bpf.c revision 1.215 1 /* $NetBSD: bpf.c,v 1.215 2017/02/19 13:58:42 christos Exp $ */
2
3 /*
4 * Copyright (c) 1990, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from the Stanford/CMU enet packet filter,
8 * (net/enet.c) distributed as part of 4.3BSD, and code contributed
9 * to Berkeley by Steven McCanne and Van Jacobson both of Lawrence
10 * Berkeley Laboratory.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)bpf.c 8.4 (Berkeley) 1/9/95
37 * static char rcsid[] =
38 * "Header: bpf.c,v 1.67 96/09/26 22:00:52 leres Exp ";
39 */
40
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: bpf.c,v 1.215 2017/02/19 13:58:42 christos Exp $");
43
44 #if defined(_KERNEL_OPT)
45 #include "opt_bpf.h"
46 #include "sl.h"
47 #include "strip.h"
48 #include "opt_net_mpsafe.h"
49 #endif
50
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/mbuf.h>
54 #include <sys/buf.h>
55 #include <sys/time.h>
56 #include <sys/proc.h>
57 #include <sys/ioctl.h>
58 #include <sys/conf.h>
59 #include <sys/vnode.h>
60 #include <sys/queue.h>
61 #include <sys/stat.h>
62 #include <sys/module.h>
63 #include <sys/atomic.h>
64 #include <sys/cpu.h>
65
66 #include <sys/file.h>
67 #include <sys/filedesc.h>
68 #include <sys/tty.h>
69 #include <sys/uio.h>
70
71 #include <sys/protosw.h>
72 #include <sys/socket.h>
73 #include <sys/errno.h>
74 #include <sys/kernel.h>
75 #include <sys/poll.h>
76 #include <sys/sysctl.h>
77 #include <sys/kauth.h>
78 #include <sys/syslog.h>
79 #include <sys/percpu.h>
80 #include <sys/pserialize.h>
81 #include <sys/lwp.h>
82
83 #include <net/if.h>
84 #include <net/slip.h>
85
86 #include <net/bpf.h>
87 #include <net/bpfdesc.h>
88 #include <net/bpfjit.h>
89
90 #include <net/if_arc.h>
91 #include <net/if_ether.h>
92
93 #include <netinet/in.h>
94 #include <netinet/if_inarp.h>
95
96
97 #include <compat/sys/sockio.h>
98
99 #ifndef BPF_BUFSIZE
100 /*
101 * 4096 is too small for FDDI frames. 8192 is too small for gigabit Ethernet
102 * jumbos (circa 9k), ATM, or Intel gig/10gig ethernet jumbos (16k).
103 */
104 # define BPF_BUFSIZE 32768
105 #endif
106
107 #define PRINET 26 /* interruptible */
108
109 /*
110 * The default read buffer size, and limit for BIOCSBLEN, is sysctl'able.
111 * XXX the default values should be computed dynamically based
112 * on available memory size and available mbuf clusters.
113 */
114 static int bpf_bufsize = BPF_BUFSIZE;
115 static int bpf_maxbufsize = BPF_DFLTBUFSIZE; /* XXX set dynamically, see above */
116 static bool bpf_jit = false;
117
118 struct bpfjit_ops bpfjit_module_ops = {
119 .bj_generate_code = NULL,
120 .bj_free_code = NULL
121 };
122
123 /*
124 * Global BPF statistics returned by net.bpf.stats sysctl.
125 */
126 static struct percpu *bpf_gstats_percpu; /* struct bpf_stat */
127
128 #define BPF_STATINC(id) \
129 { \
130 struct bpf_stat *__stats = \
131 percpu_getref(bpf_gstats_percpu); \
132 __stats->bs_##id++; \
133 percpu_putref(bpf_gstats_percpu); \
134 }
135
136 /*
137 * Locking notes:
138 * - bpf_mtx (adaptive mutex) protects:
139 * - Gobal lists: bpf_iflist and bpf_dlist
140 * - struct bpf_if
141 * - bpf_close
142 * - bpf_psz (pserialize)
143 * - struct bpf_d has two mutexes:
144 * - bd_buf_mtx (spin mutex) protects the buffers that can be accessed
145 * on packet tapping
146 * - bd_mtx (adaptive mutex) protects member variables other than the buffers
147 * - Locking order: bpf_mtx => bpf_d#bd_mtx => bpf_d#bd_buf_mtx
148 * - struct bpf_d obtained via fp->f_bpf in bpf_read and bpf_write is
149 * never freed because struct bpf_d is only freed in bpf_close and
150 * bpf_close never be called while executing bpf_read and bpf_write
151 * - A filter that is assigned to bpf_d can be replaced with another filter
152 * while tapping packets, so it needs to be done atomically
153 * - struct bpf_d is iterated on bpf_dlist with psz
154 * - struct bpf_if is iterated on bpf_iflist with psz or psref
155 */
156 /*
157 * Use a mutex to avoid a race condition between gathering the stats/peers
158 * and opening/closing the device.
159 */
160 static kmutex_t bpf_mtx;
161
162 static struct psref_class *bpf_psref_class __read_mostly;
163 static pserialize_t bpf_psz;
164
165 static inline void
166 bpf_if_acquire(struct bpf_if *bp, struct psref *psref)
167 {
168
169 psref_acquire(psref, &bp->bif_psref, bpf_psref_class);
170 }
171
172 static inline void
173 bpf_if_release(struct bpf_if *bp, struct psref *psref)
174 {
175
176 psref_release(psref, &bp->bif_psref, bpf_psref_class);
177 }
178
179 /*
180 * bpf_iflist is the list of interfaces; each corresponds to an ifnet
181 * bpf_dtab holds the descriptors, indexed by minor device #
182 */
183 static struct pslist_head bpf_iflist;
184 static struct pslist_head bpf_dlist;
185
186 /* Macros for bpf_d on bpf_dlist */
187 #define BPF_DLIST_WRITER_INSERT_HEAD(__d) \
188 PSLIST_WRITER_INSERT_HEAD(&bpf_dlist, (__d), bd_bpf_dlist_entry)
189 #define BPF_DLIST_READER_FOREACH(__d) \
190 PSLIST_READER_FOREACH((__d), &bpf_dlist, struct bpf_d, \
191 bd_bpf_dlist_entry)
192 #define BPF_DLIST_WRITER_FOREACH(__d) \
193 PSLIST_WRITER_FOREACH((__d), &bpf_dlist, struct bpf_d, \
194 bd_bpf_dlist_entry)
195 #define BPF_DLIST_ENTRY_INIT(__d) \
196 PSLIST_ENTRY_INIT((__d), bd_bpf_dlist_entry)
197 #define BPF_DLIST_WRITER_REMOVE(__d) \
198 PSLIST_WRITER_REMOVE((__d), bd_bpf_dlist_entry)
199 #define BPF_DLIST_ENTRY_DESTROY(__d) \
200 PSLIST_ENTRY_DESTROY((__d), bd_bpf_dlist_entry)
201
202 /* Macros for bpf_if on bpf_iflist */
203 #define BPF_IFLIST_WRITER_INSERT_HEAD(__bp) \
204 PSLIST_WRITER_INSERT_HEAD(&bpf_iflist, (__bp), bif_iflist_entry)
205 #define BPF_IFLIST_READER_FOREACH(__bp) \
206 PSLIST_READER_FOREACH((__bp), &bpf_iflist, struct bpf_if, \
207 bif_iflist_entry)
208 #define BPF_IFLIST_WRITER_FOREACH(__bp) \
209 PSLIST_WRITER_FOREACH((__bp), &bpf_iflist, struct bpf_if, \
210 bif_iflist_entry)
211 #define BPF_IFLIST_WRITER_REMOVE(__bp) \
212 PSLIST_WRITER_REMOVE((__bp), bif_iflist_entry)
213 #define BPF_IFLIST_ENTRY_INIT(__bp) \
214 PSLIST_ENTRY_INIT((__bp), bif_iflist_entry)
215 #define BPF_IFLIST_ENTRY_DESTROY(__bp) \
216 PSLIST_ENTRY_DESTROY((__bp), bif_iflist_entry)
217
218 /* Macros for bpf_d on bpf_if#bif_dlist_pslist */
219 #define BPFIF_DLIST_READER_FOREACH(__d, __bp) \
220 PSLIST_READER_FOREACH((__d), &(__bp)->bif_dlist_head, struct bpf_d, \
221 bd_bif_dlist_entry)
222 #define BPFIF_DLIST_WRITER_INSERT_HEAD(__bp, __d) \
223 PSLIST_WRITER_INSERT_HEAD(&(__bp)->bif_dlist_head, (__d), \
224 bd_bif_dlist_entry)
225 #define BPFIF_DLIST_WRITER_REMOVE(__d) \
226 PSLIST_WRITER_REMOVE((__d), bd_bif_dlist_entry)
227 #define BPFIF_DLIST_ENTRY_INIT(__d) \
228 PSLIST_ENTRY_INIT((__d), bd_bif_dlist_entry)
229 #define BPFIF_DLIST_READER_EMPTY(__bp) \
230 (PSLIST_READER_FIRST(&(__bp)->bif_dlist_head, struct bpf_d, \
231 bd_bif_dlist_entry) == NULL)
232 #define BPFIF_DLIST_WRITER_EMPTY(__bp) \
233 (PSLIST_WRITER_FIRST(&(__bp)->bif_dlist_head, struct bpf_d, \
234 bd_bif_dlist_entry) == NULL)
235 #define BPFIF_DLIST_ENTRY_DESTROY(__d) \
236 PSLIST_ENTRY_DESTROY((__d), bd_bif_dlist_entry)
237
238 static int bpf_allocbufs(struct bpf_d *);
239 static void bpf_deliver(struct bpf_if *,
240 void *(*cpfn)(void *, const void *, size_t),
241 void *, u_int, u_int, const bool);
242 static void bpf_freed(struct bpf_d *);
243 static void bpf_free_filter(struct bpf_filter *);
244 static void bpf_ifname(struct ifnet *, struct ifreq *);
245 static void *bpf_mcpy(void *, const void *, size_t);
246 static int bpf_movein(struct uio *, int, uint64_t,
247 struct mbuf **, struct sockaddr *);
248 static void bpf_attachd(struct bpf_d *, struct bpf_if *);
249 static void bpf_detachd(struct bpf_d *);
250 static int bpf_setif(struct bpf_d *, struct ifreq *);
251 static int bpf_setf(struct bpf_d *, struct bpf_program *);
252 static void bpf_timed_out(void *);
253 static inline void
254 bpf_wakeup(struct bpf_d *);
255 static int bpf_hdrlen(struct bpf_d *);
256 static void catchpacket(struct bpf_d *, u_char *, u_int, u_int,
257 void *(*)(void *, const void *, size_t), struct timespec *);
258 static void reset_d(struct bpf_d *);
259 static int bpf_getdltlist(struct bpf_d *, struct bpf_dltlist *);
260 static int bpf_setdlt(struct bpf_d *, u_int);
261
262 static int bpf_read(struct file *, off_t *, struct uio *, kauth_cred_t,
263 int);
264 static int bpf_write(struct file *, off_t *, struct uio *, kauth_cred_t,
265 int);
266 static int bpf_ioctl(struct file *, u_long, void *);
267 static int bpf_poll(struct file *, int);
268 static int bpf_stat(struct file *, struct stat *);
269 static int bpf_close(struct file *);
270 static int bpf_kqfilter(struct file *, struct knote *);
271 static void bpf_softintr(void *);
272
273 static const struct fileops bpf_fileops = {
274 .fo_read = bpf_read,
275 .fo_write = bpf_write,
276 .fo_ioctl = bpf_ioctl,
277 .fo_fcntl = fnullop_fcntl,
278 .fo_poll = bpf_poll,
279 .fo_stat = bpf_stat,
280 .fo_close = bpf_close,
281 .fo_kqfilter = bpf_kqfilter,
282 .fo_restart = fnullop_restart,
283 };
284
285 dev_type_open(bpfopen);
286
287 const struct cdevsw bpf_cdevsw = {
288 .d_open = bpfopen,
289 .d_close = noclose,
290 .d_read = noread,
291 .d_write = nowrite,
292 .d_ioctl = noioctl,
293 .d_stop = nostop,
294 .d_tty = notty,
295 .d_poll = nopoll,
296 .d_mmap = nommap,
297 .d_kqfilter = nokqfilter,
298 .d_discard = nodiscard,
299 .d_flag = D_OTHER
300 };
301
302 bpfjit_func_t
303 bpf_jit_generate(bpf_ctx_t *bc, void *code, size_t size)
304 {
305
306 membar_consumer();
307 if (bpfjit_module_ops.bj_generate_code != NULL) {
308 return bpfjit_module_ops.bj_generate_code(bc, code, size);
309 }
310 return NULL;
311 }
312
313 void
314 bpf_jit_freecode(bpfjit_func_t jcode)
315 {
316 KASSERT(bpfjit_module_ops.bj_free_code != NULL);
317 bpfjit_module_ops.bj_free_code(jcode);
318 }
319
320 static int
321 bpf_movein(struct uio *uio, int linktype, uint64_t mtu, struct mbuf **mp,
322 struct sockaddr *sockp)
323 {
324 struct mbuf *m;
325 int error;
326 size_t len;
327 size_t hlen;
328 size_t align;
329
330 /*
331 * Build a sockaddr based on the data link layer type.
332 * We do this at this level because the ethernet header
333 * is copied directly into the data field of the sockaddr.
334 * In the case of SLIP, there is no header and the packet
335 * is forwarded as is.
336 * Also, we are careful to leave room at the front of the mbuf
337 * for the link level header.
338 */
339 switch (linktype) {
340
341 case DLT_SLIP:
342 sockp->sa_family = AF_INET;
343 hlen = 0;
344 align = 0;
345 break;
346
347 case DLT_PPP:
348 sockp->sa_family = AF_UNSPEC;
349 hlen = 0;
350 align = 0;
351 break;
352
353 case DLT_EN10MB:
354 sockp->sa_family = AF_UNSPEC;
355 /* XXX Would MAXLINKHDR be better? */
356 /* 6(dst)+6(src)+2(type) */
357 hlen = sizeof(struct ether_header);
358 align = 2;
359 break;
360
361 case DLT_ARCNET:
362 sockp->sa_family = AF_UNSPEC;
363 hlen = ARC_HDRLEN;
364 align = 5;
365 break;
366
367 case DLT_FDDI:
368 sockp->sa_family = AF_LINK;
369 /* XXX 4(FORMAC)+6(dst)+6(src) */
370 hlen = 16;
371 align = 0;
372 break;
373
374 case DLT_ECONET:
375 sockp->sa_family = AF_UNSPEC;
376 hlen = 6;
377 align = 2;
378 break;
379
380 case DLT_NULL:
381 sockp->sa_family = AF_UNSPEC;
382 hlen = 0;
383 align = 0;
384 break;
385
386 default:
387 return (EIO);
388 }
389
390 len = uio->uio_resid;
391 /*
392 * If there aren't enough bytes for a link level header or the
393 * packet length exceeds the interface mtu, return an error.
394 */
395 if (len - hlen > mtu)
396 return (EMSGSIZE);
397
398 /*
399 * XXX Avoid complicated buffer chaining ---
400 * bail if it won't fit in a single mbuf.
401 * (Take into account possible alignment bytes)
402 */
403 if (len + align > MCLBYTES)
404 return (EIO);
405
406 m = m_gethdr(M_WAIT, MT_DATA);
407 m_reset_rcvif(m);
408 m->m_pkthdr.len = (int)(len - hlen);
409 if (len + align > MHLEN) {
410 m_clget(m, M_WAIT);
411 if ((m->m_flags & M_EXT) == 0) {
412 error = ENOBUFS;
413 goto bad;
414 }
415 }
416
417 /* Insure the data is properly aligned */
418 if (align > 0) {
419 m->m_data += align;
420 m->m_len -= (int)align;
421 }
422
423 error = uiomove(mtod(m, void *), len, uio);
424 if (error)
425 goto bad;
426 if (hlen != 0) {
427 memcpy(sockp->sa_data, mtod(m, void *), hlen);
428 m->m_data += hlen; /* XXX */
429 len -= hlen;
430 }
431 m->m_len = (int)len;
432 *mp = m;
433 return (0);
434
435 bad:
436 m_freem(m);
437 return (error);
438 }
439
440 /*
441 * Attach file to the bpf interface, i.e. make d listen on bp.
442 */
443 static void
444 bpf_attachd(struct bpf_d *d, struct bpf_if *bp)
445 {
446
447 KASSERT(mutex_owned(&bpf_mtx));
448 KASSERT(mutex_owned(d->bd_mtx));
449 /*
450 * Point d at bp, and add d to the interface's list of listeners.
451 * Finally, point the driver's bpf cookie at the interface so
452 * it will divert packets to bpf.
453 */
454 d->bd_bif = bp;
455 BPFIF_DLIST_WRITER_INSERT_HEAD(bp, d);
456
457 *bp->bif_driverp = bp;
458 }
459
460 /*
461 * Detach a file from its interface.
462 */
463 static void
464 bpf_detachd(struct bpf_d *d)
465 {
466 struct bpf_if *bp;
467
468 KASSERT(mutex_owned(&bpf_mtx));
469 KASSERT(mutex_owned(d->bd_mtx));
470
471 bp = d->bd_bif;
472 /*
473 * Check if this descriptor had requested promiscuous mode.
474 * If so, turn it off.
475 */
476 if (d->bd_promisc) {
477 int error __diagused;
478
479 d->bd_promisc = 0;
480 /*
481 * Take device out of promiscuous mode. Since we were
482 * able to enter promiscuous mode, we should be able
483 * to turn it off. But we can get an error if
484 * the interface was configured down, so only panic
485 * if we don't get an unexpected error.
486 */
487 #ifndef NET_MPSAFE
488 KERNEL_LOCK(1, NULL);
489 #endif
490 error = ifpromisc(bp->bif_ifp, 0);
491 #ifndef NET_MPSAFE
492 KERNEL_UNLOCK_ONE(NULL);
493 #endif
494 #ifdef DIAGNOSTIC
495 if (error)
496 printf("%s: ifpromisc failed: %d", __func__, error);
497 #endif
498 }
499
500 /* Remove d from the interface's descriptor list. */
501 BPFIF_DLIST_WRITER_REMOVE(d);
502
503 pserialize_perform(bpf_psz);
504
505 if (BPFIF_DLIST_WRITER_EMPTY(bp)) {
506 /*
507 * Let the driver know that there are no more listeners.
508 */
509 *d->bd_bif->bif_driverp = NULL;
510 }
511 d->bd_bif = NULL;
512 }
513
514 static void
515 bpf_init(void)
516 {
517
518 mutex_init(&bpf_mtx, MUTEX_DEFAULT, IPL_NONE);
519 bpf_psz = pserialize_create();
520 bpf_psref_class = psref_class_create("bpf", IPL_SOFTNET);
521
522 PSLIST_INIT(&bpf_iflist);
523 PSLIST_INIT(&bpf_dlist);
524
525 bpf_gstats_percpu = percpu_alloc(sizeof(struct bpf_stat));
526
527 return;
528 }
529
530 /*
531 * bpfilterattach() is called at boot time. We don't need to do anything
532 * here, since any initialization will happen as part of module init code.
533 */
534 /* ARGSUSED */
535 void
536 bpfilterattach(int n)
537 {
538
539 }
540
541 /*
542 * Open ethernet device. Clones.
543 */
544 /* ARGSUSED */
545 int
546 bpfopen(dev_t dev, int flag, int mode, struct lwp *l)
547 {
548 struct bpf_d *d;
549 struct file *fp;
550 int error, fd;
551
552 /* falloc() will fill in the descriptor for us. */
553 if ((error = fd_allocfile(&fp, &fd)) != 0)
554 return error;
555
556 d = kmem_zalloc(sizeof(*d), KM_SLEEP);
557 d->bd_bufsize = bpf_bufsize;
558 d->bd_seesent = 1;
559 d->bd_feedback = 0;
560 d->bd_pid = l->l_proc->p_pid;
561 #ifdef _LP64
562 if (curproc->p_flag & PK_32)
563 d->bd_compat32 = 1;
564 #endif
565 getnanotime(&d->bd_btime);
566 d->bd_atime = d->bd_mtime = d->bd_btime;
567 callout_init(&d->bd_callout, 0);
568 selinit(&d->bd_sel);
569 d->bd_sih = softint_establish(SOFTINT_CLOCK, bpf_softintr, d);
570 d->bd_jitcode = NULL;
571 d->bd_filter = NULL;
572 BPF_DLIST_ENTRY_INIT(d);
573 BPFIF_DLIST_ENTRY_INIT(d);
574 d->bd_mtx = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
575 d->bd_buf_mtx = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);
576 cv_init(&d->bd_cv, "bpf");
577
578 mutex_enter(&bpf_mtx);
579 BPF_DLIST_WRITER_INSERT_HEAD(d);
580 mutex_exit(&bpf_mtx);
581
582 return fd_clone(fp, fd, flag, &bpf_fileops, d);
583 }
584
585 /*
586 * Close the descriptor by detaching it from its interface,
587 * deallocating its buffers, and marking it free.
588 */
589 /* ARGSUSED */
590 static int
591 bpf_close(struct file *fp)
592 {
593 struct bpf_d *d;
594
595 mutex_enter(&bpf_mtx);
596
597 if ((d = fp->f_bpf) == NULL) {
598 mutex_exit(&bpf_mtx);
599 return 0;
600 }
601
602 /*
603 * Refresh the PID associated with this bpf file.
604 */
605 d->bd_pid = curproc->p_pid;
606
607 mutex_enter(d->bd_mtx);
608 if (d->bd_state == BPF_WAITING)
609 callout_halt(&d->bd_callout, d->bd_mtx);
610 d->bd_state = BPF_IDLE;
611 if (d->bd_bif)
612 bpf_detachd(d);
613 mutex_exit(d->bd_mtx);
614
615 BPF_DLIST_WRITER_REMOVE(d);
616
617 pserialize_perform(bpf_psz);
618 mutex_exit(&bpf_mtx);
619
620 BPFIF_DLIST_ENTRY_DESTROY(d);
621 BPF_DLIST_ENTRY_DESTROY(d);
622 fp->f_bpf = NULL;
623 bpf_freed(d);
624 callout_destroy(&d->bd_callout);
625 seldestroy(&d->bd_sel);
626 softint_disestablish(d->bd_sih);
627 mutex_obj_free(d->bd_mtx);
628 mutex_obj_free(d->bd_buf_mtx);
629 cv_destroy(&d->bd_cv);
630
631 kmem_free(d, sizeof(*d));
632
633 return (0);
634 }
635
636 /*
637 * Rotate the packet buffers in descriptor d. Move the store buffer
638 * into the hold slot, and the free buffer into the store slot.
639 * Zero the length of the new store buffer.
640 */
641 #define ROTATE_BUFFERS(d) \
642 (d)->bd_hbuf = (d)->bd_sbuf; \
643 (d)->bd_hlen = (d)->bd_slen; \
644 (d)->bd_sbuf = (d)->bd_fbuf; \
645 (d)->bd_slen = 0; \
646 (d)->bd_fbuf = NULL;
647 /*
648 * bpfread - read next chunk of packets from buffers
649 */
650 static int
651 bpf_read(struct file *fp, off_t *offp, struct uio *uio,
652 kauth_cred_t cred, int flags)
653 {
654 struct bpf_d *d = fp->f_bpf;
655 int timed_out;
656 int error;
657
658 getnanotime(&d->bd_atime);
659 /*
660 * Restrict application to use a buffer the same size as
661 * the kernel buffers.
662 */
663 if (uio->uio_resid != d->bd_bufsize)
664 return (EINVAL);
665
666 mutex_enter(d->bd_mtx);
667 if (d->bd_state == BPF_WAITING)
668 callout_halt(&d->bd_callout, d->bd_buf_mtx);
669 timed_out = (d->bd_state == BPF_TIMED_OUT);
670 d->bd_state = BPF_IDLE;
671 mutex_exit(d->bd_mtx);
672 /*
673 * If the hold buffer is empty, then do a timed sleep, which
674 * ends when the timeout expires or when enough packets
675 * have arrived to fill the store buffer.
676 */
677 mutex_enter(d->bd_buf_mtx);
678 while (d->bd_hbuf == NULL) {
679 if (fp->f_flag & FNONBLOCK) {
680 if (d->bd_slen == 0) {
681 error = EWOULDBLOCK;
682 goto out;
683 }
684 ROTATE_BUFFERS(d);
685 break;
686 }
687
688 if ((d->bd_immediate || timed_out) && d->bd_slen != 0) {
689 /*
690 * A packet(s) either arrived since the previous
691 * read or arrived while we were asleep.
692 * Rotate the buffers and return what's here.
693 */
694 ROTATE_BUFFERS(d);
695 break;
696 }
697
698 error = cv_timedwait_sig(&d->bd_cv, d->bd_buf_mtx, d->bd_rtout);
699
700 if (error == EINTR || error == ERESTART)
701 goto out;
702
703 if (error == EWOULDBLOCK) {
704 /*
705 * On a timeout, return what's in the buffer,
706 * which may be nothing. If there is something
707 * in the store buffer, we can rotate the buffers.
708 */
709 if (d->bd_hbuf)
710 /*
711 * We filled up the buffer in between
712 * getting the timeout and arriving
713 * here, so we don't need to rotate.
714 */
715 break;
716
717 if (d->bd_slen == 0) {
718 error = 0;
719 goto out;
720 }
721 ROTATE_BUFFERS(d);
722 break;
723 }
724 if (error != 0)
725 goto out;
726 }
727 /*
728 * At this point, we know we have something in the hold slot.
729 */
730 mutex_exit(d->bd_buf_mtx);
731
732 /*
733 * Move data from hold buffer into user space.
734 * We know the entire buffer is transferred since
735 * we checked above that the read buffer is bpf_bufsize bytes.
736 */
737 error = uiomove(d->bd_hbuf, d->bd_hlen, uio);
738
739 mutex_enter(d->bd_buf_mtx);
740 d->bd_fbuf = d->bd_hbuf;
741 d->bd_hbuf = NULL;
742 d->bd_hlen = 0;
743 out:
744 mutex_exit(d->bd_buf_mtx);
745 return (error);
746 }
747
748
749 /*
750 * If there are processes sleeping on this descriptor, wake them up.
751 */
752 static inline void
753 bpf_wakeup(struct bpf_d *d)
754 {
755
756 mutex_enter(d->bd_buf_mtx);
757 cv_broadcast(&d->bd_cv);
758 mutex_exit(d->bd_buf_mtx);
759
760 if (d->bd_async)
761 softint_schedule(d->bd_sih);
762 selnotify(&d->bd_sel, 0, 0);
763 }
764
765 static void
766 bpf_softintr(void *cookie)
767 {
768 struct bpf_d *d;
769
770 d = cookie;
771 if (d->bd_async)
772 fownsignal(d->bd_pgid, SIGIO, 0, 0, NULL);
773 }
774
775 static void
776 bpf_timed_out(void *arg)
777 {
778 struct bpf_d *d = arg;
779
780 mutex_enter(d->bd_mtx);
781 if (d->bd_state == BPF_WAITING) {
782 d->bd_state = BPF_TIMED_OUT;
783 if (d->bd_slen != 0)
784 bpf_wakeup(d);
785 }
786 mutex_exit(d->bd_mtx);
787 }
788
789
790 static int
791 bpf_write(struct file *fp, off_t *offp, struct uio *uio,
792 kauth_cred_t cred, int flags)
793 {
794 struct bpf_d *d = fp->f_bpf;
795 struct bpf_if *bp;
796 struct ifnet *ifp;
797 struct mbuf *m, *mc;
798 int error;
799 static struct sockaddr_storage dst;
800 struct psref psref;
801 int bound;
802
803 m = NULL; /* XXX gcc */
804
805 bound = curlwp_bind();
806 mutex_enter(d->bd_mtx);
807 bp = d->bd_bif;
808 if (bp == NULL) {
809 mutex_exit(d->bd_mtx);
810 error = ENXIO;
811 goto out_bindx;
812 }
813 bpf_if_acquire(bp, &psref);
814 mutex_exit(d->bd_mtx);
815
816 getnanotime(&d->bd_mtime);
817
818 ifp = bp->bif_ifp;
819 if (if_is_deactivated(ifp)) {
820 error = ENXIO;
821 goto out;
822 }
823
824 if (uio->uio_resid == 0) {
825 error = 0;
826 goto out;
827 }
828
829 error = bpf_movein(uio, (int)bp->bif_dlt, ifp->if_mtu, &m,
830 (struct sockaddr *) &dst);
831 if (error)
832 goto out;
833
834 if (m->m_pkthdr.len > ifp->if_mtu) {
835 m_freem(m);
836 error = EMSGSIZE;
837 goto out;
838 }
839
840 if (d->bd_hdrcmplt)
841 dst.ss_family = pseudo_AF_HDRCMPLT;
842
843 if (d->bd_feedback) {
844 mc = m_dup(m, 0, M_COPYALL, M_NOWAIT);
845 if (mc != NULL)
846 m_set_rcvif(mc, ifp);
847 /* Set M_PROMISC for outgoing packets to be discarded. */
848 if (1 /*d->bd_direction == BPF_D_INOUT*/)
849 m->m_flags |= M_PROMISC;
850 } else
851 mc = NULL;
852
853 error = if_output_lock(ifp, ifp, m, (struct sockaddr *) &dst, NULL);
854
855 if (mc != NULL) {
856 if (error == 0)
857 ifp->_if_input(ifp, mc);
858 else
859 m_freem(mc);
860 }
861 /*
862 * The driver frees the mbuf.
863 */
864 out:
865 bpf_if_release(bp, &psref);
866 out_bindx:
867 curlwp_bindx(bound);
868 return error;
869 }
870
871 /*
872 * Reset a descriptor by flushing its packet buffer and clearing the
873 * receive and drop counts.
874 */
875 static void
876 reset_d(struct bpf_d *d)
877 {
878
879 KASSERT(mutex_owned(d->bd_mtx));
880
881 mutex_enter(d->bd_buf_mtx);
882 if (d->bd_hbuf) {
883 /* Free the hold buffer. */
884 d->bd_fbuf = d->bd_hbuf;
885 d->bd_hbuf = NULL;
886 }
887 d->bd_slen = 0;
888 d->bd_hlen = 0;
889 d->bd_rcount = 0;
890 d->bd_dcount = 0;
891 d->bd_ccount = 0;
892 mutex_exit(d->bd_buf_mtx);
893 }
894
895 /*
896 * FIONREAD Check for read packet available.
897 * BIOCGBLEN Get buffer len [for read()].
898 * BIOCSETF Set ethernet read filter.
899 * BIOCFLUSH Flush read packet buffer.
900 * BIOCPROMISC Put interface into promiscuous mode.
901 * BIOCGDLT Get link layer type.
902 * BIOCGETIF Get interface name.
903 * BIOCSETIF Set interface.
904 * BIOCSRTIMEOUT Set read timeout.
905 * BIOCGRTIMEOUT Get read timeout.
906 * BIOCGSTATS Get packet stats.
907 * BIOCIMMEDIATE Set immediate mode.
908 * BIOCVERSION Get filter language version.
909 * BIOCGHDRCMPLT Get "header already complete" flag.
910 * BIOCSHDRCMPLT Set "header already complete" flag.
911 * BIOCSFEEDBACK Set packet feedback mode.
912 * BIOCGFEEDBACK Get packet feedback mode.
913 * BIOCGSEESENT Get "see sent packets" mode.
914 * BIOCSSEESENT Set "see sent packets" mode.
915 */
916 /* ARGSUSED */
917 static int
918 bpf_ioctl(struct file *fp, u_long cmd, void *addr)
919 {
920 struct bpf_d *d = fp->f_bpf;
921 int error = 0;
922
923 /*
924 * Refresh the PID associated with this bpf file.
925 */
926 d->bd_pid = curproc->p_pid;
927 #ifdef _LP64
928 if (curproc->p_flag & PK_32)
929 d->bd_compat32 = 1;
930 else
931 d->bd_compat32 = 0;
932 #endif
933
934 mutex_enter(d->bd_mtx);
935 if (d->bd_state == BPF_WAITING)
936 callout_halt(&d->bd_callout, d->bd_mtx);
937 d->bd_state = BPF_IDLE;
938 mutex_exit(d->bd_mtx);
939
940 switch (cmd) {
941
942 default:
943 error = EINVAL;
944 break;
945
946 /*
947 * Check for read packet available.
948 */
949 case FIONREAD:
950 {
951 int n;
952
953 mutex_enter(d->bd_buf_mtx);
954 n = d->bd_slen;
955 if (d->bd_hbuf)
956 n += d->bd_hlen;
957 mutex_exit(d->bd_buf_mtx);
958
959 *(int *)addr = n;
960 break;
961 }
962
963 /*
964 * Get buffer len [for read()].
965 */
966 case BIOCGBLEN:
967 *(u_int *)addr = d->bd_bufsize;
968 break;
969
970 /*
971 * Set buffer length.
972 */
973 case BIOCSBLEN:
974 /*
975 * Forbid to change the buffer length if buffers are already
976 * allocated.
977 */
978 mutex_enter(d->bd_mtx);
979 mutex_enter(d->bd_buf_mtx);
980 if (d->bd_bif != NULL || d->bd_sbuf != NULL)
981 error = EINVAL;
982 else {
983 u_int size = *(u_int *)addr;
984
985 if (size > bpf_maxbufsize)
986 *(u_int *)addr = size = bpf_maxbufsize;
987 else if (size < BPF_MINBUFSIZE)
988 *(u_int *)addr = size = BPF_MINBUFSIZE;
989 d->bd_bufsize = size;
990 }
991 mutex_exit(d->bd_buf_mtx);
992 mutex_exit(d->bd_mtx);
993 break;
994
995 /*
996 * Set link layer read filter.
997 */
998 case BIOCSETF:
999 error = bpf_setf(d, addr);
1000 break;
1001
1002 /*
1003 * Flush read packet buffer.
1004 */
1005 case BIOCFLUSH:
1006 mutex_enter(d->bd_mtx);
1007 reset_d(d);
1008 mutex_exit(d->bd_mtx);
1009 break;
1010
1011 /*
1012 * Put interface into promiscuous mode.
1013 */
1014 case BIOCPROMISC:
1015 mutex_enter(d->bd_mtx);
1016 if (d->bd_bif == NULL) {
1017 mutex_exit(d->bd_mtx);
1018 /*
1019 * No interface attached yet.
1020 */
1021 error = EINVAL;
1022 break;
1023 }
1024 if (d->bd_promisc == 0) {
1025 #ifndef NET_MPSAFE
1026 KERNEL_LOCK(1, NULL);
1027 #endif
1028 error = ifpromisc(d->bd_bif->bif_ifp, 1);
1029 #ifndef NET_MPSAFE
1030 KERNEL_UNLOCK_ONE(NULL);
1031 #endif
1032 if (error == 0)
1033 d->bd_promisc = 1;
1034 }
1035 mutex_exit(d->bd_mtx);
1036 break;
1037
1038 /*
1039 * Get device parameters.
1040 */
1041 case BIOCGDLT:
1042 mutex_enter(d->bd_mtx);
1043 if (d->bd_bif == NULL)
1044 error = EINVAL;
1045 else
1046 *(u_int *)addr = d->bd_bif->bif_dlt;
1047 mutex_exit(d->bd_mtx);
1048 break;
1049
1050 /*
1051 * Get a list of supported device parameters.
1052 */
1053 case BIOCGDLTLIST:
1054 mutex_enter(d->bd_mtx);
1055 if (d->bd_bif == NULL)
1056 error = EINVAL;
1057 else
1058 error = bpf_getdltlist(d, addr);
1059 mutex_exit(d->bd_mtx);
1060 break;
1061
1062 /*
1063 * Set device parameters.
1064 */
1065 case BIOCSDLT:
1066 mutex_enter(&bpf_mtx);
1067 mutex_enter(d->bd_mtx);
1068 if (d->bd_bif == NULL)
1069 error = EINVAL;
1070 else
1071 error = bpf_setdlt(d, *(u_int *)addr);
1072 mutex_exit(d->bd_mtx);
1073 mutex_exit(&bpf_mtx);
1074 break;
1075
1076 /*
1077 * Set interface name.
1078 */
1079 #ifdef OBIOCGETIF
1080 case OBIOCGETIF:
1081 #endif
1082 case BIOCGETIF:
1083 mutex_enter(d->bd_mtx);
1084 if (d->bd_bif == NULL)
1085 error = EINVAL;
1086 else
1087 bpf_ifname(d->bd_bif->bif_ifp, addr);
1088 mutex_exit(d->bd_mtx);
1089 break;
1090
1091 /*
1092 * Set interface.
1093 */
1094 #ifdef OBIOCSETIF
1095 case OBIOCSETIF:
1096 #endif
1097 case BIOCSETIF:
1098 mutex_enter(&bpf_mtx);
1099 error = bpf_setif(d, addr);
1100 mutex_exit(&bpf_mtx);
1101 break;
1102
1103 /*
1104 * Set read timeout.
1105 */
1106 case BIOCSRTIMEOUT:
1107 {
1108 struct timeval *tv = addr;
1109
1110 /* Compute number of ticks. */
1111 d->bd_rtout = tv->tv_sec * hz + tv->tv_usec / tick;
1112 if ((d->bd_rtout == 0) && (tv->tv_usec != 0))
1113 d->bd_rtout = 1;
1114 break;
1115 }
1116
1117 #ifdef BIOCGORTIMEOUT
1118 /*
1119 * Get read timeout.
1120 */
1121 case BIOCGORTIMEOUT:
1122 {
1123 struct timeval50 *tv = addr;
1124
1125 tv->tv_sec = d->bd_rtout / hz;
1126 tv->tv_usec = (d->bd_rtout % hz) * tick;
1127 break;
1128 }
1129 #endif
1130
1131 #ifdef BIOCSORTIMEOUT
1132 /*
1133 * Set read timeout.
1134 */
1135 case BIOCSORTIMEOUT:
1136 {
1137 struct timeval50 *tv = addr;
1138
1139 /* Compute number of ticks. */
1140 d->bd_rtout = tv->tv_sec * hz + tv->tv_usec / tick;
1141 if ((d->bd_rtout == 0) && (tv->tv_usec != 0))
1142 d->bd_rtout = 1;
1143 break;
1144 }
1145 #endif
1146
1147 /*
1148 * Get read timeout.
1149 */
1150 case BIOCGRTIMEOUT:
1151 {
1152 struct timeval *tv = addr;
1153
1154 tv->tv_sec = d->bd_rtout / hz;
1155 tv->tv_usec = (d->bd_rtout % hz) * tick;
1156 break;
1157 }
1158 /*
1159 * Get packet stats.
1160 */
1161 case BIOCGSTATS:
1162 {
1163 struct bpf_stat *bs = addr;
1164
1165 bs->bs_recv = d->bd_rcount;
1166 bs->bs_drop = d->bd_dcount;
1167 bs->bs_capt = d->bd_ccount;
1168 break;
1169 }
1170
1171 case BIOCGSTATSOLD:
1172 {
1173 struct bpf_stat_old *bs = addr;
1174
1175 bs->bs_recv = d->bd_rcount;
1176 bs->bs_drop = d->bd_dcount;
1177 break;
1178 }
1179
1180 /*
1181 * Set immediate mode.
1182 */
1183 case BIOCIMMEDIATE:
1184 d->bd_immediate = *(u_int *)addr;
1185 break;
1186
1187 case BIOCVERSION:
1188 {
1189 struct bpf_version *bv = addr;
1190
1191 bv->bv_major = BPF_MAJOR_VERSION;
1192 bv->bv_minor = BPF_MINOR_VERSION;
1193 break;
1194 }
1195
1196 case BIOCGHDRCMPLT: /* get "header already complete" flag */
1197 *(u_int *)addr = d->bd_hdrcmplt;
1198 break;
1199
1200 case BIOCSHDRCMPLT: /* set "header already complete" flag */
1201 d->bd_hdrcmplt = *(u_int *)addr ? 1 : 0;
1202 break;
1203
1204 /*
1205 * Get "see sent packets" flag
1206 */
1207 case BIOCGSEESENT:
1208 *(u_int *)addr = d->bd_seesent;
1209 break;
1210
1211 /*
1212 * Set "see sent" packets flag
1213 */
1214 case BIOCSSEESENT:
1215 d->bd_seesent = *(u_int *)addr;
1216 break;
1217
1218 /*
1219 * Set "feed packets from bpf back to input" mode
1220 */
1221 case BIOCSFEEDBACK:
1222 d->bd_feedback = *(u_int *)addr;
1223 break;
1224
1225 /*
1226 * Get "feed packets from bpf back to input" mode
1227 */
1228 case BIOCGFEEDBACK:
1229 *(u_int *)addr = d->bd_feedback;
1230 break;
1231
1232 case FIONBIO: /* Non-blocking I/O */
1233 /*
1234 * No need to do anything special as we use IO_NDELAY in
1235 * bpfread() as an indication of whether or not to block
1236 * the read.
1237 */
1238 break;
1239
1240 case FIOASYNC: /* Send signal on receive packets */
1241 d->bd_async = *(int *)addr;
1242 break;
1243
1244 case TIOCSPGRP: /* Process or group to send signals to */
1245 case FIOSETOWN:
1246 error = fsetown(&d->bd_pgid, cmd, addr);
1247 break;
1248
1249 case TIOCGPGRP:
1250 case FIOGETOWN:
1251 error = fgetown(d->bd_pgid, cmd, addr);
1252 break;
1253 }
1254 return (error);
1255 }
1256
1257 /*
1258 * Set d's packet filter program to fp. If this file already has a filter,
1259 * free it and replace it. Returns EINVAL for bogus requests.
1260 */
1261 static int
1262 bpf_setf(struct bpf_d *d, struct bpf_program *fp)
1263 {
1264 struct bpf_insn *fcode;
1265 bpfjit_func_t jcode;
1266 size_t flen, size = 0;
1267 struct bpf_filter *oldf, *newf;
1268
1269 jcode = NULL;
1270 flen = fp->bf_len;
1271
1272 if ((fp->bf_insns == NULL && flen) || flen > BPF_MAXINSNS) {
1273 return EINVAL;
1274 }
1275
1276 if (flen) {
1277 /*
1278 * Allocate the buffer, copy the byte-code from
1279 * userspace and validate it.
1280 */
1281 size = flen * sizeof(*fp->bf_insns);
1282 fcode = kmem_alloc(size, KM_SLEEP);
1283 if (copyin(fp->bf_insns, fcode, size) != 0 ||
1284 !bpf_validate(fcode, (int)flen)) {
1285 kmem_free(fcode, size);
1286 return EINVAL;
1287 }
1288 membar_consumer();
1289 if (bpf_jit)
1290 jcode = bpf_jit_generate(NULL, fcode, flen);
1291 } else {
1292 fcode = NULL;
1293 }
1294
1295 newf = kmem_alloc(sizeof(*newf), KM_SLEEP);
1296 newf->bf_insn = fcode;
1297 newf->bf_size = size;
1298 newf->bf_jitcode = jcode;
1299 d->bd_jitcode = jcode; /* XXX just for kvm(3) users */
1300
1301 /* Need to hold bpf_mtx for pserialize_perform */
1302 mutex_enter(&bpf_mtx);
1303 mutex_enter(d->bd_mtx);
1304 oldf = d->bd_filter;
1305 d->bd_filter = newf;
1306 membar_producer();
1307 reset_d(d);
1308 pserialize_perform(bpf_psz);
1309 mutex_exit(d->bd_mtx);
1310 mutex_exit(&bpf_mtx);
1311
1312 if (oldf != NULL)
1313 bpf_free_filter(oldf);
1314
1315 return 0;
1316 }
1317
1318 /*
1319 * Detach a file from its current interface (if attached at all) and attach
1320 * to the interface indicated by the name stored in ifr.
1321 * Return an errno or 0.
1322 */
1323 static int
1324 bpf_setif(struct bpf_d *d, struct ifreq *ifr)
1325 {
1326 struct bpf_if *bp;
1327 char *cp;
1328 int unit_seen, i, error;
1329
1330 KASSERT(mutex_owned(&bpf_mtx));
1331 /*
1332 * Make sure the provided name has a unit number, and default
1333 * it to '0' if not specified.
1334 * XXX This is ugly ... do this differently?
1335 */
1336 unit_seen = 0;
1337 cp = ifr->ifr_name;
1338 cp[sizeof(ifr->ifr_name) - 1] = '\0'; /* sanity */
1339 while (*cp++)
1340 if (*cp >= '0' && *cp <= '9')
1341 unit_seen = 1;
1342 if (!unit_seen) {
1343 /* Make sure to leave room for the '\0'. */
1344 for (i = 0; i < (IFNAMSIZ - 1); ++i) {
1345 if ((ifr->ifr_name[i] >= 'a' &&
1346 ifr->ifr_name[i] <= 'z') ||
1347 (ifr->ifr_name[i] >= 'A' &&
1348 ifr->ifr_name[i] <= 'Z'))
1349 continue;
1350 ifr->ifr_name[i] = '0';
1351 }
1352 }
1353
1354 /*
1355 * Look through attached interfaces for the named one.
1356 */
1357 BPF_IFLIST_WRITER_FOREACH(bp) {
1358 struct ifnet *ifp = bp->bif_ifp;
1359
1360 if (ifp == NULL ||
1361 strcmp(ifp->if_xname, ifr->ifr_name) != 0)
1362 continue;
1363 /* skip additional entry */
1364 if (bp->bif_driverp != &ifp->if_bpf)
1365 continue;
1366 /*
1367 * We found the requested interface.
1368 * Allocate the packet buffers if we need to.
1369 * If we're already attached to requested interface,
1370 * just flush the buffer.
1371 */
1372 /*
1373 * bpf_allocbufs is called only here. bpf_mtx ensures that
1374 * no race condition happen on d->bd_sbuf.
1375 */
1376 if (d->bd_sbuf == NULL) {
1377 error = bpf_allocbufs(d);
1378 if (error != 0)
1379 return (error);
1380 }
1381 mutex_enter(d->bd_mtx);
1382 if (bp != d->bd_bif) {
1383 if (d->bd_bif)
1384 /*
1385 * Detach if attached to something else.
1386 */
1387 bpf_detachd(d);
1388
1389 bpf_attachd(d, bp);
1390 }
1391 reset_d(d);
1392 mutex_exit(d->bd_mtx);
1393 return (0);
1394 }
1395 /* Not found. */
1396 return (ENXIO);
1397 }
1398
1399 /*
1400 * Copy the interface name to the ifreq.
1401 */
1402 static void
1403 bpf_ifname(struct ifnet *ifp, struct ifreq *ifr)
1404 {
1405 memcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
1406 }
1407
1408 static int
1409 bpf_stat(struct file *fp, struct stat *st)
1410 {
1411 struct bpf_d *d = fp->f_bpf;
1412
1413 (void)memset(st, 0, sizeof(*st));
1414 mutex_enter(d->bd_mtx);
1415 st->st_dev = makedev(cdevsw_lookup_major(&bpf_cdevsw), d->bd_pid);
1416 st->st_atimespec = d->bd_atime;
1417 st->st_mtimespec = d->bd_mtime;
1418 st->st_ctimespec = st->st_birthtimespec = d->bd_btime;
1419 st->st_uid = kauth_cred_geteuid(fp->f_cred);
1420 st->st_gid = kauth_cred_getegid(fp->f_cred);
1421 st->st_mode = S_IFCHR;
1422 mutex_exit(d->bd_mtx);
1423 return 0;
1424 }
1425
1426 /*
1427 * Support for poll() system call
1428 *
1429 * Return true iff the specific operation will not block indefinitely - with
1430 * the assumption that it is safe to positively acknowledge a request for the
1431 * ability to write to the BPF device.
1432 * Otherwise, return false but make a note that a selnotify() must be done.
1433 */
1434 static int
1435 bpf_poll(struct file *fp, int events)
1436 {
1437 struct bpf_d *d = fp->f_bpf;
1438 int revents;
1439
1440 /*
1441 * Refresh the PID associated with this bpf file.
1442 */
1443 mutex_enter(&bpf_mtx);
1444 d->bd_pid = curproc->p_pid;
1445
1446 revents = events & (POLLOUT | POLLWRNORM);
1447 if (events & (POLLIN | POLLRDNORM)) {
1448 /*
1449 * An imitation of the FIONREAD ioctl code.
1450 */
1451 mutex_enter(d->bd_mtx);
1452 if (d->bd_hlen != 0 ||
1453 ((d->bd_immediate || d->bd_state == BPF_TIMED_OUT) &&
1454 d->bd_slen != 0)) {
1455 revents |= events & (POLLIN | POLLRDNORM);
1456 } else {
1457 selrecord(curlwp, &d->bd_sel);
1458 /* Start the read timeout if necessary */
1459 if (d->bd_rtout > 0 && d->bd_state == BPF_IDLE) {
1460 callout_reset(&d->bd_callout, d->bd_rtout,
1461 bpf_timed_out, d);
1462 d->bd_state = BPF_WAITING;
1463 }
1464 }
1465 mutex_exit(d->bd_mtx);
1466 }
1467
1468 mutex_exit(&bpf_mtx);
1469 return (revents);
1470 }
1471
1472 static void
1473 filt_bpfrdetach(struct knote *kn)
1474 {
1475 struct bpf_d *d = kn->kn_hook;
1476
1477 mutex_enter(d->bd_buf_mtx);
1478 SLIST_REMOVE(&d->bd_sel.sel_klist, kn, knote, kn_selnext);
1479 mutex_exit(d->bd_buf_mtx);
1480 }
1481
1482 static int
1483 filt_bpfread(struct knote *kn, long hint)
1484 {
1485 struct bpf_d *d = kn->kn_hook;
1486 int rv;
1487
1488 mutex_enter(d->bd_buf_mtx);
1489 kn->kn_data = d->bd_hlen;
1490 if (d->bd_immediate)
1491 kn->kn_data += d->bd_slen;
1492 rv = (kn->kn_data > 0);
1493 mutex_exit(d->bd_buf_mtx);
1494 return rv;
1495 }
1496
1497 static const struct filterops bpfread_filtops =
1498 { 1, NULL, filt_bpfrdetach, filt_bpfread };
1499
1500 static int
1501 bpf_kqfilter(struct file *fp, struct knote *kn)
1502 {
1503 struct bpf_d *d = fp->f_bpf;
1504 struct klist *klist;
1505
1506 mutex_enter(d->bd_buf_mtx);
1507 switch (kn->kn_filter) {
1508 case EVFILT_READ:
1509 klist = &d->bd_sel.sel_klist;
1510 kn->kn_fop = &bpfread_filtops;
1511 break;
1512
1513 default:
1514 mutex_exit(d->bd_buf_mtx);
1515 return (EINVAL);
1516 }
1517
1518 kn->kn_hook = d;
1519
1520 SLIST_INSERT_HEAD(klist, kn, kn_selnext);
1521 mutex_exit(d->bd_buf_mtx);
1522
1523 return (0);
1524 }
1525
1526 /*
1527 * Copy data from an mbuf chain into a buffer. This code is derived
1528 * from m_copydata in sys/uipc_mbuf.c.
1529 */
1530 static void *
1531 bpf_mcpy(void *dst_arg, const void *src_arg, size_t len)
1532 {
1533 const struct mbuf *m;
1534 u_int count;
1535 u_char *dst;
1536
1537 m = src_arg;
1538 dst = dst_arg;
1539 while (len > 0) {
1540 if (m == NULL)
1541 panic("bpf_mcpy");
1542 count = min(m->m_len, len);
1543 memcpy(dst, mtod(m, const void *), count);
1544 m = m->m_next;
1545 dst += count;
1546 len -= count;
1547 }
1548 return dst_arg;
1549 }
1550
1551 /*
1552 * Dispatch a packet to all the listeners on interface bp.
1553 *
1554 * pkt pointer to the packet, either a data buffer or an mbuf chain
1555 * buflen buffer length, if pkt is a data buffer
1556 * cpfn a function that can copy pkt into the listener's buffer
1557 * pktlen length of the packet
1558 * rcv true if packet came in
1559 */
1560 static inline void
1561 bpf_deliver(struct bpf_if *bp, void *(*cpfn)(void *, const void *, size_t),
1562 void *pkt, u_int pktlen, u_int buflen, const bool rcv)
1563 {
1564 uint32_t mem[BPF_MEMWORDS];
1565 bpf_args_t args = {
1566 .pkt = (const uint8_t *)pkt,
1567 .wirelen = pktlen,
1568 .buflen = buflen,
1569 .mem = mem,
1570 .arg = NULL
1571 };
1572 bool gottime = false;
1573 struct timespec ts;
1574 struct bpf_d *d;
1575 int s;
1576
1577 KASSERT(!cpu_intr_p());
1578
1579 /*
1580 * Note that the IPL does not have to be raised at this point.
1581 * The only problem that could arise here is that if two different
1582 * interfaces shared any data. This is not the case.
1583 */
1584 s = pserialize_read_enter();
1585 BPFIF_DLIST_READER_FOREACH(d, bp) {
1586 u_int slen = 0;
1587 struct bpf_filter *filter;
1588
1589 if (!d->bd_seesent && !rcv) {
1590 continue;
1591 }
1592 atomic_inc_ulong(&d->bd_rcount);
1593 BPF_STATINC(recv);
1594
1595 filter = d->bd_filter;
1596 membar_datadep_consumer();
1597 if (filter != NULL) {
1598 if (filter->bf_jitcode != NULL)
1599 slen = filter->bf_jitcode(NULL, &args);
1600 else
1601 slen = bpf_filter_ext(NULL, filter->bf_insn,
1602 &args);
1603 }
1604
1605 if (!slen) {
1606 continue;
1607 }
1608 if (!gottime) {
1609 gottime = true;
1610 nanotime(&ts);
1611 }
1612 /* Assume catchpacket doesn't sleep */
1613 catchpacket(d, pkt, pktlen, slen, cpfn, &ts);
1614 }
1615 pserialize_read_exit(s);
1616 }
1617
1618 /*
1619 * Incoming linkage from device drivers. Process the packet pkt, of length
1620 * pktlen, which is stored in a contiguous buffer. The packet is parsed
1621 * by each process' filter, and if accepted, stashed into the corresponding
1622 * buffer.
1623 */
1624 static void
1625 _bpf_tap(struct bpf_if *bp, u_char *pkt, u_int pktlen)
1626 {
1627
1628 bpf_deliver(bp, memcpy, pkt, pktlen, pktlen, true);
1629 }
1630
1631 /*
1632 * Incoming linkage from device drivers, when the head of the packet is in
1633 * a buffer, and the tail is in an mbuf chain.
1634 */
1635 static void
1636 _bpf_mtap2(struct bpf_if *bp, void *data, u_int dlen, struct mbuf *m)
1637 {
1638 u_int pktlen;
1639 struct mbuf mb;
1640
1641 /* Skip outgoing duplicate packets. */
1642 if ((m->m_flags & M_PROMISC) != 0 && m->m_pkthdr.rcvif_index == 0) {
1643 m->m_flags &= ~M_PROMISC;
1644 return;
1645 }
1646
1647 pktlen = m_length(m) + dlen;
1648
1649 /*
1650 * Craft on-stack mbuf suitable for passing to bpf_filter.
1651 * Note that we cut corners here; we only setup what's
1652 * absolutely needed--this mbuf should never go anywhere else.
1653 */
1654 (void)memset(&mb, 0, sizeof(mb));
1655 mb.m_next = m;
1656 mb.m_data = data;
1657 mb.m_len = dlen;
1658
1659 bpf_deliver(bp, bpf_mcpy, &mb, pktlen, 0, m->m_pkthdr.rcvif_index != 0);
1660 }
1661
1662 /*
1663 * Incoming linkage from device drivers, when packet is in an mbuf chain.
1664 */
1665 static void
1666 _bpf_mtap(struct bpf_if *bp, struct mbuf *m)
1667 {
1668 void *(*cpfn)(void *, const void *, size_t);
1669 u_int pktlen, buflen;
1670 void *marg;
1671
1672 /* Skip outgoing duplicate packets. */
1673 if ((m->m_flags & M_PROMISC) != 0 && m->m_pkthdr.rcvif_index == 0) {
1674 m->m_flags &= ~M_PROMISC;
1675 return;
1676 }
1677
1678 pktlen = m_length(m);
1679
1680 if (pktlen == m->m_len) {
1681 cpfn = (void *)memcpy;
1682 marg = mtod(m, void *);
1683 buflen = pktlen;
1684 } else {
1685 cpfn = bpf_mcpy;
1686 marg = m;
1687 buflen = 0;
1688 }
1689
1690 bpf_deliver(bp, cpfn, marg, pktlen, buflen, m->m_pkthdr.rcvif_index != 0);
1691 }
1692
1693 /*
1694 * We need to prepend the address family as
1695 * a four byte field. Cons up a dummy header
1696 * to pacify bpf. This is safe because bpf
1697 * will only read from the mbuf (i.e., it won't
1698 * try to free it or keep a pointer a to it).
1699 */
1700 static void
1701 _bpf_mtap_af(struct bpf_if *bp, uint32_t af, struct mbuf *m)
1702 {
1703 struct mbuf m0;
1704
1705 m0.m_flags = 0;
1706 m0.m_next = m;
1707 m0.m_len = 4;
1708 m0.m_data = (char *)⁡
1709
1710 _bpf_mtap(bp, &m0);
1711 }
1712
1713 /*
1714 * Put the SLIP pseudo-"link header" in place.
1715 * Note this M_PREPEND() should never fail,
1716 * swince we know we always have enough space
1717 * in the input buffer.
1718 */
1719 static void
1720 _bpf_mtap_sl_in(struct bpf_if *bp, u_char *chdr, struct mbuf **m)
1721 {
1722 u_char *hp;
1723
1724 M_PREPEND(*m, SLIP_HDRLEN, M_DONTWAIT);
1725 if (*m == NULL)
1726 return;
1727
1728 hp = mtod(*m, u_char *);
1729 hp[SLX_DIR] = SLIPDIR_IN;
1730 (void)memcpy(&hp[SLX_CHDR], chdr, CHDR_LEN);
1731
1732 _bpf_mtap(bp, *m);
1733
1734 m_adj(*m, SLIP_HDRLEN);
1735 }
1736
1737 /*
1738 * Put the SLIP pseudo-"link header" in
1739 * place. The compressed header is now
1740 * at the beginning of the mbuf.
1741 */
1742 static void
1743 _bpf_mtap_sl_out(struct bpf_if *bp, u_char *chdr, struct mbuf *m)
1744 {
1745 struct mbuf m0;
1746 u_char *hp;
1747
1748 m0.m_flags = 0;
1749 m0.m_next = m;
1750 m0.m_data = m0.m_dat;
1751 m0.m_len = SLIP_HDRLEN;
1752
1753 hp = mtod(&m0, u_char *);
1754
1755 hp[SLX_DIR] = SLIPDIR_OUT;
1756 (void)memcpy(&hp[SLX_CHDR], chdr, CHDR_LEN);
1757
1758 _bpf_mtap(bp, &m0);
1759 m_freem(m);
1760 }
1761
1762 static struct mbuf *
1763 bpf_mbuf_enqueue(struct bpf_if *bp, struct mbuf *m)
1764 {
1765 struct mbuf *dup;
1766
1767 dup = m_dup(m, 0, M_COPYALL, M_NOWAIT);
1768 if (dup == NULL)
1769 return NULL;
1770
1771 if (bp->bif_mbuf_tail != NULL) {
1772 bp->bif_mbuf_tail->m_nextpkt = dup;
1773 } else {
1774 bp->bif_mbuf_head = dup;
1775 }
1776 bp->bif_mbuf_tail = dup;
1777 #ifdef BPF_MTAP_SOFTINT_DEBUG
1778 log(LOG_DEBUG, "%s: enqueued mbuf=%p to %s\n",
1779 __func__, dup, bp->bif_ifp->if_xname);
1780 #endif
1781
1782 return dup;
1783 }
1784
1785 static struct mbuf *
1786 bpf_mbuf_dequeue(struct bpf_if *bp)
1787 {
1788 struct mbuf *m;
1789 int s;
1790
1791 /* XXX NOMPSAFE: assumed running on one CPU */
1792 s = splnet();
1793 m = bp->bif_mbuf_head;
1794 if (m != NULL) {
1795 bp->bif_mbuf_head = m->m_nextpkt;
1796 m->m_nextpkt = NULL;
1797
1798 if (bp->bif_mbuf_head == NULL)
1799 bp->bif_mbuf_tail = NULL;
1800 #ifdef BPF_MTAP_SOFTINT_DEBUG
1801 log(LOG_DEBUG, "%s: dequeued mbuf=%p from %s\n",
1802 __func__, m, bp->bif_ifp->if_xname);
1803 #endif
1804 }
1805 splx(s);
1806
1807 return m;
1808 }
1809
1810 static void
1811 bpf_mtap_si(void *arg)
1812 {
1813 struct bpf_if *bp = arg;
1814 struct mbuf *m;
1815
1816 while ((m = bpf_mbuf_dequeue(bp)) != NULL) {
1817 #ifdef BPF_MTAP_SOFTINT_DEBUG
1818 log(LOG_DEBUG, "%s: tapping mbuf=%p on %s\n",
1819 __func__, m, bp->bif_ifp->if_xname);
1820 #endif
1821 bpf_ops->bpf_mtap(bp, m);
1822 m_freem(m);
1823 }
1824 }
1825
1826 static void
1827 _bpf_mtap_softint(struct ifnet *ifp, struct mbuf *m)
1828 {
1829 struct bpf_if *bp = ifp->if_bpf;
1830 struct mbuf *dup;
1831
1832 KASSERT(cpu_intr_p());
1833
1834 /* To avoid extra invocations of the softint */
1835 if (BPFIF_DLIST_READER_EMPTY(bp))
1836 return;
1837 KASSERT(bp->bif_si != NULL);
1838
1839 dup = bpf_mbuf_enqueue(bp, m);
1840 if (dup != NULL)
1841 softint_schedule(bp->bif_si);
1842 }
1843
1844 static int
1845 bpf_hdrlen(struct bpf_d *d)
1846 {
1847 int hdrlen = d->bd_bif->bif_hdrlen;
1848 /*
1849 * Compute the length of the bpf header. This is not necessarily
1850 * equal to SIZEOF_BPF_HDR because we want to insert spacing such
1851 * that the network layer header begins on a longword boundary (for
1852 * performance reasons and to alleviate alignment restrictions).
1853 */
1854 #ifdef _LP64
1855 if (d->bd_compat32)
1856 return (BPF_WORDALIGN32(hdrlen + SIZEOF_BPF_HDR32) - hdrlen);
1857 else
1858 #endif
1859 return (BPF_WORDALIGN(hdrlen + SIZEOF_BPF_HDR) - hdrlen);
1860 }
1861
1862 /*
1863 * Move the packet data from interface memory (pkt) into the
1864 * store buffer. Call the wakeup functions if it's time to wakeup
1865 * a listener (buffer full), "cpfn" is the routine called to do the
1866 * actual data transfer. memcpy is passed in to copy contiguous chunks,
1867 * while bpf_mcpy is passed in to copy mbuf chains. In the latter case,
1868 * pkt is really an mbuf.
1869 */
1870 static void
1871 catchpacket(struct bpf_d *d, u_char *pkt, u_int pktlen, u_int snaplen,
1872 void *(*cpfn)(void *, const void *, size_t), struct timespec *ts)
1873 {
1874 char *h;
1875 int totlen, curlen, caplen;
1876 int hdrlen = bpf_hdrlen(d);
1877 int do_wakeup = 0;
1878
1879 atomic_inc_ulong(&d->bd_ccount);
1880 BPF_STATINC(capt);
1881 /*
1882 * Figure out how many bytes to move. If the packet is
1883 * greater or equal to the snapshot length, transfer that
1884 * much. Otherwise, transfer the whole packet (unless
1885 * we hit the buffer size limit).
1886 */
1887 totlen = hdrlen + min(snaplen, pktlen);
1888 if (totlen > d->bd_bufsize)
1889 totlen = d->bd_bufsize;
1890 /*
1891 * If we adjusted totlen to fit the bufsize, it could be that
1892 * totlen is smaller than hdrlen because of the link layer header.
1893 */
1894 caplen = totlen - hdrlen;
1895 if (caplen < 0)
1896 caplen = 0;
1897
1898 mutex_enter(d->bd_buf_mtx);
1899 /*
1900 * Round up the end of the previous packet to the next longword.
1901 */
1902 #ifdef _LP64
1903 if (d->bd_compat32)
1904 curlen = BPF_WORDALIGN32(d->bd_slen);
1905 else
1906 #endif
1907 curlen = BPF_WORDALIGN(d->bd_slen);
1908 if (curlen + totlen > d->bd_bufsize) {
1909 /*
1910 * This packet will overflow the storage buffer.
1911 * Rotate the buffers if we can, then wakeup any
1912 * pending reads.
1913 */
1914 if (d->bd_fbuf == NULL) {
1915 mutex_exit(d->bd_buf_mtx);
1916 /*
1917 * We haven't completed the previous read yet,
1918 * so drop the packet.
1919 */
1920 atomic_inc_ulong(&d->bd_dcount);
1921 BPF_STATINC(drop);
1922 return;
1923 }
1924 ROTATE_BUFFERS(d);
1925 do_wakeup = 1;
1926 curlen = 0;
1927 } else if (d->bd_immediate || d->bd_state == BPF_TIMED_OUT) {
1928 /*
1929 * Immediate mode is set, or the read timeout has
1930 * already expired during a select call. A packet
1931 * arrived, so the reader should be woken up.
1932 */
1933 do_wakeup = 1;
1934 }
1935
1936 /*
1937 * Append the bpf header.
1938 */
1939 h = (char *)d->bd_sbuf + curlen;
1940 #ifdef _LP64
1941 if (d->bd_compat32) {
1942 struct bpf_hdr32 *hp32;
1943
1944 hp32 = (struct bpf_hdr32 *)h;
1945 hp32->bh_tstamp.tv_sec = ts->tv_sec;
1946 hp32->bh_tstamp.tv_usec = ts->tv_nsec / 1000;
1947 hp32->bh_datalen = pktlen;
1948 hp32->bh_hdrlen = hdrlen;
1949 hp32->bh_caplen = caplen;
1950 } else
1951 #endif
1952 {
1953 struct bpf_hdr *hp;
1954
1955 hp = (struct bpf_hdr *)h;
1956 hp->bh_tstamp.tv_sec = ts->tv_sec;
1957 hp->bh_tstamp.tv_usec = ts->tv_nsec / 1000;
1958 hp->bh_datalen = pktlen;
1959 hp->bh_hdrlen = hdrlen;
1960 hp->bh_caplen = caplen;
1961 }
1962
1963 /*
1964 * Copy the packet data into the store buffer and update its length.
1965 */
1966 (*cpfn)(h + hdrlen, pkt, caplen);
1967 d->bd_slen = curlen + totlen;
1968 mutex_exit(d->bd_buf_mtx);
1969
1970 /*
1971 * Call bpf_wakeup after bd_slen has been updated so that kevent(2)
1972 * will cause filt_bpfread() to be called with it adjusted.
1973 */
1974 if (do_wakeup)
1975 bpf_wakeup(d);
1976 }
1977
1978 /*
1979 * Initialize all nonzero fields of a descriptor.
1980 */
1981 static int
1982 bpf_allocbufs(struct bpf_d *d)
1983 {
1984
1985 d->bd_fbuf = kmem_alloc(d->bd_bufsize, KM_NOSLEEP);
1986 if (!d->bd_fbuf)
1987 return (ENOBUFS);
1988 d->bd_sbuf = kmem_alloc(d->bd_bufsize, KM_NOSLEEP);
1989 if (!d->bd_sbuf) {
1990 kmem_free(d->bd_fbuf, d->bd_bufsize);
1991 return (ENOBUFS);
1992 }
1993 d->bd_slen = 0;
1994 d->bd_hlen = 0;
1995 return (0);
1996 }
1997
1998 static void
1999 bpf_free_filter(struct bpf_filter *filter)
2000 {
2001
2002 KASSERT(filter != NULL);
2003 KASSERT(filter->bf_insn != NULL);
2004
2005 kmem_free(filter->bf_insn, filter->bf_size);
2006 if (filter->bf_jitcode != NULL)
2007 bpf_jit_freecode(filter->bf_jitcode);
2008 kmem_free(filter, sizeof(*filter));
2009 }
2010
2011 /*
2012 * Free buffers currently in use by a descriptor.
2013 * Called on close.
2014 */
2015 static void
2016 bpf_freed(struct bpf_d *d)
2017 {
2018 /*
2019 * We don't need to lock out interrupts since this descriptor has
2020 * been detached from its interface and it yet hasn't been marked
2021 * free.
2022 */
2023 if (d->bd_sbuf != NULL) {
2024 kmem_free(d->bd_sbuf, d->bd_bufsize);
2025 if (d->bd_hbuf != NULL)
2026 kmem_free(d->bd_hbuf, d->bd_bufsize);
2027 if (d->bd_fbuf != NULL)
2028 kmem_free(d->bd_fbuf, d->bd_bufsize);
2029 }
2030 if (d->bd_filter != NULL) {
2031 bpf_free_filter(d->bd_filter);
2032 d->bd_filter = NULL;
2033 }
2034 d->bd_jitcode = NULL;
2035 }
2036
2037 /*
2038 * Attach an interface to bpf. dlt is the link layer type;
2039 * hdrlen is the fixed size of the link header for the specified dlt
2040 * (variable length headers not yet supported).
2041 */
2042 static void
2043 _bpfattach(struct ifnet *ifp, u_int dlt, u_int hdrlen, struct bpf_if **driverp)
2044 {
2045 struct bpf_if *bp;
2046 bp = kmem_alloc(sizeof(*bp), KM_NOSLEEP);
2047 if (bp == NULL)
2048 panic("bpfattach");
2049
2050 mutex_enter(&bpf_mtx);
2051 bp->bif_driverp = driverp;
2052 bp->bif_ifp = ifp;
2053 bp->bif_dlt = dlt;
2054 bp->bif_si = NULL;
2055 BPF_IFLIST_ENTRY_INIT(bp);
2056 PSLIST_INIT(&bp->bif_dlist_head);
2057 psref_target_init(&bp->bif_psref, bpf_psref_class);
2058
2059 BPF_IFLIST_WRITER_INSERT_HEAD(bp);
2060
2061 *bp->bif_driverp = NULL;
2062
2063 bp->bif_hdrlen = hdrlen;
2064 mutex_exit(&bpf_mtx);
2065 #if 0
2066 printf("bpf: %s attached\n", ifp->if_xname);
2067 #endif
2068 }
2069
2070 static void
2071 _bpf_mtap_softint_init(struct ifnet *ifp)
2072 {
2073 struct bpf_if *bp;
2074
2075 mutex_enter(&bpf_mtx);
2076 BPF_IFLIST_WRITER_FOREACH(bp) {
2077 if (bp->bif_ifp != ifp)
2078 continue;
2079
2080 bp->bif_mbuf_head = NULL;
2081 bp->bif_mbuf_tail = NULL;
2082 bp->bif_si = softint_establish(SOFTINT_NET, bpf_mtap_si, bp);
2083 if (bp->bif_si == NULL)
2084 panic("%s: softint_establish() failed", __func__);
2085 break;
2086 }
2087 mutex_exit(&bpf_mtx);
2088
2089 if (bp == NULL)
2090 panic("%s: no bpf_if found for %s", __func__, ifp->if_xname);
2091 }
2092
2093 /*
2094 * Remove an interface from bpf.
2095 */
2096 static void
2097 _bpfdetach(struct ifnet *ifp)
2098 {
2099 struct bpf_if *bp;
2100 struct bpf_d *d;
2101 int s;
2102
2103 mutex_enter(&bpf_mtx);
2104 /* Nuke the vnodes for any open instances */
2105 again_d:
2106 BPF_DLIST_WRITER_FOREACH(d) {
2107 mutex_enter(d->bd_mtx);
2108 if (d->bd_bif != NULL && d->bd_bif->bif_ifp == ifp) {
2109 /*
2110 * Detach the descriptor from an interface now.
2111 * It will be free'ed later by close routine.
2112 */
2113 d->bd_promisc = 0; /* we can't touch device. */
2114 bpf_detachd(d);
2115 mutex_exit(d->bd_mtx);
2116 goto again_d;
2117 }
2118 mutex_exit(d->bd_mtx);
2119 }
2120
2121 again:
2122 BPF_IFLIST_WRITER_FOREACH(bp) {
2123 if (bp->bif_ifp == ifp) {
2124 BPF_IFLIST_WRITER_REMOVE(bp);
2125
2126 pserialize_perform(bpf_psz);
2127 psref_target_destroy(&bp->bif_psref, bpf_psref_class);
2128
2129 BPF_IFLIST_ENTRY_DESTROY(bp);
2130 if (bp->bif_si != NULL) {
2131 /* XXX NOMPSAFE: assumed running on one CPU */
2132 s = splnet();
2133 while (bp->bif_mbuf_head != NULL) {
2134 struct mbuf *m = bp->bif_mbuf_head;
2135 bp->bif_mbuf_head = m->m_nextpkt;
2136 m_freem(m);
2137 }
2138 splx(s);
2139 softint_disestablish(bp->bif_si);
2140 }
2141 kmem_free(bp, sizeof(*bp));
2142 goto again;
2143 }
2144 }
2145 mutex_exit(&bpf_mtx);
2146 }
2147
2148 /*
2149 * Change the data link type of a interface.
2150 */
2151 static void
2152 _bpf_change_type(struct ifnet *ifp, u_int dlt, u_int hdrlen)
2153 {
2154 struct bpf_if *bp;
2155
2156 mutex_enter(&bpf_mtx);
2157 BPF_IFLIST_WRITER_FOREACH(bp) {
2158 if (bp->bif_driverp == &ifp->if_bpf)
2159 break;
2160 }
2161 if (bp == NULL)
2162 panic("bpf_change_type");
2163
2164 bp->bif_dlt = dlt;
2165
2166 bp->bif_hdrlen = hdrlen;
2167 mutex_exit(&bpf_mtx);
2168 }
2169
2170 /*
2171 * Get a list of available data link type of the interface.
2172 */
2173 static int
2174 bpf_getdltlist(struct bpf_d *d, struct bpf_dltlist *bfl)
2175 {
2176 int n, error;
2177 struct ifnet *ifp;
2178 struct bpf_if *bp;
2179 int s, bound;
2180
2181 KASSERT(mutex_owned(d->bd_mtx));
2182
2183 ifp = d->bd_bif->bif_ifp;
2184 n = 0;
2185 error = 0;
2186
2187 bound = curlwp_bind();
2188 s = pserialize_read_enter();
2189 BPF_IFLIST_READER_FOREACH(bp) {
2190 if (bp->bif_ifp != ifp)
2191 continue;
2192 if (bfl->bfl_list != NULL) {
2193 struct psref psref;
2194
2195 if (n >= bfl->bfl_len) {
2196 pserialize_read_exit(s);
2197 return ENOMEM;
2198 }
2199
2200 bpf_if_acquire(bp, &psref);
2201 pserialize_read_exit(s);
2202
2203 error = copyout(&bp->bif_dlt,
2204 bfl->bfl_list + n, sizeof(u_int));
2205
2206 s = pserialize_read_enter();
2207 bpf_if_release(bp, &psref);
2208 }
2209 n++;
2210 }
2211 pserialize_read_exit(s);
2212 curlwp_bindx(bound);
2213
2214 bfl->bfl_len = n;
2215 return error;
2216 }
2217
2218 /*
2219 * Set the data link type of a BPF instance.
2220 */
2221 static int
2222 bpf_setdlt(struct bpf_d *d, u_int dlt)
2223 {
2224 int error, opromisc;
2225 struct ifnet *ifp;
2226 struct bpf_if *bp;
2227
2228 KASSERT(mutex_owned(&bpf_mtx));
2229 KASSERT(mutex_owned(d->bd_mtx));
2230
2231 if (d->bd_bif->bif_dlt == dlt)
2232 return 0;
2233 ifp = d->bd_bif->bif_ifp;
2234 BPF_IFLIST_WRITER_FOREACH(bp) {
2235 if (bp->bif_ifp == ifp && bp->bif_dlt == dlt)
2236 break;
2237 }
2238 if (bp == NULL)
2239 return EINVAL;
2240 opromisc = d->bd_promisc;
2241 bpf_detachd(d);
2242 bpf_attachd(d, bp);
2243 reset_d(d);
2244 if (opromisc) {
2245 #ifndef NET_MPSAFE
2246 KERNEL_LOCK(1, NULL);
2247 #endif
2248 error = ifpromisc(bp->bif_ifp, 1);
2249 #ifndef NET_MPSAFE
2250 KERNEL_UNLOCK_ONE(NULL);
2251 #endif
2252 if (error)
2253 printf("%s: bpf_setdlt: ifpromisc failed (%d)\n",
2254 bp->bif_ifp->if_xname, error);
2255 else
2256 d->bd_promisc = 1;
2257 }
2258 return 0;
2259 }
2260
2261 static int
2262 sysctl_net_bpf_maxbufsize(SYSCTLFN_ARGS)
2263 {
2264 int newsize, error;
2265 struct sysctlnode node;
2266
2267 node = *rnode;
2268 node.sysctl_data = &newsize;
2269 newsize = bpf_maxbufsize;
2270 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2271 if (error || newp == NULL)
2272 return (error);
2273
2274 if (newsize < BPF_MINBUFSIZE || newsize > BPF_MAXBUFSIZE)
2275 return (EINVAL);
2276
2277 bpf_maxbufsize = newsize;
2278
2279 return (0);
2280 }
2281
2282 #if defined(MODULAR) || defined(BPFJIT)
2283 static int
2284 sysctl_net_bpf_jit(SYSCTLFN_ARGS)
2285 {
2286 bool newval;
2287 int error;
2288 struct sysctlnode node;
2289
2290 node = *rnode;
2291 node.sysctl_data = &newval;
2292 newval = bpf_jit;
2293 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2294 if (error != 0 || newp == NULL)
2295 return error;
2296
2297 bpf_jit = newval;
2298
2299 /*
2300 * Do a full sync to publish new bpf_jit value and
2301 * update bpfjit_module_ops.bj_generate_code variable.
2302 */
2303 membar_sync();
2304
2305 if (newval && bpfjit_module_ops.bj_generate_code == NULL) {
2306 printf("JIT compilation is postponed "
2307 "until after bpfjit module is loaded\n");
2308 }
2309
2310 return 0;
2311 }
2312 #endif
2313
2314 static int
2315 sysctl_net_bpf_peers(SYSCTLFN_ARGS)
2316 {
2317 int error, elem_count;
2318 struct bpf_d *dp;
2319 struct bpf_d_ext dpe;
2320 size_t len, needed, elem_size, out_size;
2321 char *sp;
2322
2323 if (namelen == 1 && name[0] == CTL_QUERY)
2324 return (sysctl_query(SYSCTLFN_CALL(rnode)));
2325
2326 if (namelen != 2)
2327 return (EINVAL);
2328
2329 /* BPF peers is privileged information. */
2330 error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_INTERFACE,
2331 KAUTH_REQ_NETWORK_INTERFACE_GETPRIV, NULL, NULL, NULL);
2332 if (error)
2333 return (EPERM);
2334
2335 len = (oldp != NULL) ? *oldlenp : 0;
2336 sp = oldp;
2337 elem_size = name[0];
2338 elem_count = name[1];
2339 out_size = MIN(sizeof(dpe), elem_size);
2340 needed = 0;
2341
2342 if (elem_size < 1 || elem_count < 0)
2343 return (EINVAL);
2344
2345 mutex_enter(&bpf_mtx);
2346 BPF_DLIST_WRITER_FOREACH(dp) {
2347 if (len >= elem_size && elem_count > 0) {
2348 #define BPF_EXT(field) dpe.bde_ ## field = dp->bd_ ## field
2349 BPF_EXT(bufsize);
2350 BPF_EXT(promisc);
2351 BPF_EXT(state);
2352 BPF_EXT(immediate);
2353 BPF_EXT(hdrcmplt);
2354 BPF_EXT(seesent);
2355 BPF_EXT(pid);
2356 BPF_EXT(rcount);
2357 BPF_EXT(dcount);
2358 BPF_EXT(ccount);
2359 #undef BPF_EXT
2360 mutex_enter(dp->bd_mtx);
2361 if (dp->bd_bif)
2362 (void)strlcpy(dpe.bde_ifname,
2363 dp->bd_bif->bif_ifp->if_xname,
2364 IFNAMSIZ - 1);
2365 else
2366 dpe.bde_ifname[0] = '\0';
2367 mutex_exit(dp->bd_mtx);
2368
2369 error = copyout(&dpe, sp, out_size);
2370 if (error)
2371 break;
2372 sp += elem_size;
2373 len -= elem_size;
2374 }
2375 needed += elem_size;
2376 if (elem_count > 0 && elem_count != INT_MAX)
2377 elem_count--;
2378 }
2379 mutex_exit(&bpf_mtx);
2380
2381 *oldlenp = needed;
2382
2383 return (error);
2384 }
2385
2386 static void
2387 bpf_stats(void *p, void *arg, struct cpu_info *ci __unused)
2388 {
2389 struct bpf_stat *const stats = p;
2390 struct bpf_stat *sum = arg;
2391
2392 sum->bs_recv += stats->bs_recv;
2393 sum->bs_drop += stats->bs_drop;
2394 sum->bs_capt += stats->bs_capt;
2395 }
2396
2397 static int
2398 bpf_sysctl_gstats_handler(SYSCTLFN_ARGS)
2399 {
2400 struct sysctlnode node;
2401 int error;
2402 struct bpf_stat sum;
2403
2404 memset(&sum, 0, sizeof(sum));
2405 node = *rnode;
2406
2407 percpu_foreach(bpf_gstats_percpu, bpf_stats, &sum);
2408
2409 node.sysctl_data = ∑
2410 node.sysctl_size = sizeof(sum);
2411 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2412 if (error != 0 || newp == NULL)
2413 return error;
2414
2415 return 0;
2416 }
2417
2418 static struct sysctllog *bpf_sysctllog;
2419 static void
2420 sysctl_net_bpf_setup(void)
2421 {
2422 const struct sysctlnode *node;
2423
2424 node = NULL;
2425 sysctl_createv(&bpf_sysctllog, 0, NULL, &node,
2426 CTLFLAG_PERMANENT,
2427 CTLTYPE_NODE, "bpf",
2428 SYSCTL_DESCR("BPF options"),
2429 NULL, 0, NULL, 0,
2430 CTL_NET, CTL_CREATE, CTL_EOL);
2431 if (node != NULL) {
2432 #if defined(MODULAR) || defined(BPFJIT)
2433 sysctl_createv(&bpf_sysctllog, 0, NULL, NULL,
2434 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2435 CTLTYPE_BOOL, "jit",
2436 SYSCTL_DESCR("Toggle Just-In-Time compilation"),
2437 sysctl_net_bpf_jit, 0, &bpf_jit, 0,
2438 CTL_NET, node->sysctl_num, CTL_CREATE, CTL_EOL);
2439 #endif
2440 sysctl_createv(&bpf_sysctllog, 0, NULL, NULL,
2441 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2442 CTLTYPE_INT, "maxbufsize",
2443 SYSCTL_DESCR("Maximum size for data capture buffer"),
2444 sysctl_net_bpf_maxbufsize, 0, &bpf_maxbufsize, 0,
2445 CTL_NET, node->sysctl_num, CTL_CREATE, CTL_EOL);
2446 sysctl_createv(&bpf_sysctllog, 0, NULL, NULL,
2447 CTLFLAG_PERMANENT,
2448 CTLTYPE_STRUCT, "stats",
2449 SYSCTL_DESCR("BPF stats"),
2450 bpf_sysctl_gstats_handler, 0, NULL, 0,
2451 CTL_NET, node->sysctl_num, CTL_CREATE, CTL_EOL);
2452 sysctl_createv(&bpf_sysctllog, 0, NULL, NULL,
2453 CTLFLAG_PERMANENT,
2454 CTLTYPE_STRUCT, "peers",
2455 SYSCTL_DESCR("BPF peers"),
2456 sysctl_net_bpf_peers, 0, NULL, 0,
2457 CTL_NET, node->sysctl_num, CTL_CREATE, CTL_EOL);
2458 }
2459
2460 }
2461
2462 struct bpf_ops bpf_ops_kernel = {
2463 .bpf_attach = _bpfattach,
2464 .bpf_detach = _bpfdetach,
2465 .bpf_change_type = _bpf_change_type,
2466
2467 .bpf_tap = _bpf_tap,
2468 .bpf_mtap = _bpf_mtap,
2469 .bpf_mtap2 = _bpf_mtap2,
2470 .bpf_mtap_af = _bpf_mtap_af,
2471 .bpf_mtap_sl_in = _bpf_mtap_sl_in,
2472 .bpf_mtap_sl_out = _bpf_mtap_sl_out,
2473
2474 .bpf_mtap_softint = _bpf_mtap_softint,
2475 .bpf_mtap_softint_init = _bpf_mtap_softint_init,
2476 };
2477
2478 MODULE(MODULE_CLASS_DRIVER, bpf, "bpf_filter");
2479
2480 static int
2481 bpf_modcmd(modcmd_t cmd, void *arg)
2482 {
2483 #ifdef _MODULE
2484 devmajor_t bmajor, cmajor;
2485 #endif
2486 int error = 0;
2487
2488 switch (cmd) {
2489 case MODULE_CMD_INIT:
2490 bpf_init();
2491 #ifdef _MODULE
2492 bmajor = cmajor = NODEVMAJOR;
2493 error = devsw_attach("bpf", NULL, &bmajor,
2494 &bpf_cdevsw, &cmajor);
2495 if (error)
2496 break;
2497 #endif
2498
2499 bpf_ops_handover_enter(&bpf_ops_kernel);
2500 atomic_swap_ptr(&bpf_ops, &bpf_ops_kernel);
2501 bpf_ops_handover_exit();
2502 sysctl_net_bpf_setup();
2503 break;
2504
2505 case MODULE_CMD_FINI:
2506 /*
2507 * While there is no reference counting for bpf callers,
2508 * unload could at least in theory be done similarly to
2509 * system call disestablishment. This should even be
2510 * a little simpler:
2511 *
2512 * 1) replace op vector with stubs
2513 * 2) post update to all cpus with xc
2514 * 3) check that nobody is in bpf anymore
2515 * (it's doubtful we'd want something like l_sysent,
2516 * but we could do something like *signed* percpu
2517 * counters. if the sum is 0, we're good).
2518 * 4) if fail, unroll changes
2519 *
2520 * NOTE: change won't be atomic to the outside. some
2521 * packets may be not captured even if unload is
2522 * not succesful. I think packet capture not working
2523 * is a perfectly logical consequence of trying to
2524 * disable packet capture.
2525 */
2526 error = EOPNOTSUPP;
2527 /* insert sysctl teardown */
2528 break;
2529
2530 default:
2531 error = ENOTTY;
2532 break;
2533 }
2534
2535 return error;
2536 }
2537