null_vnops.c revision 1.10 1 /* $NetBSD: null_vnops.c,v 1.10 1997/05/17 20:32:53 pk Exp $ */
2
3 /*
4 * Copyright (c) 1992, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * John Heidemann of the UCLA Ficus project.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * @(#)null_vnops.c 8.1 (Berkeley) 6/10/93
39 *
40 * Ancestors:
41 * @(#)lofs_vnops.c 1.2 (Berkeley) 6/18/92
42 * Id: lofs_vnops.c,v 1.11 1992/05/30 10:05:43 jsp Exp
43 * ...and...
44 * @(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project
45 */
46
47 /*
48 * Null Layer
49 *
50 * (See mount_null(8) for more information.)
51 *
52 * The null layer duplicates a portion of the file system
53 * name space under a new name. In this respect, it is
54 * similar to the loopback file system. It differs from
55 * the loopback fs in two respects: it is implemented using
56 * a stackable layers techniques, and it's "null-node"s stack above
57 * all lower-layer vnodes, not just over directory vnodes.
58 *
59 * The null layer has two purposes. First, it serves as a demonstration
60 * of layering by proving a layer which does nothing. (It actually
61 * does everything the loopback file system does, which is slightly
62 * more than nothing.) Second, the null layer can serve as a prototype
63 * layer. Since it provides all necessary layer framework,
64 * new file system layers can be created very easily be starting
65 * with a null layer.
66 *
67 * The remainder of this man page examines the null layer as a basis
68 * for constructing new layers.
69 *
70 *
71 * INSTANTIATING NEW NULL LAYERS
72 *
73 * New null layers are created with mount_null(8).
74 * Mount_null(8) takes two arguments, the pathname
75 * of the lower vfs (target-pn) and the pathname where the null
76 * layer will appear in the namespace (alias-pn). After
77 * the null layer is put into place, the contents
78 * of target-pn subtree will be aliased under alias-pn.
79 *
80 *
81 * OPERATION OF A NULL LAYER
82 *
83 * The null layer is the minimum file system layer,
84 * simply bypassing all possible operations to the lower layer
85 * for processing there. The majority of its activity centers
86 * on the bypass routine, though which nearly all vnode operations
87 * pass.
88 *
89 * The bypass routine accepts arbitrary vnode operations for
90 * handling by the lower layer. It begins by examing vnode
91 * operation arguments and replacing any null-nodes by their
92 * lower-layer equivlants. It then invokes the operation
93 * on the lower layer. Finally, it replaces the null-nodes
94 * in the arguments and, if a vnode is return by the operation,
95 * stacks a null-node on top of the returned vnode.
96 *
97 * Although bypass handles most operations,
98 * vop_getattr, _inactive, _reclaim, and _print are not bypassed.
99 * Vop_getattr must change the fsid being returned.
100 * Vop_inactive and vop_reclaim are not bypassed so that
101 * they can handle freeing null-layer specific data.
102 * Vop_print is not bypassed to avoid excessive debugging
103 * information.
104 *
105 *
106 * INSTANTIATING VNODE STACKS
107 *
108 * Mounting associates the null layer with a lower layer,
109 * effect stacking two VFSes. Vnode stacks are instead
110 * created on demand as files are accessed.
111 *
112 * The initial mount creates a single vnode stack for the
113 * root of the new null layer. All other vnode stacks
114 * are created as a result of vnode operations on
115 * this or other null vnode stacks.
116 *
117 * New vnode stacks come into existance as a result of
118 * an operation which returns a vnode.
119 * The bypass routine stacks a null-node above the new
120 * vnode before returning it to the caller.
121 *
122 * For example, imagine mounting a null layer with
123 * "mount_null /usr/include /dev/layer/null".
124 * Changing directory to /dev/layer/null will assign
125 * the root null-node (which was created when the null layer was mounted).
126 * Now consider opening "sys". A vop_lookup would be
127 * done on the root null-node. This operation would bypass through
128 * to the lower layer which would return a vnode representing
129 * the UFS "sys". Null_bypass then builds a null-node
130 * aliasing the UFS "sys" and returns this to the caller.
131 * Later operations on the null-node "sys" will repeat this
132 * process when constructing other vnode stacks.
133 *
134 *
135 * CREATING OTHER FILE SYSTEM LAYERS
136 *
137 * One of the easiest ways to construct new file system layers is to make
138 * a copy of the null layer, rename all files and variables, and
139 * then begin modifing the copy. Sed can be used to easily rename
140 * all variables.
141 *
142 * The umap layer is an example of a layer descended from the
143 * null layer.
144 *
145 *
146 * INVOKING OPERATIONS ON LOWER LAYERS
147 *
148 * There are two techniques to invoke operations on a lower layer
149 * when the operation cannot be completely bypassed. Each method
150 * is appropriate in different situations. In both cases,
151 * it is the responsibility of the aliasing layer to make
152 * the operation arguments "correct" for the lower layer
153 * by mapping an vnode arguments to the lower layer.
154 *
155 * The first approach is to call the aliasing layer's bypass routine.
156 * This method is most suitable when you wish to invoke the operation
157 * currently being hanldled on the lower layer. It has the advantage
158 * that the bypass routine already must do argument mapping.
159 * An example of this is null_getattrs in the null layer.
160 *
161 * A second approach is to directly invoked vnode operations on
162 * the lower layer with the VOP_OPERATIONNAME interface.
163 * The advantage of this method is that it is easy to invoke
164 * arbitrary operations on the lower layer. The disadvantage
165 * is that vnodes arguments must be manualy mapped.
166 *
167 */
168
169 #include <sys/param.h>
170 #include <sys/systm.h>
171 #include <sys/proc.h>
172 #include <sys/time.h>
173 #include <sys/types.h>
174 #include <sys/vnode.h>
175 #include <sys/mount.h>
176 #include <sys/namei.h>
177 #include <sys/malloc.h>
178 #include <sys/buf.h>
179 #include <miscfs/nullfs/null.h>
180
181
182 int null_bug_bypass = 0; /* for debugging: enables bypass printf'ing */
183
184 int null_bypass __P((void *));
185 int null_getattr __P((void *));
186 int null_inactive __P((void *));
187 int null_reclaim __P((void *));
188 int null_print __P((void *));
189 int null_strategy __P((void *));
190 int null_bwrite __P((void *));
191 int null_lock __P((void *));
192 int null_unlock __P((void *));
193 int null_islocked __P((void *));
194 int null_lookup __P((void *));
195
196 /*
197 * This is the 10-Apr-92 bypass routine.
198 * This version has been optimized for speed, throwing away some
199 * safety checks. It should still always work, but it's not as
200 * robust to programmer errors.
201 * Define SAFETY to include some error checking code.
202 *
203 * In general, we map all vnodes going down and unmap them on the way back.
204 * As an exception to this, vnodes can be marked "unmapped" by setting
205 * the Nth bit in operation's vdesc_flags.
206 *
207 * Also, some BSD vnode operations have the side effect of vrele'ing
208 * their arguments. With stacking, the reference counts are held
209 * by the upper node, not the lower one, so we must handle these
210 * side-effects here. This is not of concern in Sun-derived systems
211 * since there are no such side-effects.
212 *
213 * This makes the following assumptions:
214 * - only one returned vpp
215 * - no INOUT vpp's (Sun's vop_open has one of these)
216 * - the vnode operation vector of the first vnode should be used
217 * to determine what implementation of the op should be invoked
218 * - all mapped vnodes are of our vnode-type (NEEDSWORK:
219 * problems on rmdir'ing mount points and renaming?)
220 */
221 int
222 null_bypass(v)
223 void *v;
224 {
225 struct vop_generic_args /* {
226 struct vnodeop_desc *a_desc;
227 <other random data follows, presumably>
228 } */ *ap = v;
229 register struct vnode **this_vp_p;
230 int error;
231 struct vnode *old_vps[VDESC_MAX_VPS];
232 struct vnode **vps_p[VDESC_MAX_VPS];
233 struct vnode ***vppp;
234 struct vnodeop_desc *descp = ap->a_desc;
235 int reles, i;
236
237 if (null_bug_bypass)
238 printf ("null_bypass: %s\n", descp->vdesc_name);
239
240 #ifdef SAFETY
241 /*
242 * We require at least one vp.
243 */
244 if (descp->vdesc_vp_offsets == NULL ||
245 descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
246 panic ("null_bypass: no vp's in map.\n");
247 #endif
248
249 /*
250 * Map the vnodes going in.
251 * Later, we'll invoke the operation based on
252 * the first mapped vnode's operation vector.
253 */
254 reles = descp->vdesc_flags;
255 for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
256 if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
257 break; /* bail out at end of list */
258 vps_p[i] = this_vp_p =
259 VOPARG_OFFSETTO(struct vnode**,descp->vdesc_vp_offsets[i],ap);
260 /*
261 * We're not guaranteed that any but the first vnode
262 * are of our type. Check for and don't map any
263 * that aren't. (We must always map first vp or vclean fails.)
264 */
265 if (i && (*this_vp_p == NULLVP ||
266 (*this_vp_p)->v_op != null_vnodeop_p)) {
267 old_vps[i] = NULLVP;
268 } else {
269 old_vps[i] = *this_vp_p;
270 *(vps_p[i]) = NULLVPTOLOWERVP(*this_vp_p);
271 /*
272 * XXX - Several operations have the side effect
273 * of vrele'ing their vp's. We must account for
274 * that. (This should go away in the future.)
275 */
276 if (reles & 1)
277 VREF(*this_vp_p);
278 }
279
280 }
281
282 /*
283 * Call the operation on the lower layer
284 * with the modified argument structure.
285 */
286 error = VCALL(*(vps_p[0]), descp->vdesc_offset, ap);
287
288 /*
289 * Maintain the illusion of call-by-value
290 * by restoring vnodes in the argument structure
291 * to their original value.
292 */
293 reles = descp->vdesc_flags;
294 for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
295 if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
296 break; /* bail out at end of list */
297 if (old_vps[i] != NULLVP) {
298 *(vps_p[i]) = old_vps[i];
299 if (reles & 1) {
300 /* they really vput them, so we must drop
301 our locks (but mark underneath as
302 unlocked first).
303 Beware of vnode duplication--put it once,
304 and rele the rest. Check this
305 by looking at our upper flag. */
306 if (VTONULL(*(vps_p[i]))->null_flags & NULL_LOCKED) {
307 VTONULL(*(vps_p[i]))->null_flags &= ~NULL_LLOCK;
308 vput(*(vps_p[i]));
309 } else
310 vrele(*(vps_p[i]));
311 }
312 }
313 }
314
315 /*
316 * Map the possible out-going vpp
317 * (Assumes that the lower layer always returns
318 * a VREF'ed vpp unless it gets an error.)
319 */
320 if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET &&
321 !(descp->vdesc_flags & VDESC_NOMAP_VPP) &&
322 !error) {
323 /*
324 * XXX - even though some ops have vpp returned vp's,
325 * several ops actually vrele this before returning.
326 * We must avoid these ops.
327 * (This should go away when these ops are regularized.)
328 */
329 if (descp->vdesc_flags & VDESC_VPP_WILLRELE)
330 goto out;
331 vppp = VOPARG_OFFSETTO(struct vnode***,
332 descp->vdesc_vpp_offset,ap);
333 /*
334 * This assumes that **vppp is a locked vnode (it is always
335 * so as of this writing, NetBSD-current 1995/02/16)
336 */
337 /*
338 * (don't want to lock it if being called on behalf
339 * of lookup--it plays weird locking games depending
340 * on whether or not it's looking up ".", "..", etc.
341 */
342 error = null_node_create(old_vps[0]->v_mount, **vppp, *vppp,
343 descp == &vop_lookup_desc ? 0 : 1);
344 }
345
346 out:
347 return (error);
348 }
349
350
351 /*
352 * We handle getattr only to change the fsid.
353 */
354 int
355 null_getattr(v)
356 void *v;
357 {
358 struct vop_getattr_args /* {
359 struct vnode *a_vp;
360 struct vattr *a_vap;
361 struct ucred *a_cred;
362 struct proc *a_p;
363 } */ *ap = v;
364 int error;
365 if ((error = null_bypass(ap)) != 0)
366 return (error);
367 /* Requires that arguments be restored. */
368 ap->a_vap->va_fsid = ap->a_vp->v_mount->mnt_stat.f_fsid.val[0];
369 return (0);
370 }
371
372
373 int
374 null_inactive(v)
375 void *v;
376 {
377 /*
378 * Do nothing (and _don't_ bypass).
379 * Wait to vrele lowervp until reclaim,
380 * so that until then our null_node is in the
381 * cache and reusable.
382 *
383 * NEEDSWORK: Someday, consider inactive'ing
384 * the lowervp and then trying to reactivate it
385 * with capabilities (v_id)
386 * like they do in the name lookup cache code.
387 * That's too much work for now.
388 */
389 return (0);
390 }
391
392 int
393 null_reclaim(v)
394 void *v;
395 {
396 struct vop_reclaim_args /* {
397 struct vnode *a_vp;
398 } */ *ap = v;
399 struct vnode *vp = ap->a_vp;
400 struct null_node *xp = VTONULL(vp);
401 struct vnode *lowervp = xp->null_lowervp;
402
403 /*
404 * Note: in vop_reclaim, vp->v_op == dead_vnodeop_p,
405 * so we can't call VOPs on ourself.
406 */
407 /* After this assignment, this node will not be re-used. */
408 xp->null_lowervp = NULL;
409 LIST_REMOVE(xp, null_hash);
410 FREE(vp->v_data, M_TEMP);
411 vp->v_data = NULL;
412 vrele (lowervp);
413 return (0);
414 }
415
416
417 int
418 null_print(v)
419 void *v;
420 {
421 struct vop_print_args /* {
422 struct vnode *a_vp;
423 } */ *ap = v;
424 register struct vnode *vp = ap->a_vp;
425 register struct null_node *nn = VTONULL(vp);
426
427 printf ("\ttag VT_NULLFS, vp=%p, lowervp=%p\n", vp, NULLVPTOLOWERVP(vp));
428 #ifdef DIAGNOSTIC
429 printf("%s%s owner pid %d retpc %p retret %p\n",
430 (nn->null_flags & NULL_LOCKED) ? "(LOCKED) " : "",
431 (nn->null_flags & NULL_LLOCK) ? "(LLOCK) " : "",
432 nn->null_pid, nn->null_lockpc, nn->null_lockpc2);
433 #else
434 printf("%s%s\n",
435 (nn->null_flags & NULL_LOCKED) ? "(LOCKED) " : "",
436 (nn->null_flags & NULL_LLOCK) ? "(LLOCK) " : "");
437 #endif
438 vprint("nullfs lowervp", NULLVPTOLOWERVP(vp));
439 return (0);
440 }
441
442
443 /*
444 * XXX - vop_strategy must be hand coded because it has no
445 * vnode in its arguments.
446 * This goes away with a merged VM/buffer cache.
447 */
448 int
449 null_strategy(v)
450 void *v;
451 {
452 struct vop_strategy_args /* {
453 struct buf *a_bp;
454 } */ *ap = v;
455 struct buf *bp = ap->a_bp;
456 int error;
457 struct vnode *savedvp;
458
459 savedvp = bp->b_vp;
460 bp->b_vp = NULLVPTOLOWERVP(bp->b_vp);
461
462 error = VOP_STRATEGY(bp);
463
464 bp->b_vp = savedvp;
465
466 return (error);
467 }
468
469
470 /*
471 * XXX - like vop_strategy, vop_bwrite must be hand coded because it has no
472 * vnode in its arguments.
473 * This goes away with a merged VM/buffer cache.
474 */
475 int
476 null_bwrite(v)
477 void *v;
478 {
479 struct vop_bwrite_args /* {
480 struct buf *a_bp;
481 } */ *ap = v;
482 struct buf *bp = ap->a_bp;
483 int error;
484 struct vnode *savedvp;
485
486 savedvp = bp->b_vp;
487 bp->b_vp = NULLVPTOLOWERVP(bp->b_vp);
488
489 error = VOP_BWRITE(bp);
490
491 bp->b_vp = savedvp;
492
493 return (error);
494 }
495
496 /*
497 * We need a separate null lock routine, to avoid deadlocks at reclaim time.
498 * If a process holds the lower-vnode locked when it tries to reclaim
499 * the null upper-vnode, _and_ null_bypass is used as the locking operation,
500 * then a process can end up locking against itself.
501 * This has been observed when a null mount is set up to "tunnel" beneath a
502 * union mount (that setup is useful if you still wish to be able to access
503 * the non-union version of either the above or below union layer)
504 */
505 int
506 null_lock(v)
507 void *v;
508 {
509 struct vop_lock_args *ap = v;
510 struct vnode *vp = ap->a_vp;
511 struct null_node *nn;
512
513 #ifdef NULLFS_DIAGNOSTIC
514 vprint("null_lock_e", ap->a_vp);
515 printf("retpc=%lx, retretpc=%lx\n", RETURN_PC(0), RETURN_PC(1));
516 #endif
517 start:
518 while (vp->v_flag & VXLOCK) {
519 vp->v_flag |= VXWANT;
520 tsleep((caddr_t)vp, PINOD, "nulllock1", 0);
521 }
522
523 nn = VTONULL(vp);
524
525 if ((nn->null_flags & NULL_LLOCK) == 0 &&
526 (vp->v_usecount != 0)) {
527 /*
528 * only lock underlying node if we haven't locked it yet
529 * for null ops, and our refcount is nonzero. If usecount
530 * is zero, we are probably being reclaimed so we need to
531 * keep our hands off the lower node.
532 */
533 VOP_LOCK(nn->null_lowervp);
534 nn->null_flags |= NULL_LLOCK;
535 }
536
537 if (nn->null_flags & NULL_LOCKED) {
538 #ifdef DIAGNOSTIC
539 if (curproc && nn->null_pid == curproc->p_pid &&
540 nn->null_pid > -1 && curproc->p_pid > -1) {
541 vprint("self-lock", vp);
542 panic("null: locking against myself");
543 }
544 #endif
545 nn->null_flags |= NULL_WANTED;
546 tsleep((caddr_t)nn, PINOD, "nulllock2", 0);
547 goto start;
548 }
549
550 #ifdef DIAGNOSTIC
551 if (curproc)
552 nn->null_pid = curproc->p_pid;
553 else
554 nn->null_pid = -1;
555 nn->null_lockpc = RETURN_PC(0);
556 nn->null_lockpc2 = RETURN_PC(1);
557 #endif
558
559 nn->null_flags |= NULL_LOCKED;
560 return (0);
561 }
562
563 int
564 null_unlock(v)
565 void *v;
566 {
567 struct vop_lock_args *ap = v;
568 struct null_node *nn = VTONULL(ap->a_vp);
569
570 #ifdef NULLFS_DIAGNOSTIC
571 vprint("null_unlock_e", ap->a_vp);
572 #endif
573 #ifdef DIAGNOSTIC
574 if ((nn->null_flags & NULL_LOCKED) == 0) {
575 vprint("null_unlock", ap->a_vp);
576 panic("null: unlocking unlocked node");
577 }
578 if (curproc && nn->null_pid != curproc->p_pid &&
579 curproc->p_pid > -1 && nn->null_pid > -1) {
580 vprint("null_unlock", ap->a_vp);
581 panic("null: unlocking other process's null node");
582 }
583 #endif
584 nn->null_flags &= ~NULL_LOCKED;
585
586 if ((nn->null_flags & NULL_LLOCK) != 0)
587 VOP_UNLOCK(nn->null_lowervp);
588
589 nn->null_flags &= ~NULL_LLOCK;
590
591 if (nn->null_flags & NULL_WANTED) {
592 nn->null_flags &= ~NULL_WANTED;
593 wakeup((caddr_t)nn);
594 }
595 #ifdef DIAGNOSTIC
596 nn->null_pid = 0;
597 nn->null_lockpc = nn->null_lockpc2 = 0;
598 #endif
599 return (0);
600 }
601
602 int
603 null_islocked(v)
604 void *v;
605 {
606 struct vop_islocked_args *ap = v;
607 return ((VTONULL(ap->a_vp)->null_flags & NULL_LOCKED) ? 1 : 0);
608 }
609
610 int
611 null_lookup(v)
612 void *v;
613 {
614 register struct vop_lookup_args /* {
615 struct vnodeop_desc *a_desc;
616 struct vnode *a_dvp;
617 struct vnode **a_vpp;
618 struct componentname *a_cnp;
619 } */ *ap = v;
620 register int error;
621 register struct vnode *dvp;
622 int flags = ap->a_cnp->cn_flags;
623
624 #ifdef NULLFS_DIAGNOSTIC
625 printf("null_lookup: dvp=%lx, name='%s'\n",
626 ap->a_dvp, ap->a_cnp->cn_nameptr);
627 #endif
628 /*
629 * the starting dir (ap->a_dvp) comes in locked.
630 */
631
632 /* set LOCKPARENT to hold on to it until done below */
633 ap->a_cnp->cn_flags |= LOCKPARENT;
634 error = null_bypass(ap);
635 if (!(flags & LOCKPARENT))
636 ap->a_cnp->cn_flags &= ~LOCKPARENT;
637
638 if (error)
639 /*
640 * starting dir is still locked/has been relocked
641 * on error return.
642 */
643 return error;
644
645 if (ap->a_dvp != *ap->a_vpp) {
646 /*
647 * Lookup returns node locked; we mark both lower and
648 * upper nodes as locked by setting the lower lock
649 * flag (it came back locked), and then call lock to
650 * set upper lock flag & record pid, etc. see
651 * null_node_create()
652 */
653 VTONULL(*ap->a_vpp)->null_flags |= NULL_LLOCK;
654
655 dvp = ap->a_dvp;
656 if (flags & ISDOTDOT) {
657 /*
658 * If we're looking up `..' and this isn't the
659 * last component, then the starting directory
660 * ("parent") is _unlocked_ as a side-effect
661 * of lookups. This is to avoid deadlocks:
662 * lock order is always parent, child, so
663 * looking up `..' requires dropping the lock
664 * on the starting directory.
665 */
666 /* see ufs_lookup() for hairy ugly locking protocol
667 examples */
668 /*
669 * underlying starting dir comes back locked if flags &
670 * LOCKPARENT (which we artificially set above) and
671 * ISLASTCN.
672 */
673 if (flags & ISLASTCN) {
674 VTONULL(dvp)->null_flags |= NULL_LLOCK; /* no-op, right? */
675 #ifdef NULLFS_DIAGNOSTIC
676 if (!VOP_ISLOCKED(VTONULL(dvp)->null_lowervp)) {
677 vprint("lowerdvp not locked after lookup\n", dvp);
678 panic("null_lookup not locked");
679 }
680 #endif
681 } else {
682 VTONULL(dvp)->null_flags &= ~NULL_LLOCK;
683 #ifdef NULLFS_DIAGNOSTIC
684 if (VOP_ISLOCKED(VTONULL(dvp)->null_lowervp)) {
685 vprint("lowerdvp locked after lookup?\n", dvp);
686 panic("null_lookup locked");
687 }
688 #endif
689 }
690 /*
691 * locking order: drop lock on lower-in-tree
692 * element, then get lock on higher-in-tree
693 * element, then (if needed) re-fetch lower
694 * lock. No need for vget() since we hold a
695 * refcount to the starting directory
696 */
697 VOP_UNLOCK(dvp);
698 VOP_LOCK(*ap->a_vpp);
699 /*
700 * we should return our directory locked if
701 * (flags & LOCKPARENT) and (flags & ISLASTCN)
702 */
703 if ((flags & LOCKPARENT) && (flags & ISLASTCN))
704 VOP_LOCK(dvp);
705 } else {
706 /*
707 * Normal directory locking order: we hold the starting
708 * directory locked; now lock our layer of the target.
709 */
710 VOP_LOCK(*ap->a_vpp);
711 /*
712 * underlying starting dir comes back locked
713 * if lockparent (we set it) and no error
714 * (this leg) and ISLASTCN
715 */
716 if (flags & ISLASTCN) {
717 VTONULL(dvp)->null_flags |= NULL_LLOCK; /* no op, right? */
718 #ifdef NULLFS_DIAGNOSTIC
719 if (!VOP_ISLOCKED(VTONULL(dvp)->null_lowervp)) {
720 vprint("lowerdvp not locked after lookup\n", dvp);
721 panic("null_lookup not locked");
722 }
723 #endif
724 } else {
725 VTONULL(dvp)->null_flags &= ~NULL_LLOCK;
726 #ifdef NULLFS_DIAGNOSTIC
727 if (VOP_ISLOCKED(VTONULL(dvp)->null_lowervp)) {
728 vprint("lowerdvp locked after lookup?\n", dvp);
729 panic("null_lookup locked");
730 }
731 #endif
732 }
733 /*
734 * we should return our directory unlocked if
735 * our caller didn't want the parent locked,
736 * !(flags & LOCKPARENT), or we're not at the
737 * end yet, !(flags & ISLASTCN)
738 */
739 if (!(flags & LOCKPARENT) || !(flags & ISLASTCN))
740 VOP_UNLOCK(dvp);
741 }
742 }
743 return error;
744 }
745
746 /*
747 * Global vfs data structures
748 */
749 int (**null_vnodeop_p) __P((void *));
750 struct vnodeopv_entry_desc null_vnodeop_entries[] = {
751 { &vop_default_desc, null_bypass },
752
753 { &vop_getattr_desc, null_getattr },
754 { &vop_inactive_desc, null_inactive },
755 { &vop_reclaim_desc, null_reclaim },
756 { &vop_print_desc, null_print },
757
758 { &vop_lock_desc, null_lock },
759 { &vop_unlock_desc, null_unlock },
760 { &vop_islocked_desc, null_islocked },
761 { &vop_lookup_desc, null_lookup }, /* special locking frob */
762
763 { &vop_strategy_desc, null_strategy },
764 { &vop_bwrite_desc, null_bwrite },
765
766 { (struct vnodeop_desc*)NULL, (int(*) __P((void *)))NULL }
767 };
768 struct vnodeopv_desc null_vnodeop_opv_desc =
769 { &null_vnodeop_p, null_vnodeop_entries };
770