bpf.c revision 1.212 1 /* $NetBSD: bpf.c,v 1.212 2017/02/01 08:18:33 ozaki-r Exp $ */
2
3 /*
4 * Copyright (c) 1990, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from the Stanford/CMU enet packet filter,
8 * (net/enet.c) distributed as part of 4.3BSD, and code contributed
9 * to Berkeley by Steven McCanne and Van Jacobson both of Lawrence
10 * Berkeley Laboratory.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)bpf.c 8.4 (Berkeley) 1/9/95
37 * static char rcsid[] =
38 * "Header: bpf.c,v 1.67 96/09/26 22:00:52 leres Exp ";
39 */
40
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: bpf.c,v 1.212 2017/02/01 08:18:33 ozaki-r Exp $");
43
44 #if defined(_KERNEL_OPT)
45 #include "opt_bpf.h"
46 #include "sl.h"
47 #include "strip.h"
48 #include "opt_net_mpsafe.h"
49 #endif
50
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/mbuf.h>
54 #include <sys/buf.h>
55 #include <sys/time.h>
56 #include <sys/proc.h>
57 #include <sys/ioctl.h>
58 #include <sys/conf.h>
59 #include <sys/vnode.h>
60 #include <sys/queue.h>
61 #include <sys/stat.h>
62 #include <sys/module.h>
63 #include <sys/atomic.h>
64 #include <sys/cpu.h>
65
66 #include <sys/file.h>
67 #include <sys/filedesc.h>
68 #include <sys/tty.h>
69 #include <sys/uio.h>
70
71 #include <sys/protosw.h>
72 #include <sys/socket.h>
73 #include <sys/errno.h>
74 #include <sys/kernel.h>
75 #include <sys/poll.h>
76 #include <sys/sysctl.h>
77 #include <sys/kauth.h>
78 #include <sys/syslog.h>
79 #include <sys/percpu.h>
80
81 #include <net/if.h>
82 #include <net/slip.h>
83
84 #include <net/bpf.h>
85 #include <net/bpfdesc.h>
86 #include <net/bpfjit.h>
87
88 #include <net/if_arc.h>
89 #include <net/if_ether.h>
90
91 #include <netinet/in.h>
92 #include <netinet/if_inarp.h>
93
94
95 #include <compat/sys/sockio.h>
96
97 #ifndef BPF_BUFSIZE
98 /*
99 * 4096 is too small for FDDI frames. 8192 is too small for gigabit Ethernet
100 * jumbos (circa 9k), ATM, or Intel gig/10gig ethernet jumbos (16k).
101 */
102 # define BPF_BUFSIZE 32768
103 #endif
104
105 #define PRINET 26 /* interruptible */
106
107 /*
108 * The default read buffer size, and limit for BIOCSBLEN, is sysctl'able.
109 * XXX the default values should be computed dynamically based
110 * on available memory size and available mbuf clusters.
111 */
112 static int bpf_bufsize = BPF_BUFSIZE;
113 static int bpf_maxbufsize = BPF_DFLTBUFSIZE; /* XXX set dynamically, see above */
114 static bool bpf_jit = false;
115
116 struct bpfjit_ops bpfjit_module_ops = {
117 .bj_generate_code = NULL,
118 .bj_free_code = NULL
119 };
120
121 /*
122 * Global BPF statistics returned by net.bpf.stats sysctl.
123 */
124 static struct percpu *bpf_gstats_percpu; /* struct bpf_stat */
125
126 #define BPF_STATINC(id) \
127 { \
128 struct bpf_stat *__stats = \
129 percpu_getref(bpf_gstats_percpu); \
130 __stats->bs_##id++; \
131 percpu_putref(bpf_gstats_percpu); \
132 }
133
134 /*
135 * Use a mutex to avoid a race condition between gathering the stats/peers
136 * and opening/closing the device.
137 */
138 static kmutex_t bpf_mtx;
139
140 /*
141 * bpf_iflist is the list of interfaces; each corresponds to an ifnet
142 * bpf_dtab holds the descriptors, indexed by minor device #
143 */
144 static struct pslist_head bpf_iflist;
145 static struct pslist_head bpf_dlist;
146
147 /* Macros for bpf_d on bpf_dlist */
148 #define BPF_DLIST_WRITER_INSEART_HEAD(__d) \
149 PSLIST_WRITER_INSERT_HEAD(&bpf_dlist, (__d), bd_bpf_dlist_entry)
150 #define BPF_DLIST_READER_FOREACH(__d) \
151 PSLIST_READER_FOREACH((__d), &bpf_dlist, struct bpf_d, \
152 bd_bpf_dlist_entry)
153 #define BPF_DLIST_WRITER_FOREACH(__d) \
154 PSLIST_WRITER_FOREACH((__d), &bpf_dlist, struct bpf_d, \
155 bd_bpf_dlist_entry)
156 #define BPF_DLIST_ENTRY_INIT(__d) \
157 PSLIST_ENTRY_INIT((__d), bd_bpf_dlist_entry)
158 #define BPF_DLIST_WRITER_REMOVE(__d) \
159 PSLIST_WRITER_REMOVE((__d), bd_bpf_dlist_entry)
160 #define BPF_DLIST_ENTRY_DESTROY(__d) \
161 PSLIST_ENTRY_DESTROY((__d), bd_bpf_dlist_entry)
162
163 /* Macros for bpf_if on bpf_iflist */
164 #define BPF_IFLIST_WRITER_INSERT_HEAD(__bp) \
165 PSLIST_WRITER_INSERT_HEAD(&bpf_iflist, (__bp), bif_iflist_entry)
166 #define BPF_IFLIST_READER_FOREACH(__bp) \
167 PSLIST_READER_FOREACH((__bp), &bpf_iflist, struct bpf_if, \
168 bif_iflist_entry)
169 #define BPF_IFLIST_WRITER_FOREACH(__bp) \
170 PSLIST_WRITER_FOREACH((__bp), &bpf_iflist, struct bpf_if, \
171 bif_iflist_entry)
172 #define BPF_IFLIST_WRITER_REMOVE(__bp) \
173 PSLIST_WRITER_REMOVE((__bp), bif_iflist_entry)
174 #define BPF_IFLIST_ENTRY_INIT(__bp) \
175 PSLIST_ENTRY_INIT((__bp), bif_iflist_entry)
176 #define BPF_IFLIST_ENTRY_DESTROY(__bp) \
177 PSLIST_ENTRY_DESTROY((__bp), bif_iflist_entry)
178
179 /* Macros for bpf_d on bpf_if#bif_dlist_pslist */
180 #define BPFIF_DLIST_READER_FOREACH(__d, __bp) \
181 PSLIST_READER_FOREACH((__d), &(__bp)->bif_dlist_head, struct bpf_d, \
182 bd_bif_dlist_entry)
183 #define BPFIF_DLIST_WRITER_INSERT_HEAD(__bp, __d) \
184 PSLIST_WRITER_INSERT_HEAD(&(__bp)->bif_dlist_head, (__d), \
185 bd_bif_dlist_entry)
186 #define BPFIF_DLIST_WRITER_REMOVE(__d) \
187 PSLIST_WRITER_REMOVE((__d), bd_bif_dlist_entry)
188 #define BPFIF_DLIST_ENTRY_INIT(__d) \
189 PSLIST_ENTRY_INIT((__d), bd_bif_dlist_entry)
190 #define BPFIF_DLIST_READER_EMPTY(__bp) \
191 (PSLIST_READER_FIRST(&(__bp)->bif_dlist_head, struct bpf_d, \
192 bd_bif_dlist_entry) == NULL)
193 #define BPFIF_DLIST_WRITER_EMPTY(__bp) \
194 (PSLIST_WRITER_FIRST(&(__bp)->bif_dlist_head, struct bpf_d, \
195 bd_bif_dlist_entry) == NULL)
196 #define BPFIF_DLIST_ENTRY_DESTROY(__d) \
197 PSLIST_ENTRY_DESTROY((__d), bd_bif_dlist_entry)
198
199 static int bpf_allocbufs(struct bpf_d *);
200 static void bpf_deliver(struct bpf_if *,
201 void *(*cpfn)(void *, const void *, size_t),
202 void *, u_int, u_int, const bool);
203 static void bpf_freed(struct bpf_d *);
204 static void bpf_ifname(struct ifnet *, struct ifreq *);
205 static void *bpf_mcpy(void *, const void *, size_t);
206 static int bpf_movein(struct uio *, int, uint64_t,
207 struct mbuf **, struct sockaddr *);
208 static void bpf_attachd(struct bpf_d *, struct bpf_if *);
209 static void bpf_detachd(struct bpf_d *);
210 static int bpf_setif(struct bpf_d *, struct ifreq *);
211 static int bpf_setf(struct bpf_d *, struct bpf_program *);
212 static void bpf_timed_out(void *);
213 static inline void
214 bpf_wakeup(struct bpf_d *);
215 static int bpf_hdrlen(struct bpf_d *);
216 static void catchpacket(struct bpf_d *, u_char *, u_int, u_int,
217 void *(*)(void *, const void *, size_t), struct timespec *);
218 static void reset_d(struct bpf_d *);
219 static int bpf_getdltlist(struct bpf_d *, struct bpf_dltlist *);
220 static int bpf_setdlt(struct bpf_d *, u_int);
221
222 static int bpf_read(struct file *, off_t *, struct uio *, kauth_cred_t,
223 int);
224 static int bpf_write(struct file *, off_t *, struct uio *, kauth_cred_t,
225 int);
226 static int bpf_ioctl(struct file *, u_long, void *);
227 static int bpf_poll(struct file *, int);
228 static int bpf_stat(struct file *, struct stat *);
229 static int bpf_close(struct file *);
230 static int bpf_kqfilter(struct file *, struct knote *);
231 static void bpf_softintr(void *);
232
233 static const struct fileops bpf_fileops = {
234 .fo_read = bpf_read,
235 .fo_write = bpf_write,
236 .fo_ioctl = bpf_ioctl,
237 .fo_fcntl = fnullop_fcntl,
238 .fo_poll = bpf_poll,
239 .fo_stat = bpf_stat,
240 .fo_close = bpf_close,
241 .fo_kqfilter = bpf_kqfilter,
242 .fo_restart = fnullop_restart,
243 };
244
245 dev_type_open(bpfopen);
246
247 const struct cdevsw bpf_cdevsw = {
248 .d_open = bpfopen,
249 .d_close = noclose,
250 .d_read = noread,
251 .d_write = nowrite,
252 .d_ioctl = noioctl,
253 .d_stop = nostop,
254 .d_tty = notty,
255 .d_poll = nopoll,
256 .d_mmap = nommap,
257 .d_kqfilter = nokqfilter,
258 .d_discard = nodiscard,
259 .d_flag = D_OTHER
260 };
261
262 bpfjit_func_t
263 bpf_jit_generate(bpf_ctx_t *bc, void *code, size_t size)
264 {
265
266 membar_consumer();
267 if (bpfjit_module_ops.bj_generate_code != NULL) {
268 return bpfjit_module_ops.bj_generate_code(bc, code, size);
269 }
270 return NULL;
271 }
272
273 void
274 bpf_jit_freecode(bpfjit_func_t jcode)
275 {
276 KASSERT(bpfjit_module_ops.bj_free_code != NULL);
277 bpfjit_module_ops.bj_free_code(jcode);
278 }
279
280 static int
281 bpf_movein(struct uio *uio, int linktype, uint64_t mtu, struct mbuf **mp,
282 struct sockaddr *sockp)
283 {
284 struct mbuf *m;
285 int error;
286 size_t len;
287 size_t hlen;
288 size_t align;
289
290 /*
291 * Build a sockaddr based on the data link layer type.
292 * We do this at this level because the ethernet header
293 * is copied directly into the data field of the sockaddr.
294 * In the case of SLIP, there is no header and the packet
295 * is forwarded as is.
296 * Also, we are careful to leave room at the front of the mbuf
297 * for the link level header.
298 */
299 switch (linktype) {
300
301 case DLT_SLIP:
302 sockp->sa_family = AF_INET;
303 hlen = 0;
304 align = 0;
305 break;
306
307 case DLT_PPP:
308 sockp->sa_family = AF_UNSPEC;
309 hlen = 0;
310 align = 0;
311 break;
312
313 case DLT_EN10MB:
314 sockp->sa_family = AF_UNSPEC;
315 /* XXX Would MAXLINKHDR be better? */
316 /* 6(dst)+6(src)+2(type) */
317 hlen = sizeof(struct ether_header);
318 align = 2;
319 break;
320
321 case DLT_ARCNET:
322 sockp->sa_family = AF_UNSPEC;
323 hlen = ARC_HDRLEN;
324 align = 5;
325 break;
326
327 case DLT_FDDI:
328 sockp->sa_family = AF_LINK;
329 /* XXX 4(FORMAC)+6(dst)+6(src) */
330 hlen = 16;
331 align = 0;
332 break;
333
334 case DLT_ECONET:
335 sockp->sa_family = AF_UNSPEC;
336 hlen = 6;
337 align = 2;
338 break;
339
340 case DLT_NULL:
341 sockp->sa_family = AF_UNSPEC;
342 hlen = 0;
343 align = 0;
344 break;
345
346 default:
347 return (EIO);
348 }
349
350 len = uio->uio_resid;
351 /*
352 * If there aren't enough bytes for a link level header or the
353 * packet length exceeds the interface mtu, return an error.
354 */
355 if (len - hlen > mtu)
356 return (EMSGSIZE);
357
358 /*
359 * XXX Avoid complicated buffer chaining ---
360 * bail if it won't fit in a single mbuf.
361 * (Take into account possible alignment bytes)
362 */
363 if (len + align > MCLBYTES)
364 return (EIO);
365
366 m = m_gethdr(M_WAIT, MT_DATA);
367 m_reset_rcvif(m);
368 m->m_pkthdr.len = (int)(len - hlen);
369 if (len + align > MHLEN) {
370 m_clget(m, M_WAIT);
371 if ((m->m_flags & M_EXT) == 0) {
372 error = ENOBUFS;
373 goto bad;
374 }
375 }
376
377 /* Insure the data is properly aligned */
378 if (align > 0) {
379 m->m_data += align;
380 m->m_len -= (int)align;
381 }
382
383 error = uiomove(mtod(m, void *), len, uio);
384 if (error)
385 goto bad;
386 if (hlen != 0) {
387 memcpy(sockp->sa_data, mtod(m, void *), hlen);
388 m->m_data += hlen; /* XXX */
389 len -= hlen;
390 }
391 m->m_len = (int)len;
392 *mp = m;
393 return (0);
394
395 bad:
396 m_freem(m);
397 return (error);
398 }
399
400 /*
401 * Attach file to the bpf interface, i.e. make d listen on bp.
402 * Must be called at splnet.
403 */
404 static void
405 bpf_attachd(struct bpf_d *d, struct bpf_if *bp)
406 {
407 KASSERT(mutex_owned(&bpf_mtx));
408 /*
409 * Point d at bp, and add d to the interface's list of listeners.
410 * Finally, point the driver's bpf cookie at the interface so
411 * it will divert packets to bpf.
412 */
413 d->bd_bif = bp;
414 BPFIF_DLIST_WRITER_INSERT_HEAD(bp, d);
415
416 *bp->bif_driverp = bp;
417 }
418
419 /*
420 * Detach a file from its interface.
421 */
422 static void
423 bpf_detachd(struct bpf_d *d)
424 {
425 struct bpf_if *bp;
426
427 KASSERT(mutex_owned(&bpf_mtx));
428
429 bp = d->bd_bif;
430 /*
431 * Check if this descriptor had requested promiscuous mode.
432 * If so, turn it off.
433 */
434 if (d->bd_promisc) {
435 int error __diagused;
436
437 d->bd_promisc = 0;
438 /*
439 * Take device out of promiscuous mode. Since we were
440 * able to enter promiscuous mode, we should be able
441 * to turn it off. But we can get an error if
442 * the interface was configured down, so only panic
443 * if we don't get an unexpected error.
444 */
445 error = ifpromisc(bp->bif_ifp, 0);
446 #ifdef DIAGNOSTIC
447 if (error)
448 printf("%s: ifpromisc failed: %d", __func__, error);
449 #endif
450 }
451
452 /* Remove d from the interface's descriptor list. */
453 BPFIF_DLIST_WRITER_REMOVE(d);
454
455 /* TODO pserialize_perform(); */
456 /* TODO psref_target_destroy(); */
457 BPFIF_DLIST_ENTRY_DESTROY(d);
458
459 /* XXX NOMPSAFE? */
460 if (BPFIF_DLIST_WRITER_EMPTY(bp)) {
461 /*
462 * Let the driver know that there are no more listeners.
463 */
464 *d->bd_bif->bif_driverp = NULL;
465 }
466 d->bd_bif = NULL;
467 }
468
469 static void
470 bpf_init(void)
471 {
472
473 mutex_init(&bpf_mtx, MUTEX_DEFAULT, IPL_NONE);
474
475 PSLIST_INIT(&bpf_iflist);
476 PSLIST_INIT(&bpf_dlist);
477
478 bpf_gstats_percpu = percpu_alloc(sizeof(struct bpf_stat));
479
480 return;
481 }
482
483 /*
484 * bpfilterattach() is called at boot time. We don't need to do anything
485 * here, since any initialization will happen as part of module init code.
486 */
487 /* ARGSUSED */
488 void
489 bpfilterattach(int n)
490 {
491
492 }
493
494 /*
495 * Open ethernet device. Clones.
496 */
497 /* ARGSUSED */
498 int
499 bpfopen(dev_t dev, int flag, int mode, struct lwp *l)
500 {
501 struct bpf_d *d;
502 struct file *fp;
503 int error, fd;
504
505 /* falloc() will fill in the descriptor for us. */
506 if ((error = fd_allocfile(&fp, &fd)) != 0)
507 return error;
508
509 d = kmem_zalloc(sizeof(*d), KM_SLEEP);
510 d->bd_bufsize = bpf_bufsize;
511 d->bd_seesent = 1;
512 d->bd_feedback = 0;
513 d->bd_pid = l->l_proc->p_pid;
514 #ifdef _LP64
515 if (curproc->p_flag & PK_32)
516 d->bd_compat32 = 1;
517 #endif
518 getnanotime(&d->bd_btime);
519 d->bd_atime = d->bd_mtime = d->bd_btime;
520 callout_init(&d->bd_callout, 0);
521 selinit(&d->bd_sel);
522 d->bd_sih = softint_establish(SOFTINT_CLOCK, bpf_softintr, d);
523 d->bd_jitcode = NULL;
524 BPF_DLIST_ENTRY_INIT(d);
525 BPFIF_DLIST_ENTRY_INIT(d);
526 d->bd_mtx = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);
527 cv_init(&d->bd_cv, "bpf");
528
529 mutex_enter(&bpf_mtx);
530 BPF_DLIST_WRITER_INSEART_HEAD(d);
531 mutex_exit(&bpf_mtx);
532
533 return fd_clone(fp, fd, flag, &bpf_fileops, d);
534 }
535
536 /*
537 * Close the descriptor by detaching it from its interface,
538 * deallocating its buffers, and marking it free.
539 */
540 /* ARGSUSED */
541 static int
542 bpf_close(struct file *fp)
543 {
544 struct bpf_d *d;
545 int s;
546
547 KERNEL_LOCK(1, NULL);
548 mutex_enter(&bpf_mtx);
549
550 if ((d = fp->f_bpf) == NULL) {
551 mutex_exit(&bpf_mtx);
552 KERNEL_UNLOCK_ONE(NULL);
553 return 0;
554 }
555
556 /*
557 * Refresh the PID associated with this bpf file.
558 */
559 d->bd_pid = curproc->p_pid;
560
561 s = splnet();
562 if (d->bd_state == BPF_WAITING)
563 callout_stop(&d->bd_callout);
564 d->bd_state = BPF_IDLE;
565 if (d->bd_bif)
566 bpf_detachd(d);
567 splx(s);
568 bpf_freed(d);
569 BPF_DLIST_WRITER_REMOVE(d);
570 fp->f_bpf = NULL;
571
572 mutex_exit(&bpf_mtx);
573 KERNEL_UNLOCK_ONE(NULL);
574
575 /* TODO pserialize_perform(); */
576 /* TODO psref_target_destroy(); */
577 BPF_DLIST_ENTRY_DESTROY(d);
578
579 callout_destroy(&d->bd_callout);
580 seldestroy(&d->bd_sel);
581 softint_disestablish(d->bd_sih);
582 mutex_obj_free(d->bd_mtx);
583 cv_destroy(&d->bd_cv);
584
585 kmem_free(d, sizeof(*d));
586
587 return (0);
588 }
589
590 /*
591 * Rotate the packet buffers in descriptor d. Move the store buffer
592 * into the hold slot, and the free buffer into the store slot.
593 * Zero the length of the new store buffer.
594 */
595 #define ROTATE_BUFFERS(d) \
596 (d)->bd_hbuf = (d)->bd_sbuf; \
597 (d)->bd_hlen = (d)->bd_slen; \
598 (d)->bd_sbuf = (d)->bd_fbuf; \
599 (d)->bd_slen = 0; \
600 (d)->bd_fbuf = NULL;
601 /*
602 * bpfread - read next chunk of packets from buffers
603 */
604 static int
605 bpf_read(struct file *fp, off_t *offp, struct uio *uio,
606 kauth_cred_t cred, int flags)
607 {
608 struct bpf_d *d = fp->f_bpf;
609 int timed_out;
610 int error;
611 int s;
612
613 getnanotime(&d->bd_atime);
614 /*
615 * Restrict application to use a buffer the same size as
616 * the kernel buffers.
617 */
618 if (uio->uio_resid != d->bd_bufsize)
619 return (EINVAL);
620
621 KERNEL_LOCK(1, NULL);
622 s = splnet();
623 if (d->bd_state == BPF_WAITING)
624 callout_stop(&d->bd_callout);
625 timed_out = (d->bd_state == BPF_TIMED_OUT);
626 d->bd_state = BPF_IDLE;
627 /*
628 * If the hold buffer is empty, then do a timed sleep, which
629 * ends when the timeout expires or when enough packets
630 * have arrived to fill the store buffer.
631 */
632 while (d->bd_hbuf == NULL) {
633 if (fp->f_flag & FNONBLOCK) {
634 if (d->bd_slen == 0) {
635 error = EWOULDBLOCK;
636 goto out;
637 }
638 ROTATE_BUFFERS(d);
639 break;
640 }
641
642 if ((d->bd_immediate || timed_out) && d->bd_slen != 0) {
643 /*
644 * A packet(s) either arrived since the previous
645 * read or arrived while we were asleep.
646 * Rotate the buffers and return what's here.
647 */
648 ROTATE_BUFFERS(d);
649 break;
650 }
651
652 mutex_enter(d->bd_mtx);
653 error = cv_timedwait_sig(&d->bd_cv, d->bd_mtx, d->bd_rtout);
654 mutex_exit(d->bd_mtx);
655
656 if (error == EINTR || error == ERESTART)
657 goto out;
658
659 if (error == EWOULDBLOCK) {
660 /*
661 * On a timeout, return what's in the buffer,
662 * which may be nothing. If there is something
663 * in the store buffer, we can rotate the buffers.
664 */
665 if (d->bd_hbuf)
666 /*
667 * We filled up the buffer in between
668 * getting the timeout and arriving
669 * here, so we don't need to rotate.
670 */
671 break;
672
673 if (d->bd_slen == 0) {
674 error = 0;
675 goto out;
676 }
677 ROTATE_BUFFERS(d);
678 break;
679 }
680 if (error != 0)
681 goto out;
682 }
683 /*
684 * At this point, we know we have something in the hold slot.
685 */
686 splx(s);
687
688 /*
689 * Move data from hold buffer into user space.
690 * We know the entire buffer is transferred since
691 * we checked above that the read buffer is bpf_bufsize bytes.
692 */
693 error = uiomove(d->bd_hbuf, d->bd_hlen, uio);
694
695 s = splnet();
696 d->bd_fbuf = d->bd_hbuf;
697 d->bd_hbuf = NULL;
698 d->bd_hlen = 0;
699 out:
700 splx(s);
701 KERNEL_UNLOCK_ONE(NULL);
702 return (error);
703 }
704
705
706 /*
707 * If there are processes sleeping on this descriptor, wake them up.
708 */
709 static inline void
710 bpf_wakeup(struct bpf_d *d)
711 {
712
713 mutex_enter(d->bd_mtx);
714 cv_broadcast(&d->bd_cv);
715 mutex_exit(d->bd_mtx);
716
717 if (d->bd_async)
718 softint_schedule(d->bd_sih);
719 selnotify(&d->bd_sel, 0, 0);
720 }
721
722 static void
723 bpf_softintr(void *cookie)
724 {
725 struct bpf_d *d;
726
727 d = cookie;
728 if (d->bd_async)
729 fownsignal(d->bd_pgid, SIGIO, 0, 0, NULL);
730 }
731
732 static void
733 bpf_timed_out(void *arg)
734 {
735 struct bpf_d *d = arg;
736 int s;
737
738 s = splnet();
739 if (d->bd_state == BPF_WAITING) {
740 d->bd_state = BPF_TIMED_OUT;
741 if (d->bd_slen != 0)
742 bpf_wakeup(d);
743 }
744 splx(s);
745 }
746
747
748 static int
749 bpf_write(struct file *fp, off_t *offp, struct uio *uio,
750 kauth_cred_t cred, int flags)
751 {
752 struct bpf_d *d = fp->f_bpf;
753 struct ifnet *ifp;
754 struct mbuf *m, *mc;
755 int error, s;
756 static struct sockaddr_storage dst;
757
758 m = NULL; /* XXX gcc */
759
760 KERNEL_LOCK(1, NULL);
761
762 if (d->bd_bif == NULL) {
763 KERNEL_UNLOCK_ONE(NULL);
764 return (ENXIO);
765 }
766 getnanotime(&d->bd_mtime);
767
768 ifp = d->bd_bif->bif_ifp;
769
770 if (uio->uio_resid == 0) {
771 KERNEL_UNLOCK_ONE(NULL);
772 return (0);
773 }
774
775 error = bpf_movein(uio, (int)d->bd_bif->bif_dlt, ifp->if_mtu, &m,
776 (struct sockaddr *) &dst);
777 if (error) {
778 KERNEL_UNLOCK_ONE(NULL);
779 return (error);
780 }
781
782 if (m->m_pkthdr.len > ifp->if_mtu) {
783 KERNEL_UNLOCK_ONE(NULL);
784 m_freem(m);
785 return (EMSGSIZE);
786 }
787
788 if (d->bd_hdrcmplt)
789 dst.ss_family = pseudo_AF_HDRCMPLT;
790
791 if (d->bd_feedback) {
792 mc = m_dup(m, 0, M_COPYALL, M_NOWAIT);
793 if (mc != NULL)
794 m_set_rcvif(mc, ifp);
795 /* Set M_PROMISC for outgoing packets to be discarded. */
796 if (1 /*d->bd_direction == BPF_D_INOUT*/)
797 m->m_flags |= M_PROMISC;
798 } else
799 mc = NULL;
800
801 s = splsoftnet();
802 error = if_output_lock(ifp, ifp, m, (struct sockaddr *) &dst, NULL);
803
804 if (mc != NULL) {
805 if (error == 0)
806 ifp->_if_input(ifp, mc);
807 else
808 m_freem(mc);
809 }
810 splx(s);
811 KERNEL_UNLOCK_ONE(NULL);
812 /*
813 * The driver frees the mbuf.
814 */
815 return (error);
816 }
817
818 /*
819 * Reset a descriptor by flushing its packet buffer and clearing the
820 * receive and drop counts. Should be called at splnet.
821 */
822 static void
823 reset_d(struct bpf_d *d)
824 {
825 if (d->bd_hbuf) {
826 /* Free the hold buffer. */
827 d->bd_fbuf = d->bd_hbuf;
828 d->bd_hbuf = NULL;
829 }
830 d->bd_slen = 0;
831 d->bd_hlen = 0;
832 d->bd_rcount = 0;
833 d->bd_dcount = 0;
834 d->bd_ccount = 0;
835 }
836
837 /*
838 * FIONREAD Check for read packet available.
839 * BIOCGBLEN Get buffer len [for read()].
840 * BIOCSETF Set ethernet read filter.
841 * BIOCFLUSH Flush read packet buffer.
842 * BIOCPROMISC Put interface into promiscuous mode.
843 * BIOCGDLT Get link layer type.
844 * BIOCGETIF Get interface name.
845 * BIOCSETIF Set interface.
846 * BIOCSRTIMEOUT Set read timeout.
847 * BIOCGRTIMEOUT Get read timeout.
848 * BIOCGSTATS Get packet stats.
849 * BIOCIMMEDIATE Set immediate mode.
850 * BIOCVERSION Get filter language version.
851 * BIOCGHDRCMPLT Get "header already complete" flag.
852 * BIOCSHDRCMPLT Set "header already complete" flag.
853 * BIOCSFEEDBACK Set packet feedback mode.
854 * BIOCGFEEDBACK Get packet feedback mode.
855 * BIOCGSEESENT Get "see sent packets" mode.
856 * BIOCSSEESENT Set "see sent packets" mode.
857 */
858 /* ARGSUSED */
859 static int
860 bpf_ioctl(struct file *fp, u_long cmd, void *addr)
861 {
862 struct bpf_d *d = fp->f_bpf;
863 int s, error = 0;
864
865 /*
866 * Refresh the PID associated with this bpf file.
867 */
868 KERNEL_LOCK(1, NULL);
869 d->bd_pid = curproc->p_pid;
870 #ifdef _LP64
871 if (curproc->p_flag & PK_32)
872 d->bd_compat32 = 1;
873 else
874 d->bd_compat32 = 0;
875 #endif
876
877 s = splnet();
878 if (d->bd_state == BPF_WAITING)
879 callout_stop(&d->bd_callout);
880 d->bd_state = BPF_IDLE;
881 splx(s);
882
883 switch (cmd) {
884
885 default:
886 error = EINVAL;
887 break;
888
889 /*
890 * Check for read packet available.
891 */
892 case FIONREAD:
893 {
894 int n;
895
896 s = splnet();
897 n = d->bd_slen;
898 if (d->bd_hbuf)
899 n += d->bd_hlen;
900 splx(s);
901
902 *(int *)addr = n;
903 break;
904 }
905
906 /*
907 * Get buffer len [for read()].
908 */
909 case BIOCGBLEN:
910 *(u_int *)addr = d->bd_bufsize;
911 break;
912
913 /*
914 * Set buffer length.
915 */
916 case BIOCSBLEN:
917 /*
918 * Forbid to change the buffer length if buffers are already
919 * allocated.
920 */
921 if (d->bd_bif != NULL || d->bd_sbuf != NULL)
922 error = EINVAL;
923 else {
924 u_int size = *(u_int *)addr;
925
926 if (size > bpf_maxbufsize)
927 *(u_int *)addr = size = bpf_maxbufsize;
928 else if (size < BPF_MINBUFSIZE)
929 *(u_int *)addr = size = BPF_MINBUFSIZE;
930 d->bd_bufsize = size;
931 }
932 break;
933
934 /*
935 * Set link layer read filter.
936 */
937 case BIOCSETF:
938 error = bpf_setf(d, addr);
939 break;
940
941 /*
942 * Flush read packet buffer.
943 */
944 case BIOCFLUSH:
945 s = splnet();
946 reset_d(d);
947 splx(s);
948 break;
949
950 /*
951 * Put interface into promiscuous mode.
952 */
953 case BIOCPROMISC:
954 if (d->bd_bif == NULL) {
955 /*
956 * No interface attached yet.
957 */
958 error = EINVAL;
959 break;
960 }
961 s = splnet();
962 if (d->bd_promisc == 0) {
963 error = ifpromisc(d->bd_bif->bif_ifp, 1);
964 if (error == 0)
965 d->bd_promisc = 1;
966 }
967 splx(s);
968 break;
969
970 /*
971 * Get device parameters.
972 */
973 case BIOCGDLT:
974 if (d->bd_bif == NULL)
975 error = EINVAL;
976 else
977 *(u_int *)addr = d->bd_bif->bif_dlt;
978 break;
979
980 /*
981 * Get a list of supported device parameters.
982 */
983 case BIOCGDLTLIST:
984 if (d->bd_bif == NULL)
985 error = EINVAL;
986 else
987 error = bpf_getdltlist(d, addr);
988 break;
989
990 /*
991 * Set device parameters.
992 */
993 case BIOCSDLT:
994 mutex_enter(&bpf_mtx);
995 if (d->bd_bif == NULL)
996 error = EINVAL;
997 else
998 error = bpf_setdlt(d, *(u_int *)addr);
999 mutex_exit(&bpf_mtx);
1000 break;
1001
1002 /*
1003 * Set interface name.
1004 */
1005 #ifdef OBIOCGETIF
1006 case OBIOCGETIF:
1007 #endif
1008 case BIOCGETIF:
1009 if (d->bd_bif == NULL)
1010 error = EINVAL;
1011 else
1012 bpf_ifname(d->bd_bif->bif_ifp, addr);
1013 break;
1014
1015 /*
1016 * Set interface.
1017 */
1018 #ifdef OBIOCSETIF
1019 case OBIOCSETIF:
1020 #endif
1021 case BIOCSETIF:
1022 mutex_enter(&bpf_mtx);
1023 error = bpf_setif(d, addr);
1024 mutex_exit(&bpf_mtx);
1025 break;
1026
1027 /*
1028 * Set read timeout.
1029 */
1030 case BIOCSRTIMEOUT:
1031 {
1032 struct timeval *tv = addr;
1033
1034 /* Compute number of ticks. */
1035 d->bd_rtout = tv->tv_sec * hz + tv->tv_usec / tick;
1036 if ((d->bd_rtout == 0) && (tv->tv_usec != 0))
1037 d->bd_rtout = 1;
1038 break;
1039 }
1040
1041 #ifdef BIOCGORTIMEOUT
1042 /*
1043 * Get read timeout.
1044 */
1045 case BIOCGORTIMEOUT:
1046 {
1047 struct timeval50 *tv = addr;
1048
1049 tv->tv_sec = d->bd_rtout / hz;
1050 tv->tv_usec = (d->bd_rtout % hz) * tick;
1051 break;
1052 }
1053 #endif
1054
1055 #ifdef BIOCSORTIMEOUT
1056 /*
1057 * Set read timeout.
1058 */
1059 case BIOCSORTIMEOUT:
1060 {
1061 struct timeval50 *tv = addr;
1062
1063 /* Compute number of ticks. */
1064 d->bd_rtout = tv->tv_sec * hz + tv->tv_usec / tick;
1065 if ((d->bd_rtout == 0) && (tv->tv_usec != 0))
1066 d->bd_rtout = 1;
1067 break;
1068 }
1069 #endif
1070
1071 /*
1072 * Get read timeout.
1073 */
1074 case BIOCGRTIMEOUT:
1075 {
1076 struct timeval *tv = addr;
1077
1078 tv->tv_sec = d->bd_rtout / hz;
1079 tv->tv_usec = (d->bd_rtout % hz) * tick;
1080 break;
1081 }
1082 /*
1083 * Get packet stats.
1084 */
1085 case BIOCGSTATS:
1086 {
1087 struct bpf_stat *bs = addr;
1088
1089 bs->bs_recv = d->bd_rcount;
1090 bs->bs_drop = d->bd_dcount;
1091 bs->bs_capt = d->bd_ccount;
1092 break;
1093 }
1094
1095 case BIOCGSTATSOLD:
1096 {
1097 struct bpf_stat_old *bs = addr;
1098
1099 bs->bs_recv = d->bd_rcount;
1100 bs->bs_drop = d->bd_dcount;
1101 break;
1102 }
1103
1104 /*
1105 * Set immediate mode.
1106 */
1107 case BIOCIMMEDIATE:
1108 d->bd_immediate = *(u_int *)addr;
1109 break;
1110
1111 case BIOCVERSION:
1112 {
1113 struct bpf_version *bv = addr;
1114
1115 bv->bv_major = BPF_MAJOR_VERSION;
1116 bv->bv_minor = BPF_MINOR_VERSION;
1117 break;
1118 }
1119
1120 case BIOCGHDRCMPLT: /* get "header already complete" flag */
1121 *(u_int *)addr = d->bd_hdrcmplt;
1122 break;
1123
1124 case BIOCSHDRCMPLT: /* set "header already complete" flag */
1125 d->bd_hdrcmplt = *(u_int *)addr ? 1 : 0;
1126 break;
1127
1128 /*
1129 * Get "see sent packets" flag
1130 */
1131 case BIOCGSEESENT:
1132 *(u_int *)addr = d->bd_seesent;
1133 break;
1134
1135 /*
1136 * Set "see sent" packets flag
1137 */
1138 case BIOCSSEESENT:
1139 d->bd_seesent = *(u_int *)addr;
1140 break;
1141
1142 /*
1143 * Set "feed packets from bpf back to input" mode
1144 */
1145 case BIOCSFEEDBACK:
1146 d->bd_feedback = *(u_int *)addr;
1147 break;
1148
1149 /*
1150 * Get "feed packets from bpf back to input" mode
1151 */
1152 case BIOCGFEEDBACK:
1153 *(u_int *)addr = d->bd_feedback;
1154 break;
1155
1156 case FIONBIO: /* Non-blocking I/O */
1157 /*
1158 * No need to do anything special as we use IO_NDELAY in
1159 * bpfread() as an indication of whether or not to block
1160 * the read.
1161 */
1162 break;
1163
1164 case FIOASYNC: /* Send signal on receive packets */
1165 d->bd_async = *(int *)addr;
1166 break;
1167
1168 case TIOCSPGRP: /* Process or group to send signals to */
1169 case FIOSETOWN:
1170 error = fsetown(&d->bd_pgid, cmd, addr);
1171 break;
1172
1173 case TIOCGPGRP:
1174 case FIOGETOWN:
1175 error = fgetown(d->bd_pgid, cmd, addr);
1176 break;
1177 }
1178 KERNEL_UNLOCK_ONE(NULL);
1179 return (error);
1180 }
1181
1182 /*
1183 * Set d's packet filter program to fp. If this file already has a filter,
1184 * free it and replace it. Returns EINVAL for bogus requests.
1185 */
1186 static int
1187 bpf_setf(struct bpf_d *d, struct bpf_program *fp)
1188 {
1189 struct bpf_insn *fcode, *old;
1190 bpfjit_func_t jcode, oldj;
1191 size_t flen, size = 0, old_size;
1192 int s;
1193
1194 jcode = NULL;
1195 flen = fp->bf_len;
1196
1197 if ((fp->bf_insns == NULL && flen) || flen > BPF_MAXINSNS) {
1198 return EINVAL;
1199 }
1200
1201 if (flen) {
1202 /*
1203 * Allocate the buffer, copy the byte-code from
1204 * userspace and validate it.
1205 */
1206 size = flen * sizeof(*fp->bf_insns);
1207 fcode = kmem_alloc(size, KM_SLEEP);
1208 if (copyin(fp->bf_insns, fcode, size) != 0 ||
1209 !bpf_validate(fcode, (int)flen)) {
1210 kmem_free(fcode, size);
1211 return EINVAL;
1212 }
1213 membar_consumer();
1214 if (bpf_jit)
1215 jcode = bpf_jit_generate(NULL, fcode, flen);
1216 } else {
1217 fcode = NULL;
1218 }
1219
1220 old_size = d->bd_filter_size;
1221
1222 s = splnet();
1223 old = d->bd_filter;
1224 d->bd_filter = fcode;
1225 d->bd_filter_size = size;
1226 oldj = d->bd_jitcode;
1227 d->bd_jitcode = jcode;
1228 reset_d(d);
1229 splx(s);
1230
1231 if (old) {
1232 kmem_free(old, old_size);
1233 }
1234 if (oldj) {
1235 bpf_jit_freecode(oldj);
1236 }
1237
1238 return 0;
1239 }
1240
1241 /*
1242 * Detach a file from its current interface (if attached at all) and attach
1243 * to the interface indicated by the name stored in ifr.
1244 * Return an errno or 0.
1245 */
1246 static int
1247 bpf_setif(struct bpf_d *d, struct ifreq *ifr)
1248 {
1249 struct bpf_if *bp;
1250 char *cp;
1251 int unit_seen, i, s, error;
1252
1253 KASSERT(mutex_owned(&bpf_mtx));
1254 /*
1255 * Make sure the provided name has a unit number, and default
1256 * it to '0' if not specified.
1257 * XXX This is ugly ... do this differently?
1258 */
1259 unit_seen = 0;
1260 cp = ifr->ifr_name;
1261 cp[sizeof(ifr->ifr_name) - 1] = '\0'; /* sanity */
1262 while (*cp++)
1263 if (*cp >= '0' && *cp <= '9')
1264 unit_seen = 1;
1265 if (!unit_seen) {
1266 /* Make sure to leave room for the '\0'. */
1267 for (i = 0; i < (IFNAMSIZ - 1); ++i) {
1268 if ((ifr->ifr_name[i] >= 'a' &&
1269 ifr->ifr_name[i] <= 'z') ||
1270 (ifr->ifr_name[i] >= 'A' &&
1271 ifr->ifr_name[i] <= 'Z'))
1272 continue;
1273 ifr->ifr_name[i] = '0';
1274 }
1275 }
1276
1277 /*
1278 * Look through attached interfaces for the named one.
1279 */
1280 BPF_IFLIST_WRITER_FOREACH(bp) {
1281 struct ifnet *ifp = bp->bif_ifp;
1282
1283 if (ifp == NULL ||
1284 strcmp(ifp->if_xname, ifr->ifr_name) != 0)
1285 continue;
1286 /* skip additional entry */
1287 if (bp->bif_driverp != &ifp->if_bpf)
1288 continue;
1289 /*
1290 * We found the requested interface.
1291 * Allocate the packet buffers if we need to.
1292 * If we're already attached to requested interface,
1293 * just flush the buffer.
1294 */
1295 if (d->bd_sbuf == NULL) {
1296 error = bpf_allocbufs(d);
1297 if (error != 0)
1298 return (error);
1299 }
1300 s = splnet();
1301 if (bp != d->bd_bif) {
1302 if (d->bd_bif)
1303 /*
1304 * Detach if attached to something else.
1305 */
1306 bpf_detachd(d);
1307
1308 bpf_attachd(d, bp);
1309 }
1310 reset_d(d);
1311 splx(s);
1312 return (0);
1313 }
1314 /* Not found. */
1315 return (ENXIO);
1316 }
1317
1318 /*
1319 * Copy the interface name to the ifreq.
1320 */
1321 static void
1322 bpf_ifname(struct ifnet *ifp, struct ifreq *ifr)
1323 {
1324 memcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
1325 }
1326
1327 static int
1328 bpf_stat(struct file *fp, struct stat *st)
1329 {
1330 struct bpf_d *d = fp->f_bpf;
1331
1332 (void)memset(st, 0, sizeof(*st));
1333 KERNEL_LOCK(1, NULL);
1334 st->st_dev = makedev(cdevsw_lookup_major(&bpf_cdevsw), d->bd_pid);
1335 st->st_atimespec = d->bd_atime;
1336 st->st_mtimespec = d->bd_mtime;
1337 st->st_ctimespec = st->st_birthtimespec = d->bd_btime;
1338 st->st_uid = kauth_cred_geteuid(fp->f_cred);
1339 st->st_gid = kauth_cred_getegid(fp->f_cred);
1340 st->st_mode = S_IFCHR;
1341 KERNEL_UNLOCK_ONE(NULL);
1342 return 0;
1343 }
1344
1345 /*
1346 * Support for poll() system call
1347 *
1348 * Return true iff the specific operation will not block indefinitely - with
1349 * the assumption that it is safe to positively acknowledge a request for the
1350 * ability to write to the BPF device.
1351 * Otherwise, return false but make a note that a selnotify() must be done.
1352 */
1353 static int
1354 bpf_poll(struct file *fp, int events)
1355 {
1356 struct bpf_d *d = fp->f_bpf;
1357 int s = splnet();
1358 int revents;
1359
1360 /*
1361 * Refresh the PID associated with this bpf file.
1362 */
1363 KERNEL_LOCK(1, NULL);
1364 d->bd_pid = curproc->p_pid;
1365
1366 revents = events & (POLLOUT | POLLWRNORM);
1367 if (events & (POLLIN | POLLRDNORM)) {
1368 /*
1369 * An imitation of the FIONREAD ioctl code.
1370 */
1371 if (d->bd_hlen != 0 ||
1372 ((d->bd_immediate || d->bd_state == BPF_TIMED_OUT) &&
1373 d->bd_slen != 0)) {
1374 revents |= events & (POLLIN | POLLRDNORM);
1375 } else {
1376 selrecord(curlwp, &d->bd_sel);
1377 /* Start the read timeout if necessary */
1378 if (d->bd_rtout > 0 && d->bd_state == BPF_IDLE) {
1379 callout_reset(&d->bd_callout, d->bd_rtout,
1380 bpf_timed_out, d);
1381 d->bd_state = BPF_WAITING;
1382 }
1383 }
1384 }
1385
1386 KERNEL_UNLOCK_ONE(NULL);
1387 splx(s);
1388 return (revents);
1389 }
1390
1391 static void
1392 filt_bpfrdetach(struct knote *kn)
1393 {
1394 struct bpf_d *d = kn->kn_hook;
1395 int s;
1396
1397 KERNEL_LOCK(1, NULL);
1398 s = splnet();
1399 SLIST_REMOVE(&d->bd_sel.sel_klist, kn, knote, kn_selnext);
1400 splx(s);
1401 KERNEL_UNLOCK_ONE(NULL);
1402 }
1403
1404 static int
1405 filt_bpfread(struct knote *kn, long hint)
1406 {
1407 struct bpf_d *d = kn->kn_hook;
1408 int rv;
1409
1410 KERNEL_LOCK(1, NULL);
1411 kn->kn_data = d->bd_hlen;
1412 if (d->bd_immediate)
1413 kn->kn_data += d->bd_slen;
1414 rv = (kn->kn_data > 0);
1415 KERNEL_UNLOCK_ONE(NULL);
1416 return rv;
1417 }
1418
1419 static const struct filterops bpfread_filtops =
1420 { 1, NULL, filt_bpfrdetach, filt_bpfread };
1421
1422 static int
1423 bpf_kqfilter(struct file *fp, struct knote *kn)
1424 {
1425 struct bpf_d *d = fp->f_bpf;
1426 struct klist *klist;
1427 int s;
1428
1429 KERNEL_LOCK(1, NULL);
1430
1431 switch (kn->kn_filter) {
1432 case EVFILT_READ:
1433 klist = &d->bd_sel.sel_klist;
1434 kn->kn_fop = &bpfread_filtops;
1435 break;
1436
1437 default:
1438 KERNEL_UNLOCK_ONE(NULL);
1439 return (EINVAL);
1440 }
1441
1442 kn->kn_hook = d;
1443
1444 s = splnet();
1445 SLIST_INSERT_HEAD(klist, kn, kn_selnext);
1446 splx(s);
1447 KERNEL_UNLOCK_ONE(NULL);
1448
1449 return (0);
1450 }
1451
1452 /*
1453 * Copy data from an mbuf chain into a buffer. This code is derived
1454 * from m_copydata in sys/uipc_mbuf.c.
1455 */
1456 static void *
1457 bpf_mcpy(void *dst_arg, const void *src_arg, size_t len)
1458 {
1459 const struct mbuf *m;
1460 u_int count;
1461 u_char *dst;
1462
1463 m = src_arg;
1464 dst = dst_arg;
1465 while (len > 0) {
1466 if (m == NULL)
1467 panic("bpf_mcpy");
1468 count = min(m->m_len, len);
1469 memcpy(dst, mtod(m, const void *), count);
1470 m = m->m_next;
1471 dst += count;
1472 len -= count;
1473 }
1474 return dst_arg;
1475 }
1476
1477 /*
1478 * Dispatch a packet to all the listeners on interface bp.
1479 *
1480 * pkt pointer to the packet, either a data buffer or an mbuf chain
1481 * buflen buffer length, if pkt is a data buffer
1482 * cpfn a function that can copy pkt into the listener's buffer
1483 * pktlen length of the packet
1484 * rcv true if packet came in
1485 */
1486 static inline void
1487 bpf_deliver(struct bpf_if *bp, void *(*cpfn)(void *, const void *, size_t),
1488 void *pkt, u_int pktlen, u_int buflen, const bool rcv)
1489 {
1490 uint32_t mem[BPF_MEMWORDS];
1491 bpf_args_t args = {
1492 .pkt = (const uint8_t *)pkt,
1493 .wirelen = pktlen,
1494 .buflen = buflen,
1495 .mem = mem,
1496 .arg = NULL
1497 };
1498 bool gottime = false;
1499 struct timespec ts;
1500 struct bpf_d *d;
1501
1502 /*
1503 * Note that the IPL does not have to be raised at this point.
1504 * The only problem that could arise here is that if two different
1505 * interfaces shared any data. This is not the case.
1506 */
1507 BPFIF_DLIST_READER_FOREACH(d, bp) {
1508 u_int slen;
1509
1510 if (!d->bd_seesent && !rcv) {
1511 continue;
1512 }
1513 d->bd_rcount++;
1514 BPF_STATINC(recv);
1515
1516 if (d->bd_jitcode)
1517 slen = d->bd_jitcode(NULL, &args);
1518 else
1519 slen = bpf_filter_ext(NULL, d->bd_filter, &args);
1520
1521 if (!slen) {
1522 continue;
1523 }
1524 if (!gottime) {
1525 gottime = true;
1526 nanotime(&ts);
1527 }
1528 catchpacket(d, pkt, pktlen, slen, cpfn, &ts);
1529 }
1530 }
1531
1532 /*
1533 * Incoming linkage from device drivers. Process the packet pkt, of length
1534 * pktlen, which is stored in a contiguous buffer. The packet is parsed
1535 * by each process' filter, and if accepted, stashed into the corresponding
1536 * buffer.
1537 */
1538 static void
1539 _bpf_tap(struct bpf_if *bp, u_char *pkt, u_int pktlen)
1540 {
1541
1542 bpf_deliver(bp, memcpy, pkt, pktlen, pktlen, true);
1543 }
1544
1545 /*
1546 * Incoming linkage from device drivers, when the head of the packet is in
1547 * a buffer, and the tail is in an mbuf chain.
1548 */
1549 static void
1550 _bpf_mtap2(struct bpf_if *bp, void *data, u_int dlen, struct mbuf *m)
1551 {
1552 u_int pktlen;
1553 struct mbuf mb;
1554
1555 /* Skip outgoing duplicate packets. */
1556 if ((m->m_flags & M_PROMISC) != 0 && m->m_pkthdr.rcvif_index == 0) {
1557 m->m_flags &= ~M_PROMISC;
1558 return;
1559 }
1560
1561 pktlen = m_length(m) + dlen;
1562
1563 /*
1564 * Craft on-stack mbuf suitable for passing to bpf_filter.
1565 * Note that we cut corners here; we only setup what's
1566 * absolutely needed--this mbuf should never go anywhere else.
1567 */
1568 (void)memset(&mb, 0, sizeof(mb));
1569 mb.m_next = m;
1570 mb.m_data = data;
1571 mb.m_len = dlen;
1572
1573 bpf_deliver(bp, bpf_mcpy, &mb, pktlen, 0, m->m_pkthdr.rcvif_index != 0);
1574 }
1575
1576 /*
1577 * Incoming linkage from device drivers, when packet is in an mbuf chain.
1578 */
1579 static void
1580 _bpf_mtap(struct bpf_if *bp, struct mbuf *m)
1581 {
1582 void *(*cpfn)(void *, const void *, size_t);
1583 u_int pktlen, buflen;
1584 void *marg;
1585
1586 /* Skip outgoing duplicate packets. */
1587 if ((m->m_flags & M_PROMISC) != 0 && m->m_pkthdr.rcvif_index == 0) {
1588 m->m_flags &= ~M_PROMISC;
1589 return;
1590 }
1591
1592 pktlen = m_length(m);
1593
1594 if (pktlen == m->m_len) {
1595 cpfn = (void *)memcpy;
1596 marg = mtod(m, void *);
1597 buflen = pktlen;
1598 } else {
1599 cpfn = bpf_mcpy;
1600 marg = m;
1601 buflen = 0;
1602 }
1603
1604 bpf_deliver(bp, cpfn, marg, pktlen, buflen, m->m_pkthdr.rcvif_index != 0);
1605 }
1606
1607 /*
1608 * We need to prepend the address family as
1609 * a four byte field. Cons up a dummy header
1610 * to pacify bpf. This is safe because bpf
1611 * will only read from the mbuf (i.e., it won't
1612 * try to free it or keep a pointer a to it).
1613 */
1614 static void
1615 _bpf_mtap_af(struct bpf_if *bp, uint32_t af, struct mbuf *m)
1616 {
1617 struct mbuf m0;
1618
1619 m0.m_flags = 0;
1620 m0.m_next = m;
1621 m0.m_len = 4;
1622 m0.m_data = (char *)⁡
1623
1624 _bpf_mtap(bp, &m0);
1625 }
1626
1627 /*
1628 * Put the SLIP pseudo-"link header" in place.
1629 * Note this M_PREPEND() should never fail,
1630 * swince we know we always have enough space
1631 * in the input buffer.
1632 */
1633 static void
1634 _bpf_mtap_sl_in(struct bpf_if *bp, u_char *chdr, struct mbuf **m)
1635 {
1636 int s;
1637 u_char *hp;
1638
1639 M_PREPEND(*m, SLIP_HDRLEN, M_DONTWAIT);
1640 if (*m == NULL)
1641 return;
1642
1643 hp = mtod(*m, u_char *);
1644 hp[SLX_DIR] = SLIPDIR_IN;
1645 (void)memcpy(&hp[SLX_CHDR], chdr, CHDR_LEN);
1646
1647 s = splnet();
1648 _bpf_mtap(bp, *m);
1649 splx(s);
1650
1651 m_adj(*m, SLIP_HDRLEN);
1652 }
1653
1654 /*
1655 * Put the SLIP pseudo-"link header" in
1656 * place. The compressed header is now
1657 * at the beginning of the mbuf.
1658 */
1659 static void
1660 _bpf_mtap_sl_out(struct bpf_if *bp, u_char *chdr, struct mbuf *m)
1661 {
1662 struct mbuf m0;
1663 u_char *hp;
1664 int s;
1665
1666 m0.m_flags = 0;
1667 m0.m_next = m;
1668 m0.m_data = m0.m_dat;
1669 m0.m_len = SLIP_HDRLEN;
1670
1671 hp = mtod(&m0, u_char *);
1672
1673 hp[SLX_DIR] = SLIPDIR_OUT;
1674 (void)memcpy(&hp[SLX_CHDR], chdr, CHDR_LEN);
1675
1676 s = splnet();
1677 _bpf_mtap(bp, &m0);
1678 splx(s);
1679 m_freem(m);
1680 }
1681
1682 static struct mbuf *
1683 bpf_mbuf_enqueue(struct bpf_if *bp, struct mbuf *m)
1684 {
1685 struct mbuf *dup;
1686
1687 dup = m_dup(m, 0, M_COPYALL, M_NOWAIT);
1688 if (dup == NULL)
1689 return NULL;
1690
1691 if (bp->bif_mbuf_tail != NULL) {
1692 bp->bif_mbuf_tail->m_nextpkt = dup;
1693 } else {
1694 bp->bif_mbuf_head = dup;
1695 }
1696 bp->bif_mbuf_tail = dup;
1697 #ifdef BPF_MTAP_SOFTINT_DEBUG
1698 log(LOG_DEBUG, "%s: enqueued mbuf=%p to %s\n",
1699 __func__, dup, bp->bif_ifp->if_xname);
1700 #endif
1701
1702 return dup;
1703 }
1704
1705 static struct mbuf *
1706 bpf_mbuf_dequeue(struct bpf_if *bp)
1707 {
1708 struct mbuf *m;
1709 int s;
1710
1711 s = splnet();
1712 m = bp->bif_mbuf_head;
1713 if (m != NULL) {
1714 bp->bif_mbuf_head = m->m_nextpkt;
1715 m->m_nextpkt = NULL;
1716
1717 if (bp->bif_mbuf_head == NULL)
1718 bp->bif_mbuf_tail = NULL;
1719 #ifdef BPF_MTAP_SOFTINT_DEBUG
1720 log(LOG_DEBUG, "%s: dequeued mbuf=%p from %s\n",
1721 __func__, m, bp->bif_ifp->if_xname);
1722 #endif
1723 }
1724 splx(s);
1725
1726 return m;
1727 }
1728
1729 static void
1730 bpf_mtap_si(void *arg)
1731 {
1732 struct bpf_if *bp = arg;
1733 struct mbuf *m;
1734
1735 while ((m = bpf_mbuf_dequeue(bp)) != NULL) {
1736 #ifdef BPF_MTAP_SOFTINT_DEBUG
1737 log(LOG_DEBUG, "%s: tapping mbuf=%p on %s\n",
1738 __func__, m, bp->bif_ifp->if_xname);
1739 #endif
1740 #ifndef NET_MPSAFE
1741 KERNEL_LOCK(1, NULL);
1742 #endif
1743 bpf_ops->bpf_mtap(bp, m);
1744 #ifndef NET_MPSAFE
1745 KERNEL_UNLOCK_ONE(NULL);
1746 #endif
1747 m_freem(m);
1748 }
1749 }
1750
1751 static void
1752 _bpf_mtap_softint(struct ifnet *ifp, struct mbuf *m)
1753 {
1754 struct bpf_if *bp = ifp->if_bpf;
1755 struct mbuf *dup;
1756
1757 KASSERT(cpu_intr_p());
1758
1759 /* To avoid extra invocations of the softint */
1760 if (BPFIF_DLIST_READER_EMPTY(bp))
1761 return;
1762 KASSERT(bp->bif_si != NULL);
1763
1764 dup = bpf_mbuf_enqueue(bp, m);
1765 if (dup != NULL)
1766 softint_schedule(bp->bif_si);
1767 }
1768
1769 static int
1770 bpf_hdrlen(struct bpf_d *d)
1771 {
1772 int hdrlen = d->bd_bif->bif_hdrlen;
1773 /*
1774 * Compute the length of the bpf header. This is not necessarily
1775 * equal to SIZEOF_BPF_HDR because we want to insert spacing such
1776 * that the network layer header begins on a longword boundary (for
1777 * performance reasons and to alleviate alignment restrictions).
1778 */
1779 #ifdef _LP64
1780 if (d->bd_compat32)
1781 return (BPF_WORDALIGN32(hdrlen + SIZEOF_BPF_HDR32) - hdrlen);
1782 else
1783 #endif
1784 return (BPF_WORDALIGN(hdrlen + SIZEOF_BPF_HDR) - hdrlen);
1785 }
1786
1787 /*
1788 * Move the packet data from interface memory (pkt) into the
1789 * store buffer. Call the wakeup functions if it's time to wakeup
1790 * a listener (buffer full), "cpfn" is the routine called to do the
1791 * actual data transfer. memcpy is passed in to copy contiguous chunks,
1792 * while bpf_mcpy is passed in to copy mbuf chains. In the latter case,
1793 * pkt is really an mbuf.
1794 */
1795 static void
1796 catchpacket(struct bpf_d *d, u_char *pkt, u_int pktlen, u_int snaplen,
1797 void *(*cpfn)(void *, const void *, size_t), struct timespec *ts)
1798 {
1799 char *h;
1800 int totlen, curlen, caplen;
1801 int hdrlen = bpf_hdrlen(d);
1802 int do_wakeup = 0;
1803
1804 ++d->bd_ccount;
1805 BPF_STATINC(capt);
1806 /*
1807 * Figure out how many bytes to move. If the packet is
1808 * greater or equal to the snapshot length, transfer that
1809 * much. Otherwise, transfer the whole packet (unless
1810 * we hit the buffer size limit).
1811 */
1812 totlen = hdrlen + min(snaplen, pktlen);
1813 if (totlen > d->bd_bufsize)
1814 totlen = d->bd_bufsize;
1815 /*
1816 * If we adjusted totlen to fit the bufsize, it could be that
1817 * totlen is smaller than hdrlen because of the link layer header.
1818 */
1819 caplen = totlen - hdrlen;
1820 if (caplen < 0)
1821 caplen = 0;
1822
1823 /*
1824 * Round up the end of the previous packet to the next longword.
1825 */
1826 #ifdef _LP64
1827 if (d->bd_compat32)
1828 curlen = BPF_WORDALIGN32(d->bd_slen);
1829 else
1830 #endif
1831 curlen = BPF_WORDALIGN(d->bd_slen);
1832 if (curlen + totlen > d->bd_bufsize) {
1833 /*
1834 * This packet will overflow the storage buffer.
1835 * Rotate the buffers if we can, then wakeup any
1836 * pending reads.
1837 */
1838 if (d->bd_fbuf == NULL) {
1839 /*
1840 * We haven't completed the previous read yet,
1841 * so drop the packet.
1842 */
1843 ++d->bd_dcount;
1844 BPF_STATINC(drop);
1845 return;
1846 }
1847 ROTATE_BUFFERS(d);
1848 do_wakeup = 1;
1849 curlen = 0;
1850 } else if (d->bd_immediate || d->bd_state == BPF_TIMED_OUT) {
1851 /*
1852 * Immediate mode is set, or the read timeout has
1853 * already expired during a select call. A packet
1854 * arrived, so the reader should be woken up.
1855 */
1856 do_wakeup = 1;
1857 }
1858
1859 /*
1860 * Append the bpf header.
1861 */
1862 h = (char *)d->bd_sbuf + curlen;
1863 #ifdef _LP64
1864 if (d->bd_compat32) {
1865 struct bpf_hdr32 *hp32;
1866
1867 hp32 = (struct bpf_hdr32 *)h;
1868 hp32->bh_tstamp.tv_sec = ts->tv_sec;
1869 hp32->bh_tstamp.tv_usec = ts->tv_nsec / 1000;
1870 hp32->bh_datalen = pktlen;
1871 hp32->bh_hdrlen = hdrlen;
1872 hp32->bh_caplen = caplen;
1873 } else
1874 #endif
1875 {
1876 struct bpf_hdr *hp;
1877
1878 hp = (struct bpf_hdr *)h;
1879 hp->bh_tstamp.tv_sec = ts->tv_sec;
1880 hp->bh_tstamp.tv_usec = ts->tv_nsec / 1000;
1881 hp->bh_datalen = pktlen;
1882 hp->bh_hdrlen = hdrlen;
1883 hp->bh_caplen = caplen;
1884 }
1885
1886 /*
1887 * Copy the packet data into the store buffer and update its length.
1888 */
1889 (*cpfn)(h + hdrlen, pkt, caplen);
1890 d->bd_slen = curlen + totlen;
1891
1892 /*
1893 * Call bpf_wakeup after bd_slen has been updated so that kevent(2)
1894 * will cause filt_bpfread() to be called with it adjusted.
1895 */
1896 if (do_wakeup)
1897 bpf_wakeup(d);
1898 }
1899
1900 /*
1901 * Initialize all nonzero fields of a descriptor.
1902 */
1903 static int
1904 bpf_allocbufs(struct bpf_d *d)
1905 {
1906
1907 d->bd_fbuf = kmem_alloc(d->bd_bufsize, KM_NOSLEEP);
1908 if (!d->bd_fbuf)
1909 return (ENOBUFS);
1910 d->bd_sbuf = kmem_alloc(d->bd_bufsize, KM_NOSLEEP);
1911 if (!d->bd_sbuf) {
1912 kmem_free(d->bd_fbuf, d->bd_bufsize);
1913 return (ENOBUFS);
1914 }
1915 d->bd_slen = 0;
1916 d->bd_hlen = 0;
1917 return (0);
1918 }
1919
1920 /*
1921 * Free buffers currently in use by a descriptor.
1922 * Called on close.
1923 */
1924 static void
1925 bpf_freed(struct bpf_d *d)
1926 {
1927 /*
1928 * We don't need to lock out interrupts since this descriptor has
1929 * been detached from its interface and it yet hasn't been marked
1930 * free.
1931 */
1932 if (d->bd_sbuf != NULL) {
1933 kmem_free(d->bd_sbuf, d->bd_bufsize);
1934 if (d->bd_hbuf != NULL)
1935 kmem_free(d->bd_hbuf, d->bd_bufsize);
1936 if (d->bd_fbuf != NULL)
1937 kmem_free(d->bd_fbuf, d->bd_bufsize);
1938 }
1939 if (d->bd_filter)
1940 kmem_free(d->bd_filter, d->bd_filter_size);
1941
1942 if (d->bd_jitcode != NULL) {
1943 bpf_jit_freecode(d->bd_jitcode);
1944 }
1945 }
1946
1947 /*
1948 * Attach an interface to bpf. dlt is the link layer type;
1949 * hdrlen is the fixed size of the link header for the specified dlt
1950 * (variable length headers not yet supported).
1951 */
1952 static void
1953 _bpfattach(struct ifnet *ifp, u_int dlt, u_int hdrlen, struct bpf_if **driverp)
1954 {
1955 struct bpf_if *bp;
1956 bp = kmem_alloc(sizeof(*bp), KM_NOSLEEP);
1957 if (bp == NULL)
1958 panic("bpfattach");
1959
1960 mutex_enter(&bpf_mtx);
1961 bp->bif_driverp = driverp;
1962 bp->bif_ifp = ifp;
1963 bp->bif_dlt = dlt;
1964 bp->bif_si = NULL;
1965 BPF_IFLIST_ENTRY_INIT(bp);
1966 PSLIST_INIT(&bp->bif_dlist_head);
1967
1968 BPF_IFLIST_WRITER_INSERT_HEAD(bp);
1969
1970 *bp->bif_driverp = NULL;
1971
1972 bp->bif_hdrlen = hdrlen;
1973 mutex_exit(&bpf_mtx);
1974 #if 0
1975 printf("bpf: %s attached\n", ifp->if_xname);
1976 #endif
1977 }
1978
1979 static void
1980 _bpf_mtap_softint_init(struct ifnet *ifp)
1981 {
1982 struct bpf_if *bp;
1983
1984 mutex_enter(&bpf_mtx);
1985 BPF_IFLIST_WRITER_FOREACH(bp) {
1986 if (bp->bif_ifp != ifp)
1987 continue;
1988
1989 bp->bif_mbuf_head = NULL;
1990 bp->bif_mbuf_tail = NULL;
1991 bp->bif_si = softint_establish(SOFTINT_NET, bpf_mtap_si, bp);
1992 if (bp->bif_si == NULL)
1993 panic("%s: softint_establish() failed", __func__);
1994 break;
1995 }
1996 mutex_exit(&bpf_mtx);
1997
1998 if (bp == NULL)
1999 panic("%s: no bpf_if found for %s", __func__, ifp->if_xname);
2000 }
2001
2002 /*
2003 * Remove an interface from bpf.
2004 */
2005 static void
2006 _bpfdetach(struct ifnet *ifp)
2007 {
2008 struct bpf_if *bp;
2009 struct bpf_d *d;
2010 int s;
2011
2012 mutex_enter(&bpf_mtx);
2013 /* Nuke the vnodes for any open instances */
2014 again_d:
2015 BPF_DLIST_WRITER_FOREACH(d) {
2016 if (d->bd_bif != NULL && d->bd_bif->bif_ifp == ifp) {
2017 /*
2018 * Detach the descriptor from an interface now.
2019 * It will be free'ed later by close routine.
2020 */
2021 s = splnet();
2022 d->bd_promisc = 0; /* we can't touch device. */
2023 bpf_detachd(d);
2024 splx(s);
2025 goto again_d;
2026 }
2027 }
2028
2029 again:
2030 BPF_IFLIST_WRITER_FOREACH(bp) {
2031 if (bp->bif_ifp == ifp) {
2032 BPF_IFLIST_WRITER_REMOVE(bp);
2033 /* TODO pserialize_perform(); */
2034 /* TODO psref_target_destroy(); */
2035 BPF_IFLIST_ENTRY_DESTROY(bp);
2036 if (bp->bif_si != NULL) {
2037 s = splnet();
2038 while (bp->bif_mbuf_head != NULL) {
2039 struct mbuf *m = bp->bif_mbuf_head;
2040 bp->bif_mbuf_head = m->m_nextpkt;
2041 m_freem(m);
2042 }
2043 splx(s);
2044 softint_disestablish(bp->bif_si);
2045 }
2046 kmem_free(bp, sizeof(*bp));
2047 goto again;
2048 }
2049 }
2050 mutex_exit(&bpf_mtx);
2051 }
2052
2053 /*
2054 * Change the data link type of a interface.
2055 */
2056 static void
2057 _bpf_change_type(struct ifnet *ifp, u_int dlt, u_int hdrlen)
2058 {
2059 struct bpf_if *bp;
2060
2061 BPF_IFLIST_READER_FOREACH(bp) {
2062 if (bp->bif_driverp == &ifp->if_bpf)
2063 break;
2064 }
2065 if (bp == NULL)
2066 panic("bpf_change_type");
2067
2068 bp->bif_dlt = dlt;
2069
2070 bp->bif_hdrlen = hdrlen;
2071 }
2072
2073 /*
2074 * Get a list of available data link type of the interface.
2075 */
2076 static int
2077 bpf_getdltlist(struct bpf_d *d, struct bpf_dltlist *bfl)
2078 {
2079 int n, error;
2080 struct ifnet *ifp;
2081 struct bpf_if *bp;
2082
2083 ifp = d->bd_bif->bif_ifp;
2084 n = 0;
2085 error = 0;
2086 BPF_IFLIST_READER_FOREACH(bp) {
2087 if (bp->bif_ifp != ifp)
2088 continue;
2089 if (bfl->bfl_list != NULL) {
2090 if (n >= bfl->bfl_len)
2091 return ENOMEM;
2092 error = copyout(&bp->bif_dlt,
2093 bfl->bfl_list + n, sizeof(u_int));
2094 }
2095 n++;
2096 }
2097 bfl->bfl_len = n;
2098 return error;
2099 }
2100
2101 /*
2102 * Set the data link type of a BPF instance.
2103 */
2104 static int
2105 bpf_setdlt(struct bpf_d *d, u_int dlt)
2106 {
2107 int s, error, opromisc;
2108 struct ifnet *ifp;
2109 struct bpf_if *bp;
2110
2111 KASSERT(mutex_owned(&bpf_mtx));
2112
2113 if (d->bd_bif->bif_dlt == dlt)
2114 return 0;
2115 ifp = d->bd_bif->bif_ifp;
2116 BPF_IFLIST_WRITER_FOREACH(bp) {
2117 if (bp->bif_ifp == ifp && bp->bif_dlt == dlt)
2118 break;
2119 }
2120 if (bp == NULL)
2121 return EINVAL;
2122 s = splnet();
2123 opromisc = d->bd_promisc;
2124 bpf_detachd(d);
2125 bpf_attachd(d, bp);
2126 reset_d(d);
2127 if (opromisc) {
2128 error = ifpromisc(bp->bif_ifp, 1);
2129 if (error)
2130 printf("%s: bpf_setdlt: ifpromisc failed (%d)\n",
2131 bp->bif_ifp->if_xname, error);
2132 else
2133 d->bd_promisc = 1;
2134 }
2135 splx(s);
2136 return 0;
2137 }
2138
2139 static int
2140 sysctl_net_bpf_maxbufsize(SYSCTLFN_ARGS)
2141 {
2142 int newsize, error;
2143 struct sysctlnode node;
2144
2145 node = *rnode;
2146 node.sysctl_data = &newsize;
2147 newsize = bpf_maxbufsize;
2148 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2149 if (error || newp == NULL)
2150 return (error);
2151
2152 if (newsize < BPF_MINBUFSIZE || newsize > BPF_MAXBUFSIZE)
2153 return (EINVAL);
2154
2155 bpf_maxbufsize = newsize;
2156
2157 return (0);
2158 }
2159
2160 #if defined(MODULAR) || defined(BPFJIT)
2161 static int
2162 sysctl_net_bpf_jit(SYSCTLFN_ARGS)
2163 {
2164 bool newval;
2165 int error;
2166 struct sysctlnode node;
2167
2168 node = *rnode;
2169 node.sysctl_data = &newval;
2170 newval = bpf_jit;
2171 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2172 if (error != 0 || newp == NULL)
2173 return error;
2174
2175 bpf_jit = newval;
2176
2177 /*
2178 * Do a full sync to publish new bpf_jit value and
2179 * update bpfjit_module_ops.bj_generate_code variable.
2180 */
2181 membar_sync();
2182
2183 if (newval && bpfjit_module_ops.bj_generate_code == NULL) {
2184 printf("JIT compilation is postponed "
2185 "until after bpfjit module is loaded\n");
2186 }
2187
2188 return 0;
2189 }
2190 #endif
2191
2192 static int
2193 sysctl_net_bpf_peers(SYSCTLFN_ARGS)
2194 {
2195 int error, elem_count;
2196 struct bpf_d *dp;
2197 struct bpf_d_ext dpe;
2198 size_t len, needed, elem_size, out_size;
2199 char *sp;
2200
2201 if (namelen == 1 && name[0] == CTL_QUERY)
2202 return (sysctl_query(SYSCTLFN_CALL(rnode)));
2203
2204 if (namelen != 2)
2205 return (EINVAL);
2206
2207 /* BPF peers is privileged information. */
2208 error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_INTERFACE,
2209 KAUTH_REQ_NETWORK_INTERFACE_GETPRIV, NULL, NULL, NULL);
2210 if (error)
2211 return (EPERM);
2212
2213 len = (oldp != NULL) ? *oldlenp : 0;
2214 sp = oldp;
2215 elem_size = name[0];
2216 elem_count = name[1];
2217 out_size = MIN(sizeof(dpe), elem_size);
2218 needed = 0;
2219
2220 if (elem_size < 1 || elem_count < 0)
2221 return (EINVAL);
2222
2223 mutex_enter(&bpf_mtx);
2224 BPF_DLIST_WRITER_FOREACH(dp) {
2225 if (len >= elem_size && elem_count > 0) {
2226 #define BPF_EXT(field) dpe.bde_ ## field = dp->bd_ ## field
2227 BPF_EXT(bufsize);
2228 BPF_EXT(promisc);
2229 BPF_EXT(state);
2230 BPF_EXT(immediate);
2231 BPF_EXT(hdrcmplt);
2232 BPF_EXT(seesent);
2233 BPF_EXT(pid);
2234 BPF_EXT(rcount);
2235 BPF_EXT(dcount);
2236 BPF_EXT(ccount);
2237 #undef BPF_EXT
2238 if (dp->bd_bif)
2239 (void)strlcpy(dpe.bde_ifname,
2240 dp->bd_bif->bif_ifp->if_xname,
2241 IFNAMSIZ - 1);
2242 else
2243 dpe.bde_ifname[0] = '\0';
2244
2245 error = copyout(&dpe, sp, out_size);
2246 if (error)
2247 break;
2248 sp += elem_size;
2249 len -= elem_size;
2250 }
2251 needed += elem_size;
2252 if (elem_count > 0 && elem_count != INT_MAX)
2253 elem_count--;
2254 }
2255 mutex_exit(&bpf_mtx);
2256
2257 *oldlenp = needed;
2258
2259 return (error);
2260 }
2261
2262 static void
2263 bpf_stats(void *p, void *arg, struct cpu_info *ci __unused)
2264 {
2265 struct bpf_stat *const stats = p;
2266 struct bpf_stat *sum = arg;
2267
2268 sum->bs_recv += stats->bs_recv;
2269 sum->bs_drop += stats->bs_drop;
2270 sum->bs_capt += stats->bs_capt;
2271 }
2272
2273 static int
2274 bpf_sysctl_gstats_handler(SYSCTLFN_ARGS)
2275 {
2276 struct sysctlnode node;
2277 int error;
2278 struct bpf_stat sum;
2279
2280 memset(&sum, 0, sizeof(sum));
2281 node = *rnode;
2282
2283 percpu_foreach(bpf_gstats_percpu, bpf_stats, &sum);
2284
2285 node.sysctl_data = ∑
2286 node.sysctl_size = sizeof(sum);
2287 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2288 if (error != 0 || newp == NULL)
2289 return error;
2290
2291 return 0;
2292 }
2293
2294 static struct sysctllog *bpf_sysctllog;
2295 static void
2296 sysctl_net_bpf_setup(void)
2297 {
2298 const struct sysctlnode *node;
2299
2300 node = NULL;
2301 sysctl_createv(&bpf_sysctllog, 0, NULL, &node,
2302 CTLFLAG_PERMANENT,
2303 CTLTYPE_NODE, "bpf",
2304 SYSCTL_DESCR("BPF options"),
2305 NULL, 0, NULL, 0,
2306 CTL_NET, CTL_CREATE, CTL_EOL);
2307 if (node != NULL) {
2308 #if defined(MODULAR) || defined(BPFJIT)
2309 sysctl_createv(&bpf_sysctllog, 0, NULL, NULL,
2310 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2311 CTLTYPE_BOOL, "jit",
2312 SYSCTL_DESCR("Toggle Just-In-Time compilation"),
2313 sysctl_net_bpf_jit, 0, &bpf_jit, 0,
2314 CTL_NET, node->sysctl_num, CTL_CREATE, CTL_EOL);
2315 #endif
2316 sysctl_createv(&bpf_sysctllog, 0, NULL, NULL,
2317 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2318 CTLTYPE_INT, "maxbufsize",
2319 SYSCTL_DESCR("Maximum size for data capture buffer"),
2320 sysctl_net_bpf_maxbufsize, 0, &bpf_maxbufsize, 0,
2321 CTL_NET, node->sysctl_num, CTL_CREATE, CTL_EOL);
2322 sysctl_createv(&bpf_sysctllog, 0, NULL, NULL,
2323 CTLFLAG_PERMANENT,
2324 CTLTYPE_STRUCT, "stats",
2325 SYSCTL_DESCR("BPF stats"),
2326 bpf_sysctl_gstats_handler, 0, NULL, 0,
2327 CTL_NET, node->sysctl_num, CTL_CREATE, CTL_EOL);
2328 sysctl_createv(&bpf_sysctllog, 0, NULL, NULL,
2329 CTLFLAG_PERMANENT,
2330 CTLTYPE_STRUCT, "peers",
2331 SYSCTL_DESCR("BPF peers"),
2332 sysctl_net_bpf_peers, 0, NULL, 0,
2333 CTL_NET, node->sysctl_num, CTL_CREATE, CTL_EOL);
2334 }
2335
2336 }
2337
2338 struct bpf_ops bpf_ops_kernel = {
2339 .bpf_attach = _bpfattach,
2340 .bpf_detach = _bpfdetach,
2341 .bpf_change_type = _bpf_change_type,
2342
2343 .bpf_tap = _bpf_tap,
2344 .bpf_mtap = _bpf_mtap,
2345 .bpf_mtap2 = _bpf_mtap2,
2346 .bpf_mtap_af = _bpf_mtap_af,
2347 .bpf_mtap_sl_in = _bpf_mtap_sl_in,
2348 .bpf_mtap_sl_out = _bpf_mtap_sl_out,
2349
2350 .bpf_mtap_softint = _bpf_mtap_softint,
2351 .bpf_mtap_softint_init = _bpf_mtap_softint_init,
2352 };
2353
2354 MODULE(MODULE_CLASS_DRIVER, bpf, "bpf_filter");
2355
2356 static int
2357 bpf_modcmd(modcmd_t cmd, void *arg)
2358 {
2359 #ifdef _MODULE
2360 devmajor_t bmajor, cmajor;
2361 #endif
2362 int error = 0;
2363
2364 switch (cmd) {
2365 case MODULE_CMD_INIT:
2366 bpf_init();
2367 #ifdef _MODULE
2368 bmajor = cmajor = NODEVMAJOR;
2369 error = devsw_attach("bpf", NULL, &bmajor,
2370 &bpf_cdevsw, &cmajor);
2371 if (error)
2372 break;
2373 #endif
2374
2375 bpf_ops_handover_enter(&bpf_ops_kernel);
2376 atomic_swap_ptr(&bpf_ops, &bpf_ops_kernel);
2377 bpf_ops_handover_exit();
2378 sysctl_net_bpf_setup();
2379 break;
2380
2381 case MODULE_CMD_FINI:
2382 /*
2383 * While there is no reference counting for bpf callers,
2384 * unload could at least in theory be done similarly to
2385 * system call disestablishment. This should even be
2386 * a little simpler:
2387 *
2388 * 1) replace op vector with stubs
2389 * 2) post update to all cpus with xc
2390 * 3) check that nobody is in bpf anymore
2391 * (it's doubtful we'd want something like l_sysent,
2392 * but we could do something like *signed* percpu
2393 * counters. if the sum is 0, we're good).
2394 * 4) if fail, unroll changes
2395 *
2396 * NOTE: change won't be atomic to the outside. some
2397 * packets may be not captured even if unload is
2398 * not succesful. I think packet capture not working
2399 * is a perfectly logical consequence of trying to
2400 * disable packet capture.
2401 */
2402 error = EOPNOTSUPP;
2403 /* insert sysctl teardown */
2404 break;
2405
2406 default:
2407 error = ENOTTY;
2408 break;
2409 }
2410
2411 return error;
2412 }
2413