null_vnops.c revision 1.7 1 1.7 jtk /* $NetBSD: null_vnops.c,v 1.7 1996/05/10 22:51:01 jtk Exp $ */
2 1.2 cgd
3 1.1 mycroft /*
4 1.1 mycroft * Copyright (c) 1992, 1993
5 1.1 mycroft * The Regents of the University of California. All rights reserved.
6 1.1 mycroft *
7 1.1 mycroft * This code is derived from software contributed to Berkeley by
8 1.1 mycroft * John Heidemann of the UCLA Ficus project.
9 1.1 mycroft *
10 1.1 mycroft * Redistribution and use in source and binary forms, with or without
11 1.1 mycroft * modification, are permitted provided that the following conditions
12 1.1 mycroft * are met:
13 1.1 mycroft * 1. Redistributions of source code must retain the above copyright
14 1.1 mycroft * notice, this list of conditions and the following disclaimer.
15 1.1 mycroft * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 mycroft * notice, this list of conditions and the following disclaimer in the
17 1.1 mycroft * documentation and/or other materials provided with the distribution.
18 1.1 mycroft * 3. All advertising materials mentioning features or use of this software
19 1.1 mycroft * must display the following acknowledgement:
20 1.1 mycroft * This product includes software developed by the University of
21 1.1 mycroft * California, Berkeley and its contributors.
22 1.1 mycroft * 4. Neither the name of the University nor the names of its contributors
23 1.1 mycroft * may be used to endorse or promote products derived from this software
24 1.1 mycroft * without specific prior written permission.
25 1.1 mycroft *
26 1.1 mycroft * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 1.1 mycroft * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 1.1 mycroft * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 1.1 mycroft * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 1.1 mycroft * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 1.1 mycroft * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 1.1 mycroft * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 1.1 mycroft * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 1.1 mycroft * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 1.1 mycroft * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 1.1 mycroft * SUCH DAMAGE.
37 1.1 mycroft *
38 1.2 cgd * @(#)null_vnops.c 8.1 (Berkeley) 6/10/93
39 1.1 mycroft *
40 1.1 mycroft * Ancestors:
41 1.1 mycroft * @(#)lofs_vnops.c 1.2 (Berkeley) 6/18/92
42 1.1 mycroft * Id: lofs_vnops.c,v 1.11 1992/05/30 10:05:43 jsp Exp
43 1.1 mycroft * ...and...
44 1.1 mycroft * @(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project
45 1.1 mycroft */
46 1.1 mycroft
47 1.1 mycroft /*
48 1.1 mycroft * Null Layer
49 1.1 mycroft *
50 1.1 mycroft * (See mount_null(8) for more information.)
51 1.1 mycroft *
52 1.1 mycroft * The null layer duplicates a portion of the file system
53 1.1 mycroft * name space under a new name. In this respect, it is
54 1.1 mycroft * similar to the loopback file system. It differs from
55 1.1 mycroft * the loopback fs in two respects: it is implemented using
56 1.1 mycroft * a stackable layers techniques, and it's "null-node"s stack above
57 1.1 mycroft * all lower-layer vnodes, not just over directory vnodes.
58 1.1 mycroft *
59 1.1 mycroft * The null layer has two purposes. First, it serves as a demonstration
60 1.1 mycroft * of layering by proving a layer which does nothing. (It actually
61 1.1 mycroft * does everything the loopback file system does, which is slightly
62 1.1 mycroft * more than nothing.) Second, the null layer can serve as a prototype
63 1.1 mycroft * layer. Since it provides all necessary layer framework,
64 1.1 mycroft * new file system layers can be created very easily be starting
65 1.1 mycroft * with a null layer.
66 1.1 mycroft *
67 1.1 mycroft * The remainder of this man page examines the null layer as a basis
68 1.1 mycroft * for constructing new layers.
69 1.1 mycroft *
70 1.1 mycroft *
71 1.1 mycroft * INSTANTIATING NEW NULL LAYERS
72 1.1 mycroft *
73 1.1 mycroft * New null layers are created with mount_null(8).
74 1.1 mycroft * Mount_null(8) takes two arguments, the pathname
75 1.1 mycroft * of the lower vfs (target-pn) and the pathname where the null
76 1.1 mycroft * layer will appear in the namespace (alias-pn). After
77 1.1 mycroft * the null layer is put into place, the contents
78 1.1 mycroft * of target-pn subtree will be aliased under alias-pn.
79 1.1 mycroft *
80 1.1 mycroft *
81 1.1 mycroft * OPERATION OF A NULL LAYER
82 1.1 mycroft *
83 1.1 mycroft * The null layer is the minimum file system layer,
84 1.1 mycroft * simply bypassing all possible operations to the lower layer
85 1.1 mycroft * for processing there. The majority of its activity centers
86 1.1 mycroft * on the bypass routine, though which nearly all vnode operations
87 1.1 mycroft * pass.
88 1.1 mycroft *
89 1.1 mycroft * The bypass routine accepts arbitrary vnode operations for
90 1.1 mycroft * handling by the lower layer. It begins by examing vnode
91 1.1 mycroft * operation arguments and replacing any null-nodes by their
92 1.1 mycroft * lower-layer equivlants. It then invokes the operation
93 1.1 mycroft * on the lower layer. Finally, it replaces the null-nodes
94 1.1 mycroft * in the arguments and, if a vnode is return by the operation,
95 1.1 mycroft * stacks a null-node on top of the returned vnode.
96 1.1 mycroft *
97 1.1 mycroft * Although bypass handles most operations,
98 1.1 mycroft * vop_getattr, _inactive, _reclaim, and _print are not bypassed.
99 1.1 mycroft * Vop_getattr must change the fsid being returned.
100 1.1 mycroft * Vop_inactive and vop_reclaim are not bypassed so that
101 1.1 mycroft * they can handle freeing null-layer specific data.
102 1.1 mycroft * Vop_print is not bypassed to avoid excessive debugging
103 1.1 mycroft * information.
104 1.1 mycroft *
105 1.1 mycroft *
106 1.1 mycroft * INSTANTIATING VNODE STACKS
107 1.1 mycroft *
108 1.1 mycroft * Mounting associates the null layer with a lower layer,
109 1.1 mycroft * effect stacking two VFSes. Vnode stacks are instead
110 1.1 mycroft * created on demand as files are accessed.
111 1.1 mycroft *
112 1.1 mycroft * The initial mount creates a single vnode stack for the
113 1.1 mycroft * root of the new null layer. All other vnode stacks
114 1.1 mycroft * are created as a result of vnode operations on
115 1.1 mycroft * this or other null vnode stacks.
116 1.1 mycroft *
117 1.1 mycroft * New vnode stacks come into existance as a result of
118 1.1 mycroft * an operation which returns a vnode.
119 1.1 mycroft * The bypass routine stacks a null-node above the new
120 1.1 mycroft * vnode before returning it to the caller.
121 1.1 mycroft *
122 1.1 mycroft * For example, imagine mounting a null layer with
123 1.1 mycroft * "mount_null /usr/include /dev/layer/null".
124 1.1 mycroft * Changing directory to /dev/layer/null will assign
125 1.1 mycroft * the root null-node (which was created when the null layer was mounted).
126 1.1 mycroft * Now consider opening "sys". A vop_lookup would be
127 1.1 mycroft * done on the root null-node. This operation would bypass through
128 1.1 mycroft * to the lower layer which would return a vnode representing
129 1.1 mycroft * the UFS "sys". Null_bypass then builds a null-node
130 1.1 mycroft * aliasing the UFS "sys" and returns this to the caller.
131 1.1 mycroft * Later operations on the null-node "sys" will repeat this
132 1.1 mycroft * process when constructing other vnode stacks.
133 1.1 mycroft *
134 1.1 mycroft *
135 1.1 mycroft * CREATING OTHER FILE SYSTEM LAYERS
136 1.1 mycroft *
137 1.1 mycroft * One of the easiest ways to construct new file system layers is to make
138 1.1 mycroft * a copy of the null layer, rename all files and variables, and
139 1.1 mycroft * then begin modifing the copy. Sed can be used to easily rename
140 1.1 mycroft * all variables.
141 1.1 mycroft *
142 1.1 mycroft * The umap layer is an example of a layer descended from the
143 1.1 mycroft * null layer.
144 1.1 mycroft *
145 1.1 mycroft *
146 1.1 mycroft * INVOKING OPERATIONS ON LOWER LAYERS
147 1.1 mycroft *
148 1.1 mycroft * There are two techniques to invoke operations on a lower layer
149 1.1 mycroft * when the operation cannot be completely bypassed. Each method
150 1.1 mycroft * is appropriate in different situations. In both cases,
151 1.1 mycroft * it is the responsibility of the aliasing layer to make
152 1.1 mycroft * the operation arguments "correct" for the lower layer
153 1.1 mycroft * by mapping an vnode arguments to the lower layer.
154 1.1 mycroft *
155 1.1 mycroft * The first approach is to call the aliasing layer's bypass routine.
156 1.1 mycroft * This method is most suitable when you wish to invoke the operation
157 1.1 mycroft * currently being hanldled on the lower layer. It has the advantage
158 1.1 mycroft * that the bypass routine already must do argument mapping.
159 1.1 mycroft * An example of this is null_getattrs in the null layer.
160 1.1 mycroft *
161 1.1 mycroft * A second approach is to directly invoked vnode operations on
162 1.1 mycroft * the lower layer with the VOP_OPERATIONNAME interface.
163 1.1 mycroft * The advantage of this method is that it is easy to invoke
164 1.1 mycroft * arbitrary operations on the lower layer. The disadvantage
165 1.1 mycroft * is that vnodes arguments must be manualy mapped.
166 1.1 mycroft *
167 1.1 mycroft */
168 1.1 mycroft
169 1.1 mycroft #include <sys/param.h>
170 1.1 mycroft #include <sys/systm.h>
171 1.1 mycroft #include <sys/proc.h>
172 1.1 mycroft #include <sys/time.h>
173 1.1 mycroft #include <sys/types.h>
174 1.1 mycroft #include <sys/vnode.h>
175 1.1 mycroft #include <sys/mount.h>
176 1.1 mycroft #include <sys/namei.h>
177 1.1 mycroft #include <sys/malloc.h>
178 1.1 mycroft #include <sys/buf.h>
179 1.1 mycroft #include <miscfs/nullfs/null.h>
180 1.1 mycroft
181 1.1 mycroft
182 1.1 mycroft int null_bug_bypass = 0; /* for debugging: enables bypass printf'ing */
183 1.1 mycroft
184 1.5 christos int null_bypass __P((void *));
185 1.5 christos int null_getattr __P((void *));
186 1.5 christos int null_inactive __P((void *));
187 1.5 christos int null_reclaim __P((void *));
188 1.5 christos int null_print __P((void *));
189 1.5 christos int null_strategy __P((void *));
190 1.5 christos int null_bwrite __P((void *));
191 1.7 jtk int null_lock __P((void *));
192 1.7 jtk int null_unlock __P((void *));
193 1.7 jtk int null_islocked __P((void *));
194 1.7 jtk int null_lookup __P((void *));
195 1.7 jtk
196 1.1 mycroft /*
197 1.1 mycroft * This is the 10-Apr-92 bypass routine.
198 1.1 mycroft * This version has been optimized for speed, throwing away some
199 1.1 mycroft * safety checks. It should still always work, but it's not as
200 1.1 mycroft * robust to programmer errors.
201 1.1 mycroft * Define SAFETY to include some error checking code.
202 1.1 mycroft *
203 1.1 mycroft * In general, we map all vnodes going down and unmap them on the way back.
204 1.1 mycroft * As an exception to this, vnodes can be marked "unmapped" by setting
205 1.1 mycroft * the Nth bit in operation's vdesc_flags.
206 1.1 mycroft *
207 1.1 mycroft * Also, some BSD vnode operations have the side effect of vrele'ing
208 1.1 mycroft * their arguments. With stacking, the reference counts are held
209 1.1 mycroft * by the upper node, not the lower one, so we must handle these
210 1.1 mycroft * side-effects here. This is not of concern in Sun-derived systems
211 1.1 mycroft * since there are no such side-effects.
212 1.1 mycroft *
213 1.1 mycroft * This makes the following assumptions:
214 1.1 mycroft * - only one returned vpp
215 1.1 mycroft * - no INOUT vpp's (Sun's vop_open has one of these)
216 1.1 mycroft * - the vnode operation vector of the first vnode should be used
217 1.1 mycroft * to determine what implementation of the op should be invoked
218 1.1 mycroft * - all mapped vnodes are of our vnode-type (NEEDSWORK:
219 1.1 mycroft * problems on rmdir'ing mount points and renaming?)
220 1.1 mycroft */
221 1.1 mycroft int
222 1.5 christos null_bypass(v)
223 1.5 christos void *v;
224 1.5 christos {
225 1.1 mycroft struct vop_generic_args /* {
226 1.1 mycroft struct vnodeop_desc *a_desc;
227 1.1 mycroft <other random data follows, presumably>
228 1.5 christos } */ *ap = v;
229 1.1 mycroft register struct vnode **this_vp_p;
230 1.1 mycroft int error;
231 1.1 mycroft struct vnode *old_vps[VDESC_MAX_VPS];
232 1.1 mycroft struct vnode **vps_p[VDESC_MAX_VPS];
233 1.1 mycroft struct vnode ***vppp;
234 1.1 mycroft struct vnodeop_desc *descp = ap->a_desc;
235 1.1 mycroft int reles, i;
236 1.1 mycroft
237 1.1 mycroft if (null_bug_bypass)
238 1.1 mycroft printf ("null_bypass: %s\n", descp->vdesc_name);
239 1.1 mycroft
240 1.1 mycroft #ifdef SAFETY
241 1.1 mycroft /*
242 1.1 mycroft * We require at least one vp.
243 1.1 mycroft */
244 1.1 mycroft if (descp->vdesc_vp_offsets == NULL ||
245 1.1 mycroft descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
246 1.1 mycroft panic ("null_bypass: no vp's in map.\n");
247 1.1 mycroft #endif
248 1.1 mycroft
249 1.1 mycroft /*
250 1.1 mycroft * Map the vnodes going in.
251 1.1 mycroft * Later, we'll invoke the operation based on
252 1.1 mycroft * the first mapped vnode's operation vector.
253 1.1 mycroft */
254 1.1 mycroft reles = descp->vdesc_flags;
255 1.1 mycroft for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
256 1.1 mycroft if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
257 1.1 mycroft break; /* bail out at end of list */
258 1.1 mycroft vps_p[i] = this_vp_p =
259 1.1 mycroft VOPARG_OFFSETTO(struct vnode**,descp->vdesc_vp_offsets[i],ap);
260 1.1 mycroft /*
261 1.1 mycroft * We're not guaranteed that any but the first vnode
262 1.1 mycroft * are of our type. Check for and don't map any
263 1.1 mycroft * that aren't. (We must always map first vp or vclean fails.)
264 1.1 mycroft */
265 1.3 mycroft if (i && (*this_vp_p == NULLVP ||
266 1.3 mycroft (*this_vp_p)->v_op != null_vnodeop_p)) {
267 1.3 mycroft old_vps[i] = NULLVP;
268 1.1 mycroft } else {
269 1.1 mycroft old_vps[i] = *this_vp_p;
270 1.1 mycroft *(vps_p[i]) = NULLVPTOLOWERVP(*this_vp_p);
271 1.1 mycroft /*
272 1.1 mycroft * XXX - Several operations have the side effect
273 1.1 mycroft * of vrele'ing their vp's. We must account for
274 1.1 mycroft * that. (This should go away in the future.)
275 1.1 mycroft */
276 1.1 mycroft if (reles & 1)
277 1.1 mycroft VREF(*this_vp_p);
278 1.1 mycroft }
279 1.1 mycroft
280 1.1 mycroft }
281 1.1 mycroft
282 1.1 mycroft /*
283 1.1 mycroft * Call the operation on the lower layer
284 1.1 mycroft * with the modified argument structure.
285 1.1 mycroft */
286 1.1 mycroft error = VCALL(*(vps_p[0]), descp->vdesc_offset, ap);
287 1.1 mycroft
288 1.1 mycroft /*
289 1.1 mycroft * Maintain the illusion of call-by-value
290 1.1 mycroft * by restoring vnodes in the argument structure
291 1.1 mycroft * to their original value.
292 1.1 mycroft */
293 1.1 mycroft reles = descp->vdesc_flags;
294 1.1 mycroft for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
295 1.1 mycroft if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
296 1.1 mycroft break; /* bail out at end of list */
297 1.3 mycroft if (old_vps[i] != NULLVP) {
298 1.1 mycroft *(vps_p[i]) = old_vps[i];
299 1.7 jtk if (reles & 1) {
300 1.7 jtk /* they really vput them, so we must drop
301 1.7 jtk our locks (but mark underneath as
302 1.7 jtk unlocked first).
303 1.7 jtk Beware of vnode duplication--put it once,
304 1.7 jtk and rele the rest. Check this
305 1.7 jtk by looking at our upper flag. */
306 1.7 jtk if (VTONULL(*(vps_p[i]))->null_flags & NULL_LOCKED) {
307 1.7 jtk VTONULL(*(vps_p[i]))->null_flags &= ~NULL_LLOCK;
308 1.7 jtk vput(*(vps_p[i]));
309 1.7 jtk } else
310 1.7 jtk vrele(*(vps_p[i]));
311 1.7 jtk }
312 1.1 mycroft }
313 1.1 mycroft }
314 1.1 mycroft
315 1.1 mycroft /*
316 1.1 mycroft * Map the possible out-going vpp
317 1.1 mycroft * (Assumes that the lower layer always returns
318 1.1 mycroft * a VREF'ed vpp unless it gets an error.)
319 1.1 mycroft */
320 1.1 mycroft if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET &&
321 1.1 mycroft !(descp->vdesc_flags & VDESC_NOMAP_VPP) &&
322 1.1 mycroft !error) {
323 1.1 mycroft /*
324 1.1 mycroft * XXX - even though some ops have vpp returned vp's,
325 1.1 mycroft * several ops actually vrele this before returning.
326 1.1 mycroft * We must avoid these ops.
327 1.1 mycroft * (This should go away when these ops are regularized.)
328 1.1 mycroft */
329 1.1 mycroft if (descp->vdesc_flags & VDESC_VPP_WILLRELE)
330 1.1 mycroft goto out;
331 1.1 mycroft vppp = VOPARG_OFFSETTO(struct vnode***,
332 1.1 mycroft descp->vdesc_vpp_offset,ap);
333 1.7 jtk /*
334 1.7 jtk * This assumes that **vppp is a locked vnode (it is always
335 1.7 jtk * so as of this writing, NetBSD-current 1995/02/16)
336 1.7 jtk */
337 1.7 jtk /*
338 1.7 jtk * (don't want to lock it if being called on behalf
339 1.7 jtk * of lookup--it plays weird locking games depending
340 1.7 jtk * on whether or not it's looking up ".", "..", etc.
341 1.7 jtk */
342 1.7 jtk error = null_node_create(old_vps[0]->v_mount, **vppp, *vppp,
343 1.7 jtk descp == &vop_lookup_desc ? 0 : 1);
344 1.1 mycroft }
345 1.1 mycroft
346 1.1 mycroft out:
347 1.1 mycroft return (error);
348 1.1 mycroft }
349 1.1 mycroft
350 1.1 mycroft
351 1.1 mycroft /*
352 1.1 mycroft * We handle getattr only to change the fsid.
353 1.1 mycroft */
354 1.1 mycroft int
355 1.5 christos null_getattr(v)
356 1.5 christos void *v;
357 1.5 christos {
358 1.1 mycroft struct vop_getattr_args /* {
359 1.1 mycroft struct vnode *a_vp;
360 1.1 mycroft struct vattr *a_vap;
361 1.1 mycroft struct ucred *a_cred;
362 1.1 mycroft struct proc *a_p;
363 1.5 christos } */ *ap = v;
364 1.1 mycroft int error;
365 1.5 christos if ((error = null_bypass(ap)) != NULL)
366 1.1 mycroft return (error);
367 1.1 mycroft /* Requires that arguments be restored. */
368 1.1 mycroft ap->a_vap->va_fsid = ap->a_vp->v_mount->mnt_stat.f_fsid.val[0];
369 1.1 mycroft return (0);
370 1.1 mycroft }
371 1.1 mycroft
372 1.1 mycroft
373 1.1 mycroft int
374 1.5 christos null_inactive(v)
375 1.5 christos void *v;
376 1.1 mycroft {
377 1.1 mycroft /*
378 1.1 mycroft * Do nothing (and _don't_ bypass).
379 1.1 mycroft * Wait to vrele lowervp until reclaim,
380 1.1 mycroft * so that until then our null_node is in the
381 1.1 mycroft * cache and reusable.
382 1.1 mycroft *
383 1.1 mycroft * NEEDSWORK: Someday, consider inactive'ing
384 1.1 mycroft * the lowervp and then trying to reactivate it
385 1.1 mycroft * with capabilities (v_id)
386 1.1 mycroft * like they do in the name lookup cache code.
387 1.1 mycroft * That's too much work for now.
388 1.1 mycroft */
389 1.1 mycroft return (0);
390 1.1 mycroft }
391 1.1 mycroft
392 1.1 mycroft int
393 1.5 christos null_reclaim(v)
394 1.5 christos void *v;
395 1.5 christos {
396 1.1 mycroft struct vop_reclaim_args /* {
397 1.1 mycroft struct vnode *a_vp;
398 1.5 christos } */ *ap = v;
399 1.1 mycroft struct vnode *vp = ap->a_vp;
400 1.1 mycroft struct null_node *xp = VTONULL(vp);
401 1.1 mycroft struct vnode *lowervp = xp->null_lowervp;
402 1.1 mycroft
403 1.1 mycroft /*
404 1.1 mycroft * Note: in vop_reclaim, vp->v_op == dead_vnodeop_p,
405 1.1 mycroft * so we can't call VOPs on ourself.
406 1.1 mycroft */
407 1.1 mycroft /* After this assignment, this node will not be re-used. */
408 1.1 mycroft xp->null_lowervp = NULL;
409 1.4 mycroft LIST_REMOVE(xp, null_hash);
410 1.1 mycroft FREE(vp->v_data, M_TEMP);
411 1.1 mycroft vp->v_data = NULL;
412 1.1 mycroft vrele (lowervp);
413 1.1 mycroft return (0);
414 1.1 mycroft }
415 1.1 mycroft
416 1.1 mycroft
417 1.1 mycroft int
418 1.5 christos null_print(v)
419 1.5 christos void *v;
420 1.5 christos {
421 1.1 mycroft struct vop_print_args /* {
422 1.1 mycroft struct vnode *a_vp;
423 1.5 christos } */ *ap = v;
424 1.1 mycroft register struct vnode *vp = ap->a_vp;
425 1.7 jtk register struct null_node *nn = VTONULL(vp);
426 1.7 jtk
427 1.7 jtk printf ("\ttag VT_NULLFS, vp=%p, lowervp=%p\n", vp, NULLVPTOLOWERVP(vp));
428 1.7 jtk #ifdef DIAGNOSTIC
429 1.7 jtk printf("%s%s owner pid %d retpc %p retret %p\n",
430 1.7 jtk (nn->null_flags & NULL_LOCKED) ? "(LOCKED) " : "",
431 1.7 jtk (nn->null_flags & NULL_LLOCK) ? "(LLOCK) " : "",
432 1.7 jtk nn->null_pid, nn->null_lockpc, nn->null_lockpc2);
433 1.7 jtk #else
434 1.7 jtk printf("%s%s\n",
435 1.7 jtk (nn->null_flags & NULL_LOCKED) ? "(LOCKED) " : "",
436 1.7 jtk (nn->null_flags & NULL_LLOCK) ? "(LLOCK) " : "");
437 1.7 jtk #endif
438 1.7 jtk vprint("nullfs lowervp", NULLVPTOLOWERVP(vp));
439 1.1 mycroft return (0);
440 1.1 mycroft }
441 1.1 mycroft
442 1.1 mycroft
443 1.1 mycroft /*
444 1.1 mycroft * XXX - vop_strategy must be hand coded because it has no
445 1.1 mycroft * vnode in its arguments.
446 1.1 mycroft * This goes away with a merged VM/buffer cache.
447 1.1 mycroft */
448 1.1 mycroft int
449 1.5 christos null_strategy(v)
450 1.5 christos void *v;
451 1.5 christos {
452 1.1 mycroft struct vop_strategy_args /* {
453 1.1 mycroft struct buf *a_bp;
454 1.5 christos } */ *ap = v;
455 1.1 mycroft struct buf *bp = ap->a_bp;
456 1.1 mycroft int error;
457 1.1 mycroft struct vnode *savedvp;
458 1.1 mycroft
459 1.1 mycroft savedvp = bp->b_vp;
460 1.1 mycroft bp->b_vp = NULLVPTOLOWERVP(bp->b_vp);
461 1.1 mycroft
462 1.1 mycroft error = VOP_STRATEGY(bp);
463 1.1 mycroft
464 1.1 mycroft bp->b_vp = savedvp;
465 1.1 mycroft
466 1.1 mycroft return (error);
467 1.1 mycroft }
468 1.1 mycroft
469 1.1 mycroft
470 1.1 mycroft /*
471 1.1 mycroft * XXX - like vop_strategy, vop_bwrite must be hand coded because it has no
472 1.1 mycroft * vnode in its arguments.
473 1.1 mycroft * This goes away with a merged VM/buffer cache.
474 1.1 mycroft */
475 1.1 mycroft int
476 1.5 christos null_bwrite(v)
477 1.5 christos void *v;
478 1.5 christos {
479 1.1 mycroft struct vop_bwrite_args /* {
480 1.1 mycroft struct buf *a_bp;
481 1.5 christos } */ *ap = v;
482 1.1 mycroft struct buf *bp = ap->a_bp;
483 1.1 mycroft int error;
484 1.1 mycroft struct vnode *savedvp;
485 1.1 mycroft
486 1.1 mycroft savedvp = bp->b_vp;
487 1.1 mycroft bp->b_vp = NULLVPTOLOWERVP(bp->b_vp);
488 1.1 mycroft
489 1.1 mycroft error = VOP_BWRITE(bp);
490 1.1 mycroft
491 1.1 mycroft bp->b_vp = savedvp;
492 1.1 mycroft
493 1.1 mycroft return (error);
494 1.1 mycroft }
495 1.1 mycroft
496 1.1 mycroft /*
497 1.7 jtk * We need a separate null lock routine, to avoid deadlocks at reclaim time.
498 1.7 jtk * If a process holds the lower-vnode locked when it tries to reclaim
499 1.7 jtk * the null upper-vnode, _and_ null_bypass is used as the locking operation,
500 1.7 jtk * then a process can end up locking against itself.
501 1.7 jtk * This has been observed when a null mount is set up to "tunnel" beneath a
502 1.7 jtk * union mount (that setup is useful if you still wish to be able to access
503 1.7 jtk * the non-union version of either the above or below union layer)
504 1.7 jtk */
505 1.7 jtk int
506 1.7 jtk null_lock(v)
507 1.7 jtk void *v;
508 1.7 jtk {
509 1.7 jtk struct vop_lock_args *ap = v;
510 1.7 jtk struct vnode *vp = ap->a_vp;
511 1.7 jtk struct null_node *nn;
512 1.7 jtk
513 1.7 jtk #ifdef NULLFS_DIAGNOSTIC
514 1.7 jtk vprint("null_lock_e", ap->a_vp);
515 1.7 jtk printf("retpc=%lx, retretpc=%lx\n",
516 1.7 jtk RETURN_PC(0),
517 1.7 jtk RETURN_PC(1));
518 1.7 jtk #endif
519 1.7 jtk start:
520 1.7 jtk while (vp->v_flag & VXLOCK) {
521 1.7 jtk vp->v_flag |= VXWANT;
522 1.7 jtk tsleep((caddr_t)vp, PINOD, "nulllock1", 0);
523 1.7 jtk }
524 1.7 jtk
525 1.7 jtk nn = VTONULL(vp);
526 1.7 jtk
527 1.7 jtk if ((nn->null_flags & NULL_LLOCK) == 0 &&
528 1.7 jtk (vp->v_usecount != 0)) {
529 1.7 jtk /*
530 1.7 jtk * only lock underlying node if we haven't locked it yet
531 1.7 jtk * for null ops, and our refcount is nonzero. If usecount
532 1.7 jtk * is zero, we are probably being reclaimed so we need to
533 1.7 jtk * keep our hands off the lower node.
534 1.7 jtk */
535 1.7 jtk VOP_LOCK(nn->null_lowervp);
536 1.7 jtk nn->null_flags |= NULL_LLOCK;
537 1.7 jtk }
538 1.7 jtk
539 1.7 jtk if (nn->null_flags & NULL_LOCKED) {
540 1.7 jtk #ifdef DIAGNOSTIC
541 1.7 jtk if (curproc && nn->null_pid == curproc->p_pid &&
542 1.7 jtk nn->null_pid > -1 && curproc->p_pid > -1) {
543 1.7 jtk vprint("self-lock", vp);
544 1.7 jtk panic("null: locking against myself");
545 1.7 jtk }
546 1.7 jtk #endif
547 1.7 jtk nn->null_flags |= NULL_WANTED;
548 1.7 jtk tsleep((caddr_t)nn, PINOD, "nulllock2", 0);
549 1.7 jtk goto start;
550 1.7 jtk }
551 1.7 jtk
552 1.7 jtk #ifdef DIAGNOSTIC
553 1.7 jtk if (curproc)
554 1.7 jtk nn->null_pid = curproc->p_pid;
555 1.7 jtk else
556 1.7 jtk nn->null_pid = -1;
557 1.7 jtk nn->null_lockpc = RETURN_PC(0);
558 1.7 jtk nn->null_lockpc2 = RETURN_PC(1);
559 1.7 jtk #endif
560 1.7 jtk
561 1.7 jtk nn->null_flags |= NULL_LOCKED;
562 1.7 jtk return (0);
563 1.7 jtk }
564 1.7 jtk
565 1.7 jtk int
566 1.7 jtk null_unlock(v)
567 1.7 jtk void *v;
568 1.7 jtk {
569 1.7 jtk struct vop_lock_args *ap = v;
570 1.7 jtk struct null_node *nn = VTONULL(ap->a_vp);
571 1.7 jtk
572 1.7 jtk #ifdef NULLFS_DIAGNOSTIC
573 1.7 jtk vprint("null_unlock_e", ap->a_vp);
574 1.7 jtk #endif
575 1.7 jtk #ifdef DIAGNOSTIC
576 1.7 jtk if ((nn->null_flags & NULL_LOCKED) == 0) {
577 1.7 jtk vprint("null_unlock", ap->a_vp);
578 1.7 jtk panic("null: unlocking unlocked node");
579 1.7 jtk }
580 1.7 jtk if (curproc && nn->null_pid != curproc->p_pid &&
581 1.7 jtk curproc->p_pid > -1 && nn->null_pid > -1) {
582 1.7 jtk vprint("null_unlock", ap->a_vp);
583 1.7 jtk panic("null: unlocking other process's null node");
584 1.7 jtk }
585 1.7 jtk #endif
586 1.7 jtk nn->null_flags &= ~NULL_LOCKED;
587 1.7 jtk
588 1.7 jtk if ((nn->null_flags & NULL_LLOCK) != 0)
589 1.7 jtk VOP_UNLOCK(nn->null_lowervp);
590 1.7 jtk
591 1.7 jtk nn->null_flags &= ~NULL_LLOCK;
592 1.7 jtk
593 1.7 jtk if (nn->null_flags & NULL_WANTED) {
594 1.7 jtk nn->null_flags &= ~NULL_WANTED;
595 1.7 jtk wakeup((caddr_t)nn);
596 1.7 jtk }
597 1.7 jtk #ifdef DIAGNOSTIC
598 1.7 jtk nn->null_pid = 0;
599 1.7 jtk nn->null_lockpc = nn->null_lockpc2 = 0;
600 1.7 jtk #endif
601 1.7 jtk return (0);
602 1.7 jtk }
603 1.7 jtk
604 1.7 jtk int
605 1.7 jtk null_islocked(v)
606 1.7 jtk void *v;
607 1.7 jtk {
608 1.7 jtk struct vop_islocked_args *ap = v;
609 1.7 jtk return ((VTONULL(ap->a_vp)->null_flags & NULL_LOCKED) ? 1 : 0);
610 1.7 jtk }
611 1.7 jtk
612 1.7 jtk int
613 1.7 jtk null_lookup(v)
614 1.7 jtk void *v;
615 1.7 jtk {
616 1.7 jtk register struct vop_lookup_args /* {
617 1.7 jtk struct vnodeop_desc *a_desc;
618 1.7 jtk struct vnode *a_dvp;
619 1.7 jtk struct vnode **a_vpp;
620 1.7 jtk struct componentname *a_cnp;
621 1.7 jtk } */ *ap = v;
622 1.7 jtk register int error;
623 1.7 jtk register struct vnode *dvp;
624 1.7 jtk int flags = ap->a_cnp->cn_flags;
625 1.7 jtk
626 1.7 jtk #ifdef NULLFS_DIAGNOSTIC
627 1.7 jtk printf("null_lookup: dvp=%lx, name='%s'\n",
628 1.7 jtk ap->a_dvp, ap->a_cnp->cn_nameptr);
629 1.7 jtk #endif
630 1.7 jtk /*
631 1.7 jtk * the starting dir (ap->a_dvp) comes in locked.
632 1.7 jtk */
633 1.7 jtk
634 1.7 jtk /* set LOCKPARENT to hold on to it until done below */
635 1.7 jtk ap->a_cnp->cn_flags |= LOCKPARENT;
636 1.7 jtk error = null_bypass(ap);
637 1.7 jtk if (!(flags & LOCKPARENT))
638 1.7 jtk ap->a_cnp->cn_flags &= ~LOCKPARENT;
639 1.7 jtk
640 1.7 jtk if (error)
641 1.7 jtk /*
642 1.7 jtk * starting dir is still locked/has been relocked
643 1.7 jtk * on error return.
644 1.7 jtk */
645 1.7 jtk return error;
646 1.7 jtk
647 1.7 jtk if (ap->a_dvp != *ap->a_vpp) {
648 1.7 jtk /*
649 1.7 jtk * Lookup returns node locked; we mark both lower and
650 1.7 jtk * upper nodes as locked by setting the lower lock
651 1.7 jtk * flag (it came back locked), and then call lock to
652 1.7 jtk * set upper lock flag & record pid, etc. see
653 1.7 jtk * null_node_create()
654 1.7 jtk */
655 1.7 jtk VTONULL(*ap->a_vpp)->null_flags |= NULL_LLOCK;
656 1.7 jtk
657 1.7 jtk dvp = ap->a_dvp;
658 1.7 jtk if (flags & ISDOTDOT) {
659 1.7 jtk /*
660 1.7 jtk * If we're looking up `..' and this isn't the
661 1.7 jtk * last component, then the starting directory
662 1.7 jtk * ("parent") is _unlocked_ as a side-effect
663 1.7 jtk * of lookups. This is to avoid deadlocks:
664 1.7 jtk * lock order is always parent, child, so
665 1.7 jtk * looking up `..' requires dropping the lock
666 1.7 jtk * on the starting directory.
667 1.7 jtk */
668 1.7 jtk /* see ufs_lookup() for hairy ugly locking protocol
669 1.7 jtk examples */
670 1.7 jtk /*
671 1.7 jtk * underlying starting dir comes back locked if flags &
672 1.7 jtk * LOCKPARENT (which we artificially set above) and
673 1.7 jtk * ISLASTCN.
674 1.7 jtk */
675 1.7 jtk if (flags & ISLASTCN) {
676 1.7 jtk VTONULL(dvp)->null_flags |= NULL_LLOCK; /* no-op, right? */
677 1.7 jtk #ifdef NULLFS_DIAGNOSTIC
678 1.7 jtk if (!VOP_ISLOCKED(VTONULL(dvp)->null_lowervp)) {
679 1.7 jtk vprint("lowerdvp not locked after lookup\n", dvp);
680 1.7 jtk panic("null_lookup not locked");
681 1.7 jtk }
682 1.7 jtk #endif
683 1.7 jtk } else {
684 1.7 jtk VTONULL(dvp)->null_flags &= ~NULL_LLOCK;
685 1.7 jtk #ifdef NULLFS_DIAGNOSTIC
686 1.7 jtk if (VOP_ISLOCKED(VTONULL(dvp)->null_lowervp)) {
687 1.7 jtk vprint("lowerdvp locked after lookup?\n", dvp);
688 1.7 jtk panic("null_lookup locked");
689 1.7 jtk }
690 1.7 jtk #endif
691 1.7 jtk }
692 1.7 jtk /*
693 1.7 jtk * locking order: drop lock on lower-in-tree
694 1.7 jtk * element, then get lock on higher-in-tree
695 1.7 jtk * element, then (if needed) re-fetch lower
696 1.7 jtk * lock. No need for vget() since we hold a
697 1.7 jtk * refcount to the starting directory
698 1.7 jtk */
699 1.7 jtk VOP_UNLOCK(dvp);
700 1.7 jtk VOP_LOCK(*ap->a_vpp);
701 1.7 jtk /*
702 1.7 jtk * we should return our directory locked if
703 1.7 jtk * (flags & LOCKPARENT) and (flags & ISLASTCN)
704 1.7 jtk */
705 1.7 jtk if ((flags & LOCKPARENT) && (flags & ISLASTCN))
706 1.7 jtk VOP_LOCK(dvp);
707 1.7 jtk } else {
708 1.7 jtk /*
709 1.7 jtk * Normal directory locking order: we hold the starting
710 1.7 jtk * directory locked; now lock our layer of the target.
711 1.7 jtk */
712 1.7 jtk VOP_LOCK(*ap->a_vpp);
713 1.7 jtk /*
714 1.7 jtk * underlying starting dir comes back locked
715 1.7 jtk * if lockparent (we set it) and no error
716 1.7 jtk * (this leg) and ISLASTCN
717 1.7 jtk */
718 1.7 jtk if (flags & ISLASTCN) {
719 1.7 jtk VTONULL(dvp)->null_flags |= NULL_LLOCK; /* no op, right? */
720 1.7 jtk #ifdef NULLFS_DIAGNOSTIC
721 1.7 jtk if (!VOP_ISLOCKED(VTONULL(dvp)->null_lowervp)) {
722 1.7 jtk vprint("lowerdvp not locked after lookup\n", dvp);
723 1.7 jtk panic("null_lookup not locked");
724 1.7 jtk }
725 1.7 jtk #endif
726 1.7 jtk } else {
727 1.7 jtk VTONULL(dvp)->null_flags &= ~NULL_LLOCK;
728 1.7 jtk #ifdef NULLFS_DIAGNOSTIC
729 1.7 jtk if (VOP_ISLOCKED(VTONULL(dvp)->null_lowervp)) {
730 1.7 jtk vprint("lowerdvp locked after lookup?\n", dvp);
731 1.7 jtk panic("null_lookup locked");
732 1.7 jtk }
733 1.7 jtk #endif
734 1.7 jtk }
735 1.7 jtk /*
736 1.7 jtk * we should return our directory unlocked if
737 1.7 jtk * our caller didn't want the parent locked,
738 1.7 jtk * !(flags & LOCKPARENT), or we're not at the
739 1.7 jtk * end yet, !(flags & ISLASTCN)
740 1.7 jtk */
741 1.7 jtk if (!(flags & LOCKPARENT) || !(flags & ISLASTCN))
742 1.7 jtk VOP_UNLOCK(dvp);
743 1.7 jtk }
744 1.7 jtk }
745 1.7 jtk return error;
746 1.7 jtk }
747 1.7 jtk
748 1.7 jtk /*
749 1.1 mycroft * Global vfs data structures
750 1.1 mycroft */
751 1.5 christos int (**null_vnodeop_p) __P((void *));
752 1.1 mycroft struct vnodeopv_entry_desc null_vnodeop_entries[] = {
753 1.5 christos { &vop_default_desc, null_bypass },
754 1.1 mycroft
755 1.5 christos { &vop_getattr_desc, null_getattr },
756 1.5 christos { &vop_inactive_desc, null_inactive },
757 1.5 christos { &vop_reclaim_desc, null_reclaim },
758 1.5 christos { &vop_print_desc, null_print },
759 1.7 jtk
760 1.7 jtk { &vop_lock_desc, null_lock },
761 1.7 jtk { &vop_unlock_desc, null_unlock },
762 1.7 jtk { &vop_islocked_desc, null_islocked },
763 1.7 jtk { &vop_lookup_desc, null_lookup }, /* special locking frob */
764 1.1 mycroft
765 1.5 christos { &vop_strategy_desc, null_strategy },
766 1.5 christos { &vop_bwrite_desc, null_bwrite },
767 1.1 mycroft
768 1.5 christos { (struct vnodeop_desc*)NULL, (int(*) __P((void *)))NULL }
769 1.1 mycroft };
770 1.1 mycroft struct vnodeopv_desc null_vnodeop_opv_desc =
771 1.1 mycroft { &null_vnodeop_p, null_vnodeop_entries };
772