bpf.c revision 1.210 1 /* $NetBSD: bpf.c,v 1.210 2017/02/01 08:15:15 ozaki-r Exp $ */
2
3 /*
4 * Copyright (c) 1990, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from the Stanford/CMU enet packet filter,
8 * (net/enet.c) distributed as part of 4.3BSD, and code contributed
9 * to Berkeley by Steven McCanne and Van Jacobson both of Lawrence
10 * Berkeley Laboratory.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)bpf.c 8.4 (Berkeley) 1/9/95
37 * static char rcsid[] =
38 * "Header: bpf.c,v 1.67 96/09/26 22:00:52 leres Exp ";
39 */
40
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: bpf.c,v 1.210 2017/02/01 08:15:15 ozaki-r Exp $");
43
44 #if defined(_KERNEL_OPT)
45 #include "opt_bpf.h"
46 #include "sl.h"
47 #include "strip.h"
48 #include "opt_net_mpsafe.h"
49 #endif
50
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/mbuf.h>
54 #include <sys/buf.h>
55 #include <sys/time.h>
56 #include <sys/proc.h>
57 #include <sys/ioctl.h>
58 #include <sys/conf.h>
59 #include <sys/vnode.h>
60 #include <sys/queue.h>
61 #include <sys/stat.h>
62 #include <sys/module.h>
63 #include <sys/atomic.h>
64 #include <sys/cpu.h>
65
66 #include <sys/file.h>
67 #include <sys/filedesc.h>
68 #include <sys/tty.h>
69 #include <sys/uio.h>
70
71 #include <sys/protosw.h>
72 #include <sys/socket.h>
73 #include <sys/errno.h>
74 #include <sys/kernel.h>
75 #include <sys/poll.h>
76 #include <sys/sysctl.h>
77 #include <sys/kauth.h>
78 #include <sys/syslog.h>
79 #include <sys/percpu.h>
80
81 #include <net/if.h>
82 #include <net/slip.h>
83
84 #include <net/bpf.h>
85 #include <net/bpfdesc.h>
86 #include <net/bpfjit.h>
87
88 #include <net/if_arc.h>
89 #include <net/if_ether.h>
90
91 #include <netinet/in.h>
92 #include <netinet/if_inarp.h>
93
94
95 #include <compat/sys/sockio.h>
96
97 #ifndef BPF_BUFSIZE
98 /*
99 * 4096 is too small for FDDI frames. 8192 is too small for gigabit Ethernet
100 * jumbos (circa 9k), ATM, or Intel gig/10gig ethernet jumbos (16k).
101 */
102 # define BPF_BUFSIZE 32768
103 #endif
104
105 #define PRINET 26 /* interruptible */
106
107 /*
108 * The default read buffer size, and limit for BIOCSBLEN, is sysctl'able.
109 * XXX the default values should be computed dynamically based
110 * on available memory size and available mbuf clusters.
111 */
112 static int bpf_bufsize = BPF_BUFSIZE;
113 static int bpf_maxbufsize = BPF_DFLTBUFSIZE; /* XXX set dynamically, see above */
114 static bool bpf_jit = false;
115
116 struct bpfjit_ops bpfjit_module_ops = {
117 .bj_generate_code = NULL,
118 .bj_free_code = NULL
119 };
120
121 /*
122 * Global BPF statistics returned by net.bpf.stats sysctl.
123 */
124 static struct percpu *bpf_gstats_percpu; /* struct bpf_stat */
125
126 #define BPF_STATINC(id) \
127 { \
128 struct bpf_stat *__stats = \
129 percpu_getref(bpf_gstats_percpu); \
130 __stats->bs_##id++; \
131 percpu_putref(bpf_gstats_percpu); \
132 }
133
134 /*
135 * Use a mutex to avoid a race condition between gathering the stats/peers
136 * and opening/closing the device.
137 */
138 static kmutex_t bpf_mtx;
139
140 /*
141 * bpf_iflist is the list of interfaces; each corresponds to an ifnet
142 * bpf_dtab holds the descriptors, indexed by minor device #
143 */
144 static struct pslist_head bpf_iflist;
145 static struct pslist_head bpf_dlist;
146
147 /* Macros for bpf_d on bpf_dlist */
148 #define BPF_DLIST_WRITER_INSEART_HEAD(__d) \
149 PSLIST_WRITER_INSERT_HEAD(&bpf_dlist, (__d), bd_bpf_dlist_entry)
150 #define BPF_DLIST_READER_FOREACH(__d) \
151 PSLIST_READER_FOREACH((__d), &bpf_dlist, struct bpf_d, \
152 bd_bpf_dlist_entry)
153 #define BPF_DLIST_WRITER_FOREACH(__d) \
154 PSLIST_WRITER_FOREACH((__d), &bpf_dlist, struct bpf_d, \
155 bd_bpf_dlist_entry)
156 #define BPF_DLIST_ENTRY_INIT(__d) \
157 PSLIST_ENTRY_INIT((__d), bd_bpf_dlist_entry)
158 #define BPF_DLIST_WRITER_REMOVE(__d) \
159 PSLIST_WRITER_REMOVE((__d), bd_bpf_dlist_entry)
160 #define BPF_DLIST_ENTRY_DESTROY(__d) \
161 PSLIST_ENTRY_DESTROY((__d), bd_bpf_dlist_entry)
162
163 /* Macros for bpf_if on bpf_iflist */
164 #define BPF_IFLIST_WRITER_INSERT_HEAD(__bp) \
165 PSLIST_WRITER_INSERT_HEAD(&bpf_iflist, (__bp), bif_iflist_entry)
166 #define BPF_IFLIST_READER_FOREACH(__bp) \
167 PSLIST_READER_FOREACH((__bp), &bpf_iflist, struct bpf_if, \
168 bif_iflist_entry)
169 #define BPF_IFLIST_WRITER_FOREACH(__bp) \
170 PSLIST_WRITER_FOREACH((__bp), &bpf_iflist, struct bpf_if, \
171 bif_iflist_entry)
172 #define BPF_IFLIST_WRITER_REMOVE(__bp) \
173 PSLIST_WRITER_REMOVE((__bp), bif_iflist_entry)
174 #define BPF_IFLIST_ENTRY_INIT(__bp) \
175 PSLIST_ENTRY_INIT((__bp), bif_iflist_entry)
176 #define BPF_IFLIST_ENTRY_DESTROY(__bp) \
177 PSLIST_ENTRY_DESTROY((__bp), bif_iflist_entry)
178
179 /* Macros for bpf_d on bpf_if#bif_dlist_pslist */
180 #define BPFIF_DLIST_READER_FOREACH(__d, __bp) \
181 PSLIST_READER_FOREACH((__d), &(__bp)->bif_dlist_head, struct bpf_d, \
182 bd_bif_dlist_entry)
183 #define BPFIF_DLIST_WRITER_INSERT_HEAD(__bp, __d) \
184 PSLIST_WRITER_INSERT_HEAD(&(__bp)->bif_dlist_head, (__d), \
185 bd_bif_dlist_entry)
186 #define BPFIF_DLIST_WRITER_REMOVE(__d) \
187 PSLIST_WRITER_REMOVE((__d), bd_bif_dlist_entry)
188 #define BPFIF_DLIST_ENTRY_INIT(__d) \
189 PSLIST_ENTRY_INIT((__d), bd_bif_dlist_entry)
190 #define BPFIF_DLIST_READER_EMPTY(__bp) \
191 (PSLIST_READER_FIRST(&(__bp)->bif_dlist_head, struct bpf_d, \
192 bd_bif_dlist_entry) == NULL)
193 #define BPFIF_DLIST_WRITER_EMPTY(__bp) \
194 (PSLIST_WRITER_FIRST(&(__bp)->bif_dlist_head, struct bpf_d, \
195 bd_bif_dlist_entry) == NULL)
196 #define BPFIF_DLIST_ENTRY_DESTROY(__d) \
197 PSLIST_ENTRY_DESTROY((__d), bd_bif_dlist_entry)
198
199 static int bpf_allocbufs(struct bpf_d *);
200 static void bpf_deliver(struct bpf_if *,
201 void *(*cpfn)(void *, const void *, size_t),
202 void *, u_int, u_int, const bool);
203 static void bpf_freed(struct bpf_d *);
204 static void bpf_ifname(struct ifnet *, struct ifreq *);
205 static void *bpf_mcpy(void *, const void *, size_t);
206 static int bpf_movein(struct uio *, int, uint64_t,
207 struct mbuf **, struct sockaddr *);
208 static void bpf_attachd(struct bpf_d *, struct bpf_if *);
209 static void bpf_detachd(struct bpf_d *);
210 static int bpf_setif(struct bpf_d *, struct ifreq *);
211 static int bpf_setf(struct bpf_d *, struct bpf_program *);
212 static void bpf_timed_out(void *);
213 static inline void
214 bpf_wakeup(struct bpf_d *);
215 static int bpf_hdrlen(struct bpf_d *);
216 static void catchpacket(struct bpf_d *, u_char *, u_int, u_int,
217 void *(*)(void *, const void *, size_t), struct timespec *);
218 static void reset_d(struct bpf_d *);
219 static int bpf_getdltlist(struct bpf_d *, struct bpf_dltlist *);
220 static int bpf_setdlt(struct bpf_d *, u_int);
221
222 static int bpf_read(struct file *, off_t *, struct uio *, kauth_cred_t,
223 int);
224 static int bpf_write(struct file *, off_t *, struct uio *, kauth_cred_t,
225 int);
226 static int bpf_ioctl(struct file *, u_long, void *);
227 static int bpf_poll(struct file *, int);
228 static int bpf_stat(struct file *, struct stat *);
229 static int bpf_close(struct file *);
230 static int bpf_kqfilter(struct file *, struct knote *);
231 static void bpf_softintr(void *);
232
233 static const struct fileops bpf_fileops = {
234 .fo_read = bpf_read,
235 .fo_write = bpf_write,
236 .fo_ioctl = bpf_ioctl,
237 .fo_fcntl = fnullop_fcntl,
238 .fo_poll = bpf_poll,
239 .fo_stat = bpf_stat,
240 .fo_close = bpf_close,
241 .fo_kqfilter = bpf_kqfilter,
242 .fo_restart = fnullop_restart,
243 };
244
245 dev_type_open(bpfopen);
246
247 const struct cdevsw bpf_cdevsw = {
248 .d_open = bpfopen,
249 .d_close = noclose,
250 .d_read = noread,
251 .d_write = nowrite,
252 .d_ioctl = noioctl,
253 .d_stop = nostop,
254 .d_tty = notty,
255 .d_poll = nopoll,
256 .d_mmap = nommap,
257 .d_kqfilter = nokqfilter,
258 .d_discard = nodiscard,
259 .d_flag = D_OTHER
260 };
261
262 bpfjit_func_t
263 bpf_jit_generate(bpf_ctx_t *bc, void *code, size_t size)
264 {
265
266 membar_consumer();
267 if (bpfjit_module_ops.bj_generate_code != NULL) {
268 return bpfjit_module_ops.bj_generate_code(bc, code, size);
269 }
270 return NULL;
271 }
272
273 void
274 bpf_jit_freecode(bpfjit_func_t jcode)
275 {
276 KASSERT(bpfjit_module_ops.bj_free_code != NULL);
277 bpfjit_module_ops.bj_free_code(jcode);
278 }
279
280 static int
281 bpf_movein(struct uio *uio, int linktype, uint64_t mtu, struct mbuf **mp,
282 struct sockaddr *sockp)
283 {
284 struct mbuf *m;
285 int error;
286 size_t len;
287 size_t hlen;
288 size_t align;
289
290 /*
291 * Build a sockaddr based on the data link layer type.
292 * We do this at this level because the ethernet header
293 * is copied directly into the data field of the sockaddr.
294 * In the case of SLIP, there is no header and the packet
295 * is forwarded as is.
296 * Also, we are careful to leave room at the front of the mbuf
297 * for the link level header.
298 */
299 switch (linktype) {
300
301 case DLT_SLIP:
302 sockp->sa_family = AF_INET;
303 hlen = 0;
304 align = 0;
305 break;
306
307 case DLT_PPP:
308 sockp->sa_family = AF_UNSPEC;
309 hlen = 0;
310 align = 0;
311 break;
312
313 case DLT_EN10MB:
314 sockp->sa_family = AF_UNSPEC;
315 /* XXX Would MAXLINKHDR be better? */
316 /* 6(dst)+6(src)+2(type) */
317 hlen = sizeof(struct ether_header);
318 align = 2;
319 break;
320
321 case DLT_ARCNET:
322 sockp->sa_family = AF_UNSPEC;
323 hlen = ARC_HDRLEN;
324 align = 5;
325 break;
326
327 case DLT_FDDI:
328 sockp->sa_family = AF_LINK;
329 /* XXX 4(FORMAC)+6(dst)+6(src) */
330 hlen = 16;
331 align = 0;
332 break;
333
334 case DLT_ECONET:
335 sockp->sa_family = AF_UNSPEC;
336 hlen = 6;
337 align = 2;
338 break;
339
340 case DLT_NULL:
341 sockp->sa_family = AF_UNSPEC;
342 hlen = 0;
343 align = 0;
344 break;
345
346 default:
347 return (EIO);
348 }
349
350 len = uio->uio_resid;
351 /*
352 * If there aren't enough bytes for a link level header or the
353 * packet length exceeds the interface mtu, return an error.
354 */
355 if (len - hlen > mtu)
356 return (EMSGSIZE);
357
358 /*
359 * XXX Avoid complicated buffer chaining ---
360 * bail if it won't fit in a single mbuf.
361 * (Take into account possible alignment bytes)
362 */
363 if (len + align > MCLBYTES)
364 return (EIO);
365
366 m = m_gethdr(M_WAIT, MT_DATA);
367 m_reset_rcvif(m);
368 m->m_pkthdr.len = (int)(len - hlen);
369 if (len + align > MHLEN) {
370 m_clget(m, M_WAIT);
371 if ((m->m_flags & M_EXT) == 0) {
372 error = ENOBUFS;
373 goto bad;
374 }
375 }
376
377 /* Insure the data is properly aligned */
378 if (align > 0) {
379 m->m_data += align;
380 m->m_len -= (int)align;
381 }
382
383 error = uiomove(mtod(m, void *), len, uio);
384 if (error)
385 goto bad;
386 if (hlen != 0) {
387 memcpy(sockp->sa_data, mtod(m, void *), hlen);
388 m->m_data += hlen; /* XXX */
389 len -= hlen;
390 }
391 m->m_len = (int)len;
392 *mp = m;
393 return (0);
394
395 bad:
396 m_freem(m);
397 return (error);
398 }
399
400 /*
401 * Attach file to the bpf interface, i.e. make d listen on bp.
402 * Must be called at splnet.
403 */
404 static void
405 bpf_attachd(struct bpf_d *d, struct bpf_if *bp)
406 {
407 KASSERT(mutex_owned(&bpf_mtx));
408 /*
409 * Point d at bp, and add d to the interface's list of listeners.
410 * Finally, point the driver's bpf cookie at the interface so
411 * it will divert packets to bpf.
412 */
413 d->bd_bif = bp;
414 BPFIF_DLIST_WRITER_INSERT_HEAD(bp, d);
415
416 *bp->bif_driverp = bp;
417 }
418
419 /*
420 * Detach a file from its interface.
421 */
422 static void
423 bpf_detachd(struct bpf_d *d)
424 {
425 struct bpf_if *bp;
426
427 KASSERT(mutex_owned(&bpf_mtx));
428
429 bp = d->bd_bif;
430 /*
431 * Check if this descriptor had requested promiscuous mode.
432 * If so, turn it off.
433 */
434 if (d->bd_promisc) {
435 int error __diagused;
436
437 d->bd_promisc = 0;
438 /*
439 * Take device out of promiscuous mode. Since we were
440 * able to enter promiscuous mode, we should be able
441 * to turn it off. But we can get an error if
442 * the interface was configured down, so only panic
443 * if we don't get an unexpected error.
444 */
445 error = ifpromisc(bp->bif_ifp, 0);
446 #ifdef DIAGNOSTIC
447 if (error)
448 printf("%s: ifpromisc failed: %d", __func__, error);
449 #endif
450 }
451
452 /* Remove d from the interface's descriptor list. */
453 BPFIF_DLIST_WRITER_REMOVE(d);
454
455 /* TODO pserialize_perform(); */
456 /* TODO psref_target_destroy(); */
457 BPFIF_DLIST_ENTRY_DESTROY(d);
458
459 /* XXX NOMPSAFE? */
460 if (BPFIF_DLIST_WRITER_EMPTY(bp)) {
461 /*
462 * Let the driver know that there are no more listeners.
463 */
464 *d->bd_bif->bif_driverp = NULL;
465 }
466 d->bd_bif = NULL;
467 }
468
469 static void
470 bpf_init(void)
471 {
472
473 mutex_init(&bpf_mtx, MUTEX_DEFAULT, IPL_NONE);
474
475 PSLIST_INIT(&bpf_iflist);
476 PSLIST_INIT(&bpf_dlist);
477
478 bpf_gstats_percpu = percpu_alloc(sizeof(struct bpf_stat));
479
480 return;
481 }
482
483 /*
484 * bpfilterattach() is called at boot time. We don't need to do anything
485 * here, since any initialization will happen as part of module init code.
486 */
487 /* ARGSUSED */
488 void
489 bpfilterattach(int n)
490 {
491
492 }
493
494 /*
495 * Open ethernet device. Clones.
496 */
497 /* ARGSUSED */
498 int
499 bpfopen(dev_t dev, int flag, int mode, struct lwp *l)
500 {
501 struct bpf_d *d;
502 struct file *fp;
503 int error, fd;
504
505 /* falloc() will fill in the descriptor for us. */
506 if ((error = fd_allocfile(&fp, &fd)) != 0)
507 return error;
508
509 d = kmem_zalloc(sizeof(*d), KM_SLEEP);
510 d->bd_bufsize = bpf_bufsize;
511 d->bd_seesent = 1;
512 d->bd_feedback = 0;
513 d->bd_pid = l->l_proc->p_pid;
514 #ifdef _LP64
515 if (curproc->p_flag & PK_32)
516 d->bd_compat32 = 1;
517 #endif
518 getnanotime(&d->bd_btime);
519 d->bd_atime = d->bd_mtime = d->bd_btime;
520 callout_init(&d->bd_callout, 0);
521 selinit(&d->bd_sel);
522 d->bd_sih = softint_establish(SOFTINT_CLOCK, bpf_softintr, d);
523 d->bd_jitcode = NULL;
524 BPF_DLIST_ENTRY_INIT(d);
525 BPFIF_DLIST_ENTRY_INIT(d);
526
527 mutex_enter(&bpf_mtx);
528 BPF_DLIST_WRITER_INSEART_HEAD(d);
529 mutex_exit(&bpf_mtx);
530
531 return fd_clone(fp, fd, flag, &bpf_fileops, d);
532 }
533
534 /*
535 * Close the descriptor by detaching it from its interface,
536 * deallocating its buffers, and marking it free.
537 */
538 /* ARGSUSED */
539 static int
540 bpf_close(struct file *fp)
541 {
542 struct bpf_d *d;
543 int s;
544
545 KERNEL_LOCK(1, NULL);
546 mutex_enter(&bpf_mtx);
547
548 if ((d = fp->f_bpf) == NULL) {
549 mutex_exit(&bpf_mtx);
550 KERNEL_UNLOCK_ONE(NULL);
551 return 0;
552 }
553
554 /*
555 * Refresh the PID associated with this bpf file.
556 */
557 d->bd_pid = curproc->p_pid;
558
559 s = splnet();
560 if (d->bd_state == BPF_WAITING)
561 callout_stop(&d->bd_callout);
562 d->bd_state = BPF_IDLE;
563 if (d->bd_bif)
564 bpf_detachd(d);
565 splx(s);
566 bpf_freed(d);
567 BPF_DLIST_WRITER_REMOVE(d);
568 fp->f_bpf = NULL;
569
570 mutex_exit(&bpf_mtx);
571 KERNEL_UNLOCK_ONE(NULL);
572
573 /* TODO pserialize_perform(); */
574 /* TODO psref_target_destroy(); */
575 BPF_DLIST_ENTRY_DESTROY(d);
576
577 callout_destroy(&d->bd_callout);
578 seldestroy(&d->bd_sel);
579 softint_disestablish(d->bd_sih);
580 kmem_free(d, sizeof(*d));
581
582 return (0);
583 }
584
585 /*
586 * Rotate the packet buffers in descriptor d. Move the store buffer
587 * into the hold slot, and the free buffer into the store slot.
588 * Zero the length of the new store buffer.
589 */
590 #define ROTATE_BUFFERS(d) \
591 (d)->bd_hbuf = (d)->bd_sbuf; \
592 (d)->bd_hlen = (d)->bd_slen; \
593 (d)->bd_sbuf = (d)->bd_fbuf; \
594 (d)->bd_slen = 0; \
595 (d)->bd_fbuf = NULL;
596 /*
597 * bpfread - read next chunk of packets from buffers
598 */
599 static int
600 bpf_read(struct file *fp, off_t *offp, struct uio *uio,
601 kauth_cred_t cred, int flags)
602 {
603 struct bpf_d *d = fp->f_bpf;
604 int timed_out;
605 int error;
606 int s;
607
608 getnanotime(&d->bd_atime);
609 /*
610 * Restrict application to use a buffer the same size as
611 * the kernel buffers.
612 */
613 if (uio->uio_resid != d->bd_bufsize)
614 return (EINVAL);
615
616 KERNEL_LOCK(1, NULL);
617 s = splnet();
618 if (d->bd_state == BPF_WAITING)
619 callout_stop(&d->bd_callout);
620 timed_out = (d->bd_state == BPF_TIMED_OUT);
621 d->bd_state = BPF_IDLE;
622 /*
623 * If the hold buffer is empty, then do a timed sleep, which
624 * ends when the timeout expires or when enough packets
625 * have arrived to fill the store buffer.
626 */
627 while (d->bd_hbuf == NULL) {
628 if (fp->f_flag & FNONBLOCK) {
629 if (d->bd_slen == 0) {
630 splx(s);
631 KERNEL_UNLOCK_ONE(NULL);
632 return (EWOULDBLOCK);
633 }
634 ROTATE_BUFFERS(d);
635 break;
636 }
637
638 if ((d->bd_immediate || timed_out) && d->bd_slen != 0) {
639 /*
640 * A packet(s) either arrived since the previous
641 * read or arrived while we were asleep.
642 * Rotate the buffers and return what's here.
643 */
644 ROTATE_BUFFERS(d);
645 break;
646 }
647 error = tsleep(d, PRINET|PCATCH, "bpf",
648 d->bd_rtout);
649 if (error == EINTR || error == ERESTART) {
650 splx(s);
651 KERNEL_UNLOCK_ONE(NULL);
652 return (error);
653 }
654 if (error == EWOULDBLOCK) {
655 /*
656 * On a timeout, return what's in the buffer,
657 * which may be nothing. If there is something
658 * in the store buffer, we can rotate the buffers.
659 */
660 if (d->bd_hbuf)
661 /*
662 * We filled up the buffer in between
663 * getting the timeout and arriving
664 * here, so we don't need to rotate.
665 */
666 break;
667
668 if (d->bd_slen == 0) {
669 splx(s);
670 KERNEL_UNLOCK_ONE(NULL);
671 return (0);
672 }
673 ROTATE_BUFFERS(d);
674 break;
675 }
676 if (error != 0)
677 goto done;
678 }
679 /*
680 * At this point, we know we have something in the hold slot.
681 */
682 splx(s);
683
684 /*
685 * Move data from hold buffer into user space.
686 * We know the entire buffer is transferred since
687 * we checked above that the read buffer is bpf_bufsize bytes.
688 */
689 error = uiomove(d->bd_hbuf, d->bd_hlen, uio);
690
691 s = splnet();
692 d->bd_fbuf = d->bd_hbuf;
693 d->bd_hbuf = NULL;
694 d->bd_hlen = 0;
695 done:
696 splx(s);
697 KERNEL_UNLOCK_ONE(NULL);
698 return (error);
699 }
700
701
702 /*
703 * If there are processes sleeping on this descriptor, wake them up.
704 */
705 static inline void
706 bpf_wakeup(struct bpf_d *d)
707 {
708 wakeup(d);
709 if (d->bd_async)
710 softint_schedule(d->bd_sih);
711 selnotify(&d->bd_sel, 0, 0);
712 }
713
714 static void
715 bpf_softintr(void *cookie)
716 {
717 struct bpf_d *d;
718
719 d = cookie;
720 if (d->bd_async)
721 fownsignal(d->bd_pgid, SIGIO, 0, 0, NULL);
722 }
723
724 static void
725 bpf_timed_out(void *arg)
726 {
727 struct bpf_d *d = arg;
728 int s;
729
730 s = splnet();
731 if (d->bd_state == BPF_WAITING) {
732 d->bd_state = BPF_TIMED_OUT;
733 if (d->bd_slen != 0)
734 bpf_wakeup(d);
735 }
736 splx(s);
737 }
738
739
740 static int
741 bpf_write(struct file *fp, off_t *offp, struct uio *uio,
742 kauth_cred_t cred, int flags)
743 {
744 struct bpf_d *d = fp->f_bpf;
745 struct ifnet *ifp;
746 struct mbuf *m, *mc;
747 int error, s;
748 static struct sockaddr_storage dst;
749
750 m = NULL; /* XXX gcc */
751
752 KERNEL_LOCK(1, NULL);
753
754 if (d->bd_bif == NULL) {
755 KERNEL_UNLOCK_ONE(NULL);
756 return (ENXIO);
757 }
758 getnanotime(&d->bd_mtime);
759
760 ifp = d->bd_bif->bif_ifp;
761
762 if (uio->uio_resid == 0) {
763 KERNEL_UNLOCK_ONE(NULL);
764 return (0);
765 }
766
767 error = bpf_movein(uio, (int)d->bd_bif->bif_dlt, ifp->if_mtu, &m,
768 (struct sockaddr *) &dst);
769 if (error) {
770 KERNEL_UNLOCK_ONE(NULL);
771 return (error);
772 }
773
774 if (m->m_pkthdr.len > ifp->if_mtu) {
775 KERNEL_UNLOCK_ONE(NULL);
776 m_freem(m);
777 return (EMSGSIZE);
778 }
779
780 if (d->bd_hdrcmplt)
781 dst.ss_family = pseudo_AF_HDRCMPLT;
782
783 if (d->bd_feedback) {
784 mc = m_dup(m, 0, M_COPYALL, M_NOWAIT);
785 if (mc != NULL)
786 m_set_rcvif(mc, ifp);
787 /* Set M_PROMISC for outgoing packets to be discarded. */
788 if (1 /*d->bd_direction == BPF_D_INOUT*/)
789 m->m_flags |= M_PROMISC;
790 } else
791 mc = NULL;
792
793 s = splsoftnet();
794 error = if_output_lock(ifp, ifp, m, (struct sockaddr *) &dst, NULL);
795
796 if (mc != NULL) {
797 if (error == 0)
798 ifp->_if_input(ifp, mc);
799 else
800 m_freem(mc);
801 }
802 splx(s);
803 KERNEL_UNLOCK_ONE(NULL);
804 /*
805 * The driver frees the mbuf.
806 */
807 return (error);
808 }
809
810 /*
811 * Reset a descriptor by flushing its packet buffer and clearing the
812 * receive and drop counts. Should be called at splnet.
813 */
814 static void
815 reset_d(struct bpf_d *d)
816 {
817 if (d->bd_hbuf) {
818 /* Free the hold buffer. */
819 d->bd_fbuf = d->bd_hbuf;
820 d->bd_hbuf = NULL;
821 }
822 d->bd_slen = 0;
823 d->bd_hlen = 0;
824 d->bd_rcount = 0;
825 d->bd_dcount = 0;
826 d->bd_ccount = 0;
827 }
828
829 /*
830 * FIONREAD Check for read packet available.
831 * BIOCGBLEN Get buffer len [for read()].
832 * BIOCSETF Set ethernet read filter.
833 * BIOCFLUSH Flush read packet buffer.
834 * BIOCPROMISC Put interface into promiscuous mode.
835 * BIOCGDLT Get link layer type.
836 * BIOCGETIF Get interface name.
837 * BIOCSETIF Set interface.
838 * BIOCSRTIMEOUT Set read timeout.
839 * BIOCGRTIMEOUT Get read timeout.
840 * BIOCGSTATS Get packet stats.
841 * BIOCIMMEDIATE Set immediate mode.
842 * BIOCVERSION Get filter language version.
843 * BIOCGHDRCMPLT Get "header already complete" flag.
844 * BIOCSHDRCMPLT Set "header already complete" flag.
845 * BIOCSFEEDBACK Set packet feedback mode.
846 * BIOCGFEEDBACK Get packet feedback mode.
847 * BIOCGSEESENT Get "see sent packets" mode.
848 * BIOCSSEESENT Set "see sent packets" mode.
849 */
850 /* ARGSUSED */
851 static int
852 bpf_ioctl(struct file *fp, u_long cmd, void *addr)
853 {
854 struct bpf_d *d = fp->f_bpf;
855 int s, error = 0;
856
857 /*
858 * Refresh the PID associated with this bpf file.
859 */
860 KERNEL_LOCK(1, NULL);
861 d->bd_pid = curproc->p_pid;
862 #ifdef _LP64
863 if (curproc->p_flag & PK_32)
864 d->bd_compat32 = 1;
865 else
866 d->bd_compat32 = 0;
867 #endif
868
869 s = splnet();
870 if (d->bd_state == BPF_WAITING)
871 callout_stop(&d->bd_callout);
872 d->bd_state = BPF_IDLE;
873 splx(s);
874
875 switch (cmd) {
876
877 default:
878 error = EINVAL;
879 break;
880
881 /*
882 * Check for read packet available.
883 */
884 case FIONREAD:
885 {
886 int n;
887
888 s = splnet();
889 n = d->bd_slen;
890 if (d->bd_hbuf)
891 n += d->bd_hlen;
892 splx(s);
893
894 *(int *)addr = n;
895 break;
896 }
897
898 /*
899 * Get buffer len [for read()].
900 */
901 case BIOCGBLEN:
902 *(u_int *)addr = d->bd_bufsize;
903 break;
904
905 /*
906 * Set buffer length.
907 */
908 case BIOCSBLEN:
909 /*
910 * Forbid to change the buffer length if buffers are already
911 * allocated.
912 */
913 if (d->bd_bif != NULL || d->bd_sbuf != NULL)
914 error = EINVAL;
915 else {
916 u_int size = *(u_int *)addr;
917
918 if (size > bpf_maxbufsize)
919 *(u_int *)addr = size = bpf_maxbufsize;
920 else if (size < BPF_MINBUFSIZE)
921 *(u_int *)addr = size = BPF_MINBUFSIZE;
922 d->bd_bufsize = size;
923 }
924 break;
925
926 /*
927 * Set link layer read filter.
928 */
929 case BIOCSETF:
930 error = bpf_setf(d, addr);
931 break;
932
933 /*
934 * Flush read packet buffer.
935 */
936 case BIOCFLUSH:
937 s = splnet();
938 reset_d(d);
939 splx(s);
940 break;
941
942 /*
943 * Put interface into promiscuous mode.
944 */
945 case BIOCPROMISC:
946 if (d->bd_bif == NULL) {
947 /*
948 * No interface attached yet.
949 */
950 error = EINVAL;
951 break;
952 }
953 s = splnet();
954 if (d->bd_promisc == 0) {
955 error = ifpromisc(d->bd_bif->bif_ifp, 1);
956 if (error == 0)
957 d->bd_promisc = 1;
958 }
959 splx(s);
960 break;
961
962 /*
963 * Get device parameters.
964 */
965 case BIOCGDLT:
966 if (d->bd_bif == NULL)
967 error = EINVAL;
968 else
969 *(u_int *)addr = d->bd_bif->bif_dlt;
970 break;
971
972 /*
973 * Get a list of supported device parameters.
974 */
975 case BIOCGDLTLIST:
976 if (d->bd_bif == NULL)
977 error = EINVAL;
978 else
979 error = bpf_getdltlist(d, addr);
980 break;
981
982 /*
983 * Set device parameters.
984 */
985 case BIOCSDLT:
986 mutex_enter(&bpf_mtx);
987 if (d->bd_bif == NULL)
988 error = EINVAL;
989 else
990 error = bpf_setdlt(d, *(u_int *)addr);
991 mutex_exit(&bpf_mtx);
992 break;
993
994 /*
995 * Set interface name.
996 */
997 #ifdef OBIOCGETIF
998 case OBIOCGETIF:
999 #endif
1000 case BIOCGETIF:
1001 if (d->bd_bif == NULL)
1002 error = EINVAL;
1003 else
1004 bpf_ifname(d->bd_bif->bif_ifp, addr);
1005 break;
1006
1007 /*
1008 * Set interface.
1009 */
1010 #ifdef OBIOCSETIF
1011 case OBIOCSETIF:
1012 #endif
1013 case BIOCSETIF:
1014 mutex_enter(&bpf_mtx);
1015 error = bpf_setif(d, addr);
1016 mutex_exit(&bpf_mtx);
1017 break;
1018
1019 /*
1020 * Set read timeout.
1021 */
1022 case BIOCSRTIMEOUT:
1023 {
1024 struct timeval *tv = addr;
1025
1026 /* Compute number of ticks. */
1027 d->bd_rtout = tv->tv_sec * hz + tv->tv_usec / tick;
1028 if ((d->bd_rtout == 0) && (tv->tv_usec != 0))
1029 d->bd_rtout = 1;
1030 break;
1031 }
1032
1033 #ifdef BIOCGORTIMEOUT
1034 /*
1035 * Get read timeout.
1036 */
1037 case BIOCGORTIMEOUT:
1038 {
1039 struct timeval50 *tv = addr;
1040
1041 tv->tv_sec = d->bd_rtout / hz;
1042 tv->tv_usec = (d->bd_rtout % hz) * tick;
1043 break;
1044 }
1045 #endif
1046
1047 #ifdef BIOCSORTIMEOUT
1048 /*
1049 * Set read timeout.
1050 */
1051 case BIOCSORTIMEOUT:
1052 {
1053 struct timeval50 *tv = addr;
1054
1055 /* Compute number of ticks. */
1056 d->bd_rtout = tv->tv_sec * hz + tv->tv_usec / tick;
1057 if ((d->bd_rtout == 0) && (tv->tv_usec != 0))
1058 d->bd_rtout = 1;
1059 break;
1060 }
1061 #endif
1062
1063 /*
1064 * Get read timeout.
1065 */
1066 case BIOCGRTIMEOUT:
1067 {
1068 struct timeval *tv = addr;
1069
1070 tv->tv_sec = d->bd_rtout / hz;
1071 tv->tv_usec = (d->bd_rtout % hz) * tick;
1072 break;
1073 }
1074 /*
1075 * Get packet stats.
1076 */
1077 case BIOCGSTATS:
1078 {
1079 struct bpf_stat *bs = addr;
1080
1081 bs->bs_recv = d->bd_rcount;
1082 bs->bs_drop = d->bd_dcount;
1083 bs->bs_capt = d->bd_ccount;
1084 break;
1085 }
1086
1087 case BIOCGSTATSOLD:
1088 {
1089 struct bpf_stat_old *bs = addr;
1090
1091 bs->bs_recv = d->bd_rcount;
1092 bs->bs_drop = d->bd_dcount;
1093 break;
1094 }
1095
1096 /*
1097 * Set immediate mode.
1098 */
1099 case BIOCIMMEDIATE:
1100 d->bd_immediate = *(u_int *)addr;
1101 break;
1102
1103 case BIOCVERSION:
1104 {
1105 struct bpf_version *bv = addr;
1106
1107 bv->bv_major = BPF_MAJOR_VERSION;
1108 bv->bv_minor = BPF_MINOR_VERSION;
1109 break;
1110 }
1111
1112 case BIOCGHDRCMPLT: /* get "header already complete" flag */
1113 *(u_int *)addr = d->bd_hdrcmplt;
1114 break;
1115
1116 case BIOCSHDRCMPLT: /* set "header already complete" flag */
1117 d->bd_hdrcmplt = *(u_int *)addr ? 1 : 0;
1118 break;
1119
1120 /*
1121 * Get "see sent packets" flag
1122 */
1123 case BIOCGSEESENT:
1124 *(u_int *)addr = d->bd_seesent;
1125 break;
1126
1127 /*
1128 * Set "see sent" packets flag
1129 */
1130 case BIOCSSEESENT:
1131 d->bd_seesent = *(u_int *)addr;
1132 break;
1133
1134 /*
1135 * Set "feed packets from bpf back to input" mode
1136 */
1137 case BIOCSFEEDBACK:
1138 d->bd_feedback = *(u_int *)addr;
1139 break;
1140
1141 /*
1142 * Get "feed packets from bpf back to input" mode
1143 */
1144 case BIOCGFEEDBACK:
1145 *(u_int *)addr = d->bd_feedback;
1146 break;
1147
1148 case FIONBIO: /* Non-blocking I/O */
1149 /*
1150 * No need to do anything special as we use IO_NDELAY in
1151 * bpfread() as an indication of whether or not to block
1152 * the read.
1153 */
1154 break;
1155
1156 case FIOASYNC: /* Send signal on receive packets */
1157 d->bd_async = *(int *)addr;
1158 break;
1159
1160 case TIOCSPGRP: /* Process or group to send signals to */
1161 case FIOSETOWN:
1162 error = fsetown(&d->bd_pgid, cmd, addr);
1163 break;
1164
1165 case TIOCGPGRP:
1166 case FIOGETOWN:
1167 error = fgetown(d->bd_pgid, cmd, addr);
1168 break;
1169 }
1170 KERNEL_UNLOCK_ONE(NULL);
1171 return (error);
1172 }
1173
1174 /*
1175 * Set d's packet filter program to fp. If this file already has a filter,
1176 * free it and replace it. Returns EINVAL for bogus requests.
1177 */
1178 static int
1179 bpf_setf(struct bpf_d *d, struct bpf_program *fp)
1180 {
1181 struct bpf_insn *fcode, *old;
1182 bpfjit_func_t jcode, oldj;
1183 size_t flen, size = 0, old_size;
1184 int s;
1185
1186 jcode = NULL;
1187 flen = fp->bf_len;
1188
1189 if ((fp->bf_insns == NULL && flen) || flen > BPF_MAXINSNS) {
1190 return EINVAL;
1191 }
1192
1193 if (flen) {
1194 /*
1195 * Allocate the buffer, copy the byte-code from
1196 * userspace and validate it.
1197 */
1198 size = flen * sizeof(*fp->bf_insns);
1199 fcode = kmem_alloc(size, KM_SLEEP);
1200 if (copyin(fp->bf_insns, fcode, size) != 0 ||
1201 !bpf_validate(fcode, (int)flen)) {
1202 kmem_free(fcode, size);
1203 return EINVAL;
1204 }
1205 membar_consumer();
1206 if (bpf_jit)
1207 jcode = bpf_jit_generate(NULL, fcode, flen);
1208 } else {
1209 fcode = NULL;
1210 }
1211
1212 old_size = d->bd_filter_size;
1213
1214 s = splnet();
1215 old = d->bd_filter;
1216 d->bd_filter = fcode;
1217 d->bd_filter_size = size;
1218 oldj = d->bd_jitcode;
1219 d->bd_jitcode = jcode;
1220 reset_d(d);
1221 splx(s);
1222
1223 if (old) {
1224 kmem_free(old, old_size);
1225 }
1226 if (oldj) {
1227 bpf_jit_freecode(oldj);
1228 }
1229
1230 return 0;
1231 }
1232
1233 /*
1234 * Detach a file from its current interface (if attached at all) and attach
1235 * to the interface indicated by the name stored in ifr.
1236 * Return an errno or 0.
1237 */
1238 static int
1239 bpf_setif(struct bpf_d *d, struct ifreq *ifr)
1240 {
1241 struct bpf_if *bp;
1242 char *cp;
1243 int unit_seen, i, s, error;
1244
1245 KASSERT(mutex_owned(&bpf_mtx));
1246 /*
1247 * Make sure the provided name has a unit number, and default
1248 * it to '0' if not specified.
1249 * XXX This is ugly ... do this differently?
1250 */
1251 unit_seen = 0;
1252 cp = ifr->ifr_name;
1253 cp[sizeof(ifr->ifr_name) - 1] = '\0'; /* sanity */
1254 while (*cp++)
1255 if (*cp >= '0' && *cp <= '9')
1256 unit_seen = 1;
1257 if (!unit_seen) {
1258 /* Make sure to leave room for the '\0'. */
1259 for (i = 0; i < (IFNAMSIZ - 1); ++i) {
1260 if ((ifr->ifr_name[i] >= 'a' &&
1261 ifr->ifr_name[i] <= 'z') ||
1262 (ifr->ifr_name[i] >= 'A' &&
1263 ifr->ifr_name[i] <= 'Z'))
1264 continue;
1265 ifr->ifr_name[i] = '0';
1266 }
1267 }
1268
1269 /*
1270 * Look through attached interfaces for the named one.
1271 */
1272 BPF_IFLIST_WRITER_FOREACH(bp) {
1273 struct ifnet *ifp = bp->bif_ifp;
1274
1275 if (ifp == NULL ||
1276 strcmp(ifp->if_xname, ifr->ifr_name) != 0)
1277 continue;
1278 /* skip additional entry */
1279 if (bp->bif_driverp != &ifp->if_bpf)
1280 continue;
1281 /*
1282 * We found the requested interface.
1283 * Allocate the packet buffers if we need to.
1284 * If we're already attached to requested interface,
1285 * just flush the buffer.
1286 */
1287 if (d->bd_sbuf == NULL) {
1288 error = bpf_allocbufs(d);
1289 if (error != 0)
1290 return (error);
1291 }
1292 s = splnet();
1293 if (bp != d->bd_bif) {
1294 if (d->bd_bif)
1295 /*
1296 * Detach if attached to something else.
1297 */
1298 bpf_detachd(d);
1299
1300 bpf_attachd(d, bp);
1301 }
1302 reset_d(d);
1303 splx(s);
1304 return (0);
1305 }
1306 /* Not found. */
1307 return (ENXIO);
1308 }
1309
1310 /*
1311 * Copy the interface name to the ifreq.
1312 */
1313 static void
1314 bpf_ifname(struct ifnet *ifp, struct ifreq *ifr)
1315 {
1316 memcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
1317 }
1318
1319 static int
1320 bpf_stat(struct file *fp, struct stat *st)
1321 {
1322 struct bpf_d *d = fp->f_bpf;
1323
1324 (void)memset(st, 0, sizeof(*st));
1325 KERNEL_LOCK(1, NULL);
1326 st->st_dev = makedev(cdevsw_lookup_major(&bpf_cdevsw), d->bd_pid);
1327 st->st_atimespec = d->bd_atime;
1328 st->st_mtimespec = d->bd_mtime;
1329 st->st_ctimespec = st->st_birthtimespec = d->bd_btime;
1330 st->st_uid = kauth_cred_geteuid(fp->f_cred);
1331 st->st_gid = kauth_cred_getegid(fp->f_cred);
1332 st->st_mode = S_IFCHR;
1333 KERNEL_UNLOCK_ONE(NULL);
1334 return 0;
1335 }
1336
1337 /*
1338 * Support for poll() system call
1339 *
1340 * Return true iff the specific operation will not block indefinitely - with
1341 * the assumption that it is safe to positively acknowledge a request for the
1342 * ability to write to the BPF device.
1343 * Otherwise, return false but make a note that a selnotify() must be done.
1344 */
1345 static int
1346 bpf_poll(struct file *fp, int events)
1347 {
1348 struct bpf_d *d = fp->f_bpf;
1349 int s = splnet();
1350 int revents;
1351
1352 /*
1353 * Refresh the PID associated with this bpf file.
1354 */
1355 KERNEL_LOCK(1, NULL);
1356 d->bd_pid = curproc->p_pid;
1357
1358 revents = events & (POLLOUT | POLLWRNORM);
1359 if (events & (POLLIN | POLLRDNORM)) {
1360 /*
1361 * An imitation of the FIONREAD ioctl code.
1362 */
1363 if (d->bd_hlen != 0 ||
1364 ((d->bd_immediate || d->bd_state == BPF_TIMED_OUT) &&
1365 d->bd_slen != 0)) {
1366 revents |= events & (POLLIN | POLLRDNORM);
1367 } else {
1368 selrecord(curlwp, &d->bd_sel);
1369 /* Start the read timeout if necessary */
1370 if (d->bd_rtout > 0 && d->bd_state == BPF_IDLE) {
1371 callout_reset(&d->bd_callout, d->bd_rtout,
1372 bpf_timed_out, d);
1373 d->bd_state = BPF_WAITING;
1374 }
1375 }
1376 }
1377
1378 KERNEL_UNLOCK_ONE(NULL);
1379 splx(s);
1380 return (revents);
1381 }
1382
1383 static void
1384 filt_bpfrdetach(struct knote *kn)
1385 {
1386 struct bpf_d *d = kn->kn_hook;
1387 int s;
1388
1389 KERNEL_LOCK(1, NULL);
1390 s = splnet();
1391 SLIST_REMOVE(&d->bd_sel.sel_klist, kn, knote, kn_selnext);
1392 splx(s);
1393 KERNEL_UNLOCK_ONE(NULL);
1394 }
1395
1396 static int
1397 filt_bpfread(struct knote *kn, long hint)
1398 {
1399 struct bpf_d *d = kn->kn_hook;
1400 int rv;
1401
1402 KERNEL_LOCK(1, NULL);
1403 kn->kn_data = d->bd_hlen;
1404 if (d->bd_immediate)
1405 kn->kn_data += d->bd_slen;
1406 rv = (kn->kn_data > 0);
1407 KERNEL_UNLOCK_ONE(NULL);
1408 return rv;
1409 }
1410
1411 static const struct filterops bpfread_filtops =
1412 { 1, NULL, filt_bpfrdetach, filt_bpfread };
1413
1414 static int
1415 bpf_kqfilter(struct file *fp, struct knote *kn)
1416 {
1417 struct bpf_d *d = fp->f_bpf;
1418 struct klist *klist;
1419 int s;
1420
1421 KERNEL_LOCK(1, NULL);
1422
1423 switch (kn->kn_filter) {
1424 case EVFILT_READ:
1425 klist = &d->bd_sel.sel_klist;
1426 kn->kn_fop = &bpfread_filtops;
1427 break;
1428
1429 default:
1430 KERNEL_UNLOCK_ONE(NULL);
1431 return (EINVAL);
1432 }
1433
1434 kn->kn_hook = d;
1435
1436 s = splnet();
1437 SLIST_INSERT_HEAD(klist, kn, kn_selnext);
1438 splx(s);
1439 KERNEL_UNLOCK_ONE(NULL);
1440
1441 return (0);
1442 }
1443
1444 /*
1445 * Copy data from an mbuf chain into a buffer. This code is derived
1446 * from m_copydata in sys/uipc_mbuf.c.
1447 */
1448 static void *
1449 bpf_mcpy(void *dst_arg, const void *src_arg, size_t len)
1450 {
1451 const struct mbuf *m;
1452 u_int count;
1453 u_char *dst;
1454
1455 m = src_arg;
1456 dst = dst_arg;
1457 while (len > 0) {
1458 if (m == NULL)
1459 panic("bpf_mcpy");
1460 count = min(m->m_len, len);
1461 memcpy(dst, mtod(m, const void *), count);
1462 m = m->m_next;
1463 dst += count;
1464 len -= count;
1465 }
1466 return dst_arg;
1467 }
1468
1469 /*
1470 * Dispatch a packet to all the listeners on interface bp.
1471 *
1472 * pkt pointer to the packet, either a data buffer or an mbuf chain
1473 * buflen buffer length, if pkt is a data buffer
1474 * cpfn a function that can copy pkt into the listener's buffer
1475 * pktlen length of the packet
1476 * rcv true if packet came in
1477 */
1478 static inline void
1479 bpf_deliver(struct bpf_if *bp, void *(*cpfn)(void *, const void *, size_t),
1480 void *pkt, u_int pktlen, u_int buflen, const bool rcv)
1481 {
1482 uint32_t mem[BPF_MEMWORDS];
1483 bpf_args_t args = {
1484 .pkt = (const uint8_t *)pkt,
1485 .wirelen = pktlen,
1486 .buflen = buflen,
1487 .mem = mem,
1488 .arg = NULL
1489 };
1490 bool gottime = false;
1491 struct timespec ts;
1492 struct bpf_d *d;
1493
1494 /*
1495 * Note that the IPL does not have to be raised at this point.
1496 * The only problem that could arise here is that if two different
1497 * interfaces shared any data. This is not the case.
1498 */
1499 BPFIF_DLIST_READER_FOREACH(d, bp) {
1500 u_int slen;
1501
1502 if (!d->bd_seesent && !rcv) {
1503 continue;
1504 }
1505 d->bd_rcount++;
1506 BPF_STATINC(recv);
1507
1508 if (d->bd_jitcode)
1509 slen = d->bd_jitcode(NULL, &args);
1510 else
1511 slen = bpf_filter_ext(NULL, d->bd_filter, &args);
1512
1513 if (!slen) {
1514 continue;
1515 }
1516 if (!gottime) {
1517 gottime = true;
1518 nanotime(&ts);
1519 }
1520 catchpacket(d, pkt, pktlen, slen, cpfn, &ts);
1521 }
1522 }
1523
1524 /*
1525 * Incoming linkage from device drivers. Process the packet pkt, of length
1526 * pktlen, which is stored in a contiguous buffer. The packet is parsed
1527 * by each process' filter, and if accepted, stashed into the corresponding
1528 * buffer.
1529 */
1530 static void
1531 _bpf_tap(struct bpf_if *bp, u_char *pkt, u_int pktlen)
1532 {
1533
1534 bpf_deliver(bp, memcpy, pkt, pktlen, pktlen, true);
1535 }
1536
1537 /*
1538 * Incoming linkage from device drivers, when the head of the packet is in
1539 * a buffer, and the tail is in an mbuf chain.
1540 */
1541 static void
1542 _bpf_mtap2(struct bpf_if *bp, void *data, u_int dlen, struct mbuf *m)
1543 {
1544 u_int pktlen;
1545 struct mbuf mb;
1546
1547 /* Skip outgoing duplicate packets. */
1548 if ((m->m_flags & M_PROMISC) != 0 && m->m_pkthdr.rcvif_index == 0) {
1549 m->m_flags &= ~M_PROMISC;
1550 return;
1551 }
1552
1553 pktlen = m_length(m) + dlen;
1554
1555 /*
1556 * Craft on-stack mbuf suitable for passing to bpf_filter.
1557 * Note that we cut corners here; we only setup what's
1558 * absolutely needed--this mbuf should never go anywhere else.
1559 */
1560 (void)memset(&mb, 0, sizeof(mb));
1561 mb.m_next = m;
1562 mb.m_data = data;
1563 mb.m_len = dlen;
1564
1565 bpf_deliver(bp, bpf_mcpy, &mb, pktlen, 0, m->m_pkthdr.rcvif_index != 0);
1566 }
1567
1568 /*
1569 * Incoming linkage from device drivers, when packet is in an mbuf chain.
1570 */
1571 static void
1572 _bpf_mtap(struct bpf_if *bp, struct mbuf *m)
1573 {
1574 void *(*cpfn)(void *, const void *, size_t);
1575 u_int pktlen, buflen;
1576 void *marg;
1577
1578 /* Skip outgoing duplicate packets. */
1579 if ((m->m_flags & M_PROMISC) != 0 && m->m_pkthdr.rcvif_index == 0) {
1580 m->m_flags &= ~M_PROMISC;
1581 return;
1582 }
1583
1584 pktlen = m_length(m);
1585
1586 if (pktlen == m->m_len) {
1587 cpfn = (void *)memcpy;
1588 marg = mtod(m, void *);
1589 buflen = pktlen;
1590 } else {
1591 cpfn = bpf_mcpy;
1592 marg = m;
1593 buflen = 0;
1594 }
1595
1596 bpf_deliver(bp, cpfn, marg, pktlen, buflen, m->m_pkthdr.rcvif_index != 0);
1597 }
1598
1599 /*
1600 * We need to prepend the address family as
1601 * a four byte field. Cons up a dummy header
1602 * to pacify bpf. This is safe because bpf
1603 * will only read from the mbuf (i.e., it won't
1604 * try to free it or keep a pointer a to it).
1605 */
1606 static void
1607 _bpf_mtap_af(struct bpf_if *bp, uint32_t af, struct mbuf *m)
1608 {
1609 struct mbuf m0;
1610
1611 m0.m_flags = 0;
1612 m0.m_next = m;
1613 m0.m_len = 4;
1614 m0.m_data = (char *)⁡
1615
1616 _bpf_mtap(bp, &m0);
1617 }
1618
1619 /*
1620 * Put the SLIP pseudo-"link header" in place.
1621 * Note this M_PREPEND() should never fail,
1622 * swince we know we always have enough space
1623 * in the input buffer.
1624 */
1625 static void
1626 _bpf_mtap_sl_in(struct bpf_if *bp, u_char *chdr, struct mbuf **m)
1627 {
1628 int s;
1629 u_char *hp;
1630
1631 M_PREPEND(*m, SLIP_HDRLEN, M_DONTWAIT);
1632 if (*m == NULL)
1633 return;
1634
1635 hp = mtod(*m, u_char *);
1636 hp[SLX_DIR] = SLIPDIR_IN;
1637 (void)memcpy(&hp[SLX_CHDR], chdr, CHDR_LEN);
1638
1639 s = splnet();
1640 _bpf_mtap(bp, *m);
1641 splx(s);
1642
1643 m_adj(*m, SLIP_HDRLEN);
1644 }
1645
1646 /*
1647 * Put the SLIP pseudo-"link header" in
1648 * place. The compressed header is now
1649 * at the beginning of the mbuf.
1650 */
1651 static void
1652 _bpf_mtap_sl_out(struct bpf_if *bp, u_char *chdr, struct mbuf *m)
1653 {
1654 struct mbuf m0;
1655 u_char *hp;
1656 int s;
1657
1658 m0.m_flags = 0;
1659 m0.m_next = m;
1660 m0.m_data = m0.m_dat;
1661 m0.m_len = SLIP_HDRLEN;
1662
1663 hp = mtod(&m0, u_char *);
1664
1665 hp[SLX_DIR] = SLIPDIR_OUT;
1666 (void)memcpy(&hp[SLX_CHDR], chdr, CHDR_LEN);
1667
1668 s = splnet();
1669 _bpf_mtap(bp, &m0);
1670 splx(s);
1671 m_freem(m);
1672 }
1673
1674 static struct mbuf *
1675 bpf_mbuf_enqueue(struct bpf_if *bp, struct mbuf *m)
1676 {
1677 struct mbuf *dup;
1678
1679 dup = m_dup(m, 0, M_COPYALL, M_NOWAIT);
1680 if (dup == NULL)
1681 return NULL;
1682
1683 if (bp->bif_mbuf_tail != NULL) {
1684 bp->bif_mbuf_tail->m_nextpkt = dup;
1685 } else {
1686 bp->bif_mbuf_head = dup;
1687 }
1688 bp->bif_mbuf_tail = dup;
1689 #ifdef BPF_MTAP_SOFTINT_DEBUG
1690 log(LOG_DEBUG, "%s: enqueued mbuf=%p to %s\n",
1691 __func__, dup, bp->bif_ifp->if_xname);
1692 #endif
1693
1694 return dup;
1695 }
1696
1697 static struct mbuf *
1698 bpf_mbuf_dequeue(struct bpf_if *bp)
1699 {
1700 struct mbuf *m;
1701 int s;
1702
1703 s = splnet();
1704 m = bp->bif_mbuf_head;
1705 if (m != NULL) {
1706 bp->bif_mbuf_head = m->m_nextpkt;
1707 m->m_nextpkt = NULL;
1708
1709 if (bp->bif_mbuf_head == NULL)
1710 bp->bif_mbuf_tail = NULL;
1711 #ifdef BPF_MTAP_SOFTINT_DEBUG
1712 log(LOG_DEBUG, "%s: dequeued mbuf=%p from %s\n",
1713 __func__, m, bp->bif_ifp->if_xname);
1714 #endif
1715 }
1716 splx(s);
1717
1718 return m;
1719 }
1720
1721 static void
1722 bpf_mtap_si(void *arg)
1723 {
1724 struct bpf_if *bp = arg;
1725 struct mbuf *m;
1726
1727 while ((m = bpf_mbuf_dequeue(bp)) != NULL) {
1728 #ifdef BPF_MTAP_SOFTINT_DEBUG
1729 log(LOG_DEBUG, "%s: tapping mbuf=%p on %s\n",
1730 __func__, m, bp->bif_ifp->if_xname);
1731 #endif
1732 #ifndef NET_MPSAFE
1733 KERNEL_LOCK(1, NULL);
1734 #endif
1735 bpf_ops->bpf_mtap(bp, m);
1736 #ifndef NET_MPSAFE
1737 KERNEL_UNLOCK_ONE(NULL);
1738 #endif
1739 m_freem(m);
1740 }
1741 }
1742
1743 static void
1744 _bpf_mtap_softint(struct ifnet *ifp, struct mbuf *m)
1745 {
1746 struct bpf_if *bp = ifp->if_bpf;
1747 struct mbuf *dup;
1748
1749 KASSERT(cpu_intr_p());
1750
1751 /* To avoid extra invocations of the softint */
1752 if (BPFIF_DLIST_READER_EMPTY(bp))
1753 return;
1754 KASSERT(bp->bif_si != NULL);
1755
1756 dup = bpf_mbuf_enqueue(bp, m);
1757 if (dup != NULL)
1758 softint_schedule(bp->bif_si);
1759 }
1760
1761 static int
1762 bpf_hdrlen(struct bpf_d *d)
1763 {
1764 int hdrlen = d->bd_bif->bif_hdrlen;
1765 /*
1766 * Compute the length of the bpf header. This is not necessarily
1767 * equal to SIZEOF_BPF_HDR because we want to insert spacing such
1768 * that the network layer header begins on a longword boundary (for
1769 * performance reasons and to alleviate alignment restrictions).
1770 */
1771 #ifdef _LP64
1772 if (d->bd_compat32)
1773 return (BPF_WORDALIGN32(hdrlen + SIZEOF_BPF_HDR32) - hdrlen);
1774 else
1775 #endif
1776 return (BPF_WORDALIGN(hdrlen + SIZEOF_BPF_HDR) - hdrlen);
1777 }
1778
1779 /*
1780 * Move the packet data from interface memory (pkt) into the
1781 * store buffer. Call the wakeup functions if it's time to wakeup
1782 * a listener (buffer full), "cpfn" is the routine called to do the
1783 * actual data transfer. memcpy is passed in to copy contiguous chunks,
1784 * while bpf_mcpy is passed in to copy mbuf chains. In the latter case,
1785 * pkt is really an mbuf.
1786 */
1787 static void
1788 catchpacket(struct bpf_d *d, u_char *pkt, u_int pktlen, u_int snaplen,
1789 void *(*cpfn)(void *, const void *, size_t), struct timespec *ts)
1790 {
1791 char *h;
1792 int totlen, curlen, caplen;
1793 int hdrlen = bpf_hdrlen(d);
1794 int do_wakeup = 0;
1795
1796 ++d->bd_ccount;
1797 BPF_STATINC(capt);
1798 /*
1799 * Figure out how many bytes to move. If the packet is
1800 * greater or equal to the snapshot length, transfer that
1801 * much. Otherwise, transfer the whole packet (unless
1802 * we hit the buffer size limit).
1803 */
1804 totlen = hdrlen + min(snaplen, pktlen);
1805 if (totlen > d->bd_bufsize)
1806 totlen = d->bd_bufsize;
1807 /*
1808 * If we adjusted totlen to fit the bufsize, it could be that
1809 * totlen is smaller than hdrlen because of the link layer header.
1810 */
1811 caplen = totlen - hdrlen;
1812 if (caplen < 0)
1813 caplen = 0;
1814
1815 /*
1816 * Round up the end of the previous packet to the next longword.
1817 */
1818 #ifdef _LP64
1819 if (d->bd_compat32)
1820 curlen = BPF_WORDALIGN32(d->bd_slen);
1821 else
1822 #endif
1823 curlen = BPF_WORDALIGN(d->bd_slen);
1824 if (curlen + totlen > d->bd_bufsize) {
1825 /*
1826 * This packet will overflow the storage buffer.
1827 * Rotate the buffers if we can, then wakeup any
1828 * pending reads.
1829 */
1830 if (d->bd_fbuf == NULL) {
1831 /*
1832 * We haven't completed the previous read yet,
1833 * so drop the packet.
1834 */
1835 ++d->bd_dcount;
1836 BPF_STATINC(drop);
1837 return;
1838 }
1839 ROTATE_BUFFERS(d);
1840 do_wakeup = 1;
1841 curlen = 0;
1842 } else if (d->bd_immediate || d->bd_state == BPF_TIMED_OUT) {
1843 /*
1844 * Immediate mode is set, or the read timeout has
1845 * already expired during a select call. A packet
1846 * arrived, so the reader should be woken up.
1847 */
1848 do_wakeup = 1;
1849 }
1850
1851 /*
1852 * Append the bpf header.
1853 */
1854 h = (char *)d->bd_sbuf + curlen;
1855 #ifdef _LP64
1856 if (d->bd_compat32) {
1857 struct bpf_hdr32 *hp32;
1858
1859 hp32 = (struct bpf_hdr32 *)h;
1860 hp32->bh_tstamp.tv_sec = ts->tv_sec;
1861 hp32->bh_tstamp.tv_usec = ts->tv_nsec / 1000;
1862 hp32->bh_datalen = pktlen;
1863 hp32->bh_hdrlen = hdrlen;
1864 hp32->bh_caplen = caplen;
1865 } else
1866 #endif
1867 {
1868 struct bpf_hdr *hp;
1869
1870 hp = (struct bpf_hdr *)h;
1871 hp->bh_tstamp.tv_sec = ts->tv_sec;
1872 hp->bh_tstamp.tv_usec = ts->tv_nsec / 1000;
1873 hp->bh_datalen = pktlen;
1874 hp->bh_hdrlen = hdrlen;
1875 hp->bh_caplen = caplen;
1876 }
1877
1878 /*
1879 * Copy the packet data into the store buffer and update its length.
1880 */
1881 (*cpfn)(h + hdrlen, pkt, caplen);
1882 d->bd_slen = curlen + totlen;
1883
1884 /*
1885 * Call bpf_wakeup after bd_slen has been updated so that kevent(2)
1886 * will cause filt_bpfread() to be called with it adjusted.
1887 */
1888 if (do_wakeup)
1889 bpf_wakeup(d);
1890 }
1891
1892 /*
1893 * Initialize all nonzero fields of a descriptor.
1894 */
1895 static int
1896 bpf_allocbufs(struct bpf_d *d)
1897 {
1898
1899 d->bd_fbuf = kmem_alloc(d->bd_bufsize, KM_NOSLEEP);
1900 if (!d->bd_fbuf)
1901 return (ENOBUFS);
1902 d->bd_sbuf = kmem_alloc(d->bd_bufsize, KM_NOSLEEP);
1903 if (!d->bd_sbuf) {
1904 kmem_free(d->bd_fbuf, d->bd_bufsize);
1905 return (ENOBUFS);
1906 }
1907 d->bd_slen = 0;
1908 d->bd_hlen = 0;
1909 return (0);
1910 }
1911
1912 /*
1913 * Free buffers currently in use by a descriptor.
1914 * Called on close.
1915 */
1916 static void
1917 bpf_freed(struct bpf_d *d)
1918 {
1919 /*
1920 * We don't need to lock out interrupts since this descriptor has
1921 * been detached from its interface and it yet hasn't been marked
1922 * free.
1923 */
1924 if (d->bd_sbuf != NULL) {
1925 kmem_free(d->bd_sbuf, d->bd_bufsize);
1926 if (d->bd_hbuf != NULL)
1927 kmem_free(d->bd_hbuf, d->bd_bufsize);
1928 if (d->bd_fbuf != NULL)
1929 kmem_free(d->bd_fbuf, d->bd_bufsize);
1930 }
1931 if (d->bd_filter)
1932 kmem_free(d->bd_filter, d->bd_filter_size);
1933
1934 if (d->bd_jitcode != NULL) {
1935 bpf_jit_freecode(d->bd_jitcode);
1936 }
1937 }
1938
1939 /*
1940 * Attach an interface to bpf. dlt is the link layer type;
1941 * hdrlen is the fixed size of the link header for the specified dlt
1942 * (variable length headers not yet supported).
1943 */
1944 static void
1945 _bpfattach(struct ifnet *ifp, u_int dlt, u_int hdrlen, struct bpf_if **driverp)
1946 {
1947 struct bpf_if *bp;
1948 bp = kmem_alloc(sizeof(*bp), KM_NOSLEEP);
1949 if (bp == NULL)
1950 panic("bpfattach");
1951
1952 mutex_enter(&bpf_mtx);
1953 bp->bif_driverp = driverp;
1954 bp->bif_ifp = ifp;
1955 bp->bif_dlt = dlt;
1956 bp->bif_si = NULL;
1957 BPF_IFLIST_ENTRY_INIT(bp);
1958 PSLIST_INIT(&bp->bif_dlist_head);
1959
1960 BPF_IFLIST_WRITER_INSERT_HEAD(bp);
1961
1962 *bp->bif_driverp = NULL;
1963
1964 bp->bif_hdrlen = hdrlen;
1965 mutex_exit(&bpf_mtx);
1966 #if 0
1967 printf("bpf: %s attached\n", ifp->if_xname);
1968 #endif
1969 }
1970
1971 static void
1972 _bpf_mtap_softint_init(struct ifnet *ifp)
1973 {
1974 struct bpf_if *bp;
1975
1976 mutex_enter(&bpf_mtx);
1977 BPF_IFLIST_WRITER_FOREACH(bp) {
1978 if (bp->bif_ifp != ifp)
1979 continue;
1980
1981 bp->bif_mbuf_head = NULL;
1982 bp->bif_mbuf_tail = NULL;
1983 bp->bif_si = softint_establish(SOFTINT_NET, bpf_mtap_si, bp);
1984 if (bp->bif_si == NULL)
1985 panic("%s: softint_establish() failed", __func__);
1986 break;
1987 }
1988 mutex_exit(&bpf_mtx);
1989
1990 if (bp == NULL)
1991 panic("%s: no bpf_if found for %s", __func__, ifp->if_xname);
1992 }
1993
1994 /*
1995 * Remove an interface from bpf.
1996 */
1997 static void
1998 _bpfdetach(struct ifnet *ifp)
1999 {
2000 struct bpf_if *bp;
2001 struct bpf_d *d;
2002 int s;
2003
2004 mutex_enter(&bpf_mtx);
2005 /* Nuke the vnodes for any open instances */
2006 again_d:
2007 BPF_DLIST_WRITER_FOREACH(d) {
2008 if (d->bd_bif != NULL && d->bd_bif->bif_ifp == ifp) {
2009 /*
2010 * Detach the descriptor from an interface now.
2011 * It will be free'ed later by close routine.
2012 */
2013 s = splnet();
2014 d->bd_promisc = 0; /* we can't touch device. */
2015 bpf_detachd(d);
2016 splx(s);
2017 goto again_d;
2018 }
2019 }
2020
2021 again:
2022 BPF_IFLIST_WRITER_FOREACH(bp) {
2023 if (bp->bif_ifp == ifp) {
2024 BPF_IFLIST_WRITER_REMOVE(bp);
2025 /* TODO pserialize_perform(); */
2026 /* TODO psref_target_destroy(); */
2027 BPF_IFLIST_ENTRY_DESTROY(bp);
2028 if (bp->bif_si != NULL) {
2029 s = splnet();
2030 while (bp->bif_mbuf_head != NULL) {
2031 struct mbuf *m = bp->bif_mbuf_head;
2032 bp->bif_mbuf_head = m->m_nextpkt;
2033 m_freem(m);
2034 }
2035 splx(s);
2036 softint_disestablish(bp->bif_si);
2037 }
2038 kmem_free(bp, sizeof(*bp));
2039 goto again;
2040 }
2041 }
2042 mutex_exit(&bpf_mtx);
2043 }
2044
2045 /*
2046 * Change the data link type of a interface.
2047 */
2048 static void
2049 _bpf_change_type(struct ifnet *ifp, u_int dlt, u_int hdrlen)
2050 {
2051 struct bpf_if *bp;
2052
2053 BPF_IFLIST_READER_FOREACH(bp) {
2054 if (bp->bif_driverp == &ifp->if_bpf)
2055 break;
2056 }
2057 if (bp == NULL)
2058 panic("bpf_change_type");
2059
2060 bp->bif_dlt = dlt;
2061
2062 bp->bif_hdrlen = hdrlen;
2063 }
2064
2065 /*
2066 * Get a list of available data link type of the interface.
2067 */
2068 static int
2069 bpf_getdltlist(struct bpf_d *d, struct bpf_dltlist *bfl)
2070 {
2071 int n, error;
2072 struct ifnet *ifp;
2073 struct bpf_if *bp;
2074
2075 ifp = d->bd_bif->bif_ifp;
2076 n = 0;
2077 error = 0;
2078 BPF_IFLIST_READER_FOREACH(bp) {
2079 if (bp->bif_ifp != ifp)
2080 continue;
2081 if (bfl->bfl_list != NULL) {
2082 if (n >= bfl->bfl_len)
2083 return ENOMEM;
2084 error = copyout(&bp->bif_dlt,
2085 bfl->bfl_list + n, sizeof(u_int));
2086 }
2087 n++;
2088 }
2089 bfl->bfl_len = n;
2090 return error;
2091 }
2092
2093 /*
2094 * Set the data link type of a BPF instance.
2095 */
2096 static int
2097 bpf_setdlt(struct bpf_d *d, u_int dlt)
2098 {
2099 int s, error, opromisc;
2100 struct ifnet *ifp;
2101 struct bpf_if *bp;
2102
2103 KASSERT(mutex_owned(&bpf_mtx));
2104
2105 if (d->bd_bif->bif_dlt == dlt)
2106 return 0;
2107 ifp = d->bd_bif->bif_ifp;
2108 BPF_IFLIST_WRITER_FOREACH(bp) {
2109 if (bp->bif_ifp == ifp && bp->bif_dlt == dlt)
2110 break;
2111 }
2112 if (bp == NULL)
2113 return EINVAL;
2114 s = splnet();
2115 opromisc = d->bd_promisc;
2116 bpf_detachd(d);
2117 bpf_attachd(d, bp);
2118 reset_d(d);
2119 if (opromisc) {
2120 error = ifpromisc(bp->bif_ifp, 1);
2121 if (error)
2122 printf("%s: bpf_setdlt: ifpromisc failed (%d)\n",
2123 bp->bif_ifp->if_xname, error);
2124 else
2125 d->bd_promisc = 1;
2126 }
2127 splx(s);
2128 return 0;
2129 }
2130
2131 static int
2132 sysctl_net_bpf_maxbufsize(SYSCTLFN_ARGS)
2133 {
2134 int newsize, error;
2135 struct sysctlnode node;
2136
2137 node = *rnode;
2138 node.sysctl_data = &newsize;
2139 newsize = bpf_maxbufsize;
2140 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2141 if (error || newp == NULL)
2142 return (error);
2143
2144 if (newsize < BPF_MINBUFSIZE || newsize > BPF_MAXBUFSIZE)
2145 return (EINVAL);
2146
2147 bpf_maxbufsize = newsize;
2148
2149 return (0);
2150 }
2151
2152 #if defined(MODULAR) || defined(BPFJIT)
2153 static int
2154 sysctl_net_bpf_jit(SYSCTLFN_ARGS)
2155 {
2156 bool newval;
2157 int error;
2158 struct sysctlnode node;
2159
2160 node = *rnode;
2161 node.sysctl_data = &newval;
2162 newval = bpf_jit;
2163 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2164 if (error != 0 || newp == NULL)
2165 return error;
2166
2167 bpf_jit = newval;
2168
2169 /*
2170 * Do a full sync to publish new bpf_jit value and
2171 * update bpfjit_module_ops.bj_generate_code variable.
2172 */
2173 membar_sync();
2174
2175 if (newval && bpfjit_module_ops.bj_generate_code == NULL) {
2176 printf("JIT compilation is postponed "
2177 "until after bpfjit module is loaded\n");
2178 }
2179
2180 return 0;
2181 }
2182 #endif
2183
2184 static int
2185 sysctl_net_bpf_peers(SYSCTLFN_ARGS)
2186 {
2187 int error, elem_count;
2188 struct bpf_d *dp;
2189 struct bpf_d_ext dpe;
2190 size_t len, needed, elem_size, out_size;
2191 char *sp;
2192
2193 if (namelen == 1 && name[0] == CTL_QUERY)
2194 return (sysctl_query(SYSCTLFN_CALL(rnode)));
2195
2196 if (namelen != 2)
2197 return (EINVAL);
2198
2199 /* BPF peers is privileged information. */
2200 error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_INTERFACE,
2201 KAUTH_REQ_NETWORK_INTERFACE_GETPRIV, NULL, NULL, NULL);
2202 if (error)
2203 return (EPERM);
2204
2205 len = (oldp != NULL) ? *oldlenp : 0;
2206 sp = oldp;
2207 elem_size = name[0];
2208 elem_count = name[1];
2209 out_size = MIN(sizeof(dpe), elem_size);
2210 needed = 0;
2211
2212 if (elem_size < 1 || elem_count < 0)
2213 return (EINVAL);
2214
2215 mutex_enter(&bpf_mtx);
2216 BPF_DLIST_WRITER_FOREACH(dp) {
2217 if (len >= elem_size && elem_count > 0) {
2218 #define BPF_EXT(field) dpe.bde_ ## field = dp->bd_ ## field
2219 BPF_EXT(bufsize);
2220 BPF_EXT(promisc);
2221 BPF_EXT(state);
2222 BPF_EXT(immediate);
2223 BPF_EXT(hdrcmplt);
2224 BPF_EXT(seesent);
2225 BPF_EXT(pid);
2226 BPF_EXT(rcount);
2227 BPF_EXT(dcount);
2228 BPF_EXT(ccount);
2229 #undef BPF_EXT
2230 if (dp->bd_bif)
2231 (void)strlcpy(dpe.bde_ifname,
2232 dp->bd_bif->bif_ifp->if_xname,
2233 IFNAMSIZ - 1);
2234 else
2235 dpe.bde_ifname[0] = '\0';
2236
2237 error = copyout(&dpe, sp, out_size);
2238 if (error)
2239 break;
2240 sp += elem_size;
2241 len -= elem_size;
2242 }
2243 needed += elem_size;
2244 if (elem_count > 0 && elem_count != INT_MAX)
2245 elem_count--;
2246 }
2247 mutex_exit(&bpf_mtx);
2248
2249 *oldlenp = needed;
2250
2251 return (error);
2252 }
2253
2254 static void
2255 bpf_stats(void *p, void *arg, struct cpu_info *ci __unused)
2256 {
2257 struct bpf_stat *const stats = p;
2258 struct bpf_stat *sum = arg;
2259
2260 sum->bs_recv += stats->bs_recv;
2261 sum->bs_drop += stats->bs_drop;
2262 sum->bs_capt += stats->bs_capt;
2263 }
2264
2265 static int
2266 bpf_sysctl_gstats_handler(SYSCTLFN_ARGS)
2267 {
2268 struct sysctlnode node;
2269 int error;
2270 struct bpf_stat sum;
2271
2272 memset(&sum, 0, sizeof(sum));
2273 node = *rnode;
2274
2275 percpu_foreach(bpf_gstats_percpu, bpf_stats, &sum);
2276
2277 node.sysctl_data = ∑
2278 node.sysctl_size = sizeof(sum);
2279 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2280 if (error != 0 || newp == NULL)
2281 return error;
2282
2283 return 0;
2284 }
2285
2286 static struct sysctllog *bpf_sysctllog;
2287 static void
2288 sysctl_net_bpf_setup(void)
2289 {
2290 const struct sysctlnode *node;
2291
2292 node = NULL;
2293 sysctl_createv(&bpf_sysctllog, 0, NULL, &node,
2294 CTLFLAG_PERMANENT,
2295 CTLTYPE_NODE, "bpf",
2296 SYSCTL_DESCR("BPF options"),
2297 NULL, 0, NULL, 0,
2298 CTL_NET, CTL_CREATE, CTL_EOL);
2299 if (node != NULL) {
2300 #if defined(MODULAR) || defined(BPFJIT)
2301 sysctl_createv(&bpf_sysctllog, 0, NULL, NULL,
2302 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2303 CTLTYPE_BOOL, "jit",
2304 SYSCTL_DESCR("Toggle Just-In-Time compilation"),
2305 sysctl_net_bpf_jit, 0, &bpf_jit, 0,
2306 CTL_NET, node->sysctl_num, CTL_CREATE, CTL_EOL);
2307 #endif
2308 sysctl_createv(&bpf_sysctllog, 0, NULL, NULL,
2309 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2310 CTLTYPE_INT, "maxbufsize",
2311 SYSCTL_DESCR("Maximum size for data capture buffer"),
2312 sysctl_net_bpf_maxbufsize, 0, &bpf_maxbufsize, 0,
2313 CTL_NET, node->sysctl_num, CTL_CREATE, CTL_EOL);
2314 sysctl_createv(&bpf_sysctllog, 0, NULL, NULL,
2315 CTLFLAG_PERMANENT,
2316 CTLTYPE_STRUCT, "stats",
2317 SYSCTL_DESCR("BPF stats"),
2318 bpf_sysctl_gstats_handler, 0, NULL, 0,
2319 CTL_NET, node->sysctl_num, CTL_CREATE, CTL_EOL);
2320 sysctl_createv(&bpf_sysctllog, 0, NULL, NULL,
2321 CTLFLAG_PERMANENT,
2322 CTLTYPE_STRUCT, "peers",
2323 SYSCTL_DESCR("BPF peers"),
2324 sysctl_net_bpf_peers, 0, NULL, 0,
2325 CTL_NET, node->sysctl_num, CTL_CREATE, CTL_EOL);
2326 }
2327
2328 }
2329
2330 struct bpf_ops bpf_ops_kernel = {
2331 .bpf_attach = _bpfattach,
2332 .bpf_detach = _bpfdetach,
2333 .bpf_change_type = _bpf_change_type,
2334
2335 .bpf_tap = _bpf_tap,
2336 .bpf_mtap = _bpf_mtap,
2337 .bpf_mtap2 = _bpf_mtap2,
2338 .bpf_mtap_af = _bpf_mtap_af,
2339 .bpf_mtap_sl_in = _bpf_mtap_sl_in,
2340 .bpf_mtap_sl_out = _bpf_mtap_sl_out,
2341
2342 .bpf_mtap_softint = _bpf_mtap_softint,
2343 .bpf_mtap_softint_init = _bpf_mtap_softint_init,
2344 };
2345
2346 MODULE(MODULE_CLASS_DRIVER, bpf, "bpf_filter");
2347
2348 static int
2349 bpf_modcmd(modcmd_t cmd, void *arg)
2350 {
2351 #ifdef _MODULE
2352 devmajor_t bmajor, cmajor;
2353 #endif
2354 int error = 0;
2355
2356 switch (cmd) {
2357 case MODULE_CMD_INIT:
2358 bpf_init();
2359 #ifdef _MODULE
2360 bmajor = cmajor = NODEVMAJOR;
2361 error = devsw_attach("bpf", NULL, &bmajor,
2362 &bpf_cdevsw, &cmajor);
2363 if (error)
2364 break;
2365 #endif
2366
2367 bpf_ops_handover_enter(&bpf_ops_kernel);
2368 atomic_swap_ptr(&bpf_ops, &bpf_ops_kernel);
2369 bpf_ops_handover_exit();
2370 sysctl_net_bpf_setup();
2371 break;
2372
2373 case MODULE_CMD_FINI:
2374 /*
2375 * While there is no reference counting for bpf callers,
2376 * unload could at least in theory be done similarly to
2377 * system call disestablishment. This should even be
2378 * a little simpler:
2379 *
2380 * 1) replace op vector with stubs
2381 * 2) post update to all cpus with xc
2382 * 3) check that nobody is in bpf anymore
2383 * (it's doubtful we'd want something like l_sysent,
2384 * but we could do something like *signed* percpu
2385 * counters. if the sum is 0, we're good).
2386 * 4) if fail, unroll changes
2387 *
2388 * NOTE: change won't be atomic to the outside. some
2389 * packets may be not captured even if unload is
2390 * not succesful. I think packet capture not working
2391 * is a perfectly logical consequence of trying to
2392 * disable packet capture.
2393 */
2394 error = EOPNOTSUPP;
2395 /* insert sysctl teardown */
2396 break;
2397
2398 default:
2399 error = ENOTTY;
2400 break;
2401 }
2402
2403 return error;
2404 }
2405