bpf.c revision 1.219 1 /* $NetBSD: bpf.c,v 1.219 2017/11/17 07:37:12 ozaki-r Exp $ */
2
3 /*
4 * Copyright (c) 1990, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from the Stanford/CMU enet packet filter,
8 * (net/enet.c) distributed as part of 4.3BSD, and code contributed
9 * to Berkeley by Steven McCanne and Van Jacobson both of Lawrence
10 * Berkeley Laboratory.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)bpf.c 8.4 (Berkeley) 1/9/95
37 * static char rcsid[] =
38 * "Header: bpf.c,v 1.67 96/09/26 22:00:52 leres Exp ";
39 */
40
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: bpf.c,v 1.219 2017/11/17 07:37:12 ozaki-r Exp $");
43
44 #if defined(_KERNEL_OPT)
45 #include "opt_bpf.h"
46 #include "sl.h"
47 #include "strip.h"
48 #include "opt_net_mpsafe.h"
49 #endif
50
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/mbuf.h>
54 #include <sys/buf.h>
55 #include <sys/time.h>
56 #include <sys/proc.h>
57 #include <sys/ioctl.h>
58 #include <sys/conf.h>
59 #include <sys/vnode.h>
60 #include <sys/queue.h>
61 #include <sys/stat.h>
62 #include <sys/module.h>
63 #include <sys/atomic.h>
64 #include <sys/cpu.h>
65
66 #include <sys/file.h>
67 #include <sys/filedesc.h>
68 #include <sys/tty.h>
69 #include <sys/uio.h>
70
71 #include <sys/protosw.h>
72 #include <sys/socket.h>
73 #include <sys/errno.h>
74 #include <sys/kernel.h>
75 #include <sys/poll.h>
76 #include <sys/sysctl.h>
77 #include <sys/kauth.h>
78 #include <sys/syslog.h>
79 #include <sys/percpu.h>
80 #include <sys/pserialize.h>
81 #include <sys/lwp.h>
82
83 #include <net/if.h>
84 #include <net/slip.h>
85
86 #include <net/bpf.h>
87 #include <net/bpfdesc.h>
88 #include <net/bpfjit.h>
89
90 #include <net/if_arc.h>
91 #include <net/if_ether.h>
92
93 #include <netinet/in.h>
94 #include <netinet/if_inarp.h>
95
96
97 #include <compat/sys/sockio.h>
98
99 #ifndef BPF_BUFSIZE
100 /*
101 * 4096 is too small for FDDI frames. 8192 is too small for gigabit Ethernet
102 * jumbos (circa 9k), ATM, or Intel gig/10gig ethernet jumbos (16k).
103 */
104 # define BPF_BUFSIZE 32768
105 #endif
106
107 #define PRINET 26 /* interruptible */
108
109 /*
110 * The default read buffer size, and limit for BIOCSBLEN, is sysctl'able.
111 * XXX the default values should be computed dynamically based
112 * on available memory size and available mbuf clusters.
113 */
114 static int bpf_bufsize = BPF_BUFSIZE;
115 static int bpf_maxbufsize = BPF_DFLTBUFSIZE; /* XXX set dynamically, see above */
116 static bool bpf_jit = false;
117
118 struct bpfjit_ops bpfjit_module_ops = {
119 .bj_generate_code = NULL,
120 .bj_free_code = NULL
121 };
122
123 /*
124 * Global BPF statistics returned by net.bpf.stats sysctl.
125 */
126 static struct percpu *bpf_gstats_percpu; /* struct bpf_stat */
127
128 #define BPF_STATINC(id) \
129 { \
130 struct bpf_stat *__stats = \
131 percpu_getref(bpf_gstats_percpu); \
132 __stats->bs_##id++; \
133 percpu_putref(bpf_gstats_percpu); \
134 }
135
136 /*
137 * Locking notes:
138 * - bpf_mtx (adaptive mutex) protects:
139 * - Gobal lists: bpf_iflist and bpf_dlist
140 * - struct bpf_if
141 * - bpf_close
142 * - bpf_psz (pserialize)
143 * - struct bpf_d has two mutexes:
144 * - bd_buf_mtx (spin mutex) protects the buffers that can be accessed
145 * on packet tapping
146 * - bd_mtx (adaptive mutex) protects member variables other than the buffers
147 * - Locking order: bpf_mtx => bpf_d#bd_mtx => bpf_d#bd_buf_mtx
148 * - struct bpf_d obtained via fp->f_bpf in bpf_read and bpf_write is
149 * never freed because struct bpf_d is only freed in bpf_close and
150 * bpf_close never be called while executing bpf_read and bpf_write
151 * - A filter that is assigned to bpf_d can be replaced with another filter
152 * while tapping packets, so it needs to be done atomically
153 * - struct bpf_d is iterated on bpf_dlist with psz
154 * - struct bpf_if is iterated on bpf_iflist with psz or psref
155 */
156 /*
157 * Use a mutex to avoid a race condition between gathering the stats/peers
158 * and opening/closing the device.
159 */
160 static kmutex_t bpf_mtx;
161
162 static struct psref_class *bpf_psref_class __read_mostly;
163 static pserialize_t bpf_psz;
164
165 static inline void
166 bpf_if_acquire(struct bpf_if *bp, struct psref *psref)
167 {
168
169 psref_acquire(psref, &bp->bif_psref, bpf_psref_class);
170 }
171
172 static inline void
173 bpf_if_release(struct bpf_if *bp, struct psref *psref)
174 {
175
176 psref_release(psref, &bp->bif_psref, bpf_psref_class);
177 }
178
179 /*
180 * bpf_iflist is the list of interfaces; each corresponds to an ifnet
181 * bpf_dtab holds the descriptors, indexed by minor device #
182 */
183 static struct pslist_head bpf_iflist;
184 static struct pslist_head bpf_dlist;
185
186 /* Macros for bpf_d on bpf_dlist */
187 #define BPF_DLIST_WRITER_INSERT_HEAD(__d) \
188 PSLIST_WRITER_INSERT_HEAD(&bpf_dlist, (__d), bd_bpf_dlist_entry)
189 #define BPF_DLIST_READER_FOREACH(__d) \
190 PSLIST_READER_FOREACH((__d), &bpf_dlist, struct bpf_d, \
191 bd_bpf_dlist_entry)
192 #define BPF_DLIST_WRITER_FOREACH(__d) \
193 PSLIST_WRITER_FOREACH((__d), &bpf_dlist, struct bpf_d, \
194 bd_bpf_dlist_entry)
195 #define BPF_DLIST_ENTRY_INIT(__d) \
196 PSLIST_ENTRY_INIT((__d), bd_bpf_dlist_entry)
197 #define BPF_DLIST_WRITER_REMOVE(__d) \
198 PSLIST_WRITER_REMOVE((__d), bd_bpf_dlist_entry)
199 #define BPF_DLIST_ENTRY_DESTROY(__d) \
200 PSLIST_ENTRY_DESTROY((__d), bd_bpf_dlist_entry)
201
202 /* Macros for bpf_if on bpf_iflist */
203 #define BPF_IFLIST_WRITER_INSERT_HEAD(__bp) \
204 PSLIST_WRITER_INSERT_HEAD(&bpf_iflist, (__bp), bif_iflist_entry)
205 #define BPF_IFLIST_READER_FOREACH(__bp) \
206 PSLIST_READER_FOREACH((__bp), &bpf_iflist, struct bpf_if, \
207 bif_iflist_entry)
208 #define BPF_IFLIST_WRITER_FOREACH(__bp) \
209 PSLIST_WRITER_FOREACH((__bp), &bpf_iflist, struct bpf_if, \
210 bif_iflist_entry)
211 #define BPF_IFLIST_WRITER_REMOVE(__bp) \
212 PSLIST_WRITER_REMOVE((__bp), bif_iflist_entry)
213 #define BPF_IFLIST_ENTRY_INIT(__bp) \
214 PSLIST_ENTRY_INIT((__bp), bif_iflist_entry)
215 #define BPF_IFLIST_ENTRY_DESTROY(__bp) \
216 PSLIST_ENTRY_DESTROY((__bp), bif_iflist_entry)
217
218 /* Macros for bpf_d on bpf_if#bif_dlist_pslist */
219 #define BPFIF_DLIST_READER_FOREACH(__d, __bp) \
220 PSLIST_READER_FOREACH((__d), &(__bp)->bif_dlist_head, struct bpf_d, \
221 bd_bif_dlist_entry)
222 #define BPFIF_DLIST_WRITER_INSERT_HEAD(__bp, __d) \
223 PSLIST_WRITER_INSERT_HEAD(&(__bp)->bif_dlist_head, (__d), \
224 bd_bif_dlist_entry)
225 #define BPFIF_DLIST_WRITER_REMOVE(__d) \
226 PSLIST_WRITER_REMOVE((__d), bd_bif_dlist_entry)
227 #define BPFIF_DLIST_ENTRY_INIT(__d) \
228 PSLIST_ENTRY_INIT((__d), bd_bif_dlist_entry)
229 #define BPFIF_DLIST_READER_EMPTY(__bp) \
230 (PSLIST_READER_FIRST(&(__bp)->bif_dlist_head, struct bpf_d, \
231 bd_bif_dlist_entry) == NULL)
232 #define BPFIF_DLIST_WRITER_EMPTY(__bp) \
233 (PSLIST_WRITER_FIRST(&(__bp)->bif_dlist_head, struct bpf_d, \
234 bd_bif_dlist_entry) == NULL)
235 #define BPFIF_DLIST_ENTRY_DESTROY(__d) \
236 PSLIST_ENTRY_DESTROY((__d), bd_bif_dlist_entry)
237
238 static int bpf_allocbufs(struct bpf_d *);
239 static void bpf_deliver(struct bpf_if *,
240 void *(*cpfn)(void *, const void *, size_t),
241 void *, u_int, u_int, const bool);
242 static void bpf_freed(struct bpf_d *);
243 static void bpf_free_filter(struct bpf_filter *);
244 static void bpf_ifname(struct ifnet *, struct ifreq *);
245 static void *bpf_mcpy(void *, const void *, size_t);
246 static int bpf_movein(struct uio *, int, uint64_t,
247 struct mbuf **, struct sockaddr *);
248 static void bpf_attachd(struct bpf_d *, struct bpf_if *);
249 static void bpf_detachd(struct bpf_d *);
250 static int bpf_setif(struct bpf_d *, struct ifreq *);
251 static int bpf_setf(struct bpf_d *, struct bpf_program *);
252 static void bpf_timed_out(void *);
253 static inline void
254 bpf_wakeup(struct bpf_d *);
255 static int bpf_hdrlen(struct bpf_d *);
256 static void catchpacket(struct bpf_d *, u_char *, u_int, u_int,
257 void *(*)(void *, const void *, size_t), struct timespec *);
258 static void reset_d(struct bpf_d *);
259 static int bpf_getdltlist(struct bpf_d *, struct bpf_dltlist *);
260 static int bpf_setdlt(struct bpf_d *, u_int);
261
262 static int bpf_read(struct file *, off_t *, struct uio *, kauth_cred_t,
263 int);
264 static int bpf_write(struct file *, off_t *, struct uio *, kauth_cred_t,
265 int);
266 static int bpf_ioctl(struct file *, u_long, void *);
267 static int bpf_poll(struct file *, int);
268 static int bpf_stat(struct file *, struct stat *);
269 static int bpf_close(struct file *);
270 static int bpf_kqfilter(struct file *, struct knote *);
271 static void bpf_softintr(void *);
272
273 static const struct fileops bpf_fileops = {
274 .fo_read = bpf_read,
275 .fo_write = bpf_write,
276 .fo_ioctl = bpf_ioctl,
277 .fo_fcntl = fnullop_fcntl,
278 .fo_poll = bpf_poll,
279 .fo_stat = bpf_stat,
280 .fo_close = bpf_close,
281 .fo_kqfilter = bpf_kqfilter,
282 .fo_restart = fnullop_restart,
283 };
284
285 dev_type_open(bpfopen);
286
287 const struct cdevsw bpf_cdevsw = {
288 .d_open = bpfopen,
289 .d_close = noclose,
290 .d_read = noread,
291 .d_write = nowrite,
292 .d_ioctl = noioctl,
293 .d_stop = nostop,
294 .d_tty = notty,
295 .d_poll = nopoll,
296 .d_mmap = nommap,
297 .d_kqfilter = nokqfilter,
298 .d_discard = nodiscard,
299 .d_flag = D_OTHER | D_MPSAFE
300 };
301
302 bpfjit_func_t
303 bpf_jit_generate(bpf_ctx_t *bc, void *code, size_t size)
304 {
305
306 membar_consumer();
307 if (bpfjit_module_ops.bj_generate_code != NULL) {
308 return bpfjit_module_ops.bj_generate_code(bc, code, size);
309 }
310 return NULL;
311 }
312
313 void
314 bpf_jit_freecode(bpfjit_func_t jcode)
315 {
316 KASSERT(bpfjit_module_ops.bj_free_code != NULL);
317 bpfjit_module_ops.bj_free_code(jcode);
318 }
319
320 static int
321 bpf_movein(struct uio *uio, int linktype, uint64_t mtu, struct mbuf **mp,
322 struct sockaddr *sockp)
323 {
324 struct mbuf *m;
325 int error;
326 size_t len;
327 size_t hlen;
328 size_t align;
329
330 /*
331 * Build a sockaddr based on the data link layer type.
332 * We do this at this level because the ethernet header
333 * is copied directly into the data field of the sockaddr.
334 * In the case of SLIP, there is no header and the packet
335 * is forwarded as is.
336 * Also, we are careful to leave room at the front of the mbuf
337 * for the link level header.
338 */
339 switch (linktype) {
340
341 case DLT_SLIP:
342 sockp->sa_family = AF_INET;
343 hlen = 0;
344 align = 0;
345 break;
346
347 case DLT_PPP:
348 sockp->sa_family = AF_UNSPEC;
349 hlen = 0;
350 align = 0;
351 break;
352
353 case DLT_EN10MB:
354 sockp->sa_family = AF_UNSPEC;
355 /* XXX Would MAXLINKHDR be better? */
356 /* 6(dst)+6(src)+2(type) */
357 hlen = sizeof(struct ether_header);
358 align = 2;
359 break;
360
361 case DLT_ARCNET:
362 sockp->sa_family = AF_UNSPEC;
363 hlen = ARC_HDRLEN;
364 align = 5;
365 break;
366
367 case DLT_FDDI:
368 sockp->sa_family = AF_LINK;
369 /* XXX 4(FORMAC)+6(dst)+6(src) */
370 hlen = 16;
371 align = 0;
372 break;
373
374 case DLT_ECONET:
375 sockp->sa_family = AF_UNSPEC;
376 hlen = 6;
377 align = 2;
378 break;
379
380 case DLT_NULL:
381 sockp->sa_family = AF_UNSPEC;
382 hlen = 0;
383 align = 0;
384 break;
385
386 default:
387 return (EIO);
388 }
389
390 len = uio->uio_resid;
391 /*
392 * If there aren't enough bytes for a link level header or the
393 * packet length exceeds the interface mtu, return an error.
394 */
395 if (len - hlen > mtu)
396 return (EMSGSIZE);
397
398 /*
399 * XXX Avoid complicated buffer chaining ---
400 * bail if it won't fit in a single mbuf.
401 * (Take into account possible alignment bytes)
402 */
403 if (len + align > MCLBYTES)
404 return (EIO);
405
406 m = m_gethdr(M_WAIT, MT_DATA);
407 m_reset_rcvif(m);
408 m->m_pkthdr.len = (int)(len - hlen);
409 if (len + align > MHLEN) {
410 m_clget(m, M_WAIT);
411 if ((m->m_flags & M_EXT) == 0) {
412 error = ENOBUFS;
413 goto bad;
414 }
415 }
416
417 /* Insure the data is properly aligned */
418 if (align > 0) {
419 m->m_data += align;
420 m->m_len -= (int)align;
421 }
422
423 error = uiomove(mtod(m, void *), len, uio);
424 if (error)
425 goto bad;
426 if (hlen != 0) {
427 memcpy(sockp->sa_data, mtod(m, void *), hlen);
428 m->m_data += hlen; /* XXX */
429 len -= hlen;
430 }
431 m->m_len = (int)len;
432 *mp = m;
433 return (0);
434
435 bad:
436 m_freem(m);
437 return (error);
438 }
439
440 /*
441 * Attach file to the bpf interface, i.e. make d listen on bp.
442 */
443 static void
444 bpf_attachd(struct bpf_d *d, struct bpf_if *bp)
445 {
446
447 KASSERT(mutex_owned(&bpf_mtx));
448 KASSERT(mutex_owned(d->bd_mtx));
449 /*
450 * Point d at bp, and add d to the interface's list of listeners.
451 * Finally, point the driver's bpf cookie at the interface so
452 * it will divert packets to bpf.
453 */
454 d->bd_bif = bp;
455 BPFIF_DLIST_WRITER_INSERT_HEAD(bp, d);
456
457 *bp->bif_driverp = bp;
458 }
459
460 /*
461 * Detach a file from its interface.
462 */
463 static void
464 bpf_detachd(struct bpf_d *d)
465 {
466 struct bpf_if *bp;
467
468 KASSERT(mutex_owned(&bpf_mtx));
469 KASSERT(mutex_owned(d->bd_mtx));
470
471 bp = d->bd_bif;
472 /*
473 * Check if this descriptor had requested promiscuous mode.
474 * If so, turn it off.
475 */
476 if (d->bd_promisc) {
477 int error __diagused;
478
479 d->bd_promisc = 0;
480 /*
481 * Take device out of promiscuous mode. Since we were
482 * able to enter promiscuous mode, we should be able
483 * to turn it off. But we can get an error if
484 * the interface was configured down, so only panic
485 * if we don't get an unexpected error.
486 */
487 KERNEL_LOCK_UNLESS_NET_MPSAFE();
488 error = ifpromisc(bp->bif_ifp, 0);
489 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
490 #ifdef DIAGNOSTIC
491 if (error)
492 printf("%s: ifpromisc failed: %d", __func__, error);
493 #endif
494 }
495
496 /* Remove d from the interface's descriptor list. */
497 BPFIF_DLIST_WRITER_REMOVE(d);
498
499 pserialize_perform(bpf_psz);
500
501 if (BPFIF_DLIST_WRITER_EMPTY(bp)) {
502 /*
503 * Let the driver know that there are no more listeners.
504 */
505 *d->bd_bif->bif_driverp = NULL;
506 }
507 d->bd_bif = NULL;
508 }
509
510 static void
511 bpf_init(void)
512 {
513
514 mutex_init(&bpf_mtx, MUTEX_DEFAULT, IPL_NONE);
515 bpf_psz = pserialize_create();
516 bpf_psref_class = psref_class_create("bpf", IPL_SOFTNET);
517
518 PSLIST_INIT(&bpf_iflist);
519 PSLIST_INIT(&bpf_dlist);
520
521 bpf_gstats_percpu = percpu_alloc(sizeof(struct bpf_stat));
522
523 return;
524 }
525
526 /*
527 * bpfilterattach() is called at boot time. We don't need to do anything
528 * here, since any initialization will happen as part of module init code.
529 */
530 /* ARGSUSED */
531 void
532 bpfilterattach(int n)
533 {
534
535 }
536
537 /*
538 * Open ethernet device. Clones.
539 */
540 /* ARGSUSED */
541 int
542 bpfopen(dev_t dev, int flag, int mode, struct lwp *l)
543 {
544 struct bpf_d *d;
545 struct file *fp;
546 int error, fd;
547
548 /* falloc() will fill in the descriptor for us. */
549 if ((error = fd_allocfile(&fp, &fd)) != 0)
550 return error;
551
552 d = kmem_zalloc(sizeof(*d), KM_SLEEP);
553 d->bd_bufsize = bpf_bufsize;
554 d->bd_seesent = 1;
555 d->bd_feedback = 0;
556 d->bd_pid = l->l_proc->p_pid;
557 #ifdef _LP64
558 if (curproc->p_flag & PK_32)
559 d->bd_compat32 = 1;
560 #endif
561 getnanotime(&d->bd_btime);
562 d->bd_atime = d->bd_mtime = d->bd_btime;
563 callout_init(&d->bd_callout, 0);
564 selinit(&d->bd_sel);
565 d->bd_sih = softint_establish(SOFTINT_CLOCK, bpf_softintr, d);
566 d->bd_jitcode = NULL;
567 d->bd_filter = NULL;
568 BPF_DLIST_ENTRY_INIT(d);
569 BPFIF_DLIST_ENTRY_INIT(d);
570 d->bd_mtx = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
571 d->bd_buf_mtx = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);
572 cv_init(&d->bd_cv, "bpf");
573
574 mutex_enter(&bpf_mtx);
575 BPF_DLIST_WRITER_INSERT_HEAD(d);
576 mutex_exit(&bpf_mtx);
577
578 return fd_clone(fp, fd, flag, &bpf_fileops, d);
579 }
580
581 /*
582 * Close the descriptor by detaching it from its interface,
583 * deallocating its buffers, and marking it free.
584 */
585 /* ARGSUSED */
586 static int
587 bpf_close(struct file *fp)
588 {
589 struct bpf_d *d;
590
591 mutex_enter(&bpf_mtx);
592
593 if ((d = fp->f_bpf) == NULL) {
594 mutex_exit(&bpf_mtx);
595 return 0;
596 }
597
598 /*
599 * Refresh the PID associated with this bpf file.
600 */
601 d->bd_pid = curproc->p_pid;
602
603 mutex_enter(d->bd_mtx);
604 if (d->bd_state == BPF_WAITING)
605 callout_halt(&d->bd_callout, d->bd_mtx);
606 d->bd_state = BPF_IDLE;
607 if (d->bd_bif)
608 bpf_detachd(d);
609 mutex_exit(d->bd_mtx);
610
611 BPF_DLIST_WRITER_REMOVE(d);
612
613 pserialize_perform(bpf_psz);
614 mutex_exit(&bpf_mtx);
615
616 BPFIF_DLIST_ENTRY_DESTROY(d);
617 BPF_DLIST_ENTRY_DESTROY(d);
618 fp->f_bpf = NULL;
619 bpf_freed(d);
620 callout_destroy(&d->bd_callout);
621 seldestroy(&d->bd_sel);
622 softint_disestablish(d->bd_sih);
623 mutex_obj_free(d->bd_mtx);
624 mutex_obj_free(d->bd_buf_mtx);
625 cv_destroy(&d->bd_cv);
626
627 kmem_free(d, sizeof(*d));
628
629 return (0);
630 }
631
632 /*
633 * Rotate the packet buffers in descriptor d. Move the store buffer
634 * into the hold slot, and the free buffer into the store slot.
635 * Zero the length of the new store buffer.
636 */
637 #define ROTATE_BUFFERS(d) \
638 (d)->bd_hbuf = (d)->bd_sbuf; \
639 (d)->bd_hlen = (d)->bd_slen; \
640 (d)->bd_sbuf = (d)->bd_fbuf; \
641 (d)->bd_slen = 0; \
642 (d)->bd_fbuf = NULL;
643 /*
644 * bpfread - read next chunk of packets from buffers
645 */
646 static int
647 bpf_read(struct file *fp, off_t *offp, struct uio *uio,
648 kauth_cred_t cred, int flags)
649 {
650 struct bpf_d *d = fp->f_bpf;
651 int timed_out;
652 int error;
653
654 getnanotime(&d->bd_atime);
655 /*
656 * Restrict application to use a buffer the same size as
657 * the kernel buffers.
658 */
659 if (uio->uio_resid != d->bd_bufsize)
660 return (EINVAL);
661
662 mutex_enter(d->bd_mtx);
663 if (d->bd_state == BPF_WAITING)
664 callout_halt(&d->bd_callout, d->bd_buf_mtx);
665 timed_out = (d->bd_state == BPF_TIMED_OUT);
666 d->bd_state = BPF_IDLE;
667 mutex_exit(d->bd_mtx);
668 /*
669 * If the hold buffer is empty, then do a timed sleep, which
670 * ends when the timeout expires or when enough packets
671 * have arrived to fill the store buffer.
672 */
673 mutex_enter(d->bd_buf_mtx);
674 while (d->bd_hbuf == NULL) {
675 if (fp->f_flag & FNONBLOCK) {
676 if (d->bd_slen == 0) {
677 error = EWOULDBLOCK;
678 goto out;
679 }
680 ROTATE_BUFFERS(d);
681 break;
682 }
683
684 if ((d->bd_immediate || timed_out) && d->bd_slen != 0) {
685 /*
686 * A packet(s) either arrived since the previous
687 * read or arrived while we were asleep.
688 * Rotate the buffers and return what's here.
689 */
690 ROTATE_BUFFERS(d);
691 break;
692 }
693
694 error = cv_timedwait_sig(&d->bd_cv, d->bd_buf_mtx, d->bd_rtout);
695
696 if (error == EINTR || error == ERESTART)
697 goto out;
698
699 if (error == EWOULDBLOCK) {
700 /*
701 * On a timeout, return what's in the buffer,
702 * which may be nothing. If there is something
703 * in the store buffer, we can rotate the buffers.
704 */
705 if (d->bd_hbuf)
706 /*
707 * We filled up the buffer in between
708 * getting the timeout and arriving
709 * here, so we don't need to rotate.
710 */
711 break;
712
713 if (d->bd_slen == 0) {
714 error = 0;
715 goto out;
716 }
717 ROTATE_BUFFERS(d);
718 break;
719 }
720 if (error != 0)
721 goto out;
722 }
723 /*
724 * At this point, we know we have something in the hold slot.
725 */
726 mutex_exit(d->bd_buf_mtx);
727
728 /*
729 * Move data from hold buffer into user space.
730 * We know the entire buffer is transferred since
731 * we checked above that the read buffer is bpf_bufsize bytes.
732 */
733 error = uiomove(d->bd_hbuf, d->bd_hlen, uio);
734
735 mutex_enter(d->bd_buf_mtx);
736 d->bd_fbuf = d->bd_hbuf;
737 d->bd_hbuf = NULL;
738 d->bd_hlen = 0;
739 out:
740 mutex_exit(d->bd_buf_mtx);
741 return (error);
742 }
743
744
745 /*
746 * If there are processes sleeping on this descriptor, wake them up.
747 */
748 static inline void
749 bpf_wakeup(struct bpf_d *d)
750 {
751
752 mutex_enter(d->bd_buf_mtx);
753 cv_broadcast(&d->bd_cv);
754 mutex_exit(d->bd_buf_mtx);
755
756 if (d->bd_async)
757 softint_schedule(d->bd_sih);
758 selnotify(&d->bd_sel, 0, 0);
759 }
760
761 static void
762 bpf_softintr(void *cookie)
763 {
764 struct bpf_d *d;
765
766 d = cookie;
767 if (d->bd_async)
768 fownsignal(d->bd_pgid, SIGIO, 0, 0, NULL);
769 }
770
771 static void
772 bpf_timed_out(void *arg)
773 {
774 struct bpf_d *d = arg;
775
776 mutex_enter(d->bd_mtx);
777 if (d->bd_state == BPF_WAITING) {
778 d->bd_state = BPF_TIMED_OUT;
779 if (d->bd_slen != 0)
780 bpf_wakeup(d);
781 }
782 mutex_exit(d->bd_mtx);
783 }
784
785
786 static int
787 bpf_write(struct file *fp, off_t *offp, struct uio *uio,
788 kauth_cred_t cred, int flags)
789 {
790 struct bpf_d *d = fp->f_bpf;
791 struct bpf_if *bp;
792 struct ifnet *ifp;
793 struct mbuf *m, *mc;
794 int error;
795 static struct sockaddr_storage dst;
796 struct psref psref;
797 int bound;
798
799 m = NULL; /* XXX gcc */
800
801 bound = curlwp_bind();
802 mutex_enter(d->bd_mtx);
803 bp = d->bd_bif;
804 if (bp == NULL) {
805 mutex_exit(d->bd_mtx);
806 error = ENXIO;
807 goto out_bindx;
808 }
809 bpf_if_acquire(bp, &psref);
810 mutex_exit(d->bd_mtx);
811
812 getnanotime(&d->bd_mtime);
813
814 ifp = bp->bif_ifp;
815 if (if_is_deactivated(ifp)) {
816 error = ENXIO;
817 goto out;
818 }
819
820 if (uio->uio_resid == 0) {
821 error = 0;
822 goto out;
823 }
824
825 error = bpf_movein(uio, (int)bp->bif_dlt, ifp->if_mtu, &m,
826 (struct sockaddr *) &dst);
827 if (error)
828 goto out;
829
830 if (m->m_pkthdr.len > ifp->if_mtu) {
831 m_freem(m);
832 error = EMSGSIZE;
833 goto out;
834 }
835
836 if (d->bd_hdrcmplt)
837 dst.ss_family = pseudo_AF_HDRCMPLT;
838
839 if (d->bd_feedback) {
840 mc = m_dup(m, 0, M_COPYALL, M_NOWAIT);
841 if (mc != NULL)
842 m_set_rcvif(mc, ifp);
843 /* Set M_PROMISC for outgoing packets to be discarded. */
844 if (1 /*d->bd_direction == BPF_D_INOUT*/)
845 m->m_flags |= M_PROMISC;
846 } else
847 mc = NULL;
848
849 error = if_output_lock(ifp, ifp, m, (struct sockaddr *) &dst, NULL);
850
851 if (mc != NULL) {
852 if (error == 0)
853 ifp->_if_input(ifp, mc);
854 else
855 m_freem(mc);
856 }
857 /*
858 * The driver frees the mbuf.
859 */
860 out:
861 bpf_if_release(bp, &psref);
862 out_bindx:
863 curlwp_bindx(bound);
864 return error;
865 }
866
867 /*
868 * Reset a descriptor by flushing its packet buffer and clearing the
869 * receive and drop counts.
870 */
871 static void
872 reset_d(struct bpf_d *d)
873 {
874
875 KASSERT(mutex_owned(d->bd_mtx));
876
877 mutex_enter(d->bd_buf_mtx);
878 if (d->bd_hbuf) {
879 /* Free the hold buffer. */
880 d->bd_fbuf = d->bd_hbuf;
881 d->bd_hbuf = NULL;
882 }
883 d->bd_slen = 0;
884 d->bd_hlen = 0;
885 d->bd_rcount = 0;
886 d->bd_dcount = 0;
887 d->bd_ccount = 0;
888 mutex_exit(d->bd_buf_mtx);
889 }
890
891 /*
892 * FIONREAD Check for read packet available.
893 * BIOCGBLEN Get buffer len [for read()].
894 * BIOCSETF Set ethernet read filter.
895 * BIOCFLUSH Flush read packet buffer.
896 * BIOCPROMISC Put interface into promiscuous mode.
897 * BIOCGDLT Get link layer type.
898 * BIOCGETIF Get interface name.
899 * BIOCSETIF Set interface.
900 * BIOCSRTIMEOUT Set read timeout.
901 * BIOCGRTIMEOUT Get read timeout.
902 * BIOCGSTATS Get packet stats.
903 * BIOCIMMEDIATE Set immediate mode.
904 * BIOCVERSION Get filter language version.
905 * BIOCGHDRCMPLT Get "header already complete" flag.
906 * BIOCSHDRCMPLT Set "header already complete" flag.
907 * BIOCSFEEDBACK Set packet feedback mode.
908 * BIOCGFEEDBACK Get packet feedback mode.
909 * BIOCGSEESENT Get "see sent packets" mode.
910 * BIOCSSEESENT Set "see sent packets" mode.
911 */
912 /* ARGSUSED */
913 static int
914 bpf_ioctl(struct file *fp, u_long cmd, void *addr)
915 {
916 struct bpf_d *d = fp->f_bpf;
917 int error = 0;
918
919 /*
920 * Refresh the PID associated with this bpf file.
921 */
922 d->bd_pid = curproc->p_pid;
923 #ifdef _LP64
924 if (curproc->p_flag & PK_32)
925 d->bd_compat32 = 1;
926 else
927 d->bd_compat32 = 0;
928 #endif
929
930 mutex_enter(d->bd_mtx);
931 if (d->bd_state == BPF_WAITING)
932 callout_halt(&d->bd_callout, d->bd_mtx);
933 d->bd_state = BPF_IDLE;
934 mutex_exit(d->bd_mtx);
935
936 switch (cmd) {
937
938 default:
939 error = EINVAL;
940 break;
941
942 /*
943 * Check for read packet available.
944 */
945 case FIONREAD:
946 {
947 int n;
948
949 mutex_enter(d->bd_buf_mtx);
950 n = d->bd_slen;
951 if (d->bd_hbuf)
952 n += d->bd_hlen;
953 mutex_exit(d->bd_buf_mtx);
954
955 *(int *)addr = n;
956 break;
957 }
958
959 /*
960 * Get buffer len [for read()].
961 */
962 case BIOCGBLEN:
963 *(u_int *)addr = d->bd_bufsize;
964 break;
965
966 /*
967 * Set buffer length.
968 */
969 case BIOCSBLEN:
970 /*
971 * Forbid to change the buffer length if buffers are already
972 * allocated.
973 */
974 mutex_enter(d->bd_mtx);
975 mutex_enter(d->bd_buf_mtx);
976 if (d->bd_bif != NULL || d->bd_sbuf != NULL)
977 error = EINVAL;
978 else {
979 u_int size = *(u_int *)addr;
980
981 if (size > bpf_maxbufsize)
982 *(u_int *)addr = size = bpf_maxbufsize;
983 else if (size < BPF_MINBUFSIZE)
984 *(u_int *)addr = size = BPF_MINBUFSIZE;
985 d->bd_bufsize = size;
986 }
987 mutex_exit(d->bd_buf_mtx);
988 mutex_exit(d->bd_mtx);
989 break;
990
991 /*
992 * Set link layer read filter.
993 */
994 case BIOCSETF:
995 error = bpf_setf(d, addr);
996 break;
997
998 /*
999 * Flush read packet buffer.
1000 */
1001 case BIOCFLUSH:
1002 mutex_enter(d->bd_mtx);
1003 reset_d(d);
1004 mutex_exit(d->bd_mtx);
1005 break;
1006
1007 /*
1008 * Put interface into promiscuous mode.
1009 */
1010 case BIOCPROMISC:
1011 mutex_enter(d->bd_mtx);
1012 if (d->bd_bif == NULL) {
1013 mutex_exit(d->bd_mtx);
1014 /*
1015 * No interface attached yet.
1016 */
1017 error = EINVAL;
1018 break;
1019 }
1020 if (d->bd_promisc == 0) {
1021 KERNEL_LOCK_UNLESS_NET_MPSAFE();
1022 error = ifpromisc(d->bd_bif->bif_ifp, 1);
1023 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
1024 if (error == 0)
1025 d->bd_promisc = 1;
1026 }
1027 mutex_exit(d->bd_mtx);
1028 break;
1029
1030 /*
1031 * Get device parameters.
1032 */
1033 case BIOCGDLT:
1034 mutex_enter(d->bd_mtx);
1035 if (d->bd_bif == NULL)
1036 error = EINVAL;
1037 else
1038 *(u_int *)addr = d->bd_bif->bif_dlt;
1039 mutex_exit(d->bd_mtx);
1040 break;
1041
1042 /*
1043 * Get a list of supported device parameters.
1044 */
1045 case BIOCGDLTLIST:
1046 mutex_enter(d->bd_mtx);
1047 if (d->bd_bif == NULL)
1048 error = EINVAL;
1049 else
1050 error = bpf_getdltlist(d, addr);
1051 mutex_exit(d->bd_mtx);
1052 break;
1053
1054 /*
1055 * Set device parameters.
1056 */
1057 case BIOCSDLT:
1058 mutex_enter(&bpf_mtx);
1059 mutex_enter(d->bd_mtx);
1060 if (d->bd_bif == NULL)
1061 error = EINVAL;
1062 else
1063 error = bpf_setdlt(d, *(u_int *)addr);
1064 mutex_exit(d->bd_mtx);
1065 mutex_exit(&bpf_mtx);
1066 break;
1067
1068 /*
1069 * Set interface name.
1070 */
1071 #ifdef OBIOCGETIF
1072 case OBIOCGETIF:
1073 #endif
1074 case BIOCGETIF:
1075 mutex_enter(d->bd_mtx);
1076 if (d->bd_bif == NULL)
1077 error = EINVAL;
1078 else
1079 bpf_ifname(d->bd_bif->bif_ifp, addr);
1080 mutex_exit(d->bd_mtx);
1081 break;
1082
1083 /*
1084 * Set interface.
1085 */
1086 #ifdef OBIOCSETIF
1087 case OBIOCSETIF:
1088 #endif
1089 case BIOCSETIF:
1090 mutex_enter(&bpf_mtx);
1091 error = bpf_setif(d, addr);
1092 mutex_exit(&bpf_mtx);
1093 break;
1094
1095 /*
1096 * Set read timeout.
1097 */
1098 case BIOCSRTIMEOUT:
1099 {
1100 struct timeval *tv = addr;
1101
1102 /* Compute number of ticks. */
1103 d->bd_rtout = tv->tv_sec * hz + tv->tv_usec / tick;
1104 if ((d->bd_rtout == 0) && (tv->tv_usec != 0))
1105 d->bd_rtout = 1;
1106 break;
1107 }
1108
1109 #ifdef BIOCGORTIMEOUT
1110 /*
1111 * Get read timeout.
1112 */
1113 case BIOCGORTIMEOUT:
1114 {
1115 struct timeval50 *tv = addr;
1116
1117 tv->tv_sec = d->bd_rtout / hz;
1118 tv->tv_usec = (d->bd_rtout % hz) * tick;
1119 break;
1120 }
1121 #endif
1122
1123 #ifdef BIOCSORTIMEOUT
1124 /*
1125 * Set read timeout.
1126 */
1127 case BIOCSORTIMEOUT:
1128 {
1129 struct timeval50 *tv = addr;
1130
1131 /* Compute number of ticks. */
1132 d->bd_rtout = tv->tv_sec * hz + tv->tv_usec / tick;
1133 if ((d->bd_rtout == 0) && (tv->tv_usec != 0))
1134 d->bd_rtout = 1;
1135 break;
1136 }
1137 #endif
1138
1139 /*
1140 * Get read timeout.
1141 */
1142 case BIOCGRTIMEOUT:
1143 {
1144 struct timeval *tv = addr;
1145
1146 tv->tv_sec = d->bd_rtout / hz;
1147 tv->tv_usec = (d->bd_rtout % hz) * tick;
1148 break;
1149 }
1150 /*
1151 * Get packet stats.
1152 */
1153 case BIOCGSTATS:
1154 {
1155 struct bpf_stat *bs = addr;
1156
1157 bs->bs_recv = d->bd_rcount;
1158 bs->bs_drop = d->bd_dcount;
1159 bs->bs_capt = d->bd_ccount;
1160 break;
1161 }
1162
1163 case BIOCGSTATSOLD:
1164 {
1165 struct bpf_stat_old *bs = addr;
1166
1167 bs->bs_recv = d->bd_rcount;
1168 bs->bs_drop = d->bd_dcount;
1169 break;
1170 }
1171
1172 /*
1173 * Set immediate mode.
1174 */
1175 case BIOCIMMEDIATE:
1176 d->bd_immediate = *(u_int *)addr;
1177 break;
1178
1179 case BIOCVERSION:
1180 {
1181 struct bpf_version *bv = addr;
1182
1183 bv->bv_major = BPF_MAJOR_VERSION;
1184 bv->bv_minor = BPF_MINOR_VERSION;
1185 break;
1186 }
1187
1188 case BIOCGHDRCMPLT: /* get "header already complete" flag */
1189 *(u_int *)addr = d->bd_hdrcmplt;
1190 break;
1191
1192 case BIOCSHDRCMPLT: /* set "header already complete" flag */
1193 d->bd_hdrcmplt = *(u_int *)addr ? 1 : 0;
1194 break;
1195
1196 /*
1197 * Get "see sent packets" flag
1198 */
1199 case BIOCGSEESENT:
1200 *(u_int *)addr = d->bd_seesent;
1201 break;
1202
1203 /*
1204 * Set "see sent" packets flag
1205 */
1206 case BIOCSSEESENT:
1207 d->bd_seesent = *(u_int *)addr;
1208 break;
1209
1210 /*
1211 * Set "feed packets from bpf back to input" mode
1212 */
1213 case BIOCSFEEDBACK:
1214 d->bd_feedback = *(u_int *)addr;
1215 break;
1216
1217 /*
1218 * Get "feed packets from bpf back to input" mode
1219 */
1220 case BIOCGFEEDBACK:
1221 *(u_int *)addr = d->bd_feedback;
1222 break;
1223
1224 case FIONBIO: /* Non-blocking I/O */
1225 /*
1226 * No need to do anything special as we use IO_NDELAY in
1227 * bpfread() as an indication of whether or not to block
1228 * the read.
1229 */
1230 break;
1231
1232 case FIOASYNC: /* Send signal on receive packets */
1233 d->bd_async = *(int *)addr;
1234 break;
1235
1236 case TIOCSPGRP: /* Process or group to send signals to */
1237 case FIOSETOWN:
1238 error = fsetown(&d->bd_pgid, cmd, addr);
1239 break;
1240
1241 case TIOCGPGRP:
1242 case FIOGETOWN:
1243 error = fgetown(d->bd_pgid, cmd, addr);
1244 break;
1245 }
1246 return (error);
1247 }
1248
1249 /*
1250 * Set d's packet filter program to fp. If this file already has a filter,
1251 * free it and replace it. Returns EINVAL for bogus requests.
1252 */
1253 static int
1254 bpf_setf(struct bpf_d *d, struct bpf_program *fp)
1255 {
1256 struct bpf_insn *fcode;
1257 bpfjit_func_t jcode;
1258 size_t flen, size = 0;
1259 struct bpf_filter *oldf, *newf;
1260
1261 jcode = NULL;
1262 flen = fp->bf_len;
1263
1264 if ((fp->bf_insns == NULL && flen) || flen > BPF_MAXINSNS) {
1265 return EINVAL;
1266 }
1267
1268 if (flen) {
1269 /*
1270 * Allocate the buffer, copy the byte-code from
1271 * userspace and validate it.
1272 */
1273 size = flen * sizeof(*fp->bf_insns);
1274 fcode = kmem_alloc(size, KM_SLEEP);
1275 if (copyin(fp->bf_insns, fcode, size) != 0 ||
1276 !bpf_validate(fcode, (int)flen)) {
1277 kmem_free(fcode, size);
1278 return EINVAL;
1279 }
1280 membar_consumer();
1281 if (bpf_jit)
1282 jcode = bpf_jit_generate(NULL, fcode, flen);
1283 } else {
1284 fcode = NULL;
1285 }
1286
1287 newf = kmem_alloc(sizeof(*newf), KM_SLEEP);
1288 newf->bf_insn = fcode;
1289 newf->bf_size = size;
1290 newf->bf_jitcode = jcode;
1291 d->bd_jitcode = jcode; /* XXX just for kvm(3) users */
1292
1293 /* Need to hold bpf_mtx for pserialize_perform */
1294 mutex_enter(&bpf_mtx);
1295 mutex_enter(d->bd_mtx);
1296 oldf = d->bd_filter;
1297 d->bd_filter = newf;
1298 membar_producer();
1299 reset_d(d);
1300 pserialize_perform(bpf_psz);
1301 mutex_exit(d->bd_mtx);
1302 mutex_exit(&bpf_mtx);
1303
1304 if (oldf != NULL)
1305 bpf_free_filter(oldf);
1306
1307 return 0;
1308 }
1309
1310 /*
1311 * Detach a file from its current interface (if attached at all) and attach
1312 * to the interface indicated by the name stored in ifr.
1313 * Return an errno or 0.
1314 */
1315 static int
1316 bpf_setif(struct bpf_d *d, struct ifreq *ifr)
1317 {
1318 struct bpf_if *bp;
1319 char *cp;
1320 int unit_seen, i, error;
1321
1322 KASSERT(mutex_owned(&bpf_mtx));
1323 /*
1324 * Make sure the provided name has a unit number, and default
1325 * it to '0' if not specified.
1326 * XXX This is ugly ... do this differently?
1327 */
1328 unit_seen = 0;
1329 cp = ifr->ifr_name;
1330 cp[sizeof(ifr->ifr_name) - 1] = '\0'; /* sanity */
1331 while (*cp++)
1332 if (*cp >= '0' && *cp <= '9')
1333 unit_seen = 1;
1334 if (!unit_seen) {
1335 /* Make sure to leave room for the '\0'. */
1336 for (i = 0; i < (IFNAMSIZ - 1); ++i) {
1337 if ((ifr->ifr_name[i] >= 'a' &&
1338 ifr->ifr_name[i] <= 'z') ||
1339 (ifr->ifr_name[i] >= 'A' &&
1340 ifr->ifr_name[i] <= 'Z'))
1341 continue;
1342 ifr->ifr_name[i] = '0';
1343 }
1344 }
1345
1346 /*
1347 * Look through attached interfaces for the named one.
1348 */
1349 BPF_IFLIST_WRITER_FOREACH(bp) {
1350 struct ifnet *ifp = bp->bif_ifp;
1351
1352 if (ifp == NULL ||
1353 strcmp(ifp->if_xname, ifr->ifr_name) != 0)
1354 continue;
1355 /* skip additional entry */
1356 if (bp->bif_driverp != &ifp->if_bpf)
1357 continue;
1358 /*
1359 * We found the requested interface.
1360 * Allocate the packet buffers if we need to.
1361 * If we're already attached to requested interface,
1362 * just flush the buffer.
1363 */
1364 /*
1365 * bpf_allocbufs is called only here. bpf_mtx ensures that
1366 * no race condition happen on d->bd_sbuf.
1367 */
1368 if (d->bd_sbuf == NULL) {
1369 error = bpf_allocbufs(d);
1370 if (error != 0)
1371 return (error);
1372 }
1373 mutex_enter(d->bd_mtx);
1374 if (bp != d->bd_bif) {
1375 if (d->bd_bif) {
1376 /*
1377 * Detach if attached to something else.
1378 */
1379 bpf_detachd(d);
1380 BPFIF_DLIST_ENTRY_INIT(d);
1381 }
1382
1383 bpf_attachd(d, bp);
1384 }
1385 reset_d(d);
1386 mutex_exit(d->bd_mtx);
1387 return (0);
1388 }
1389 /* Not found. */
1390 return (ENXIO);
1391 }
1392
1393 /*
1394 * Copy the interface name to the ifreq.
1395 */
1396 static void
1397 bpf_ifname(struct ifnet *ifp, struct ifreq *ifr)
1398 {
1399 memcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
1400 }
1401
1402 static int
1403 bpf_stat(struct file *fp, struct stat *st)
1404 {
1405 struct bpf_d *d = fp->f_bpf;
1406
1407 (void)memset(st, 0, sizeof(*st));
1408 mutex_enter(d->bd_mtx);
1409 st->st_dev = makedev(cdevsw_lookup_major(&bpf_cdevsw), d->bd_pid);
1410 st->st_atimespec = d->bd_atime;
1411 st->st_mtimespec = d->bd_mtime;
1412 st->st_ctimespec = st->st_birthtimespec = d->bd_btime;
1413 st->st_uid = kauth_cred_geteuid(fp->f_cred);
1414 st->st_gid = kauth_cred_getegid(fp->f_cred);
1415 st->st_mode = S_IFCHR;
1416 mutex_exit(d->bd_mtx);
1417 return 0;
1418 }
1419
1420 /*
1421 * Support for poll() system call
1422 *
1423 * Return true iff the specific operation will not block indefinitely - with
1424 * the assumption that it is safe to positively acknowledge a request for the
1425 * ability to write to the BPF device.
1426 * Otherwise, return false but make a note that a selnotify() must be done.
1427 */
1428 static int
1429 bpf_poll(struct file *fp, int events)
1430 {
1431 struct bpf_d *d = fp->f_bpf;
1432 int revents;
1433
1434 /*
1435 * Refresh the PID associated with this bpf file.
1436 */
1437 mutex_enter(&bpf_mtx);
1438 d->bd_pid = curproc->p_pid;
1439
1440 revents = events & (POLLOUT | POLLWRNORM);
1441 if (events & (POLLIN | POLLRDNORM)) {
1442 /*
1443 * An imitation of the FIONREAD ioctl code.
1444 */
1445 mutex_enter(d->bd_mtx);
1446 if (d->bd_hlen != 0 ||
1447 ((d->bd_immediate || d->bd_state == BPF_TIMED_OUT) &&
1448 d->bd_slen != 0)) {
1449 revents |= events & (POLLIN | POLLRDNORM);
1450 } else {
1451 selrecord(curlwp, &d->bd_sel);
1452 /* Start the read timeout if necessary */
1453 if (d->bd_rtout > 0 && d->bd_state == BPF_IDLE) {
1454 callout_reset(&d->bd_callout, d->bd_rtout,
1455 bpf_timed_out, d);
1456 d->bd_state = BPF_WAITING;
1457 }
1458 }
1459 mutex_exit(d->bd_mtx);
1460 }
1461
1462 mutex_exit(&bpf_mtx);
1463 return (revents);
1464 }
1465
1466 static void
1467 filt_bpfrdetach(struct knote *kn)
1468 {
1469 struct bpf_d *d = kn->kn_hook;
1470
1471 mutex_enter(d->bd_buf_mtx);
1472 SLIST_REMOVE(&d->bd_sel.sel_klist, kn, knote, kn_selnext);
1473 mutex_exit(d->bd_buf_mtx);
1474 }
1475
1476 static int
1477 filt_bpfread(struct knote *kn, long hint)
1478 {
1479 struct bpf_d *d = kn->kn_hook;
1480 int rv;
1481
1482 mutex_enter(d->bd_buf_mtx);
1483 kn->kn_data = d->bd_hlen;
1484 if (d->bd_immediate)
1485 kn->kn_data += d->bd_slen;
1486 rv = (kn->kn_data > 0);
1487 mutex_exit(d->bd_buf_mtx);
1488 return rv;
1489 }
1490
1491 static const struct filterops bpfread_filtops = {
1492 .f_isfd = 1,
1493 .f_attach = NULL,
1494 .f_detach = filt_bpfrdetach,
1495 .f_event = filt_bpfread,
1496 };
1497
1498 static int
1499 bpf_kqfilter(struct file *fp, struct knote *kn)
1500 {
1501 struct bpf_d *d = fp->f_bpf;
1502 struct klist *klist;
1503
1504 mutex_enter(d->bd_buf_mtx);
1505 switch (kn->kn_filter) {
1506 case EVFILT_READ:
1507 klist = &d->bd_sel.sel_klist;
1508 kn->kn_fop = &bpfread_filtops;
1509 break;
1510
1511 default:
1512 mutex_exit(d->bd_buf_mtx);
1513 return (EINVAL);
1514 }
1515
1516 kn->kn_hook = d;
1517
1518 SLIST_INSERT_HEAD(klist, kn, kn_selnext);
1519 mutex_exit(d->bd_buf_mtx);
1520
1521 return (0);
1522 }
1523
1524 /*
1525 * Copy data from an mbuf chain into a buffer. This code is derived
1526 * from m_copydata in sys/uipc_mbuf.c.
1527 */
1528 static void *
1529 bpf_mcpy(void *dst_arg, const void *src_arg, size_t len)
1530 {
1531 const struct mbuf *m;
1532 u_int count;
1533 u_char *dst;
1534
1535 m = src_arg;
1536 dst = dst_arg;
1537 while (len > 0) {
1538 if (m == NULL)
1539 panic("bpf_mcpy");
1540 count = min(m->m_len, len);
1541 memcpy(dst, mtod(m, const void *), count);
1542 m = m->m_next;
1543 dst += count;
1544 len -= count;
1545 }
1546 return dst_arg;
1547 }
1548
1549 /*
1550 * Dispatch a packet to all the listeners on interface bp.
1551 *
1552 * pkt pointer to the packet, either a data buffer or an mbuf chain
1553 * buflen buffer length, if pkt is a data buffer
1554 * cpfn a function that can copy pkt into the listener's buffer
1555 * pktlen length of the packet
1556 * rcv true if packet came in
1557 */
1558 static inline void
1559 bpf_deliver(struct bpf_if *bp, void *(*cpfn)(void *, const void *, size_t),
1560 void *pkt, u_int pktlen, u_int buflen, const bool rcv)
1561 {
1562 uint32_t mem[BPF_MEMWORDS];
1563 bpf_args_t args = {
1564 .pkt = (const uint8_t *)pkt,
1565 .wirelen = pktlen,
1566 .buflen = buflen,
1567 .mem = mem,
1568 .arg = NULL
1569 };
1570 bool gottime = false;
1571 struct timespec ts;
1572 struct bpf_d *d;
1573 int s;
1574
1575 KASSERT(!cpu_intr_p());
1576
1577 /*
1578 * Note that the IPL does not have to be raised at this point.
1579 * The only problem that could arise here is that if two different
1580 * interfaces shared any data. This is not the case.
1581 */
1582 s = pserialize_read_enter();
1583 BPFIF_DLIST_READER_FOREACH(d, bp) {
1584 u_int slen = 0;
1585 struct bpf_filter *filter;
1586
1587 if (!d->bd_seesent && !rcv) {
1588 continue;
1589 }
1590 atomic_inc_ulong(&d->bd_rcount);
1591 BPF_STATINC(recv);
1592
1593 filter = d->bd_filter;
1594 membar_datadep_consumer();
1595 if (filter != NULL) {
1596 if (filter->bf_jitcode != NULL)
1597 slen = filter->bf_jitcode(NULL, &args);
1598 else
1599 slen = bpf_filter_ext(NULL, filter->bf_insn,
1600 &args);
1601 }
1602
1603 if (!slen) {
1604 continue;
1605 }
1606 if (!gottime) {
1607 gottime = true;
1608 nanotime(&ts);
1609 }
1610 /* Assume catchpacket doesn't sleep */
1611 catchpacket(d, pkt, pktlen, slen, cpfn, &ts);
1612 }
1613 pserialize_read_exit(s);
1614 }
1615
1616 /*
1617 * Incoming linkage from device drivers. Process the packet pkt, of length
1618 * pktlen, which is stored in a contiguous buffer. The packet is parsed
1619 * by each process' filter, and if accepted, stashed into the corresponding
1620 * buffer.
1621 */
1622 static void
1623 _bpf_tap(struct bpf_if *bp, u_char *pkt, u_int pktlen)
1624 {
1625
1626 bpf_deliver(bp, memcpy, pkt, pktlen, pktlen, true);
1627 }
1628
1629 /*
1630 * Incoming linkage from device drivers, when the head of the packet is in
1631 * a buffer, and the tail is in an mbuf chain.
1632 */
1633 static void
1634 _bpf_mtap2(struct bpf_if *bp, void *data, u_int dlen, struct mbuf *m)
1635 {
1636 u_int pktlen;
1637 struct mbuf mb;
1638
1639 /* Skip outgoing duplicate packets. */
1640 if ((m->m_flags & M_PROMISC) != 0 && m->m_pkthdr.rcvif_index == 0) {
1641 m->m_flags &= ~M_PROMISC;
1642 return;
1643 }
1644
1645 pktlen = m_length(m) + dlen;
1646
1647 /*
1648 * Craft on-stack mbuf suitable for passing to bpf_filter.
1649 * Note that we cut corners here; we only setup what's
1650 * absolutely needed--this mbuf should never go anywhere else.
1651 */
1652 (void)memset(&mb, 0, sizeof(mb));
1653 mb.m_next = m;
1654 mb.m_data = data;
1655 mb.m_len = dlen;
1656
1657 bpf_deliver(bp, bpf_mcpy, &mb, pktlen, 0, m->m_pkthdr.rcvif_index != 0);
1658 }
1659
1660 /*
1661 * Incoming linkage from device drivers, when packet is in an mbuf chain.
1662 */
1663 static void
1664 _bpf_mtap(struct bpf_if *bp, struct mbuf *m)
1665 {
1666 void *(*cpfn)(void *, const void *, size_t);
1667 u_int pktlen, buflen;
1668 void *marg;
1669
1670 /* Skip outgoing duplicate packets. */
1671 if ((m->m_flags & M_PROMISC) != 0 && m->m_pkthdr.rcvif_index == 0) {
1672 m->m_flags &= ~M_PROMISC;
1673 return;
1674 }
1675
1676 pktlen = m_length(m);
1677
1678 if (pktlen == m->m_len) {
1679 cpfn = (void *)memcpy;
1680 marg = mtod(m, void *);
1681 buflen = pktlen;
1682 } else {
1683 cpfn = bpf_mcpy;
1684 marg = m;
1685 buflen = 0;
1686 }
1687
1688 bpf_deliver(bp, cpfn, marg, pktlen, buflen, m->m_pkthdr.rcvif_index != 0);
1689 }
1690
1691 /*
1692 * We need to prepend the address family as
1693 * a four byte field. Cons up a dummy header
1694 * to pacify bpf. This is safe because bpf
1695 * will only read from the mbuf (i.e., it won't
1696 * try to free it or keep a pointer a to it).
1697 */
1698 static void
1699 _bpf_mtap_af(struct bpf_if *bp, uint32_t af, struct mbuf *m)
1700 {
1701 struct mbuf m0;
1702
1703 m0.m_flags = 0;
1704 m0.m_next = m;
1705 m0.m_len = 4;
1706 m0.m_data = (char *)⁡
1707
1708 _bpf_mtap(bp, &m0);
1709 }
1710
1711 /*
1712 * Put the SLIP pseudo-"link header" in place.
1713 * Note this M_PREPEND() should never fail,
1714 * swince we know we always have enough space
1715 * in the input buffer.
1716 */
1717 static void
1718 _bpf_mtap_sl_in(struct bpf_if *bp, u_char *chdr, struct mbuf **m)
1719 {
1720 u_char *hp;
1721
1722 M_PREPEND(*m, SLIP_HDRLEN, M_DONTWAIT);
1723 if (*m == NULL)
1724 return;
1725
1726 hp = mtod(*m, u_char *);
1727 hp[SLX_DIR] = SLIPDIR_IN;
1728 (void)memcpy(&hp[SLX_CHDR], chdr, CHDR_LEN);
1729
1730 _bpf_mtap(bp, *m);
1731
1732 m_adj(*m, SLIP_HDRLEN);
1733 }
1734
1735 /*
1736 * Put the SLIP pseudo-"link header" in
1737 * place. The compressed header is now
1738 * at the beginning of the mbuf.
1739 */
1740 static void
1741 _bpf_mtap_sl_out(struct bpf_if *bp, u_char *chdr, struct mbuf *m)
1742 {
1743 struct mbuf m0;
1744 u_char *hp;
1745
1746 m0.m_flags = 0;
1747 m0.m_next = m;
1748 m0.m_data = m0.m_dat;
1749 m0.m_len = SLIP_HDRLEN;
1750
1751 hp = mtod(&m0, u_char *);
1752
1753 hp[SLX_DIR] = SLIPDIR_OUT;
1754 (void)memcpy(&hp[SLX_CHDR], chdr, CHDR_LEN);
1755
1756 _bpf_mtap(bp, &m0);
1757 m_freem(m);
1758 }
1759
1760 static struct mbuf *
1761 bpf_mbuf_enqueue(struct bpf_if *bp, struct mbuf *m)
1762 {
1763 struct mbuf *dup;
1764
1765 dup = m_dup(m, 0, M_COPYALL, M_NOWAIT);
1766 if (dup == NULL)
1767 return NULL;
1768
1769 if (bp->bif_mbuf_tail != NULL) {
1770 bp->bif_mbuf_tail->m_nextpkt = dup;
1771 } else {
1772 bp->bif_mbuf_head = dup;
1773 }
1774 bp->bif_mbuf_tail = dup;
1775 #ifdef BPF_MTAP_SOFTINT_DEBUG
1776 log(LOG_DEBUG, "%s: enqueued mbuf=%p to %s\n",
1777 __func__, dup, bp->bif_ifp->if_xname);
1778 #endif
1779
1780 return dup;
1781 }
1782
1783 static struct mbuf *
1784 bpf_mbuf_dequeue(struct bpf_if *bp)
1785 {
1786 struct mbuf *m;
1787 int s;
1788
1789 /* XXX NOMPSAFE: assumed running on one CPU */
1790 s = splnet();
1791 m = bp->bif_mbuf_head;
1792 if (m != NULL) {
1793 bp->bif_mbuf_head = m->m_nextpkt;
1794 m->m_nextpkt = NULL;
1795
1796 if (bp->bif_mbuf_head == NULL)
1797 bp->bif_mbuf_tail = NULL;
1798 #ifdef BPF_MTAP_SOFTINT_DEBUG
1799 log(LOG_DEBUG, "%s: dequeued mbuf=%p from %s\n",
1800 __func__, m, bp->bif_ifp->if_xname);
1801 #endif
1802 }
1803 splx(s);
1804
1805 return m;
1806 }
1807
1808 static void
1809 bpf_mtap_si(void *arg)
1810 {
1811 struct bpf_if *bp = arg;
1812 struct mbuf *m;
1813
1814 while ((m = bpf_mbuf_dequeue(bp)) != NULL) {
1815 #ifdef BPF_MTAP_SOFTINT_DEBUG
1816 log(LOG_DEBUG, "%s: tapping mbuf=%p on %s\n",
1817 __func__, m, bp->bif_ifp->if_xname);
1818 #endif
1819 bpf_ops->bpf_mtap(bp, m);
1820 m_freem(m);
1821 }
1822 }
1823
1824 static void
1825 _bpf_mtap_softint(struct ifnet *ifp, struct mbuf *m)
1826 {
1827 struct bpf_if *bp = ifp->if_bpf;
1828 struct mbuf *dup;
1829
1830 KASSERT(cpu_intr_p());
1831
1832 /* To avoid extra invocations of the softint */
1833 if (BPFIF_DLIST_READER_EMPTY(bp))
1834 return;
1835 KASSERT(bp->bif_si != NULL);
1836
1837 dup = bpf_mbuf_enqueue(bp, m);
1838 if (dup != NULL)
1839 softint_schedule(bp->bif_si);
1840 }
1841
1842 static int
1843 bpf_hdrlen(struct bpf_d *d)
1844 {
1845 int hdrlen = d->bd_bif->bif_hdrlen;
1846 /*
1847 * Compute the length of the bpf header. This is not necessarily
1848 * equal to SIZEOF_BPF_HDR because we want to insert spacing such
1849 * that the network layer header begins on a longword boundary (for
1850 * performance reasons and to alleviate alignment restrictions).
1851 */
1852 #ifdef _LP64
1853 if (d->bd_compat32)
1854 return (BPF_WORDALIGN32(hdrlen + SIZEOF_BPF_HDR32) - hdrlen);
1855 else
1856 #endif
1857 return (BPF_WORDALIGN(hdrlen + SIZEOF_BPF_HDR) - hdrlen);
1858 }
1859
1860 /*
1861 * Move the packet data from interface memory (pkt) into the
1862 * store buffer. Call the wakeup functions if it's time to wakeup
1863 * a listener (buffer full), "cpfn" is the routine called to do the
1864 * actual data transfer. memcpy is passed in to copy contiguous chunks,
1865 * while bpf_mcpy is passed in to copy mbuf chains. In the latter case,
1866 * pkt is really an mbuf.
1867 */
1868 static void
1869 catchpacket(struct bpf_d *d, u_char *pkt, u_int pktlen, u_int snaplen,
1870 void *(*cpfn)(void *, const void *, size_t), struct timespec *ts)
1871 {
1872 char *h;
1873 int totlen, curlen, caplen;
1874 int hdrlen = bpf_hdrlen(d);
1875 int do_wakeup = 0;
1876
1877 atomic_inc_ulong(&d->bd_ccount);
1878 BPF_STATINC(capt);
1879 /*
1880 * Figure out how many bytes to move. If the packet is
1881 * greater or equal to the snapshot length, transfer that
1882 * much. Otherwise, transfer the whole packet (unless
1883 * we hit the buffer size limit).
1884 */
1885 totlen = hdrlen + min(snaplen, pktlen);
1886 if (totlen > d->bd_bufsize)
1887 totlen = d->bd_bufsize;
1888 /*
1889 * If we adjusted totlen to fit the bufsize, it could be that
1890 * totlen is smaller than hdrlen because of the link layer header.
1891 */
1892 caplen = totlen - hdrlen;
1893 if (caplen < 0)
1894 caplen = 0;
1895
1896 mutex_enter(d->bd_buf_mtx);
1897 /*
1898 * Round up the end of the previous packet to the next longword.
1899 */
1900 #ifdef _LP64
1901 if (d->bd_compat32)
1902 curlen = BPF_WORDALIGN32(d->bd_slen);
1903 else
1904 #endif
1905 curlen = BPF_WORDALIGN(d->bd_slen);
1906 if (curlen + totlen > d->bd_bufsize) {
1907 /*
1908 * This packet will overflow the storage buffer.
1909 * Rotate the buffers if we can, then wakeup any
1910 * pending reads.
1911 */
1912 if (d->bd_fbuf == NULL) {
1913 mutex_exit(d->bd_buf_mtx);
1914 /*
1915 * We haven't completed the previous read yet,
1916 * so drop the packet.
1917 */
1918 atomic_inc_ulong(&d->bd_dcount);
1919 BPF_STATINC(drop);
1920 return;
1921 }
1922 ROTATE_BUFFERS(d);
1923 do_wakeup = 1;
1924 curlen = 0;
1925 } else if (d->bd_immediate || d->bd_state == BPF_TIMED_OUT) {
1926 /*
1927 * Immediate mode is set, or the read timeout has
1928 * already expired during a select call. A packet
1929 * arrived, so the reader should be woken up.
1930 */
1931 do_wakeup = 1;
1932 }
1933
1934 /*
1935 * Append the bpf header.
1936 */
1937 h = (char *)d->bd_sbuf + curlen;
1938 #ifdef _LP64
1939 if (d->bd_compat32) {
1940 struct bpf_hdr32 *hp32;
1941
1942 hp32 = (struct bpf_hdr32 *)h;
1943 hp32->bh_tstamp.tv_sec = ts->tv_sec;
1944 hp32->bh_tstamp.tv_usec = ts->tv_nsec / 1000;
1945 hp32->bh_datalen = pktlen;
1946 hp32->bh_hdrlen = hdrlen;
1947 hp32->bh_caplen = caplen;
1948 } else
1949 #endif
1950 {
1951 struct bpf_hdr *hp;
1952
1953 hp = (struct bpf_hdr *)h;
1954 hp->bh_tstamp.tv_sec = ts->tv_sec;
1955 hp->bh_tstamp.tv_usec = ts->tv_nsec / 1000;
1956 hp->bh_datalen = pktlen;
1957 hp->bh_hdrlen = hdrlen;
1958 hp->bh_caplen = caplen;
1959 }
1960
1961 /*
1962 * Copy the packet data into the store buffer and update its length.
1963 */
1964 (*cpfn)(h + hdrlen, pkt, caplen);
1965 d->bd_slen = curlen + totlen;
1966 mutex_exit(d->bd_buf_mtx);
1967
1968 /*
1969 * Call bpf_wakeup after bd_slen has been updated so that kevent(2)
1970 * will cause filt_bpfread() to be called with it adjusted.
1971 */
1972 if (do_wakeup)
1973 bpf_wakeup(d);
1974 }
1975
1976 /*
1977 * Initialize all nonzero fields of a descriptor.
1978 */
1979 static int
1980 bpf_allocbufs(struct bpf_d *d)
1981 {
1982
1983 d->bd_fbuf = kmem_alloc(d->bd_bufsize, KM_NOSLEEP);
1984 if (!d->bd_fbuf)
1985 return (ENOBUFS);
1986 d->bd_sbuf = kmem_alloc(d->bd_bufsize, KM_NOSLEEP);
1987 if (!d->bd_sbuf) {
1988 kmem_free(d->bd_fbuf, d->bd_bufsize);
1989 return (ENOBUFS);
1990 }
1991 d->bd_slen = 0;
1992 d->bd_hlen = 0;
1993 return (0);
1994 }
1995
1996 static void
1997 bpf_free_filter(struct bpf_filter *filter)
1998 {
1999
2000 KASSERT(filter != NULL);
2001 KASSERT(filter->bf_insn != NULL);
2002
2003 kmem_free(filter->bf_insn, filter->bf_size);
2004 if (filter->bf_jitcode != NULL)
2005 bpf_jit_freecode(filter->bf_jitcode);
2006 kmem_free(filter, sizeof(*filter));
2007 }
2008
2009 /*
2010 * Free buffers currently in use by a descriptor.
2011 * Called on close.
2012 */
2013 static void
2014 bpf_freed(struct bpf_d *d)
2015 {
2016 /*
2017 * We don't need to lock out interrupts since this descriptor has
2018 * been detached from its interface and it yet hasn't been marked
2019 * free.
2020 */
2021 if (d->bd_sbuf != NULL) {
2022 kmem_free(d->bd_sbuf, d->bd_bufsize);
2023 if (d->bd_hbuf != NULL)
2024 kmem_free(d->bd_hbuf, d->bd_bufsize);
2025 if (d->bd_fbuf != NULL)
2026 kmem_free(d->bd_fbuf, d->bd_bufsize);
2027 }
2028 if (d->bd_filter != NULL) {
2029 bpf_free_filter(d->bd_filter);
2030 d->bd_filter = NULL;
2031 }
2032 d->bd_jitcode = NULL;
2033 }
2034
2035 /*
2036 * Attach an interface to bpf. dlt is the link layer type;
2037 * hdrlen is the fixed size of the link header for the specified dlt
2038 * (variable length headers not yet supported).
2039 */
2040 static void
2041 _bpfattach(struct ifnet *ifp, u_int dlt, u_int hdrlen, struct bpf_if **driverp)
2042 {
2043 struct bpf_if *bp;
2044 bp = kmem_alloc(sizeof(*bp), KM_NOSLEEP);
2045 if (bp == NULL)
2046 panic("bpfattach");
2047
2048 mutex_enter(&bpf_mtx);
2049 bp->bif_driverp = driverp;
2050 bp->bif_ifp = ifp;
2051 bp->bif_dlt = dlt;
2052 bp->bif_si = NULL;
2053 BPF_IFLIST_ENTRY_INIT(bp);
2054 PSLIST_INIT(&bp->bif_dlist_head);
2055 psref_target_init(&bp->bif_psref, bpf_psref_class);
2056
2057 BPF_IFLIST_WRITER_INSERT_HEAD(bp);
2058
2059 *bp->bif_driverp = NULL;
2060
2061 bp->bif_hdrlen = hdrlen;
2062 mutex_exit(&bpf_mtx);
2063 #if 0
2064 printf("bpf: %s attached\n", ifp->if_xname);
2065 #endif
2066 }
2067
2068 static void
2069 _bpf_mtap_softint_init(struct ifnet *ifp)
2070 {
2071 struct bpf_if *bp;
2072
2073 mutex_enter(&bpf_mtx);
2074 BPF_IFLIST_WRITER_FOREACH(bp) {
2075 if (bp->bif_ifp != ifp)
2076 continue;
2077
2078 bp->bif_mbuf_head = NULL;
2079 bp->bif_mbuf_tail = NULL;
2080 bp->bif_si = softint_establish(SOFTINT_NET, bpf_mtap_si, bp);
2081 if (bp->bif_si == NULL)
2082 panic("%s: softint_establish() failed", __func__);
2083 break;
2084 }
2085 mutex_exit(&bpf_mtx);
2086
2087 if (bp == NULL)
2088 panic("%s: no bpf_if found for %s", __func__, ifp->if_xname);
2089 }
2090
2091 /*
2092 * Remove an interface from bpf.
2093 */
2094 static void
2095 _bpfdetach(struct ifnet *ifp)
2096 {
2097 struct bpf_if *bp;
2098 struct bpf_d *d;
2099 int s;
2100
2101 mutex_enter(&bpf_mtx);
2102 /* Nuke the vnodes for any open instances */
2103 again_d:
2104 BPF_DLIST_WRITER_FOREACH(d) {
2105 mutex_enter(d->bd_mtx);
2106 if (d->bd_bif != NULL && d->bd_bif->bif_ifp == ifp) {
2107 /*
2108 * Detach the descriptor from an interface now.
2109 * It will be free'ed later by close routine.
2110 */
2111 d->bd_promisc = 0; /* we can't touch device. */
2112 bpf_detachd(d);
2113 mutex_exit(d->bd_mtx);
2114 goto again_d;
2115 }
2116 mutex_exit(d->bd_mtx);
2117 }
2118
2119 again:
2120 BPF_IFLIST_WRITER_FOREACH(bp) {
2121 if (bp->bif_ifp == ifp) {
2122 BPF_IFLIST_WRITER_REMOVE(bp);
2123
2124 pserialize_perform(bpf_psz);
2125 psref_target_destroy(&bp->bif_psref, bpf_psref_class);
2126
2127 BPF_IFLIST_ENTRY_DESTROY(bp);
2128 if (bp->bif_si != NULL) {
2129 /* XXX NOMPSAFE: assumed running on one CPU */
2130 s = splnet();
2131 while (bp->bif_mbuf_head != NULL) {
2132 struct mbuf *m = bp->bif_mbuf_head;
2133 bp->bif_mbuf_head = m->m_nextpkt;
2134 m_freem(m);
2135 }
2136 splx(s);
2137 softint_disestablish(bp->bif_si);
2138 }
2139 kmem_free(bp, sizeof(*bp));
2140 goto again;
2141 }
2142 }
2143 mutex_exit(&bpf_mtx);
2144 }
2145
2146 /*
2147 * Change the data link type of a interface.
2148 */
2149 static void
2150 _bpf_change_type(struct ifnet *ifp, u_int dlt, u_int hdrlen)
2151 {
2152 struct bpf_if *bp;
2153
2154 mutex_enter(&bpf_mtx);
2155 BPF_IFLIST_WRITER_FOREACH(bp) {
2156 if (bp->bif_driverp == &ifp->if_bpf)
2157 break;
2158 }
2159 if (bp == NULL)
2160 panic("bpf_change_type");
2161
2162 bp->bif_dlt = dlt;
2163
2164 bp->bif_hdrlen = hdrlen;
2165 mutex_exit(&bpf_mtx);
2166 }
2167
2168 /*
2169 * Get a list of available data link type of the interface.
2170 */
2171 static int
2172 bpf_getdltlist(struct bpf_d *d, struct bpf_dltlist *bfl)
2173 {
2174 int n, error;
2175 struct ifnet *ifp;
2176 struct bpf_if *bp;
2177 int s, bound;
2178
2179 KASSERT(mutex_owned(d->bd_mtx));
2180
2181 ifp = d->bd_bif->bif_ifp;
2182 n = 0;
2183 error = 0;
2184
2185 bound = curlwp_bind();
2186 s = pserialize_read_enter();
2187 BPF_IFLIST_READER_FOREACH(bp) {
2188 if (bp->bif_ifp != ifp)
2189 continue;
2190 if (bfl->bfl_list != NULL) {
2191 struct psref psref;
2192
2193 if (n >= bfl->bfl_len) {
2194 pserialize_read_exit(s);
2195 return ENOMEM;
2196 }
2197
2198 bpf_if_acquire(bp, &psref);
2199 pserialize_read_exit(s);
2200
2201 error = copyout(&bp->bif_dlt,
2202 bfl->bfl_list + n, sizeof(u_int));
2203
2204 s = pserialize_read_enter();
2205 bpf_if_release(bp, &psref);
2206 }
2207 n++;
2208 }
2209 pserialize_read_exit(s);
2210 curlwp_bindx(bound);
2211
2212 bfl->bfl_len = n;
2213 return error;
2214 }
2215
2216 /*
2217 * Set the data link type of a BPF instance.
2218 */
2219 static int
2220 bpf_setdlt(struct bpf_d *d, u_int dlt)
2221 {
2222 int error, opromisc;
2223 struct ifnet *ifp;
2224 struct bpf_if *bp;
2225
2226 KASSERT(mutex_owned(&bpf_mtx));
2227 KASSERT(mutex_owned(d->bd_mtx));
2228
2229 if (d->bd_bif->bif_dlt == dlt)
2230 return 0;
2231 ifp = d->bd_bif->bif_ifp;
2232 BPF_IFLIST_WRITER_FOREACH(bp) {
2233 if (bp->bif_ifp == ifp && bp->bif_dlt == dlt)
2234 break;
2235 }
2236 if (bp == NULL)
2237 return EINVAL;
2238 opromisc = d->bd_promisc;
2239 bpf_detachd(d);
2240 BPFIF_DLIST_ENTRY_INIT(d);
2241 bpf_attachd(d, bp);
2242 reset_d(d);
2243 if (opromisc) {
2244 KERNEL_LOCK_UNLESS_NET_MPSAFE();
2245 error = ifpromisc(bp->bif_ifp, 1);
2246 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
2247 if (error)
2248 printf("%s: bpf_setdlt: ifpromisc failed (%d)\n",
2249 bp->bif_ifp->if_xname, error);
2250 else
2251 d->bd_promisc = 1;
2252 }
2253 return 0;
2254 }
2255
2256 static int
2257 sysctl_net_bpf_maxbufsize(SYSCTLFN_ARGS)
2258 {
2259 int newsize, error;
2260 struct sysctlnode node;
2261
2262 node = *rnode;
2263 node.sysctl_data = &newsize;
2264 newsize = bpf_maxbufsize;
2265 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2266 if (error || newp == NULL)
2267 return (error);
2268
2269 if (newsize < BPF_MINBUFSIZE || newsize > BPF_MAXBUFSIZE)
2270 return (EINVAL);
2271
2272 bpf_maxbufsize = newsize;
2273
2274 return (0);
2275 }
2276
2277 #if defined(MODULAR) || defined(BPFJIT)
2278 static int
2279 sysctl_net_bpf_jit(SYSCTLFN_ARGS)
2280 {
2281 bool newval;
2282 int error;
2283 struct sysctlnode node;
2284
2285 node = *rnode;
2286 node.sysctl_data = &newval;
2287 newval = bpf_jit;
2288 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2289 if (error != 0 || newp == NULL)
2290 return error;
2291
2292 bpf_jit = newval;
2293
2294 /*
2295 * Do a full sync to publish new bpf_jit value and
2296 * update bpfjit_module_ops.bj_generate_code variable.
2297 */
2298 membar_sync();
2299
2300 if (newval && bpfjit_module_ops.bj_generate_code == NULL) {
2301 printf("JIT compilation is postponed "
2302 "until after bpfjit module is loaded\n");
2303 }
2304
2305 return 0;
2306 }
2307 #endif
2308
2309 static int
2310 sysctl_net_bpf_peers(SYSCTLFN_ARGS)
2311 {
2312 int error, elem_count;
2313 struct bpf_d *dp;
2314 struct bpf_d_ext dpe;
2315 size_t len, needed, elem_size, out_size;
2316 char *sp;
2317
2318 if (namelen == 1 && name[0] == CTL_QUERY)
2319 return (sysctl_query(SYSCTLFN_CALL(rnode)));
2320
2321 if (namelen != 2)
2322 return (EINVAL);
2323
2324 /* BPF peers is privileged information. */
2325 error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_INTERFACE,
2326 KAUTH_REQ_NETWORK_INTERFACE_GETPRIV, NULL, NULL, NULL);
2327 if (error)
2328 return (EPERM);
2329
2330 len = (oldp != NULL) ? *oldlenp : 0;
2331 sp = oldp;
2332 elem_size = name[0];
2333 elem_count = name[1];
2334 out_size = MIN(sizeof(dpe), elem_size);
2335 needed = 0;
2336
2337 if (elem_size < 1 || elem_count < 0)
2338 return (EINVAL);
2339
2340 mutex_enter(&bpf_mtx);
2341 BPF_DLIST_WRITER_FOREACH(dp) {
2342 if (len >= elem_size && elem_count > 0) {
2343 #define BPF_EXT(field) dpe.bde_ ## field = dp->bd_ ## field
2344 BPF_EXT(bufsize);
2345 BPF_EXT(promisc);
2346 BPF_EXT(state);
2347 BPF_EXT(immediate);
2348 BPF_EXT(hdrcmplt);
2349 BPF_EXT(seesent);
2350 BPF_EXT(pid);
2351 BPF_EXT(rcount);
2352 BPF_EXT(dcount);
2353 BPF_EXT(ccount);
2354 #undef BPF_EXT
2355 mutex_enter(dp->bd_mtx);
2356 if (dp->bd_bif)
2357 (void)strlcpy(dpe.bde_ifname,
2358 dp->bd_bif->bif_ifp->if_xname,
2359 IFNAMSIZ - 1);
2360 else
2361 dpe.bde_ifname[0] = '\0';
2362 mutex_exit(dp->bd_mtx);
2363
2364 error = copyout(&dpe, sp, out_size);
2365 if (error)
2366 break;
2367 sp += elem_size;
2368 len -= elem_size;
2369 }
2370 needed += elem_size;
2371 if (elem_count > 0 && elem_count != INT_MAX)
2372 elem_count--;
2373 }
2374 mutex_exit(&bpf_mtx);
2375
2376 *oldlenp = needed;
2377
2378 return (error);
2379 }
2380
2381 static void
2382 bpf_stats(void *p, void *arg, struct cpu_info *ci __unused)
2383 {
2384 struct bpf_stat *const stats = p;
2385 struct bpf_stat *sum = arg;
2386
2387 sum->bs_recv += stats->bs_recv;
2388 sum->bs_drop += stats->bs_drop;
2389 sum->bs_capt += stats->bs_capt;
2390 }
2391
2392 static int
2393 bpf_sysctl_gstats_handler(SYSCTLFN_ARGS)
2394 {
2395 struct sysctlnode node;
2396 int error;
2397 struct bpf_stat sum;
2398
2399 memset(&sum, 0, sizeof(sum));
2400 node = *rnode;
2401
2402 percpu_foreach(bpf_gstats_percpu, bpf_stats, &sum);
2403
2404 node.sysctl_data = ∑
2405 node.sysctl_size = sizeof(sum);
2406 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2407 if (error != 0 || newp == NULL)
2408 return error;
2409
2410 return 0;
2411 }
2412
2413 static struct sysctllog *bpf_sysctllog;
2414 static void
2415 sysctl_net_bpf_setup(void)
2416 {
2417 const struct sysctlnode *node;
2418
2419 node = NULL;
2420 sysctl_createv(&bpf_sysctllog, 0, NULL, &node,
2421 CTLFLAG_PERMANENT,
2422 CTLTYPE_NODE, "bpf",
2423 SYSCTL_DESCR("BPF options"),
2424 NULL, 0, NULL, 0,
2425 CTL_NET, CTL_CREATE, CTL_EOL);
2426 if (node != NULL) {
2427 #if defined(MODULAR) || defined(BPFJIT)
2428 sysctl_createv(&bpf_sysctllog, 0, NULL, NULL,
2429 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2430 CTLTYPE_BOOL, "jit",
2431 SYSCTL_DESCR("Toggle Just-In-Time compilation"),
2432 sysctl_net_bpf_jit, 0, &bpf_jit, 0,
2433 CTL_NET, node->sysctl_num, CTL_CREATE, CTL_EOL);
2434 #endif
2435 sysctl_createv(&bpf_sysctllog, 0, NULL, NULL,
2436 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2437 CTLTYPE_INT, "maxbufsize",
2438 SYSCTL_DESCR("Maximum size for data capture buffer"),
2439 sysctl_net_bpf_maxbufsize, 0, &bpf_maxbufsize, 0,
2440 CTL_NET, node->sysctl_num, CTL_CREATE, CTL_EOL);
2441 sysctl_createv(&bpf_sysctllog, 0, NULL, NULL,
2442 CTLFLAG_PERMANENT,
2443 CTLTYPE_STRUCT, "stats",
2444 SYSCTL_DESCR("BPF stats"),
2445 bpf_sysctl_gstats_handler, 0, NULL, 0,
2446 CTL_NET, node->sysctl_num, CTL_CREATE, CTL_EOL);
2447 sysctl_createv(&bpf_sysctllog, 0, NULL, NULL,
2448 CTLFLAG_PERMANENT,
2449 CTLTYPE_STRUCT, "peers",
2450 SYSCTL_DESCR("BPF peers"),
2451 sysctl_net_bpf_peers, 0, NULL, 0,
2452 CTL_NET, node->sysctl_num, CTL_CREATE, CTL_EOL);
2453 }
2454
2455 }
2456
2457 struct bpf_ops bpf_ops_kernel = {
2458 .bpf_attach = _bpfattach,
2459 .bpf_detach = _bpfdetach,
2460 .bpf_change_type = _bpf_change_type,
2461
2462 .bpf_tap = _bpf_tap,
2463 .bpf_mtap = _bpf_mtap,
2464 .bpf_mtap2 = _bpf_mtap2,
2465 .bpf_mtap_af = _bpf_mtap_af,
2466 .bpf_mtap_sl_in = _bpf_mtap_sl_in,
2467 .bpf_mtap_sl_out = _bpf_mtap_sl_out,
2468
2469 .bpf_mtap_softint = _bpf_mtap_softint,
2470 .bpf_mtap_softint_init = _bpf_mtap_softint_init,
2471 };
2472
2473 MODULE(MODULE_CLASS_DRIVER, bpf, "bpf_filter");
2474
2475 static int
2476 bpf_modcmd(modcmd_t cmd, void *arg)
2477 {
2478 #ifdef _MODULE
2479 devmajor_t bmajor, cmajor;
2480 #endif
2481 int error = 0;
2482
2483 switch (cmd) {
2484 case MODULE_CMD_INIT:
2485 bpf_init();
2486 #ifdef _MODULE
2487 bmajor = cmajor = NODEVMAJOR;
2488 error = devsw_attach("bpf", NULL, &bmajor,
2489 &bpf_cdevsw, &cmajor);
2490 if (error)
2491 break;
2492 #endif
2493
2494 bpf_ops_handover_enter(&bpf_ops_kernel);
2495 atomic_swap_ptr(&bpf_ops, &bpf_ops_kernel);
2496 bpf_ops_handover_exit();
2497 sysctl_net_bpf_setup();
2498 break;
2499
2500 case MODULE_CMD_FINI:
2501 /*
2502 * While there is no reference counting for bpf callers,
2503 * unload could at least in theory be done similarly to
2504 * system call disestablishment. This should even be
2505 * a little simpler:
2506 *
2507 * 1) replace op vector with stubs
2508 * 2) post update to all cpus with xc
2509 * 3) check that nobody is in bpf anymore
2510 * (it's doubtful we'd want something like l_sysent,
2511 * but we could do something like *signed* percpu
2512 * counters. if the sum is 0, we're good).
2513 * 4) if fail, unroll changes
2514 *
2515 * NOTE: change won't be atomic to the outside. some
2516 * packets may be not captured even if unload is
2517 * not succesful. I think packet capture not working
2518 * is a perfectly logical consequence of trying to
2519 * disable packet capture.
2520 */
2521 error = EOPNOTSUPP;
2522 /* insert sysctl teardown */
2523 break;
2524
2525 default:
2526 error = ENOTTY;
2527 break;
2528 }
2529
2530 return error;
2531 }
2532