.13      fvdl  */
    502  1.13      fvdl int
    503  1.13      fvdl null_lock(v)
    504  1.13      fvdl 	void *v;
    505  1.13      fvdl {
    506  1.13      fvdl 	struct vop_lock_args /* {
    507  1.13      fvdl 		struct vnode *a_vp;
    508  1.13      fvdl 		int a_flags;
    509  1.13      fvdl 		struct proc *a_p;
    510  1.13      fvdl 	} */ *ap = v;
    511  1.13      fvdl 
    512  1.13      fvdl 	genfs_nolock(ap);
    513  1.13      fvdl 	if ((ap->a_flags & LK_TYPE_MASK) == LK_DRAIN)
    514  1.13      fvdl 		return (0);
    515  1.13      fvdl 	ap->a_flags &= ~LK_INTERLOCK;
    516  1.13      fvdl 	return (null_bypass(ap));
    517  1.13      fvdl }
    518  1.13      fvdl 
    519  1.13      fvdl /*
    520  1.13      fvdl  * We need to process our own vnode unlock and then clear the
    521  1.13      fvdl  * interlock flag as it applies only to our vnode, not the
    522  1.13      fvdl  * vnodes below us on the stack.
    523  1.13      fvdl  */
    524  1.13      fvdl int
    525  1.13      fvdl null_unlock(v)
    526  1.13      fvdl 	void *v;
    527  1.13      fvdl {
    528  1.13      fvdl 	struct vop_unlock_args /* {
    529  1.13      fvdl 		struct vnode *a_vp;
    530  1.13      fvdl 		int a_flags;
    531  1.13      fvdl 		struct proc *a_p;
    532  1.13      fvdl 	} */ *ap = v;
    533  1.13      fvdl 
    534  1.13      fvdl 	genfs_nounlock(ap);
    535  1.13      fvdl 	ap->a_flags &= ~LK_INTERLOCK;
    536  1.13      fvdl 	return (null_bypass(ap));
    537  1.13      fvdl }
    538   1.1   mycroft 
    539   1.1   mycroft int
    540   1.5  christos null_inactive(v)
    541   1.5  christos 	void *v;
    542   1.1   mycroft {
    543  1.13      fvdl 	struct vop_inactive_args /* {
    544  1.13      fvdl 		struct vnode *a_vp;
    545  1.13      fvdl 		struct proc *a_p;
    546  1.13      fvdl 	} */ *ap = v;
    547  1.13      fvdl 
    548   1.1   mycroft 	/*
    549   1.1   mycroft 	 * Do nothing (and _don't_ bypass).
    550   1.1   mycroft 	 * Wait to vrele lowervp until reclaim,
    551   1.1   mycroft 	 * so that until then our null_node is in the
    552   1.1   mycroft 	 * cache and reusable.
    553   1.1   mycroft 	 *
    554   1.1   mycroft 	 * NEEDSWORK: Someday, consider inactive'ing
    555   1.1   mycroft 	 * the lowervp and then trying to reactivate it
    556   1.1   mycroft 	 * with capabilities (v_id)
    557   1.1   mycroft 	 * like they do in the name lookup cache code.
    558   1.1   mycroft 	 * That's too much work for now.
    559   1.1   mycroft 	 */
    560  1.13      fvdl 	VOP_UNLOCK(ap->a_vp, 0);
    561   1.1   mycroft 	return (0);
    562   1.1   mycroft }
    563   1.1   mycroft 
    564   1.1   mycroft int
    565   1.5  christos null_reclaim(v)
    566   1.5  christos 	void *v;
    567   1.5  christos {
    568   1.1   mycroft 	struct vop_reclaim_args /* {
    569   1.1   mycroft 		struct vnode *a_vp;
    570  1.13      fvdl 		struct proc *a_p;
    571   1.5  christos 	} */ *ap = v;
    572   1.1   mycroft 	struct vnode *vp = ap->a_vp;
    573   1.1   mycroft 	struct null_node *xp = VTONULL(vp);
    574   1.1   mycroft 	struct vnode *lowervp = xp->null_lowervp;
    575   1.1   mycroft 
    576   1.1   mycroft 	/*
    577   1.1   mycroft 	 * Note: in vop_reclaim, vp->v_op == dead_vnodeop_p,
    578   1.1   mycroft 	 * so we can't call VOPs on ourself.
    579   1.1   mycroft 	 */
    580   1.1   mycroft 	/* After this assignment, this node will not be re-used. */
    581   1.1   mycroft 	xp->null_lowervp = NULL;
    582   1.4   mycroft 	LIST_REMOVE(xp, null_hash);
    583   1.1   mycroft 	FREE(vp->v_data, M_TEMP);
    584   1.1   mycroft 	vp->v_data = NULL;
    585   1.1   mycroft 	vrele (lowervp);
    586   1.1   mycroft 	return (0);
    587   1.1   mycroft }
    588   1.1   mycroft 
    589   1.1   mycroft int
    590   1.5  christos null_print(v)
    591   1.5  christos 	void *v;
    592   1.5  christos {
    593   1.1   mycroft 	struct vop_print_args /* {
    594   1.1   mycroft 		struct vnode *a_vp;
    595   1.5  christos 	} */ *ap = v;
    596   1.1   mycroft 	register struct vnode *vp = ap->a_vp;
    597   1.9  christos 	printf ("\ttag VT_NULLFS, vp=%p, lowervp=%p\n", vp, NULLVPTOLOWERVP(vp));
    598   1.1   mycroft 	return (0);
    599   1.1   mycroft }
    600   1.1   mycroft 
    601   1.1   mycroft /*
    602   1.1   mycroft  * XXX - vop_strategy must be hand coded because it has no
    603   1.1   mycroft  * vnode in its arguments.
    604   1.1   mycroft  * This goes away with a merged VM/buffer cache.
    605   1.1   mycroft  */
    606   1.1   mycroft int
    607   1.5  christos null_strategy(v)
    608   1.5  christos 	void *v;
    609   1.5  christos {
    610   1.1   mycroft 	struct vop_strategy_args /* {
    611   1.1   mycroft 		struct buf *a_bp;
    612   1.5  christos 	} */ *ap = v;
    613   1.1   mycroft 	struct buf *bp = ap->a_bp;
    614   1.1   mycroft 	int error;
    615   1.1   mycroft 	struct vnode *savedvp;
    616   1.1   mycroft 
    617   1.1   mycroft 	savedvp = bp->b_vp;
    618   1.1   mycroft 	bp->b_vp = NULLVPTOLOWERVP(bp->b_vp);
    619   1.1   mycroft 
    620   1.1   mycroft 	error = VOP_STRATEGY(bp);
    621   1.1   mycroft 
    622   1.1   mycroft 	bp->b_vp = savedvp;
    623   1.1   mycroft 
    624   1.1   mycroft 	return (error);
    625   1.1   mycroft }
    626   1.1   mycroft 
    627   1.1   mycroft /*
    628   1.1   mycroft  * XXX - like vop_strategy, vop_bwrite must be hand coded because it has no
    629   1.1   mycroft  * vnode in its arguments.
    630   1.1   mycroft  * This goes away with a merged VM/buffer cache.
    631   1.1   mycroft  */
    632   1.1   mycroft int
    633   1.5  christos null_bwrite(v)
    634   1.5  christos 	void *v;
    635   1.5  christos {
    636   1.1   mycroft 	struct vop_bwrite_args /* {
    637   1.1   mycroft 		struct buf *a_bp;
    638   1.5  christos 	} */ *ap = v;
    639   1.1   mycroft 	struct buf *bp = ap->a_bp;
    640   1.1   mycroft 	int error;
    641   1.1   mycroft 	struct vnode *savedvp;
    642   1.1   mycroft 
    643   1.1   mycroft 	savedvp = bp->b_vp;
    644   1.1   mycroft 	bp->b_vp = NULLVPTOLOWERVP(bp->b_vp);
    645   1.1   mycroft 
    646   1.1   mycroft 	error = VOP_BWRITE(bp);
    647   1.1   mycroft 
    648   1.1   mycroft 	bp->b_vp = savedvp;
    649   1.1   mycroft 
    650   1.1   mycroft 	return (error);
    651   1.1   mycroft }
    652   1.1   mycroft 
    653   1.1   mycroft /*
    654   1.1   mycroft  * Global vfs data structures
    655   1.1   mycroft  */
    656   1.5  christos int (**null_vnodeop_p) __P((void *));
    657   1.1   mycroft struct vnodeopv_entry_desc null_vnodeop_entries[] = {
    658  1.13      fvdl 	{ &vop_default_desc, null_bypass },
    659   1.1   mycroft 
    660  1.13      fvdl 	{ &vop_lookup_desc,   null_lookup },
    661  1.13      fvdl 	{ &vop_setattr_desc,  null_setattr },
    662  1.13      fvdl 	{ &vop_getattr_desc,  null_getattr },
    663  1.13      fvdl 	{ &vop_access_desc,   null_access },
    664  1.13      fvdl 	{ &vop_lock_desc,     null_lock },
    665  1.13      fvdl 	{ &vop_unlock_desc,   null_unlock },
    666  1.13      fvdl 	{ &vop_inactive_desc, null_inactive },
    667  1.13      fvdl 	{ &vop_reclaim_desc,  null_reclaim },
    668  1.13      fvdl 	{ &vop_print_desc,    null_print },
    669   1.1   mycroft 
    670  1.13      fvdl 	{ &vop_strategy_desc, null_strategy },
    671  1.13      fvdl 	{ &vop_bwrite_desc,   null_bwrite },
    672   1.1   mycroft 
    673  1.13      fvdl 	{ (struct vnodeop_desc*)NULL, (int(*)__P((void *)))NULL }
    674   1.1   mycroft };
    675  1.13      fvdl struct vnodeopv_desc null_vnodeop_opv_desc =
    676   1.1   mycroft 	{ &null_vnodeop_p, null_vnodeop_entries };
    677