bpf.c revision 1.176 1 /* $NetBSD: bpf.c,v 1.176 2013/09/09 20:53:51 christos Exp $ */
2
3 /*
4 * Copyright (c) 1990, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from the Stanford/CMU enet packet filter,
8 * (net/enet.c) distributed as part of 4.3BSD, and code contributed
9 * to Berkeley by Steven McCanne and Van Jacobson both of Lawrence
10 * Berkeley Laboratory.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)bpf.c 8.4 (Berkeley) 1/9/95
37 * static char rcsid[] =
38 * "Header: bpf.c,v 1.67 96/09/26 22:00:52 leres Exp ";
39 */
40
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: bpf.c,v 1.176 2013/09/09 20:53:51 christos Exp $");
43
44 #if defined(_KERNEL_OPT)
45 #include "opt_bpf.h"
46 #include "sl.h"
47 #include "strip.h"
48 #endif
49
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/mbuf.h>
53 #include <sys/buf.h>
54 #include <sys/time.h>
55 #include <sys/proc.h>
56 #include <sys/ioctl.h>
57 #include <sys/conf.h>
58 #include <sys/vnode.h>
59 #include <sys/queue.h>
60 #include <sys/stat.h>
61 #include <sys/module.h>
62 #include <sys/once.h>
63 #include <sys/atomic.h>
64
65 #include <sys/file.h>
66 #include <sys/filedesc.h>
67 #include <sys/tty.h>
68 #include <sys/uio.h>
69
70 #include <sys/protosw.h>
71 #include <sys/socket.h>
72 #include <sys/errno.h>
73 #include <sys/kernel.h>
74 #include <sys/poll.h>
75 #include <sys/sysctl.h>
76 #include <sys/kauth.h>
77
78 #include <net/if.h>
79 #include <net/slip.h>
80
81 #include <net/bpf.h>
82 #include <net/bpfdesc.h>
83 #include <net/bpfjit.h>
84
85 #include <net/if_arc.h>
86 #include <net/if_ether.h>
87
88 #include <netinet/in.h>
89 #include <netinet/if_inarp.h>
90
91
92 #include <compat/sys/sockio.h>
93
94 #ifndef BPF_BUFSIZE
95 /*
96 * 4096 is too small for FDDI frames. 8192 is too small for gigabit Ethernet
97 * jumbos (circa 9k), ATM, or Intel gig/10gig ethernet jumbos (16k).
98 */
99 # define BPF_BUFSIZE 32768
100 #endif
101
102 #define PRINET 26 /* interruptible */
103
104 /*
105 * The default read buffer size, and limit for BIOCSBLEN, is sysctl'able.
106 * XXX the default values should be computed dynamically based
107 * on available memory size and available mbuf clusters.
108 */
109 int bpf_bufsize = BPF_BUFSIZE;
110 int bpf_maxbufsize = BPF_DFLTBUFSIZE; /* XXX set dynamically, see above */
111 bool bpf_jit = false;
112
113 struct bpfjit_ops bpfjit_module_ops = {
114 .bj_generate_code = NULL,
115 .bj_free_code = NULL
116 };
117
118 /*
119 * Global BPF statistics returned by net.bpf.stats sysctl.
120 */
121 struct bpf_stat bpf_gstats;
122
123 /*
124 * Use a mutex to avoid a race condition between gathering the stats/peers
125 * and opening/closing the device.
126 */
127 static kmutex_t bpf_mtx;
128
129 /*
130 * bpf_iflist is the list of interfaces; each corresponds to an ifnet
131 * bpf_dtab holds the descriptors, indexed by minor device #
132 */
133 struct bpf_if *bpf_iflist;
134 LIST_HEAD(, bpf_d) bpf_list;
135
136 static int bpf_allocbufs(struct bpf_d *);
137 static void bpf_deliver(struct bpf_if *,
138 void *(*cpfn)(void *, const void *, size_t),
139 void *, u_int, u_int, const bool);
140 static void bpf_freed(struct bpf_d *);
141 static void bpf_ifname(struct ifnet *, struct ifreq *);
142 static void *bpf_mcpy(void *, const void *, size_t);
143 static int bpf_movein(struct uio *, int, uint64_t,
144 struct mbuf **, struct sockaddr *);
145 static void bpf_attachd(struct bpf_d *, struct bpf_if *);
146 static void bpf_detachd(struct bpf_d *);
147 static int bpf_setif(struct bpf_d *, struct ifreq *);
148 static void bpf_timed_out(void *);
149 static inline void
150 bpf_wakeup(struct bpf_d *);
151 static int bpf_hdrlen(struct bpf_d *);
152 static void catchpacket(struct bpf_d *, u_char *, u_int, u_int,
153 void *(*)(void *, const void *, size_t), struct timespec *);
154 static void reset_d(struct bpf_d *);
155 static int bpf_getdltlist(struct bpf_d *, struct bpf_dltlist *);
156 static int bpf_setdlt(struct bpf_d *, u_int);
157
158 static int bpf_read(struct file *, off_t *, struct uio *, kauth_cred_t,
159 int);
160 static int bpf_write(struct file *, off_t *, struct uio *, kauth_cred_t,
161 int);
162 static int bpf_ioctl(struct file *, u_long, void *);
163 static int bpf_poll(struct file *, int);
164 static int bpf_stat(struct file *, struct stat *);
165 static int bpf_close(struct file *);
166 static int bpf_kqfilter(struct file *, struct knote *);
167 static void bpf_softintr(void *);
168
169 static const struct fileops bpf_fileops = {
170 .fo_read = bpf_read,
171 .fo_write = bpf_write,
172 .fo_ioctl = bpf_ioctl,
173 .fo_fcntl = fnullop_fcntl,
174 .fo_poll = bpf_poll,
175 .fo_stat = bpf_stat,
176 .fo_close = bpf_close,
177 .fo_kqfilter = bpf_kqfilter,
178 .fo_restart = fnullop_restart,
179 };
180
181 dev_type_open(bpfopen);
182
183 const struct cdevsw bpf_cdevsw = {
184 bpfopen, noclose, noread, nowrite, noioctl,
185 nostop, notty, nopoll, nommap, nokqfilter, D_OTHER
186 };
187
188 static int
189 bpf_movein(struct uio *uio, int linktype, uint64_t mtu, struct mbuf **mp,
190 struct sockaddr *sockp)
191 {
192 struct mbuf *m;
193 int error;
194 size_t len;
195 size_t hlen;
196 size_t align;
197
198 /*
199 * Build a sockaddr based on the data link layer type.
200 * We do this at this level because the ethernet header
201 * is copied directly into the data field of the sockaddr.
202 * In the case of SLIP, there is no header and the packet
203 * is forwarded as is.
204 * Also, we are careful to leave room at the front of the mbuf
205 * for the link level header.
206 */
207 switch (linktype) {
208
209 case DLT_SLIP:
210 sockp->sa_family = AF_INET;
211 hlen = 0;
212 align = 0;
213 break;
214
215 case DLT_PPP:
216 sockp->sa_family = AF_UNSPEC;
217 hlen = 0;
218 align = 0;
219 break;
220
221 case DLT_EN10MB:
222 sockp->sa_family = AF_UNSPEC;
223 /* XXX Would MAXLINKHDR be better? */
224 /* 6(dst)+6(src)+2(type) */
225 hlen = sizeof(struct ether_header);
226 align = 2;
227 break;
228
229 case DLT_ARCNET:
230 sockp->sa_family = AF_UNSPEC;
231 hlen = ARC_HDRLEN;
232 align = 5;
233 break;
234
235 case DLT_FDDI:
236 sockp->sa_family = AF_LINK;
237 /* XXX 4(FORMAC)+6(dst)+6(src) */
238 hlen = 16;
239 align = 0;
240 break;
241
242 case DLT_ECONET:
243 sockp->sa_family = AF_UNSPEC;
244 hlen = 6;
245 align = 2;
246 break;
247
248 case DLT_NULL:
249 sockp->sa_family = AF_UNSPEC;
250 hlen = 0;
251 align = 0;
252 break;
253
254 default:
255 return (EIO);
256 }
257
258 len = uio->uio_resid;
259 /*
260 * If there aren't enough bytes for a link level header or the
261 * packet length exceeds the interface mtu, return an error.
262 */
263 if (len - hlen > mtu)
264 return (EMSGSIZE);
265
266 /*
267 * XXX Avoid complicated buffer chaining ---
268 * bail if it won't fit in a single mbuf.
269 * (Take into account possible alignment bytes)
270 */
271 if (len + align > MCLBYTES)
272 return (EIO);
273
274 m = m_gethdr(M_WAIT, MT_DATA);
275 m->m_pkthdr.rcvif = 0;
276 m->m_pkthdr.len = (int)(len - hlen);
277 if (len + align > MHLEN) {
278 m_clget(m, M_WAIT);
279 if ((m->m_flags & M_EXT) == 0) {
280 error = ENOBUFS;
281 goto bad;
282 }
283 }
284
285 /* Insure the data is properly aligned */
286 if (align > 0) {
287 m->m_data += align;
288 m->m_len -= (int)align;
289 }
290
291 error = uiomove(mtod(m, void *), len, uio);
292 if (error)
293 goto bad;
294 if (hlen != 0) {
295 memcpy(sockp->sa_data, mtod(m, void *), hlen);
296 m->m_data += hlen; /* XXX */
297 len -= hlen;
298 }
299 m->m_len = (int)len;
300 *mp = m;
301 return (0);
302
303 bad:
304 m_freem(m);
305 return (error);
306 }
307
308 /*
309 * Attach file to the bpf interface, i.e. make d listen on bp.
310 * Must be called at splnet.
311 */
312 static void
313 bpf_attachd(struct bpf_d *d, struct bpf_if *bp)
314 {
315 /*
316 * Point d at bp, and add d to the interface's list of listeners.
317 * Finally, point the driver's bpf cookie at the interface so
318 * it will divert packets to bpf.
319 */
320 d->bd_bif = bp;
321 d->bd_next = bp->bif_dlist;
322 bp->bif_dlist = d;
323
324 *bp->bif_driverp = bp;
325 }
326
327 /*
328 * Detach a file from its interface.
329 */
330 static void
331 bpf_detachd(struct bpf_d *d)
332 {
333 struct bpf_d **p;
334 struct bpf_if *bp;
335
336 bp = d->bd_bif;
337 /*
338 * Check if this descriptor had requested promiscuous mode.
339 * If so, turn it off.
340 */
341 if (d->bd_promisc) {
342 int error;
343
344 d->bd_promisc = 0;
345 /*
346 * Take device out of promiscuous mode. Since we were
347 * able to enter promiscuous mode, we should be able
348 * to turn it off. But we can get an error if
349 * the interface was configured down, so only panic
350 * if we don't get an unexpected error.
351 */
352 error = ifpromisc(bp->bif_ifp, 0);
353 if (error && error != EINVAL)
354 panic("%s: ifpromisc failed: %d", __func__, error);
355 }
356 /* Remove d from the interface's descriptor list. */
357 p = &bp->bif_dlist;
358 while (*p != d) {
359 p = &(*p)->bd_next;
360 if (*p == 0)
361 panic("%s: descriptor not in list", __func__);
362 }
363 *p = (*p)->bd_next;
364 if (bp->bif_dlist == 0)
365 /*
366 * Let the driver know that there are no more listeners.
367 */
368 *d->bd_bif->bif_driverp = 0;
369 d->bd_bif = 0;
370 }
371
372 static int
373 doinit(void)
374 {
375
376 mutex_init(&bpf_mtx, MUTEX_DEFAULT, IPL_NONE);
377
378 LIST_INIT(&bpf_list);
379
380 bpf_gstats.bs_recv = 0;
381 bpf_gstats.bs_drop = 0;
382 bpf_gstats.bs_capt = 0;
383
384 return 0;
385 }
386
387 /*
388 * bpfilterattach() is called at boot time.
389 */
390 /* ARGSUSED */
391 void
392 bpfilterattach(int n)
393 {
394 static ONCE_DECL(control);
395
396 RUN_ONCE(&control, doinit);
397 }
398
399 /*
400 * Open ethernet device. Clones.
401 */
402 /* ARGSUSED */
403 int
404 bpfopen(dev_t dev, int flag, int mode, struct lwp *l)
405 {
406 struct bpf_d *d;
407 struct file *fp;
408 int error, fd;
409
410 /* falloc() will use the descriptor for us. */
411 if ((error = fd_allocfile(&fp, &fd)) != 0)
412 return error;
413
414 d = malloc(sizeof(*d), M_DEVBUF, M_WAITOK|M_ZERO);
415 d->bd_bufsize = bpf_bufsize;
416 d->bd_seesent = 1;
417 d->bd_feedback = 0;
418 d->bd_pid = l->l_proc->p_pid;
419 #ifdef _LP64
420 if (curproc->p_flag & PK_32)
421 d->bd_compat32 = 1;
422 #endif
423 getnanotime(&d->bd_btime);
424 d->bd_atime = d->bd_mtime = d->bd_btime;
425 callout_init(&d->bd_callout, 0);
426 selinit(&d->bd_sel);
427 d->bd_sih = softint_establish(SOFTINT_CLOCK, bpf_softintr, d);
428 d->bd_jitcode = NULL;
429
430 mutex_enter(&bpf_mtx);
431 LIST_INSERT_HEAD(&bpf_list, d, bd_list);
432 mutex_exit(&bpf_mtx);
433
434 return fd_clone(fp, fd, flag, &bpf_fileops, d);
435 }
436
437 /*
438 * Close the descriptor by detaching it from its interface,
439 * deallocating its buffers, and marking it free.
440 */
441 /* ARGSUSED */
442 static int
443 bpf_close(struct file *fp)
444 {
445 struct bpf_d *d = fp->f_data;
446 int s;
447
448 KERNEL_LOCK(1, NULL);
449
450 /*
451 * Refresh the PID associated with this bpf file.
452 */
453 d->bd_pid = curproc->p_pid;
454
455 s = splnet();
456 if (d->bd_state == BPF_WAITING)
457 callout_stop(&d->bd_callout);
458 d->bd_state = BPF_IDLE;
459 if (d->bd_bif)
460 bpf_detachd(d);
461 splx(s);
462 bpf_freed(d);
463 mutex_enter(&bpf_mtx);
464 LIST_REMOVE(d, bd_list);
465 mutex_exit(&bpf_mtx);
466 callout_destroy(&d->bd_callout);
467 seldestroy(&d->bd_sel);
468 softint_disestablish(d->bd_sih);
469 free(d, M_DEVBUF);
470 fp->f_data = NULL;
471
472 KERNEL_UNLOCK_ONE(NULL);
473
474 return (0);
475 }
476
477 /*
478 * Rotate the packet buffers in descriptor d. Move the store buffer
479 * into the hold slot, and the free buffer into the store slot.
480 * Zero the length of the new store buffer.
481 */
482 #define ROTATE_BUFFERS(d) \
483 (d)->bd_hbuf = (d)->bd_sbuf; \
484 (d)->bd_hlen = (d)->bd_slen; \
485 (d)->bd_sbuf = (d)->bd_fbuf; \
486 (d)->bd_slen = 0; \
487 (d)->bd_fbuf = 0;
488 /*
489 * bpfread - read next chunk of packets from buffers
490 */
491 static int
492 bpf_read(struct file *fp, off_t *offp, struct uio *uio,
493 kauth_cred_t cred, int flags)
494 {
495 struct bpf_d *d = fp->f_data;
496 int timed_out;
497 int error;
498 int s;
499
500 getnanotime(&d->bd_atime);
501 /*
502 * Restrict application to use a buffer the same size as
503 * the kernel buffers.
504 */
505 if (uio->uio_resid != d->bd_bufsize)
506 return (EINVAL);
507
508 KERNEL_LOCK(1, NULL);
509 s = splnet();
510 if (d->bd_state == BPF_WAITING)
511 callout_stop(&d->bd_callout);
512 timed_out = (d->bd_state == BPF_TIMED_OUT);
513 d->bd_state = BPF_IDLE;
514 /*
515 * If the hold buffer is empty, then do a timed sleep, which
516 * ends when the timeout expires or when enough packets
517 * have arrived to fill the store buffer.
518 */
519 while (d->bd_hbuf == 0) {
520 if (fp->f_flag & FNONBLOCK) {
521 if (d->bd_slen == 0) {
522 splx(s);
523 KERNEL_UNLOCK_ONE(NULL);
524 return (EWOULDBLOCK);
525 }
526 ROTATE_BUFFERS(d);
527 break;
528 }
529
530 if ((d->bd_immediate || timed_out) && d->bd_slen != 0) {
531 /*
532 * A packet(s) either arrived since the previous
533 * read or arrived while we were asleep.
534 * Rotate the buffers and return what's here.
535 */
536 ROTATE_BUFFERS(d);
537 break;
538 }
539 error = tsleep(d, PRINET|PCATCH, "bpf",
540 d->bd_rtout);
541 if (error == EINTR || error == ERESTART) {
542 splx(s);
543 KERNEL_UNLOCK_ONE(NULL);
544 return (error);
545 }
546 if (error == EWOULDBLOCK) {
547 /*
548 * On a timeout, return what's in the buffer,
549 * which may be nothing. If there is something
550 * in the store buffer, we can rotate the buffers.
551 */
552 if (d->bd_hbuf)
553 /*
554 * We filled up the buffer in between
555 * getting the timeout and arriving
556 * here, so we don't need to rotate.
557 */
558 break;
559
560 if (d->bd_slen == 0) {
561 splx(s);
562 KERNEL_UNLOCK_ONE(NULL);
563 return (0);
564 }
565 ROTATE_BUFFERS(d);
566 break;
567 }
568 if (error != 0)
569 goto done;
570 }
571 /*
572 * At this point, we know we have something in the hold slot.
573 */
574 splx(s);
575
576 /*
577 * Move data from hold buffer into user space.
578 * We know the entire buffer is transferred since
579 * we checked above that the read buffer is bpf_bufsize bytes.
580 */
581 error = uiomove(d->bd_hbuf, d->bd_hlen, uio);
582
583 s = splnet();
584 d->bd_fbuf = d->bd_hbuf;
585 d->bd_hbuf = 0;
586 d->bd_hlen = 0;
587 done:
588 splx(s);
589 KERNEL_UNLOCK_ONE(NULL);
590 return (error);
591 }
592
593
594 /*
595 * If there are processes sleeping on this descriptor, wake them up.
596 */
597 static inline void
598 bpf_wakeup(struct bpf_d *d)
599 {
600 wakeup(d);
601 if (d->bd_async)
602 softint_schedule(d->bd_sih);
603 selnotify(&d->bd_sel, 0, 0);
604 }
605
606 static void
607 bpf_softintr(void *cookie)
608 {
609 struct bpf_d *d;
610
611 d = cookie;
612 if (d->bd_async)
613 fownsignal(d->bd_pgid, SIGIO, 0, 0, NULL);
614 }
615
616 static void
617 bpf_timed_out(void *arg)
618 {
619 struct bpf_d *d = arg;
620 int s;
621
622 s = splnet();
623 if (d->bd_state == BPF_WAITING) {
624 d->bd_state = BPF_TIMED_OUT;
625 if (d->bd_slen != 0)
626 bpf_wakeup(d);
627 }
628 splx(s);
629 }
630
631
632 static int
633 bpf_write(struct file *fp, off_t *offp, struct uio *uio,
634 kauth_cred_t cred, int flags)
635 {
636 struct bpf_d *d = fp->f_data;
637 struct ifnet *ifp;
638 struct mbuf *m, *mc;
639 int error, s;
640 static struct sockaddr_storage dst;
641
642 m = NULL; /* XXX gcc */
643
644 KERNEL_LOCK(1, NULL);
645
646 if (d->bd_bif == 0) {
647 KERNEL_UNLOCK_ONE(NULL);
648 return (ENXIO);
649 }
650 getnanotime(&d->bd_mtime);
651
652 ifp = d->bd_bif->bif_ifp;
653
654 if (uio->uio_resid == 0) {
655 KERNEL_UNLOCK_ONE(NULL);
656 return (0);
657 }
658
659 error = bpf_movein(uio, (int)d->bd_bif->bif_dlt, ifp->if_mtu, &m,
660 (struct sockaddr *) &dst);
661 if (error) {
662 KERNEL_UNLOCK_ONE(NULL);
663 return (error);
664 }
665
666 if (m->m_pkthdr.len > ifp->if_mtu) {
667 KERNEL_UNLOCK_ONE(NULL);
668 m_freem(m);
669 return (EMSGSIZE);
670 }
671
672 if (d->bd_hdrcmplt)
673 dst.ss_family = pseudo_AF_HDRCMPLT;
674
675 if (d->bd_feedback) {
676 mc = m_dup(m, 0, M_COPYALL, M_NOWAIT);
677 if (mc != NULL)
678 mc->m_pkthdr.rcvif = ifp;
679 /* Set M_PROMISC for outgoing packets to be discarded. */
680 if (1 /*d->bd_direction == BPF_D_INOUT*/)
681 m->m_flags |= M_PROMISC;
682 } else
683 mc = NULL;
684
685 s = splsoftnet();
686 error = (*ifp->if_output)(ifp, m, (struct sockaddr *) &dst, NULL);
687
688 if (mc != NULL) {
689 if (error == 0)
690 (*ifp->if_input)(ifp, mc);
691 m_freem(mc);
692 }
693 splx(s);
694 KERNEL_UNLOCK_ONE(NULL);
695 /*
696 * The driver frees the mbuf.
697 */
698 return (error);
699 }
700
701 /*
702 * Reset a descriptor by flushing its packet buffer and clearing the
703 * receive and drop counts. Should be called at splnet.
704 */
705 static void
706 reset_d(struct bpf_d *d)
707 {
708 if (d->bd_hbuf) {
709 /* Free the hold buffer. */
710 d->bd_fbuf = d->bd_hbuf;
711 d->bd_hbuf = 0;
712 }
713 d->bd_slen = 0;
714 d->bd_hlen = 0;
715 d->bd_rcount = 0;
716 d->bd_dcount = 0;
717 d->bd_ccount = 0;
718 }
719
720 /*
721 * FIONREAD Check for read packet available.
722 * BIOCGBLEN Get buffer len [for read()].
723 * BIOCSETF Set ethernet read filter.
724 * BIOCFLUSH Flush read packet buffer.
725 * BIOCPROMISC Put interface into promiscuous mode.
726 * BIOCGDLT Get link layer type.
727 * BIOCGETIF Get interface name.
728 * BIOCSETIF Set interface.
729 * BIOCSRTIMEOUT Set read timeout.
730 * BIOCGRTIMEOUT Get read timeout.
731 * BIOCGSTATS Get packet stats.
732 * BIOCIMMEDIATE Set immediate mode.
733 * BIOCVERSION Get filter language version.
734 * BIOCGHDRCMPLT Get "header already complete" flag.
735 * BIOCSHDRCMPLT Set "header already complete" flag.
736 * BIOCSFEEDBACK Set packet feedback mode.
737 * BIOCGFEEDBACK Get packet feedback mode.
738 * BIOCGSEESENT Get "see sent packets" mode.
739 * BIOCSSEESENT Set "see sent packets" mode.
740 */
741 /* ARGSUSED */
742 static int
743 bpf_ioctl(struct file *fp, u_long cmd, void *addr)
744 {
745 struct bpf_d *d = fp->f_data;
746 int s, error = 0;
747
748 /*
749 * Refresh the PID associated with this bpf file.
750 */
751 KERNEL_LOCK(1, NULL);
752 d->bd_pid = curproc->p_pid;
753 #ifdef _LP64
754 if (curproc->p_flag & PK_32)
755 d->bd_compat32 = 1;
756 else
757 d->bd_compat32 = 0;
758 #endif
759
760 s = splnet();
761 if (d->bd_state == BPF_WAITING)
762 callout_stop(&d->bd_callout);
763 d->bd_state = BPF_IDLE;
764 splx(s);
765
766 switch (cmd) {
767
768 default:
769 error = EINVAL;
770 break;
771
772 /*
773 * Check for read packet available.
774 */
775 case FIONREAD:
776 {
777 int n;
778
779 s = splnet();
780 n = d->bd_slen;
781 if (d->bd_hbuf)
782 n += d->bd_hlen;
783 splx(s);
784
785 *(int *)addr = n;
786 break;
787 }
788
789 /*
790 * Get buffer len [for read()].
791 */
792 case BIOCGBLEN:
793 *(u_int *)addr = d->bd_bufsize;
794 break;
795
796 /*
797 * Set buffer length.
798 */
799 case BIOCSBLEN:
800 if (d->bd_bif != 0)
801 error = EINVAL;
802 else {
803 u_int size = *(u_int *)addr;
804
805 if (size > bpf_maxbufsize)
806 *(u_int *)addr = size = bpf_maxbufsize;
807 else if (size < BPF_MINBUFSIZE)
808 *(u_int *)addr = size = BPF_MINBUFSIZE;
809 d->bd_bufsize = size;
810 }
811 break;
812
813 /*
814 * Set link layer read filter.
815 */
816 case BIOCSETF:
817 error = bpf_setf(d, addr);
818 break;
819
820 /*
821 * Flush read packet buffer.
822 */
823 case BIOCFLUSH:
824 s = splnet();
825 reset_d(d);
826 splx(s);
827 break;
828
829 /*
830 * Put interface into promiscuous mode.
831 */
832 case BIOCPROMISC:
833 if (d->bd_bif == 0) {
834 /*
835 * No interface attached yet.
836 */
837 error = EINVAL;
838 break;
839 }
840 s = splnet();
841 if (d->bd_promisc == 0) {
842 error = ifpromisc(d->bd_bif->bif_ifp, 1);
843 if (error == 0)
844 d->bd_promisc = 1;
845 }
846 splx(s);
847 break;
848
849 /*
850 * Get device parameters.
851 */
852 case BIOCGDLT:
853 if (d->bd_bif == 0)
854 error = EINVAL;
855 else
856 *(u_int *)addr = d->bd_bif->bif_dlt;
857 break;
858
859 /*
860 * Get a list of supported device parameters.
861 */
862 case BIOCGDLTLIST:
863 if (d->bd_bif == 0)
864 error = EINVAL;
865 else
866 error = bpf_getdltlist(d, addr);
867 break;
868
869 /*
870 * Set device parameters.
871 */
872 case BIOCSDLT:
873 if (d->bd_bif == 0)
874 error = EINVAL;
875 else
876 error = bpf_setdlt(d, *(u_int *)addr);
877 break;
878
879 /*
880 * Set interface name.
881 */
882 #ifdef OBIOCGETIF
883 case OBIOCGETIF:
884 #endif
885 case BIOCGETIF:
886 if (d->bd_bif == 0)
887 error = EINVAL;
888 else
889 bpf_ifname(d->bd_bif->bif_ifp, addr);
890 break;
891
892 /*
893 * Set interface.
894 */
895 #ifdef OBIOCSETIF
896 case OBIOCSETIF:
897 #endif
898 case BIOCSETIF:
899 error = bpf_setif(d, addr);
900 break;
901
902 /*
903 * Set read timeout.
904 */
905 case BIOCSRTIMEOUT:
906 {
907 struct timeval *tv = addr;
908
909 /* Compute number of ticks. */
910 d->bd_rtout = tv->tv_sec * hz + tv->tv_usec / tick;
911 if ((d->bd_rtout == 0) && (tv->tv_usec != 0))
912 d->bd_rtout = 1;
913 break;
914 }
915
916 #ifdef BIOCGORTIMEOUT
917 /*
918 * Get read timeout.
919 */
920 case BIOCGORTIMEOUT:
921 {
922 struct timeval50 *tv = addr;
923
924 tv->tv_sec = d->bd_rtout / hz;
925 tv->tv_usec = (d->bd_rtout % hz) * tick;
926 break;
927 }
928 #endif
929
930 #ifdef BIOCSORTIMEOUT
931 /*
932 * Set read timeout.
933 */
934 case BIOCSORTIMEOUT:
935 {
936 struct timeval50 *tv = addr;
937
938 /* Compute number of ticks. */
939 d->bd_rtout = tv->tv_sec * hz + tv->tv_usec / tick;
940 if ((d->bd_rtout == 0) && (tv->tv_usec != 0))
941 d->bd_rtout = 1;
942 break;
943 }
944 #endif
945
946 /*
947 * Get read timeout.
948 */
949 case BIOCGRTIMEOUT:
950 {
951 struct timeval *tv = addr;
952
953 tv->tv_sec = d->bd_rtout / hz;
954 tv->tv_usec = (d->bd_rtout % hz) * tick;
955 break;
956 }
957 /*
958 * Get packet stats.
959 */
960 case BIOCGSTATS:
961 {
962 struct bpf_stat *bs = addr;
963
964 bs->bs_recv = d->bd_rcount;
965 bs->bs_drop = d->bd_dcount;
966 bs->bs_capt = d->bd_ccount;
967 break;
968 }
969
970 case BIOCGSTATSOLD:
971 {
972 struct bpf_stat_old *bs = addr;
973
974 bs->bs_recv = d->bd_rcount;
975 bs->bs_drop = d->bd_dcount;
976 break;
977 }
978
979 /*
980 * Set immediate mode.
981 */
982 case BIOCIMMEDIATE:
983 d->bd_immediate = *(u_int *)addr;
984 break;
985
986 case BIOCVERSION:
987 {
988 struct bpf_version *bv = addr;
989
990 bv->bv_major = BPF_MAJOR_VERSION;
991 bv->bv_minor = BPF_MINOR_VERSION;
992 break;
993 }
994
995 case BIOCGHDRCMPLT: /* get "header already complete" flag */
996 *(u_int *)addr = d->bd_hdrcmplt;
997 break;
998
999 case BIOCSHDRCMPLT: /* set "header already complete" flag */
1000 d->bd_hdrcmplt = *(u_int *)addr ? 1 : 0;
1001 break;
1002
1003 /*
1004 * Get "see sent packets" flag
1005 */
1006 case BIOCGSEESENT:
1007 *(u_int *)addr = d->bd_seesent;
1008 break;
1009
1010 /*
1011 * Set "see sent" packets flag
1012 */
1013 case BIOCSSEESENT:
1014 d->bd_seesent = *(u_int *)addr;
1015 break;
1016
1017 /*
1018 * Set "feed packets from bpf back to input" mode
1019 */
1020 case BIOCSFEEDBACK:
1021 d->bd_feedback = *(u_int *)addr;
1022 break;
1023
1024 /*
1025 * Get "feed packets from bpf back to input" mode
1026 */
1027 case BIOCGFEEDBACK:
1028 *(u_int *)addr = d->bd_feedback;
1029 break;
1030
1031 case FIONBIO: /* Non-blocking I/O */
1032 /*
1033 * No need to do anything special as we use IO_NDELAY in
1034 * bpfread() as an indication of whether or not to block
1035 * the read.
1036 */
1037 break;
1038
1039 case FIOASYNC: /* Send signal on receive packets */
1040 d->bd_async = *(int *)addr;
1041 break;
1042
1043 case TIOCSPGRP: /* Process or group to send signals to */
1044 case FIOSETOWN:
1045 error = fsetown(&d->bd_pgid, cmd, addr);
1046 break;
1047
1048 case TIOCGPGRP:
1049 case FIOGETOWN:
1050 error = fgetown(d->bd_pgid, cmd, addr);
1051 break;
1052 }
1053 KERNEL_UNLOCK_ONE(NULL);
1054 return (error);
1055 }
1056
1057 /*
1058 * Set d's packet filter program to fp. If this file already has a filter,
1059 * free it and replace it. Returns EINVAL for bogus requests.
1060 */
1061 int
1062 bpf_setf(struct bpf_d *d, struct bpf_program *fp)
1063 {
1064 struct bpf_insn *fcode, *old;
1065 bpfjit_function_t jcode, oldj;
1066 size_t flen, size;
1067 int s;
1068
1069 jcode = NULL;
1070 flen = fp->bf_len;
1071
1072 if ((fp->bf_insns == NULL && flen) || flen > BPF_MAXINSNS) {
1073 return EINVAL;
1074 }
1075
1076 if (flen) {
1077 /*
1078 * Allocate the buffer, copy the byte-code from
1079 * userspace and validate it.
1080 */
1081 size = flen * sizeof(*fp->bf_insns);
1082 fcode = malloc(size, M_DEVBUF, M_WAITOK);
1083 if (copyin(fp->bf_insns, fcode, size) != 0 ||
1084 !bpf_validate(fcode, (int)flen)) {
1085 free(fcode, M_DEVBUF);
1086 return EINVAL;
1087 }
1088 membar_consumer();
1089 if (bpf_jit && bpfjit_module_ops.bj_generate_code != NULL) {
1090 jcode = bpfjit_module_ops.bj_generate_code(fcode, flen);
1091 }
1092 } else {
1093 fcode = NULL;
1094 }
1095
1096 s = splnet();
1097 old = d->bd_filter;
1098 d->bd_filter = fcode;
1099 oldj = d->bd_jitcode;
1100 d->bd_jitcode = jcode;
1101 reset_d(d);
1102 splx(s);
1103
1104 if (old) {
1105 free(old, M_DEVBUF);
1106 }
1107
1108 if (oldj != NULL) {
1109 KASSERT(bpfjit_module_ops.bj_free_code != NULL);
1110 bpfjit_module_ops.bj_free_code(oldj);
1111 }
1112
1113 return 0;
1114 }
1115
1116 /*
1117 * Detach a file from its current interface (if attached at all) and attach
1118 * to the interface indicated by the name stored in ifr.
1119 * Return an errno or 0.
1120 */
1121 static int
1122 bpf_setif(struct bpf_d *d, struct ifreq *ifr)
1123 {
1124 struct bpf_if *bp;
1125 char *cp;
1126 int unit_seen, i, s, error;
1127
1128 /*
1129 * Make sure the provided name has a unit number, and default
1130 * it to '0' if not specified.
1131 * XXX This is ugly ... do this differently?
1132 */
1133 unit_seen = 0;
1134 cp = ifr->ifr_name;
1135 cp[sizeof(ifr->ifr_name) - 1] = '\0'; /* sanity */
1136 while (*cp++)
1137 if (*cp >= '0' && *cp <= '9')
1138 unit_seen = 1;
1139 if (!unit_seen) {
1140 /* Make sure to leave room for the '\0'. */
1141 for (i = 0; i < (IFNAMSIZ - 1); ++i) {
1142 if ((ifr->ifr_name[i] >= 'a' &&
1143 ifr->ifr_name[i] <= 'z') ||
1144 (ifr->ifr_name[i] >= 'A' &&
1145 ifr->ifr_name[i] <= 'Z'))
1146 continue;
1147 ifr->ifr_name[i] = '0';
1148 }
1149 }
1150
1151 /*
1152 * Look through attached interfaces for the named one.
1153 */
1154 for (bp = bpf_iflist; bp != 0; bp = bp->bif_next) {
1155 struct ifnet *ifp = bp->bif_ifp;
1156
1157 if (ifp == 0 ||
1158 strcmp(ifp->if_xname, ifr->ifr_name) != 0)
1159 continue;
1160 /* skip additional entry */
1161 if (bp->bif_driverp != &ifp->if_bpf)
1162 continue;
1163 /*
1164 * We found the requested interface.
1165 * Allocate the packet buffers if we need to.
1166 * If we're already attached to requested interface,
1167 * just flush the buffer.
1168 */
1169 if (d->bd_sbuf == 0) {
1170 error = bpf_allocbufs(d);
1171 if (error != 0)
1172 return (error);
1173 }
1174 s = splnet();
1175 if (bp != d->bd_bif) {
1176 if (d->bd_bif)
1177 /*
1178 * Detach if attached to something else.
1179 */
1180 bpf_detachd(d);
1181
1182 bpf_attachd(d, bp);
1183 }
1184 reset_d(d);
1185 splx(s);
1186 return (0);
1187 }
1188 /* Not found. */
1189 return (ENXIO);
1190 }
1191
1192 /*
1193 * Copy the interface name to the ifreq.
1194 */
1195 static void
1196 bpf_ifname(struct ifnet *ifp, struct ifreq *ifr)
1197 {
1198 memcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
1199 }
1200
1201 static int
1202 bpf_stat(struct file *fp, struct stat *st)
1203 {
1204 struct bpf_d *d = fp->f_data;
1205
1206 (void)memset(st, 0, sizeof(*st));
1207 KERNEL_LOCK(1, NULL);
1208 st->st_dev = makedev(cdevsw_lookup_major(&bpf_cdevsw), d->bd_pid);
1209 st->st_atimespec = d->bd_atime;
1210 st->st_mtimespec = d->bd_mtime;
1211 st->st_ctimespec = st->st_birthtimespec = d->bd_btime;
1212 st->st_uid = kauth_cred_geteuid(fp->f_cred);
1213 st->st_gid = kauth_cred_getegid(fp->f_cred);
1214 st->st_mode = S_IFCHR;
1215 KERNEL_UNLOCK_ONE(NULL);
1216 return 0;
1217 }
1218
1219 /*
1220 * Support for poll() system call
1221 *
1222 * Return true iff the specific operation will not block indefinitely - with
1223 * the assumption that it is safe to positively acknowledge a request for the
1224 * ability to write to the BPF device.
1225 * Otherwise, return false but make a note that a selnotify() must be done.
1226 */
1227 static int
1228 bpf_poll(struct file *fp, int events)
1229 {
1230 struct bpf_d *d = fp->f_data;
1231 int s = splnet();
1232 int revents;
1233
1234 /*
1235 * Refresh the PID associated with this bpf file.
1236 */
1237 KERNEL_LOCK(1, NULL);
1238 d->bd_pid = curproc->p_pid;
1239
1240 revents = events & (POLLOUT | POLLWRNORM);
1241 if (events & (POLLIN | POLLRDNORM)) {
1242 /*
1243 * An imitation of the FIONREAD ioctl code.
1244 */
1245 if (d->bd_hlen != 0 ||
1246 ((d->bd_immediate || d->bd_state == BPF_TIMED_OUT) &&
1247 d->bd_slen != 0)) {
1248 revents |= events & (POLLIN | POLLRDNORM);
1249 } else {
1250 selrecord(curlwp, &d->bd_sel);
1251 /* Start the read timeout if necessary */
1252 if (d->bd_rtout > 0 && d->bd_state == BPF_IDLE) {
1253 callout_reset(&d->bd_callout, d->bd_rtout,
1254 bpf_timed_out, d);
1255 d->bd_state = BPF_WAITING;
1256 }
1257 }
1258 }
1259
1260 KERNEL_UNLOCK_ONE(NULL);
1261 splx(s);
1262 return (revents);
1263 }
1264
1265 static void
1266 filt_bpfrdetach(struct knote *kn)
1267 {
1268 struct bpf_d *d = kn->kn_hook;
1269 int s;
1270
1271 KERNEL_LOCK(1, NULL);
1272 s = splnet();
1273 SLIST_REMOVE(&d->bd_sel.sel_klist, kn, knote, kn_selnext);
1274 splx(s);
1275 KERNEL_UNLOCK_ONE(NULL);
1276 }
1277
1278 static int
1279 filt_bpfread(struct knote *kn, long hint)
1280 {
1281 struct bpf_d *d = kn->kn_hook;
1282 int rv;
1283
1284 KERNEL_LOCK(1, NULL);
1285 kn->kn_data = d->bd_hlen;
1286 if (d->bd_immediate)
1287 kn->kn_data += d->bd_slen;
1288 rv = (kn->kn_data > 0);
1289 KERNEL_UNLOCK_ONE(NULL);
1290 return rv;
1291 }
1292
1293 static const struct filterops bpfread_filtops =
1294 { 1, NULL, filt_bpfrdetach, filt_bpfread };
1295
1296 static int
1297 bpf_kqfilter(struct file *fp, struct knote *kn)
1298 {
1299 struct bpf_d *d = fp->f_data;
1300 struct klist *klist;
1301 int s;
1302
1303 KERNEL_LOCK(1, NULL);
1304
1305 switch (kn->kn_filter) {
1306 case EVFILT_READ:
1307 klist = &d->bd_sel.sel_klist;
1308 kn->kn_fop = &bpfread_filtops;
1309 break;
1310
1311 default:
1312 KERNEL_UNLOCK_ONE(NULL);
1313 return (EINVAL);
1314 }
1315
1316 kn->kn_hook = d;
1317
1318 s = splnet();
1319 SLIST_INSERT_HEAD(klist, kn, kn_selnext);
1320 splx(s);
1321 KERNEL_UNLOCK_ONE(NULL);
1322
1323 return (0);
1324 }
1325
1326 /*
1327 * Copy data from an mbuf chain into a buffer. This code is derived
1328 * from m_copydata in sys/uipc_mbuf.c.
1329 */
1330 static void *
1331 bpf_mcpy(void *dst_arg, const void *src_arg, size_t len)
1332 {
1333 const struct mbuf *m;
1334 u_int count;
1335 u_char *dst;
1336
1337 m = src_arg;
1338 dst = dst_arg;
1339 while (len > 0) {
1340 if (m == NULL)
1341 panic("bpf_mcpy");
1342 count = min(m->m_len, len);
1343 memcpy(dst, mtod(m, const void *), count);
1344 m = m->m_next;
1345 dst += count;
1346 len -= count;
1347 }
1348 return dst_arg;
1349 }
1350
1351 /*
1352 * Dispatch a packet to all the listeners on interface bp.
1353 *
1354 * pkt pointer to the packet, either a data buffer or an mbuf chain
1355 * buflen buffer length, if pkt is a data buffer
1356 * cpfn a function that can copy pkt into the listener's buffer
1357 * pktlen length of the packet
1358 * rcv true if packet came in
1359 */
1360 static inline void
1361 bpf_deliver(struct bpf_if *bp, void *(*cpfn)(void *, const void *, size_t),
1362 void *pkt, u_int pktlen, u_int buflen, const bool rcv)
1363 {
1364 struct bpf_d *d;
1365 struct timespec ts;
1366 bool gottime = false;
1367
1368 /*
1369 * Note that the IPL does not have to be raised at this point.
1370 * The only problem that could arise here is that if two different
1371 * interfaces shared any data. This is not the case.
1372 */
1373 for (d = bp->bif_dlist; d != NULL; d = d->bd_next) {
1374 u_int slen;
1375
1376 if (!d->bd_seesent && !rcv) {
1377 continue;
1378 }
1379 d->bd_rcount++;
1380 bpf_gstats.bs_recv++;
1381
1382 if (d->bd_jitcode != NULL)
1383 slen = d->bd_jitcode(pkt, pktlen, buflen);
1384 else
1385 slen = bpf_filter(bpf_def_ctx, NULL, d->bd_filter,
1386 pkt, pktlen, buflen);
1387
1388 if (!slen) {
1389 continue;
1390 }
1391 if (!gottime) {
1392 gottime = true;
1393 nanotime(&ts);
1394 }
1395 catchpacket(d, pkt, pktlen, slen, cpfn, &ts);
1396 }
1397 }
1398
1399 /*
1400 * Incoming linkage from device drivers. Process the packet pkt, of length
1401 * pktlen, which is stored in a contiguous buffer. The packet is parsed
1402 * by each process' filter, and if accepted, stashed into the corresponding
1403 * buffer.
1404 */
1405 static void
1406 _bpf_tap(struct bpf_if *bp, u_char *pkt, u_int pktlen)
1407 {
1408
1409 bpf_deliver(bp, memcpy, pkt, pktlen, pktlen, true);
1410 }
1411
1412 /*
1413 * Incoming linkage from device drivers, when the head of the packet is in
1414 * a buffer, and the tail is in an mbuf chain.
1415 */
1416 static void
1417 _bpf_mtap2(struct bpf_if *bp, void *data, u_int dlen, struct mbuf *m)
1418 {
1419 u_int pktlen;
1420 struct mbuf mb;
1421
1422 /* Skip outgoing duplicate packets. */
1423 if ((m->m_flags & M_PROMISC) != 0 && m->m_pkthdr.rcvif == NULL) {
1424 m->m_flags &= ~M_PROMISC;
1425 return;
1426 }
1427
1428 pktlen = m_length(m) + dlen;
1429
1430 /*
1431 * Craft on-stack mbuf suitable for passing to bpf_filter.
1432 * Note that we cut corners here; we only setup what's
1433 * absolutely needed--this mbuf should never go anywhere else.
1434 */
1435 (void)memset(&mb, 0, sizeof(mb));
1436 mb.m_next = m;
1437 mb.m_data = data;
1438 mb.m_len = dlen;
1439
1440 bpf_deliver(bp, bpf_mcpy, &mb, pktlen, 0, m->m_pkthdr.rcvif != NULL);
1441 }
1442
1443 /*
1444 * Incoming linkage from device drivers, when packet is in an mbuf chain.
1445 */
1446 static void
1447 _bpf_mtap(struct bpf_if *bp, struct mbuf *m)
1448 {
1449 void *(*cpfn)(void *, const void *, size_t);
1450 u_int pktlen, buflen;
1451 void *marg;
1452
1453 /* Skip outgoing duplicate packets. */
1454 if ((m->m_flags & M_PROMISC) != 0 && m->m_pkthdr.rcvif == NULL) {
1455 m->m_flags &= ~M_PROMISC;
1456 return;
1457 }
1458
1459 pktlen = m_length(m);
1460
1461 if (pktlen == m->m_len) {
1462 cpfn = (void *)memcpy;
1463 marg = mtod(m, void *);
1464 buflen = pktlen;
1465 } else {
1466 cpfn = bpf_mcpy;
1467 marg = m;
1468 buflen = 0;
1469 }
1470
1471 bpf_deliver(bp, cpfn, marg, pktlen, buflen, m->m_pkthdr.rcvif != NULL);
1472 }
1473
1474 /*
1475 * We need to prepend the address family as
1476 * a four byte field. Cons up a dummy header
1477 * to pacify bpf. This is safe because bpf
1478 * will only read from the mbuf (i.e., it won't
1479 * try to free it or keep a pointer a to it).
1480 */
1481 static void
1482 _bpf_mtap_af(struct bpf_if *bp, uint32_t af, struct mbuf *m)
1483 {
1484 struct mbuf m0;
1485
1486 m0.m_flags = 0;
1487 m0.m_next = m;
1488 m0.m_len = 4;
1489 m0.m_data = (char *)⁡
1490
1491 _bpf_mtap(bp, &m0);
1492 }
1493
1494 /*
1495 * Put the SLIP pseudo-"link header" in place.
1496 * Note this M_PREPEND() should never fail,
1497 * swince we know we always have enough space
1498 * in the input buffer.
1499 */
1500 static void
1501 _bpf_mtap_sl_in(struct bpf_if *bp, u_char *chdr, struct mbuf **m)
1502 {
1503 int s;
1504 u_char *hp;
1505
1506 M_PREPEND(*m, SLIP_HDRLEN, M_DONTWAIT);
1507 if (*m == NULL)
1508 return;
1509
1510 hp = mtod(*m, u_char *);
1511 hp[SLX_DIR] = SLIPDIR_IN;
1512 (void)memcpy(&hp[SLX_CHDR], chdr, CHDR_LEN);
1513
1514 s = splnet();
1515 _bpf_mtap(bp, *m);
1516 splx(s);
1517
1518 m_adj(*m, SLIP_HDRLEN);
1519 }
1520
1521 /*
1522 * Put the SLIP pseudo-"link header" in
1523 * place. The compressed header is now
1524 * at the beginning of the mbuf.
1525 */
1526 static void
1527 _bpf_mtap_sl_out(struct bpf_if *bp, u_char *chdr, struct mbuf *m)
1528 {
1529 struct mbuf m0;
1530 u_char *hp;
1531 int s;
1532
1533 m0.m_flags = 0;
1534 m0.m_next = m;
1535 m0.m_data = m0.m_dat;
1536 m0.m_len = SLIP_HDRLEN;
1537
1538 hp = mtod(&m0, u_char *);
1539
1540 hp[SLX_DIR] = SLIPDIR_OUT;
1541 (void)memcpy(&hp[SLX_CHDR], chdr, CHDR_LEN);
1542
1543 s = splnet();
1544 _bpf_mtap(bp, &m0);
1545 splx(s);
1546 m_freem(m);
1547 }
1548
1549 static int
1550 bpf_hdrlen(struct bpf_d *d)
1551 {
1552 int hdrlen = d->bd_bif->bif_hdrlen;
1553 /*
1554 * Compute the length of the bpf header. This is not necessarily
1555 * equal to SIZEOF_BPF_HDR because we want to insert spacing such
1556 * that the network layer header begins on a longword boundary (for
1557 * performance reasons and to alleviate alignment restrictions).
1558 */
1559 #ifdef _LP64
1560 if (d->bd_compat32)
1561 return (BPF_WORDALIGN32(hdrlen + SIZEOF_BPF_HDR32) - hdrlen);
1562 else
1563 #endif
1564 return (BPF_WORDALIGN(hdrlen + SIZEOF_BPF_HDR) - hdrlen);
1565 }
1566
1567 /*
1568 * Move the packet data from interface memory (pkt) into the
1569 * store buffer. Call the wakeup functions if it's time to wakeup
1570 * a listener (buffer full), "cpfn" is the routine called to do the
1571 * actual data transfer. memcpy is passed in to copy contiguous chunks,
1572 * while bpf_mcpy is passed in to copy mbuf chains. In the latter case,
1573 * pkt is really an mbuf.
1574 */
1575 static void
1576 catchpacket(struct bpf_d *d, u_char *pkt, u_int pktlen, u_int snaplen,
1577 void *(*cpfn)(void *, const void *, size_t), struct timespec *ts)
1578 {
1579 char *h;
1580 int totlen, curlen, caplen;
1581 int hdrlen = bpf_hdrlen(d);
1582 int do_wakeup = 0;
1583
1584 ++d->bd_ccount;
1585 ++bpf_gstats.bs_capt;
1586 /*
1587 * Figure out how many bytes to move. If the packet is
1588 * greater or equal to the snapshot length, transfer that
1589 * much. Otherwise, transfer the whole packet (unless
1590 * we hit the buffer size limit).
1591 */
1592 totlen = hdrlen + min(snaplen, pktlen);
1593 if (totlen > d->bd_bufsize)
1594 totlen = d->bd_bufsize;
1595 /*
1596 * If we adjusted totlen to fit the bufsize, it could be that
1597 * totlen is smaller than hdrlen because of the link layer header.
1598 */
1599 caplen = totlen - hdrlen;
1600 if (caplen < 0)
1601 caplen = 0;
1602
1603 /*
1604 * Round up the end of the previous packet to the next longword.
1605 */
1606 #ifdef _LP64
1607 if (d->bd_compat32)
1608 curlen = BPF_WORDALIGN32(d->bd_slen);
1609 else
1610 #endif
1611 curlen = BPF_WORDALIGN(d->bd_slen);
1612 if (curlen + totlen > d->bd_bufsize) {
1613 /*
1614 * This packet will overflow the storage buffer.
1615 * Rotate the buffers if we can, then wakeup any
1616 * pending reads.
1617 */
1618 if (d->bd_fbuf == 0) {
1619 /*
1620 * We haven't completed the previous read yet,
1621 * so drop the packet.
1622 */
1623 ++d->bd_dcount;
1624 ++bpf_gstats.bs_drop;
1625 return;
1626 }
1627 ROTATE_BUFFERS(d);
1628 do_wakeup = 1;
1629 curlen = 0;
1630 } else if (d->bd_immediate || d->bd_state == BPF_TIMED_OUT) {
1631 /*
1632 * Immediate mode is set, or the read timeout has
1633 * already expired during a select call. A packet
1634 * arrived, so the reader should be woken up.
1635 */
1636 do_wakeup = 1;
1637 }
1638
1639 /*
1640 * Append the bpf header.
1641 */
1642 h = (char *)d->bd_sbuf + curlen;
1643 #ifdef _LP64
1644 if (d->bd_compat32) {
1645 struct bpf_hdr32 *hp32;
1646
1647 hp32 = (struct bpf_hdr32 *)h;
1648 hp32->bh_tstamp.tv_sec = ts->tv_sec;
1649 hp32->bh_tstamp.tv_usec = ts->tv_nsec / 1000;
1650 hp32->bh_datalen = pktlen;
1651 hp32->bh_hdrlen = hdrlen;
1652 hp32->bh_caplen = caplen;
1653 } else
1654 #endif
1655 {
1656 struct bpf_hdr *hp;
1657
1658 hp = (struct bpf_hdr *)h;
1659 hp->bh_tstamp.tv_sec = ts->tv_sec;
1660 hp->bh_tstamp.tv_usec = ts->tv_nsec / 1000;
1661 hp->bh_datalen = pktlen;
1662 hp->bh_hdrlen = hdrlen;
1663 hp->bh_caplen = caplen;
1664 }
1665
1666 /*
1667 * Copy the packet data into the store buffer and update its length.
1668 */
1669 (*cpfn)(h + hdrlen, pkt, caplen);
1670 d->bd_slen = curlen + totlen;
1671
1672 /*
1673 * Call bpf_wakeup after bd_slen has been updated so that kevent(2)
1674 * will cause filt_bpfread() to be called with it adjusted.
1675 */
1676 if (do_wakeup)
1677 bpf_wakeup(d);
1678 }
1679
1680 /*
1681 * Initialize all nonzero fields of a descriptor.
1682 */
1683 static int
1684 bpf_allocbufs(struct bpf_d *d)
1685 {
1686
1687 d->bd_fbuf = malloc(d->bd_bufsize, M_DEVBUF, M_WAITOK | M_CANFAIL);
1688 if (!d->bd_fbuf)
1689 return (ENOBUFS);
1690 d->bd_sbuf = malloc(d->bd_bufsize, M_DEVBUF, M_WAITOK | M_CANFAIL);
1691 if (!d->bd_sbuf) {
1692 free(d->bd_fbuf, M_DEVBUF);
1693 return (ENOBUFS);
1694 }
1695 d->bd_slen = 0;
1696 d->bd_hlen = 0;
1697 return (0);
1698 }
1699
1700 /*
1701 * Free buffers currently in use by a descriptor.
1702 * Called on close.
1703 */
1704 static void
1705 bpf_freed(struct bpf_d *d)
1706 {
1707 /*
1708 * We don't need to lock out interrupts since this descriptor has
1709 * been detached from its interface and it yet hasn't been marked
1710 * free.
1711 */
1712 if (d->bd_sbuf != NULL) {
1713 free(d->bd_sbuf, M_DEVBUF);
1714 if (d->bd_hbuf != NULL)
1715 free(d->bd_hbuf, M_DEVBUF);
1716 if (d->bd_fbuf != NULL)
1717 free(d->bd_fbuf, M_DEVBUF);
1718 }
1719 if (d->bd_filter)
1720 free(d->bd_filter, M_DEVBUF);
1721
1722 if (d->bd_jitcode != NULL) {
1723 KASSERT(bpfjit_module_ops.bj_free_code != NULL);
1724 bpfjit_module_ops.bj_free_code(d->bd_jitcode);
1725 }
1726 }
1727
1728 /*
1729 * Attach an interface to bpf. dlt is the link layer type;
1730 * hdrlen is the fixed size of the link header for the specified dlt
1731 * (variable length headers not yet supported).
1732 */
1733 static void
1734 _bpfattach(struct ifnet *ifp, u_int dlt, u_int hdrlen, struct bpf_if **driverp)
1735 {
1736 struct bpf_if *bp;
1737 bp = malloc(sizeof(*bp), M_DEVBUF, M_DONTWAIT);
1738 if (bp == 0)
1739 panic("bpfattach");
1740
1741 bp->bif_dlist = 0;
1742 bp->bif_driverp = driverp;
1743 bp->bif_ifp = ifp;
1744 bp->bif_dlt = dlt;
1745
1746 bp->bif_next = bpf_iflist;
1747 bpf_iflist = bp;
1748
1749 *bp->bif_driverp = 0;
1750
1751 bp->bif_hdrlen = hdrlen;
1752 #if 0
1753 printf("bpf: %s attached\n", ifp->if_xname);
1754 #endif
1755 }
1756
1757 /*
1758 * Remove an interface from bpf.
1759 */
1760 static void
1761 _bpfdetach(struct ifnet *ifp)
1762 {
1763 struct bpf_if *bp, **pbp;
1764 struct bpf_d *d;
1765 int s;
1766
1767 /* Nuke the vnodes for any open instances */
1768 LIST_FOREACH(d, &bpf_list, bd_list) {
1769 if (d->bd_bif != NULL && d->bd_bif->bif_ifp == ifp) {
1770 /*
1771 * Detach the descriptor from an interface now.
1772 * It will be free'ed later by close routine.
1773 */
1774 s = splnet();
1775 d->bd_promisc = 0; /* we can't touch device. */
1776 bpf_detachd(d);
1777 splx(s);
1778 }
1779 }
1780
1781 again:
1782 for (bp = bpf_iflist, pbp = &bpf_iflist;
1783 bp != NULL; pbp = &bp->bif_next, bp = bp->bif_next) {
1784 if (bp->bif_ifp == ifp) {
1785 *pbp = bp->bif_next;
1786 free(bp, M_DEVBUF);
1787 goto again;
1788 }
1789 }
1790 }
1791
1792 /*
1793 * Change the data link type of a interface.
1794 */
1795 static void
1796 _bpf_change_type(struct ifnet *ifp, u_int dlt, u_int hdrlen)
1797 {
1798 struct bpf_if *bp;
1799
1800 for (bp = bpf_iflist; bp != NULL; bp = bp->bif_next) {
1801 if (bp->bif_driverp == &ifp->if_bpf)
1802 break;
1803 }
1804 if (bp == NULL)
1805 panic("bpf_change_type");
1806
1807 bp->bif_dlt = dlt;
1808
1809 bp->bif_hdrlen = hdrlen;
1810 }
1811
1812 /*
1813 * Get a list of available data link type of the interface.
1814 */
1815 static int
1816 bpf_getdltlist(struct bpf_d *d, struct bpf_dltlist *bfl)
1817 {
1818 int n, error;
1819 struct ifnet *ifp;
1820 struct bpf_if *bp;
1821
1822 ifp = d->bd_bif->bif_ifp;
1823 n = 0;
1824 error = 0;
1825 for (bp = bpf_iflist; bp != NULL; bp = bp->bif_next) {
1826 if (bp->bif_ifp != ifp)
1827 continue;
1828 if (bfl->bfl_list != NULL) {
1829 if (n >= bfl->bfl_len)
1830 return ENOMEM;
1831 error = copyout(&bp->bif_dlt,
1832 bfl->bfl_list + n, sizeof(u_int));
1833 }
1834 n++;
1835 }
1836 bfl->bfl_len = n;
1837 return error;
1838 }
1839
1840 /*
1841 * Set the data link type of a BPF instance.
1842 */
1843 static int
1844 bpf_setdlt(struct bpf_d *d, u_int dlt)
1845 {
1846 int s, error, opromisc;
1847 struct ifnet *ifp;
1848 struct bpf_if *bp;
1849
1850 if (d->bd_bif->bif_dlt == dlt)
1851 return 0;
1852 ifp = d->bd_bif->bif_ifp;
1853 for (bp = bpf_iflist; bp != NULL; bp = bp->bif_next) {
1854 if (bp->bif_ifp == ifp && bp->bif_dlt == dlt)
1855 break;
1856 }
1857 if (bp == NULL)
1858 return EINVAL;
1859 s = splnet();
1860 opromisc = d->bd_promisc;
1861 bpf_detachd(d);
1862 bpf_attachd(d, bp);
1863 reset_d(d);
1864 if (opromisc) {
1865 error = ifpromisc(bp->bif_ifp, 1);
1866 if (error)
1867 printf("%s: bpf_setdlt: ifpromisc failed (%d)\n",
1868 bp->bif_ifp->if_xname, error);
1869 else
1870 d->bd_promisc = 1;
1871 }
1872 splx(s);
1873 return 0;
1874 }
1875
1876 static int
1877 sysctl_net_bpf_maxbufsize(SYSCTLFN_ARGS)
1878 {
1879 int newsize, error;
1880 struct sysctlnode node;
1881
1882 node = *rnode;
1883 node.sysctl_data = &newsize;
1884 newsize = bpf_maxbufsize;
1885 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1886 if (error || newp == NULL)
1887 return (error);
1888
1889 if (newsize < BPF_MINBUFSIZE || newsize > BPF_MAXBUFSIZE)
1890 return (EINVAL);
1891
1892 bpf_maxbufsize = newsize;
1893
1894 return (0);
1895 }
1896
1897 static int
1898 sysctl_net_bpf_jit(SYSCTLFN_ARGS)
1899 {
1900 bool newval;
1901 int error;
1902 struct sysctlnode node;
1903
1904 node = *rnode;
1905 node.sysctl_data = &newval;
1906 newval = bpf_jit;
1907 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1908 if (error != 0 || newp == NULL)
1909 return error;
1910
1911 bpf_jit = newval;
1912
1913 /*
1914 * Do a full sync to publish new bpf_jit value and
1915 * update bpfjit_module_ops.bj_generate_code variable.
1916 */
1917 membar_sync();
1918
1919 if (newval && bpfjit_module_ops.bj_generate_code == NULL) {
1920 printf("WARNING jit activation is postponed "
1921 "until after bpfjit module is loaded\n");
1922 }
1923
1924 return 0;
1925 }
1926
1927 static int
1928 sysctl_net_bpf_peers(SYSCTLFN_ARGS)
1929 {
1930 int error, elem_count;
1931 struct bpf_d *dp;
1932 struct bpf_d_ext dpe;
1933 size_t len, needed, elem_size, out_size;
1934 char *sp;
1935
1936 if (namelen == 1 && name[0] == CTL_QUERY)
1937 return (sysctl_query(SYSCTLFN_CALL(rnode)));
1938
1939 if (namelen != 2)
1940 return (EINVAL);
1941
1942 /* BPF peers is privileged information. */
1943 error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_INTERFACE,
1944 KAUTH_REQ_NETWORK_INTERFACE_GETPRIV, NULL, NULL, NULL);
1945 if (error)
1946 return (EPERM);
1947
1948 len = (oldp != NULL) ? *oldlenp : 0;
1949 sp = oldp;
1950 elem_size = name[0];
1951 elem_count = name[1];
1952 out_size = MIN(sizeof(dpe), elem_size);
1953 needed = 0;
1954
1955 if (elem_size < 1 || elem_count < 0)
1956 return (EINVAL);
1957
1958 mutex_enter(&bpf_mtx);
1959 LIST_FOREACH(dp, &bpf_list, bd_list) {
1960 if (len >= elem_size && elem_count > 0) {
1961 #define BPF_EXT(field) dpe.bde_ ## field = dp->bd_ ## field
1962 BPF_EXT(bufsize);
1963 BPF_EXT(promisc);
1964 BPF_EXT(state);
1965 BPF_EXT(immediate);
1966 BPF_EXT(hdrcmplt);
1967 BPF_EXT(seesent);
1968 BPF_EXT(pid);
1969 BPF_EXT(rcount);
1970 BPF_EXT(dcount);
1971 BPF_EXT(ccount);
1972 #undef BPF_EXT
1973 if (dp->bd_bif)
1974 (void)strlcpy(dpe.bde_ifname,
1975 dp->bd_bif->bif_ifp->if_xname,
1976 IFNAMSIZ - 1);
1977 else
1978 dpe.bde_ifname[0] = '\0';
1979
1980 error = copyout(&dpe, sp, out_size);
1981 if (error)
1982 break;
1983 sp += elem_size;
1984 len -= elem_size;
1985 }
1986 needed += elem_size;
1987 if (elem_count > 0 && elem_count != INT_MAX)
1988 elem_count--;
1989 }
1990 mutex_exit(&bpf_mtx);
1991
1992 *oldlenp = needed;
1993
1994 return (error);
1995 }
1996
1997 static struct sysctllog *bpf_sysctllog;
1998 static void
1999 sysctl_net_bpf_setup(void)
2000 {
2001 const struct sysctlnode *node;
2002
2003 sysctl_createv(&bpf_sysctllog, 0, NULL, NULL,
2004 CTLFLAG_PERMANENT,
2005 CTLTYPE_NODE, "net", NULL,
2006 NULL, 0, NULL, 0,
2007 CTL_NET, CTL_EOL);
2008
2009 node = NULL;
2010 sysctl_createv(&bpf_sysctllog, 0, NULL, &node,
2011 CTLFLAG_PERMANENT,
2012 CTLTYPE_NODE, "bpf",
2013 SYSCTL_DESCR("BPF options"),
2014 NULL, 0, NULL, 0,
2015 CTL_NET, CTL_CREATE, CTL_EOL);
2016 if (node != NULL) {
2017 sysctl_createv(&bpf_sysctllog, 0, NULL, NULL,
2018 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2019 CTLTYPE_BOOL, "jit",
2020 SYSCTL_DESCR("Toggle Just-In-Time compilation"),
2021 sysctl_net_bpf_jit, 0, &bpf_jit, 0,
2022 CTL_NET, node->sysctl_num, CTL_CREATE, CTL_EOL);
2023 sysctl_createv(&bpf_sysctllog, 0, NULL, NULL,
2024 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2025 CTLTYPE_INT, "maxbufsize",
2026 SYSCTL_DESCR("Maximum size for data capture buffer"),
2027 sysctl_net_bpf_maxbufsize, 0, &bpf_maxbufsize, 0,
2028 CTL_NET, node->sysctl_num, CTL_CREATE, CTL_EOL);
2029 sysctl_createv(&bpf_sysctllog, 0, NULL, NULL,
2030 CTLFLAG_PERMANENT,
2031 CTLTYPE_STRUCT, "stats",
2032 SYSCTL_DESCR("BPF stats"),
2033 NULL, 0, &bpf_gstats, sizeof(bpf_gstats),
2034 CTL_NET, node->sysctl_num, CTL_CREATE, CTL_EOL);
2035 sysctl_createv(&bpf_sysctllog, 0, NULL, NULL,
2036 CTLFLAG_PERMANENT,
2037 CTLTYPE_STRUCT, "peers",
2038 SYSCTL_DESCR("BPF peers"),
2039 sysctl_net_bpf_peers, 0, NULL, 0,
2040 CTL_NET, node->sysctl_num, CTL_CREATE, CTL_EOL);
2041 }
2042
2043 }
2044
2045 struct bpf_ops bpf_ops_kernel = {
2046 .bpf_attach = _bpfattach,
2047 .bpf_detach = _bpfdetach,
2048 .bpf_change_type = _bpf_change_type,
2049
2050 .bpf_tap = _bpf_tap,
2051 .bpf_mtap = _bpf_mtap,
2052 .bpf_mtap2 = _bpf_mtap2,
2053 .bpf_mtap_af = _bpf_mtap_af,
2054 .bpf_mtap_sl_in = _bpf_mtap_sl_in,
2055 .bpf_mtap_sl_out = _bpf_mtap_sl_out,
2056 };
2057
2058 MODULE(MODULE_CLASS_DRIVER, bpf, NULL);
2059
2060 static int
2061 bpf_modcmd(modcmd_t cmd, void *arg)
2062 {
2063 devmajor_t bmajor, cmajor;
2064 int error;
2065
2066 bmajor = cmajor = NODEVMAJOR;
2067
2068 switch (cmd) {
2069 case MODULE_CMD_INIT:
2070 bpfilterattach(0);
2071 error = devsw_attach("bpf", NULL, &bmajor,
2072 &bpf_cdevsw, &cmajor);
2073 if (error == EEXIST)
2074 error = 0; /* maybe built-in ... improve eventually */
2075 if (error)
2076 break;
2077
2078 bpf_ops_handover_enter(&bpf_ops_kernel);
2079 atomic_swap_ptr(&bpf_ops, &bpf_ops_kernel);
2080 bpf_ops_handover_exit();
2081 sysctl_net_bpf_setup();
2082 break;
2083
2084 case MODULE_CMD_FINI:
2085 /*
2086 * While there is no reference counting for bpf callers,
2087 * unload could at least in theory be done similarly to
2088 * system call disestablishment. This should even be
2089 * a little simpler:
2090 *
2091 * 1) replace op vector with stubs
2092 * 2) post update to all cpus with xc
2093 * 3) check that nobody is in bpf anymore
2094 * (it's doubtful we'd want something like l_sysent,
2095 * but we could do something like *signed* percpu
2096 * counters. if the sum is 0, we're good).
2097 * 4) if fail, unroll changes
2098 *
2099 * NOTE: change won't be atomic to the outside. some
2100 * packets may be not captured even if unload is
2101 * not succesful. I think packet capture not working
2102 * is a perfectly logical consequence of trying to
2103 * disable packet capture.
2104 */
2105 error = EOPNOTSUPP;
2106 /* insert sysctl teardown */
2107 break;
2108
2109 default:
2110 error = ENOTTY;
2111 break;
2112 }
2113
2114 return error;
2115 }
2116