bpf.c revision 1.216.6.8 1 /* $NetBSD: bpf.c,v 1.216.6.8 2023/02/22 19:51:47 martin Exp $ */
2
3 /*
4 * Copyright (c) 1990, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from the Stanford/CMU enet packet filter,
8 * (net/enet.c) distributed as part of 4.3BSD, and code contributed
9 * to Berkeley by Steven McCanne and Van Jacobson both of Lawrence
10 * Berkeley Laboratory.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)bpf.c 8.4 (Berkeley) 1/9/95
37 * static char rcsid[] =
38 * "Header: bpf.c,v 1.67 96/09/26 22:00:52 leres Exp ";
39 */
40
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: bpf.c,v 1.216.6.8 2023/02/22 19:51:47 martin Exp $");
43
44 #if defined(_KERNEL_OPT)
45 #include "opt_bpf.h"
46 #include "sl.h"
47 #include "strip.h"
48 #include "opt_net_mpsafe.h"
49 #endif
50
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/mbuf.h>
54 #include <sys/buf.h>
55 #include <sys/time.h>
56 #include <sys/proc.h>
57 #include <sys/ioctl.h>
58 #include <sys/conf.h>
59 #include <sys/vnode.h>
60 #include <sys/queue.h>
61 #include <sys/stat.h>
62 #include <sys/module.h>
63 #include <sys/atomic.h>
64 #include <sys/cpu.h>
65
66 #include <sys/file.h>
67 #include <sys/filedesc.h>
68 #include <sys/tty.h>
69 #include <sys/uio.h>
70
71 #include <sys/protosw.h>
72 #include <sys/socket.h>
73 #include <sys/errno.h>
74 #include <sys/kernel.h>
75 #include <sys/poll.h>
76 #include <sys/sysctl.h>
77 #include <sys/kauth.h>
78 #include <sys/syslog.h>
79 #include <sys/percpu.h>
80 #include <sys/pserialize.h>
81 #include <sys/lwp.h>
82
83 #include <net/if.h>
84 #include <net/slip.h>
85
86 #include <net/bpf.h>
87 #include <net/bpfdesc.h>
88 #include <net/bpfjit.h>
89
90 #include <net/if_arc.h>
91 #include <net/if_ether.h>
92
93 #include <netinet/in.h>
94 #include <netinet/if_inarp.h>
95
96
97 #include <compat/sys/sockio.h>
98
99 #ifndef BPF_BUFSIZE
100 /*
101 * 4096 is too small for FDDI frames. 8192 is too small for gigabit Ethernet
102 * jumbos (circa 9k), ATM, or Intel gig/10gig ethernet jumbos (16k).
103 */
104 # define BPF_BUFSIZE 32768
105 #endif
106
107 #define PRINET 26 /* interruptible */
108
109 /*
110 * The default read buffer size, and limit for BIOCSBLEN, is sysctl'able.
111 * XXX the default values should be computed dynamically based
112 * on available memory size and available mbuf clusters.
113 */
114 static int bpf_bufsize = BPF_BUFSIZE;
115 static int bpf_maxbufsize = BPF_DFLTBUFSIZE; /* XXX set dynamically, see above */
116 static bool bpf_jit = false;
117
118 struct bpfjit_ops bpfjit_module_ops = {
119 .bj_generate_code = NULL,
120 .bj_free_code = NULL
121 };
122
123 /*
124 * Global BPF statistics returned by net.bpf.stats sysctl.
125 */
126 static struct percpu *bpf_gstats_percpu; /* struct bpf_stat */
127
128 #define BPF_STATINC(id) \
129 { \
130 struct bpf_stat *__stats = \
131 percpu_getref(bpf_gstats_percpu); \
132 __stats->bs_##id++; \
133 percpu_putref(bpf_gstats_percpu); \
134 }
135
136 /*
137 * Locking notes:
138 * - bpf_mtx (adaptive mutex) protects:
139 * - Gobal lists: bpf_iflist and bpf_dlist
140 * - struct bpf_if
141 * - bpf_close
142 * - bpf_psz (pserialize)
143 * - struct bpf_d has two mutexes:
144 * - bd_buf_mtx (spin mutex) protects the buffers that can be accessed
145 * on packet tapping
146 * - bd_mtx (adaptive mutex) protects member variables other than the buffers
147 * - Locking order: bpf_mtx => bpf_d#bd_mtx => bpf_d#bd_buf_mtx
148 * - struct bpf_d obtained via fp->f_bpf in bpf_read and bpf_write is
149 * never freed because struct bpf_d is only freed in bpf_close and
150 * bpf_close never be called while executing bpf_read and bpf_write
151 * - A filter that is assigned to bpf_d can be replaced with another filter
152 * while tapping packets, so it needs to be done atomically
153 * - struct bpf_d is iterated on bpf_dlist with psz
154 * - struct bpf_if is iterated on bpf_iflist with psz or psref
155 */
156 /*
157 * Use a mutex to avoid a race condition between gathering the stats/peers
158 * and opening/closing the device.
159 */
160 static kmutex_t bpf_mtx;
161
162 static struct psref_class *bpf_psref_class __read_mostly;
163 static pserialize_t bpf_psz;
164
165 static inline void
166 bpf_if_acquire(struct bpf_if *bp, struct psref *psref)
167 {
168
169 psref_acquire(psref, &bp->bif_psref, bpf_psref_class);
170 }
171
172 static inline void
173 bpf_if_release(struct bpf_if *bp, struct psref *psref)
174 {
175
176 psref_release(psref, &bp->bif_psref, bpf_psref_class);
177 }
178
179 /*
180 * bpf_iflist is the list of interfaces; each corresponds to an ifnet
181 * bpf_dtab holds the descriptors, indexed by minor device #
182 */
183 static struct pslist_head bpf_iflist;
184 static struct pslist_head bpf_dlist;
185
186 /* Macros for bpf_d on bpf_dlist */
187 #define BPF_DLIST_WRITER_INSERT_HEAD(__d) \
188 PSLIST_WRITER_INSERT_HEAD(&bpf_dlist, (__d), bd_bpf_dlist_entry)
189 #define BPF_DLIST_READER_FOREACH(__d) \
190 PSLIST_READER_FOREACH((__d), &bpf_dlist, struct bpf_d, \
191 bd_bpf_dlist_entry)
192 #define BPF_DLIST_WRITER_FOREACH(__d) \
193 PSLIST_WRITER_FOREACH((__d), &bpf_dlist, struct bpf_d, \
194 bd_bpf_dlist_entry)
195 #define BPF_DLIST_ENTRY_INIT(__d) \
196 PSLIST_ENTRY_INIT((__d), bd_bpf_dlist_entry)
197 #define BPF_DLIST_WRITER_REMOVE(__d) \
198 PSLIST_WRITER_REMOVE((__d), bd_bpf_dlist_entry)
199 #define BPF_DLIST_ENTRY_DESTROY(__d) \
200 PSLIST_ENTRY_DESTROY((__d), bd_bpf_dlist_entry)
201
202 /* Macros for bpf_if on bpf_iflist */
203 #define BPF_IFLIST_WRITER_INSERT_HEAD(__bp) \
204 PSLIST_WRITER_INSERT_HEAD(&bpf_iflist, (__bp), bif_iflist_entry)
205 #define BPF_IFLIST_READER_FOREACH(__bp) \
206 PSLIST_READER_FOREACH((__bp), &bpf_iflist, struct bpf_if, \
207 bif_iflist_entry)
208 #define BPF_IFLIST_WRITER_FOREACH(__bp) \
209 PSLIST_WRITER_FOREACH((__bp), &bpf_iflist, struct bpf_if, \
210 bif_iflist_entry)
211 #define BPF_IFLIST_WRITER_REMOVE(__bp) \
212 PSLIST_WRITER_REMOVE((__bp), bif_iflist_entry)
213 #define BPF_IFLIST_ENTRY_INIT(__bp) \
214 PSLIST_ENTRY_INIT((__bp), bif_iflist_entry)
215 #define BPF_IFLIST_ENTRY_DESTROY(__bp) \
216 PSLIST_ENTRY_DESTROY((__bp), bif_iflist_entry)
217
218 /* Macros for bpf_d on bpf_if#bif_dlist_pslist */
219 #define BPFIF_DLIST_READER_FOREACH(__d, __bp) \
220 PSLIST_READER_FOREACH((__d), &(__bp)->bif_dlist_head, struct bpf_d, \
221 bd_bif_dlist_entry)
222 #define BPFIF_DLIST_WRITER_INSERT_HEAD(__bp, __d) \
223 PSLIST_WRITER_INSERT_HEAD(&(__bp)->bif_dlist_head, (__d), \
224 bd_bif_dlist_entry)
225 #define BPFIF_DLIST_WRITER_REMOVE(__d) \
226 PSLIST_WRITER_REMOVE((__d), bd_bif_dlist_entry)
227 #define BPFIF_DLIST_ENTRY_INIT(__d) \
228 PSLIST_ENTRY_INIT((__d), bd_bif_dlist_entry)
229 #define BPFIF_DLIST_READER_EMPTY(__bp) \
230 (PSLIST_READER_FIRST(&(__bp)->bif_dlist_head, struct bpf_d, \
231 bd_bif_dlist_entry) == NULL)
232 #define BPFIF_DLIST_WRITER_EMPTY(__bp) \
233 (PSLIST_WRITER_FIRST(&(__bp)->bif_dlist_head, struct bpf_d, \
234 bd_bif_dlist_entry) == NULL)
235 #define BPFIF_DLIST_ENTRY_DESTROY(__d) \
236 PSLIST_ENTRY_DESTROY((__d), bd_bif_dlist_entry)
237
238 static int bpf_allocbufs(struct bpf_d *);
239 static void bpf_deliver(struct bpf_if *,
240 void *(*cpfn)(void *, const void *, size_t),
241 void *, u_int, u_int, const bool);
242 static void bpf_freed(struct bpf_d *);
243 static void bpf_free_filter(struct bpf_filter *);
244 static void bpf_ifname(struct ifnet *, struct ifreq *);
245 static void *bpf_mcpy(void *, const void *, size_t);
246 static int bpf_movein(struct uio *, int, uint64_t,
247 struct mbuf **, struct sockaddr *);
248 static void bpf_attachd(struct bpf_d *, struct bpf_if *);
249 static void bpf_detachd(struct bpf_d *);
250 static int bpf_setif(struct bpf_d *, struct ifreq *);
251 static int bpf_setf(struct bpf_d *, struct bpf_program *);
252 static void bpf_timed_out(void *);
253 static inline void
254 bpf_wakeup(struct bpf_d *);
255 static int bpf_hdrlen(struct bpf_d *);
256 static void catchpacket(struct bpf_d *, u_char *, u_int, u_int,
257 void *(*)(void *, const void *, size_t), struct timespec *);
258 static void reset_d(struct bpf_d *);
259 static int bpf_getdltlist(struct bpf_d *, struct bpf_dltlist *);
260 static int bpf_setdlt(struct bpf_d *, u_int);
261
262 static int bpf_read(struct file *, off_t *, struct uio *, kauth_cred_t,
263 int);
264 static int bpf_write(struct file *, off_t *, struct uio *, kauth_cred_t,
265 int);
266 static int bpf_ioctl(struct file *, u_long, void *);
267 static int bpf_poll(struct file *, int);
268 static int bpf_stat(struct file *, struct stat *);
269 static int bpf_close(struct file *);
270 static int bpf_kqfilter(struct file *, struct knote *);
271
272 static const struct fileops bpf_fileops = {
273 .fo_read = bpf_read,
274 .fo_write = bpf_write,
275 .fo_ioctl = bpf_ioctl,
276 .fo_fcntl = fnullop_fcntl,
277 .fo_poll = bpf_poll,
278 .fo_stat = bpf_stat,
279 .fo_close = bpf_close,
280 .fo_kqfilter = bpf_kqfilter,
281 .fo_restart = fnullop_restart,
282 };
283
284 dev_type_open(bpfopen);
285
286 const struct cdevsw bpf_cdevsw = {
287 .d_open = bpfopen,
288 .d_close = noclose,
289 .d_read = noread,
290 .d_write = nowrite,
291 .d_ioctl = noioctl,
292 .d_stop = nostop,
293 .d_tty = notty,
294 .d_poll = nopoll,
295 .d_mmap = nommap,
296 .d_kqfilter = nokqfilter,
297 .d_discard = nodiscard,
298 .d_flag = D_OTHER | D_MPSAFE
299 };
300
301 bpfjit_func_t
302 bpf_jit_generate(bpf_ctx_t *bc, void *code, size_t size)
303 {
304
305 membar_consumer();
306 if (bpfjit_module_ops.bj_generate_code != NULL) {
307 return bpfjit_module_ops.bj_generate_code(bc, code, size);
308 }
309 return NULL;
310 }
311
312 void
313 bpf_jit_freecode(bpfjit_func_t jcode)
314 {
315 KASSERT(bpfjit_module_ops.bj_free_code != NULL);
316 bpfjit_module_ops.bj_free_code(jcode);
317 }
318
319 static int
320 bpf_movein(struct uio *uio, int linktype, uint64_t mtu, struct mbuf **mp,
321 struct sockaddr *sockp)
322 {
323 struct mbuf *m;
324 int error;
325 size_t len;
326 size_t hlen;
327 size_t align;
328
329 /*
330 * Build a sockaddr based on the data link layer type.
331 * We do this at this level because the ethernet header
332 * is copied directly into the data field of the sockaddr.
333 * In the case of SLIP, there is no header and the packet
334 * is forwarded as is.
335 * Also, we are careful to leave room at the front of the mbuf
336 * for the link level header.
337 */
338 switch (linktype) {
339
340 case DLT_SLIP:
341 sockp->sa_family = AF_INET;
342 hlen = 0;
343 align = 0;
344 break;
345
346 case DLT_PPP:
347 sockp->sa_family = AF_UNSPEC;
348 hlen = 0;
349 align = 0;
350 break;
351
352 case DLT_EN10MB:
353 sockp->sa_family = AF_UNSPEC;
354 /* XXX Would MAXLINKHDR be better? */
355 /* 6(dst)+6(src)+2(type) */
356 hlen = sizeof(struct ether_header);
357 align = 2;
358 break;
359
360 case DLT_ARCNET:
361 sockp->sa_family = AF_UNSPEC;
362 hlen = ARC_HDRLEN;
363 align = 5;
364 break;
365
366 case DLT_FDDI:
367 sockp->sa_family = AF_LINK;
368 /* XXX 4(FORMAC)+6(dst)+6(src) */
369 hlen = 16;
370 align = 0;
371 break;
372
373 case DLT_ECONET:
374 sockp->sa_family = AF_UNSPEC;
375 hlen = 6;
376 align = 2;
377 break;
378
379 case DLT_NULL:
380 sockp->sa_family = AF_UNSPEC;
381 hlen = 0;
382 align = 0;
383 break;
384
385 default:
386 return (EIO);
387 }
388
389 len = uio->uio_resid;
390 /*
391 * If there aren't enough bytes for a link level header or the
392 * packet length exceeds the interface mtu, return an error.
393 */
394 if (len - hlen > mtu)
395 return (EMSGSIZE);
396
397 /*
398 * XXX Avoid complicated buffer chaining ---
399 * bail if it won't fit in a single mbuf.
400 * (Take into account possible alignment bytes)
401 */
402 if (len + align > MCLBYTES)
403 return (EIO);
404
405 m = m_gethdr(M_WAIT, MT_DATA);
406 m_reset_rcvif(m);
407 m->m_pkthdr.len = (int)(len - hlen);
408 if (len + align > MHLEN) {
409 m_clget(m, M_WAIT);
410 if ((m->m_flags & M_EXT) == 0) {
411 error = ENOBUFS;
412 goto bad;
413 }
414 }
415
416 /* Insure the data is properly aligned */
417 if (align > 0) {
418 m->m_data += align;
419 m->m_len -= (int)align;
420 }
421
422 error = uiomove(mtod(m, void *), len, uio);
423 if (error)
424 goto bad;
425 if (hlen != 0) {
426 memcpy(sockp->sa_data, mtod(m, void *), hlen);
427 m->m_data += hlen; /* XXX */
428 len -= hlen;
429 }
430 m->m_len = (int)len;
431 *mp = m;
432 return (0);
433
434 bad:
435 m_freem(m);
436 return (error);
437 }
438
439 /*
440 * Attach file to the bpf interface, i.e. make d listen on bp.
441 */
442 static void
443 bpf_attachd(struct bpf_d *d, struct bpf_if *bp)
444 {
445
446 KASSERT(mutex_owned(&bpf_mtx));
447 KASSERT(mutex_owned(d->bd_mtx));
448 /*
449 * Point d at bp, and add d to the interface's list of listeners.
450 * Finally, point the driver's bpf cookie at the interface so
451 * it will divert packets to bpf.
452 */
453 d->bd_bif = bp;
454 BPFIF_DLIST_WRITER_INSERT_HEAD(bp, d);
455
456 *bp->bif_driverp = bp;
457 }
458
459 /*
460 * Detach a file from its interface.
461 */
462 static void
463 bpf_detachd(struct bpf_d *d)
464 {
465 struct bpf_if *bp;
466
467 KASSERT(mutex_owned(&bpf_mtx));
468 KASSERT(mutex_owned(d->bd_mtx));
469
470 bp = d->bd_bif;
471 /*
472 * Check if this descriptor had requested promiscuous mode.
473 * If so, turn it off.
474 */
475 if (d->bd_promisc) {
476 int error __diagused;
477
478 d->bd_promisc = 0;
479 /*
480 * Take device out of promiscuous mode. Since we were
481 * able to enter promiscuous mode, we should be able
482 * to turn it off. But we can get an error if
483 * the interface was configured down, so only panic
484 * if we don't get an unexpected error.
485 */
486 KERNEL_LOCK_UNLESS_NET_MPSAFE();
487 error = ifpromisc(bp->bif_ifp, 0);
488 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
489 #ifdef DIAGNOSTIC
490 if (error)
491 printf("%s: ifpromisc failed: %d", __func__, error);
492 #endif
493 }
494
495 /* Remove d from the interface's descriptor list. */
496 BPFIF_DLIST_WRITER_REMOVE(d);
497
498 pserialize_perform(bpf_psz);
499
500 if (BPFIF_DLIST_WRITER_EMPTY(bp)) {
501 /*
502 * Let the driver know that there are no more listeners.
503 */
504 *d->bd_bif->bif_driverp = NULL;
505 }
506 d->bd_bif = NULL;
507 }
508
509 static void
510 bpf_init(void)
511 {
512
513 mutex_init(&bpf_mtx, MUTEX_DEFAULT, IPL_NONE);
514 bpf_psz = pserialize_create();
515 bpf_psref_class = psref_class_create("bpf", IPL_SOFTNET);
516
517 PSLIST_INIT(&bpf_iflist);
518 PSLIST_INIT(&bpf_dlist);
519
520 bpf_gstats_percpu = percpu_alloc(sizeof(struct bpf_stat));
521
522 return;
523 }
524
525 /*
526 * bpfilterattach() is called at boot time. We don't need to do anything
527 * here, since any initialization will happen as part of module init code.
528 */
529 /* ARGSUSED */
530 void
531 bpfilterattach(int n)
532 {
533
534 }
535
536 /*
537 * Open ethernet device. Clones.
538 */
539 /* ARGSUSED */
540 int
541 bpfopen(dev_t dev, int flag, int mode, struct lwp *l)
542 {
543 struct bpf_d *d;
544 struct file *fp;
545 int error, fd;
546
547 /* falloc() will fill in the descriptor for us. */
548 if ((error = fd_allocfile(&fp, &fd)) != 0)
549 return error;
550
551 d = kmem_zalloc(sizeof(*d), KM_SLEEP);
552 d->bd_bufsize = bpf_bufsize;
553 d->bd_seesent = 1;
554 d->bd_feedback = 0;
555 d->bd_pid = l->l_proc->p_pid;
556 #ifdef _LP64
557 if (curproc->p_flag & PK_32)
558 d->bd_compat32 = 1;
559 #endif
560 getnanotime(&d->bd_btime);
561 d->bd_atime = d->bd_mtime = d->bd_btime;
562 callout_init(&d->bd_callout, CALLOUT_MPSAFE);
563 selinit(&d->bd_sel);
564 d->bd_jitcode = NULL;
565 d->bd_filter = NULL;
566 BPF_DLIST_ENTRY_INIT(d);
567 BPFIF_DLIST_ENTRY_INIT(d);
568 d->bd_mtx = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
569 d->bd_buf_mtx = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);
570 cv_init(&d->bd_cv, "bpf");
571
572 mutex_enter(&bpf_mtx);
573 BPF_DLIST_WRITER_INSERT_HEAD(d);
574 mutex_exit(&bpf_mtx);
575
576 return fd_clone(fp, fd, flag, &bpf_fileops, d);
577 }
578
579 /*
580 * Close the descriptor by detaching it from its interface,
581 * deallocating its buffers, and marking it free.
582 */
583 /* ARGSUSED */
584 static int
585 bpf_close(struct file *fp)
586 {
587 struct bpf_d *d;
588
589 mutex_enter(&bpf_mtx);
590
591 if ((d = fp->f_bpf) == NULL) {
592 mutex_exit(&bpf_mtx);
593 return 0;
594 }
595
596 /*
597 * Refresh the PID associated with this bpf file.
598 */
599 d->bd_pid = curproc->p_pid;
600
601 mutex_enter(d->bd_mtx);
602 if (d->bd_state == BPF_WAITING)
603 callout_halt(&d->bd_callout, d->bd_mtx);
604 d->bd_state = BPF_IDLE;
605 if (d->bd_bif)
606 bpf_detachd(d);
607 mutex_exit(d->bd_mtx);
608
609 BPF_DLIST_WRITER_REMOVE(d);
610
611 pserialize_perform(bpf_psz);
612 mutex_exit(&bpf_mtx);
613
614 BPFIF_DLIST_ENTRY_DESTROY(d);
615 BPF_DLIST_ENTRY_DESTROY(d);
616 fp->f_bpf = NULL;
617 bpf_freed(d);
618 callout_destroy(&d->bd_callout);
619 seldestroy(&d->bd_sel);
620 mutex_obj_free(d->bd_mtx);
621 mutex_obj_free(d->bd_buf_mtx);
622 cv_destroy(&d->bd_cv);
623
624 kmem_free(d, sizeof(*d));
625
626 return (0);
627 }
628
629 /*
630 * Rotate the packet buffers in descriptor d. Move the store buffer
631 * into the hold slot, and the free buffer into the store slot.
632 * Zero the length of the new store buffer.
633 */
634 #define ROTATE_BUFFERS(d) \
635 (d)->bd_hbuf = (d)->bd_sbuf; \
636 (d)->bd_hlen = (d)->bd_slen; \
637 (d)->bd_sbuf = (d)->bd_fbuf; \
638 (d)->bd_slen = 0; \
639 (d)->bd_fbuf = NULL;
640 /*
641 * bpfread - read next chunk of packets from buffers
642 */
643 static int
644 bpf_read(struct file *fp, off_t *offp, struct uio *uio,
645 kauth_cred_t cred, int flags)
646 {
647 struct bpf_d *d = fp->f_bpf;
648 int timed_out;
649 int error;
650
651 getnanotime(&d->bd_atime);
652 /*
653 * Restrict application to use a buffer the same size as
654 * the kernel buffers.
655 */
656 if (uio->uio_resid != d->bd_bufsize)
657 return (EINVAL);
658
659 mutex_enter(d->bd_mtx);
660 if (d->bd_state == BPF_WAITING)
661 callout_halt(&d->bd_callout, d->bd_mtx);
662 timed_out = (d->bd_state == BPF_TIMED_OUT);
663 d->bd_state = BPF_IDLE;
664 mutex_exit(d->bd_mtx);
665 /*
666 * If the hold buffer is empty, then do a timed sleep, which
667 * ends when the timeout expires or when enough packets
668 * have arrived to fill the store buffer.
669 */
670 mutex_enter(d->bd_buf_mtx);
671 while (d->bd_hbuf == NULL) {
672 if (fp->f_flag & FNONBLOCK) {
673 if (d->bd_slen == 0) {
674 error = EWOULDBLOCK;
675 goto out;
676 }
677 ROTATE_BUFFERS(d);
678 break;
679 }
680
681 if ((d->bd_immediate || timed_out) && d->bd_slen != 0) {
682 /*
683 * A packet(s) either arrived since the previous
684 * read or arrived while we were asleep.
685 * Rotate the buffers and return what's here.
686 */
687 ROTATE_BUFFERS(d);
688 break;
689 }
690
691 error = cv_timedwait_sig(&d->bd_cv, d->bd_buf_mtx, d->bd_rtout);
692
693 if (error == EINTR || error == ERESTART)
694 goto out;
695
696 if (error == EWOULDBLOCK) {
697 /*
698 * On a timeout, return what's in the buffer,
699 * which may be nothing. If there is something
700 * in the store buffer, we can rotate the buffers.
701 */
702 if (d->bd_hbuf)
703 /*
704 * We filled up the buffer in between
705 * getting the timeout and arriving
706 * here, so we don't need to rotate.
707 */
708 break;
709
710 if (d->bd_slen == 0) {
711 error = 0;
712 goto out;
713 }
714 ROTATE_BUFFERS(d);
715 break;
716 }
717 if (error != 0)
718 goto out;
719 }
720 /*
721 * At this point, we know we have something in the hold slot.
722 */
723 mutex_exit(d->bd_buf_mtx);
724
725 /*
726 * Move data from hold buffer into user space.
727 * We know the entire buffer is transferred since
728 * we checked above that the read buffer is bpf_bufsize bytes.
729 */
730 error = uiomove(d->bd_hbuf, d->bd_hlen, uio);
731
732 mutex_enter(d->bd_buf_mtx);
733 d->bd_fbuf = d->bd_hbuf;
734 d->bd_hbuf = NULL;
735 d->bd_hlen = 0;
736 out:
737 mutex_exit(d->bd_buf_mtx);
738 return (error);
739 }
740
741
742 /*
743 * If there are processes sleeping on this descriptor, wake them up.
744 */
745 static inline void
746 bpf_wakeup(struct bpf_d *d)
747 {
748
749 mutex_enter(d->bd_buf_mtx);
750 cv_broadcast(&d->bd_cv);
751 mutex_exit(d->bd_buf_mtx);
752
753 if (d->bd_async)
754 fownsignal(d->bd_pgid, SIGIO, 0, 0, NULL);
755 selnotify(&d->bd_sel, 0, 0);
756 }
757
758 static void
759 bpf_timed_out(void *arg)
760 {
761 struct bpf_d *d = arg;
762
763 mutex_enter(d->bd_mtx);
764 if (d->bd_state == BPF_WAITING) {
765 d->bd_state = BPF_TIMED_OUT;
766 if (d->bd_slen != 0)
767 bpf_wakeup(d);
768 }
769 mutex_exit(d->bd_mtx);
770 }
771
772
773 static int
774 bpf_write(struct file *fp, off_t *offp, struct uio *uio,
775 kauth_cred_t cred, int flags)
776 {
777 struct bpf_d *d = fp->f_bpf;
778 struct bpf_if *bp;
779 struct ifnet *ifp;
780 struct mbuf *m, *mc;
781 int error;
782 static struct sockaddr_storage dst;
783 struct psref psref;
784 int bound;
785
786 m = NULL; /* XXX gcc */
787
788 bound = curlwp_bind();
789 mutex_enter(d->bd_mtx);
790 bp = d->bd_bif;
791 if (bp == NULL) {
792 mutex_exit(d->bd_mtx);
793 error = ENXIO;
794 goto out_bindx;
795 }
796 bpf_if_acquire(bp, &psref);
797 mutex_exit(d->bd_mtx);
798
799 getnanotime(&d->bd_mtime);
800
801 ifp = bp->bif_ifp;
802 if (if_is_deactivated(ifp)) {
803 error = ENXIO;
804 goto out;
805 }
806
807 if (uio->uio_resid == 0) {
808 error = 0;
809 goto out;
810 }
811
812 error = bpf_movein(uio, (int)bp->bif_dlt, ifp->if_mtu, &m,
813 (struct sockaddr *) &dst);
814 if (error)
815 goto out;
816
817 if (m->m_pkthdr.len > ifp->if_mtu) {
818 m_freem(m);
819 error = EMSGSIZE;
820 goto out;
821 }
822
823 if (d->bd_hdrcmplt)
824 dst.ss_family = pseudo_AF_HDRCMPLT;
825
826 if (d->bd_feedback) {
827 mc = m_dup(m, 0, M_COPYALL, M_NOWAIT);
828 if (mc != NULL)
829 m_set_rcvif(mc, ifp);
830 /* Set M_PROMISC for outgoing packets to be discarded. */
831 if (1 /*d->bd_direction == BPF_D_INOUT*/)
832 m->m_flags |= M_PROMISC;
833 } else
834 mc = NULL;
835
836 error = if_output_lock(ifp, ifp, m, (struct sockaddr *) &dst, NULL);
837
838 if (mc != NULL) {
839 if (error == 0) {
840 int s = splsoftnet();
841 KERNEL_LOCK_UNLESS_IFP_MPSAFE(ifp);
842 ifp->_if_input(ifp, mc);
843 KERNEL_UNLOCK_UNLESS_IFP_MPSAFE(ifp);
844 splx(s);
845 } else
846 m_freem(mc);
847 }
848 /*
849 * The driver frees the mbuf.
850 */
851 out:
852 bpf_if_release(bp, &psref);
853 out_bindx:
854 curlwp_bindx(bound);
855 return error;
856 }
857
858 /*
859 * Reset a descriptor by flushing its packet buffer and clearing the
860 * receive and drop counts.
861 */
862 static void
863 reset_d(struct bpf_d *d)
864 {
865
866 KASSERT(mutex_owned(d->bd_mtx));
867
868 mutex_enter(d->bd_buf_mtx);
869 if (d->bd_hbuf) {
870 /* Free the hold buffer. */
871 d->bd_fbuf = d->bd_hbuf;
872 d->bd_hbuf = NULL;
873 }
874 d->bd_slen = 0;
875 d->bd_hlen = 0;
876 d->bd_rcount = 0;
877 d->bd_dcount = 0;
878 d->bd_ccount = 0;
879 mutex_exit(d->bd_buf_mtx);
880 }
881
882 /*
883 * FIONREAD Check for read packet available.
884 * BIOCGBLEN Get buffer len [for read()].
885 * BIOCSETF Set ethernet read filter.
886 * BIOCFLUSH Flush read packet buffer.
887 * BIOCPROMISC Put interface into promiscuous mode.
888 * BIOCGDLT Get link layer type.
889 * BIOCGETIF Get interface name.
890 * BIOCSETIF Set interface.
891 * BIOCSRTIMEOUT Set read timeout.
892 * BIOCGRTIMEOUT Get read timeout.
893 * BIOCGSTATS Get packet stats.
894 * BIOCIMMEDIATE Set immediate mode.
895 * BIOCVERSION Get filter language version.
896 * BIOCGHDRCMPLT Get "header already complete" flag.
897 * BIOCSHDRCMPLT Set "header already complete" flag.
898 * BIOCSFEEDBACK Set packet feedback mode.
899 * BIOCGFEEDBACK Get packet feedback mode.
900 * BIOCGSEESENT Get "see sent packets" mode.
901 * BIOCSSEESENT Set "see sent packets" mode.
902 */
903 /* ARGSUSED */
904 static int
905 bpf_ioctl(struct file *fp, u_long cmd, void *addr)
906 {
907 struct bpf_d *d = fp->f_bpf;
908 int error = 0;
909
910 /*
911 * Refresh the PID associated with this bpf file.
912 */
913 d->bd_pid = curproc->p_pid;
914 #ifdef _LP64
915 if (curproc->p_flag & PK_32)
916 d->bd_compat32 = 1;
917 else
918 d->bd_compat32 = 0;
919 #endif
920
921 mutex_enter(d->bd_mtx);
922 if (d->bd_state == BPF_WAITING)
923 callout_halt(&d->bd_callout, d->bd_mtx);
924 d->bd_state = BPF_IDLE;
925 mutex_exit(d->bd_mtx);
926
927 switch (cmd) {
928
929 default:
930 error = EINVAL;
931 break;
932
933 /*
934 * Check for read packet available.
935 */
936 case FIONREAD:
937 {
938 int n;
939
940 mutex_enter(d->bd_buf_mtx);
941 n = d->bd_slen;
942 if (d->bd_hbuf)
943 n += d->bd_hlen;
944 mutex_exit(d->bd_buf_mtx);
945
946 *(int *)addr = n;
947 break;
948 }
949
950 /*
951 * Get buffer len [for read()].
952 */
953 case BIOCGBLEN:
954 *(u_int *)addr = d->bd_bufsize;
955 break;
956
957 /*
958 * Set buffer length.
959 */
960 case BIOCSBLEN:
961 /*
962 * Forbid to change the buffer length if buffers are already
963 * allocated.
964 */
965 mutex_enter(d->bd_mtx);
966 mutex_enter(d->bd_buf_mtx);
967 if (d->bd_bif != NULL || d->bd_sbuf != NULL)
968 error = EINVAL;
969 else {
970 u_int size = *(u_int *)addr;
971
972 if (size > bpf_maxbufsize)
973 *(u_int *)addr = size = bpf_maxbufsize;
974 else if (size < BPF_MINBUFSIZE)
975 *(u_int *)addr = size = BPF_MINBUFSIZE;
976 d->bd_bufsize = size;
977 }
978 mutex_exit(d->bd_buf_mtx);
979 mutex_exit(d->bd_mtx);
980 break;
981
982 /*
983 * Set link layer read filter.
984 */
985 case BIOCSETF:
986 error = bpf_setf(d, addr);
987 break;
988
989 /*
990 * Flush read packet buffer.
991 */
992 case BIOCFLUSH:
993 mutex_enter(d->bd_mtx);
994 reset_d(d);
995 mutex_exit(d->bd_mtx);
996 break;
997
998 /*
999 * Put interface into promiscuous mode.
1000 */
1001 case BIOCPROMISC:
1002 mutex_enter(d->bd_mtx);
1003 if (d->bd_bif == NULL) {
1004 mutex_exit(d->bd_mtx);
1005 /*
1006 * No interface attached yet.
1007 */
1008 error = EINVAL;
1009 break;
1010 }
1011 if (d->bd_promisc == 0) {
1012 KERNEL_LOCK_UNLESS_NET_MPSAFE();
1013 error = ifpromisc(d->bd_bif->bif_ifp, 1);
1014 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
1015 if (error == 0)
1016 d->bd_promisc = 1;
1017 }
1018 mutex_exit(d->bd_mtx);
1019 break;
1020
1021 /*
1022 * Get device parameters.
1023 */
1024 case BIOCGDLT:
1025 mutex_enter(d->bd_mtx);
1026 if (d->bd_bif == NULL)
1027 error = EINVAL;
1028 else
1029 *(u_int *)addr = d->bd_bif->bif_dlt;
1030 mutex_exit(d->bd_mtx);
1031 break;
1032
1033 /*
1034 * Get a list of supported device parameters.
1035 */
1036 case BIOCGDLTLIST:
1037 mutex_enter(d->bd_mtx);
1038 if (d->bd_bif == NULL)
1039 error = EINVAL;
1040 else
1041 error = bpf_getdltlist(d, addr);
1042 mutex_exit(d->bd_mtx);
1043 break;
1044
1045 /*
1046 * Set device parameters.
1047 */
1048 case BIOCSDLT:
1049 mutex_enter(&bpf_mtx);
1050 mutex_enter(d->bd_mtx);
1051 if (d->bd_bif == NULL)
1052 error = EINVAL;
1053 else
1054 error = bpf_setdlt(d, *(u_int *)addr);
1055 mutex_exit(d->bd_mtx);
1056 mutex_exit(&bpf_mtx);
1057 break;
1058
1059 /*
1060 * Set interface name.
1061 */
1062 #ifdef OBIOCGETIF
1063 case OBIOCGETIF:
1064 #endif
1065 case BIOCGETIF:
1066 mutex_enter(d->bd_mtx);
1067 if (d->bd_bif == NULL)
1068 error = EINVAL;
1069 else
1070 bpf_ifname(d->bd_bif->bif_ifp, addr);
1071 mutex_exit(d->bd_mtx);
1072 break;
1073
1074 /*
1075 * Set interface.
1076 */
1077 #ifdef OBIOCSETIF
1078 case OBIOCSETIF:
1079 #endif
1080 case BIOCSETIF:
1081 mutex_enter(&bpf_mtx);
1082 error = bpf_setif(d, addr);
1083 mutex_exit(&bpf_mtx);
1084 break;
1085
1086 /*
1087 * Set read timeout.
1088 */
1089 case BIOCSRTIMEOUT:
1090 {
1091 struct timeval *tv = addr;
1092
1093 /* Compute number of ticks. */
1094 if (tv->tv_sec < 0 ||
1095 tv->tv_usec < 0 || tv->tv_usec >= 1000000) {
1096 error = EINVAL;
1097 break;
1098 } else if (tv->tv_sec > INT_MAX/hz - 1) {
1099 d->bd_rtout = INT_MAX;
1100 } else {
1101 d->bd_rtout = tv->tv_sec * hz
1102 + tv->tv_usec / tick;
1103 }
1104 if ((d->bd_rtout == 0) && (tv->tv_usec != 0))
1105 d->bd_rtout = 1;
1106 break;
1107 }
1108
1109 #ifdef BIOCGORTIMEOUT
1110 /*
1111 * Get read timeout.
1112 */
1113 case BIOCGORTIMEOUT:
1114 {
1115 struct timeval50 *tv = addr;
1116
1117 tv->tv_sec = d->bd_rtout / hz;
1118 tv->tv_usec = (d->bd_rtout % hz) * tick;
1119 break;
1120 }
1121 #endif
1122
1123 #ifdef BIOCSORTIMEOUT
1124 /*
1125 * Set read timeout.
1126 */
1127 case BIOCSORTIMEOUT:
1128 {
1129 struct timeval50 *tv = addr;
1130
1131 /* Compute number of ticks. */
1132 if (tv->tv_sec < 0 ||
1133 tv->tv_usec < 0 || tv->tv_usec >= 1000000) {
1134 error = EINVAL;
1135 break;
1136 } else if (tv->tv_sec > INT_MAX/hz - 1) {
1137 d->bd_rtout = INT_MAX;
1138 } else {
1139 d->bd_rtout = tv->tv_sec * hz
1140 + tv->tv_usec / tick;
1141 }
1142 if ((d->bd_rtout == 0) && (tv->tv_usec != 0))
1143 d->bd_rtout = 1;
1144 break;
1145 }
1146 #endif
1147
1148 /*
1149 * Get read timeout.
1150 */
1151 case BIOCGRTIMEOUT:
1152 {
1153 struct timeval *tv = addr;
1154
1155 tv->tv_sec = d->bd_rtout / hz;
1156 tv->tv_usec = (d->bd_rtout % hz) * tick;
1157 break;
1158 }
1159 /*
1160 * Get packet stats.
1161 */
1162 case BIOCGSTATS:
1163 {
1164 struct bpf_stat *bs = addr;
1165
1166 bs->bs_recv = d->bd_rcount;
1167 bs->bs_drop = d->bd_dcount;
1168 bs->bs_capt = d->bd_ccount;
1169 break;
1170 }
1171
1172 case BIOCGSTATSOLD:
1173 {
1174 struct bpf_stat_old *bs = addr;
1175
1176 bs->bs_recv = d->bd_rcount;
1177 bs->bs_drop = d->bd_dcount;
1178 break;
1179 }
1180
1181 /*
1182 * Set immediate mode.
1183 */
1184 case BIOCIMMEDIATE:
1185 d->bd_immediate = *(u_int *)addr;
1186 break;
1187
1188 case BIOCVERSION:
1189 {
1190 struct bpf_version *bv = addr;
1191
1192 bv->bv_major = BPF_MAJOR_VERSION;
1193 bv->bv_minor = BPF_MINOR_VERSION;
1194 break;
1195 }
1196
1197 case BIOCGHDRCMPLT: /* get "header already complete" flag */
1198 *(u_int *)addr = d->bd_hdrcmplt;
1199 break;
1200
1201 case BIOCSHDRCMPLT: /* set "header already complete" flag */
1202 d->bd_hdrcmplt = *(u_int *)addr ? 1 : 0;
1203 break;
1204
1205 /*
1206 * Get "see sent packets" flag
1207 */
1208 case BIOCGSEESENT:
1209 *(u_int *)addr = d->bd_seesent;
1210 break;
1211
1212 /*
1213 * Set "see sent" packets flag
1214 */
1215 case BIOCSSEESENT:
1216 d->bd_seesent = *(u_int *)addr;
1217 break;
1218
1219 /*
1220 * Set "feed packets from bpf back to input" mode
1221 */
1222 case BIOCSFEEDBACK:
1223 d->bd_feedback = *(u_int *)addr;
1224 break;
1225
1226 /*
1227 * Get "feed packets from bpf back to input" mode
1228 */
1229 case BIOCGFEEDBACK:
1230 *(u_int *)addr = d->bd_feedback;
1231 break;
1232
1233 case FIONBIO: /* Non-blocking I/O */
1234 /*
1235 * No need to do anything special as we use IO_NDELAY in
1236 * bpfread() as an indication of whether or not to block
1237 * the read.
1238 */
1239 break;
1240
1241 case FIOASYNC: /* Send signal on receive packets */
1242 mutex_enter(d->bd_mtx);
1243 d->bd_async = *(int *)addr;
1244 mutex_exit(d->bd_mtx);
1245 break;
1246
1247 case TIOCSPGRP: /* Process or group to send signals to */
1248 case FIOSETOWN:
1249 error = fsetown(&d->bd_pgid, cmd, addr);
1250 break;
1251
1252 case TIOCGPGRP:
1253 case FIOGETOWN:
1254 error = fgetown(d->bd_pgid, cmd, addr);
1255 break;
1256 }
1257 return (error);
1258 }
1259
1260 /*
1261 * Set d's packet filter program to fp. If this file already has a filter,
1262 * free it and replace it. Returns EINVAL for bogus requests.
1263 */
1264 static int
1265 bpf_setf(struct bpf_d *d, struct bpf_program *fp)
1266 {
1267 struct bpf_insn *fcode;
1268 bpfjit_func_t jcode;
1269 size_t flen, size = 0;
1270 struct bpf_filter *oldf, *newf;
1271
1272 jcode = NULL;
1273 flen = fp->bf_len;
1274
1275 if ((fp->bf_insns == NULL && flen) || flen > BPF_MAXINSNS) {
1276 return EINVAL;
1277 }
1278
1279 if (flen) {
1280 /*
1281 * Allocate the buffer, copy the byte-code from
1282 * userspace and validate it.
1283 */
1284 size = flen * sizeof(*fp->bf_insns);
1285 fcode = kmem_alloc(size, KM_SLEEP);
1286 if (copyin(fp->bf_insns, fcode, size) != 0 ||
1287 !bpf_validate(fcode, (int)flen)) {
1288 kmem_free(fcode, size);
1289 return EINVAL;
1290 }
1291 membar_consumer();
1292 if (bpf_jit)
1293 jcode = bpf_jit_generate(NULL, fcode, flen);
1294 } else {
1295 fcode = NULL;
1296 }
1297
1298 newf = kmem_alloc(sizeof(*newf), KM_SLEEP);
1299 newf->bf_insn = fcode;
1300 newf->bf_size = size;
1301 newf->bf_jitcode = jcode;
1302 d->bd_jitcode = jcode; /* XXX just for kvm(3) users */
1303
1304 /* Need to hold bpf_mtx for pserialize_perform */
1305 mutex_enter(&bpf_mtx);
1306 mutex_enter(d->bd_mtx);
1307 oldf = d->bd_filter;
1308 d->bd_filter = newf;
1309 membar_producer();
1310 reset_d(d);
1311 pserialize_perform(bpf_psz);
1312 mutex_exit(d->bd_mtx);
1313 mutex_exit(&bpf_mtx);
1314
1315 if (oldf != NULL)
1316 bpf_free_filter(oldf);
1317
1318 return 0;
1319 }
1320
1321 /*
1322 * Detach a file from its current interface (if attached at all) and attach
1323 * to the interface indicated by the name stored in ifr.
1324 * Return an errno or 0.
1325 */
1326 static int
1327 bpf_setif(struct bpf_d *d, struct ifreq *ifr)
1328 {
1329 struct bpf_if *bp;
1330 char *cp;
1331 int unit_seen, i, error;
1332
1333 KASSERT(mutex_owned(&bpf_mtx));
1334 /*
1335 * Make sure the provided name has a unit number, and default
1336 * it to '0' if not specified.
1337 * XXX This is ugly ... do this differently?
1338 */
1339 unit_seen = 0;
1340 cp = ifr->ifr_name;
1341 cp[sizeof(ifr->ifr_name) - 1] = '\0'; /* sanity */
1342 while (*cp++)
1343 if (*cp >= '0' && *cp <= '9')
1344 unit_seen = 1;
1345 if (!unit_seen) {
1346 /* Make sure to leave room for the '\0'. */
1347 for (i = 0; i < (IFNAMSIZ - 1); ++i) {
1348 if ((ifr->ifr_name[i] >= 'a' &&
1349 ifr->ifr_name[i] <= 'z') ||
1350 (ifr->ifr_name[i] >= 'A' &&
1351 ifr->ifr_name[i] <= 'Z'))
1352 continue;
1353 ifr->ifr_name[i] = '0';
1354 }
1355 }
1356
1357 /*
1358 * Look through attached interfaces for the named one.
1359 */
1360 BPF_IFLIST_WRITER_FOREACH(bp) {
1361 struct ifnet *ifp = bp->bif_ifp;
1362
1363 if (ifp == NULL ||
1364 strcmp(ifp->if_xname, ifr->ifr_name) != 0)
1365 continue;
1366 /* skip additional entry */
1367 if (bp->bif_driverp != &ifp->if_bpf)
1368 continue;
1369 /*
1370 * We found the requested interface.
1371 * Allocate the packet buffers if we need to.
1372 * If we're already attached to requested interface,
1373 * just flush the buffer.
1374 */
1375 /*
1376 * bpf_allocbufs is called only here. bpf_mtx ensures that
1377 * no race condition happen on d->bd_sbuf.
1378 */
1379 if (d->bd_sbuf == NULL) {
1380 error = bpf_allocbufs(d);
1381 if (error != 0)
1382 return (error);
1383 }
1384 mutex_enter(d->bd_mtx);
1385 if (bp != d->bd_bif) {
1386 if (d->bd_bif) {
1387 /*
1388 * Detach if attached to something else.
1389 */
1390 bpf_detachd(d);
1391 BPFIF_DLIST_ENTRY_INIT(d);
1392 }
1393
1394 bpf_attachd(d, bp);
1395 }
1396 reset_d(d);
1397 mutex_exit(d->bd_mtx);
1398 return (0);
1399 }
1400 /* Not found. */
1401 return (ENXIO);
1402 }
1403
1404 /*
1405 * Copy the interface name to the ifreq.
1406 */
1407 static void
1408 bpf_ifname(struct ifnet *ifp, struct ifreq *ifr)
1409 {
1410 memcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
1411 }
1412
1413 static int
1414 bpf_stat(struct file *fp, struct stat *st)
1415 {
1416 struct bpf_d *d = fp->f_bpf;
1417
1418 (void)memset(st, 0, sizeof(*st));
1419 mutex_enter(d->bd_mtx);
1420 st->st_dev = makedev(cdevsw_lookup_major(&bpf_cdevsw), d->bd_pid);
1421 st->st_atimespec = d->bd_atime;
1422 st->st_mtimespec = d->bd_mtime;
1423 st->st_ctimespec = st->st_birthtimespec = d->bd_btime;
1424 st->st_uid = kauth_cred_geteuid(fp->f_cred);
1425 st->st_gid = kauth_cred_getegid(fp->f_cred);
1426 st->st_mode = S_IFCHR;
1427 mutex_exit(d->bd_mtx);
1428 return 0;
1429 }
1430
1431 /*
1432 * Support for poll() system call
1433 *
1434 * Return true iff the specific operation will not block indefinitely - with
1435 * the assumption that it is safe to positively acknowledge a request for the
1436 * ability to write to the BPF device.
1437 * Otherwise, return false but make a note that a selnotify() must be done.
1438 */
1439 static int
1440 bpf_poll(struct file *fp, int events)
1441 {
1442 struct bpf_d *d = fp->f_bpf;
1443 int revents;
1444
1445 /*
1446 * Refresh the PID associated with this bpf file.
1447 */
1448 mutex_enter(&bpf_mtx);
1449 d->bd_pid = curproc->p_pid;
1450
1451 revents = events & (POLLOUT | POLLWRNORM);
1452 if (events & (POLLIN | POLLRDNORM)) {
1453 /*
1454 * An imitation of the FIONREAD ioctl code.
1455 */
1456 mutex_enter(d->bd_mtx);
1457 if (d->bd_hlen != 0 ||
1458 ((d->bd_immediate || d->bd_state == BPF_TIMED_OUT) &&
1459 d->bd_slen != 0)) {
1460 revents |= events & (POLLIN | POLLRDNORM);
1461 } else {
1462 selrecord(curlwp, &d->bd_sel);
1463 /* Start the read timeout if necessary */
1464 if (d->bd_rtout > 0 && d->bd_state == BPF_IDLE) {
1465 callout_reset(&d->bd_callout, d->bd_rtout,
1466 bpf_timed_out, d);
1467 d->bd_state = BPF_WAITING;
1468 }
1469 }
1470 mutex_exit(d->bd_mtx);
1471 }
1472
1473 mutex_exit(&bpf_mtx);
1474 return (revents);
1475 }
1476
1477 static void
1478 filt_bpfrdetach(struct knote *kn)
1479 {
1480 struct bpf_d *d = kn->kn_hook;
1481
1482 mutex_enter(d->bd_buf_mtx);
1483 SLIST_REMOVE(&d->bd_sel.sel_klist, kn, knote, kn_selnext);
1484 mutex_exit(d->bd_buf_mtx);
1485 }
1486
1487 static int
1488 filt_bpfread(struct knote *kn, long hint)
1489 {
1490 struct bpf_d *d = kn->kn_hook;
1491 int rv;
1492
1493 mutex_enter(d->bd_buf_mtx);
1494 kn->kn_data = d->bd_hlen;
1495 if (d->bd_immediate)
1496 kn->kn_data += d->bd_slen;
1497 rv = (kn->kn_data > 0);
1498 mutex_exit(d->bd_buf_mtx);
1499 return rv;
1500 }
1501
1502 static const struct filterops bpfread_filtops =
1503 { 1, NULL, filt_bpfrdetach, filt_bpfread };
1504
1505 static int
1506 bpf_kqfilter(struct file *fp, struct knote *kn)
1507 {
1508 struct bpf_d *d = fp->f_bpf;
1509 struct klist *klist;
1510
1511 mutex_enter(d->bd_buf_mtx);
1512 switch (kn->kn_filter) {
1513 case EVFILT_READ:
1514 klist = &d->bd_sel.sel_klist;
1515 kn->kn_fop = &bpfread_filtops;
1516 break;
1517
1518 default:
1519 mutex_exit(d->bd_buf_mtx);
1520 return (EINVAL);
1521 }
1522
1523 kn->kn_hook = d;
1524
1525 SLIST_INSERT_HEAD(klist, kn, kn_selnext);
1526 mutex_exit(d->bd_buf_mtx);
1527
1528 return (0);
1529 }
1530
1531 /*
1532 * Copy data from an mbuf chain into a buffer. This code is derived
1533 * from m_copydata in sys/uipc_mbuf.c.
1534 */
1535 static void *
1536 bpf_mcpy(void *dst_arg, const void *src_arg, size_t len)
1537 {
1538 const struct mbuf *m;
1539 u_int count;
1540 u_char *dst;
1541
1542 m = src_arg;
1543 dst = dst_arg;
1544 while (len > 0) {
1545 if (m == NULL)
1546 panic("bpf_mcpy");
1547 count = min(m->m_len, len);
1548 memcpy(dst, mtod(m, const void *), count);
1549 m = m->m_next;
1550 dst += count;
1551 len -= count;
1552 }
1553 return dst_arg;
1554 }
1555
1556 /*
1557 * Dispatch a packet to all the listeners on interface bp.
1558 *
1559 * pkt pointer to the packet, either a data buffer or an mbuf chain
1560 * buflen buffer length, if pkt is a data buffer
1561 * cpfn a function that can copy pkt into the listener's buffer
1562 * pktlen length of the packet
1563 * rcv true if packet came in
1564 */
1565 static inline void
1566 bpf_deliver(struct bpf_if *bp, void *(*cpfn)(void *, const void *, size_t),
1567 void *pkt, u_int pktlen, u_int buflen, const bool rcv)
1568 {
1569 uint32_t mem[BPF_MEMWORDS];
1570 bpf_args_t args = {
1571 .pkt = (const uint8_t *)pkt,
1572 .wirelen = pktlen,
1573 .buflen = buflen,
1574 .mem = mem,
1575 .arg = NULL
1576 };
1577 bool gottime = false;
1578 struct timespec ts;
1579 struct bpf_d *d;
1580 int s;
1581
1582 KASSERT(!cpu_intr_p());
1583
1584 /*
1585 * Note that the IPL does not have to be raised at this point.
1586 * The only problem that could arise here is that if two different
1587 * interfaces shared any data. This is not the case.
1588 */
1589 s = pserialize_read_enter();
1590 BPFIF_DLIST_READER_FOREACH(d, bp) {
1591 u_int slen = 0;
1592 struct bpf_filter *filter;
1593
1594 if (!d->bd_seesent && !rcv) {
1595 continue;
1596 }
1597 atomic_inc_ulong(&d->bd_rcount);
1598 BPF_STATINC(recv);
1599
1600 filter = d->bd_filter;
1601 membar_datadep_consumer();
1602 if (filter != NULL) {
1603 if (filter->bf_jitcode != NULL)
1604 slen = filter->bf_jitcode(NULL, &args);
1605 else
1606 slen = bpf_filter_ext(NULL, filter->bf_insn,
1607 &args);
1608 }
1609
1610 if (!slen) {
1611 continue;
1612 }
1613 if (!gottime) {
1614 gottime = true;
1615 nanotime(&ts);
1616 }
1617 /* Assume catchpacket doesn't sleep */
1618 catchpacket(d, pkt, pktlen, slen, cpfn, &ts);
1619 }
1620 pserialize_read_exit(s);
1621 }
1622
1623 /*
1624 * Incoming linkage from device drivers. Process the packet pkt, of length
1625 * pktlen, which is stored in a contiguous buffer. The packet is parsed
1626 * by each process' filter, and if accepted, stashed into the corresponding
1627 * buffer.
1628 */
1629 static void
1630 _bpf_tap(struct bpf_if *bp, u_char *pkt, u_int pktlen)
1631 {
1632
1633 bpf_deliver(bp, memcpy, pkt, pktlen, pktlen, true);
1634 }
1635
1636 /*
1637 * Incoming linkage from device drivers, when the head of the packet is in
1638 * a buffer, and the tail is in an mbuf chain.
1639 */
1640 static void
1641 _bpf_mtap2(struct bpf_if *bp, void *data, u_int dlen, struct mbuf *m)
1642 {
1643 u_int pktlen;
1644 struct mbuf mb;
1645
1646 /* Skip outgoing duplicate packets. */
1647 if ((m->m_flags & M_PROMISC) != 0 && m->m_pkthdr.rcvif_index == 0) {
1648 m->m_flags &= ~M_PROMISC;
1649 return;
1650 }
1651
1652 pktlen = m_length(m) + dlen;
1653
1654 /*
1655 * Craft on-stack mbuf suitable for passing to bpf_filter.
1656 * Note that we cut corners here; we only setup what's
1657 * absolutely needed--this mbuf should never go anywhere else.
1658 */
1659 (void)memset(&mb, 0, sizeof(mb));
1660 mb.m_next = m;
1661 mb.m_data = data;
1662 mb.m_len = dlen;
1663
1664 bpf_deliver(bp, bpf_mcpy, &mb, pktlen, 0, m->m_pkthdr.rcvif_index != 0);
1665 }
1666
1667 /*
1668 * Incoming linkage from device drivers, when packet is in an mbuf chain.
1669 */
1670 static void
1671 _bpf_mtap(struct bpf_if *bp, struct mbuf *m)
1672 {
1673 void *(*cpfn)(void *, const void *, size_t);
1674 u_int pktlen, buflen;
1675 void *marg;
1676
1677 /* Skip outgoing duplicate packets. */
1678 if ((m->m_flags & M_PROMISC) != 0 && m->m_pkthdr.rcvif_index == 0) {
1679 m->m_flags &= ~M_PROMISC;
1680 return;
1681 }
1682
1683 pktlen = m_length(m);
1684
1685 if (pktlen == m->m_len) {
1686 cpfn = (void *)memcpy;
1687 marg = mtod(m, void *);
1688 buflen = pktlen;
1689 } else {
1690 cpfn = bpf_mcpy;
1691 marg = m;
1692 buflen = 0;
1693 }
1694
1695 bpf_deliver(bp, cpfn, marg, pktlen, buflen, m->m_pkthdr.rcvif_index != 0);
1696 }
1697
1698 /*
1699 * We need to prepend the address family as
1700 * a four byte field. Cons up a dummy header
1701 * to pacify bpf. This is safe because bpf
1702 * will only read from the mbuf (i.e., it won't
1703 * try to free it or keep a pointer a to it).
1704 */
1705 static void
1706 _bpf_mtap_af(struct bpf_if *bp, uint32_t af, struct mbuf *m)
1707 {
1708 struct mbuf m0;
1709
1710 m0.m_flags = 0;
1711 m0.m_next = m;
1712 m0.m_len = 4;
1713 m0.m_data = (char *)⁡
1714
1715 _bpf_mtap(bp, &m0);
1716 }
1717
1718 /*
1719 * Put the SLIP pseudo-"link header" in place.
1720 * Note this M_PREPEND() should never fail,
1721 * swince we know we always have enough space
1722 * in the input buffer.
1723 */
1724 static void
1725 _bpf_mtap_sl_in(struct bpf_if *bp, u_char *chdr, struct mbuf **m)
1726 {
1727 u_char *hp;
1728
1729 M_PREPEND(*m, SLIP_HDRLEN, M_DONTWAIT);
1730 if (*m == NULL)
1731 return;
1732
1733 hp = mtod(*m, u_char *);
1734 hp[SLX_DIR] = SLIPDIR_IN;
1735 (void)memcpy(&hp[SLX_CHDR], chdr, CHDR_LEN);
1736
1737 _bpf_mtap(bp, *m);
1738
1739 m_adj(*m, SLIP_HDRLEN);
1740 }
1741
1742 /*
1743 * Put the SLIP pseudo-"link header" in
1744 * place. The compressed header is now
1745 * at the beginning of the mbuf.
1746 */
1747 static void
1748 _bpf_mtap_sl_out(struct bpf_if *bp, u_char *chdr, struct mbuf *m)
1749 {
1750 struct mbuf m0;
1751 u_char *hp;
1752
1753 m0.m_flags = 0;
1754 m0.m_next = m;
1755 m0.m_data = m0.m_dat;
1756 m0.m_len = SLIP_HDRLEN;
1757
1758 hp = mtod(&m0, u_char *);
1759
1760 hp[SLX_DIR] = SLIPDIR_OUT;
1761 (void)memcpy(&hp[SLX_CHDR], chdr, CHDR_LEN);
1762
1763 _bpf_mtap(bp, &m0);
1764 m_freem(m);
1765 }
1766
1767 static struct mbuf *
1768 bpf_mbuf_enqueue(struct bpf_if *bp, struct mbuf *m)
1769 {
1770 struct mbuf *dup;
1771
1772 dup = m_dup(m, 0, M_COPYALL, M_NOWAIT);
1773 if (dup == NULL)
1774 return NULL;
1775
1776 if (bp->bif_mbuf_tail != NULL) {
1777 bp->bif_mbuf_tail->m_nextpkt = dup;
1778 } else {
1779 bp->bif_mbuf_head = dup;
1780 }
1781 bp->bif_mbuf_tail = dup;
1782 #ifdef BPF_MTAP_SOFTINT_DEBUG
1783 log(LOG_DEBUG, "%s: enqueued mbuf=%p to %s\n",
1784 __func__, dup, bp->bif_ifp->if_xname);
1785 #endif
1786
1787 return dup;
1788 }
1789
1790 static struct mbuf *
1791 bpf_mbuf_dequeue(struct bpf_if *bp)
1792 {
1793 struct mbuf *m;
1794 int s;
1795
1796 /* XXX NOMPSAFE: assumed running on one CPU */
1797 s = splnet();
1798 m = bp->bif_mbuf_head;
1799 if (m != NULL) {
1800 bp->bif_mbuf_head = m->m_nextpkt;
1801 m->m_nextpkt = NULL;
1802
1803 if (bp->bif_mbuf_head == NULL)
1804 bp->bif_mbuf_tail = NULL;
1805 #ifdef BPF_MTAP_SOFTINT_DEBUG
1806 log(LOG_DEBUG, "%s: dequeued mbuf=%p from %s\n",
1807 __func__, m, bp->bif_ifp->if_xname);
1808 #endif
1809 }
1810 splx(s);
1811
1812 return m;
1813 }
1814
1815 static void
1816 bpf_mtap_si(void *arg)
1817 {
1818 struct bpf_if *bp = arg;
1819 struct mbuf *m;
1820
1821 while ((m = bpf_mbuf_dequeue(bp)) != NULL) {
1822 #ifdef BPF_MTAP_SOFTINT_DEBUG
1823 log(LOG_DEBUG, "%s: tapping mbuf=%p on %s\n",
1824 __func__, m, bp->bif_ifp->if_xname);
1825 #endif
1826 bpf_ops->bpf_mtap(bp, m);
1827 m_freem(m);
1828 }
1829 }
1830
1831 static void
1832 _bpf_mtap_softint(struct ifnet *ifp, struct mbuf *m)
1833 {
1834 struct bpf_if *bp = ifp->if_bpf;
1835 struct mbuf *dup;
1836
1837 KASSERT(cpu_intr_p());
1838
1839 /* To avoid extra invocations of the softint */
1840 if (BPFIF_DLIST_READER_EMPTY(bp))
1841 return;
1842 KASSERT(bp->bif_si != NULL);
1843
1844 dup = bpf_mbuf_enqueue(bp, m);
1845 if (dup != NULL)
1846 softint_schedule(bp->bif_si);
1847 }
1848
1849 static int
1850 bpf_hdrlen(struct bpf_d *d)
1851 {
1852 int hdrlen = d->bd_bif->bif_hdrlen;
1853 /*
1854 * Compute the length of the bpf header. This is not necessarily
1855 * equal to SIZEOF_BPF_HDR because we want to insert spacing such
1856 * that the network layer header begins on a longword boundary (for
1857 * performance reasons and to alleviate alignment restrictions).
1858 */
1859 #ifdef _LP64
1860 if (d->bd_compat32)
1861 return (BPF_WORDALIGN32(hdrlen + SIZEOF_BPF_HDR32) - hdrlen);
1862 else
1863 #endif
1864 return (BPF_WORDALIGN(hdrlen + SIZEOF_BPF_HDR) - hdrlen);
1865 }
1866
1867 /*
1868 * Move the packet data from interface memory (pkt) into the
1869 * store buffer. Call the wakeup functions if it's time to wakeup
1870 * a listener (buffer full), "cpfn" is the routine called to do the
1871 * actual data transfer. memcpy is passed in to copy contiguous chunks,
1872 * while bpf_mcpy is passed in to copy mbuf chains. In the latter case,
1873 * pkt is really an mbuf.
1874 */
1875 static void
1876 catchpacket(struct bpf_d *d, u_char *pkt, u_int pktlen, u_int snaplen,
1877 void *(*cpfn)(void *, const void *, size_t), struct timespec *ts)
1878 {
1879 char *h;
1880 int totlen, curlen, caplen;
1881 int hdrlen = bpf_hdrlen(d);
1882 int do_wakeup = 0;
1883
1884 atomic_inc_ulong(&d->bd_ccount);
1885 BPF_STATINC(capt);
1886 /*
1887 * Figure out how many bytes to move. If the packet is
1888 * greater or equal to the snapshot length, transfer that
1889 * much. Otherwise, transfer the whole packet (unless
1890 * we hit the buffer size limit).
1891 */
1892 totlen = hdrlen + min(snaplen, pktlen);
1893 if (totlen > d->bd_bufsize)
1894 totlen = d->bd_bufsize;
1895 /*
1896 * If we adjusted totlen to fit the bufsize, it could be that
1897 * totlen is smaller than hdrlen because of the link layer header.
1898 */
1899 caplen = totlen - hdrlen;
1900 if (caplen < 0)
1901 caplen = 0;
1902
1903 mutex_enter(d->bd_buf_mtx);
1904 /*
1905 * Round up the end of the previous packet to the next longword.
1906 */
1907 #ifdef _LP64
1908 if (d->bd_compat32)
1909 curlen = BPF_WORDALIGN32(d->bd_slen);
1910 else
1911 #endif
1912 curlen = BPF_WORDALIGN(d->bd_slen);
1913 if (curlen + totlen > d->bd_bufsize) {
1914 /*
1915 * This packet will overflow the storage buffer.
1916 * Rotate the buffers if we can, then wakeup any
1917 * pending reads.
1918 */
1919 if (d->bd_fbuf == NULL) {
1920 mutex_exit(d->bd_buf_mtx);
1921 /*
1922 * We haven't completed the previous read yet,
1923 * so drop the packet.
1924 */
1925 atomic_inc_ulong(&d->bd_dcount);
1926 BPF_STATINC(drop);
1927 return;
1928 }
1929 ROTATE_BUFFERS(d);
1930 do_wakeup = 1;
1931 curlen = 0;
1932 } else if (d->bd_immediate || d->bd_state == BPF_TIMED_OUT) {
1933 /*
1934 * Immediate mode is set, or the read timeout has
1935 * already expired during a select call. A packet
1936 * arrived, so the reader should be woken up.
1937 */
1938 do_wakeup = 1;
1939 }
1940
1941 /*
1942 * Append the bpf header.
1943 */
1944 h = (char *)d->bd_sbuf + curlen;
1945 #ifdef _LP64
1946 if (d->bd_compat32) {
1947 struct bpf_hdr32 *hp32;
1948
1949 hp32 = (struct bpf_hdr32 *)h;
1950 hp32->bh_tstamp.tv_sec = ts->tv_sec;
1951 hp32->bh_tstamp.tv_usec = ts->tv_nsec / 1000;
1952 hp32->bh_datalen = pktlen;
1953 hp32->bh_hdrlen = hdrlen;
1954 hp32->bh_caplen = caplen;
1955 } else
1956 #endif
1957 {
1958 struct bpf_hdr *hp;
1959
1960 hp = (struct bpf_hdr *)h;
1961 hp->bh_tstamp.tv_sec = ts->tv_sec;
1962 hp->bh_tstamp.tv_usec = ts->tv_nsec / 1000;
1963 hp->bh_datalen = pktlen;
1964 hp->bh_hdrlen = hdrlen;
1965 hp->bh_caplen = caplen;
1966 }
1967
1968 /*
1969 * Copy the packet data into the store buffer and update its length.
1970 */
1971 (*cpfn)(h + hdrlen, pkt, caplen);
1972 d->bd_slen = curlen + totlen;
1973 mutex_exit(d->bd_buf_mtx);
1974
1975 /*
1976 * Call bpf_wakeup after bd_slen has been updated so that kevent(2)
1977 * will cause filt_bpfread() to be called with it adjusted.
1978 */
1979 if (do_wakeup)
1980 bpf_wakeup(d);
1981 }
1982
1983 /*
1984 * Initialize all nonzero fields of a descriptor.
1985 */
1986 static int
1987 bpf_allocbufs(struct bpf_d *d)
1988 {
1989
1990 d->bd_fbuf = kmem_zalloc(d->bd_bufsize, KM_NOSLEEP);
1991 if (!d->bd_fbuf)
1992 return (ENOBUFS);
1993 d->bd_sbuf = kmem_zalloc(d->bd_bufsize, KM_NOSLEEP);
1994 if (!d->bd_sbuf) {
1995 kmem_free(d->bd_fbuf, d->bd_bufsize);
1996 return (ENOBUFS);
1997 }
1998 d->bd_slen = 0;
1999 d->bd_hlen = 0;
2000 return (0);
2001 }
2002
2003 static void
2004 bpf_free_filter(struct bpf_filter *filter)
2005 {
2006
2007 KASSERT(filter != NULL);
2008 KASSERT(filter->bf_insn != NULL);
2009
2010 kmem_free(filter->bf_insn, filter->bf_size);
2011 if (filter->bf_jitcode != NULL)
2012 bpf_jit_freecode(filter->bf_jitcode);
2013 kmem_free(filter, sizeof(*filter));
2014 }
2015
2016 /*
2017 * Free buffers currently in use by a descriptor.
2018 * Called on close.
2019 */
2020 static void
2021 bpf_freed(struct bpf_d *d)
2022 {
2023 /*
2024 * We don't need to lock out interrupts since this descriptor has
2025 * been detached from its interface and it yet hasn't been marked
2026 * free.
2027 */
2028 if (d->bd_sbuf != NULL) {
2029 kmem_free(d->bd_sbuf, d->bd_bufsize);
2030 if (d->bd_hbuf != NULL)
2031 kmem_free(d->bd_hbuf, d->bd_bufsize);
2032 if (d->bd_fbuf != NULL)
2033 kmem_free(d->bd_fbuf, d->bd_bufsize);
2034 }
2035 if (d->bd_filter != NULL) {
2036 bpf_free_filter(d->bd_filter);
2037 d->bd_filter = NULL;
2038 }
2039 d->bd_jitcode = NULL;
2040 }
2041
2042 /*
2043 * Attach an interface to bpf. dlt is the link layer type;
2044 * hdrlen is the fixed size of the link header for the specified dlt
2045 * (variable length headers not yet supported).
2046 */
2047 static void
2048 _bpfattach(struct ifnet *ifp, u_int dlt, u_int hdrlen, struct bpf_if **driverp)
2049 {
2050 struct bpf_if *bp;
2051 bp = kmem_alloc(sizeof(*bp), KM_NOSLEEP);
2052 if (bp == NULL)
2053 panic("bpfattach");
2054
2055 mutex_enter(&bpf_mtx);
2056 bp->bif_driverp = driverp;
2057 bp->bif_ifp = ifp;
2058 bp->bif_dlt = dlt;
2059 bp->bif_si = NULL;
2060 BPF_IFLIST_ENTRY_INIT(bp);
2061 PSLIST_INIT(&bp->bif_dlist_head);
2062 psref_target_init(&bp->bif_psref, bpf_psref_class);
2063
2064 BPF_IFLIST_WRITER_INSERT_HEAD(bp);
2065
2066 *bp->bif_driverp = NULL;
2067
2068 bp->bif_hdrlen = hdrlen;
2069 mutex_exit(&bpf_mtx);
2070 #if 0
2071 printf("bpf: %s attached\n", ifp->if_xname);
2072 #endif
2073 }
2074
2075 static void
2076 _bpf_mtap_softint_init(struct ifnet *ifp)
2077 {
2078 struct bpf_if *bp;
2079
2080 mutex_enter(&bpf_mtx);
2081 BPF_IFLIST_WRITER_FOREACH(bp) {
2082 if (bp->bif_ifp != ifp)
2083 continue;
2084
2085 bp->bif_mbuf_head = NULL;
2086 bp->bif_mbuf_tail = NULL;
2087 bp->bif_si = softint_establish(SOFTINT_NET, bpf_mtap_si, bp);
2088 if (bp->bif_si == NULL)
2089 panic("%s: softint_establish() failed", __func__);
2090 break;
2091 }
2092 mutex_exit(&bpf_mtx);
2093
2094 if (bp == NULL)
2095 panic("%s: no bpf_if found for %s", __func__, ifp->if_xname);
2096 }
2097
2098 /*
2099 * Remove an interface from bpf.
2100 */
2101 static void
2102 _bpfdetach(struct ifnet *ifp)
2103 {
2104 struct bpf_if *bp;
2105 struct bpf_d *d;
2106 int s;
2107
2108 mutex_enter(&bpf_mtx);
2109 /* Nuke the vnodes for any open instances */
2110 again_d:
2111 BPF_DLIST_WRITER_FOREACH(d) {
2112 mutex_enter(d->bd_mtx);
2113 if (d->bd_bif != NULL && d->bd_bif->bif_ifp == ifp) {
2114 /*
2115 * Detach the descriptor from an interface now.
2116 * It will be free'ed later by close routine.
2117 */
2118 d->bd_promisc = 0; /* we can't touch device. */
2119 bpf_detachd(d);
2120 mutex_exit(d->bd_mtx);
2121 goto again_d;
2122 }
2123 mutex_exit(d->bd_mtx);
2124 }
2125
2126 again:
2127 BPF_IFLIST_WRITER_FOREACH(bp) {
2128 if (bp->bif_ifp == ifp) {
2129 BPF_IFLIST_WRITER_REMOVE(bp);
2130
2131 pserialize_perform(bpf_psz);
2132 psref_target_destroy(&bp->bif_psref, bpf_psref_class);
2133
2134 BPF_IFLIST_ENTRY_DESTROY(bp);
2135 if (bp->bif_si != NULL) {
2136 /* XXX NOMPSAFE: assumed running on one CPU */
2137 s = splnet();
2138 while (bp->bif_mbuf_head != NULL) {
2139 struct mbuf *m = bp->bif_mbuf_head;
2140 bp->bif_mbuf_head = m->m_nextpkt;
2141 m_freem(m);
2142 }
2143 splx(s);
2144 softint_disestablish(bp->bif_si);
2145 }
2146 kmem_free(bp, sizeof(*bp));
2147 goto again;
2148 }
2149 }
2150 mutex_exit(&bpf_mtx);
2151 }
2152
2153 /*
2154 * Change the data link type of a interface.
2155 */
2156 static void
2157 _bpf_change_type(struct ifnet *ifp, u_int dlt, u_int hdrlen)
2158 {
2159 struct bpf_if *bp;
2160
2161 mutex_enter(&bpf_mtx);
2162 BPF_IFLIST_WRITER_FOREACH(bp) {
2163 if (bp->bif_driverp == &ifp->if_bpf)
2164 break;
2165 }
2166 if (bp == NULL)
2167 panic("bpf_change_type");
2168
2169 bp->bif_dlt = dlt;
2170
2171 bp->bif_hdrlen = hdrlen;
2172 mutex_exit(&bpf_mtx);
2173 }
2174
2175 /*
2176 * Get a list of available data link type of the interface.
2177 */
2178 static int
2179 bpf_getdltlist(struct bpf_d *d, struct bpf_dltlist *bfl)
2180 {
2181 int n, error;
2182 struct ifnet *ifp;
2183 struct bpf_if *bp;
2184 int s, bound;
2185
2186 KASSERT(mutex_owned(d->bd_mtx));
2187
2188 ifp = d->bd_bif->bif_ifp;
2189 n = 0;
2190 error = 0;
2191
2192 bound = curlwp_bind();
2193 s = pserialize_read_enter();
2194 BPF_IFLIST_READER_FOREACH(bp) {
2195 if (bp->bif_ifp != ifp)
2196 continue;
2197 if (bfl->bfl_list != NULL) {
2198 struct psref psref;
2199
2200 if (n >= bfl->bfl_len) {
2201 pserialize_read_exit(s);
2202 return ENOMEM;
2203 }
2204
2205 bpf_if_acquire(bp, &psref);
2206 pserialize_read_exit(s);
2207
2208 error = copyout(&bp->bif_dlt,
2209 bfl->bfl_list + n, sizeof(u_int));
2210
2211 s = pserialize_read_enter();
2212 bpf_if_release(bp, &psref);
2213 }
2214 n++;
2215 }
2216 pserialize_read_exit(s);
2217 curlwp_bindx(bound);
2218
2219 bfl->bfl_len = n;
2220 return error;
2221 }
2222
2223 /*
2224 * Set the data link type of a BPF instance.
2225 */
2226 static int
2227 bpf_setdlt(struct bpf_d *d, u_int dlt)
2228 {
2229 int error, opromisc;
2230 struct ifnet *ifp;
2231 struct bpf_if *bp;
2232
2233 KASSERT(mutex_owned(&bpf_mtx));
2234 KASSERT(mutex_owned(d->bd_mtx));
2235
2236 if (d->bd_bif->bif_dlt == dlt)
2237 return 0;
2238 ifp = d->bd_bif->bif_ifp;
2239 BPF_IFLIST_WRITER_FOREACH(bp) {
2240 if (bp->bif_ifp == ifp && bp->bif_dlt == dlt)
2241 break;
2242 }
2243 if (bp == NULL)
2244 return EINVAL;
2245 opromisc = d->bd_promisc;
2246 bpf_detachd(d);
2247 BPFIF_DLIST_ENTRY_INIT(d);
2248 bpf_attachd(d, bp);
2249 reset_d(d);
2250 if (opromisc) {
2251 KERNEL_LOCK_UNLESS_NET_MPSAFE();
2252 error = ifpromisc(bp->bif_ifp, 1);
2253 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
2254 if (error)
2255 printf("%s: bpf_setdlt: ifpromisc failed (%d)\n",
2256 bp->bif_ifp->if_xname, error);
2257 else
2258 d->bd_promisc = 1;
2259 }
2260 return 0;
2261 }
2262
2263 static int
2264 sysctl_net_bpf_maxbufsize(SYSCTLFN_ARGS)
2265 {
2266 int newsize, error;
2267 struct sysctlnode node;
2268
2269 node = *rnode;
2270 node.sysctl_data = &newsize;
2271 newsize = bpf_maxbufsize;
2272 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2273 if (error || newp == NULL)
2274 return (error);
2275
2276 if (newsize < BPF_MINBUFSIZE || newsize > BPF_MAXBUFSIZE)
2277 return (EINVAL);
2278
2279 bpf_maxbufsize = newsize;
2280
2281 return (0);
2282 }
2283
2284 #if defined(MODULAR) || defined(BPFJIT)
2285 static int
2286 sysctl_net_bpf_jit(SYSCTLFN_ARGS)
2287 {
2288 bool newval;
2289 int error;
2290 struct sysctlnode node;
2291
2292 node = *rnode;
2293 node.sysctl_data = &newval;
2294 newval = bpf_jit;
2295 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2296 if (error != 0 || newp == NULL)
2297 return error;
2298
2299 bpf_jit = newval;
2300
2301 /*
2302 * Do a full sync to publish new bpf_jit value and
2303 * update bpfjit_module_ops.bj_generate_code variable.
2304 */
2305 membar_sync();
2306
2307 if (newval && bpfjit_module_ops.bj_generate_code == NULL) {
2308 printf("JIT compilation is postponed "
2309 "until after bpfjit module is loaded\n");
2310 }
2311
2312 return 0;
2313 }
2314 #endif
2315
2316 static int
2317 sysctl_net_bpf_peers(SYSCTLFN_ARGS)
2318 {
2319 int error, elem_count;
2320 struct bpf_d *dp;
2321 struct bpf_d_ext dpe;
2322 size_t len, needed, elem_size, out_size;
2323 char *sp;
2324
2325 if (namelen == 1 && name[0] == CTL_QUERY)
2326 return (sysctl_query(SYSCTLFN_CALL(rnode)));
2327
2328 if (namelen != 2)
2329 return (EINVAL);
2330
2331 /* BPF peers is privileged information. */
2332 error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_INTERFACE,
2333 KAUTH_REQ_NETWORK_INTERFACE_GETPRIV, NULL, NULL, NULL);
2334 if (error)
2335 return (EPERM);
2336
2337 len = (oldp != NULL) ? *oldlenp : 0;
2338 sp = oldp;
2339 elem_size = name[0];
2340 elem_count = name[1];
2341 out_size = MIN(sizeof(dpe), elem_size);
2342 needed = 0;
2343
2344 if (elem_size < 1 || elem_count < 0)
2345 return (EINVAL);
2346
2347 mutex_enter(&bpf_mtx);
2348 BPF_DLIST_WRITER_FOREACH(dp) {
2349 if (len >= elem_size && elem_count > 0) {
2350 #define BPF_EXT(field) dpe.bde_ ## field = dp->bd_ ## field
2351 BPF_EXT(bufsize);
2352 BPF_EXT(promisc);
2353 BPF_EXT(state);
2354 BPF_EXT(immediate);
2355 BPF_EXT(hdrcmplt);
2356 BPF_EXT(seesent);
2357 BPF_EXT(pid);
2358 BPF_EXT(rcount);
2359 BPF_EXT(dcount);
2360 BPF_EXT(ccount);
2361 #undef BPF_EXT
2362 mutex_enter(dp->bd_mtx);
2363 if (dp->bd_bif)
2364 (void)strlcpy(dpe.bde_ifname,
2365 dp->bd_bif->bif_ifp->if_xname,
2366 IFNAMSIZ - 1);
2367 else
2368 dpe.bde_ifname[0] = '\0';
2369 mutex_exit(dp->bd_mtx);
2370
2371 error = copyout(&dpe, sp, out_size);
2372 if (error)
2373 break;
2374 sp += elem_size;
2375 len -= elem_size;
2376 }
2377 needed += elem_size;
2378 if (elem_count > 0 && elem_count != INT_MAX)
2379 elem_count--;
2380 }
2381 mutex_exit(&bpf_mtx);
2382
2383 *oldlenp = needed;
2384
2385 return (error);
2386 }
2387
2388 static void
2389 bpf_stats(void *p, void *arg, struct cpu_info *ci __unused)
2390 {
2391 struct bpf_stat *const stats = p;
2392 struct bpf_stat *sum = arg;
2393
2394 sum->bs_recv += stats->bs_recv;
2395 sum->bs_drop += stats->bs_drop;
2396 sum->bs_capt += stats->bs_capt;
2397 }
2398
2399 static int
2400 bpf_sysctl_gstats_handler(SYSCTLFN_ARGS)
2401 {
2402 struct sysctlnode node;
2403 int error;
2404 struct bpf_stat sum;
2405
2406 memset(&sum, 0, sizeof(sum));
2407 node = *rnode;
2408
2409 percpu_foreach(bpf_gstats_percpu, bpf_stats, &sum);
2410
2411 node.sysctl_data = ∑
2412 node.sysctl_size = sizeof(sum);
2413 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2414 if (error != 0 || newp == NULL)
2415 return error;
2416
2417 return 0;
2418 }
2419
2420 static struct sysctllog *bpf_sysctllog;
2421 static void
2422 sysctl_net_bpf_setup(void)
2423 {
2424 const struct sysctlnode *node;
2425
2426 node = NULL;
2427 sysctl_createv(&bpf_sysctllog, 0, NULL, &node,
2428 CTLFLAG_PERMANENT,
2429 CTLTYPE_NODE, "bpf",
2430 SYSCTL_DESCR("BPF options"),
2431 NULL, 0, NULL, 0,
2432 CTL_NET, CTL_CREATE, CTL_EOL);
2433 if (node != NULL) {
2434 #if defined(MODULAR) || defined(BPFJIT)
2435 sysctl_createv(&bpf_sysctllog, 0, NULL, NULL,
2436 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2437 CTLTYPE_BOOL, "jit",
2438 SYSCTL_DESCR("Toggle Just-In-Time compilation"),
2439 sysctl_net_bpf_jit, 0, &bpf_jit, 0,
2440 CTL_NET, node->sysctl_num, CTL_CREATE, CTL_EOL);
2441 #endif
2442 sysctl_createv(&bpf_sysctllog, 0, NULL, NULL,
2443 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2444 CTLTYPE_INT, "maxbufsize",
2445 SYSCTL_DESCR("Maximum size for data capture buffer"),
2446 sysctl_net_bpf_maxbufsize, 0, &bpf_maxbufsize, 0,
2447 CTL_NET, node->sysctl_num, CTL_CREATE, CTL_EOL);
2448 sysctl_createv(&bpf_sysctllog, 0, NULL, NULL,
2449 CTLFLAG_PERMANENT,
2450 CTLTYPE_STRUCT, "stats",
2451 SYSCTL_DESCR("BPF stats"),
2452 bpf_sysctl_gstats_handler, 0, NULL, 0,
2453 CTL_NET, node->sysctl_num, CTL_CREATE, CTL_EOL);
2454 sysctl_createv(&bpf_sysctllog, 0, NULL, NULL,
2455 CTLFLAG_PERMANENT,
2456 CTLTYPE_STRUCT, "peers",
2457 SYSCTL_DESCR("BPF peers"),
2458 sysctl_net_bpf_peers, 0, NULL, 0,
2459 CTL_NET, node->sysctl_num, CTL_CREATE, CTL_EOL);
2460 }
2461
2462 }
2463
2464 struct bpf_ops bpf_ops_kernel = {
2465 .bpf_attach = _bpfattach,
2466 .bpf_detach = _bpfdetach,
2467 .bpf_change_type = _bpf_change_type,
2468
2469 .bpf_tap = _bpf_tap,
2470 .bpf_mtap = _bpf_mtap,
2471 .bpf_mtap2 = _bpf_mtap2,
2472 .bpf_mtap_af = _bpf_mtap_af,
2473 .bpf_mtap_sl_in = _bpf_mtap_sl_in,
2474 .bpf_mtap_sl_out = _bpf_mtap_sl_out,
2475
2476 .bpf_mtap_softint = _bpf_mtap_softint,
2477 .bpf_mtap_softint_init = _bpf_mtap_softint_init,
2478 };
2479
2480 MODULE(MODULE_CLASS_DRIVER, bpf, "bpf_filter");
2481
2482 static int
2483 bpf_modcmd(modcmd_t cmd, void *arg)
2484 {
2485 #ifdef _MODULE
2486 devmajor_t bmajor, cmajor;
2487 #endif
2488 int error = 0;
2489
2490 switch (cmd) {
2491 case MODULE_CMD_INIT:
2492 bpf_init();
2493 #ifdef _MODULE
2494 bmajor = cmajor = NODEVMAJOR;
2495 error = devsw_attach("bpf", NULL, &bmajor,
2496 &bpf_cdevsw, &cmajor);
2497 if (error)
2498 break;
2499 #endif
2500
2501 bpf_ops_handover_enter(&bpf_ops_kernel);
2502 atomic_swap_ptr(&bpf_ops, &bpf_ops_kernel);
2503 bpf_ops_handover_exit();
2504 sysctl_net_bpf_setup();
2505 break;
2506
2507 case MODULE_CMD_FINI:
2508 /*
2509 * While there is no reference counting for bpf callers,
2510 * unload could at least in theory be done similarly to
2511 * system call disestablishment. This should even be
2512 * a little simpler:
2513 *
2514 * 1) replace op vector with stubs
2515 * 2) post update to all cpus with xc
2516 * 3) check that nobody is in bpf anymore
2517 * (it's doubtful we'd want something like l_sysent,
2518 * but we could do something like *signed* percpu
2519 * counters. if the sum is 0, we're good).
2520 * 4) if fail, unroll changes
2521 *
2522 * NOTE: change won't be atomic to the outside. some
2523 * packets may be not captured even if unload is
2524 * not succesful. I think packet capture not working
2525 * is a perfectly logical consequence of trying to
2526 * disable packet capture.
2527 */
2528 error = EOPNOTSUPP;
2529 /* insert sysctl teardown */
2530 break;
2531
2532 default:
2533 error = ENOTTY;
2534 break;
2535 }
2536
2537 return error;
2538 }
2539