Home | History | Annotate | Line # | Download | only in nullfs
null_vnops.c revision 1.31
      1 /*	$NetBSD: null_vnops.c,v 1.31 2004/06/30 17:42:55 hannken Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1999 National Aeronautics & Space Administration
      5  * All rights reserved.
      6  *
      7  * This software was written by William Studenmund of the
      8  * Numerical Aerospace Simulation Facility, NASA Ames Research Center.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. Neither the name of the National Aeronautics & Space Administration
     19  *    nor the names of its contributors may be used to endorse or promote
     20  *    products derived from this software without specific prior written
     21  *    permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE NATIONAL AERONAUTICS & SPACE ADMINISTRATION
     24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     25  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     26  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE ADMINISTRATION OR CONTRIB-
     27  * UTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
     28  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     33  * POSSIBILITY OF SUCH DAMAGE.
     34  */
     35 /*
     36  * Copyright (c) 1992, 1993
     37  *	The Regents of the University of California.  All rights reserved.
     38  *
     39  * This code is derived from software contributed to Berkeley by
     40  * John Heidemann of the UCLA Ficus project.
     41  *
     42  * Redistribution and use in source and binary forms, with or without
     43  * modification, are permitted provided that the following conditions
     44  * are met:
     45  * 1. Redistributions of source code must retain the above copyright
     46  *    notice, this list of conditions and the following disclaimer.
     47  * 2. Redistributions in binary form must reproduce the above copyright
     48  *    notice, this list of conditions and the following disclaimer in the
     49  *    documentation and/or other materials provided with the distribution.
     50  * 3. Neither the name of the University nor the names of its contributors
     51  *    may be used to endorse or promote products derived from this software
     52  *    without specific prior written permission.
     53  *
     54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     64  * SUCH DAMAGE.
     65  *
     66  *	@(#)null_vnops.c	8.6 (Berkeley) 5/27/95
     67  *
     68  * Ancestors:
     69  *	@(#)lofs_vnops.c	1.2 (Berkeley) 6/18/92
     70  *      Id: lofs_vnops.c,v 1.11 1992/05/30 10:05:43 jsp Exp jsp
     71  *	...and...
     72  *	@(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project
     73  */
     74 
     75 /*
     76  * Null Layer
     77  *
     78  * (See mount_null(8) for more information.)
     79  *
     80  * The null layer duplicates a portion of the file system
     81  * name space under a new name.  In this respect, it is
     82  * similar to the loopback file system.  It differs from
     83  * the loopback fs in two respects:  it is implemented using
     84  * a stackable layers technique, and its "null-nodes" stack above
     85  * all lower-layer vnodes, not just over directory vnodes.
     86  *
     87  * The null layer has two purposes.  First, it serves as a demonstration
     88  * of layering by providing a layer which does nothing (it actually
     89  * does everything the loopback file system does, which is slightly
     90  * more than nothing).  Second, the null layer can serve as a prototype
     91  * layer.  Since it provides all necessary layer framework,
     92  * new file system layers can be created very easily by starting
     93  * with a null layer.
     94  *
     95  * The remainder of this comment examines the null layer as a basis
     96  * for constructing new layers.
     97  *
     98  *
     99  * INSTANTIATING NEW NULL LAYERS
    100  *
    101  * New null layers are created with mount_null(8).
    102  * mount_null(8) takes two arguments, the pathname
    103  * of the lower vfs (target-pn) and the pathname where the null
    104  * layer will appear in the namespace (alias-pn).  After
    105  * the null layer is put into place, the contents
    106  * of target-pn subtree will be aliased under alias-pn.
    107  *
    108  *
    109  * OPERATION OF A NULL LAYER
    110  *
    111  * The null layer is the minimum file system layer,
    112  * simply bypassing all possible operations to the lower layer
    113  * for processing there.  The majority of its activity centers
    114  * on the bypass routine, through which nearly all vnode operations
    115  * pass.
    116  *
    117  * The bypass routine accepts arbitrary vnode operations for
    118  * handling by the lower layer.  It begins by examining vnode
    119  * operation arguments and replacing any null-nodes by their
    120  * lower-layer equivalents.  It then invokes the operation
    121  * on the lower layer.  Finally, it replaces the null-nodes
    122  * in the arguments and, if a vnode is returned by the operation,
    123  * stacks a null-node on top of the returned vnode.
    124  *
    125  * Although bypass handles most operations, vop_getattr, vop_lock,
    126  * vop_unlock, vop_inactive, vop_reclaim, and vop_print are not
    127  * bypassed. vop_getattr must change the fsid being returned.
    128  * vop_lock and vop_unlock must handle any locking for the
    129  * current vnode as well as pass the lock request down.
    130  * vop_inactive and vop_reclaim are not bypassed so that
    131  * they can handle freeing null-layer specific data. vop_print
    132  * is not bypassed to avoid excessive debugging information.
    133  * Also, certain vnode operations change the locking state within
    134  * the operation (create, mknod, remove, link, rename, mkdir, rmdir,
    135  * and symlink). Ideally these operations should not change the
    136  * lock state, but should be changed to let the caller of the
    137  * function unlock them. Otherwise all intermediate vnode layers
    138  * (such as union, umapfs, etc) must catch these functions to do
    139  * the necessary locking at their layer.
    140  *
    141  *
    142  * INSTANTIATING VNODE STACKS
    143  *
    144  * Mounting associates the null layer with a lower layer,
    145  * in effect stacking two VFSes.  Vnode stacks are instead
    146  * created on demand as files are accessed.
    147  *
    148  * The initial mount creates a single vnode stack for the
    149  * root of the new null layer.  All other vnode stacks
    150  * are created as a result of vnode operations on
    151  * this or other null vnode stacks.
    152  *
    153  * New vnode stacks come into existence as a result of
    154  * an operation which returns a vnode.
    155  * The bypass routine stacks a null-node above the new
    156  * vnode before returning it to the caller.
    157  *
    158  * For example, imagine mounting a null layer with
    159  * "mount_null /usr/include /dev/layer/null".
    160  * Changing directory to /dev/layer/null will assign
    161  * the root null-node (which was created when the null layer was mounted).
    162  * Now consider opening "sys".  A vop_lookup would be
    163  * done on the root null-node.  This operation would bypass through
    164  * to the lower layer which would return a vnode representing
    165  * the UFS "sys".  null_bypass then builds a null-node
    166  * aliasing the UFS "sys" and returns this to the caller.
    167  * Later operations on the null-node "sys" will repeat this
    168  * process when constructing other vnode stacks.
    169  *
    170  *
    171  * CREATING OTHER FILE SYSTEM LAYERS
    172  *
    173  * One of the easiest ways to construct new file system layers is to make
    174  * a copy of the null layer, rename all files and variables, and
    175  * then begin modifying the copy.  sed(1) can be used to easily rename
    176  * all variables.
    177  *
    178  * The umap layer is an example of a layer descended from the
    179  * null layer.
    180  *
    181  *
    182  * INVOKING OPERATIONS ON LOWER LAYERS
    183  *
    184  * There are two techniques to invoke operations on a lower layer
    185  * when the operation cannot be completely bypassed.  Each method
    186  * is appropriate in different situations.  In both cases,
    187  * it is the responsibility of the aliasing layer to make
    188  * the operation arguments "correct" for the lower layer
    189  * by mapping any vnode arguments to the lower layer.
    190  *
    191  * The first approach is to call the aliasing layer's bypass routine.
    192  * This method is most suitable when you wish to invoke the operation
    193  * currently being handled on the lower layer.  It has the advantage
    194  * that the bypass routine already must do argument mapping.
    195  * An example of this is null_getattrs in the null layer.
    196  *
    197  * A second approach is to directly invoke vnode operations on
    198  * the lower layer with the VOP_OPERATIONNAME interface.
    199  * The advantage of this method is that it is easy to invoke
    200  * arbitrary operations on the lower layer.  The disadvantage
    201  * is that vnode arguments must be manually mapped.
    202  *
    203  */
    204 
    205 #include <sys/cdefs.h>
    206 __KERNEL_RCSID(0, "$NetBSD: null_vnops.c,v 1.31 2004/06/30 17:42:55 hannken Exp $");
    207 
    208 #include <sys/param.h>
    209 #include <sys/systm.h>
    210 #include <sys/proc.h>
    211 #include <sys/time.h>
    212 #include <sys/vnode.h>
    213 #include <sys/mount.h>
    214 #include <sys/namei.h>
    215 #include <sys/malloc.h>
    216 #include <sys/buf.h>
    217 #include <miscfs/genfs/genfs.h>
    218 #include <miscfs/nullfs/null.h>
    219 #include <miscfs/genfs/layer_extern.h>
    220 
    221 /*
    222  * Global vfs data structures
    223  */
    224 int (**null_vnodeop_p) __P((void *));
    225 const struct vnodeopv_entry_desc null_vnodeop_entries[] = {
    226 	{ &vop_default_desc,  layer_bypass },
    227 
    228 	{ &vop_lookup_desc,   layer_lookup },
    229 	{ &vop_setattr_desc,  layer_setattr },
    230 	{ &vop_getattr_desc,  layer_getattr },
    231 	{ &vop_access_desc,   layer_access },
    232 	{ &vop_lock_desc,     layer_lock },
    233 	{ &vop_unlock_desc,   layer_unlock },
    234 	{ &vop_islocked_desc, layer_islocked },
    235 	{ &vop_fsync_desc,    layer_fsync },
    236 	{ &vop_inactive_desc, layer_inactive },
    237 	{ &vop_reclaim_desc,  layer_reclaim },
    238 	{ &vop_print_desc,    layer_print },
    239 	{ &vop_remove_desc,   layer_remove },
    240 	{ &vop_rename_desc,   layer_rename },
    241 	{ &vop_rmdir_desc,    layer_rmdir },
    242 
    243 	{ &vop_open_desc,     layer_open },	/* mount option handling */
    244 
    245 	{ &vop_bwrite_desc,   layer_bwrite },
    246 	{ &vop_bmap_desc,     layer_bmap },
    247 	{ &vop_getpages_desc, layer_getpages },
    248 	{ &vop_putpages_desc, layer_putpages },
    249 
    250 	{ NULL, NULL }
    251 };
    252 const struct vnodeopv_desc null_vnodeop_opv_desc =
    253 	{ &null_vnodeop_p, null_vnodeop_entries };
    254