bpf.c revision 1.209 1 /* $NetBSD: bpf.c,v 1.209 2017/02/01 08:13:45 ozaki-r Exp $ */
2
3 /*
4 * Copyright (c) 1990, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from the Stanford/CMU enet packet filter,
8 * (net/enet.c) distributed as part of 4.3BSD, and code contributed
9 * to Berkeley by Steven McCanne and Van Jacobson both of Lawrence
10 * Berkeley Laboratory.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)bpf.c 8.4 (Berkeley) 1/9/95
37 * static char rcsid[] =
38 * "Header: bpf.c,v 1.67 96/09/26 22:00:52 leres Exp ";
39 */
40
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: bpf.c,v 1.209 2017/02/01 08:13:45 ozaki-r Exp $");
43
44 #if defined(_KERNEL_OPT)
45 #include "opt_bpf.h"
46 #include "sl.h"
47 #include "strip.h"
48 #include "opt_net_mpsafe.h"
49 #endif
50
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/mbuf.h>
54 #include <sys/buf.h>
55 #include <sys/time.h>
56 #include <sys/proc.h>
57 #include <sys/ioctl.h>
58 #include <sys/conf.h>
59 #include <sys/vnode.h>
60 #include <sys/queue.h>
61 #include <sys/stat.h>
62 #include <sys/module.h>
63 #include <sys/atomic.h>
64 #include <sys/cpu.h>
65
66 #include <sys/file.h>
67 #include <sys/filedesc.h>
68 #include <sys/tty.h>
69 #include <sys/uio.h>
70
71 #include <sys/protosw.h>
72 #include <sys/socket.h>
73 #include <sys/errno.h>
74 #include <sys/kernel.h>
75 #include <sys/poll.h>
76 #include <sys/sysctl.h>
77 #include <sys/kauth.h>
78 #include <sys/syslog.h>
79
80 #include <net/if.h>
81 #include <net/slip.h>
82
83 #include <net/bpf.h>
84 #include <net/bpfdesc.h>
85 #include <net/bpfjit.h>
86
87 #include <net/if_arc.h>
88 #include <net/if_ether.h>
89
90 #include <netinet/in.h>
91 #include <netinet/if_inarp.h>
92
93
94 #include <compat/sys/sockio.h>
95
96 #ifndef BPF_BUFSIZE
97 /*
98 * 4096 is too small for FDDI frames. 8192 is too small for gigabit Ethernet
99 * jumbos (circa 9k), ATM, or Intel gig/10gig ethernet jumbos (16k).
100 */
101 # define BPF_BUFSIZE 32768
102 #endif
103
104 #define PRINET 26 /* interruptible */
105
106 /*
107 * The default read buffer size, and limit for BIOCSBLEN, is sysctl'able.
108 * XXX the default values should be computed dynamically based
109 * on available memory size and available mbuf clusters.
110 */
111 static int bpf_bufsize = BPF_BUFSIZE;
112 static int bpf_maxbufsize = BPF_DFLTBUFSIZE; /* XXX set dynamically, see above */
113 static bool bpf_jit = false;
114
115 struct bpfjit_ops bpfjit_module_ops = {
116 .bj_generate_code = NULL,
117 .bj_free_code = NULL
118 };
119
120 /*
121 * Global BPF statistics returned by net.bpf.stats sysctl.
122 */
123 static struct bpf_stat bpf_gstats;
124
125 /*
126 * Use a mutex to avoid a race condition between gathering the stats/peers
127 * and opening/closing the device.
128 */
129 static kmutex_t bpf_mtx;
130
131 /*
132 * bpf_iflist is the list of interfaces; each corresponds to an ifnet
133 * bpf_dtab holds the descriptors, indexed by minor device #
134 */
135 static struct pslist_head bpf_iflist;
136 static struct pslist_head bpf_dlist;
137
138 /* Macros for bpf_d on bpf_dlist */
139 #define BPF_DLIST_WRITER_INSEART_HEAD(__d) \
140 PSLIST_WRITER_INSERT_HEAD(&bpf_dlist, (__d), bd_bpf_dlist_entry)
141 #define BPF_DLIST_READER_FOREACH(__d) \
142 PSLIST_READER_FOREACH((__d), &bpf_dlist, struct bpf_d, \
143 bd_bpf_dlist_entry)
144 #define BPF_DLIST_WRITER_FOREACH(__d) \
145 PSLIST_WRITER_FOREACH((__d), &bpf_dlist, struct bpf_d, \
146 bd_bpf_dlist_entry)
147 #define BPF_DLIST_ENTRY_INIT(__d) \
148 PSLIST_ENTRY_INIT((__d), bd_bpf_dlist_entry)
149 #define BPF_DLIST_WRITER_REMOVE(__d) \
150 PSLIST_WRITER_REMOVE((__d), bd_bpf_dlist_entry)
151 #define BPF_DLIST_ENTRY_DESTROY(__d) \
152 PSLIST_ENTRY_DESTROY((__d), bd_bpf_dlist_entry)
153
154 /* Macros for bpf_if on bpf_iflist */
155 #define BPF_IFLIST_WRITER_INSERT_HEAD(__bp) \
156 PSLIST_WRITER_INSERT_HEAD(&bpf_iflist, (__bp), bif_iflist_entry)
157 #define BPF_IFLIST_READER_FOREACH(__bp) \
158 PSLIST_READER_FOREACH((__bp), &bpf_iflist, struct bpf_if, \
159 bif_iflist_entry)
160 #define BPF_IFLIST_WRITER_FOREACH(__bp) \
161 PSLIST_WRITER_FOREACH((__bp), &bpf_iflist, struct bpf_if, \
162 bif_iflist_entry)
163 #define BPF_IFLIST_WRITER_REMOVE(__bp) \
164 PSLIST_WRITER_REMOVE((__bp), bif_iflist_entry)
165 #define BPF_IFLIST_ENTRY_INIT(__bp) \
166 PSLIST_ENTRY_INIT((__bp), bif_iflist_entry)
167 #define BPF_IFLIST_ENTRY_DESTROY(__bp) \
168 PSLIST_ENTRY_DESTROY((__bp), bif_iflist_entry)
169
170 /* Macros for bpf_d on bpf_if#bif_dlist_pslist */
171 #define BPFIF_DLIST_READER_FOREACH(__d, __bp) \
172 PSLIST_READER_FOREACH((__d), &(__bp)->bif_dlist_head, struct bpf_d, \
173 bd_bif_dlist_entry)
174 #define BPFIF_DLIST_WRITER_INSERT_HEAD(__bp, __d) \
175 PSLIST_WRITER_INSERT_HEAD(&(__bp)->bif_dlist_head, (__d), \
176 bd_bif_dlist_entry)
177 #define BPFIF_DLIST_WRITER_REMOVE(__d) \
178 PSLIST_WRITER_REMOVE((__d), bd_bif_dlist_entry)
179 #define BPFIF_DLIST_ENTRY_INIT(__d) \
180 PSLIST_ENTRY_INIT((__d), bd_bif_dlist_entry)
181 #define BPFIF_DLIST_READER_EMPTY(__bp) \
182 (PSLIST_READER_FIRST(&(__bp)->bif_dlist_head, struct bpf_d, \
183 bd_bif_dlist_entry) == NULL)
184 #define BPFIF_DLIST_WRITER_EMPTY(__bp) \
185 (PSLIST_WRITER_FIRST(&(__bp)->bif_dlist_head, struct bpf_d, \
186 bd_bif_dlist_entry) == NULL)
187 #define BPFIF_DLIST_ENTRY_DESTROY(__d) \
188 PSLIST_ENTRY_DESTROY((__d), bd_bif_dlist_entry)
189
190 static int bpf_allocbufs(struct bpf_d *);
191 static void bpf_deliver(struct bpf_if *,
192 void *(*cpfn)(void *, const void *, size_t),
193 void *, u_int, u_int, const bool);
194 static void bpf_freed(struct bpf_d *);
195 static void bpf_ifname(struct ifnet *, struct ifreq *);
196 static void *bpf_mcpy(void *, const void *, size_t);
197 static int bpf_movein(struct uio *, int, uint64_t,
198 struct mbuf **, struct sockaddr *);
199 static void bpf_attachd(struct bpf_d *, struct bpf_if *);
200 static void bpf_detachd(struct bpf_d *);
201 static int bpf_setif(struct bpf_d *, struct ifreq *);
202 static int bpf_setf(struct bpf_d *, struct bpf_program *);
203 static void bpf_timed_out(void *);
204 static inline void
205 bpf_wakeup(struct bpf_d *);
206 static int bpf_hdrlen(struct bpf_d *);
207 static void catchpacket(struct bpf_d *, u_char *, u_int, u_int,
208 void *(*)(void *, const void *, size_t), struct timespec *);
209 static void reset_d(struct bpf_d *);
210 static int bpf_getdltlist(struct bpf_d *, struct bpf_dltlist *);
211 static int bpf_setdlt(struct bpf_d *, u_int);
212
213 static int bpf_read(struct file *, off_t *, struct uio *, kauth_cred_t,
214 int);
215 static int bpf_write(struct file *, off_t *, struct uio *, kauth_cred_t,
216 int);
217 static int bpf_ioctl(struct file *, u_long, void *);
218 static int bpf_poll(struct file *, int);
219 static int bpf_stat(struct file *, struct stat *);
220 static int bpf_close(struct file *);
221 static int bpf_kqfilter(struct file *, struct knote *);
222 static void bpf_softintr(void *);
223
224 static const struct fileops bpf_fileops = {
225 .fo_read = bpf_read,
226 .fo_write = bpf_write,
227 .fo_ioctl = bpf_ioctl,
228 .fo_fcntl = fnullop_fcntl,
229 .fo_poll = bpf_poll,
230 .fo_stat = bpf_stat,
231 .fo_close = bpf_close,
232 .fo_kqfilter = bpf_kqfilter,
233 .fo_restart = fnullop_restart,
234 };
235
236 dev_type_open(bpfopen);
237
238 const struct cdevsw bpf_cdevsw = {
239 .d_open = bpfopen,
240 .d_close = noclose,
241 .d_read = noread,
242 .d_write = nowrite,
243 .d_ioctl = noioctl,
244 .d_stop = nostop,
245 .d_tty = notty,
246 .d_poll = nopoll,
247 .d_mmap = nommap,
248 .d_kqfilter = nokqfilter,
249 .d_discard = nodiscard,
250 .d_flag = D_OTHER
251 };
252
253 bpfjit_func_t
254 bpf_jit_generate(bpf_ctx_t *bc, void *code, size_t size)
255 {
256
257 membar_consumer();
258 if (bpfjit_module_ops.bj_generate_code != NULL) {
259 return bpfjit_module_ops.bj_generate_code(bc, code, size);
260 }
261 return NULL;
262 }
263
264 void
265 bpf_jit_freecode(bpfjit_func_t jcode)
266 {
267 KASSERT(bpfjit_module_ops.bj_free_code != NULL);
268 bpfjit_module_ops.bj_free_code(jcode);
269 }
270
271 static int
272 bpf_movein(struct uio *uio, int linktype, uint64_t mtu, struct mbuf **mp,
273 struct sockaddr *sockp)
274 {
275 struct mbuf *m;
276 int error;
277 size_t len;
278 size_t hlen;
279 size_t align;
280
281 /*
282 * Build a sockaddr based on the data link layer type.
283 * We do this at this level because the ethernet header
284 * is copied directly into the data field of the sockaddr.
285 * In the case of SLIP, there is no header and the packet
286 * is forwarded as is.
287 * Also, we are careful to leave room at the front of the mbuf
288 * for the link level header.
289 */
290 switch (linktype) {
291
292 case DLT_SLIP:
293 sockp->sa_family = AF_INET;
294 hlen = 0;
295 align = 0;
296 break;
297
298 case DLT_PPP:
299 sockp->sa_family = AF_UNSPEC;
300 hlen = 0;
301 align = 0;
302 break;
303
304 case DLT_EN10MB:
305 sockp->sa_family = AF_UNSPEC;
306 /* XXX Would MAXLINKHDR be better? */
307 /* 6(dst)+6(src)+2(type) */
308 hlen = sizeof(struct ether_header);
309 align = 2;
310 break;
311
312 case DLT_ARCNET:
313 sockp->sa_family = AF_UNSPEC;
314 hlen = ARC_HDRLEN;
315 align = 5;
316 break;
317
318 case DLT_FDDI:
319 sockp->sa_family = AF_LINK;
320 /* XXX 4(FORMAC)+6(dst)+6(src) */
321 hlen = 16;
322 align = 0;
323 break;
324
325 case DLT_ECONET:
326 sockp->sa_family = AF_UNSPEC;
327 hlen = 6;
328 align = 2;
329 break;
330
331 case DLT_NULL:
332 sockp->sa_family = AF_UNSPEC;
333 hlen = 0;
334 align = 0;
335 break;
336
337 default:
338 return (EIO);
339 }
340
341 len = uio->uio_resid;
342 /*
343 * If there aren't enough bytes for a link level header or the
344 * packet length exceeds the interface mtu, return an error.
345 */
346 if (len - hlen > mtu)
347 return (EMSGSIZE);
348
349 /*
350 * XXX Avoid complicated buffer chaining ---
351 * bail if it won't fit in a single mbuf.
352 * (Take into account possible alignment bytes)
353 */
354 if (len + align > MCLBYTES)
355 return (EIO);
356
357 m = m_gethdr(M_WAIT, MT_DATA);
358 m_reset_rcvif(m);
359 m->m_pkthdr.len = (int)(len - hlen);
360 if (len + align > MHLEN) {
361 m_clget(m, M_WAIT);
362 if ((m->m_flags & M_EXT) == 0) {
363 error = ENOBUFS;
364 goto bad;
365 }
366 }
367
368 /* Insure the data is properly aligned */
369 if (align > 0) {
370 m->m_data += align;
371 m->m_len -= (int)align;
372 }
373
374 error = uiomove(mtod(m, void *), len, uio);
375 if (error)
376 goto bad;
377 if (hlen != 0) {
378 memcpy(sockp->sa_data, mtod(m, void *), hlen);
379 m->m_data += hlen; /* XXX */
380 len -= hlen;
381 }
382 m->m_len = (int)len;
383 *mp = m;
384 return (0);
385
386 bad:
387 m_freem(m);
388 return (error);
389 }
390
391 /*
392 * Attach file to the bpf interface, i.e. make d listen on bp.
393 * Must be called at splnet.
394 */
395 static void
396 bpf_attachd(struct bpf_d *d, struct bpf_if *bp)
397 {
398 KASSERT(mutex_owned(&bpf_mtx));
399 /*
400 * Point d at bp, and add d to the interface's list of listeners.
401 * Finally, point the driver's bpf cookie at the interface so
402 * it will divert packets to bpf.
403 */
404 d->bd_bif = bp;
405 BPFIF_DLIST_WRITER_INSERT_HEAD(bp, d);
406
407 *bp->bif_driverp = bp;
408 }
409
410 /*
411 * Detach a file from its interface.
412 */
413 static void
414 bpf_detachd(struct bpf_d *d)
415 {
416 struct bpf_if *bp;
417
418 KASSERT(mutex_owned(&bpf_mtx));
419
420 bp = d->bd_bif;
421 /*
422 * Check if this descriptor had requested promiscuous mode.
423 * If so, turn it off.
424 */
425 if (d->bd_promisc) {
426 int error __diagused;
427
428 d->bd_promisc = 0;
429 /*
430 * Take device out of promiscuous mode. Since we were
431 * able to enter promiscuous mode, we should be able
432 * to turn it off. But we can get an error if
433 * the interface was configured down, so only panic
434 * if we don't get an unexpected error.
435 */
436 error = ifpromisc(bp->bif_ifp, 0);
437 #ifdef DIAGNOSTIC
438 if (error)
439 printf("%s: ifpromisc failed: %d", __func__, error);
440 #endif
441 }
442
443 /* Remove d from the interface's descriptor list. */
444 BPFIF_DLIST_WRITER_REMOVE(d);
445
446 /* TODO pserialize_perform(); */
447 /* TODO psref_target_destroy(); */
448 BPFIF_DLIST_ENTRY_DESTROY(d);
449
450 /* XXX NOMPSAFE? */
451 if (BPFIF_DLIST_WRITER_EMPTY(bp)) {
452 /*
453 * Let the driver know that there are no more listeners.
454 */
455 *d->bd_bif->bif_driverp = NULL;
456 }
457 d->bd_bif = NULL;
458 }
459
460 static void
461 bpf_init(void)
462 {
463
464 mutex_init(&bpf_mtx, MUTEX_DEFAULT, IPL_NONE);
465
466 PSLIST_INIT(&bpf_iflist);
467 PSLIST_INIT(&bpf_dlist);
468
469 bpf_gstats.bs_recv = 0;
470 bpf_gstats.bs_drop = 0;
471 bpf_gstats.bs_capt = 0;
472
473 return;
474 }
475
476 /*
477 * bpfilterattach() is called at boot time. We don't need to do anything
478 * here, since any initialization will happen as part of module init code.
479 */
480 /* ARGSUSED */
481 void
482 bpfilterattach(int n)
483 {
484
485 }
486
487 /*
488 * Open ethernet device. Clones.
489 */
490 /* ARGSUSED */
491 int
492 bpfopen(dev_t dev, int flag, int mode, struct lwp *l)
493 {
494 struct bpf_d *d;
495 struct file *fp;
496 int error, fd;
497
498 /* falloc() will fill in the descriptor for us. */
499 if ((error = fd_allocfile(&fp, &fd)) != 0)
500 return error;
501
502 d = kmem_zalloc(sizeof(*d), KM_SLEEP);
503 d->bd_bufsize = bpf_bufsize;
504 d->bd_seesent = 1;
505 d->bd_feedback = 0;
506 d->bd_pid = l->l_proc->p_pid;
507 #ifdef _LP64
508 if (curproc->p_flag & PK_32)
509 d->bd_compat32 = 1;
510 #endif
511 getnanotime(&d->bd_btime);
512 d->bd_atime = d->bd_mtime = d->bd_btime;
513 callout_init(&d->bd_callout, 0);
514 selinit(&d->bd_sel);
515 d->bd_sih = softint_establish(SOFTINT_CLOCK, bpf_softintr, d);
516 d->bd_jitcode = NULL;
517 BPF_DLIST_ENTRY_INIT(d);
518 BPFIF_DLIST_ENTRY_INIT(d);
519
520 mutex_enter(&bpf_mtx);
521 BPF_DLIST_WRITER_INSEART_HEAD(d);
522 mutex_exit(&bpf_mtx);
523
524 return fd_clone(fp, fd, flag, &bpf_fileops, d);
525 }
526
527 /*
528 * Close the descriptor by detaching it from its interface,
529 * deallocating its buffers, and marking it free.
530 */
531 /* ARGSUSED */
532 static int
533 bpf_close(struct file *fp)
534 {
535 struct bpf_d *d;
536 int s;
537
538 KERNEL_LOCK(1, NULL);
539 mutex_enter(&bpf_mtx);
540
541 if ((d = fp->f_bpf) == NULL) {
542 mutex_exit(&bpf_mtx);
543 KERNEL_UNLOCK_ONE(NULL);
544 return 0;
545 }
546
547 /*
548 * Refresh the PID associated with this bpf file.
549 */
550 d->bd_pid = curproc->p_pid;
551
552 s = splnet();
553 if (d->bd_state == BPF_WAITING)
554 callout_stop(&d->bd_callout);
555 d->bd_state = BPF_IDLE;
556 if (d->bd_bif)
557 bpf_detachd(d);
558 splx(s);
559 bpf_freed(d);
560 BPF_DLIST_WRITER_REMOVE(d);
561 fp->f_bpf = NULL;
562
563 mutex_exit(&bpf_mtx);
564 KERNEL_UNLOCK_ONE(NULL);
565
566 /* TODO pserialize_perform(); */
567 /* TODO psref_target_destroy(); */
568 BPF_DLIST_ENTRY_DESTROY(d);
569
570 callout_destroy(&d->bd_callout);
571 seldestroy(&d->bd_sel);
572 softint_disestablish(d->bd_sih);
573 kmem_free(d, sizeof(*d));
574
575 return (0);
576 }
577
578 /*
579 * Rotate the packet buffers in descriptor d. Move the store buffer
580 * into the hold slot, and the free buffer into the store slot.
581 * Zero the length of the new store buffer.
582 */
583 #define ROTATE_BUFFERS(d) \
584 (d)->bd_hbuf = (d)->bd_sbuf; \
585 (d)->bd_hlen = (d)->bd_slen; \
586 (d)->bd_sbuf = (d)->bd_fbuf; \
587 (d)->bd_slen = 0; \
588 (d)->bd_fbuf = NULL;
589 /*
590 * bpfread - read next chunk of packets from buffers
591 */
592 static int
593 bpf_read(struct file *fp, off_t *offp, struct uio *uio,
594 kauth_cred_t cred, int flags)
595 {
596 struct bpf_d *d = fp->f_bpf;
597 int timed_out;
598 int error;
599 int s;
600
601 getnanotime(&d->bd_atime);
602 /*
603 * Restrict application to use a buffer the same size as
604 * the kernel buffers.
605 */
606 if (uio->uio_resid != d->bd_bufsize)
607 return (EINVAL);
608
609 KERNEL_LOCK(1, NULL);
610 s = splnet();
611 if (d->bd_state == BPF_WAITING)
612 callout_stop(&d->bd_callout);
613 timed_out = (d->bd_state == BPF_TIMED_OUT);
614 d->bd_state = BPF_IDLE;
615 /*
616 * If the hold buffer is empty, then do a timed sleep, which
617 * ends when the timeout expires or when enough packets
618 * have arrived to fill the store buffer.
619 */
620 while (d->bd_hbuf == NULL) {
621 if (fp->f_flag & FNONBLOCK) {
622 if (d->bd_slen == 0) {
623 splx(s);
624 KERNEL_UNLOCK_ONE(NULL);
625 return (EWOULDBLOCK);
626 }
627 ROTATE_BUFFERS(d);
628 break;
629 }
630
631 if ((d->bd_immediate || timed_out) && d->bd_slen != 0) {
632 /*
633 * A packet(s) either arrived since the previous
634 * read or arrived while we were asleep.
635 * Rotate the buffers and return what's here.
636 */
637 ROTATE_BUFFERS(d);
638 break;
639 }
640 error = tsleep(d, PRINET|PCATCH, "bpf",
641 d->bd_rtout);
642 if (error == EINTR || error == ERESTART) {
643 splx(s);
644 KERNEL_UNLOCK_ONE(NULL);
645 return (error);
646 }
647 if (error == EWOULDBLOCK) {
648 /*
649 * On a timeout, return what's in the buffer,
650 * which may be nothing. If there is something
651 * in the store buffer, we can rotate the buffers.
652 */
653 if (d->bd_hbuf)
654 /*
655 * We filled up the buffer in between
656 * getting the timeout and arriving
657 * here, so we don't need to rotate.
658 */
659 break;
660
661 if (d->bd_slen == 0) {
662 splx(s);
663 KERNEL_UNLOCK_ONE(NULL);
664 return (0);
665 }
666 ROTATE_BUFFERS(d);
667 break;
668 }
669 if (error != 0)
670 goto done;
671 }
672 /*
673 * At this point, we know we have something in the hold slot.
674 */
675 splx(s);
676
677 /*
678 * Move data from hold buffer into user space.
679 * We know the entire buffer is transferred since
680 * we checked above that the read buffer is bpf_bufsize bytes.
681 */
682 error = uiomove(d->bd_hbuf, d->bd_hlen, uio);
683
684 s = splnet();
685 d->bd_fbuf = d->bd_hbuf;
686 d->bd_hbuf = NULL;
687 d->bd_hlen = 0;
688 done:
689 splx(s);
690 KERNEL_UNLOCK_ONE(NULL);
691 return (error);
692 }
693
694
695 /*
696 * If there are processes sleeping on this descriptor, wake them up.
697 */
698 static inline void
699 bpf_wakeup(struct bpf_d *d)
700 {
701 wakeup(d);
702 if (d->bd_async)
703 softint_schedule(d->bd_sih);
704 selnotify(&d->bd_sel, 0, 0);
705 }
706
707 static void
708 bpf_softintr(void *cookie)
709 {
710 struct bpf_d *d;
711
712 d = cookie;
713 if (d->bd_async)
714 fownsignal(d->bd_pgid, SIGIO, 0, 0, NULL);
715 }
716
717 static void
718 bpf_timed_out(void *arg)
719 {
720 struct bpf_d *d = arg;
721 int s;
722
723 s = splnet();
724 if (d->bd_state == BPF_WAITING) {
725 d->bd_state = BPF_TIMED_OUT;
726 if (d->bd_slen != 0)
727 bpf_wakeup(d);
728 }
729 splx(s);
730 }
731
732
733 static int
734 bpf_write(struct file *fp, off_t *offp, struct uio *uio,
735 kauth_cred_t cred, int flags)
736 {
737 struct bpf_d *d = fp->f_bpf;
738 struct ifnet *ifp;
739 struct mbuf *m, *mc;
740 int error, s;
741 static struct sockaddr_storage dst;
742
743 m = NULL; /* XXX gcc */
744
745 KERNEL_LOCK(1, NULL);
746
747 if (d->bd_bif == NULL) {
748 KERNEL_UNLOCK_ONE(NULL);
749 return (ENXIO);
750 }
751 getnanotime(&d->bd_mtime);
752
753 ifp = d->bd_bif->bif_ifp;
754
755 if (uio->uio_resid == 0) {
756 KERNEL_UNLOCK_ONE(NULL);
757 return (0);
758 }
759
760 error = bpf_movein(uio, (int)d->bd_bif->bif_dlt, ifp->if_mtu, &m,
761 (struct sockaddr *) &dst);
762 if (error) {
763 KERNEL_UNLOCK_ONE(NULL);
764 return (error);
765 }
766
767 if (m->m_pkthdr.len > ifp->if_mtu) {
768 KERNEL_UNLOCK_ONE(NULL);
769 m_freem(m);
770 return (EMSGSIZE);
771 }
772
773 if (d->bd_hdrcmplt)
774 dst.ss_family = pseudo_AF_HDRCMPLT;
775
776 if (d->bd_feedback) {
777 mc = m_dup(m, 0, M_COPYALL, M_NOWAIT);
778 if (mc != NULL)
779 m_set_rcvif(mc, ifp);
780 /* Set M_PROMISC for outgoing packets to be discarded. */
781 if (1 /*d->bd_direction == BPF_D_INOUT*/)
782 m->m_flags |= M_PROMISC;
783 } else
784 mc = NULL;
785
786 s = splsoftnet();
787 error = if_output_lock(ifp, ifp, m, (struct sockaddr *) &dst, NULL);
788
789 if (mc != NULL) {
790 if (error == 0)
791 ifp->_if_input(ifp, mc);
792 else
793 m_freem(mc);
794 }
795 splx(s);
796 KERNEL_UNLOCK_ONE(NULL);
797 /*
798 * The driver frees the mbuf.
799 */
800 return (error);
801 }
802
803 /*
804 * Reset a descriptor by flushing its packet buffer and clearing the
805 * receive and drop counts. Should be called at splnet.
806 */
807 static void
808 reset_d(struct bpf_d *d)
809 {
810 if (d->bd_hbuf) {
811 /* Free the hold buffer. */
812 d->bd_fbuf = d->bd_hbuf;
813 d->bd_hbuf = NULL;
814 }
815 d->bd_slen = 0;
816 d->bd_hlen = 0;
817 d->bd_rcount = 0;
818 d->bd_dcount = 0;
819 d->bd_ccount = 0;
820 }
821
822 /*
823 * FIONREAD Check for read packet available.
824 * BIOCGBLEN Get buffer len [for read()].
825 * BIOCSETF Set ethernet read filter.
826 * BIOCFLUSH Flush read packet buffer.
827 * BIOCPROMISC Put interface into promiscuous mode.
828 * BIOCGDLT Get link layer type.
829 * BIOCGETIF Get interface name.
830 * BIOCSETIF Set interface.
831 * BIOCSRTIMEOUT Set read timeout.
832 * BIOCGRTIMEOUT Get read timeout.
833 * BIOCGSTATS Get packet stats.
834 * BIOCIMMEDIATE Set immediate mode.
835 * BIOCVERSION Get filter language version.
836 * BIOCGHDRCMPLT Get "header already complete" flag.
837 * BIOCSHDRCMPLT Set "header already complete" flag.
838 * BIOCSFEEDBACK Set packet feedback mode.
839 * BIOCGFEEDBACK Get packet feedback mode.
840 * BIOCGSEESENT Get "see sent packets" mode.
841 * BIOCSSEESENT Set "see sent packets" mode.
842 */
843 /* ARGSUSED */
844 static int
845 bpf_ioctl(struct file *fp, u_long cmd, void *addr)
846 {
847 struct bpf_d *d = fp->f_bpf;
848 int s, error = 0;
849
850 /*
851 * Refresh the PID associated with this bpf file.
852 */
853 KERNEL_LOCK(1, NULL);
854 d->bd_pid = curproc->p_pid;
855 #ifdef _LP64
856 if (curproc->p_flag & PK_32)
857 d->bd_compat32 = 1;
858 else
859 d->bd_compat32 = 0;
860 #endif
861
862 s = splnet();
863 if (d->bd_state == BPF_WAITING)
864 callout_stop(&d->bd_callout);
865 d->bd_state = BPF_IDLE;
866 splx(s);
867
868 switch (cmd) {
869
870 default:
871 error = EINVAL;
872 break;
873
874 /*
875 * Check for read packet available.
876 */
877 case FIONREAD:
878 {
879 int n;
880
881 s = splnet();
882 n = d->bd_slen;
883 if (d->bd_hbuf)
884 n += d->bd_hlen;
885 splx(s);
886
887 *(int *)addr = n;
888 break;
889 }
890
891 /*
892 * Get buffer len [for read()].
893 */
894 case BIOCGBLEN:
895 *(u_int *)addr = d->bd_bufsize;
896 break;
897
898 /*
899 * Set buffer length.
900 */
901 case BIOCSBLEN:
902 /*
903 * Forbid to change the buffer length if buffers are already
904 * allocated.
905 */
906 if (d->bd_bif != NULL || d->bd_sbuf != NULL)
907 error = EINVAL;
908 else {
909 u_int size = *(u_int *)addr;
910
911 if (size > bpf_maxbufsize)
912 *(u_int *)addr = size = bpf_maxbufsize;
913 else if (size < BPF_MINBUFSIZE)
914 *(u_int *)addr = size = BPF_MINBUFSIZE;
915 d->bd_bufsize = size;
916 }
917 break;
918
919 /*
920 * Set link layer read filter.
921 */
922 case BIOCSETF:
923 error = bpf_setf(d, addr);
924 break;
925
926 /*
927 * Flush read packet buffer.
928 */
929 case BIOCFLUSH:
930 s = splnet();
931 reset_d(d);
932 splx(s);
933 break;
934
935 /*
936 * Put interface into promiscuous mode.
937 */
938 case BIOCPROMISC:
939 if (d->bd_bif == NULL) {
940 /*
941 * No interface attached yet.
942 */
943 error = EINVAL;
944 break;
945 }
946 s = splnet();
947 if (d->bd_promisc == 0) {
948 error = ifpromisc(d->bd_bif->bif_ifp, 1);
949 if (error == 0)
950 d->bd_promisc = 1;
951 }
952 splx(s);
953 break;
954
955 /*
956 * Get device parameters.
957 */
958 case BIOCGDLT:
959 if (d->bd_bif == NULL)
960 error = EINVAL;
961 else
962 *(u_int *)addr = d->bd_bif->bif_dlt;
963 break;
964
965 /*
966 * Get a list of supported device parameters.
967 */
968 case BIOCGDLTLIST:
969 if (d->bd_bif == NULL)
970 error = EINVAL;
971 else
972 error = bpf_getdltlist(d, addr);
973 break;
974
975 /*
976 * Set device parameters.
977 */
978 case BIOCSDLT:
979 mutex_enter(&bpf_mtx);
980 if (d->bd_bif == NULL)
981 error = EINVAL;
982 else
983 error = bpf_setdlt(d, *(u_int *)addr);
984 mutex_exit(&bpf_mtx);
985 break;
986
987 /*
988 * Set interface name.
989 */
990 #ifdef OBIOCGETIF
991 case OBIOCGETIF:
992 #endif
993 case BIOCGETIF:
994 if (d->bd_bif == NULL)
995 error = EINVAL;
996 else
997 bpf_ifname(d->bd_bif->bif_ifp, addr);
998 break;
999
1000 /*
1001 * Set interface.
1002 */
1003 #ifdef OBIOCSETIF
1004 case OBIOCSETIF:
1005 #endif
1006 case BIOCSETIF:
1007 mutex_enter(&bpf_mtx);
1008 error = bpf_setif(d, addr);
1009 mutex_exit(&bpf_mtx);
1010 break;
1011
1012 /*
1013 * Set read timeout.
1014 */
1015 case BIOCSRTIMEOUT:
1016 {
1017 struct timeval *tv = addr;
1018
1019 /* Compute number of ticks. */
1020 d->bd_rtout = tv->tv_sec * hz + tv->tv_usec / tick;
1021 if ((d->bd_rtout == 0) && (tv->tv_usec != 0))
1022 d->bd_rtout = 1;
1023 break;
1024 }
1025
1026 #ifdef BIOCGORTIMEOUT
1027 /*
1028 * Get read timeout.
1029 */
1030 case BIOCGORTIMEOUT:
1031 {
1032 struct timeval50 *tv = addr;
1033
1034 tv->tv_sec = d->bd_rtout / hz;
1035 tv->tv_usec = (d->bd_rtout % hz) * tick;
1036 break;
1037 }
1038 #endif
1039
1040 #ifdef BIOCSORTIMEOUT
1041 /*
1042 * Set read timeout.
1043 */
1044 case BIOCSORTIMEOUT:
1045 {
1046 struct timeval50 *tv = addr;
1047
1048 /* Compute number of ticks. */
1049 d->bd_rtout = tv->tv_sec * hz + tv->tv_usec / tick;
1050 if ((d->bd_rtout == 0) && (tv->tv_usec != 0))
1051 d->bd_rtout = 1;
1052 break;
1053 }
1054 #endif
1055
1056 /*
1057 * Get read timeout.
1058 */
1059 case BIOCGRTIMEOUT:
1060 {
1061 struct timeval *tv = addr;
1062
1063 tv->tv_sec = d->bd_rtout / hz;
1064 tv->tv_usec = (d->bd_rtout % hz) * tick;
1065 break;
1066 }
1067 /*
1068 * Get packet stats.
1069 */
1070 case BIOCGSTATS:
1071 {
1072 struct bpf_stat *bs = addr;
1073
1074 bs->bs_recv = d->bd_rcount;
1075 bs->bs_drop = d->bd_dcount;
1076 bs->bs_capt = d->bd_ccount;
1077 break;
1078 }
1079
1080 case BIOCGSTATSOLD:
1081 {
1082 struct bpf_stat_old *bs = addr;
1083
1084 bs->bs_recv = d->bd_rcount;
1085 bs->bs_drop = d->bd_dcount;
1086 break;
1087 }
1088
1089 /*
1090 * Set immediate mode.
1091 */
1092 case BIOCIMMEDIATE:
1093 d->bd_immediate = *(u_int *)addr;
1094 break;
1095
1096 case BIOCVERSION:
1097 {
1098 struct bpf_version *bv = addr;
1099
1100 bv->bv_major = BPF_MAJOR_VERSION;
1101 bv->bv_minor = BPF_MINOR_VERSION;
1102 break;
1103 }
1104
1105 case BIOCGHDRCMPLT: /* get "header already complete" flag */
1106 *(u_int *)addr = d->bd_hdrcmplt;
1107 break;
1108
1109 case BIOCSHDRCMPLT: /* set "header already complete" flag */
1110 d->bd_hdrcmplt = *(u_int *)addr ? 1 : 0;
1111 break;
1112
1113 /*
1114 * Get "see sent packets" flag
1115 */
1116 case BIOCGSEESENT:
1117 *(u_int *)addr = d->bd_seesent;
1118 break;
1119
1120 /*
1121 * Set "see sent" packets flag
1122 */
1123 case BIOCSSEESENT:
1124 d->bd_seesent = *(u_int *)addr;
1125 break;
1126
1127 /*
1128 * Set "feed packets from bpf back to input" mode
1129 */
1130 case BIOCSFEEDBACK:
1131 d->bd_feedback = *(u_int *)addr;
1132 break;
1133
1134 /*
1135 * Get "feed packets from bpf back to input" mode
1136 */
1137 case BIOCGFEEDBACK:
1138 *(u_int *)addr = d->bd_feedback;
1139 break;
1140
1141 case FIONBIO: /* Non-blocking I/O */
1142 /*
1143 * No need to do anything special as we use IO_NDELAY in
1144 * bpfread() as an indication of whether or not to block
1145 * the read.
1146 */
1147 break;
1148
1149 case FIOASYNC: /* Send signal on receive packets */
1150 d->bd_async = *(int *)addr;
1151 break;
1152
1153 case TIOCSPGRP: /* Process or group to send signals to */
1154 case FIOSETOWN:
1155 error = fsetown(&d->bd_pgid, cmd, addr);
1156 break;
1157
1158 case TIOCGPGRP:
1159 case FIOGETOWN:
1160 error = fgetown(d->bd_pgid, cmd, addr);
1161 break;
1162 }
1163 KERNEL_UNLOCK_ONE(NULL);
1164 return (error);
1165 }
1166
1167 /*
1168 * Set d's packet filter program to fp. If this file already has a filter,
1169 * free it and replace it. Returns EINVAL for bogus requests.
1170 */
1171 static int
1172 bpf_setf(struct bpf_d *d, struct bpf_program *fp)
1173 {
1174 struct bpf_insn *fcode, *old;
1175 bpfjit_func_t jcode, oldj;
1176 size_t flen, size = 0, old_size;
1177 int s;
1178
1179 jcode = NULL;
1180 flen = fp->bf_len;
1181
1182 if ((fp->bf_insns == NULL && flen) || flen > BPF_MAXINSNS) {
1183 return EINVAL;
1184 }
1185
1186 if (flen) {
1187 /*
1188 * Allocate the buffer, copy the byte-code from
1189 * userspace and validate it.
1190 */
1191 size = flen * sizeof(*fp->bf_insns);
1192 fcode = kmem_alloc(size, KM_SLEEP);
1193 if (copyin(fp->bf_insns, fcode, size) != 0 ||
1194 !bpf_validate(fcode, (int)flen)) {
1195 kmem_free(fcode, size);
1196 return EINVAL;
1197 }
1198 membar_consumer();
1199 if (bpf_jit)
1200 jcode = bpf_jit_generate(NULL, fcode, flen);
1201 } else {
1202 fcode = NULL;
1203 }
1204
1205 old_size = d->bd_filter_size;
1206
1207 s = splnet();
1208 old = d->bd_filter;
1209 d->bd_filter = fcode;
1210 d->bd_filter_size = size;
1211 oldj = d->bd_jitcode;
1212 d->bd_jitcode = jcode;
1213 reset_d(d);
1214 splx(s);
1215
1216 if (old) {
1217 kmem_free(old, old_size);
1218 }
1219 if (oldj) {
1220 bpf_jit_freecode(oldj);
1221 }
1222
1223 return 0;
1224 }
1225
1226 /*
1227 * Detach a file from its current interface (if attached at all) and attach
1228 * to the interface indicated by the name stored in ifr.
1229 * Return an errno or 0.
1230 */
1231 static int
1232 bpf_setif(struct bpf_d *d, struct ifreq *ifr)
1233 {
1234 struct bpf_if *bp;
1235 char *cp;
1236 int unit_seen, i, s, error;
1237
1238 KASSERT(mutex_owned(&bpf_mtx));
1239 /*
1240 * Make sure the provided name has a unit number, and default
1241 * it to '0' if not specified.
1242 * XXX This is ugly ... do this differently?
1243 */
1244 unit_seen = 0;
1245 cp = ifr->ifr_name;
1246 cp[sizeof(ifr->ifr_name) - 1] = '\0'; /* sanity */
1247 while (*cp++)
1248 if (*cp >= '0' && *cp <= '9')
1249 unit_seen = 1;
1250 if (!unit_seen) {
1251 /* Make sure to leave room for the '\0'. */
1252 for (i = 0; i < (IFNAMSIZ - 1); ++i) {
1253 if ((ifr->ifr_name[i] >= 'a' &&
1254 ifr->ifr_name[i] <= 'z') ||
1255 (ifr->ifr_name[i] >= 'A' &&
1256 ifr->ifr_name[i] <= 'Z'))
1257 continue;
1258 ifr->ifr_name[i] = '0';
1259 }
1260 }
1261
1262 /*
1263 * Look through attached interfaces for the named one.
1264 */
1265 BPF_IFLIST_WRITER_FOREACH(bp) {
1266 struct ifnet *ifp = bp->bif_ifp;
1267
1268 if (ifp == NULL ||
1269 strcmp(ifp->if_xname, ifr->ifr_name) != 0)
1270 continue;
1271 /* skip additional entry */
1272 if (bp->bif_driverp != &ifp->if_bpf)
1273 continue;
1274 /*
1275 * We found the requested interface.
1276 * Allocate the packet buffers if we need to.
1277 * If we're already attached to requested interface,
1278 * just flush the buffer.
1279 */
1280 if (d->bd_sbuf == NULL) {
1281 error = bpf_allocbufs(d);
1282 if (error != 0)
1283 return (error);
1284 }
1285 s = splnet();
1286 if (bp != d->bd_bif) {
1287 if (d->bd_bif)
1288 /*
1289 * Detach if attached to something else.
1290 */
1291 bpf_detachd(d);
1292
1293 bpf_attachd(d, bp);
1294 }
1295 reset_d(d);
1296 splx(s);
1297 return (0);
1298 }
1299 /* Not found. */
1300 return (ENXIO);
1301 }
1302
1303 /*
1304 * Copy the interface name to the ifreq.
1305 */
1306 static void
1307 bpf_ifname(struct ifnet *ifp, struct ifreq *ifr)
1308 {
1309 memcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
1310 }
1311
1312 static int
1313 bpf_stat(struct file *fp, struct stat *st)
1314 {
1315 struct bpf_d *d = fp->f_bpf;
1316
1317 (void)memset(st, 0, sizeof(*st));
1318 KERNEL_LOCK(1, NULL);
1319 st->st_dev = makedev(cdevsw_lookup_major(&bpf_cdevsw), d->bd_pid);
1320 st->st_atimespec = d->bd_atime;
1321 st->st_mtimespec = d->bd_mtime;
1322 st->st_ctimespec = st->st_birthtimespec = d->bd_btime;
1323 st->st_uid = kauth_cred_geteuid(fp->f_cred);
1324 st->st_gid = kauth_cred_getegid(fp->f_cred);
1325 st->st_mode = S_IFCHR;
1326 KERNEL_UNLOCK_ONE(NULL);
1327 return 0;
1328 }
1329
1330 /*
1331 * Support for poll() system call
1332 *
1333 * Return true iff the specific operation will not block indefinitely - with
1334 * the assumption that it is safe to positively acknowledge a request for the
1335 * ability to write to the BPF device.
1336 * Otherwise, return false but make a note that a selnotify() must be done.
1337 */
1338 static int
1339 bpf_poll(struct file *fp, int events)
1340 {
1341 struct bpf_d *d = fp->f_bpf;
1342 int s = splnet();
1343 int revents;
1344
1345 /*
1346 * Refresh the PID associated with this bpf file.
1347 */
1348 KERNEL_LOCK(1, NULL);
1349 d->bd_pid = curproc->p_pid;
1350
1351 revents = events & (POLLOUT | POLLWRNORM);
1352 if (events & (POLLIN | POLLRDNORM)) {
1353 /*
1354 * An imitation of the FIONREAD ioctl code.
1355 */
1356 if (d->bd_hlen != 0 ||
1357 ((d->bd_immediate || d->bd_state == BPF_TIMED_OUT) &&
1358 d->bd_slen != 0)) {
1359 revents |= events & (POLLIN | POLLRDNORM);
1360 } else {
1361 selrecord(curlwp, &d->bd_sel);
1362 /* Start the read timeout if necessary */
1363 if (d->bd_rtout > 0 && d->bd_state == BPF_IDLE) {
1364 callout_reset(&d->bd_callout, d->bd_rtout,
1365 bpf_timed_out, d);
1366 d->bd_state = BPF_WAITING;
1367 }
1368 }
1369 }
1370
1371 KERNEL_UNLOCK_ONE(NULL);
1372 splx(s);
1373 return (revents);
1374 }
1375
1376 static void
1377 filt_bpfrdetach(struct knote *kn)
1378 {
1379 struct bpf_d *d = kn->kn_hook;
1380 int s;
1381
1382 KERNEL_LOCK(1, NULL);
1383 s = splnet();
1384 SLIST_REMOVE(&d->bd_sel.sel_klist, kn, knote, kn_selnext);
1385 splx(s);
1386 KERNEL_UNLOCK_ONE(NULL);
1387 }
1388
1389 static int
1390 filt_bpfread(struct knote *kn, long hint)
1391 {
1392 struct bpf_d *d = kn->kn_hook;
1393 int rv;
1394
1395 KERNEL_LOCK(1, NULL);
1396 kn->kn_data = d->bd_hlen;
1397 if (d->bd_immediate)
1398 kn->kn_data += d->bd_slen;
1399 rv = (kn->kn_data > 0);
1400 KERNEL_UNLOCK_ONE(NULL);
1401 return rv;
1402 }
1403
1404 static const struct filterops bpfread_filtops =
1405 { 1, NULL, filt_bpfrdetach, filt_bpfread };
1406
1407 static int
1408 bpf_kqfilter(struct file *fp, struct knote *kn)
1409 {
1410 struct bpf_d *d = fp->f_bpf;
1411 struct klist *klist;
1412 int s;
1413
1414 KERNEL_LOCK(1, NULL);
1415
1416 switch (kn->kn_filter) {
1417 case EVFILT_READ:
1418 klist = &d->bd_sel.sel_klist;
1419 kn->kn_fop = &bpfread_filtops;
1420 break;
1421
1422 default:
1423 KERNEL_UNLOCK_ONE(NULL);
1424 return (EINVAL);
1425 }
1426
1427 kn->kn_hook = d;
1428
1429 s = splnet();
1430 SLIST_INSERT_HEAD(klist, kn, kn_selnext);
1431 splx(s);
1432 KERNEL_UNLOCK_ONE(NULL);
1433
1434 return (0);
1435 }
1436
1437 /*
1438 * Copy data from an mbuf chain into a buffer. This code is derived
1439 * from m_copydata in sys/uipc_mbuf.c.
1440 */
1441 static void *
1442 bpf_mcpy(void *dst_arg, const void *src_arg, size_t len)
1443 {
1444 const struct mbuf *m;
1445 u_int count;
1446 u_char *dst;
1447
1448 m = src_arg;
1449 dst = dst_arg;
1450 while (len > 0) {
1451 if (m == NULL)
1452 panic("bpf_mcpy");
1453 count = min(m->m_len, len);
1454 memcpy(dst, mtod(m, const void *), count);
1455 m = m->m_next;
1456 dst += count;
1457 len -= count;
1458 }
1459 return dst_arg;
1460 }
1461
1462 /*
1463 * Dispatch a packet to all the listeners on interface bp.
1464 *
1465 * pkt pointer to the packet, either a data buffer or an mbuf chain
1466 * buflen buffer length, if pkt is a data buffer
1467 * cpfn a function that can copy pkt into the listener's buffer
1468 * pktlen length of the packet
1469 * rcv true if packet came in
1470 */
1471 static inline void
1472 bpf_deliver(struct bpf_if *bp, void *(*cpfn)(void *, const void *, size_t),
1473 void *pkt, u_int pktlen, u_int buflen, const bool rcv)
1474 {
1475 uint32_t mem[BPF_MEMWORDS];
1476 bpf_args_t args = {
1477 .pkt = (const uint8_t *)pkt,
1478 .wirelen = pktlen,
1479 .buflen = buflen,
1480 .mem = mem,
1481 .arg = NULL
1482 };
1483 bool gottime = false;
1484 struct timespec ts;
1485 struct bpf_d *d;
1486
1487 /*
1488 * Note that the IPL does not have to be raised at this point.
1489 * The only problem that could arise here is that if two different
1490 * interfaces shared any data. This is not the case.
1491 */
1492 BPFIF_DLIST_READER_FOREACH(d, bp) {
1493 u_int slen;
1494
1495 if (!d->bd_seesent && !rcv) {
1496 continue;
1497 }
1498 d->bd_rcount++;
1499 bpf_gstats.bs_recv++;
1500
1501 if (d->bd_jitcode)
1502 slen = d->bd_jitcode(NULL, &args);
1503 else
1504 slen = bpf_filter_ext(NULL, d->bd_filter, &args);
1505
1506 if (!slen) {
1507 continue;
1508 }
1509 if (!gottime) {
1510 gottime = true;
1511 nanotime(&ts);
1512 }
1513 catchpacket(d, pkt, pktlen, slen, cpfn, &ts);
1514 }
1515 }
1516
1517 /*
1518 * Incoming linkage from device drivers. Process the packet pkt, of length
1519 * pktlen, which is stored in a contiguous buffer. The packet is parsed
1520 * by each process' filter, and if accepted, stashed into the corresponding
1521 * buffer.
1522 */
1523 static void
1524 _bpf_tap(struct bpf_if *bp, u_char *pkt, u_int pktlen)
1525 {
1526
1527 bpf_deliver(bp, memcpy, pkt, pktlen, pktlen, true);
1528 }
1529
1530 /*
1531 * Incoming linkage from device drivers, when the head of the packet is in
1532 * a buffer, and the tail is in an mbuf chain.
1533 */
1534 static void
1535 _bpf_mtap2(struct bpf_if *bp, void *data, u_int dlen, struct mbuf *m)
1536 {
1537 u_int pktlen;
1538 struct mbuf mb;
1539
1540 /* Skip outgoing duplicate packets. */
1541 if ((m->m_flags & M_PROMISC) != 0 && m->m_pkthdr.rcvif_index == 0) {
1542 m->m_flags &= ~M_PROMISC;
1543 return;
1544 }
1545
1546 pktlen = m_length(m) + dlen;
1547
1548 /*
1549 * Craft on-stack mbuf suitable for passing to bpf_filter.
1550 * Note that we cut corners here; we only setup what's
1551 * absolutely needed--this mbuf should never go anywhere else.
1552 */
1553 (void)memset(&mb, 0, sizeof(mb));
1554 mb.m_next = m;
1555 mb.m_data = data;
1556 mb.m_len = dlen;
1557
1558 bpf_deliver(bp, bpf_mcpy, &mb, pktlen, 0, m->m_pkthdr.rcvif_index != 0);
1559 }
1560
1561 /*
1562 * Incoming linkage from device drivers, when packet is in an mbuf chain.
1563 */
1564 static void
1565 _bpf_mtap(struct bpf_if *bp, struct mbuf *m)
1566 {
1567 void *(*cpfn)(void *, const void *, size_t);
1568 u_int pktlen, buflen;
1569 void *marg;
1570
1571 /* Skip outgoing duplicate packets. */
1572 if ((m->m_flags & M_PROMISC) != 0 && m->m_pkthdr.rcvif_index == 0) {
1573 m->m_flags &= ~M_PROMISC;
1574 return;
1575 }
1576
1577 pktlen = m_length(m);
1578
1579 if (pktlen == m->m_len) {
1580 cpfn = (void *)memcpy;
1581 marg = mtod(m, void *);
1582 buflen = pktlen;
1583 } else {
1584 cpfn = bpf_mcpy;
1585 marg = m;
1586 buflen = 0;
1587 }
1588
1589 bpf_deliver(bp, cpfn, marg, pktlen, buflen, m->m_pkthdr.rcvif_index != 0);
1590 }
1591
1592 /*
1593 * We need to prepend the address family as
1594 * a four byte field. Cons up a dummy header
1595 * to pacify bpf. This is safe because bpf
1596 * will only read from the mbuf (i.e., it won't
1597 * try to free it or keep a pointer a to it).
1598 */
1599 static void
1600 _bpf_mtap_af(struct bpf_if *bp, uint32_t af, struct mbuf *m)
1601 {
1602 struct mbuf m0;
1603
1604 m0.m_flags = 0;
1605 m0.m_next = m;
1606 m0.m_len = 4;
1607 m0.m_data = (char *)⁡
1608
1609 _bpf_mtap(bp, &m0);
1610 }
1611
1612 /*
1613 * Put the SLIP pseudo-"link header" in place.
1614 * Note this M_PREPEND() should never fail,
1615 * swince we know we always have enough space
1616 * in the input buffer.
1617 */
1618 static void
1619 _bpf_mtap_sl_in(struct bpf_if *bp, u_char *chdr, struct mbuf **m)
1620 {
1621 int s;
1622 u_char *hp;
1623
1624 M_PREPEND(*m, SLIP_HDRLEN, M_DONTWAIT);
1625 if (*m == NULL)
1626 return;
1627
1628 hp = mtod(*m, u_char *);
1629 hp[SLX_DIR] = SLIPDIR_IN;
1630 (void)memcpy(&hp[SLX_CHDR], chdr, CHDR_LEN);
1631
1632 s = splnet();
1633 _bpf_mtap(bp, *m);
1634 splx(s);
1635
1636 m_adj(*m, SLIP_HDRLEN);
1637 }
1638
1639 /*
1640 * Put the SLIP pseudo-"link header" in
1641 * place. The compressed header is now
1642 * at the beginning of the mbuf.
1643 */
1644 static void
1645 _bpf_mtap_sl_out(struct bpf_if *bp, u_char *chdr, struct mbuf *m)
1646 {
1647 struct mbuf m0;
1648 u_char *hp;
1649 int s;
1650
1651 m0.m_flags = 0;
1652 m0.m_next = m;
1653 m0.m_data = m0.m_dat;
1654 m0.m_len = SLIP_HDRLEN;
1655
1656 hp = mtod(&m0, u_char *);
1657
1658 hp[SLX_DIR] = SLIPDIR_OUT;
1659 (void)memcpy(&hp[SLX_CHDR], chdr, CHDR_LEN);
1660
1661 s = splnet();
1662 _bpf_mtap(bp, &m0);
1663 splx(s);
1664 m_freem(m);
1665 }
1666
1667 static struct mbuf *
1668 bpf_mbuf_enqueue(struct bpf_if *bp, struct mbuf *m)
1669 {
1670 struct mbuf *dup;
1671
1672 dup = m_dup(m, 0, M_COPYALL, M_NOWAIT);
1673 if (dup == NULL)
1674 return NULL;
1675
1676 if (bp->bif_mbuf_tail != NULL) {
1677 bp->bif_mbuf_tail->m_nextpkt = dup;
1678 } else {
1679 bp->bif_mbuf_head = dup;
1680 }
1681 bp->bif_mbuf_tail = dup;
1682 #ifdef BPF_MTAP_SOFTINT_DEBUG
1683 log(LOG_DEBUG, "%s: enqueued mbuf=%p to %s\n",
1684 __func__, dup, bp->bif_ifp->if_xname);
1685 #endif
1686
1687 return dup;
1688 }
1689
1690 static struct mbuf *
1691 bpf_mbuf_dequeue(struct bpf_if *bp)
1692 {
1693 struct mbuf *m;
1694 int s;
1695
1696 s = splnet();
1697 m = bp->bif_mbuf_head;
1698 if (m != NULL) {
1699 bp->bif_mbuf_head = m->m_nextpkt;
1700 m->m_nextpkt = NULL;
1701
1702 if (bp->bif_mbuf_head == NULL)
1703 bp->bif_mbuf_tail = NULL;
1704 #ifdef BPF_MTAP_SOFTINT_DEBUG
1705 log(LOG_DEBUG, "%s: dequeued mbuf=%p from %s\n",
1706 __func__, m, bp->bif_ifp->if_xname);
1707 #endif
1708 }
1709 splx(s);
1710
1711 return m;
1712 }
1713
1714 static void
1715 bpf_mtap_si(void *arg)
1716 {
1717 struct bpf_if *bp = arg;
1718 struct mbuf *m;
1719
1720 while ((m = bpf_mbuf_dequeue(bp)) != NULL) {
1721 #ifdef BPF_MTAP_SOFTINT_DEBUG
1722 log(LOG_DEBUG, "%s: tapping mbuf=%p on %s\n",
1723 __func__, m, bp->bif_ifp->if_xname);
1724 #endif
1725 #ifndef NET_MPSAFE
1726 KERNEL_LOCK(1, NULL);
1727 #endif
1728 bpf_ops->bpf_mtap(bp, m);
1729 #ifndef NET_MPSAFE
1730 KERNEL_UNLOCK_ONE(NULL);
1731 #endif
1732 m_freem(m);
1733 }
1734 }
1735
1736 static void
1737 _bpf_mtap_softint(struct ifnet *ifp, struct mbuf *m)
1738 {
1739 struct bpf_if *bp = ifp->if_bpf;
1740 struct mbuf *dup;
1741
1742 KASSERT(cpu_intr_p());
1743
1744 /* To avoid extra invocations of the softint */
1745 if (BPFIF_DLIST_READER_EMPTY(bp))
1746 return;
1747 KASSERT(bp->bif_si != NULL);
1748
1749 dup = bpf_mbuf_enqueue(bp, m);
1750 if (dup != NULL)
1751 softint_schedule(bp->bif_si);
1752 }
1753
1754 static int
1755 bpf_hdrlen(struct bpf_d *d)
1756 {
1757 int hdrlen = d->bd_bif->bif_hdrlen;
1758 /*
1759 * Compute the length of the bpf header. This is not necessarily
1760 * equal to SIZEOF_BPF_HDR because we want to insert spacing such
1761 * that the network layer header begins on a longword boundary (for
1762 * performance reasons and to alleviate alignment restrictions).
1763 */
1764 #ifdef _LP64
1765 if (d->bd_compat32)
1766 return (BPF_WORDALIGN32(hdrlen + SIZEOF_BPF_HDR32) - hdrlen);
1767 else
1768 #endif
1769 return (BPF_WORDALIGN(hdrlen + SIZEOF_BPF_HDR) - hdrlen);
1770 }
1771
1772 /*
1773 * Move the packet data from interface memory (pkt) into the
1774 * store buffer. Call the wakeup functions if it's time to wakeup
1775 * a listener (buffer full), "cpfn" is the routine called to do the
1776 * actual data transfer. memcpy is passed in to copy contiguous chunks,
1777 * while bpf_mcpy is passed in to copy mbuf chains. In the latter case,
1778 * pkt is really an mbuf.
1779 */
1780 static void
1781 catchpacket(struct bpf_d *d, u_char *pkt, u_int pktlen, u_int snaplen,
1782 void *(*cpfn)(void *, const void *, size_t), struct timespec *ts)
1783 {
1784 char *h;
1785 int totlen, curlen, caplen;
1786 int hdrlen = bpf_hdrlen(d);
1787 int do_wakeup = 0;
1788
1789 ++d->bd_ccount;
1790 ++bpf_gstats.bs_capt;
1791 /*
1792 * Figure out how many bytes to move. If the packet is
1793 * greater or equal to the snapshot length, transfer that
1794 * much. Otherwise, transfer the whole packet (unless
1795 * we hit the buffer size limit).
1796 */
1797 totlen = hdrlen + min(snaplen, pktlen);
1798 if (totlen > d->bd_bufsize)
1799 totlen = d->bd_bufsize;
1800 /*
1801 * If we adjusted totlen to fit the bufsize, it could be that
1802 * totlen is smaller than hdrlen because of the link layer header.
1803 */
1804 caplen = totlen - hdrlen;
1805 if (caplen < 0)
1806 caplen = 0;
1807
1808 /*
1809 * Round up the end of the previous packet to the next longword.
1810 */
1811 #ifdef _LP64
1812 if (d->bd_compat32)
1813 curlen = BPF_WORDALIGN32(d->bd_slen);
1814 else
1815 #endif
1816 curlen = BPF_WORDALIGN(d->bd_slen);
1817 if (curlen + totlen > d->bd_bufsize) {
1818 /*
1819 * This packet will overflow the storage buffer.
1820 * Rotate the buffers if we can, then wakeup any
1821 * pending reads.
1822 */
1823 if (d->bd_fbuf == NULL) {
1824 /*
1825 * We haven't completed the previous read yet,
1826 * so drop the packet.
1827 */
1828 ++d->bd_dcount;
1829 ++bpf_gstats.bs_drop;
1830 return;
1831 }
1832 ROTATE_BUFFERS(d);
1833 do_wakeup = 1;
1834 curlen = 0;
1835 } else if (d->bd_immediate || d->bd_state == BPF_TIMED_OUT) {
1836 /*
1837 * Immediate mode is set, or the read timeout has
1838 * already expired during a select call. A packet
1839 * arrived, so the reader should be woken up.
1840 */
1841 do_wakeup = 1;
1842 }
1843
1844 /*
1845 * Append the bpf header.
1846 */
1847 h = (char *)d->bd_sbuf + curlen;
1848 #ifdef _LP64
1849 if (d->bd_compat32) {
1850 struct bpf_hdr32 *hp32;
1851
1852 hp32 = (struct bpf_hdr32 *)h;
1853 hp32->bh_tstamp.tv_sec = ts->tv_sec;
1854 hp32->bh_tstamp.tv_usec = ts->tv_nsec / 1000;
1855 hp32->bh_datalen = pktlen;
1856 hp32->bh_hdrlen = hdrlen;
1857 hp32->bh_caplen = caplen;
1858 } else
1859 #endif
1860 {
1861 struct bpf_hdr *hp;
1862
1863 hp = (struct bpf_hdr *)h;
1864 hp->bh_tstamp.tv_sec = ts->tv_sec;
1865 hp->bh_tstamp.tv_usec = ts->tv_nsec / 1000;
1866 hp->bh_datalen = pktlen;
1867 hp->bh_hdrlen = hdrlen;
1868 hp->bh_caplen = caplen;
1869 }
1870
1871 /*
1872 * Copy the packet data into the store buffer and update its length.
1873 */
1874 (*cpfn)(h + hdrlen, pkt, caplen);
1875 d->bd_slen = curlen + totlen;
1876
1877 /*
1878 * Call bpf_wakeup after bd_slen has been updated so that kevent(2)
1879 * will cause filt_bpfread() to be called with it adjusted.
1880 */
1881 if (do_wakeup)
1882 bpf_wakeup(d);
1883 }
1884
1885 /*
1886 * Initialize all nonzero fields of a descriptor.
1887 */
1888 static int
1889 bpf_allocbufs(struct bpf_d *d)
1890 {
1891
1892 d->bd_fbuf = kmem_alloc(d->bd_bufsize, KM_NOSLEEP);
1893 if (!d->bd_fbuf)
1894 return (ENOBUFS);
1895 d->bd_sbuf = kmem_alloc(d->bd_bufsize, KM_NOSLEEP);
1896 if (!d->bd_sbuf) {
1897 kmem_free(d->bd_fbuf, d->bd_bufsize);
1898 return (ENOBUFS);
1899 }
1900 d->bd_slen = 0;
1901 d->bd_hlen = 0;
1902 return (0);
1903 }
1904
1905 /*
1906 * Free buffers currently in use by a descriptor.
1907 * Called on close.
1908 */
1909 static void
1910 bpf_freed(struct bpf_d *d)
1911 {
1912 /*
1913 * We don't need to lock out interrupts since this descriptor has
1914 * been detached from its interface and it yet hasn't been marked
1915 * free.
1916 */
1917 if (d->bd_sbuf != NULL) {
1918 kmem_free(d->bd_sbuf, d->bd_bufsize);
1919 if (d->bd_hbuf != NULL)
1920 kmem_free(d->bd_hbuf, d->bd_bufsize);
1921 if (d->bd_fbuf != NULL)
1922 kmem_free(d->bd_fbuf, d->bd_bufsize);
1923 }
1924 if (d->bd_filter)
1925 kmem_free(d->bd_filter, d->bd_filter_size);
1926
1927 if (d->bd_jitcode != NULL) {
1928 bpf_jit_freecode(d->bd_jitcode);
1929 }
1930 }
1931
1932 /*
1933 * Attach an interface to bpf. dlt is the link layer type;
1934 * hdrlen is the fixed size of the link header for the specified dlt
1935 * (variable length headers not yet supported).
1936 */
1937 static void
1938 _bpfattach(struct ifnet *ifp, u_int dlt, u_int hdrlen, struct bpf_if **driverp)
1939 {
1940 struct bpf_if *bp;
1941 bp = kmem_alloc(sizeof(*bp), KM_NOSLEEP);
1942 if (bp == NULL)
1943 panic("bpfattach");
1944
1945 mutex_enter(&bpf_mtx);
1946 bp->bif_driverp = driverp;
1947 bp->bif_ifp = ifp;
1948 bp->bif_dlt = dlt;
1949 bp->bif_si = NULL;
1950 BPF_IFLIST_ENTRY_INIT(bp);
1951 PSLIST_INIT(&bp->bif_dlist_head);
1952
1953 BPF_IFLIST_WRITER_INSERT_HEAD(bp);
1954
1955 *bp->bif_driverp = NULL;
1956
1957 bp->bif_hdrlen = hdrlen;
1958 mutex_exit(&bpf_mtx);
1959 #if 0
1960 printf("bpf: %s attached\n", ifp->if_xname);
1961 #endif
1962 }
1963
1964 static void
1965 _bpf_mtap_softint_init(struct ifnet *ifp)
1966 {
1967 struct bpf_if *bp;
1968
1969 mutex_enter(&bpf_mtx);
1970 BPF_IFLIST_WRITER_FOREACH(bp) {
1971 if (bp->bif_ifp != ifp)
1972 continue;
1973
1974 bp->bif_mbuf_head = NULL;
1975 bp->bif_mbuf_tail = NULL;
1976 bp->bif_si = softint_establish(SOFTINT_NET, bpf_mtap_si, bp);
1977 if (bp->bif_si == NULL)
1978 panic("%s: softint_establish() failed", __func__);
1979 break;
1980 }
1981 mutex_exit(&bpf_mtx);
1982
1983 if (bp == NULL)
1984 panic("%s: no bpf_if found for %s", __func__, ifp->if_xname);
1985 }
1986
1987 /*
1988 * Remove an interface from bpf.
1989 */
1990 static void
1991 _bpfdetach(struct ifnet *ifp)
1992 {
1993 struct bpf_if *bp;
1994 struct bpf_d *d;
1995 int s;
1996
1997 mutex_enter(&bpf_mtx);
1998 /* Nuke the vnodes for any open instances */
1999 again_d:
2000 BPF_DLIST_WRITER_FOREACH(d) {
2001 if (d->bd_bif != NULL && d->bd_bif->bif_ifp == ifp) {
2002 /*
2003 * Detach the descriptor from an interface now.
2004 * It will be free'ed later by close routine.
2005 */
2006 s = splnet();
2007 d->bd_promisc = 0; /* we can't touch device. */
2008 bpf_detachd(d);
2009 splx(s);
2010 goto again_d;
2011 }
2012 }
2013
2014 again:
2015 BPF_IFLIST_WRITER_FOREACH(bp) {
2016 if (bp->bif_ifp == ifp) {
2017 BPF_IFLIST_WRITER_REMOVE(bp);
2018 /* TODO pserialize_perform(); */
2019 /* TODO psref_target_destroy(); */
2020 BPF_IFLIST_ENTRY_DESTROY(bp);
2021 if (bp->bif_si != NULL) {
2022 s = splnet();
2023 while (bp->bif_mbuf_head != NULL) {
2024 struct mbuf *m = bp->bif_mbuf_head;
2025 bp->bif_mbuf_head = m->m_nextpkt;
2026 m_freem(m);
2027 }
2028 splx(s);
2029 softint_disestablish(bp->bif_si);
2030 }
2031 kmem_free(bp, sizeof(*bp));
2032 goto again;
2033 }
2034 }
2035 mutex_exit(&bpf_mtx);
2036 }
2037
2038 /*
2039 * Change the data link type of a interface.
2040 */
2041 static void
2042 _bpf_change_type(struct ifnet *ifp, u_int dlt, u_int hdrlen)
2043 {
2044 struct bpf_if *bp;
2045
2046 BPF_IFLIST_READER_FOREACH(bp) {
2047 if (bp->bif_driverp == &ifp->if_bpf)
2048 break;
2049 }
2050 if (bp == NULL)
2051 panic("bpf_change_type");
2052
2053 bp->bif_dlt = dlt;
2054
2055 bp->bif_hdrlen = hdrlen;
2056 }
2057
2058 /*
2059 * Get a list of available data link type of the interface.
2060 */
2061 static int
2062 bpf_getdltlist(struct bpf_d *d, struct bpf_dltlist *bfl)
2063 {
2064 int n, error;
2065 struct ifnet *ifp;
2066 struct bpf_if *bp;
2067
2068 ifp = d->bd_bif->bif_ifp;
2069 n = 0;
2070 error = 0;
2071 BPF_IFLIST_READER_FOREACH(bp) {
2072 if (bp->bif_ifp != ifp)
2073 continue;
2074 if (bfl->bfl_list != NULL) {
2075 if (n >= bfl->bfl_len)
2076 return ENOMEM;
2077 error = copyout(&bp->bif_dlt,
2078 bfl->bfl_list + n, sizeof(u_int));
2079 }
2080 n++;
2081 }
2082 bfl->bfl_len = n;
2083 return error;
2084 }
2085
2086 /*
2087 * Set the data link type of a BPF instance.
2088 */
2089 static int
2090 bpf_setdlt(struct bpf_d *d, u_int dlt)
2091 {
2092 int s, error, opromisc;
2093 struct ifnet *ifp;
2094 struct bpf_if *bp;
2095
2096 KASSERT(mutex_owned(&bpf_mtx));
2097
2098 if (d->bd_bif->bif_dlt == dlt)
2099 return 0;
2100 ifp = d->bd_bif->bif_ifp;
2101 BPF_IFLIST_WRITER_FOREACH(bp) {
2102 if (bp->bif_ifp == ifp && bp->bif_dlt == dlt)
2103 break;
2104 }
2105 if (bp == NULL)
2106 return EINVAL;
2107 s = splnet();
2108 opromisc = d->bd_promisc;
2109 bpf_detachd(d);
2110 bpf_attachd(d, bp);
2111 reset_d(d);
2112 if (opromisc) {
2113 error = ifpromisc(bp->bif_ifp, 1);
2114 if (error)
2115 printf("%s: bpf_setdlt: ifpromisc failed (%d)\n",
2116 bp->bif_ifp->if_xname, error);
2117 else
2118 d->bd_promisc = 1;
2119 }
2120 splx(s);
2121 return 0;
2122 }
2123
2124 static int
2125 sysctl_net_bpf_maxbufsize(SYSCTLFN_ARGS)
2126 {
2127 int newsize, error;
2128 struct sysctlnode node;
2129
2130 node = *rnode;
2131 node.sysctl_data = &newsize;
2132 newsize = bpf_maxbufsize;
2133 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2134 if (error || newp == NULL)
2135 return (error);
2136
2137 if (newsize < BPF_MINBUFSIZE || newsize > BPF_MAXBUFSIZE)
2138 return (EINVAL);
2139
2140 bpf_maxbufsize = newsize;
2141
2142 return (0);
2143 }
2144
2145 #if defined(MODULAR) || defined(BPFJIT)
2146 static int
2147 sysctl_net_bpf_jit(SYSCTLFN_ARGS)
2148 {
2149 bool newval;
2150 int error;
2151 struct sysctlnode node;
2152
2153 node = *rnode;
2154 node.sysctl_data = &newval;
2155 newval = bpf_jit;
2156 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2157 if (error != 0 || newp == NULL)
2158 return error;
2159
2160 bpf_jit = newval;
2161
2162 /*
2163 * Do a full sync to publish new bpf_jit value and
2164 * update bpfjit_module_ops.bj_generate_code variable.
2165 */
2166 membar_sync();
2167
2168 if (newval && bpfjit_module_ops.bj_generate_code == NULL) {
2169 printf("JIT compilation is postponed "
2170 "until after bpfjit module is loaded\n");
2171 }
2172
2173 return 0;
2174 }
2175 #endif
2176
2177 static int
2178 sysctl_net_bpf_peers(SYSCTLFN_ARGS)
2179 {
2180 int error, elem_count;
2181 struct bpf_d *dp;
2182 struct bpf_d_ext dpe;
2183 size_t len, needed, elem_size, out_size;
2184 char *sp;
2185
2186 if (namelen == 1 && name[0] == CTL_QUERY)
2187 return (sysctl_query(SYSCTLFN_CALL(rnode)));
2188
2189 if (namelen != 2)
2190 return (EINVAL);
2191
2192 /* BPF peers is privileged information. */
2193 error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_INTERFACE,
2194 KAUTH_REQ_NETWORK_INTERFACE_GETPRIV, NULL, NULL, NULL);
2195 if (error)
2196 return (EPERM);
2197
2198 len = (oldp != NULL) ? *oldlenp : 0;
2199 sp = oldp;
2200 elem_size = name[0];
2201 elem_count = name[1];
2202 out_size = MIN(sizeof(dpe), elem_size);
2203 needed = 0;
2204
2205 if (elem_size < 1 || elem_count < 0)
2206 return (EINVAL);
2207
2208 mutex_enter(&bpf_mtx);
2209 BPF_DLIST_WRITER_FOREACH(dp) {
2210 if (len >= elem_size && elem_count > 0) {
2211 #define BPF_EXT(field) dpe.bde_ ## field = dp->bd_ ## field
2212 BPF_EXT(bufsize);
2213 BPF_EXT(promisc);
2214 BPF_EXT(state);
2215 BPF_EXT(immediate);
2216 BPF_EXT(hdrcmplt);
2217 BPF_EXT(seesent);
2218 BPF_EXT(pid);
2219 BPF_EXT(rcount);
2220 BPF_EXT(dcount);
2221 BPF_EXT(ccount);
2222 #undef BPF_EXT
2223 if (dp->bd_bif)
2224 (void)strlcpy(dpe.bde_ifname,
2225 dp->bd_bif->bif_ifp->if_xname,
2226 IFNAMSIZ - 1);
2227 else
2228 dpe.bde_ifname[0] = '\0';
2229
2230 error = copyout(&dpe, sp, out_size);
2231 if (error)
2232 break;
2233 sp += elem_size;
2234 len -= elem_size;
2235 }
2236 needed += elem_size;
2237 if (elem_count > 0 && elem_count != INT_MAX)
2238 elem_count--;
2239 }
2240 mutex_exit(&bpf_mtx);
2241
2242 *oldlenp = needed;
2243
2244 return (error);
2245 }
2246
2247 static struct sysctllog *bpf_sysctllog;
2248 static void
2249 sysctl_net_bpf_setup(void)
2250 {
2251 const struct sysctlnode *node;
2252
2253 node = NULL;
2254 sysctl_createv(&bpf_sysctllog, 0, NULL, &node,
2255 CTLFLAG_PERMANENT,
2256 CTLTYPE_NODE, "bpf",
2257 SYSCTL_DESCR("BPF options"),
2258 NULL, 0, NULL, 0,
2259 CTL_NET, CTL_CREATE, CTL_EOL);
2260 if (node != NULL) {
2261 #if defined(MODULAR) || defined(BPFJIT)
2262 sysctl_createv(&bpf_sysctllog, 0, NULL, NULL,
2263 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2264 CTLTYPE_BOOL, "jit",
2265 SYSCTL_DESCR("Toggle Just-In-Time compilation"),
2266 sysctl_net_bpf_jit, 0, &bpf_jit, 0,
2267 CTL_NET, node->sysctl_num, CTL_CREATE, CTL_EOL);
2268 #endif
2269 sysctl_createv(&bpf_sysctllog, 0, NULL, NULL,
2270 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2271 CTLTYPE_INT, "maxbufsize",
2272 SYSCTL_DESCR("Maximum size for data capture buffer"),
2273 sysctl_net_bpf_maxbufsize, 0, &bpf_maxbufsize, 0,
2274 CTL_NET, node->sysctl_num, CTL_CREATE, CTL_EOL);
2275 sysctl_createv(&bpf_sysctllog, 0, NULL, NULL,
2276 CTLFLAG_PERMANENT,
2277 CTLTYPE_STRUCT, "stats",
2278 SYSCTL_DESCR("BPF stats"),
2279 NULL, 0, &bpf_gstats, sizeof(bpf_gstats),
2280 CTL_NET, node->sysctl_num, CTL_CREATE, CTL_EOL);
2281 sysctl_createv(&bpf_sysctllog, 0, NULL, NULL,
2282 CTLFLAG_PERMANENT,
2283 CTLTYPE_STRUCT, "peers",
2284 SYSCTL_DESCR("BPF peers"),
2285 sysctl_net_bpf_peers, 0, NULL, 0,
2286 CTL_NET, node->sysctl_num, CTL_CREATE, CTL_EOL);
2287 }
2288
2289 }
2290
2291 struct bpf_ops bpf_ops_kernel = {
2292 .bpf_attach = _bpfattach,
2293 .bpf_detach = _bpfdetach,
2294 .bpf_change_type = _bpf_change_type,
2295
2296 .bpf_tap = _bpf_tap,
2297 .bpf_mtap = _bpf_mtap,
2298 .bpf_mtap2 = _bpf_mtap2,
2299 .bpf_mtap_af = _bpf_mtap_af,
2300 .bpf_mtap_sl_in = _bpf_mtap_sl_in,
2301 .bpf_mtap_sl_out = _bpf_mtap_sl_out,
2302
2303 .bpf_mtap_softint = _bpf_mtap_softint,
2304 .bpf_mtap_softint_init = _bpf_mtap_softint_init,
2305 };
2306
2307 MODULE(MODULE_CLASS_DRIVER, bpf, "bpf_filter");
2308
2309 static int
2310 bpf_modcmd(modcmd_t cmd, void *arg)
2311 {
2312 #ifdef _MODULE
2313 devmajor_t bmajor, cmajor;
2314 #endif
2315 int error = 0;
2316
2317 switch (cmd) {
2318 case MODULE_CMD_INIT:
2319 bpf_init();
2320 #ifdef _MODULE
2321 bmajor = cmajor = NODEVMAJOR;
2322 error = devsw_attach("bpf", NULL, &bmajor,
2323 &bpf_cdevsw, &cmajor);
2324 if (error)
2325 break;
2326 #endif
2327
2328 bpf_ops_handover_enter(&bpf_ops_kernel);
2329 atomic_swap_ptr(&bpf_ops, &bpf_ops_kernel);
2330 bpf_ops_handover_exit();
2331 sysctl_net_bpf_setup();
2332 break;
2333
2334 case MODULE_CMD_FINI:
2335 /*
2336 * While there is no reference counting for bpf callers,
2337 * unload could at least in theory be done similarly to
2338 * system call disestablishment. This should even be
2339 * a little simpler:
2340 *
2341 * 1) replace op vector with stubs
2342 * 2) post update to all cpus with xc
2343 * 3) check that nobody is in bpf anymore
2344 * (it's doubtful we'd want something like l_sysent,
2345 * but we could do something like *signed* percpu
2346 * counters. if the sum is 0, we're good).
2347 * 4) if fail, unroll changes
2348 *
2349 * NOTE: change won't be atomic to the outside. some
2350 * packets may be not captured even if unload is
2351 * not succesful. I think packet capture not working
2352 * is a perfectly logical consequence of trying to
2353 * disable packet capture.
2354 */
2355 error = EOPNOTSUPP;
2356 /* insert sysctl teardown */
2357 break;
2358
2359 default:
2360 error = ENOTTY;
2361 break;
2362 }
2363
2364 return error;
2365 }
2366