Home | History | Annotate | Line # | Download | only in nullfs
null_vnops.c revision 1.2
      1 /*	$NetBSD: null_vnops.c,v 1.2 1994/06/29 06:34:35 cgd Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1992, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * This code is derived from software contributed to Berkeley by
      8  * John Heidemann of the UCLA Ficus project.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the University of
     21  *	California, Berkeley and its contributors.
     22  * 4. Neither the name of the University nor the names of its contributors
     23  *    may be used to endorse or promote products derived from this software
     24  *    without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     36  * SUCH DAMAGE.
     37  *
     38  *	@(#)null_vnops.c	8.1 (Berkeley) 6/10/93
     39  *
     40  * Ancestors:
     41  *	@(#)lofs_vnops.c	1.2 (Berkeley) 6/18/92
     42  *	Id: lofs_vnops.c,v 1.11 1992/05/30 10:05:43 jsp Exp
     43  *	...and...
     44  *	@(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project
     45  */
     46 
     47 /*
     48  * Null Layer
     49  *
     50  * (See mount_null(8) for more information.)
     51  *
     52  * The null layer duplicates a portion of the file system
     53  * name space under a new name.  In this respect, it is
     54  * similar to the loopback file system.  It differs from
     55  * the loopback fs in two respects:  it is implemented using
     56  * a stackable layers techniques, and it's "null-node"s stack above
     57  * all lower-layer vnodes, not just over directory vnodes.
     58  *
     59  * The null layer has two purposes.  First, it serves as a demonstration
     60  * of layering by proving a layer which does nothing.  (It actually
     61  * does everything the loopback file system does, which is slightly
     62  * more than nothing.)  Second, the null layer can serve as a prototype
     63  * layer.  Since it provides all necessary layer framework,
     64  * new file system layers can be created very easily be starting
     65  * with a null layer.
     66  *
     67  * The remainder of this man page examines the null layer as a basis
     68  * for constructing new layers.
     69  *
     70  *
     71  * INSTANTIATING NEW NULL LAYERS
     72  *
     73  * New null layers are created with mount_null(8).
     74  * Mount_null(8) takes two arguments, the pathname
     75  * of the lower vfs (target-pn) and the pathname where the null
     76  * layer will appear in the namespace (alias-pn).  After
     77  * the null layer is put into place, the contents
     78  * of target-pn subtree will be aliased under alias-pn.
     79  *
     80  *
     81  * OPERATION OF A NULL LAYER
     82  *
     83  * The null layer is the minimum file system layer,
     84  * simply bypassing all possible operations to the lower layer
     85  * for processing there.  The majority of its activity centers
     86  * on the bypass routine, though which nearly all vnode operations
     87  * pass.
     88  *
     89  * The bypass routine accepts arbitrary vnode operations for
     90  * handling by the lower layer.  It begins by examing vnode
     91  * operation arguments and replacing any null-nodes by their
     92  * lower-layer equivlants.  It then invokes the operation
     93  * on the lower layer.  Finally, it replaces the null-nodes
     94  * in the arguments and, if a vnode is return by the operation,
     95  * stacks a null-node on top of the returned vnode.
     96  *
     97  * Although bypass handles most operations,
     98  * vop_getattr, _inactive, _reclaim, and _print are not bypassed.
     99  * Vop_getattr must change the fsid being returned.
    100  * Vop_inactive and vop_reclaim are not bypassed so that
    101  * they can handle freeing null-layer specific data.
    102  * Vop_print is not bypassed to avoid excessive debugging
    103  * information.
    104  *
    105  *
    106  * INSTANTIATING VNODE STACKS
    107  *
    108  * Mounting associates the null layer with a lower layer,
    109  * effect stacking two VFSes.  Vnode stacks are instead
    110  * created on demand as files are accessed.
    111  *
    112  * The initial mount creates a single vnode stack for the
    113  * root of the new null layer.  All other vnode stacks
    114  * are created as a result of vnode operations on
    115  * this or other null vnode stacks.
    116  *
    117  * New vnode stacks come into existance as a result of
    118  * an operation which returns a vnode.
    119  * The bypass routine stacks a null-node above the new
    120  * vnode before returning it to the caller.
    121  *
    122  * For example, imagine mounting a null layer with
    123  * "mount_null /usr/include /dev/layer/null".
    124  * Changing directory to /dev/layer/null will assign
    125  * the root null-node (which was created when the null layer was mounted).
    126  * Now consider opening "sys".  A vop_lookup would be
    127  * done on the root null-node.  This operation would bypass through
    128  * to the lower layer which would return a vnode representing
    129  * the UFS "sys".  Null_bypass then builds a null-node
    130  * aliasing the UFS "sys" and returns this to the caller.
    131  * Later operations on the null-node "sys" will repeat this
    132  * process when constructing other vnode stacks.
    133  *
    134  *
    135  * CREATING OTHER FILE SYSTEM LAYERS
    136  *
    137  * One of the easiest ways to construct new file system layers is to make
    138  * a copy of the null layer, rename all files and variables, and
    139  * then begin modifing the copy.  Sed can be used to easily rename
    140  * all variables.
    141  *
    142  * The umap layer is an example of a layer descended from the
    143  * null layer.
    144  *
    145  *
    146  * INVOKING OPERATIONS ON LOWER LAYERS
    147  *
    148  * There are two techniques to invoke operations on a lower layer
    149  * when the operation cannot be completely bypassed.  Each method
    150  * is appropriate in different situations.  In both cases,
    151  * it is the responsibility of the aliasing layer to make
    152  * the operation arguments "correct" for the lower layer
    153  * by mapping an vnode arguments to the lower layer.
    154  *
    155  * The first approach is to call the aliasing layer's bypass routine.
    156  * This method is most suitable when you wish to invoke the operation
    157  * currently being hanldled on the lower layer.  It has the advantage
    158  * that the bypass routine already must do argument mapping.
    159  * An example of this is null_getattrs in the null layer.
    160  *
    161  * A second approach is to directly invoked vnode operations on
    162  * the lower layer with the VOP_OPERATIONNAME interface.
    163  * The advantage of this method is that it is easy to invoke
    164  * arbitrary operations on the lower layer.  The disadvantage
    165  * is that vnodes arguments must be manualy mapped.
    166  *
    167  */
    168 
    169 #include <sys/param.h>
    170 #include <sys/systm.h>
    171 #include <sys/proc.h>
    172 #include <sys/time.h>
    173 #include <sys/types.h>
    174 #include <sys/vnode.h>
    175 #include <sys/mount.h>
    176 #include <sys/namei.h>
    177 #include <sys/malloc.h>
    178 #include <sys/buf.h>
    179 #include <miscfs/nullfs/null.h>
    180 
    181 
    182 int null_bug_bypass = 0;   /* for debugging: enables bypass printf'ing */
    183 
    184 /*
    185  * This is the 10-Apr-92 bypass routine.
    186  *    This version has been optimized for speed, throwing away some
    187  * safety checks.  It should still always work, but it's not as
    188  * robust to programmer errors.
    189  *    Define SAFETY to include some error checking code.
    190  *
    191  * In general, we map all vnodes going down and unmap them on the way back.
    192  * As an exception to this, vnodes can be marked "unmapped" by setting
    193  * the Nth bit in operation's vdesc_flags.
    194  *
    195  * Also, some BSD vnode operations have the side effect of vrele'ing
    196  * their arguments.  With stacking, the reference counts are held
    197  * by the upper node, not the lower one, so we must handle these
    198  * side-effects here.  This is not of concern in Sun-derived systems
    199  * since there are no such side-effects.
    200  *
    201  * This makes the following assumptions:
    202  * - only one returned vpp
    203  * - no INOUT vpp's (Sun's vop_open has one of these)
    204  * - the vnode operation vector of the first vnode should be used
    205  *   to determine what implementation of the op should be invoked
    206  * - all mapped vnodes are of our vnode-type (NEEDSWORK:
    207  *   problems on rmdir'ing mount points and renaming?)
    208  */
    209 int
    210 null_bypass(ap)
    211 	struct vop_generic_args /* {
    212 		struct vnodeop_desc *a_desc;
    213 		<other random data follows, presumably>
    214 	} */ *ap;
    215 {
    216 	extern int (**null_vnodeop_p)();  /* not extern, really "forward" */
    217 	register struct vnode **this_vp_p;
    218 	int error;
    219 	struct vnode *old_vps[VDESC_MAX_VPS];
    220 	struct vnode **vps_p[VDESC_MAX_VPS];
    221 	struct vnode ***vppp;
    222 	struct vnodeop_desc *descp = ap->a_desc;
    223 	int reles, i;
    224 
    225 	if (null_bug_bypass)
    226 		printf ("null_bypass: %s\n", descp->vdesc_name);
    227 
    228 #ifdef SAFETY
    229 	/*
    230 	 * We require at least one vp.
    231 	 */
    232 	if (descp->vdesc_vp_offsets == NULL ||
    233 	    descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
    234 		panic ("null_bypass: no vp's in map.\n");
    235 #endif
    236 
    237 	/*
    238 	 * Map the vnodes going in.
    239 	 * Later, we'll invoke the operation based on
    240 	 * the first mapped vnode's operation vector.
    241 	 */
    242 	reles = descp->vdesc_flags;
    243 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
    244 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
    245 			break;   /* bail out at end of list */
    246 		vps_p[i] = this_vp_p =
    247 			VOPARG_OFFSETTO(struct vnode**,descp->vdesc_vp_offsets[i],ap);
    248 		/*
    249 		 * We're not guaranteed that any but the first vnode
    250 		 * are of our type.  Check for and don't map any
    251 		 * that aren't.  (We must always map first vp or vclean fails.)
    252 		 */
    253 		if (i && (*this_vp_p)->v_op != null_vnodeop_p) {
    254 			old_vps[i] = NULL;
    255 		} else {
    256 			old_vps[i] = *this_vp_p;
    257 			*(vps_p[i]) = NULLVPTOLOWERVP(*this_vp_p);
    258 			/*
    259 			 * XXX - Several operations have the side effect
    260 			 * of vrele'ing their vp's.  We must account for
    261 			 * that.  (This should go away in the future.)
    262 			 */
    263 			if (reles & 1)
    264 				VREF(*this_vp_p);
    265 		}
    266 
    267 	}
    268 
    269 	/*
    270 	 * Call the operation on the lower layer
    271 	 * with the modified argument structure.
    272 	 */
    273 	error = VCALL(*(vps_p[0]), descp->vdesc_offset, ap);
    274 
    275 	/*
    276 	 * Maintain the illusion of call-by-value
    277 	 * by restoring vnodes in the argument structure
    278 	 * to their original value.
    279 	 */
    280 	reles = descp->vdesc_flags;
    281 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
    282 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
    283 			break;   /* bail out at end of list */
    284 		if (old_vps[i]) {
    285 			*(vps_p[i]) = old_vps[i];
    286 			if (reles & 1)
    287 				vrele(*(vps_p[i]));
    288 		}
    289 	}
    290 
    291 	/*
    292 	 * Map the possible out-going vpp
    293 	 * (Assumes that the lower layer always returns
    294 	 * a VREF'ed vpp unless it gets an error.)
    295 	 */
    296 	if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET &&
    297 	    !(descp->vdesc_flags & VDESC_NOMAP_VPP) &&
    298 	    !error) {
    299 		/*
    300 		 * XXX - even though some ops have vpp returned vp's,
    301 		 * several ops actually vrele this before returning.
    302 		 * We must avoid these ops.
    303 		 * (This should go away when these ops are regularized.)
    304 		 */
    305 		if (descp->vdesc_flags & VDESC_VPP_WILLRELE)
    306 			goto out;
    307 		vppp = VOPARG_OFFSETTO(struct vnode***,
    308 				 descp->vdesc_vpp_offset,ap);
    309 		error = null_node_create(old_vps[0]->v_mount, **vppp, *vppp);
    310 	}
    311 
    312  out:
    313 	return (error);
    314 }
    315 
    316 
    317 /*
    318  *  We handle getattr only to change the fsid.
    319  */
    320 int
    321 null_getattr(ap)
    322 	struct vop_getattr_args /* {
    323 		struct vnode *a_vp;
    324 		struct vattr *a_vap;
    325 		struct ucred *a_cred;
    326 		struct proc *a_p;
    327 	} */ *ap;
    328 {
    329 	int error;
    330 	if (error = null_bypass(ap))
    331 		return (error);
    332 	/* Requires that arguments be restored. */
    333 	ap->a_vap->va_fsid = ap->a_vp->v_mount->mnt_stat.f_fsid.val[0];
    334 	return (0);
    335 }
    336 
    337 
    338 int
    339 null_inactive(ap)
    340 	struct vop_inactive_args /* {
    341 		struct vnode *a_vp;
    342 	} */ *ap;
    343 {
    344 	/*
    345 	 * Do nothing (and _don't_ bypass).
    346 	 * Wait to vrele lowervp until reclaim,
    347 	 * so that until then our null_node is in the
    348 	 * cache and reusable.
    349 	 *
    350 	 * NEEDSWORK: Someday, consider inactive'ing
    351 	 * the lowervp and then trying to reactivate it
    352 	 * with capabilities (v_id)
    353 	 * like they do in the name lookup cache code.
    354 	 * That's too much work for now.
    355 	 */
    356 	return (0);
    357 }
    358 
    359 int
    360 null_reclaim(ap)
    361 	struct vop_reclaim_args /* {
    362 		struct vnode *a_vp;
    363 	} */ *ap;
    364 {
    365 	struct vnode *vp = ap->a_vp;
    366 	struct null_node *xp = VTONULL(vp);
    367 	struct vnode *lowervp = xp->null_lowervp;
    368 
    369 	/*
    370 	 * Note: in vop_reclaim, vp->v_op == dead_vnodeop_p,
    371 	 * so we can't call VOPs on ourself.
    372 	 */
    373 	/* After this assignment, this node will not be re-used. */
    374 	xp->null_lowervp = NULL;
    375 	remque(xp);
    376 	FREE(vp->v_data, M_TEMP);
    377 	vp->v_data = NULL;
    378 	vrele (lowervp);
    379 	return (0);
    380 }
    381 
    382 
    383 int
    384 null_print(ap)
    385 	struct vop_print_args /* {
    386 		struct vnode *a_vp;
    387 	} */ *ap;
    388 {
    389 	register struct vnode *vp = ap->a_vp;
    390 	printf ("\ttag VT_NULLFS, vp=%x, lowervp=%x\n", vp, NULLVPTOLOWERVP(vp));
    391 	return (0);
    392 }
    393 
    394 
    395 /*
    396  * XXX - vop_strategy must be hand coded because it has no
    397  * vnode in its arguments.
    398  * This goes away with a merged VM/buffer cache.
    399  */
    400 int
    401 null_strategy(ap)
    402 	struct vop_strategy_args /* {
    403 		struct buf *a_bp;
    404 	} */ *ap;
    405 {
    406 	struct buf *bp = ap->a_bp;
    407 	int error;
    408 	struct vnode *savedvp;
    409 
    410 	savedvp = bp->b_vp;
    411 	bp->b_vp = NULLVPTOLOWERVP(bp->b_vp);
    412 
    413 	error = VOP_STRATEGY(bp);
    414 
    415 	bp->b_vp = savedvp;
    416 
    417 	return (error);
    418 }
    419 
    420 
    421 /*
    422  * XXX - like vop_strategy, vop_bwrite must be hand coded because it has no
    423  * vnode in its arguments.
    424  * This goes away with a merged VM/buffer cache.
    425  */
    426 int
    427 null_bwrite(ap)
    428 	struct vop_bwrite_args /* {
    429 		struct buf *a_bp;
    430 	} */ *ap;
    431 {
    432 	struct buf *bp = ap->a_bp;
    433 	int error;
    434 	struct vnode *savedvp;
    435 
    436 	savedvp = bp->b_vp;
    437 	bp->b_vp = NULLVPTOLOWERVP(bp->b_vp);
    438 
    439 	error = VOP_BWRITE(bp);
    440 
    441 	bp->b_vp = savedvp;
    442 
    443 	return (error);
    444 }
    445 
    446 /*
    447  * Global vfs data structures
    448  */
    449 int (**null_vnodeop_p)();
    450 struct vnodeopv_entry_desc null_vnodeop_entries[] = {
    451 	{ &vop_default_desc, null_bypass },
    452 
    453 	{ &vop_getattr_desc, null_getattr },
    454 	{ &vop_inactive_desc, null_inactive },
    455 	{ &vop_reclaim_desc, null_reclaim },
    456 	{ &vop_print_desc, null_print },
    457 
    458 	{ &vop_strategy_desc, null_strategy },
    459 	{ &vop_bwrite_desc, null_bwrite },
    460 
    461 	{ (struct vnodeop_desc*)NULL, (int(*)())NULL }
    462 };
    463 struct vnodeopv_desc null_vnodeop_opv_desc =
    464 	{ &null_vnodeop_p, null_vnodeop_entries };
    465