Home | History | Annotate | Line # | Download | only in procfs
procfs_mem.c revision 1.13
      1 /*	$NetBSD: procfs_mem.c,v 1.13 1997/08/13 04:01:22 explorer Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1993 Jan-Simon Pendry
      5  * Copyright (c) 1993 Sean Eric Fagan
      6  * Copyright (c) 1993
      7  *	The Regents of the University of California.  All rights reserved.
      8  *
      9  * This code is derived from software contributed to Berkeley by
     10  * Jan-Simon Pendry and Sean Eric Fagan.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by the University of
     23  *	California, Berkeley and its contributors.
     24  * 4. Neither the name of the University nor the names of its contributors
     25  *    may be used to endorse or promote products derived from this software
     26  *    without specific prior written permission.
     27  *
     28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     38  * SUCH DAMAGE.
     39  *
     40  *	@(#)procfs_mem.c	8.5 (Berkeley) 6/15/94
     41  */
     42 
     43 /*
     44  * This is a lightly hacked and merged version
     45  * of sef's pread/pwrite functions
     46  */
     47 
     48 #include <sys/param.h>
     49 #include <sys/systm.h>
     50 #include <sys/time.h>
     51 #include <sys/kernel.h>
     52 #include <sys/proc.h>
     53 #include <sys/vnode.h>
     54 #include <miscfs/procfs/procfs.h>
     55 #include <vm/vm.h>
     56 #include <vm/vm_kern.h>
     57 #include <vm/vm_page.h>
     58 
     59 #define	ISSET(t, f)	((t) & (f))
     60 
     61 static int procfs_rwmem __P((struct proc *, struct uio *));
     62 
     63 static int
     64 procfs_rwmem(p, uio)
     65 	struct proc *p;
     66 	struct uio *uio;
     67 {
     68 	int error;
     69 	int writing;
     70 
     71 	writing = uio->uio_rw == UIO_WRITE;
     72 
     73 	/*
     74 	 * Only map in one page at a time.  We don't have to, but it
     75 	 * makes things easier.  This way is trivial - right?
     76 	 */
     77 	do {
     78 		vm_map_t map, tmap;
     79 		vm_object_t object;
     80 		vm_offset_t kva;
     81 		vm_offset_t uva;
     82 		int page_offset;		/* offset into page */
     83 		vm_offset_t pageno;		/* page number */
     84 		vm_map_entry_t out_entry;
     85 		vm_prot_t out_prot;
     86 		vm_page_t m;
     87 		boolean_t wired, single_use;
     88 		vm_offset_t off;
     89 		u_int len;
     90 		int fix_prot;
     91 
     92 		uva = (vm_offset_t) uio->uio_offset;
     93 		if (uva > VM_MAXUSER_ADDRESS) {
     94 			error = 0;
     95 			break;
     96 		}
     97 
     98 		/*
     99 		 * Get the page number of this segment.
    100 		 */
    101 		pageno = trunc_page(uva);
    102 		page_offset = uva - pageno;
    103 
    104 		/*
    105 		 * How many bytes to copy
    106 		 */
    107 		len = min(PAGE_SIZE - page_offset, uio->uio_resid);
    108 
    109 		/*
    110 		 * The map we want...
    111 		 */
    112 		map = &p->p_vmspace->vm_map;
    113 
    114 		/*
    115 		 * Check the permissions for the area we're interested
    116 		 * in.
    117 		 */
    118 		fix_prot = 0;
    119 		if (writing)
    120 			fix_prot = !vm_map_check_protection(map, pageno,
    121 					pageno + PAGE_SIZE, VM_PROT_WRITE);
    122 
    123 		if (fix_prot) {
    124 			/*
    125 			 * If the page is not writable, we make it so.
    126 			 * XXX It is possible that a page may *not* be
    127 			 * read/executable, if a process changes that!
    128 			 * We will assume, for now, that a page is either
    129 			 * VM_PROT_ALL, or VM_PROT_READ|VM_PROT_EXECUTE.
    130 			 */
    131 			error = vm_map_protect(map, pageno,
    132 					pageno + PAGE_SIZE, VM_PROT_ALL, 0);
    133 			if (error)
    134 				break;
    135 		}
    136 
    137 		/*
    138 		 * Now we need to get the page.  out_entry, out_prot, wired,
    139 		 * and single_use aren't used.  One would think the vm code
    140 		 * would be a *bit* nicer...  We use tmap because
    141 		 * vm_map_lookup() can change the map argument.
    142 		 */
    143 		tmap = map;
    144 		error = vm_map_lookup(&tmap, pageno,
    145 				      writing ? VM_PROT_WRITE : VM_PROT_READ,
    146 				      &out_entry, &object, &off, &out_prot,
    147 				      &wired, &single_use);
    148 		/*
    149 		 * We're done with tmap now.
    150 		 */
    151 		if (!error)
    152 			vm_map_lookup_done(tmap, out_entry);
    153 
    154 		/*
    155 		 * Fault the page in...
    156 		 */
    157 		if (!error && writing && object->shadow) {
    158 			m = vm_page_lookup(object, off);
    159 			if (m == 0 || (m->flags & PG_COPYONWRITE))
    160 				error = vm_fault(map, pageno,
    161 							VM_PROT_WRITE, FALSE);
    162 		}
    163 
    164 		/* Find space in kernel_map for the page we're interested in */
    165 		if (!error) {
    166 			kva = VM_MIN_KERNEL_ADDRESS;
    167 			error = vm_map_find(kernel_map, object, off, &kva,
    168 					PAGE_SIZE, 1);
    169 		}
    170 
    171 		if (!error) {
    172 			/*
    173 			 * Neither vm_map_lookup() nor vm_map_find() appear
    174 			 * to add a reference count to the object, so we do
    175 			 * that here and now.
    176 			 */
    177 			vm_object_reference(object);
    178 
    179 			/*
    180 			 * Mark the page we just found as pageable.
    181 			 */
    182 			error = vm_map_pageable(kernel_map, kva,
    183 				kva + PAGE_SIZE, 0);
    184 
    185 			/*
    186 			 * Now do the i/o move.
    187 			 */
    188 			if (!error)
    189 				error = uiomove((caddr_t) (kva + page_offset),
    190 						len, uio);
    191 
    192 			vm_map_remove(kernel_map, kva, kva + PAGE_SIZE);
    193 		}
    194 		if (fix_prot)
    195 			vm_map_protect(map, pageno, pageno + PAGE_SIZE,
    196 					VM_PROT_READ|VM_PROT_EXECUTE, 0);
    197 	} while (error == 0 && uio->uio_resid > 0);
    198 
    199 	return (error);
    200 }
    201 
    202 /*
    203  * Copy data in and out of the target process.
    204  * We do this by mapping the process's page into
    205  * the kernel and then doing a uiomove direct
    206  * from the kernel address space.
    207  */
    208 int
    209 procfs_domem(curp, p, pfs, uio)
    210 	struct proc *curp;
    211 	struct proc *p;
    212 	struct pfsnode *pfs;
    213 	struct uio *uio;
    214 {
    215 	int error;
    216 
    217 	if (uio->uio_resid == 0)
    218 		return (0);
    219 
    220 	if ((error = procfs_checkioperm(curp, p)) != 0)
    221 		return (error);
    222 
    223 	PHOLD(p);
    224 	error = procfs_rwmem(p, uio);
    225 	PRELE(p);
    226 	return (error);
    227 }
    228 
    229 /*
    230  * Given process (p), find the vnode from which
    231  * it's text segment is being executed.
    232  *
    233  * It would be nice to grab this information from
    234  * the VM system, however, there is no sure-fire
    235  * way of doing that.  Instead, fork(), exec() and
    236  * wait() all maintain the p_textvp field in the
    237  * process proc structure which contains a held
    238  * reference to the exec'ed vnode.
    239  */
    240 struct vnode *
    241 procfs_findtextvp(p)
    242 	struct proc *p;
    243 {
    244 
    245 	return (p->p_textvp);
    246 }
    247 
    248 int
    249 procfs_checkioperm(t, p)
    250 	struct proc *t, *p;
    251 {
    252 	int error;
    253 
    254 	/*
    255 	 * You cannot attach to a processes mem/regs if:
    256 	 *
    257 	 *	(1) it's not owned by you, or is set-id on exec
    258 	 *	    (unless you're root), or...
    259 	 */
    260 	if ((t->p_cred->p_ruid != p->p_cred->p_ruid ||
    261 	    ISSET(t->p_flag, P_SUGID)) &&
    262 	    (error = suser(p->p_ucred, &p->p_acflag)) != 0)
    263 		return (error);
    264 
    265 	/*
    266 	 *	(2) ...it's init, which controls the security level
    267 	 *	    of the entire system, and the system was not
    268 	 *	    compiled with permanetly insecure mode turned on.
    269 	 */
    270 	if (t == initproc && securelevel > -1)
    271 		return (EPERM);
    272 
    273 	return (0);
    274 }
    275 
    276 #ifdef probably_never
    277 /*
    278  * Given process (p), find the vnode from which
    279  * it's text segment is being mapped.
    280  *
    281  * (This is here, rather than in procfs_subr in order
    282  * to keep all the VM related code in one place.)
    283  */
    284 struct vnode *
    285 procfs_findtextvp(p)
    286 	struct proc *p;
    287 {
    288 	int error;
    289 	vm_object_t object;
    290 	vm_offset_t pageno;		/* page number */
    291 
    292 	/* find a vnode pager for the user address space */
    293 
    294 	for (pageno = VM_MIN_ADDRESS;
    295 			pageno < VM_MAXUSER_ADDRESS;
    296 			pageno += PAGE_SIZE) {
    297 		vm_map_t map;
    298 		vm_map_entry_t out_entry;
    299 		vm_prot_t out_prot;
    300 		boolean_t wired, single_use;
    301 		vm_offset_t off;
    302 
    303 		map = &p->p_vmspace->vm_map;
    304 		error = vm_map_lookup(&map, pageno,
    305 			      VM_PROT_READ,
    306 			      &out_entry, &object, &off, &out_prot,
    307 			      &wired, &single_use);
    308 
    309 		if (!error) {
    310 			vm_pager_t pager;
    311 
    312 			printf("procfs: found vm object\n");
    313 			vm_map_lookup_done(map, out_entry);
    314 			printf("procfs: vm object = %x\n", object);
    315 
    316 			/*
    317 			 * At this point, assuming no errors, object
    318 			 * is the VM object mapping UVA (pageno).
    319 			 * Ensure it has a vnode pager, then grab
    320 			 * the vnode from that pager's handle.
    321 			 */
    322 
    323 			pager = object->pager;
    324 			printf("procfs: pager = %x\n", pager);
    325 			if (pager)
    326 				printf("procfs: found pager, type = %d\n",
    327 				    pager->pg_type);
    328 			if (pager && pager->pg_type == PG_VNODE) {
    329 				struct vnode *vp;
    330 
    331 				vp = (struct vnode *) pager->pg_handle;
    332 				printf("procfs: vp = 0x%x\n", vp);
    333 				return (vp);
    334 			}
    335 		}
    336 	}
    337 
    338 	printf("procfs: text object not found\n");
    339 	return (0);
    340 }
    341 #endif /* probably_never */
    342