bpf.c revision 1.222 1 /* $NetBSD: bpf.c,v 1.222 2017/12/15 07:29:11 ozaki-r Exp $ */
2
3 /*
4 * Copyright (c) 1990, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from the Stanford/CMU enet packet filter,
8 * (net/enet.c) distributed as part of 4.3BSD, and code contributed
9 * to Berkeley by Steven McCanne and Van Jacobson both of Lawrence
10 * Berkeley Laboratory.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)bpf.c 8.4 (Berkeley) 1/9/95
37 * static char rcsid[] =
38 * "Header: bpf.c,v 1.67 96/09/26 22:00:52 leres Exp ";
39 */
40
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: bpf.c,v 1.222 2017/12/15 07:29:11 ozaki-r Exp $");
43
44 #if defined(_KERNEL_OPT)
45 #include "opt_bpf.h"
46 #include "sl.h"
47 #include "strip.h"
48 #include "opt_net_mpsafe.h"
49 #endif
50
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/mbuf.h>
54 #include <sys/buf.h>
55 #include <sys/time.h>
56 #include <sys/proc.h>
57 #include <sys/ioctl.h>
58 #include <sys/conf.h>
59 #include <sys/vnode.h>
60 #include <sys/queue.h>
61 #include <sys/stat.h>
62 #include <sys/module.h>
63 #include <sys/atomic.h>
64 #include <sys/cpu.h>
65
66 #include <sys/file.h>
67 #include <sys/filedesc.h>
68 #include <sys/tty.h>
69 #include <sys/uio.h>
70
71 #include <sys/protosw.h>
72 #include <sys/socket.h>
73 #include <sys/errno.h>
74 #include <sys/kernel.h>
75 #include <sys/poll.h>
76 #include <sys/sysctl.h>
77 #include <sys/kauth.h>
78 #include <sys/syslog.h>
79 #include <sys/percpu.h>
80 #include <sys/pserialize.h>
81 #include <sys/lwp.h>
82
83 #include <net/if.h>
84 #include <net/slip.h>
85
86 #include <net/bpf.h>
87 #include <net/bpfdesc.h>
88 #include <net/bpfjit.h>
89
90 #include <net/if_arc.h>
91 #include <net/if_ether.h>
92
93 #include <netinet/in.h>
94 #include <netinet/if_inarp.h>
95
96
97 #include <compat/sys/sockio.h>
98
99 #ifndef BPF_BUFSIZE
100 /*
101 * 4096 is too small for FDDI frames. 8192 is too small for gigabit Ethernet
102 * jumbos (circa 9k), ATM, or Intel gig/10gig ethernet jumbos (16k).
103 */
104 # define BPF_BUFSIZE 32768
105 #endif
106
107 #define PRINET 26 /* interruptible */
108
109 /*
110 * The default read buffer size, and limit for BIOCSBLEN, is sysctl'able.
111 * XXX the default values should be computed dynamically based
112 * on available memory size and available mbuf clusters.
113 */
114 static int bpf_bufsize = BPF_BUFSIZE;
115 static int bpf_maxbufsize = BPF_DFLTBUFSIZE; /* XXX set dynamically, see above */
116 static bool bpf_jit = false;
117
118 struct bpfjit_ops bpfjit_module_ops = {
119 .bj_generate_code = NULL,
120 .bj_free_code = NULL
121 };
122
123 /*
124 * Global BPF statistics returned by net.bpf.stats sysctl.
125 */
126 static struct percpu *bpf_gstats_percpu; /* struct bpf_stat */
127
128 #define BPF_STATINC(id) \
129 { \
130 struct bpf_stat *__stats = \
131 percpu_getref(bpf_gstats_percpu); \
132 __stats->bs_##id++; \
133 percpu_putref(bpf_gstats_percpu); \
134 }
135
136 /*
137 * Locking notes:
138 * - bpf_mtx (adaptive mutex) protects:
139 * - Gobal lists: bpf_iflist and bpf_dlist
140 * - struct bpf_if
141 * - bpf_close
142 * - bpf_psz (pserialize)
143 * - struct bpf_d has two mutexes:
144 * - bd_buf_mtx (spin mutex) protects the buffers that can be accessed
145 * on packet tapping
146 * - bd_mtx (adaptive mutex) protects member variables other than the buffers
147 * - Locking order: bpf_mtx => bpf_d#bd_mtx => bpf_d#bd_buf_mtx
148 * - struct bpf_d obtained via fp->f_bpf in bpf_read and bpf_write is
149 * never freed because struct bpf_d is only freed in bpf_close and
150 * bpf_close never be called while executing bpf_read and bpf_write
151 * - A filter that is assigned to bpf_d can be replaced with another filter
152 * while tapping packets, so it needs to be done atomically
153 * - struct bpf_d is iterated on bpf_dlist with psz
154 * - struct bpf_if is iterated on bpf_iflist with psz or psref
155 */
156 /*
157 * Use a mutex to avoid a race condition between gathering the stats/peers
158 * and opening/closing the device.
159 */
160 static kmutex_t bpf_mtx;
161
162 static struct psref_class *bpf_psref_class __read_mostly;
163 static pserialize_t bpf_psz;
164
165 static inline void
166 bpf_if_acquire(struct bpf_if *bp, struct psref *psref)
167 {
168
169 psref_acquire(psref, &bp->bif_psref, bpf_psref_class);
170 }
171
172 static inline void
173 bpf_if_release(struct bpf_if *bp, struct psref *psref)
174 {
175
176 psref_release(psref, &bp->bif_psref, bpf_psref_class);
177 }
178
179 /*
180 * bpf_iflist is the list of interfaces; each corresponds to an ifnet
181 * bpf_dtab holds the descriptors, indexed by minor device #
182 */
183 static struct pslist_head bpf_iflist;
184 static struct pslist_head bpf_dlist;
185
186 /* Macros for bpf_d on bpf_dlist */
187 #define BPF_DLIST_WRITER_INSERT_HEAD(__d) \
188 PSLIST_WRITER_INSERT_HEAD(&bpf_dlist, (__d), bd_bpf_dlist_entry)
189 #define BPF_DLIST_READER_FOREACH(__d) \
190 PSLIST_READER_FOREACH((__d), &bpf_dlist, struct bpf_d, \
191 bd_bpf_dlist_entry)
192 #define BPF_DLIST_WRITER_FOREACH(__d) \
193 PSLIST_WRITER_FOREACH((__d), &bpf_dlist, struct bpf_d, \
194 bd_bpf_dlist_entry)
195 #define BPF_DLIST_ENTRY_INIT(__d) \
196 PSLIST_ENTRY_INIT((__d), bd_bpf_dlist_entry)
197 #define BPF_DLIST_WRITER_REMOVE(__d) \
198 PSLIST_WRITER_REMOVE((__d), bd_bpf_dlist_entry)
199 #define BPF_DLIST_ENTRY_DESTROY(__d) \
200 PSLIST_ENTRY_DESTROY((__d), bd_bpf_dlist_entry)
201
202 /* Macros for bpf_if on bpf_iflist */
203 #define BPF_IFLIST_WRITER_INSERT_HEAD(__bp) \
204 PSLIST_WRITER_INSERT_HEAD(&bpf_iflist, (__bp), bif_iflist_entry)
205 #define BPF_IFLIST_READER_FOREACH(__bp) \
206 PSLIST_READER_FOREACH((__bp), &bpf_iflist, struct bpf_if, \
207 bif_iflist_entry)
208 #define BPF_IFLIST_WRITER_FOREACH(__bp) \
209 PSLIST_WRITER_FOREACH((__bp), &bpf_iflist, struct bpf_if, \
210 bif_iflist_entry)
211 #define BPF_IFLIST_WRITER_REMOVE(__bp) \
212 PSLIST_WRITER_REMOVE((__bp), bif_iflist_entry)
213 #define BPF_IFLIST_ENTRY_INIT(__bp) \
214 PSLIST_ENTRY_INIT((__bp), bif_iflist_entry)
215 #define BPF_IFLIST_ENTRY_DESTROY(__bp) \
216 PSLIST_ENTRY_DESTROY((__bp), bif_iflist_entry)
217
218 /* Macros for bpf_d on bpf_if#bif_dlist_pslist */
219 #define BPFIF_DLIST_READER_FOREACH(__d, __bp) \
220 PSLIST_READER_FOREACH((__d), &(__bp)->bif_dlist_head, struct bpf_d, \
221 bd_bif_dlist_entry)
222 #define BPFIF_DLIST_WRITER_INSERT_HEAD(__bp, __d) \
223 PSLIST_WRITER_INSERT_HEAD(&(__bp)->bif_dlist_head, (__d), \
224 bd_bif_dlist_entry)
225 #define BPFIF_DLIST_WRITER_REMOVE(__d) \
226 PSLIST_WRITER_REMOVE((__d), bd_bif_dlist_entry)
227 #define BPFIF_DLIST_ENTRY_INIT(__d) \
228 PSLIST_ENTRY_INIT((__d), bd_bif_dlist_entry)
229 #define BPFIF_DLIST_READER_EMPTY(__bp) \
230 (PSLIST_READER_FIRST(&(__bp)->bif_dlist_head, struct bpf_d, \
231 bd_bif_dlist_entry) == NULL)
232 #define BPFIF_DLIST_WRITER_EMPTY(__bp) \
233 (PSLIST_WRITER_FIRST(&(__bp)->bif_dlist_head, struct bpf_d, \
234 bd_bif_dlist_entry) == NULL)
235 #define BPFIF_DLIST_ENTRY_DESTROY(__d) \
236 PSLIST_ENTRY_DESTROY((__d), bd_bif_dlist_entry)
237
238 static int bpf_allocbufs(struct bpf_d *);
239 static void bpf_deliver(struct bpf_if *,
240 void *(*cpfn)(void *, const void *, size_t),
241 void *, u_int, u_int, const bool);
242 static void bpf_freed(struct bpf_d *);
243 static void bpf_free_filter(struct bpf_filter *);
244 static void bpf_ifname(struct ifnet *, struct ifreq *);
245 static void *bpf_mcpy(void *, const void *, size_t);
246 static int bpf_movein(struct uio *, int, uint64_t,
247 struct mbuf **, struct sockaddr *);
248 static void bpf_attachd(struct bpf_d *, struct bpf_if *);
249 static void bpf_detachd(struct bpf_d *);
250 static int bpf_setif(struct bpf_d *, struct ifreq *);
251 static int bpf_setf(struct bpf_d *, struct bpf_program *);
252 static void bpf_timed_out(void *);
253 static inline void
254 bpf_wakeup(struct bpf_d *);
255 static int bpf_hdrlen(struct bpf_d *);
256 static void catchpacket(struct bpf_d *, u_char *, u_int, u_int,
257 void *(*)(void *, const void *, size_t), struct timespec *);
258 static void reset_d(struct bpf_d *);
259 static int bpf_getdltlist(struct bpf_d *, struct bpf_dltlist *);
260 static int bpf_setdlt(struct bpf_d *, u_int);
261
262 static int bpf_read(struct file *, off_t *, struct uio *, kauth_cred_t,
263 int);
264 static int bpf_write(struct file *, off_t *, struct uio *, kauth_cred_t,
265 int);
266 static int bpf_ioctl(struct file *, u_long, void *);
267 static int bpf_poll(struct file *, int);
268 static int bpf_stat(struct file *, struct stat *);
269 static int bpf_close(struct file *);
270 static int bpf_kqfilter(struct file *, struct knote *);
271 static void bpf_softintr(void *);
272
273 static const struct fileops bpf_fileops = {
274 .fo_name = "bpf",
275 .fo_read = bpf_read,
276 .fo_write = bpf_write,
277 .fo_ioctl = bpf_ioctl,
278 .fo_fcntl = fnullop_fcntl,
279 .fo_poll = bpf_poll,
280 .fo_stat = bpf_stat,
281 .fo_close = bpf_close,
282 .fo_kqfilter = bpf_kqfilter,
283 .fo_restart = fnullop_restart,
284 };
285
286 dev_type_open(bpfopen);
287
288 const struct cdevsw bpf_cdevsw = {
289 .d_open = bpfopen,
290 .d_close = noclose,
291 .d_read = noread,
292 .d_write = nowrite,
293 .d_ioctl = noioctl,
294 .d_stop = nostop,
295 .d_tty = notty,
296 .d_poll = nopoll,
297 .d_mmap = nommap,
298 .d_kqfilter = nokqfilter,
299 .d_discard = nodiscard,
300 .d_flag = D_OTHER | D_MPSAFE
301 };
302
303 bpfjit_func_t
304 bpf_jit_generate(bpf_ctx_t *bc, void *code, size_t size)
305 {
306
307 membar_consumer();
308 if (bpfjit_module_ops.bj_generate_code != NULL) {
309 return bpfjit_module_ops.bj_generate_code(bc, code, size);
310 }
311 return NULL;
312 }
313
314 void
315 bpf_jit_freecode(bpfjit_func_t jcode)
316 {
317 KASSERT(bpfjit_module_ops.bj_free_code != NULL);
318 bpfjit_module_ops.bj_free_code(jcode);
319 }
320
321 static int
322 bpf_movein(struct uio *uio, int linktype, uint64_t mtu, struct mbuf **mp,
323 struct sockaddr *sockp)
324 {
325 struct mbuf *m;
326 int error;
327 size_t len;
328 size_t hlen;
329 size_t align;
330
331 /*
332 * Build a sockaddr based on the data link layer type.
333 * We do this at this level because the ethernet header
334 * is copied directly into the data field of the sockaddr.
335 * In the case of SLIP, there is no header and the packet
336 * is forwarded as is.
337 * Also, we are careful to leave room at the front of the mbuf
338 * for the link level header.
339 */
340 switch (linktype) {
341
342 case DLT_SLIP:
343 sockp->sa_family = AF_INET;
344 hlen = 0;
345 align = 0;
346 break;
347
348 case DLT_PPP:
349 sockp->sa_family = AF_UNSPEC;
350 hlen = 0;
351 align = 0;
352 break;
353
354 case DLT_EN10MB:
355 sockp->sa_family = AF_UNSPEC;
356 /* XXX Would MAXLINKHDR be better? */
357 /* 6(dst)+6(src)+2(type) */
358 hlen = sizeof(struct ether_header);
359 align = 2;
360 break;
361
362 case DLT_ARCNET:
363 sockp->sa_family = AF_UNSPEC;
364 hlen = ARC_HDRLEN;
365 align = 5;
366 break;
367
368 case DLT_FDDI:
369 sockp->sa_family = AF_LINK;
370 /* XXX 4(FORMAC)+6(dst)+6(src) */
371 hlen = 16;
372 align = 0;
373 break;
374
375 case DLT_ECONET:
376 sockp->sa_family = AF_UNSPEC;
377 hlen = 6;
378 align = 2;
379 break;
380
381 case DLT_NULL:
382 sockp->sa_family = AF_UNSPEC;
383 hlen = 0;
384 align = 0;
385 break;
386
387 default:
388 return (EIO);
389 }
390
391 len = uio->uio_resid;
392 /*
393 * If there aren't enough bytes for a link level header or the
394 * packet length exceeds the interface mtu, return an error.
395 */
396 if (len - hlen > mtu)
397 return (EMSGSIZE);
398
399 /*
400 * XXX Avoid complicated buffer chaining ---
401 * bail if it won't fit in a single mbuf.
402 * (Take into account possible alignment bytes)
403 */
404 if (len + align > MCLBYTES)
405 return (EIO);
406
407 m = m_gethdr(M_WAIT, MT_DATA);
408 m_reset_rcvif(m);
409 m->m_pkthdr.len = (int)(len - hlen);
410 if (len + align > MHLEN) {
411 m_clget(m, M_WAIT);
412 if ((m->m_flags & M_EXT) == 0) {
413 error = ENOBUFS;
414 goto bad;
415 }
416 }
417
418 /* Insure the data is properly aligned */
419 if (align > 0) {
420 m->m_data += align;
421 m->m_len -= (int)align;
422 }
423
424 error = uiomove(mtod(m, void *), len, uio);
425 if (error)
426 goto bad;
427 if (hlen != 0) {
428 memcpy(sockp->sa_data, mtod(m, void *), hlen);
429 m->m_data += hlen; /* XXX */
430 len -= hlen;
431 }
432 m->m_len = (int)len;
433 *mp = m;
434 return (0);
435
436 bad:
437 m_freem(m);
438 return (error);
439 }
440
441 /*
442 * Attach file to the bpf interface, i.e. make d listen on bp.
443 */
444 static void
445 bpf_attachd(struct bpf_d *d, struct bpf_if *bp)
446 {
447
448 KASSERT(mutex_owned(&bpf_mtx));
449 KASSERT(mutex_owned(d->bd_mtx));
450 /*
451 * Point d at bp, and add d to the interface's list of listeners.
452 * Finally, point the driver's bpf cookie at the interface so
453 * it will divert packets to bpf.
454 */
455 d->bd_bif = bp;
456 BPFIF_DLIST_WRITER_INSERT_HEAD(bp, d);
457
458 *bp->bif_driverp = bp;
459 }
460
461 /*
462 * Detach a file from its interface.
463 */
464 static void
465 bpf_detachd(struct bpf_d *d)
466 {
467 struct bpf_if *bp;
468
469 KASSERT(mutex_owned(&bpf_mtx));
470 KASSERT(mutex_owned(d->bd_mtx));
471
472 bp = d->bd_bif;
473 /*
474 * Check if this descriptor had requested promiscuous mode.
475 * If so, turn it off.
476 */
477 if (d->bd_promisc) {
478 int error __diagused;
479
480 d->bd_promisc = 0;
481 /*
482 * Take device out of promiscuous mode. Since we were
483 * able to enter promiscuous mode, we should be able
484 * to turn it off. But we can get an error if
485 * the interface was configured down, so only panic
486 * if we don't get an unexpected error.
487 */
488 KERNEL_LOCK_UNLESS_NET_MPSAFE();
489 error = ifpromisc(bp->bif_ifp, 0);
490 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
491 #ifdef DIAGNOSTIC
492 if (error)
493 printf("%s: ifpromisc failed: %d", __func__, error);
494 #endif
495 }
496
497 /* Remove d from the interface's descriptor list. */
498 BPFIF_DLIST_WRITER_REMOVE(d);
499
500 pserialize_perform(bpf_psz);
501
502 if (BPFIF_DLIST_WRITER_EMPTY(bp)) {
503 /*
504 * Let the driver know that there are no more listeners.
505 */
506 *d->bd_bif->bif_driverp = NULL;
507 }
508 d->bd_bif = NULL;
509 }
510
511 static void
512 bpf_init(void)
513 {
514
515 mutex_init(&bpf_mtx, MUTEX_DEFAULT, IPL_NONE);
516 bpf_psz = pserialize_create();
517 bpf_psref_class = psref_class_create("bpf", IPL_SOFTNET);
518
519 PSLIST_INIT(&bpf_iflist);
520 PSLIST_INIT(&bpf_dlist);
521
522 bpf_gstats_percpu = percpu_alloc(sizeof(struct bpf_stat));
523
524 return;
525 }
526
527 /*
528 * bpfilterattach() is called at boot time. We don't need to do anything
529 * here, since any initialization will happen as part of module init code.
530 */
531 /* ARGSUSED */
532 void
533 bpfilterattach(int n)
534 {
535
536 }
537
538 /*
539 * Open ethernet device. Clones.
540 */
541 /* ARGSUSED */
542 int
543 bpfopen(dev_t dev, int flag, int mode, struct lwp *l)
544 {
545 struct bpf_d *d;
546 struct file *fp;
547 int error, fd;
548
549 /* falloc() will fill in the descriptor for us. */
550 if ((error = fd_allocfile(&fp, &fd)) != 0)
551 return error;
552
553 d = kmem_zalloc(sizeof(*d), KM_SLEEP);
554 d->bd_bufsize = bpf_bufsize;
555 d->bd_seesent = 1;
556 d->bd_feedback = 0;
557 d->bd_pid = l->l_proc->p_pid;
558 #ifdef _LP64
559 if (curproc->p_flag & PK_32)
560 d->bd_compat32 = 1;
561 #endif
562 getnanotime(&d->bd_btime);
563 d->bd_atime = d->bd_mtime = d->bd_btime;
564 callout_init(&d->bd_callout, CALLOUT_MPSAFE);
565 selinit(&d->bd_sel);
566 d->bd_sih = softint_establish(SOFTINT_CLOCK|SOFTINT_MPSAFE,
567 bpf_softintr, d);
568 d->bd_jitcode = NULL;
569 d->bd_filter = NULL;
570 BPF_DLIST_ENTRY_INIT(d);
571 BPFIF_DLIST_ENTRY_INIT(d);
572 d->bd_mtx = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
573 d->bd_buf_mtx = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);
574 cv_init(&d->bd_cv, "bpf");
575
576 mutex_enter(&bpf_mtx);
577 BPF_DLIST_WRITER_INSERT_HEAD(d);
578 mutex_exit(&bpf_mtx);
579
580 return fd_clone(fp, fd, flag, &bpf_fileops, d);
581 }
582
583 /*
584 * Close the descriptor by detaching it from its interface,
585 * deallocating its buffers, and marking it free.
586 */
587 /* ARGSUSED */
588 static int
589 bpf_close(struct file *fp)
590 {
591 struct bpf_d *d;
592
593 mutex_enter(&bpf_mtx);
594
595 if ((d = fp->f_bpf) == NULL) {
596 mutex_exit(&bpf_mtx);
597 return 0;
598 }
599
600 /*
601 * Refresh the PID associated with this bpf file.
602 */
603 d->bd_pid = curproc->p_pid;
604
605 mutex_enter(d->bd_mtx);
606 if (d->bd_state == BPF_WAITING)
607 callout_halt(&d->bd_callout, d->bd_mtx);
608 d->bd_state = BPF_IDLE;
609 if (d->bd_bif)
610 bpf_detachd(d);
611 mutex_exit(d->bd_mtx);
612
613 BPF_DLIST_WRITER_REMOVE(d);
614
615 pserialize_perform(bpf_psz);
616 mutex_exit(&bpf_mtx);
617
618 BPFIF_DLIST_ENTRY_DESTROY(d);
619 BPF_DLIST_ENTRY_DESTROY(d);
620 fp->f_bpf = NULL;
621 bpf_freed(d);
622 callout_destroy(&d->bd_callout);
623 seldestroy(&d->bd_sel);
624 softint_disestablish(d->bd_sih);
625 mutex_obj_free(d->bd_mtx);
626 mutex_obj_free(d->bd_buf_mtx);
627 cv_destroy(&d->bd_cv);
628
629 kmem_free(d, sizeof(*d));
630
631 return (0);
632 }
633
634 /*
635 * Rotate the packet buffers in descriptor d. Move the store buffer
636 * into the hold slot, and the free buffer into the store slot.
637 * Zero the length of the new store buffer.
638 */
639 #define ROTATE_BUFFERS(d) \
640 (d)->bd_hbuf = (d)->bd_sbuf; \
641 (d)->bd_hlen = (d)->bd_slen; \
642 (d)->bd_sbuf = (d)->bd_fbuf; \
643 (d)->bd_slen = 0; \
644 (d)->bd_fbuf = NULL;
645 /*
646 * bpfread - read next chunk of packets from buffers
647 */
648 static int
649 bpf_read(struct file *fp, off_t *offp, struct uio *uio,
650 kauth_cred_t cred, int flags)
651 {
652 struct bpf_d *d = fp->f_bpf;
653 int timed_out;
654 int error;
655
656 getnanotime(&d->bd_atime);
657 /*
658 * Restrict application to use a buffer the same size as
659 * the kernel buffers.
660 */
661 if (uio->uio_resid != d->bd_bufsize)
662 return (EINVAL);
663
664 mutex_enter(d->bd_mtx);
665 if (d->bd_state == BPF_WAITING)
666 callout_halt(&d->bd_callout, d->bd_mtx);
667 timed_out = (d->bd_state == BPF_TIMED_OUT);
668 d->bd_state = BPF_IDLE;
669 mutex_exit(d->bd_mtx);
670 /*
671 * If the hold buffer is empty, then do a timed sleep, which
672 * ends when the timeout expires or when enough packets
673 * have arrived to fill the store buffer.
674 */
675 mutex_enter(d->bd_buf_mtx);
676 while (d->bd_hbuf == NULL) {
677 if (fp->f_flag & FNONBLOCK) {
678 if (d->bd_slen == 0) {
679 error = EWOULDBLOCK;
680 goto out;
681 }
682 ROTATE_BUFFERS(d);
683 break;
684 }
685
686 if ((d->bd_immediate || timed_out) && d->bd_slen != 0) {
687 /*
688 * A packet(s) either arrived since the previous
689 * read or arrived while we were asleep.
690 * Rotate the buffers and return what's here.
691 */
692 ROTATE_BUFFERS(d);
693 break;
694 }
695
696 error = cv_timedwait_sig(&d->bd_cv, d->bd_buf_mtx, d->bd_rtout);
697
698 if (error == EINTR || error == ERESTART)
699 goto out;
700
701 if (error == EWOULDBLOCK) {
702 /*
703 * On a timeout, return what's in the buffer,
704 * which may be nothing. If there is something
705 * in the store buffer, we can rotate the buffers.
706 */
707 if (d->bd_hbuf)
708 /*
709 * We filled up the buffer in between
710 * getting the timeout and arriving
711 * here, so we don't need to rotate.
712 */
713 break;
714
715 if (d->bd_slen == 0) {
716 error = 0;
717 goto out;
718 }
719 ROTATE_BUFFERS(d);
720 break;
721 }
722 if (error != 0)
723 goto out;
724 }
725 /*
726 * At this point, we know we have something in the hold slot.
727 */
728 mutex_exit(d->bd_buf_mtx);
729
730 /*
731 * Move data from hold buffer into user space.
732 * We know the entire buffer is transferred since
733 * we checked above that the read buffer is bpf_bufsize bytes.
734 */
735 error = uiomove(d->bd_hbuf, d->bd_hlen, uio);
736
737 mutex_enter(d->bd_buf_mtx);
738 d->bd_fbuf = d->bd_hbuf;
739 d->bd_hbuf = NULL;
740 d->bd_hlen = 0;
741 out:
742 mutex_exit(d->bd_buf_mtx);
743 return (error);
744 }
745
746
747 /*
748 * If there are processes sleeping on this descriptor, wake them up.
749 */
750 static inline void
751 bpf_wakeup(struct bpf_d *d)
752 {
753
754 mutex_enter(d->bd_buf_mtx);
755 cv_broadcast(&d->bd_cv);
756 mutex_exit(d->bd_buf_mtx);
757
758 if (d->bd_async)
759 softint_schedule(d->bd_sih);
760 selnotify(&d->bd_sel, 0, 0);
761 }
762
763 static void
764 bpf_softintr(void *cookie)
765 {
766 struct bpf_d *d;
767
768 d = cookie;
769 mutex_enter(d->bd_mtx);
770 if (d->bd_async)
771 fownsignal(d->bd_pgid, SIGIO, 0, 0, NULL);
772 mutex_exit(d->bd_mtx);
773 }
774
775 static void
776 bpf_timed_out(void *arg)
777 {
778 struct bpf_d *d = arg;
779
780 mutex_enter(d->bd_mtx);
781 if (d->bd_state == BPF_WAITING) {
782 d->bd_state = BPF_TIMED_OUT;
783 if (d->bd_slen != 0)
784 bpf_wakeup(d);
785 }
786 mutex_exit(d->bd_mtx);
787 }
788
789
790 static int
791 bpf_write(struct file *fp, off_t *offp, struct uio *uio,
792 kauth_cred_t cred, int flags)
793 {
794 struct bpf_d *d = fp->f_bpf;
795 struct bpf_if *bp;
796 struct ifnet *ifp;
797 struct mbuf *m, *mc;
798 int error;
799 static struct sockaddr_storage dst;
800 struct psref psref;
801 int bound;
802
803 m = NULL; /* XXX gcc */
804
805 bound = curlwp_bind();
806 mutex_enter(d->bd_mtx);
807 bp = d->bd_bif;
808 if (bp == NULL) {
809 mutex_exit(d->bd_mtx);
810 error = ENXIO;
811 goto out_bindx;
812 }
813 bpf_if_acquire(bp, &psref);
814 mutex_exit(d->bd_mtx);
815
816 getnanotime(&d->bd_mtime);
817
818 ifp = bp->bif_ifp;
819 if (if_is_deactivated(ifp)) {
820 error = ENXIO;
821 goto out;
822 }
823
824 if (uio->uio_resid == 0) {
825 error = 0;
826 goto out;
827 }
828
829 error = bpf_movein(uio, (int)bp->bif_dlt, ifp->if_mtu, &m,
830 (struct sockaddr *) &dst);
831 if (error)
832 goto out;
833
834 if (m->m_pkthdr.len > ifp->if_mtu) {
835 m_freem(m);
836 error = EMSGSIZE;
837 goto out;
838 }
839
840 if (d->bd_hdrcmplt)
841 dst.ss_family = pseudo_AF_HDRCMPLT;
842
843 if (d->bd_feedback) {
844 mc = m_dup(m, 0, M_COPYALL, M_NOWAIT);
845 if (mc != NULL)
846 m_set_rcvif(mc, ifp);
847 /* Set M_PROMISC for outgoing packets to be discarded. */
848 if (1 /*d->bd_direction == BPF_D_INOUT*/)
849 m->m_flags |= M_PROMISC;
850 } else
851 mc = NULL;
852
853 error = if_output_lock(ifp, ifp, m, (struct sockaddr *) &dst, NULL);
854
855 if (mc != NULL) {
856 if (error == 0)
857 ifp->_if_input(ifp, mc);
858 else
859 m_freem(mc);
860 }
861 /*
862 * The driver frees the mbuf.
863 */
864 out:
865 bpf_if_release(bp, &psref);
866 out_bindx:
867 curlwp_bindx(bound);
868 return error;
869 }
870
871 /*
872 * Reset a descriptor by flushing its packet buffer and clearing the
873 * receive and drop counts.
874 */
875 static void
876 reset_d(struct bpf_d *d)
877 {
878
879 KASSERT(mutex_owned(d->bd_mtx));
880
881 mutex_enter(d->bd_buf_mtx);
882 if (d->bd_hbuf) {
883 /* Free the hold buffer. */
884 d->bd_fbuf = d->bd_hbuf;
885 d->bd_hbuf = NULL;
886 }
887 d->bd_slen = 0;
888 d->bd_hlen = 0;
889 d->bd_rcount = 0;
890 d->bd_dcount = 0;
891 d->bd_ccount = 0;
892 mutex_exit(d->bd_buf_mtx);
893 }
894
895 /*
896 * FIONREAD Check for read packet available.
897 * BIOCGBLEN Get buffer len [for read()].
898 * BIOCSETF Set ethernet read filter.
899 * BIOCFLUSH Flush read packet buffer.
900 * BIOCPROMISC Put interface into promiscuous mode.
901 * BIOCGDLT Get link layer type.
902 * BIOCGETIF Get interface name.
903 * BIOCSETIF Set interface.
904 * BIOCSRTIMEOUT Set read timeout.
905 * BIOCGRTIMEOUT Get read timeout.
906 * BIOCGSTATS Get packet stats.
907 * BIOCIMMEDIATE Set immediate mode.
908 * BIOCVERSION Get filter language version.
909 * BIOCGHDRCMPLT Get "header already complete" flag.
910 * BIOCSHDRCMPLT Set "header already complete" flag.
911 * BIOCSFEEDBACK Set packet feedback mode.
912 * BIOCGFEEDBACK Get packet feedback mode.
913 * BIOCGSEESENT Get "see sent packets" mode.
914 * BIOCSSEESENT Set "see sent packets" mode.
915 */
916 /* ARGSUSED */
917 static int
918 bpf_ioctl(struct file *fp, u_long cmd, void *addr)
919 {
920 struct bpf_d *d = fp->f_bpf;
921 int error = 0;
922
923 /*
924 * Refresh the PID associated with this bpf file.
925 */
926 d->bd_pid = curproc->p_pid;
927 #ifdef _LP64
928 if (curproc->p_flag & PK_32)
929 d->bd_compat32 = 1;
930 else
931 d->bd_compat32 = 0;
932 #endif
933
934 mutex_enter(d->bd_mtx);
935 if (d->bd_state == BPF_WAITING)
936 callout_halt(&d->bd_callout, d->bd_mtx);
937 d->bd_state = BPF_IDLE;
938 mutex_exit(d->bd_mtx);
939
940 switch (cmd) {
941
942 default:
943 error = EINVAL;
944 break;
945
946 /*
947 * Check for read packet available.
948 */
949 case FIONREAD:
950 {
951 int n;
952
953 mutex_enter(d->bd_buf_mtx);
954 n = d->bd_slen;
955 if (d->bd_hbuf)
956 n += d->bd_hlen;
957 mutex_exit(d->bd_buf_mtx);
958
959 *(int *)addr = n;
960 break;
961 }
962
963 /*
964 * Get buffer len [for read()].
965 */
966 case BIOCGBLEN:
967 *(u_int *)addr = d->bd_bufsize;
968 break;
969
970 /*
971 * Set buffer length.
972 */
973 case BIOCSBLEN:
974 /*
975 * Forbid to change the buffer length if buffers are already
976 * allocated.
977 */
978 mutex_enter(d->bd_mtx);
979 mutex_enter(d->bd_buf_mtx);
980 if (d->bd_bif != NULL || d->bd_sbuf != NULL)
981 error = EINVAL;
982 else {
983 u_int size = *(u_int *)addr;
984
985 if (size > bpf_maxbufsize)
986 *(u_int *)addr = size = bpf_maxbufsize;
987 else if (size < BPF_MINBUFSIZE)
988 *(u_int *)addr = size = BPF_MINBUFSIZE;
989 d->bd_bufsize = size;
990 }
991 mutex_exit(d->bd_buf_mtx);
992 mutex_exit(d->bd_mtx);
993 break;
994
995 /*
996 * Set link layer read filter.
997 */
998 case BIOCSETF:
999 error = bpf_setf(d, addr);
1000 break;
1001
1002 /*
1003 * Flush read packet buffer.
1004 */
1005 case BIOCFLUSH:
1006 mutex_enter(d->bd_mtx);
1007 reset_d(d);
1008 mutex_exit(d->bd_mtx);
1009 break;
1010
1011 /*
1012 * Put interface into promiscuous mode.
1013 */
1014 case BIOCPROMISC:
1015 mutex_enter(d->bd_mtx);
1016 if (d->bd_bif == NULL) {
1017 mutex_exit(d->bd_mtx);
1018 /*
1019 * No interface attached yet.
1020 */
1021 error = EINVAL;
1022 break;
1023 }
1024 if (d->bd_promisc == 0) {
1025 KERNEL_LOCK_UNLESS_NET_MPSAFE();
1026 error = ifpromisc(d->bd_bif->bif_ifp, 1);
1027 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
1028 if (error == 0)
1029 d->bd_promisc = 1;
1030 }
1031 mutex_exit(d->bd_mtx);
1032 break;
1033
1034 /*
1035 * Get device parameters.
1036 */
1037 case BIOCGDLT:
1038 mutex_enter(d->bd_mtx);
1039 if (d->bd_bif == NULL)
1040 error = EINVAL;
1041 else
1042 *(u_int *)addr = d->bd_bif->bif_dlt;
1043 mutex_exit(d->bd_mtx);
1044 break;
1045
1046 /*
1047 * Get a list of supported device parameters.
1048 */
1049 case BIOCGDLTLIST:
1050 mutex_enter(d->bd_mtx);
1051 if (d->bd_bif == NULL)
1052 error = EINVAL;
1053 else
1054 error = bpf_getdltlist(d, addr);
1055 mutex_exit(d->bd_mtx);
1056 break;
1057
1058 /*
1059 * Set device parameters.
1060 */
1061 case BIOCSDLT:
1062 mutex_enter(&bpf_mtx);
1063 mutex_enter(d->bd_mtx);
1064 if (d->bd_bif == NULL)
1065 error = EINVAL;
1066 else
1067 error = bpf_setdlt(d, *(u_int *)addr);
1068 mutex_exit(d->bd_mtx);
1069 mutex_exit(&bpf_mtx);
1070 break;
1071
1072 /*
1073 * Set interface name.
1074 */
1075 #ifdef OBIOCGETIF
1076 case OBIOCGETIF:
1077 #endif
1078 case BIOCGETIF:
1079 mutex_enter(d->bd_mtx);
1080 if (d->bd_bif == NULL)
1081 error = EINVAL;
1082 else
1083 bpf_ifname(d->bd_bif->bif_ifp, addr);
1084 mutex_exit(d->bd_mtx);
1085 break;
1086
1087 /*
1088 * Set interface.
1089 */
1090 #ifdef OBIOCSETIF
1091 case OBIOCSETIF:
1092 #endif
1093 case BIOCSETIF:
1094 mutex_enter(&bpf_mtx);
1095 error = bpf_setif(d, addr);
1096 mutex_exit(&bpf_mtx);
1097 break;
1098
1099 /*
1100 * Set read timeout.
1101 */
1102 case BIOCSRTIMEOUT:
1103 {
1104 struct timeval *tv = addr;
1105
1106 /* Compute number of ticks. */
1107 d->bd_rtout = tv->tv_sec * hz + tv->tv_usec / tick;
1108 if ((d->bd_rtout == 0) && (tv->tv_usec != 0))
1109 d->bd_rtout = 1;
1110 break;
1111 }
1112
1113 #ifdef BIOCGORTIMEOUT
1114 /*
1115 * Get read timeout.
1116 */
1117 case BIOCGORTIMEOUT:
1118 {
1119 struct timeval50 *tv = addr;
1120
1121 tv->tv_sec = d->bd_rtout / hz;
1122 tv->tv_usec = (d->bd_rtout % hz) * tick;
1123 break;
1124 }
1125 #endif
1126
1127 #ifdef BIOCSORTIMEOUT
1128 /*
1129 * Set read timeout.
1130 */
1131 case BIOCSORTIMEOUT:
1132 {
1133 struct timeval50 *tv = addr;
1134
1135 /* Compute number of ticks. */
1136 d->bd_rtout = tv->tv_sec * hz + tv->tv_usec / tick;
1137 if ((d->bd_rtout == 0) && (tv->tv_usec != 0))
1138 d->bd_rtout = 1;
1139 break;
1140 }
1141 #endif
1142
1143 /*
1144 * Get read timeout.
1145 */
1146 case BIOCGRTIMEOUT:
1147 {
1148 struct timeval *tv = addr;
1149
1150 tv->tv_sec = d->bd_rtout / hz;
1151 tv->tv_usec = (d->bd_rtout % hz) * tick;
1152 break;
1153 }
1154 /*
1155 * Get packet stats.
1156 */
1157 case BIOCGSTATS:
1158 {
1159 struct bpf_stat *bs = addr;
1160
1161 bs->bs_recv = d->bd_rcount;
1162 bs->bs_drop = d->bd_dcount;
1163 bs->bs_capt = d->bd_ccount;
1164 break;
1165 }
1166
1167 case BIOCGSTATSOLD:
1168 {
1169 struct bpf_stat_old *bs = addr;
1170
1171 bs->bs_recv = d->bd_rcount;
1172 bs->bs_drop = d->bd_dcount;
1173 break;
1174 }
1175
1176 /*
1177 * Set immediate mode.
1178 */
1179 case BIOCIMMEDIATE:
1180 d->bd_immediate = *(u_int *)addr;
1181 break;
1182
1183 case BIOCVERSION:
1184 {
1185 struct bpf_version *bv = addr;
1186
1187 bv->bv_major = BPF_MAJOR_VERSION;
1188 bv->bv_minor = BPF_MINOR_VERSION;
1189 break;
1190 }
1191
1192 case BIOCGHDRCMPLT: /* get "header already complete" flag */
1193 *(u_int *)addr = d->bd_hdrcmplt;
1194 break;
1195
1196 case BIOCSHDRCMPLT: /* set "header already complete" flag */
1197 d->bd_hdrcmplt = *(u_int *)addr ? 1 : 0;
1198 break;
1199
1200 /*
1201 * Get "see sent packets" flag
1202 */
1203 case BIOCGSEESENT:
1204 *(u_int *)addr = d->bd_seesent;
1205 break;
1206
1207 /*
1208 * Set "see sent" packets flag
1209 */
1210 case BIOCSSEESENT:
1211 d->bd_seesent = *(u_int *)addr;
1212 break;
1213
1214 /*
1215 * Set "feed packets from bpf back to input" mode
1216 */
1217 case BIOCSFEEDBACK:
1218 d->bd_feedback = *(u_int *)addr;
1219 break;
1220
1221 /*
1222 * Get "feed packets from bpf back to input" mode
1223 */
1224 case BIOCGFEEDBACK:
1225 *(u_int *)addr = d->bd_feedback;
1226 break;
1227
1228 case FIONBIO: /* Non-blocking I/O */
1229 /*
1230 * No need to do anything special as we use IO_NDELAY in
1231 * bpfread() as an indication of whether or not to block
1232 * the read.
1233 */
1234 break;
1235
1236 case FIOASYNC: /* Send signal on receive packets */
1237 mutex_enter(d->bd_mtx);
1238 d->bd_async = *(int *)addr;
1239 mutex_exit(d->bd_mtx);
1240 break;
1241
1242 case TIOCSPGRP: /* Process or group to send signals to */
1243 case FIOSETOWN:
1244 error = fsetown(&d->bd_pgid, cmd, addr);
1245 break;
1246
1247 case TIOCGPGRP:
1248 case FIOGETOWN:
1249 error = fgetown(d->bd_pgid, cmd, addr);
1250 break;
1251 }
1252 return (error);
1253 }
1254
1255 /*
1256 * Set d's packet filter program to fp. If this file already has a filter,
1257 * free it and replace it. Returns EINVAL for bogus requests.
1258 */
1259 static int
1260 bpf_setf(struct bpf_d *d, struct bpf_program *fp)
1261 {
1262 struct bpf_insn *fcode;
1263 bpfjit_func_t jcode;
1264 size_t flen, size = 0;
1265 struct bpf_filter *oldf, *newf;
1266
1267 jcode = NULL;
1268 flen = fp->bf_len;
1269
1270 if ((fp->bf_insns == NULL && flen) || flen > BPF_MAXINSNS) {
1271 return EINVAL;
1272 }
1273
1274 if (flen) {
1275 /*
1276 * Allocate the buffer, copy the byte-code from
1277 * userspace and validate it.
1278 */
1279 size = flen * sizeof(*fp->bf_insns);
1280 fcode = kmem_alloc(size, KM_SLEEP);
1281 if (copyin(fp->bf_insns, fcode, size) != 0 ||
1282 !bpf_validate(fcode, (int)flen)) {
1283 kmem_free(fcode, size);
1284 return EINVAL;
1285 }
1286 membar_consumer();
1287 if (bpf_jit)
1288 jcode = bpf_jit_generate(NULL, fcode, flen);
1289 } else {
1290 fcode = NULL;
1291 }
1292
1293 newf = kmem_alloc(sizeof(*newf), KM_SLEEP);
1294 newf->bf_insn = fcode;
1295 newf->bf_size = size;
1296 newf->bf_jitcode = jcode;
1297 d->bd_jitcode = jcode; /* XXX just for kvm(3) users */
1298
1299 /* Need to hold bpf_mtx for pserialize_perform */
1300 mutex_enter(&bpf_mtx);
1301 mutex_enter(d->bd_mtx);
1302 oldf = d->bd_filter;
1303 d->bd_filter = newf;
1304 membar_producer();
1305 reset_d(d);
1306 pserialize_perform(bpf_psz);
1307 mutex_exit(d->bd_mtx);
1308 mutex_exit(&bpf_mtx);
1309
1310 if (oldf != NULL)
1311 bpf_free_filter(oldf);
1312
1313 return 0;
1314 }
1315
1316 /*
1317 * Detach a file from its current interface (if attached at all) and attach
1318 * to the interface indicated by the name stored in ifr.
1319 * Return an errno or 0.
1320 */
1321 static int
1322 bpf_setif(struct bpf_d *d, struct ifreq *ifr)
1323 {
1324 struct bpf_if *bp;
1325 char *cp;
1326 int unit_seen, i, error;
1327
1328 KASSERT(mutex_owned(&bpf_mtx));
1329 /*
1330 * Make sure the provided name has a unit number, and default
1331 * it to '0' if not specified.
1332 * XXX This is ugly ... do this differently?
1333 */
1334 unit_seen = 0;
1335 cp = ifr->ifr_name;
1336 cp[sizeof(ifr->ifr_name) - 1] = '\0'; /* sanity */
1337 while (*cp++)
1338 if (*cp >= '0' && *cp <= '9')
1339 unit_seen = 1;
1340 if (!unit_seen) {
1341 /* Make sure to leave room for the '\0'. */
1342 for (i = 0; i < (IFNAMSIZ - 1); ++i) {
1343 if ((ifr->ifr_name[i] >= 'a' &&
1344 ifr->ifr_name[i] <= 'z') ||
1345 (ifr->ifr_name[i] >= 'A' &&
1346 ifr->ifr_name[i] <= 'Z'))
1347 continue;
1348 ifr->ifr_name[i] = '0';
1349 }
1350 }
1351
1352 /*
1353 * Look through attached interfaces for the named one.
1354 */
1355 BPF_IFLIST_WRITER_FOREACH(bp) {
1356 struct ifnet *ifp = bp->bif_ifp;
1357
1358 if (ifp == NULL ||
1359 strcmp(ifp->if_xname, ifr->ifr_name) != 0)
1360 continue;
1361 /* skip additional entry */
1362 if (bp->bif_driverp != &ifp->if_bpf)
1363 continue;
1364 /*
1365 * We found the requested interface.
1366 * Allocate the packet buffers if we need to.
1367 * If we're already attached to requested interface,
1368 * just flush the buffer.
1369 */
1370 /*
1371 * bpf_allocbufs is called only here. bpf_mtx ensures that
1372 * no race condition happen on d->bd_sbuf.
1373 */
1374 if (d->bd_sbuf == NULL) {
1375 error = bpf_allocbufs(d);
1376 if (error != 0)
1377 return (error);
1378 }
1379 mutex_enter(d->bd_mtx);
1380 if (bp != d->bd_bif) {
1381 if (d->bd_bif) {
1382 /*
1383 * Detach if attached to something else.
1384 */
1385 bpf_detachd(d);
1386 BPFIF_DLIST_ENTRY_INIT(d);
1387 }
1388
1389 bpf_attachd(d, bp);
1390 }
1391 reset_d(d);
1392 mutex_exit(d->bd_mtx);
1393 return (0);
1394 }
1395 /* Not found. */
1396 return (ENXIO);
1397 }
1398
1399 /*
1400 * Copy the interface name to the ifreq.
1401 */
1402 static void
1403 bpf_ifname(struct ifnet *ifp, struct ifreq *ifr)
1404 {
1405 memcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
1406 }
1407
1408 static int
1409 bpf_stat(struct file *fp, struct stat *st)
1410 {
1411 struct bpf_d *d = fp->f_bpf;
1412
1413 (void)memset(st, 0, sizeof(*st));
1414 mutex_enter(d->bd_mtx);
1415 st->st_dev = makedev(cdevsw_lookup_major(&bpf_cdevsw), d->bd_pid);
1416 st->st_atimespec = d->bd_atime;
1417 st->st_mtimespec = d->bd_mtime;
1418 st->st_ctimespec = st->st_birthtimespec = d->bd_btime;
1419 st->st_uid = kauth_cred_geteuid(fp->f_cred);
1420 st->st_gid = kauth_cred_getegid(fp->f_cred);
1421 st->st_mode = S_IFCHR;
1422 mutex_exit(d->bd_mtx);
1423 return 0;
1424 }
1425
1426 /*
1427 * Support for poll() system call
1428 *
1429 * Return true iff the specific operation will not block indefinitely - with
1430 * the assumption that it is safe to positively acknowledge a request for the
1431 * ability to write to the BPF device.
1432 * Otherwise, return false but make a note that a selnotify() must be done.
1433 */
1434 static int
1435 bpf_poll(struct file *fp, int events)
1436 {
1437 struct bpf_d *d = fp->f_bpf;
1438 int revents;
1439
1440 /*
1441 * Refresh the PID associated with this bpf file.
1442 */
1443 mutex_enter(&bpf_mtx);
1444 d->bd_pid = curproc->p_pid;
1445
1446 revents = events & (POLLOUT | POLLWRNORM);
1447 if (events & (POLLIN | POLLRDNORM)) {
1448 /*
1449 * An imitation of the FIONREAD ioctl code.
1450 */
1451 mutex_enter(d->bd_mtx);
1452 if (d->bd_hlen != 0 ||
1453 ((d->bd_immediate || d->bd_state == BPF_TIMED_OUT) &&
1454 d->bd_slen != 0)) {
1455 revents |= events & (POLLIN | POLLRDNORM);
1456 } else {
1457 selrecord(curlwp, &d->bd_sel);
1458 /* Start the read timeout if necessary */
1459 if (d->bd_rtout > 0 && d->bd_state == BPF_IDLE) {
1460 callout_reset(&d->bd_callout, d->bd_rtout,
1461 bpf_timed_out, d);
1462 d->bd_state = BPF_WAITING;
1463 }
1464 }
1465 mutex_exit(d->bd_mtx);
1466 }
1467
1468 mutex_exit(&bpf_mtx);
1469 return (revents);
1470 }
1471
1472 static void
1473 filt_bpfrdetach(struct knote *kn)
1474 {
1475 struct bpf_d *d = kn->kn_hook;
1476
1477 mutex_enter(d->bd_buf_mtx);
1478 SLIST_REMOVE(&d->bd_sel.sel_klist, kn, knote, kn_selnext);
1479 mutex_exit(d->bd_buf_mtx);
1480 }
1481
1482 static int
1483 filt_bpfread(struct knote *kn, long hint)
1484 {
1485 struct bpf_d *d = kn->kn_hook;
1486 int rv;
1487
1488 mutex_enter(d->bd_buf_mtx);
1489 kn->kn_data = d->bd_hlen;
1490 if (d->bd_immediate)
1491 kn->kn_data += d->bd_slen;
1492 rv = (kn->kn_data > 0);
1493 mutex_exit(d->bd_buf_mtx);
1494 return rv;
1495 }
1496
1497 static const struct filterops bpfread_filtops = {
1498 .f_isfd = 1,
1499 .f_attach = NULL,
1500 .f_detach = filt_bpfrdetach,
1501 .f_event = filt_bpfread,
1502 };
1503
1504 static int
1505 bpf_kqfilter(struct file *fp, struct knote *kn)
1506 {
1507 struct bpf_d *d = fp->f_bpf;
1508 struct klist *klist;
1509
1510 mutex_enter(d->bd_buf_mtx);
1511 switch (kn->kn_filter) {
1512 case EVFILT_READ:
1513 klist = &d->bd_sel.sel_klist;
1514 kn->kn_fop = &bpfread_filtops;
1515 break;
1516
1517 default:
1518 mutex_exit(d->bd_buf_mtx);
1519 return (EINVAL);
1520 }
1521
1522 kn->kn_hook = d;
1523
1524 SLIST_INSERT_HEAD(klist, kn, kn_selnext);
1525 mutex_exit(d->bd_buf_mtx);
1526
1527 return (0);
1528 }
1529
1530 /*
1531 * Copy data from an mbuf chain into a buffer. This code is derived
1532 * from m_copydata in sys/uipc_mbuf.c.
1533 */
1534 static void *
1535 bpf_mcpy(void *dst_arg, const void *src_arg, size_t len)
1536 {
1537 const struct mbuf *m;
1538 u_int count;
1539 u_char *dst;
1540
1541 m = src_arg;
1542 dst = dst_arg;
1543 while (len > 0) {
1544 if (m == NULL)
1545 panic("bpf_mcpy");
1546 count = min(m->m_len, len);
1547 memcpy(dst, mtod(m, const void *), count);
1548 m = m->m_next;
1549 dst += count;
1550 len -= count;
1551 }
1552 return dst_arg;
1553 }
1554
1555 /*
1556 * Dispatch a packet to all the listeners on interface bp.
1557 *
1558 * pkt pointer to the packet, either a data buffer or an mbuf chain
1559 * buflen buffer length, if pkt is a data buffer
1560 * cpfn a function that can copy pkt into the listener's buffer
1561 * pktlen length of the packet
1562 * rcv true if packet came in
1563 */
1564 static inline void
1565 bpf_deliver(struct bpf_if *bp, void *(*cpfn)(void *, const void *, size_t),
1566 void *pkt, u_int pktlen, u_int buflen, const bool rcv)
1567 {
1568 uint32_t mem[BPF_MEMWORDS];
1569 bpf_args_t args = {
1570 .pkt = (const uint8_t *)pkt,
1571 .wirelen = pktlen,
1572 .buflen = buflen,
1573 .mem = mem,
1574 .arg = NULL
1575 };
1576 bool gottime = false;
1577 struct timespec ts;
1578 struct bpf_d *d;
1579 int s;
1580
1581 KASSERT(!cpu_intr_p());
1582
1583 /*
1584 * Note that the IPL does not have to be raised at this point.
1585 * The only problem that could arise here is that if two different
1586 * interfaces shared any data. This is not the case.
1587 */
1588 s = pserialize_read_enter();
1589 BPFIF_DLIST_READER_FOREACH(d, bp) {
1590 u_int slen = 0;
1591 struct bpf_filter *filter;
1592
1593 if (!d->bd_seesent && !rcv) {
1594 continue;
1595 }
1596 atomic_inc_ulong(&d->bd_rcount);
1597 BPF_STATINC(recv);
1598
1599 filter = d->bd_filter;
1600 membar_datadep_consumer();
1601 if (filter != NULL) {
1602 if (filter->bf_jitcode != NULL)
1603 slen = filter->bf_jitcode(NULL, &args);
1604 else
1605 slen = bpf_filter_ext(NULL, filter->bf_insn,
1606 &args);
1607 }
1608
1609 if (!slen) {
1610 continue;
1611 }
1612 if (!gottime) {
1613 gottime = true;
1614 nanotime(&ts);
1615 }
1616 /* Assume catchpacket doesn't sleep */
1617 catchpacket(d, pkt, pktlen, slen, cpfn, &ts);
1618 }
1619 pserialize_read_exit(s);
1620 }
1621
1622 /*
1623 * Incoming linkage from device drivers. Process the packet pkt, of length
1624 * pktlen, which is stored in a contiguous buffer. The packet is parsed
1625 * by each process' filter, and if accepted, stashed into the corresponding
1626 * buffer.
1627 */
1628 static void
1629 _bpf_tap(struct bpf_if *bp, u_char *pkt, u_int pktlen)
1630 {
1631
1632 bpf_deliver(bp, memcpy, pkt, pktlen, pktlen, true);
1633 }
1634
1635 /*
1636 * Incoming linkage from device drivers, when the head of the packet is in
1637 * a buffer, and the tail is in an mbuf chain.
1638 */
1639 static void
1640 _bpf_mtap2(struct bpf_if *bp, void *data, u_int dlen, struct mbuf *m)
1641 {
1642 u_int pktlen;
1643 struct mbuf mb;
1644
1645 /* Skip outgoing duplicate packets. */
1646 if ((m->m_flags & M_PROMISC) != 0 && m->m_pkthdr.rcvif_index == 0) {
1647 m->m_flags &= ~M_PROMISC;
1648 return;
1649 }
1650
1651 pktlen = m_length(m) + dlen;
1652
1653 /*
1654 * Craft on-stack mbuf suitable for passing to bpf_filter.
1655 * Note that we cut corners here; we only setup what's
1656 * absolutely needed--this mbuf should never go anywhere else.
1657 */
1658 (void)memset(&mb, 0, sizeof(mb));
1659 mb.m_next = m;
1660 mb.m_data = data;
1661 mb.m_len = dlen;
1662
1663 bpf_deliver(bp, bpf_mcpy, &mb, pktlen, 0, m->m_pkthdr.rcvif_index != 0);
1664 }
1665
1666 /*
1667 * Incoming linkage from device drivers, when packet is in an mbuf chain.
1668 */
1669 static void
1670 _bpf_mtap(struct bpf_if *bp, struct mbuf *m)
1671 {
1672 void *(*cpfn)(void *, const void *, size_t);
1673 u_int pktlen, buflen;
1674 void *marg;
1675
1676 /* Skip outgoing duplicate packets. */
1677 if ((m->m_flags & M_PROMISC) != 0 && m->m_pkthdr.rcvif_index == 0) {
1678 m->m_flags &= ~M_PROMISC;
1679 return;
1680 }
1681
1682 pktlen = m_length(m);
1683
1684 if (pktlen == m->m_len) {
1685 cpfn = (void *)memcpy;
1686 marg = mtod(m, void *);
1687 buflen = pktlen;
1688 } else {
1689 cpfn = bpf_mcpy;
1690 marg = m;
1691 buflen = 0;
1692 }
1693
1694 bpf_deliver(bp, cpfn, marg, pktlen, buflen, m->m_pkthdr.rcvif_index != 0);
1695 }
1696
1697 /*
1698 * We need to prepend the address family as
1699 * a four byte field. Cons up a dummy header
1700 * to pacify bpf. This is safe because bpf
1701 * will only read from the mbuf (i.e., it won't
1702 * try to free it or keep a pointer a to it).
1703 */
1704 static void
1705 _bpf_mtap_af(struct bpf_if *bp, uint32_t af, struct mbuf *m)
1706 {
1707 struct mbuf m0;
1708
1709 m0.m_flags = 0;
1710 m0.m_next = m;
1711 m0.m_len = 4;
1712 m0.m_data = (char *)⁡
1713
1714 _bpf_mtap(bp, &m0);
1715 }
1716
1717 /*
1718 * Put the SLIP pseudo-"link header" in place.
1719 * Note this M_PREPEND() should never fail,
1720 * swince we know we always have enough space
1721 * in the input buffer.
1722 */
1723 static void
1724 _bpf_mtap_sl_in(struct bpf_if *bp, u_char *chdr, struct mbuf **m)
1725 {
1726 u_char *hp;
1727
1728 M_PREPEND(*m, SLIP_HDRLEN, M_DONTWAIT);
1729 if (*m == NULL)
1730 return;
1731
1732 hp = mtod(*m, u_char *);
1733 hp[SLX_DIR] = SLIPDIR_IN;
1734 (void)memcpy(&hp[SLX_CHDR], chdr, CHDR_LEN);
1735
1736 _bpf_mtap(bp, *m);
1737
1738 m_adj(*m, SLIP_HDRLEN);
1739 }
1740
1741 /*
1742 * Put the SLIP pseudo-"link header" in
1743 * place. The compressed header is now
1744 * at the beginning of the mbuf.
1745 */
1746 static void
1747 _bpf_mtap_sl_out(struct bpf_if *bp, u_char *chdr, struct mbuf *m)
1748 {
1749 struct mbuf m0;
1750 u_char *hp;
1751
1752 m0.m_flags = 0;
1753 m0.m_next = m;
1754 m0.m_data = m0.m_dat;
1755 m0.m_len = SLIP_HDRLEN;
1756
1757 hp = mtod(&m0, u_char *);
1758
1759 hp[SLX_DIR] = SLIPDIR_OUT;
1760 (void)memcpy(&hp[SLX_CHDR], chdr, CHDR_LEN);
1761
1762 _bpf_mtap(bp, &m0);
1763 m_freem(m);
1764 }
1765
1766 static struct mbuf *
1767 bpf_mbuf_enqueue(struct bpf_if *bp, struct mbuf *m)
1768 {
1769 struct mbuf *dup;
1770
1771 dup = m_dup(m, 0, M_COPYALL, M_NOWAIT);
1772 if (dup == NULL)
1773 return NULL;
1774
1775 if (bp->bif_mbuf_tail != NULL) {
1776 bp->bif_mbuf_tail->m_nextpkt = dup;
1777 } else {
1778 bp->bif_mbuf_head = dup;
1779 }
1780 bp->bif_mbuf_tail = dup;
1781 #ifdef BPF_MTAP_SOFTINT_DEBUG
1782 log(LOG_DEBUG, "%s: enqueued mbuf=%p to %s\n",
1783 __func__, dup, bp->bif_ifp->if_xname);
1784 #endif
1785
1786 return dup;
1787 }
1788
1789 static struct mbuf *
1790 bpf_mbuf_dequeue(struct bpf_if *bp)
1791 {
1792 struct mbuf *m;
1793 int s;
1794
1795 /* XXX NOMPSAFE: assumed running on one CPU */
1796 s = splnet();
1797 m = bp->bif_mbuf_head;
1798 if (m != NULL) {
1799 bp->bif_mbuf_head = m->m_nextpkt;
1800 m->m_nextpkt = NULL;
1801
1802 if (bp->bif_mbuf_head == NULL)
1803 bp->bif_mbuf_tail = NULL;
1804 #ifdef BPF_MTAP_SOFTINT_DEBUG
1805 log(LOG_DEBUG, "%s: dequeued mbuf=%p from %s\n",
1806 __func__, m, bp->bif_ifp->if_xname);
1807 #endif
1808 }
1809 splx(s);
1810
1811 return m;
1812 }
1813
1814 static void
1815 bpf_mtap_si(void *arg)
1816 {
1817 struct bpf_if *bp = arg;
1818 struct mbuf *m;
1819
1820 while ((m = bpf_mbuf_dequeue(bp)) != NULL) {
1821 #ifdef BPF_MTAP_SOFTINT_DEBUG
1822 log(LOG_DEBUG, "%s: tapping mbuf=%p on %s\n",
1823 __func__, m, bp->bif_ifp->if_xname);
1824 #endif
1825 bpf_ops->bpf_mtap(bp, m);
1826 m_freem(m);
1827 }
1828 }
1829
1830 static void
1831 _bpf_mtap_softint(struct ifnet *ifp, struct mbuf *m)
1832 {
1833 struct bpf_if *bp = ifp->if_bpf;
1834 struct mbuf *dup;
1835
1836 KASSERT(cpu_intr_p());
1837
1838 /* To avoid extra invocations of the softint */
1839 if (BPFIF_DLIST_READER_EMPTY(bp))
1840 return;
1841 KASSERT(bp->bif_si != NULL);
1842
1843 dup = bpf_mbuf_enqueue(bp, m);
1844 if (dup != NULL)
1845 softint_schedule(bp->bif_si);
1846 }
1847
1848 static int
1849 bpf_hdrlen(struct bpf_d *d)
1850 {
1851 int hdrlen = d->bd_bif->bif_hdrlen;
1852 /*
1853 * Compute the length of the bpf header. This is not necessarily
1854 * equal to SIZEOF_BPF_HDR because we want to insert spacing such
1855 * that the network layer header begins on a longword boundary (for
1856 * performance reasons and to alleviate alignment restrictions).
1857 */
1858 #ifdef _LP64
1859 if (d->bd_compat32)
1860 return (BPF_WORDALIGN32(hdrlen + SIZEOF_BPF_HDR32) - hdrlen);
1861 else
1862 #endif
1863 return (BPF_WORDALIGN(hdrlen + SIZEOF_BPF_HDR) - hdrlen);
1864 }
1865
1866 /*
1867 * Move the packet data from interface memory (pkt) into the
1868 * store buffer. Call the wakeup functions if it's time to wakeup
1869 * a listener (buffer full), "cpfn" is the routine called to do the
1870 * actual data transfer. memcpy is passed in to copy contiguous chunks,
1871 * while bpf_mcpy is passed in to copy mbuf chains. In the latter case,
1872 * pkt is really an mbuf.
1873 */
1874 static void
1875 catchpacket(struct bpf_d *d, u_char *pkt, u_int pktlen, u_int snaplen,
1876 void *(*cpfn)(void *, const void *, size_t), struct timespec *ts)
1877 {
1878 char *h;
1879 int totlen, curlen, caplen;
1880 int hdrlen = bpf_hdrlen(d);
1881 int do_wakeup = 0;
1882
1883 atomic_inc_ulong(&d->bd_ccount);
1884 BPF_STATINC(capt);
1885 /*
1886 * Figure out how many bytes to move. If the packet is
1887 * greater or equal to the snapshot length, transfer that
1888 * much. Otherwise, transfer the whole packet (unless
1889 * we hit the buffer size limit).
1890 */
1891 totlen = hdrlen + min(snaplen, pktlen);
1892 if (totlen > d->bd_bufsize)
1893 totlen = d->bd_bufsize;
1894 /*
1895 * If we adjusted totlen to fit the bufsize, it could be that
1896 * totlen is smaller than hdrlen because of the link layer header.
1897 */
1898 caplen = totlen - hdrlen;
1899 if (caplen < 0)
1900 caplen = 0;
1901
1902 mutex_enter(d->bd_buf_mtx);
1903 /*
1904 * Round up the end of the previous packet to the next longword.
1905 */
1906 #ifdef _LP64
1907 if (d->bd_compat32)
1908 curlen = BPF_WORDALIGN32(d->bd_slen);
1909 else
1910 #endif
1911 curlen = BPF_WORDALIGN(d->bd_slen);
1912 if (curlen + totlen > d->bd_bufsize) {
1913 /*
1914 * This packet will overflow the storage buffer.
1915 * Rotate the buffers if we can, then wakeup any
1916 * pending reads.
1917 */
1918 if (d->bd_fbuf == NULL) {
1919 mutex_exit(d->bd_buf_mtx);
1920 /*
1921 * We haven't completed the previous read yet,
1922 * so drop the packet.
1923 */
1924 atomic_inc_ulong(&d->bd_dcount);
1925 BPF_STATINC(drop);
1926 return;
1927 }
1928 ROTATE_BUFFERS(d);
1929 do_wakeup = 1;
1930 curlen = 0;
1931 } else if (d->bd_immediate || d->bd_state == BPF_TIMED_OUT) {
1932 /*
1933 * Immediate mode is set, or the read timeout has
1934 * already expired during a select call. A packet
1935 * arrived, so the reader should be woken up.
1936 */
1937 do_wakeup = 1;
1938 }
1939
1940 /*
1941 * Append the bpf header.
1942 */
1943 h = (char *)d->bd_sbuf + curlen;
1944 #ifdef _LP64
1945 if (d->bd_compat32) {
1946 struct bpf_hdr32 *hp32;
1947
1948 hp32 = (struct bpf_hdr32 *)h;
1949 hp32->bh_tstamp.tv_sec = ts->tv_sec;
1950 hp32->bh_tstamp.tv_usec = ts->tv_nsec / 1000;
1951 hp32->bh_datalen = pktlen;
1952 hp32->bh_hdrlen = hdrlen;
1953 hp32->bh_caplen = caplen;
1954 } else
1955 #endif
1956 {
1957 struct bpf_hdr *hp;
1958
1959 hp = (struct bpf_hdr *)h;
1960 hp->bh_tstamp.tv_sec = ts->tv_sec;
1961 hp->bh_tstamp.tv_usec = ts->tv_nsec / 1000;
1962 hp->bh_datalen = pktlen;
1963 hp->bh_hdrlen = hdrlen;
1964 hp->bh_caplen = caplen;
1965 }
1966
1967 /*
1968 * Copy the packet data into the store buffer and update its length.
1969 */
1970 (*cpfn)(h + hdrlen, pkt, caplen);
1971 d->bd_slen = curlen + totlen;
1972 mutex_exit(d->bd_buf_mtx);
1973
1974 /*
1975 * Call bpf_wakeup after bd_slen has been updated so that kevent(2)
1976 * will cause filt_bpfread() to be called with it adjusted.
1977 */
1978 if (do_wakeup)
1979 bpf_wakeup(d);
1980 }
1981
1982 /*
1983 * Initialize all nonzero fields of a descriptor.
1984 */
1985 static int
1986 bpf_allocbufs(struct bpf_d *d)
1987 {
1988
1989 d->bd_fbuf = kmem_alloc(d->bd_bufsize, KM_NOSLEEP);
1990 if (!d->bd_fbuf)
1991 return (ENOBUFS);
1992 d->bd_sbuf = kmem_alloc(d->bd_bufsize, KM_NOSLEEP);
1993 if (!d->bd_sbuf) {
1994 kmem_free(d->bd_fbuf, d->bd_bufsize);
1995 return (ENOBUFS);
1996 }
1997 d->bd_slen = 0;
1998 d->bd_hlen = 0;
1999 return (0);
2000 }
2001
2002 static void
2003 bpf_free_filter(struct bpf_filter *filter)
2004 {
2005
2006 KASSERT(filter != NULL);
2007 KASSERT(filter->bf_insn != NULL);
2008
2009 kmem_free(filter->bf_insn, filter->bf_size);
2010 if (filter->bf_jitcode != NULL)
2011 bpf_jit_freecode(filter->bf_jitcode);
2012 kmem_free(filter, sizeof(*filter));
2013 }
2014
2015 /*
2016 * Free buffers currently in use by a descriptor.
2017 * Called on close.
2018 */
2019 static void
2020 bpf_freed(struct bpf_d *d)
2021 {
2022 /*
2023 * We don't need to lock out interrupts since this descriptor has
2024 * been detached from its interface and it yet hasn't been marked
2025 * free.
2026 */
2027 if (d->bd_sbuf != NULL) {
2028 kmem_free(d->bd_sbuf, d->bd_bufsize);
2029 if (d->bd_hbuf != NULL)
2030 kmem_free(d->bd_hbuf, d->bd_bufsize);
2031 if (d->bd_fbuf != NULL)
2032 kmem_free(d->bd_fbuf, d->bd_bufsize);
2033 }
2034 if (d->bd_filter != NULL) {
2035 bpf_free_filter(d->bd_filter);
2036 d->bd_filter = NULL;
2037 }
2038 d->bd_jitcode = NULL;
2039 }
2040
2041 /*
2042 * Attach an interface to bpf. dlt is the link layer type;
2043 * hdrlen is the fixed size of the link header for the specified dlt
2044 * (variable length headers not yet supported).
2045 */
2046 static void
2047 _bpfattach(struct ifnet *ifp, u_int dlt, u_int hdrlen, struct bpf_if **driverp)
2048 {
2049 struct bpf_if *bp;
2050 bp = kmem_alloc(sizeof(*bp), KM_NOSLEEP);
2051 if (bp == NULL)
2052 panic("bpfattach");
2053
2054 mutex_enter(&bpf_mtx);
2055 bp->bif_driverp = driverp;
2056 bp->bif_ifp = ifp;
2057 bp->bif_dlt = dlt;
2058 bp->bif_si = NULL;
2059 BPF_IFLIST_ENTRY_INIT(bp);
2060 PSLIST_INIT(&bp->bif_dlist_head);
2061 psref_target_init(&bp->bif_psref, bpf_psref_class);
2062
2063 BPF_IFLIST_WRITER_INSERT_HEAD(bp);
2064
2065 *bp->bif_driverp = NULL;
2066
2067 bp->bif_hdrlen = hdrlen;
2068 mutex_exit(&bpf_mtx);
2069 #if 0
2070 printf("bpf: %s attached\n", ifp->if_xname);
2071 #endif
2072 }
2073
2074 static void
2075 _bpf_mtap_softint_init(struct ifnet *ifp)
2076 {
2077 struct bpf_if *bp;
2078
2079 mutex_enter(&bpf_mtx);
2080 BPF_IFLIST_WRITER_FOREACH(bp) {
2081 if (bp->bif_ifp != ifp)
2082 continue;
2083
2084 bp->bif_mbuf_head = NULL;
2085 bp->bif_mbuf_tail = NULL;
2086 bp->bif_si = softint_establish(SOFTINT_NET, bpf_mtap_si, bp);
2087 if (bp->bif_si == NULL)
2088 panic("%s: softint_establish() failed", __func__);
2089 break;
2090 }
2091 mutex_exit(&bpf_mtx);
2092
2093 if (bp == NULL)
2094 panic("%s: no bpf_if found for %s", __func__, ifp->if_xname);
2095 }
2096
2097 /*
2098 * Remove an interface from bpf.
2099 */
2100 static void
2101 _bpfdetach(struct ifnet *ifp)
2102 {
2103 struct bpf_if *bp;
2104 struct bpf_d *d;
2105 int s;
2106
2107 mutex_enter(&bpf_mtx);
2108 /* Nuke the vnodes for any open instances */
2109 again_d:
2110 BPF_DLIST_WRITER_FOREACH(d) {
2111 mutex_enter(d->bd_mtx);
2112 if (d->bd_bif != NULL && d->bd_bif->bif_ifp == ifp) {
2113 /*
2114 * Detach the descriptor from an interface now.
2115 * It will be free'ed later by close routine.
2116 */
2117 d->bd_promisc = 0; /* we can't touch device. */
2118 bpf_detachd(d);
2119 mutex_exit(d->bd_mtx);
2120 goto again_d;
2121 }
2122 mutex_exit(d->bd_mtx);
2123 }
2124
2125 again:
2126 BPF_IFLIST_WRITER_FOREACH(bp) {
2127 if (bp->bif_ifp == ifp) {
2128 BPF_IFLIST_WRITER_REMOVE(bp);
2129
2130 pserialize_perform(bpf_psz);
2131 psref_target_destroy(&bp->bif_psref, bpf_psref_class);
2132
2133 BPF_IFLIST_ENTRY_DESTROY(bp);
2134 if (bp->bif_si != NULL) {
2135 /* XXX NOMPSAFE: assumed running on one CPU */
2136 s = splnet();
2137 while (bp->bif_mbuf_head != NULL) {
2138 struct mbuf *m = bp->bif_mbuf_head;
2139 bp->bif_mbuf_head = m->m_nextpkt;
2140 m_freem(m);
2141 }
2142 splx(s);
2143 softint_disestablish(bp->bif_si);
2144 }
2145 kmem_free(bp, sizeof(*bp));
2146 goto again;
2147 }
2148 }
2149 mutex_exit(&bpf_mtx);
2150 }
2151
2152 /*
2153 * Change the data link type of a interface.
2154 */
2155 static void
2156 _bpf_change_type(struct ifnet *ifp, u_int dlt, u_int hdrlen)
2157 {
2158 struct bpf_if *bp;
2159
2160 mutex_enter(&bpf_mtx);
2161 BPF_IFLIST_WRITER_FOREACH(bp) {
2162 if (bp->bif_driverp == &ifp->if_bpf)
2163 break;
2164 }
2165 if (bp == NULL)
2166 panic("bpf_change_type");
2167
2168 bp->bif_dlt = dlt;
2169
2170 bp->bif_hdrlen = hdrlen;
2171 mutex_exit(&bpf_mtx);
2172 }
2173
2174 /*
2175 * Get a list of available data link type of the interface.
2176 */
2177 static int
2178 bpf_getdltlist(struct bpf_d *d, struct bpf_dltlist *bfl)
2179 {
2180 int n, error;
2181 struct ifnet *ifp;
2182 struct bpf_if *bp;
2183 int s, bound;
2184
2185 KASSERT(mutex_owned(d->bd_mtx));
2186
2187 ifp = d->bd_bif->bif_ifp;
2188 n = 0;
2189 error = 0;
2190
2191 bound = curlwp_bind();
2192 s = pserialize_read_enter();
2193 BPF_IFLIST_READER_FOREACH(bp) {
2194 if (bp->bif_ifp != ifp)
2195 continue;
2196 if (bfl->bfl_list != NULL) {
2197 struct psref psref;
2198
2199 if (n >= bfl->bfl_len) {
2200 pserialize_read_exit(s);
2201 return ENOMEM;
2202 }
2203
2204 bpf_if_acquire(bp, &psref);
2205 pserialize_read_exit(s);
2206
2207 error = copyout(&bp->bif_dlt,
2208 bfl->bfl_list + n, sizeof(u_int));
2209
2210 s = pserialize_read_enter();
2211 bpf_if_release(bp, &psref);
2212 }
2213 n++;
2214 }
2215 pserialize_read_exit(s);
2216 curlwp_bindx(bound);
2217
2218 bfl->bfl_len = n;
2219 return error;
2220 }
2221
2222 /*
2223 * Set the data link type of a BPF instance.
2224 */
2225 static int
2226 bpf_setdlt(struct bpf_d *d, u_int dlt)
2227 {
2228 int error, opromisc;
2229 struct ifnet *ifp;
2230 struct bpf_if *bp;
2231
2232 KASSERT(mutex_owned(&bpf_mtx));
2233 KASSERT(mutex_owned(d->bd_mtx));
2234
2235 if (d->bd_bif->bif_dlt == dlt)
2236 return 0;
2237 ifp = d->bd_bif->bif_ifp;
2238 BPF_IFLIST_WRITER_FOREACH(bp) {
2239 if (bp->bif_ifp == ifp && bp->bif_dlt == dlt)
2240 break;
2241 }
2242 if (bp == NULL)
2243 return EINVAL;
2244 opromisc = d->bd_promisc;
2245 bpf_detachd(d);
2246 BPFIF_DLIST_ENTRY_INIT(d);
2247 bpf_attachd(d, bp);
2248 reset_d(d);
2249 if (opromisc) {
2250 KERNEL_LOCK_UNLESS_NET_MPSAFE();
2251 error = ifpromisc(bp->bif_ifp, 1);
2252 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
2253 if (error)
2254 printf("%s: bpf_setdlt: ifpromisc failed (%d)\n",
2255 bp->bif_ifp->if_xname, error);
2256 else
2257 d->bd_promisc = 1;
2258 }
2259 return 0;
2260 }
2261
2262 static int
2263 sysctl_net_bpf_maxbufsize(SYSCTLFN_ARGS)
2264 {
2265 int newsize, error;
2266 struct sysctlnode node;
2267
2268 node = *rnode;
2269 node.sysctl_data = &newsize;
2270 newsize = bpf_maxbufsize;
2271 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2272 if (error || newp == NULL)
2273 return (error);
2274
2275 if (newsize < BPF_MINBUFSIZE || newsize > BPF_MAXBUFSIZE)
2276 return (EINVAL);
2277
2278 bpf_maxbufsize = newsize;
2279
2280 return (0);
2281 }
2282
2283 #if defined(MODULAR) || defined(BPFJIT)
2284 static int
2285 sysctl_net_bpf_jit(SYSCTLFN_ARGS)
2286 {
2287 bool newval;
2288 int error;
2289 struct sysctlnode node;
2290
2291 node = *rnode;
2292 node.sysctl_data = &newval;
2293 newval = bpf_jit;
2294 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2295 if (error != 0 || newp == NULL)
2296 return error;
2297
2298 bpf_jit = newval;
2299
2300 /*
2301 * Do a full sync to publish new bpf_jit value and
2302 * update bpfjit_module_ops.bj_generate_code variable.
2303 */
2304 membar_sync();
2305
2306 if (newval && bpfjit_module_ops.bj_generate_code == NULL) {
2307 printf("JIT compilation is postponed "
2308 "until after bpfjit module is loaded\n");
2309 }
2310
2311 return 0;
2312 }
2313 #endif
2314
2315 static int
2316 sysctl_net_bpf_peers(SYSCTLFN_ARGS)
2317 {
2318 int error, elem_count;
2319 struct bpf_d *dp;
2320 struct bpf_d_ext dpe;
2321 size_t len, needed, elem_size, out_size;
2322 char *sp;
2323
2324 if (namelen == 1 && name[0] == CTL_QUERY)
2325 return (sysctl_query(SYSCTLFN_CALL(rnode)));
2326
2327 if (namelen != 2)
2328 return (EINVAL);
2329
2330 /* BPF peers is privileged information. */
2331 error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_INTERFACE,
2332 KAUTH_REQ_NETWORK_INTERFACE_GETPRIV, NULL, NULL, NULL);
2333 if (error)
2334 return (EPERM);
2335
2336 len = (oldp != NULL) ? *oldlenp : 0;
2337 sp = oldp;
2338 elem_size = name[0];
2339 elem_count = name[1];
2340 out_size = MIN(sizeof(dpe), elem_size);
2341 needed = 0;
2342
2343 if (elem_size < 1 || elem_count < 0)
2344 return (EINVAL);
2345
2346 mutex_enter(&bpf_mtx);
2347 BPF_DLIST_WRITER_FOREACH(dp) {
2348 if (len >= elem_size && elem_count > 0) {
2349 #define BPF_EXT(field) dpe.bde_ ## field = dp->bd_ ## field
2350 BPF_EXT(bufsize);
2351 BPF_EXT(promisc);
2352 BPF_EXT(state);
2353 BPF_EXT(immediate);
2354 BPF_EXT(hdrcmplt);
2355 BPF_EXT(seesent);
2356 BPF_EXT(pid);
2357 BPF_EXT(rcount);
2358 BPF_EXT(dcount);
2359 BPF_EXT(ccount);
2360 #undef BPF_EXT
2361 mutex_enter(dp->bd_mtx);
2362 if (dp->bd_bif)
2363 (void)strlcpy(dpe.bde_ifname,
2364 dp->bd_bif->bif_ifp->if_xname,
2365 IFNAMSIZ - 1);
2366 else
2367 dpe.bde_ifname[0] = '\0';
2368 mutex_exit(dp->bd_mtx);
2369
2370 error = copyout(&dpe, sp, out_size);
2371 if (error)
2372 break;
2373 sp += elem_size;
2374 len -= elem_size;
2375 }
2376 needed += elem_size;
2377 if (elem_count > 0 && elem_count != INT_MAX)
2378 elem_count--;
2379 }
2380 mutex_exit(&bpf_mtx);
2381
2382 *oldlenp = needed;
2383
2384 return (error);
2385 }
2386
2387 static void
2388 bpf_stats(void *p, void *arg, struct cpu_info *ci __unused)
2389 {
2390 struct bpf_stat *const stats = p;
2391 struct bpf_stat *sum = arg;
2392
2393 sum->bs_recv += stats->bs_recv;
2394 sum->bs_drop += stats->bs_drop;
2395 sum->bs_capt += stats->bs_capt;
2396 }
2397
2398 static int
2399 bpf_sysctl_gstats_handler(SYSCTLFN_ARGS)
2400 {
2401 struct sysctlnode node;
2402 int error;
2403 struct bpf_stat sum;
2404
2405 memset(&sum, 0, sizeof(sum));
2406 node = *rnode;
2407
2408 percpu_foreach(bpf_gstats_percpu, bpf_stats, &sum);
2409
2410 node.sysctl_data = ∑
2411 node.sysctl_size = sizeof(sum);
2412 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2413 if (error != 0 || newp == NULL)
2414 return error;
2415
2416 return 0;
2417 }
2418
2419 static struct sysctllog *bpf_sysctllog;
2420 static void
2421 sysctl_net_bpf_setup(void)
2422 {
2423 const struct sysctlnode *node;
2424
2425 node = NULL;
2426 sysctl_createv(&bpf_sysctllog, 0, NULL, &node,
2427 CTLFLAG_PERMANENT,
2428 CTLTYPE_NODE, "bpf",
2429 SYSCTL_DESCR("BPF options"),
2430 NULL, 0, NULL, 0,
2431 CTL_NET, CTL_CREATE, CTL_EOL);
2432 if (node != NULL) {
2433 #if defined(MODULAR) || defined(BPFJIT)
2434 sysctl_createv(&bpf_sysctllog, 0, NULL, NULL,
2435 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2436 CTLTYPE_BOOL, "jit",
2437 SYSCTL_DESCR("Toggle Just-In-Time compilation"),
2438 sysctl_net_bpf_jit, 0, &bpf_jit, 0,
2439 CTL_NET, node->sysctl_num, CTL_CREATE, CTL_EOL);
2440 #endif
2441 sysctl_createv(&bpf_sysctllog, 0, NULL, NULL,
2442 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2443 CTLTYPE_INT, "maxbufsize",
2444 SYSCTL_DESCR("Maximum size for data capture buffer"),
2445 sysctl_net_bpf_maxbufsize, 0, &bpf_maxbufsize, 0,
2446 CTL_NET, node->sysctl_num, CTL_CREATE, CTL_EOL);
2447 sysctl_createv(&bpf_sysctllog, 0, NULL, NULL,
2448 CTLFLAG_PERMANENT,
2449 CTLTYPE_STRUCT, "stats",
2450 SYSCTL_DESCR("BPF stats"),
2451 bpf_sysctl_gstats_handler, 0, NULL, 0,
2452 CTL_NET, node->sysctl_num, CTL_CREATE, CTL_EOL);
2453 sysctl_createv(&bpf_sysctllog, 0, NULL, NULL,
2454 CTLFLAG_PERMANENT,
2455 CTLTYPE_STRUCT, "peers",
2456 SYSCTL_DESCR("BPF peers"),
2457 sysctl_net_bpf_peers, 0, NULL, 0,
2458 CTL_NET, node->sysctl_num, CTL_CREATE, CTL_EOL);
2459 }
2460
2461 }
2462
2463 struct bpf_ops bpf_ops_kernel = {
2464 .bpf_attach = _bpfattach,
2465 .bpf_detach = _bpfdetach,
2466 .bpf_change_type = _bpf_change_type,
2467
2468 .bpf_tap = _bpf_tap,
2469 .bpf_mtap = _bpf_mtap,
2470 .bpf_mtap2 = _bpf_mtap2,
2471 .bpf_mtap_af = _bpf_mtap_af,
2472 .bpf_mtap_sl_in = _bpf_mtap_sl_in,
2473 .bpf_mtap_sl_out = _bpf_mtap_sl_out,
2474
2475 .bpf_mtap_softint = _bpf_mtap_softint,
2476 .bpf_mtap_softint_init = _bpf_mtap_softint_init,
2477 };
2478
2479 MODULE(MODULE_CLASS_DRIVER, bpf, "bpf_filter");
2480
2481 static int
2482 bpf_modcmd(modcmd_t cmd, void *arg)
2483 {
2484 #ifdef _MODULE
2485 devmajor_t bmajor, cmajor;
2486 #endif
2487 int error = 0;
2488
2489 switch (cmd) {
2490 case MODULE_CMD_INIT:
2491 bpf_init();
2492 #ifdef _MODULE
2493 bmajor = cmajor = NODEVMAJOR;
2494 error = devsw_attach("bpf", NULL, &bmajor,
2495 &bpf_cdevsw, &cmajor);
2496 if (error)
2497 break;
2498 #endif
2499
2500 bpf_ops_handover_enter(&bpf_ops_kernel);
2501 atomic_swap_ptr(&bpf_ops, &bpf_ops_kernel);
2502 bpf_ops_handover_exit();
2503 sysctl_net_bpf_setup();
2504 break;
2505
2506 case MODULE_CMD_FINI:
2507 /*
2508 * While there is no reference counting for bpf callers,
2509 * unload could at least in theory be done similarly to
2510 * system call disestablishment. This should even be
2511 * a little simpler:
2512 *
2513 * 1) replace op vector with stubs
2514 * 2) post update to all cpus with xc
2515 * 3) check that nobody is in bpf anymore
2516 * (it's doubtful we'd want something like l_sysent,
2517 * but we could do something like *signed* percpu
2518 * counters. if the sum is 0, we're good).
2519 * 4) if fail, unroll changes
2520 *
2521 * NOTE: change won't be atomic to the outside. some
2522 * packets may be not captured even if unload is
2523 * not succesful. I think packet capture not working
2524 * is a perfectly logical consequence of trying to
2525 * disable packet capture.
2526 */
2527 error = EOPNOTSUPP;
2528 /* insert sysctl teardown */
2529 break;
2530
2531 default:
2532 error = ENOTTY;
2533 break;
2534 }
2535
2536 return error;
2537 }
2538