bpf.c revision 1.236 1 /* $NetBSD: bpf.c,v 1.236 2020/03/16 21:20:11 pgoyette Exp $ */
2
3 /*
4 * Copyright (c) 1990, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from the Stanford/CMU enet packet filter,
8 * (net/enet.c) distributed as part of 4.3BSD, and code contributed
9 * to Berkeley by Steven McCanne and Van Jacobson both of Lawrence
10 * Berkeley Laboratory.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)bpf.c 8.4 (Berkeley) 1/9/95
37 * static char rcsid[] =
38 * "Header: bpf.c,v 1.67 96/09/26 22:00:52 leres Exp ";
39 */
40
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: bpf.c,v 1.236 2020/03/16 21:20:11 pgoyette Exp $");
43
44 #if defined(_KERNEL_OPT)
45 #include "opt_bpf.h"
46 #include "sl.h"
47 #include "opt_net_mpsafe.h"
48 #endif
49
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/mbuf.h>
53 #include <sys/buf.h>
54 #include <sys/time.h>
55 #include <sys/proc.h>
56 #include <sys/ioctl.h>
57 #include <sys/conf.h>
58 #include <sys/vnode.h>
59 #include <sys/queue.h>
60 #include <sys/stat.h>
61 #include <sys/module.h>
62 #include <sys/atomic.h>
63 #include <sys/cpu.h>
64
65 #include <sys/file.h>
66 #include <sys/filedesc.h>
67 #include <sys/tty.h>
68 #include <sys/uio.h>
69
70 #include <sys/protosw.h>
71 #include <sys/socket.h>
72 #include <sys/errno.h>
73 #include <sys/kernel.h>
74 #include <sys/poll.h>
75 #include <sys/sysctl.h>
76 #include <sys/kauth.h>
77 #include <sys/syslog.h>
78 #include <sys/percpu.h>
79 #include <sys/pserialize.h>
80 #include <sys/lwp.h>
81 #include <sys/xcall.h>
82
83 #include <net/if.h>
84 #include <net/slip.h>
85
86 #include <net/bpf.h>
87 #include <net/bpfdesc.h>
88 #include <net/bpfjit.h>
89
90 #include <net/if_arc.h>
91 #include <net/if_ether.h>
92
93 #include <netinet/in.h>
94 #include <netinet/if_inarp.h>
95
96
97 #include <compat/sys/sockio.h>
98
99 #ifndef BPF_BUFSIZE
100 /*
101 * 4096 is too small for FDDI frames. 8192 is too small for gigabit Ethernet
102 * jumbos (circa 9k), ATM, or Intel gig/10gig ethernet jumbos (16k).
103 */
104 # define BPF_BUFSIZE 32768
105 #endif
106
107 #define PRINET 26 /* interruptible */
108
109 /*
110 * The default read buffer size, and limit for BIOCSBLEN, is sysctl'able.
111 * XXX the default values should be computed dynamically based
112 * on available memory size and available mbuf clusters.
113 */
114 static int bpf_bufsize = BPF_BUFSIZE;
115 static int bpf_maxbufsize = BPF_DFLTBUFSIZE; /* XXX set dynamically, see above */
116 static bool bpf_jit = false;
117
118 struct bpfjit_ops bpfjit_module_ops = {
119 .bj_generate_code = NULL,
120 .bj_free_code = NULL
121 };
122
123 /*
124 * Global BPF statistics returned by net.bpf.stats sysctl.
125 */
126 static struct percpu *bpf_gstats_percpu; /* struct bpf_stat */
127
128 #define BPF_STATINC(id) \
129 { \
130 struct bpf_stat *__stats = \
131 percpu_getref(bpf_gstats_percpu); \
132 __stats->bs_##id++; \
133 percpu_putref(bpf_gstats_percpu); \
134 }
135
136 /*
137 * Locking notes:
138 * - bpf_mtx (adaptive mutex) protects:
139 * - Gobal lists: bpf_iflist and bpf_dlist
140 * - struct bpf_if
141 * - bpf_close
142 * - bpf_psz (pserialize)
143 * - struct bpf_d has two mutexes:
144 * - bd_buf_mtx (spin mutex) protects the buffers that can be accessed
145 * on packet tapping
146 * - bd_mtx (adaptive mutex) protects member variables other than the buffers
147 * - Locking order: bpf_mtx => bpf_d#bd_mtx => bpf_d#bd_buf_mtx
148 * - struct bpf_d obtained via fp->f_bpf in bpf_read and bpf_write is
149 * never freed because struct bpf_d is only freed in bpf_close and
150 * bpf_close never be called while executing bpf_read and bpf_write
151 * - A filter that is assigned to bpf_d can be replaced with another filter
152 * while tapping packets, so it needs to be done atomically
153 * - struct bpf_d is iterated on bpf_dlist with psz
154 * - struct bpf_if is iterated on bpf_iflist with psz or psref
155 */
156 /*
157 * Use a mutex to avoid a race condition between gathering the stats/peers
158 * and opening/closing the device.
159 */
160 static kmutex_t bpf_mtx;
161
162 static struct psref_class *bpf_psref_class __read_mostly;
163 static pserialize_t bpf_psz;
164
165 static inline void
166 bpf_if_acquire(struct bpf_if *bp, struct psref *psref)
167 {
168
169 psref_acquire(psref, &bp->bif_psref, bpf_psref_class);
170 }
171
172 static inline void
173 bpf_if_release(struct bpf_if *bp, struct psref *psref)
174 {
175
176 psref_release(psref, &bp->bif_psref, bpf_psref_class);
177 }
178
179 /*
180 * bpf_iflist is the list of interfaces; each corresponds to an ifnet
181 * bpf_dtab holds the descriptors, indexed by minor device #
182 */
183 static struct pslist_head bpf_iflist;
184 static struct pslist_head bpf_dlist;
185
186 /* Macros for bpf_d on bpf_dlist */
187 #define BPF_DLIST_WRITER_INSERT_HEAD(__d) \
188 PSLIST_WRITER_INSERT_HEAD(&bpf_dlist, (__d), bd_bpf_dlist_entry)
189 #define BPF_DLIST_READER_FOREACH(__d) \
190 PSLIST_READER_FOREACH((__d), &bpf_dlist, struct bpf_d, \
191 bd_bpf_dlist_entry)
192 #define BPF_DLIST_WRITER_FOREACH(__d) \
193 PSLIST_WRITER_FOREACH((__d), &bpf_dlist, struct bpf_d, \
194 bd_bpf_dlist_entry)
195 #define BPF_DLIST_ENTRY_INIT(__d) \
196 PSLIST_ENTRY_INIT((__d), bd_bpf_dlist_entry)
197 #define BPF_DLIST_WRITER_REMOVE(__d) \
198 PSLIST_WRITER_REMOVE((__d), bd_bpf_dlist_entry)
199 #define BPF_DLIST_ENTRY_DESTROY(__d) \
200 PSLIST_ENTRY_DESTROY((__d), bd_bpf_dlist_entry)
201
202 /* Macros for bpf_if on bpf_iflist */
203 #define BPF_IFLIST_WRITER_INSERT_HEAD(__bp) \
204 PSLIST_WRITER_INSERT_HEAD(&bpf_iflist, (__bp), bif_iflist_entry)
205 #define BPF_IFLIST_READER_FOREACH(__bp) \
206 PSLIST_READER_FOREACH((__bp), &bpf_iflist, struct bpf_if, \
207 bif_iflist_entry)
208 #define BPF_IFLIST_WRITER_FOREACH(__bp) \
209 PSLIST_WRITER_FOREACH((__bp), &bpf_iflist, struct bpf_if, \
210 bif_iflist_entry)
211 #define BPF_IFLIST_WRITER_REMOVE(__bp) \
212 PSLIST_WRITER_REMOVE((__bp), bif_iflist_entry)
213 #define BPF_IFLIST_ENTRY_INIT(__bp) \
214 PSLIST_ENTRY_INIT((__bp), bif_iflist_entry)
215 #define BPF_IFLIST_ENTRY_DESTROY(__bp) \
216 PSLIST_ENTRY_DESTROY((__bp), bif_iflist_entry)
217
218 /* Macros for bpf_d on bpf_if#bif_dlist_pslist */
219 #define BPFIF_DLIST_READER_FOREACH(__d, __bp) \
220 PSLIST_READER_FOREACH((__d), &(__bp)->bif_dlist_head, struct bpf_d, \
221 bd_bif_dlist_entry)
222 #define BPFIF_DLIST_WRITER_INSERT_HEAD(__bp, __d) \
223 PSLIST_WRITER_INSERT_HEAD(&(__bp)->bif_dlist_head, (__d), \
224 bd_bif_dlist_entry)
225 #define BPFIF_DLIST_WRITER_REMOVE(__d) \
226 PSLIST_WRITER_REMOVE((__d), bd_bif_dlist_entry)
227 #define BPFIF_DLIST_ENTRY_INIT(__d) \
228 PSLIST_ENTRY_INIT((__d), bd_bif_dlist_entry)
229 #define BPFIF_DLIST_READER_EMPTY(__bp) \
230 (PSLIST_READER_FIRST(&(__bp)->bif_dlist_head, struct bpf_d, \
231 bd_bif_dlist_entry) == NULL)
232 #define BPFIF_DLIST_WRITER_EMPTY(__bp) \
233 (PSLIST_WRITER_FIRST(&(__bp)->bif_dlist_head, struct bpf_d, \
234 bd_bif_dlist_entry) == NULL)
235 #define BPFIF_DLIST_ENTRY_DESTROY(__d) \
236 PSLIST_ENTRY_DESTROY((__d), bd_bif_dlist_entry)
237
238 static int bpf_allocbufs(struct bpf_d *);
239 static void bpf_deliver(struct bpf_if *,
240 void *(*cpfn)(void *, const void *, size_t),
241 void *, u_int, u_int, const u_int);
242 static void bpf_freed(struct bpf_d *);
243 static void bpf_free_filter(struct bpf_filter *);
244 static void bpf_ifname(struct ifnet *, struct ifreq *);
245 static void *bpf_mcpy(void *, const void *, size_t);
246 static int bpf_movein(struct uio *, int, uint64_t,
247 struct mbuf **, struct sockaddr *);
248 static void bpf_attachd(struct bpf_d *, struct bpf_if *);
249 static void bpf_detachd(struct bpf_d *);
250 static int bpf_setif(struct bpf_d *, struct ifreq *);
251 static int bpf_setf(struct bpf_d *, struct bpf_program *);
252 static void bpf_timed_out(void *);
253 static inline void
254 bpf_wakeup(struct bpf_d *);
255 static int bpf_hdrlen(struct bpf_d *);
256 static void catchpacket(struct bpf_d *, u_char *, u_int, u_int,
257 void *(*)(void *, const void *, size_t), struct timespec *);
258 static void reset_d(struct bpf_d *);
259 static int bpf_getdltlist(struct bpf_d *, struct bpf_dltlist *);
260 static int bpf_setdlt(struct bpf_d *, u_int);
261
262 static int bpf_read(struct file *, off_t *, struct uio *, kauth_cred_t,
263 int);
264 static int bpf_write(struct file *, off_t *, struct uio *, kauth_cred_t,
265 int);
266 static int bpf_ioctl(struct file *, u_long, void *);
267 static int bpf_poll(struct file *, int);
268 static int bpf_stat(struct file *, struct stat *);
269 static int bpf_close(struct file *);
270 static int bpf_kqfilter(struct file *, struct knote *);
271
272 static const struct fileops bpf_fileops = {
273 .fo_name = "bpf",
274 .fo_read = bpf_read,
275 .fo_write = bpf_write,
276 .fo_ioctl = bpf_ioctl,
277 .fo_fcntl = fnullop_fcntl,
278 .fo_poll = bpf_poll,
279 .fo_stat = bpf_stat,
280 .fo_close = bpf_close,
281 .fo_kqfilter = bpf_kqfilter,
282 .fo_restart = fnullop_restart,
283 };
284
285 dev_type_open(bpfopen);
286
287 const struct cdevsw bpf_cdevsw = {
288 .d_open = bpfopen,
289 .d_close = noclose,
290 .d_read = noread,
291 .d_write = nowrite,
292 .d_ioctl = noioctl,
293 .d_stop = nostop,
294 .d_tty = notty,
295 .d_poll = nopoll,
296 .d_mmap = nommap,
297 .d_kqfilter = nokqfilter,
298 .d_discard = nodiscard,
299 .d_flag = D_OTHER | D_MPSAFE
300 };
301
302 bpfjit_func_t
303 bpf_jit_generate(bpf_ctx_t *bc, void *code, size_t size)
304 {
305 struct bpfjit_ops *ops = &bpfjit_module_ops;
306 bpfjit_func_t (*generate_code)(const bpf_ctx_t *,
307 const struct bpf_insn *, size_t);
308
309 generate_code = atomic_load_acquire(&ops->bj_generate_code);
310 if (generate_code != NULL) {
311 return generate_code(bc, code, size);
312 }
313 return NULL;
314 }
315
316 void
317 bpf_jit_freecode(bpfjit_func_t jcode)
318 {
319 KASSERT(bpfjit_module_ops.bj_free_code != NULL);
320 bpfjit_module_ops.bj_free_code(jcode);
321 }
322
323 static int
324 bpf_movein(struct uio *uio, int linktype, uint64_t mtu, struct mbuf **mp,
325 struct sockaddr *sockp)
326 {
327 struct mbuf *m, *m0, *n;
328 int error;
329 size_t len;
330 size_t hlen;
331 size_t align;
332
333 /*
334 * Build a sockaddr based on the data link layer type.
335 * We do this at this level because the ethernet header
336 * is copied directly into the data field of the sockaddr.
337 * In the case of SLIP, there is no header and the packet
338 * is forwarded as is.
339 * Also, we are careful to leave room at the front of the mbuf
340 * for the link level header.
341 */
342 switch (linktype) {
343
344 case DLT_SLIP:
345 sockp->sa_family = AF_INET;
346 hlen = 0;
347 align = 0;
348 break;
349
350 case DLT_PPP:
351 sockp->sa_family = AF_UNSPEC;
352 hlen = 0;
353 align = 0;
354 break;
355
356 case DLT_EN10MB:
357 sockp->sa_family = AF_UNSPEC;
358 /* XXX Would MAXLINKHDR be better? */
359 /* 6(dst)+6(src)+2(type) */
360 hlen = sizeof(struct ether_header);
361 align = 2;
362 break;
363
364 case DLT_ARCNET:
365 sockp->sa_family = AF_UNSPEC;
366 hlen = ARC_HDRLEN;
367 align = 5;
368 break;
369
370 case DLT_FDDI:
371 sockp->sa_family = AF_LINK;
372 /* XXX 4(FORMAC)+6(dst)+6(src) */
373 hlen = 16;
374 align = 0;
375 break;
376
377 case DLT_ECONET:
378 sockp->sa_family = AF_UNSPEC;
379 hlen = 6;
380 align = 2;
381 break;
382
383 case DLT_NULL:
384 sockp->sa_family = AF_UNSPEC;
385 hlen = 0;
386 align = 0;
387 break;
388
389 default:
390 return (EIO);
391 }
392
393 len = uio->uio_resid;
394 /*
395 * If there aren't enough bytes for a link level header or the
396 * packet length exceeds the interface mtu, return an error.
397 */
398 if (len - hlen > mtu)
399 return (EMSGSIZE);
400
401 m0 = m = m_gethdr(M_WAIT, MT_DATA);
402 m_reset_rcvif(m);
403 m->m_pkthdr.len = (int)(len - hlen);
404 if (len + align > MHLEN) {
405 m_clget(m, M_WAIT);
406 if ((m->m_flags & M_EXT) == 0) {
407 error = ENOBUFS;
408 goto bad;
409 }
410 }
411
412 /* Insure the data is properly aligned */
413 if (align > 0)
414 m->m_data += align;
415
416 for (;;) {
417 len = M_TRAILINGSPACE(m);
418 if (len > uio->uio_resid)
419 len = uio->uio_resid;
420 error = uiomove(mtod(m, void *), len, uio);
421 if (error)
422 goto bad;
423 m->m_len = len;
424
425 if (uio->uio_resid == 0)
426 break;
427
428 n = m_get(M_WAIT, MT_DATA);
429 m_clget(n, M_WAIT); /* if fails, there is no problem */
430 m->m_next = n;
431 m = n;
432 }
433
434 if (hlen != 0) {
435 /* move link level header in the top of mbuf to sa_data */
436 memcpy(sockp->sa_data, mtod(m0, void *), hlen);
437 m0->m_data += hlen;
438 m0->m_len -= hlen;
439 }
440
441 *mp = m0;
442 return (0);
443
444 bad:
445 m_freem(m0);
446 return (error);
447 }
448
449 /*
450 * Attach file to the bpf interface, i.e. make d listen on bp.
451 */
452 static void
453 bpf_attachd(struct bpf_d *d, struct bpf_if *bp)
454 {
455
456 KASSERT(mutex_owned(&bpf_mtx));
457 KASSERT(mutex_owned(d->bd_mtx));
458 /*
459 * Point d at bp, and add d to the interface's list of listeners.
460 * Finally, point the driver's bpf cookie at the interface so
461 * it will divert packets to bpf.
462 */
463 d->bd_bif = bp;
464 BPFIF_DLIST_WRITER_INSERT_HEAD(bp, d);
465
466 *bp->bif_driverp = bp;
467 }
468
469 /*
470 * Detach a file from its interface.
471 */
472 static void
473 bpf_detachd(struct bpf_d *d)
474 {
475 struct bpf_if *bp;
476
477 KASSERT(mutex_owned(&bpf_mtx));
478 KASSERT(mutex_owned(d->bd_mtx));
479
480 bp = d->bd_bif;
481 /*
482 * Check if this descriptor had requested promiscuous mode.
483 * If so, turn it off.
484 */
485 if (d->bd_promisc) {
486 int error __diagused;
487
488 d->bd_promisc = 0;
489 /*
490 * Take device out of promiscuous mode. Since we were
491 * able to enter promiscuous mode, we should be able
492 * to turn it off. But we can get an error if
493 * the interface was configured down, so only panic
494 * if we don't get an unexpected error.
495 */
496 KERNEL_LOCK_UNLESS_NET_MPSAFE();
497 error = ifpromisc(bp->bif_ifp, 0);
498 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
499 #ifdef DIAGNOSTIC
500 if (error)
501 printf("%s: ifpromisc failed: %d", __func__, error);
502 #endif
503 }
504
505 /* Remove d from the interface's descriptor list. */
506 BPFIF_DLIST_WRITER_REMOVE(d);
507
508 pserialize_perform(bpf_psz);
509
510 if (BPFIF_DLIST_WRITER_EMPTY(bp)) {
511 /*
512 * Let the driver know that there are no more listeners.
513 */
514 *d->bd_bif->bif_driverp = NULL;
515 }
516 d->bd_bif = NULL;
517 }
518
519 static void
520 bpf_init(void)
521 {
522
523 mutex_init(&bpf_mtx, MUTEX_DEFAULT, IPL_NONE);
524 bpf_psz = pserialize_create();
525 bpf_psref_class = psref_class_create("bpf", IPL_SOFTNET);
526
527 PSLIST_INIT(&bpf_iflist);
528 PSLIST_INIT(&bpf_dlist);
529
530 bpf_gstats_percpu = percpu_alloc(sizeof(struct bpf_stat));
531
532 return;
533 }
534
535 /*
536 * bpfilterattach() is called at boot time. We don't need to do anything
537 * here, since any initialization will happen as part of module init code.
538 */
539 /* ARGSUSED */
540 void
541 bpfilterattach(int n)
542 {
543
544 }
545
546 /*
547 * Open ethernet device. Clones.
548 */
549 /* ARGSUSED */
550 int
551 bpfopen(dev_t dev, int flag, int mode, struct lwp *l)
552 {
553 struct bpf_d *d;
554 struct file *fp;
555 int error, fd;
556
557 /* falloc() will fill in the descriptor for us. */
558 if ((error = fd_allocfile(&fp, &fd)) != 0)
559 return error;
560
561 d = kmem_zalloc(sizeof(*d), KM_SLEEP);
562 d->bd_bufsize = bpf_bufsize;
563 d->bd_direction = BPF_D_INOUT;
564 d->bd_feedback = 0;
565 d->bd_pid = l->l_proc->p_pid;
566 #ifdef _LP64
567 if (curproc->p_flag & PK_32)
568 d->bd_compat32 = 1;
569 #endif
570 getnanotime(&d->bd_btime);
571 d->bd_atime = d->bd_mtime = d->bd_btime;
572 callout_init(&d->bd_callout, CALLOUT_MPSAFE);
573 selinit(&d->bd_sel);
574 d->bd_jitcode = NULL;
575 d->bd_filter = NULL;
576 BPF_DLIST_ENTRY_INIT(d);
577 BPFIF_DLIST_ENTRY_INIT(d);
578 d->bd_mtx = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
579 d->bd_buf_mtx = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);
580 cv_init(&d->bd_cv, "bpf");
581
582 mutex_enter(&bpf_mtx);
583 BPF_DLIST_WRITER_INSERT_HEAD(d);
584 mutex_exit(&bpf_mtx);
585
586 return fd_clone(fp, fd, flag, &bpf_fileops, d);
587 }
588
589 /*
590 * Close the descriptor by detaching it from its interface,
591 * deallocating its buffers, and marking it free.
592 */
593 /* ARGSUSED */
594 static int
595 bpf_close(struct file *fp)
596 {
597 struct bpf_d *d;
598
599 mutex_enter(&bpf_mtx);
600
601 if ((d = fp->f_bpf) == NULL) {
602 mutex_exit(&bpf_mtx);
603 return 0;
604 }
605
606 /*
607 * Refresh the PID associated with this bpf file.
608 */
609 d->bd_pid = curproc->p_pid;
610
611 mutex_enter(d->bd_mtx);
612 if (d->bd_state == BPF_WAITING)
613 callout_halt(&d->bd_callout, d->bd_mtx);
614 d->bd_state = BPF_IDLE;
615 if (d->bd_bif)
616 bpf_detachd(d);
617 mutex_exit(d->bd_mtx);
618
619 BPF_DLIST_WRITER_REMOVE(d);
620
621 pserialize_perform(bpf_psz);
622 mutex_exit(&bpf_mtx);
623
624 BPFIF_DLIST_ENTRY_DESTROY(d);
625 BPF_DLIST_ENTRY_DESTROY(d);
626 fp->f_bpf = NULL;
627 bpf_freed(d);
628 callout_destroy(&d->bd_callout);
629 seldestroy(&d->bd_sel);
630 mutex_obj_free(d->bd_mtx);
631 mutex_obj_free(d->bd_buf_mtx);
632 cv_destroy(&d->bd_cv);
633
634 kmem_free(d, sizeof(*d));
635
636 return (0);
637 }
638
639 /*
640 * Rotate the packet buffers in descriptor d. Move the store buffer
641 * into the hold slot, and the free buffer into the store slot.
642 * Zero the length of the new store buffer.
643 */
644 #define ROTATE_BUFFERS(d) \
645 (d)->bd_hbuf = (d)->bd_sbuf; \
646 (d)->bd_hlen = (d)->bd_slen; \
647 (d)->bd_sbuf = (d)->bd_fbuf; \
648 (d)->bd_slen = 0; \
649 (d)->bd_fbuf = NULL;
650 /*
651 * bpfread - read next chunk of packets from buffers
652 */
653 static int
654 bpf_read(struct file *fp, off_t *offp, struct uio *uio,
655 kauth_cred_t cred, int flags)
656 {
657 struct bpf_d *d = fp->f_bpf;
658 int timed_out;
659 int error;
660
661 getnanotime(&d->bd_atime);
662 /*
663 * Restrict application to use a buffer the same size as
664 * the kernel buffers.
665 */
666 if (uio->uio_resid != d->bd_bufsize)
667 return (EINVAL);
668
669 mutex_enter(d->bd_mtx);
670 if (d->bd_state == BPF_WAITING)
671 callout_halt(&d->bd_callout, d->bd_mtx);
672 timed_out = (d->bd_state == BPF_TIMED_OUT);
673 d->bd_state = BPF_IDLE;
674 mutex_exit(d->bd_mtx);
675 /*
676 * If the hold buffer is empty, then do a timed sleep, which
677 * ends when the timeout expires or when enough packets
678 * have arrived to fill the store buffer.
679 */
680 mutex_enter(d->bd_buf_mtx);
681 while (d->bd_hbuf == NULL) {
682 if (fp->f_flag & FNONBLOCK) {
683 if (d->bd_slen == 0) {
684 error = EWOULDBLOCK;
685 goto out;
686 }
687 ROTATE_BUFFERS(d);
688 break;
689 }
690
691 if ((d->bd_immediate || timed_out) && d->bd_slen != 0) {
692 /*
693 * A packet(s) either arrived since the previous
694 * read or arrived while we were asleep.
695 * Rotate the buffers and return what's here.
696 */
697 ROTATE_BUFFERS(d);
698 break;
699 }
700
701 error = cv_timedwait_sig(&d->bd_cv, d->bd_buf_mtx, d->bd_rtout);
702
703 if (error == EINTR || error == ERESTART)
704 goto out;
705
706 if (error == EWOULDBLOCK) {
707 /*
708 * On a timeout, return what's in the buffer,
709 * which may be nothing. If there is something
710 * in the store buffer, we can rotate the buffers.
711 */
712 if (d->bd_hbuf)
713 /*
714 * We filled up the buffer in between
715 * getting the timeout and arriving
716 * here, so we don't need to rotate.
717 */
718 break;
719
720 if (d->bd_slen == 0) {
721 error = 0;
722 goto out;
723 }
724 ROTATE_BUFFERS(d);
725 break;
726 }
727 if (error != 0)
728 goto out;
729 }
730 /*
731 * At this point, we know we have something in the hold slot.
732 */
733 mutex_exit(d->bd_buf_mtx);
734
735 /*
736 * Move data from hold buffer into user space.
737 * We know the entire buffer is transferred since
738 * we checked above that the read buffer is bpf_bufsize bytes.
739 */
740 error = uiomove(d->bd_hbuf, d->bd_hlen, uio);
741
742 mutex_enter(d->bd_buf_mtx);
743 d->bd_fbuf = d->bd_hbuf;
744 d->bd_hbuf = NULL;
745 d->bd_hlen = 0;
746 out:
747 mutex_exit(d->bd_buf_mtx);
748 return (error);
749 }
750
751
752 /*
753 * If there are processes sleeping on this descriptor, wake them up.
754 */
755 static inline void
756 bpf_wakeup(struct bpf_d *d)
757 {
758
759 mutex_enter(d->bd_buf_mtx);
760 cv_broadcast(&d->bd_cv);
761 mutex_exit(d->bd_buf_mtx);
762
763 if (d->bd_async)
764 fownsignal(d->bd_pgid, SIGIO, 0, 0, NULL);
765 selnotify(&d->bd_sel, 0, 0);
766 }
767
768 static void
769 bpf_timed_out(void *arg)
770 {
771 struct bpf_d *d = arg;
772
773 mutex_enter(d->bd_mtx);
774 if (d->bd_state == BPF_WAITING) {
775 d->bd_state = BPF_TIMED_OUT;
776 if (d->bd_slen != 0)
777 bpf_wakeup(d);
778 }
779 mutex_exit(d->bd_mtx);
780 }
781
782
783 static int
784 bpf_write(struct file *fp, off_t *offp, struct uio *uio,
785 kauth_cred_t cred, int flags)
786 {
787 struct bpf_d *d = fp->f_bpf;
788 struct bpf_if *bp;
789 struct ifnet *ifp;
790 struct mbuf *m, *mc;
791 int error;
792 static struct sockaddr_storage dst;
793 struct psref psref;
794 int bound;
795
796 m = NULL; /* XXX gcc */
797
798 bound = curlwp_bind();
799 mutex_enter(d->bd_mtx);
800 bp = d->bd_bif;
801 if (bp == NULL) {
802 mutex_exit(d->bd_mtx);
803 error = ENXIO;
804 goto out_bindx;
805 }
806 bpf_if_acquire(bp, &psref);
807 mutex_exit(d->bd_mtx);
808
809 getnanotime(&d->bd_mtime);
810
811 ifp = bp->bif_ifp;
812 if (if_is_deactivated(ifp)) {
813 error = ENXIO;
814 goto out;
815 }
816
817 if (uio->uio_resid == 0) {
818 error = 0;
819 goto out;
820 }
821
822 error = bpf_movein(uio, (int)bp->bif_dlt, ifp->if_mtu, &m,
823 (struct sockaddr *) &dst);
824 if (error)
825 goto out;
826
827 if (m->m_pkthdr.len > ifp->if_mtu) {
828 m_freem(m);
829 error = EMSGSIZE;
830 goto out;
831 }
832
833 if (d->bd_hdrcmplt)
834 dst.ss_family = pseudo_AF_HDRCMPLT;
835
836 if (d->bd_feedback) {
837 mc = m_dup(m, 0, M_COPYALL, M_NOWAIT);
838 if (mc != NULL)
839 m_set_rcvif(mc, ifp);
840 /* Set M_PROMISC for outgoing packets to be discarded. */
841 if (1 /*d->bd_direction == BPF_D_INOUT*/)
842 m->m_flags |= M_PROMISC;
843 } else
844 mc = NULL;
845
846 error = if_output_lock(ifp, ifp, m, (struct sockaddr *) &dst, NULL);
847
848 if (mc != NULL) {
849 if (error == 0) {
850 int s = splsoftnet();
851 KERNEL_LOCK_UNLESS_IFP_MPSAFE(ifp);
852 ifp->_if_input(ifp, mc);
853 KERNEL_UNLOCK_UNLESS_IFP_MPSAFE(ifp);
854 splx(s);
855 } else
856 m_freem(mc);
857 }
858 /*
859 * The driver frees the mbuf.
860 */
861 out:
862 bpf_if_release(bp, &psref);
863 out_bindx:
864 curlwp_bindx(bound);
865 return error;
866 }
867
868 /*
869 * Reset a descriptor by flushing its packet buffer and clearing the
870 * receive and drop counts.
871 */
872 static void
873 reset_d(struct bpf_d *d)
874 {
875
876 KASSERT(mutex_owned(d->bd_mtx));
877
878 mutex_enter(d->bd_buf_mtx);
879 if (d->bd_hbuf) {
880 /* Free the hold buffer. */
881 d->bd_fbuf = d->bd_hbuf;
882 d->bd_hbuf = NULL;
883 }
884 d->bd_slen = 0;
885 d->bd_hlen = 0;
886 d->bd_rcount = 0;
887 d->bd_dcount = 0;
888 d->bd_ccount = 0;
889 mutex_exit(d->bd_buf_mtx);
890 }
891
892 /*
893 * FIONREAD Check for read packet available.
894 * BIOCGBLEN Get buffer len [for read()].
895 * BIOCSETF Set ethernet read filter.
896 * BIOCFLUSH Flush read packet buffer.
897 * BIOCPROMISC Put interface into promiscuous mode.
898 * BIOCGDLT Get link layer type.
899 * BIOCGETIF Get interface name.
900 * BIOCSETIF Set interface.
901 * BIOCSRTIMEOUT Set read timeout.
902 * BIOCGRTIMEOUT Get read timeout.
903 * BIOCGSTATS Get packet stats.
904 * BIOCIMMEDIATE Set immediate mode.
905 * BIOCVERSION Get filter language version.
906 * BIOCGHDRCMPLT Get "header already complete" flag.
907 * BIOCSHDRCMPLT Set "header already complete" flag.
908 * BIOCSFEEDBACK Set packet feedback mode.
909 * BIOCGFEEDBACK Get packet feedback mode.
910 * BIOCGDIRECTION Get packet direction flag
911 * BIOCSDIRECTION Set packet direction flag
912 */
913 /* ARGSUSED */
914 static int
915 bpf_ioctl(struct file *fp, u_long cmd, void *addr)
916 {
917 struct bpf_d *d = fp->f_bpf;
918 int error = 0;
919
920 /*
921 * Refresh the PID associated with this bpf file.
922 */
923 d->bd_pid = curproc->p_pid;
924 #ifdef _LP64
925 if (curproc->p_flag & PK_32)
926 d->bd_compat32 = 1;
927 else
928 d->bd_compat32 = 0;
929 #endif
930
931 mutex_enter(d->bd_mtx);
932 if (d->bd_state == BPF_WAITING)
933 callout_halt(&d->bd_callout, d->bd_mtx);
934 d->bd_state = BPF_IDLE;
935 mutex_exit(d->bd_mtx);
936
937 switch (cmd) {
938
939 default:
940 error = EINVAL;
941 break;
942
943 /*
944 * Check for read packet available.
945 */
946 case FIONREAD:
947 {
948 int n;
949
950 mutex_enter(d->bd_buf_mtx);
951 n = d->bd_slen;
952 if (d->bd_hbuf)
953 n += d->bd_hlen;
954 mutex_exit(d->bd_buf_mtx);
955
956 *(int *)addr = n;
957 break;
958 }
959
960 /*
961 * Get buffer len [for read()].
962 */
963 case BIOCGBLEN:
964 *(u_int *)addr = d->bd_bufsize;
965 break;
966
967 /*
968 * Set buffer length.
969 */
970 case BIOCSBLEN:
971 /*
972 * Forbid to change the buffer length if buffers are already
973 * allocated.
974 */
975 mutex_enter(d->bd_mtx);
976 mutex_enter(d->bd_buf_mtx);
977 if (d->bd_bif != NULL || d->bd_sbuf != NULL)
978 error = EINVAL;
979 else {
980 u_int size = *(u_int *)addr;
981
982 if (size > bpf_maxbufsize)
983 *(u_int *)addr = size = bpf_maxbufsize;
984 else if (size < BPF_MINBUFSIZE)
985 *(u_int *)addr = size = BPF_MINBUFSIZE;
986 d->bd_bufsize = size;
987 }
988 mutex_exit(d->bd_buf_mtx);
989 mutex_exit(d->bd_mtx);
990 break;
991
992 /*
993 * Set link layer read filter.
994 */
995 case BIOCSETF:
996 error = bpf_setf(d, addr);
997 break;
998
999 /*
1000 * Flush read packet buffer.
1001 */
1002 case BIOCFLUSH:
1003 mutex_enter(d->bd_mtx);
1004 reset_d(d);
1005 mutex_exit(d->bd_mtx);
1006 break;
1007
1008 /*
1009 * Put interface into promiscuous mode.
1010 */
1011 case BIOCPROMISC:
1012 mutex_enter(d->bd_mtx);
1013 if (d->bd_bif == NULL) {
1014 mutex_exit(d->bd_mtx);
1015 /*
1016 * No interface attached yet.
1017 */
1018 error = EINVAL;
1019 break;
1020 }
1021 if (d->bd_promisc == 0) {
1022 KERNEL_LOCK_UNLESS_NET_MPSAFE();
1023 error = ifpromisc(d->bd_bif->bif_ifp, 1);
1024 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
1025 if (error == 0)
1026 d->bd_promisc = 1;
1027 }
1028 mutex_exit(d->bd_mtx);
1029 break;
1030
1031 /*
1032 * Get device parameters.
1033 */
1034 case BIOCGDLT:
1035 mutex_enter(d->bd_mtx);
1036 if (d->bd_bif == NULL)
1037 error = EINVAL;
1038 else
1039 *(u_int *)addr = d->bd_bif->bif_dlt;
1040 mutex_exit(d->bd_mtx);
1041 break;
1042
1043 /*
1044 * Get a list of supported device parameters.
1045 */
1046 case BIOCGDLTLIST:
1047 mutex_enter(d->bd_mtx);
1048 if (d->bd_bif == NULL)
1049 error = EINVAL;
1050 else
1051 error = bpf_getdltlist(d, addr);
1052 mutex_exit(d->bd_mtx);
1053 break;
1054
1055 /*
1056 * Set device parameters.
1057 */
1058 case BIOCSDLT:
1059 mutex_enter(&bpf_mtx);
1060 mutex_enter(d->bd_mtx);
1061 if (d->bd_bif == NULL)
1062 error = EINVAL;
1063 else
1064 error = bpf_setdlt(d, *(u_int *)addr);
1065 mutex_exit(d->bd_mtx);
1066 mutex_exit(&bpf_mtx);
1067 break;
1068
1069 /*
1070 * Set interface name.
1071 */
1072 #ifdef OBIOCGETIF
1073 case OBIOCGETIF:
1074 #endif
1075 case BIOCGETIF:
1076 mutex_enter(d->bd_mtx);
1077 if (d->bd_bif == NULL)
1078 error = EINVAL;
1079 else
1080 bpf_ifname(d->bd_bif->bif_ifp, addr);
1081 mutex_exit(d->bd_mtx);
1082 break;
1083
1084 /*
1085 * Set interface.
1086 */
1087 #ifdef OBIOCSETIF
1088 case OBIOCSETIF:
1089 #endif
1090 case BIOCSETIF:
1091 mutex_enter(&bpf_mtx);
1092 error = bpf_setif(d, addr);
1093 mutex_exit(&bpf_mtx);
1094 break;
1095
1096 /*
1097 * Set read timeout.
1098 */
1099 case BIOCSRTIMEOUT:
1100 {
1101 struct timeval *tv = addr;
1102
1103 /* Compute number of ticks. */
1104 d->bd_rtout = tv->tv_sec * hz + tv->tv_usec / tick;
1105 if ((d->bd_rtout == 0) && (tv->tv_usec != 0))
1106 d->bd_rtout = 1;
1107 break;
1108 }
1109
1110 #ifdef BIOCGORTIMEOUT
1111 /*
1112 * Get read timeout.
1113 */
1114 case BIOCGORTIMEOUT:
1115 {
1116 struct timeval50 *tv = addr;
1117
1118 tv->tv_sec = d->bd_rtout / hz;
1119 tv->tv_usec = (d->bd_rtout % hz) * tick;
1120 break;
1121 }
1122 #endif
1123
1124 #ifdef BIOCSORTIMEOUT
1125 /*
1126 * Set read timeout.
1127 */
1128 case BIOCSORTIMEOUT:
1129 {
1130 struct timeval50 *tv = addr;
1131
1132 /* Compute number of ticks. */
1133 d->bd_rtout = tv->tv_sec * hz + tv->tv_usec / tick;
1134 if ((d->bd_rtout == 0) && (tv->tv_usec != 0))
1135 d->bd_rtout = 1;
1136 break;
1137 }
1138 #endif
1139
1140 /*
1141 * Get read timeout.
1142 */
1143 case BIOCGRTIMEOUT:
1144 {
1145 struct timeval *tv = addr;
1146
1147 tv->tv_sec = d->bd_rtout / hz;
1148 tv->tv_usec = (d->bd_rtout % hz) * tick;
1149 break;
1150 }
1151 /*
1152 * Get packet stats.
1153 */
1154 case BIOCGSTATS:
1155 {
1156 struct bpf_stat *bs = addr;
1157
1158 bs->bs_recv = d->bd_rcount;
1159 bs->bs_drop = d->bd_dcount;
1160 bs->bs_capt = d->bd_ccount;
1161 break;
1162 }
1163
1164 case BIOCGSTATSOLD:
1165 {
1166 struct bpf_stat_old *bs = addr;
1167
1168 bs->bs_recv = d->bd_rcount;
1169 bs->bs_drop = d->bd_dcount;
1170 break;
1171 }
1172
1173 /*
1174 * Set immediate mode.
1175 */
1176 case BIOCIMMEDIATE:
1177 d->bd_immediate = *(u_int *)addr;
1178 break;
1179
1180 case BIOCVERSION:
1181 {
1182 struct bpf_version *bv = addr;
1183
1184 bv->bv_major = BPF_MAJOR_VERSION;
1185 bv->bv_minor = BPF_MINOR_VERSION;
1186 break;
1187 }
1188
1189 case BIOCGHDRCMPLT: /* get "header already complete" flag */
1190 *(u_int *)addr = d->bd_hdrcmplt;
1191 break;
1192
1193 case BIOCSHDRCMPLT: /* set "header already complete" flag */
1194 d->bd_hdrcmplt = *(u_int *)addr ? 1 : 0;
1195 break;
1196
1197 /*
1198 * Get packet direction flag
1199 */
1200 case BIOCGDIRECTION:
1201 *(u_int *)addr = d->bd_direction;
1202 break;
1203
1204 /*
1205 * Set packet direction flag
1206 */
1207 case BIOCSDIRECTION:
1208 {
1209 u_int direction;
1210
1211 direction = *(u_int *)addr;
1212 switch (direction) {
1213 case BPF_D_IN:
1214 case BPF_D_INOUT:
1215 case BPF_D_OUT:
1216 d->bd_direction = direction;
1217 break;
1218 default:
1219 error = EINVAL;
1220 }
1221 }
1222 break;
1223
1224 /*
1225 * Set "feed packets from bpf back to input" mode
1226 */
1227 case BIOCSFEEDBACK:
1228 d->bd_feedback = *(u_int *)addr;
1229 break;
1230
1231 /*
1232 * Get "feed packets from bpf back to input" mode
1233 */
1234 case BIOCGFEEDBACK:
1235 *(u_int *)addr = d->bd_feedback;
1236 break;
1237
1238 case FIONBIO: /* Non-blocking I/O */
1239 /*
1240 * No need to do anything special as we use IO_NDELAY in
1241 * bpfread() as an indication of whether or not to block
1242 * the read.
1243 */
1244 break;
1245
1246 case FIOASYNC: /* Send signal on receive packets */
1247 mutex_enter(d->bd_mtx);
1248 d->bd_async = *(int *)addr;
1249 mutex_exit(d->bd_mtx);
1250 break;
1251
1252 case TIOCSPGRP: /* Process or group to send signals to */
1253 case FIOSETOWN:
1254 error = fsetown(&d->bd_pgid, cmd, addr);
1255 break;
1256
1257 case TIOCGPGRP:
1258 case FIOGETOWN:
1259 error = fgetown(d->bd_pgid, cmd, addr);
1260 break;
1261 }
1262 return (error);
1263 }
1264
1265 /*
1266 * Set d's packet filter program to fp. If this file already has a filter,
1267 * free it and replace it. Returns EINVAL for bogus requests.
1268 */
1269 static int
1270 bpf_setf(struct bpf_d *d, struct bpf_program *fp)
1271 {
1272 struct bpf_insn *fcode;
1273 bpfjit_func_t jcode;
1274 size_t flen, size = 0;
1275 struct bpf_filter *oldf, *newf;
1276
1277 jcode = NULL;
1278 flen = fp->bf_len;
1279
1280 if ((fp->bf_insns == NULL && flen) || flen > BPF_MAXINSNS) {
1281 return EINVAL;
1282 }
1283
1284 if (flen) {
1285 /*
1286 * Allocate the buffer, copy the byte-code from
1287 * userspace and validate it.
1288 */
1289 size = flen * sizeof(*fp->bf_insns);
1290 fcode = kmem_alloc(size, KM_SLEEP);
1291 if (copyin(fp->bf_insns, fcode, size) != 0 ||
1292 !bpf_validate(fcode, (int)flen)) {
1293 kmem_free(fcode, size);
1294 return EINVAL;
1295 }
1296 if (bpf_jit)
1297 jcode = bpf_jit_generate(NULL, fcode, flen);
1298 } else {
1299 fcode = NULL;
1300 }
1301
1302 newf = kmem_alloc(sizeof(*newf), KM_SLEEP);
1303 newf->bf_insn = fcode;
1304 newf->bf_size = size;
1305 newf->bf_jitcode = jcode;
1306 d->bd_jitcode = jcode; /* XXX just for kvm(3) users */
1307
1308 /* Need to hold bpf_mtx for pserialize_perform */
1309 mutex_enter(&bpf_mtx);
1310 mutex_enter(d->bd_mtx);
1311 oldf = d->bd_filter;
1312 atomic_store_release(&d->bd_filter, newf);
1313 reset_d(d);
1314 pserialize_perform(bpf_psz);
1315 mutex_exit(d->bd_mtx);
1316 mutex_exit(&bpf_mtx);
1317
1318 if (oldf != NULL)
1319 bpf_free_filter(oldf);
1320
1321 return 0;
1322 }
1323
1324 /*
1325 * Detach a file from its current interface (if attached at all) and attach
1326 * to the interface indicated by the name stored in ifr.
1327 * Return an errno or 0.
1328 */
1329 static int
1330 bpf_setif(struct bpf_d *d, struct ifreq *ifr)
1331 {
1332 struct bpf_if *bp;
1333 char *cp;
1334 int unit_seen, i, error;
1335
1336 KASSERT(mutex_owned(&bpf_mtx));
1337 /*
1338 * Make sure the provided name has a unit number, and default
1339 * it to '0' if not specified.
1340 * XXX This is ugly ... do this differently?
1341 */
1342 unit_seen = 0;
1343 cp = ifr->ifr_name;
1344 cp[sizeof(ifr->ifr_name) - 1] = '\0'; /* sanity */
1345 while (*cp++)
1346 if (*cp >= '0' && *cp <= '9')
1347 unit_seen = 1;
1348 if (!unit_seen) {
1349 /* Make sure to leave room for the '\0'. */
1350 for (i = 0; i < (IFNAMSIZ - 1); ++i) {
1351 if ((ifr->ifr_name[i] >= 'a' &&
1352 ifr->ifr_name[i] <= 'z') ||
1353 (ifr->ifr_name[i] >= 'A' &&
1354 ifr->ifr_name[i] <= 'Z'))
1355 continue;
1356 ifr->ifr_name[i] = '0';
1357 }
1358 }
1359
1360 /*
1361 * Look through attached interfaces for the named one.
1362 */
1363 BPF_IFLIST_WRITER_FOREACH(bp) {
1364 struct ifnet *ifp = bp->bif_ifp;
1365
1366 if (ifp == NULL ||
1367 strcmp(ifp->if_xname, ifr->ifr_name) != 0)
1368 continue;
1369 /* skip additional entry */
1370 if (bp->bif_driverp != &ifp->if_bpf)
1371 continue;
1372 /*
1373 * We found the requested interface.
1374 * Allocate the packet buffers if we need to.
1375 * If we're already attached to requested interface,
1376 * just flush the buffer.
1377 */
1378 /*
1379 * bpf_allocbufs is called only here. bpf_mtx ensures that
1380 * no race condition happen on d->bd_sbuf.
1381 */
1382 if (d->bd_sbuf == NULL) {
1383 error = bpf_allocbufs(d);
1384 if (error != 0)
1385 return (error);
1386 }
1387 mutex_enter(d->bd_mtx);
1388 if (bp != d->bd_bif) {
1389 if (d->bd_bif) {
1390 /*
1391 * Detach if attached to something else.
1392 */
1393 bpf_detachd(d);
1394 BPFIF_DLIST_ENTRY_INIT(d);
1395 }
1396
1397 bpf_attachd(d, bp);
1398 }
1399 reset_d(d);
1400 mutex_exit(d->bd_mtx);
1401 return (0);
1402 }
1403 /* Not found. */
1404 return (ENXIO);
1405 }
1406
1407 /*
1408 * Copy the interface name to the ifreq.
1409 */
1410 static void
1411 bpf_ifname(struct ifnet *ifp, struct ifreq *ifr)
1412 {
1413 memcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
1414 }
1415
1416 static int
1417 bpf_stat(struct file *fp, struct stat *st)
1418 {
1419 struct bpf_d *d = fp->f_bpf;
1420
1421 (void)memset(st, 0, sizeof(*st));
1422 mutex_enter(d->bd_mtx);
1423 st->st_dev = makedev(cdevsw_lookup_major(&bpf_cdevsw), d->bd_pid);
1424 st->st_atimespec = d->bd_atime;
1425 st->st_mtimespec = d->bd_mtime;
1426 st->st_ctimespec = st->st_birthtimespec = d->bd_btime;
1427 st->st_uid = kauth_cred_geteuid(fp->f_cred);
1428 st->st_gid = kauth_cred_getegid(fp->f_cred);
1429 st->st_mode = S_IFCHR;
1430 mutex_exit(d->bd_mtx);
1431 return 0;
1432 }
1433
1434 /*
1435 * Support for poll() system call
1436 *
1437 * Return true iff the specific operation will not block indefinitely - with
1438 * the assumption that it is safe to positively acknowledge a request for the
1439 * ability to write to the BPF device.
1440 * Otherwise, return false but make a note that a selnotify() must be done.
1441 */
1442 static int
1443 bpf_poll(struct file *fp, int events)
1444 {
1445 struct bpf_d *d = fp->f_bpf;
1446 int revents;
1447
1448 /*
1449 * Refresh the PID associated with this bpf file.
1450 */
1451 mutex_enter(&bpf_mtx);
1452 d->bd_pid = curproc->p_pid;
1453
1454 revents = events & (POLLOUT | POLLWRNORM);
1455 if (events & (POLLIN | POLLRDNORM)) {
1456 /*
1457 * An imitation of the FIONREAD ioctl code.
1458 */
1459 mutex_enter(d->bd_mtx);
1460 if (d->bd_hlen != 0 ||
1461 ((d->bd_immediate || d->bd_state == BPF_TIMED_OUT) &&
1462 d->bd_slen != 0)) {
1463 revents |= events & (POLLIN | POLLRDNORM);
1464 } else {
1465 selrecord(curlwp, &d->bd_sel);
1466 /* Start the read timeout if necessary */
1467 if (d->bd_rtout > 0 && d->bd_state == BPF_IDLE) {
1468 callout_reset(&d->bd_callout, d->bd_rtout,
1469 bpf_timed_out, d);
1470 d->bd_state = BPF_WAITING;
1471 }
1472 }
1473 mutex_exit(d->bd_mtx);
1474 }
1475
1476 mutex_exit(&bpf_mtx);
1477 return (revents);
1478 }
1479
1480 static void
1481 filt_bpfrdetach(struct knote *kn)
1482 {
1483 struct bpf_d *d = kn->kn_hook;
1484
1485 mutex_enter(d->bd_buf_mtx);
1486 SLIST_REMOVE(&d->bd_sel.sel_klist, kn, knote, kn_selnext);
1487 mutex_exit(d->bd_buf_mtx);
1488 }
1489
1490 static int
1491 filt_bpfread(struct knote *kn, long hint)
1492 {
1493 struct bpf_d *d = kn->kn_hook;
1494 int rv;
1495
1496 mutex_enter(d->bd_buf_mtx);
1497 kn->kn_data = d->bd_hlen;
1498 if (d->bd_immediate)
1499 kn->kn_data += d->bd_slen;
1500 rv = (kn->kn_data > 0);
1501 mutex_exit(d->bd_buf_mtx);
1502 return rv;
1503 }
1504
1505 static const struct filterops bpfread_filtops = {
1506 .f_isfd = 1,
1507 .f_attach = NULL,
1508 .f_detach = filt_bpfrdetach,
1509 .f_event = filt_bpfread,
1510 };
1511
1512 static int
1513 bpf_kqfilter(struct file *fp, struct knote *kn)
1514 {
1515 struct bpf_d *d = fp->f_bpf;
1516 struct klist *klist;
1517
1518 mutex_enter(d->bd_buf_mtx);
1519 switch (kn->kn_filter) {
1520 case EVFILT_READ:
1521 klist = &d->bd_sel.sel_klist;
1522 kn->kn_fop = &bpfread_filtops;
1523 break;
1524
1525 default:
1526 mutex_exit(d->bd_buf_mtx);
1527 return (EINVAL);
1528 }
1529
1530 kn->kn_hook = d;
1531
1532 SLIST_INSERT_HEAD(klist, kn, kn_selnext);
1533 mutex_exit(d->bd_buf_mtx);
1534
1535 return (0);
1536 }
1537
1538 /*
1539 * Copy data from an mbuf chain into a buffer. This code is derived
1540 * from m_copydata in sys/uipc_mbuf.c.
1541 */
1542 static void *
1543 bpf_mcpy(void *dst_arg, const void *src_arg, size_t len)
1544 {
1545 const struct mbuf *m;
1546 u_int count;
1547 u_char *dst;
1548
1549 m = src_arg;
1550 dst = dst_arg;
1551 while (len > 0) {
1552 if (m == NULL)
1553 panic("bpf_mcpy");
1554 count = uimin(m->m_len, len);
1555 memcpy(dst, mtod(m, const void *), count);
1556 m = m->m_next;
1557 dst += count;
1558 len -= count;
1559 }
1560 return dst_arg;
1561 }
1562
1563 /*
1564 * Dispatch a packet to all the listeners on interface bp.
1565 *
1566 * pkt pointer to the packet, either a data buffer or an mbuf chain
1567 * buflen buffer length, if pkt is a data buffer
1568 * cpfn a function that can copy pkt into the listener's buffer
1569 * pktlen length of the packet
1570 * direction BPF_D_IN or BPF_D_OUT
1571 */
1572 static inline void
1573 bpf_deliver(struct bpf_if *bp, void *(*cpfn)(void *, const void *, size_t),
1574 void *pkt, u_int pktlen, u_int buflen, const u_int direction)
1575 {
1576 uint32_t mem[BPF_MEMWORDS];
1577 bpf_args_t args = {
1578 .pkt = (const uint8_t *)pkt,
1579 .wirelen = pktlen,
1580 .buflen = buflen,
1581 .mem = mem,
1582 .arg = NULL
1583 };
1584 bool gottime = false;
1585 struct timespec ts;
1586 struct bpf_d *d;
1587 int s;
1588
1589 KASSERT(!cpu_intr_p());
1590
1591 /*
1592 * Note that the IPL does not have to be raised at this point.
1593 * The only problem that could arise here is that if two different
1594 * interfaces shared any data. This is not the case.
1595 */
1596 s = pserialize_read_enter();
1597 BPFIF_DLIST_READER_FOREACH(d, bp) {
1598 u_int slen = 0;
1599 struct bpf_filter *filter;
1600
1601 if (direction == BPF_D_IN) {
1602 if (d->bd_direction == BPF_D_OUT)
1603 continue;
1604 } else { /* BPF_D_OUT */
1605 if (d->bd_direction == BPF_D_IN)
1606 continue;
1607 }
1608
1609 atomic_inc_ulong(&d->bd_rcount);
1610 BPF_STATINC(recv);
1611
1612 filter = atomic_load_consume(&d->bd_filter);
1613 if (filter != NULL) {
1614 if (filter->bf_jitcode != NULL)
1615 slen = filter->bf_jitcode(NULL, &args);
1616 else
1617 slen = bpf_filter_ext(NULL, filter->bf_insn,
1618 &args);
1619 }
1620
1621 if (!slen) {
1622 continue;
1623 }
1624 if (!gottime) {
1625 gottime = true;
1626 nanotime(&ts);
1627 }
1628 /* Assume catchpacket doesn't sleep */
1629 catchpacket(d, pkt, pktlen, slen, cpfn, &ts);
1630 }
1631 pserialize_read_exit(s);
1632 }
1633
1634 /*
1635 * Incoming linkage from device drivers, when the head of the packet is in
1636 * a buffer, and the tail is in an mbuf chain.
1637 */
1638 static void
1639 _bpf_mtap2(struct bpf_if *bp, void *data, u_int dlen, struct mbuf *m,
1640 u_int direction)
1641 {
1642 u_int pktlen;
1643 struct mbuf mb;
1644
1645 /* Skip outgoing duplicate packets. */
1646 if ((m->m_flags & M_PROMISC) != 0 && m->m_pkthdr.rcvif_index == 0) {
1647 m->m_flags &= ~M_PROMISC;
1648 return;
1649 }
1650
1651 pktlen = m_length(m) + dlen;
1652
1653 /*
1654 * Craft on-stack mbuf suitable for passing to bpf_filter.
1655 * Note that we cut corners here; we only setup what's
1656 * absolutely needed--this mbuf should never go anywhere else.
1657 */
1658 (void)memset(&mb, 0, sizeof(mb));
1659 mb.m_type = MT_DATA;
1660 mb.m_next = m;
1661 mb.m_data = data;
1662 mb.m_len = dlen;
1663
1664 bpf_deliver(bp, bpf_mcpy, &mb, pktlen, 0, direction);
1665 }
1666
1667 /*
1668 * Incoming linkage from device drivers, when packet is in an mbuf chain.
1669 */
1670 static void
1671 _bpf_mtap(struct bpf_if *bp, struct mbuf *m, u_int direction)
1672 {
1673 void *(*cpfn)(void *, const void *, size_t);
1674 u_int pktlen, buflen;
1675 void *marg;
1676
1677 /* Skip outgoing duplicate packets. */
1678 if ((m->m_flags & M_PROMISC) != 0 && m->m_pkthdr.rcvif_index == 0) {
1679 m->m_flags &= ~M_PROMISC;
1680 return;
1681 }
1682
1683 pktlen = m_length(m);
1684
1685 /* Skip zero-sized packets. */
1686 if (__predict_false(pktlen == 0)) {
1687 return;
1688 }
1689
1690 if (pktlen == m->m_len) {
1691 cpfn = (void *)memcpy;
1692 marg = mtod(m, void *);
1693 buflen = pktlen;
1694 KASSERT(buflen != 0);
1695 } else {
1696 cpfn = bpf_mcpy;
1697 marg = m;
1698 buflen = 0;
1699 }
1700
1701 bpf_deliver(bp, cpfn, marg, pktlen, buflen, direction);
1702 }
1703
1704 /*
1705 * We need to prepend the address family as
1706 * a four byte field. Cons up a dummy header
1707 * to pacify bpf. This is safe because bpf
1708 * will only read from the mbuf (i.e., it won't
1709 * try to free it or keep a pointer a to it).
1710 */
1711 static void
1712 _bpf_mtap_af(struct bpf_if *bp, uint32_t af, struct mbuf *m, u_int direction)
1713 {
1714 struct mbuf m0;
1715
1716 m0.m_type = MT_DATA;
1717 m0.m_flags = 0;
1718 m0.m_next = m;
1719 m0.m_nextpkt = NULL;
1720 m0.m_owner = NULL;
1721 m0.m_len = 4;
1722 m0.m_data = (char *)⁡
1723
1724 _bpf_mtap(bp, &m0, direction);
1725 }
1726
1727 /*
1728 * Put the SLIP pseudo-"link header" in place.
1729 * Note this M_PREPEND() should never fail,
1730 * swince we know we always have enough space
1731 * in the input buffer.
1732 */
1733 static void
1734 _bpf_mtap_sl_in(struct bpf_if *bp, u_char *chdr, struct mbuf **m)
1735 {
1736 u_char *hp;
1737
1738 M_PREPEND(*m, SLIP_HDRLEN, M_DONTWAIT);
1739 if (*m == NULL)
1740 return;
1741
1742 hp = mtod(*m, u_char *);
1743 hp[SLX_DIR] = SLIPDIR_IN;
1744 (void)memcpy(&hp[SLX_CHDR], chdr, CHDR_LEN);
1745
1746 _bpf_mtap(bp, *m, BPF_D_IN);
1747
1748 m_adj(*m, SLIP_HDRLEN);
1749 }
1750
1751 /*
1752 * Put the SLIP pseudo-"link header" in
1753 * place. The compressed header is now
1754 * at the beginning of the mbuf.
1755 */
1756 static void
1757 _bpf_mtap_sl_out(struct bpf_if *bp, u_char *chdr, struct mbuf *m)
1758 {
1759 struct mbuf m0;
1760 u_char *hp;
1761
1762 m0.m_type = MT_DATA;
1763 m0.m_flags = 0;
1764 m0.m_next = m;
1765 m0.m_nextpkt = NULL;
1766 m0.m_owner = NULL;
1767 m0.m_data = m0.m_dat;
1768 m0.m_len = SLIP_HDRLEN;
1769
1770 hp = mtod(&m0, u_char *);
1771
1772 hp[SLX_DIR] = SLIPDIR_OUT;
1773 (void)memcpy(&hp[SLX_CHDR], chdr, CHDR_LEN);
1774
1775 _bpf_mtap(bp, &m0, BPF_D_OUT);
1776 m_freem(m);
1777 }
1778
1779 static struct mbuf *
1780 bpf_mbuf_enqueue(struct bpf_if *bp, struct mbuf *m)
1781 {
1782 struct mbuf *dup;
1783
1784 dup = m_dup(m, 0, M_COPYALL, M_NOWAIT);
1785 if (dup == NULL)
1786 return NULL;
1787
1788 if (bp->bif_mbuf_tail != NULL) {
1789 bp->bif_mbuf_tail->m_nextpkt = dup;
1790 } else {
1791 bp->bif_mbuf_head = dup;
1792 }
1793 bp->bif_mbuf_tail = dup;
1794 #ifdef BPF_MTAP_SOFTINT_DEBUG
1795 log(LOG_DEBUG, "%s: enqueued mbuf=%p to %s\n",
1796 __func__, dup, bp->bif_ifp->if_xname);
1797 #endif
1798
1799 return dup;
1800 }
1801
1802 static struct mbuf *
1803 bpf_mbuf_dequeue(struct bpf_if *bp)
1804 {
1805 struct mbuf *m;
1806 int s;
1807
1808 /* XXX NOMPSAFE: assumed running on one CPU */
1809 s = splnet();
1810 m = bp->bif_mbuf_head;
1811 if (m != NULL) {
1812 bp->bif_mbuf_head = m->m_nextpkt;
1813 m->m_nextpkt = NULL;
1814
1815 if (bp->bif_mbuf_head == NULL)
1816 bp->bif_mbuf_tail = NULL;
1817 #ifdef BPF_MTAP_SOFTINT_DEBUG
1818 log(LOG_DEBUG, "%s: dequeued mbuf=%p from %s\n",
1819 __func__, m, bp->bif_ifp->if_xname);
1820 #endif
1821 }
1822 splx(s);
1823
1824 return m;
1825 }
1826
1827 static void
1828 bpf_mtap_si(void *arg)
1829 {
1830 struct bpf_if *bp = arg;
1831 struct mbuf *m;
1832
1833 while ((m = bpf_mbuf_dequeue(bp)) != NULL) {
1834 #ifdef BPF_MTAP_SOFTINT_DEBUG
1835 log(LOG_DEBUG, "%s: tapping mbuf=%p on %s\n",
1836 __func__, m, bp->bif_ifp->if_xname);
1837 #endif
1838 bpf_ops->bpf_mtap(bp, m, BPF_D_IN);
1839 m_freem(m);
1840 }
1841 }
1842
1843 static void
1844 _bpf_mtap_softint(struct ifnet *ifp, struct mbuf *m)
1845 {
1846 struct bpf_if *bp = ifp->if_bpf;
1847 struct mbuf *dup;
1848
1849 KASSERT(cpu_intr_p());
1850
1851 /* To avoid extra invocations of the softint */
1852 if (BPFIF_DLIST_READER_EMPTY(bp))
1853 return;
1854 KASSERT(bp->bif_si != NULL);
1855
1856 dup = bpf_mbuf_enqueue(bp, m);
1857 if (dup != NULL)
1858 softint_schedule(bp->bif_si);
1859 }
1860
1861 static int
1862 bpf_hdrlen(struct bpf_d *d)
1863 {
1864 int hdrlen = d->bd_bif->bif_hdrlen;
1865 /*
1866 * Compute the length of the bpf header. This is not necessarily
1867 * equal to SIZEOF_BPF_HDR because we want to insert spacing such
1868 * that the network layer header begins on a longword boundary (for
1869 * performance reasons and to alleviate alignment restrictions).
1870 */
1871 #ifdef _LP64
1872 if (d->bd_compat32)
1873 return (BPF_WORDALIGN32(hdrlen + SIZEOF_BPF_HDR32) - hdrlen);
1874 else
1875 #endif
1876 return (BPF_WORDALIGN(hdrlen + SIZEOF_BPF_HDR) - hdrlen);
1877 }
1878
1879 /*
1880 * Move the packet data from interface memory (pkt) into the
1881 * store buffer. Call the wakeup functions if it's time to wakeup
1882 * a listener (buffer full), "cpfn" is the routine called to do the
1883 * actual data transfer. memcpy is passed in to copy contiguous chunks,
1884 * while bpf_mcpy is passed in to copy mbuf chains. In the latter case,
1885 * pkt is really an mbuf.
1886 */
1887 static void
1888 catchpacket(struct bpf_d *d, u_char *pkt, u_int pktlen, u_int snaplen,
1889 void *(*cpfn)(void *, const void *, size_t), struct timespec *ts)
1890 {
1891 char *h;
1892 int totlen, curlen, caplen;
1893 int hdrlen = bpf_hdrlen(d);
1894 int do_wakeup = 0;
1895
1896 atomic_inc_ulong(&d->bd_ccount);
1897 BPF_STATINC(capt);
1898 /*
1899 * Figure out how many bytes to move. If the packet is
1900 * greater or equal to the snapshot length, transfer that
1901 * much. Otherwise, transfer the whole packet (unless
1902 * we hit the buffer size limit).
1903 */
1904 totlen = hdrlen + uimin(snaplen, pktlen);
1905 if (totlen > d->bd_bufsize)
1906 totlen = d->bd_bufsize;
1907 /*
1908 * If we adjusted totlen to fit the bufsize, it could be that
1909 * totlen is smaller than hdrlen because of the link layer header.
1910 */
1911 caplen = totlen - hdrlen;
1912 if (caplen < 0)
1913 caplen = 0;
1914
1915 mutex_enter(d->bd_buf_mtx);
1916 /*
1917 * Round up the end of the previous packet to the next longword.
1918 */
1919 #ifdef _LP64
1920 if (d->bd_compat32)
1921 curlen = BPF_WORDALIGN32(d->bd_slen);
1922 else
1923 #endif
1924 curlen = BPF_WORDALIGN(d->bd_slen);
1925 if (curlen + totlen > d->bd_bufsize) {
1926 /*
1927 * This packet will overflow the storage buffer.
1928 * Rotate the buffers if we can, then wakeup any
1929 * pending reads.
1930 */
1931 if (d->bd_fbuf == NULL) {
1932 mutex_exit(d->bd_buf_mtx);
1933 /*
1934 * We haven't completed the previous read yet,
1935 * so drop the packet.
1936 */
1937 atomic_inc_ulong(&d->bd_dcount);
1938 BPF_STATINC(drop);
1939 return;
1940 }
1941 ROTATE_BUFFERS(d);
1942 do_wakeup = 1;
1943 curlen = 0;
1944 } else if (d->bd_immediate || d->bd_state == BPF_TIMED_OUT) {
1945 /*
1946 * Immediate mode is set, or the read timeout has
1947 * already expired during a select call. A packet
1948 * arrived, so the reader should be woken up.
1949 */
1950 do_wakeup = 1;
1951 }
1952
1953 /*
1954 * Append the bpf header.
1955 */
1956 h = (char *)d->bd_sbuf + curlen;
1957 #ifdef _LP64
1958 if (d->bd_compat32) {
1959 struct bpf_hdr32 *hp32;
1960
1961 hp32 = (struct bpf_hdr32 *)h;
1962 hp32->bh_tstamp.tv_sec = ts->tv_sec;
1963 hp32->bh_tstamp.tv_usec = ts->tv_nsec / 1000;
1964 hp32->bh_datalen = pktlen;
1965 hp32->bh_hdrlen = hdrlen;
1966 hp32->bh_caplen = caplen;
1967 } else
1968 #endif
1969 {
1970 struct bpf_hdr *hp;
1971
1972 hp = (struct bpf_hdr *)h;
1973 hp->bh_tstamp.tv_sec = ts->tv_sec;
1974 hp->bh_tstamp.tv_usec = ts->tv_nsec / 1000;
1975 hp->bh_datalen = pktlen;
1976 hp->bh_hdrlen = hdrlen;
1977 hp->bh_caplen = caplen;
1978 }
1979
1980 /*
1981 * Copy the packet data into the store buffer and update its length.
1982 */
1983 (*cpfn)(h + hdrlen, pkt, caplen);
1984 d->bd_slen = curlen + totlen;
1985 mutex_exit(d->bd_buf_mtx);
1986
1987 /*
1988 * Call bpf_wakeup after bd_slen has been updated so that kevent(2)
1989 * will cause filt_bpfread() to be called with it adjusted.
1990 */
1991 if (do_wakeup)
1992 bpf_wakeup(d);
1993 }
1994
1995 /*
1996 * Initialize all nonzero fields of a descriptor.
1997 */
1998 static int
1999 bpf_allocbufs(struct bpf_d *d)
2000 {
2001
2002 d->bd_fbuf = kmem_zalloc(d->bd_bufsize, KM_NOSLEEP);
2003 if (!d->bd_fbuf)
2004 return (ENOBUFS);
2005 d->bd_sbuf = kmem_zalloc(d->bd_bufsize, KM_NOSLEEP);
2006 if (!d->bd_sbuf) {
2007 kmem_free(d->bd_fbuf, d->bd_bufsize);
2008 return (ENOBUFS);
2009 }
2010 d->bd_slen = 0;
2011 d->bd_hlen = 0;
2012 return (0);
2013 }
2014
2015 static void
2016 bpf_free_filter(struct bpf_filter *filter)
2017 {
2018
2019 KASSERT(filter != NULL);
2020 KASSERT(filter->bf_insn != NULL);
2021
2022 kmem_free(filter->bf_insn, filter->bf_size);
2023 if (filter->bf_jitcode != NULL)
2024 bpf_jit_freecode(filter->bf_jitcode);
2025 kmem_free(filter, sizeof(*filter));
2026 }
2027
2028 /*
2029 * Free buffers currently in use by a descriptor.
2030 * Called on close.
2031 */
2032 static void
2033 bpf_freed(struct bpf_d *d)
2034 {
2035 /*
2036 * We don't need to lock out interrupts since this descriptor has
2037 * been detached from its interface and it yet hasn't been marked
2038 * free.
2039 */
2040 if (d->bd_sbuf != NULL) {
2041 kmem_free(d->bd_sbuf, d->bd_bufsize);
2042 if (d->bd_hbuf != NULL)
2043 kmem_free(d->bd_hbuf, d->bd_bufsize);
2044 if (d->bd_fbuf != NULL)
2045 kmem_free(d->bd_fbuf, d->bd_bufsize);
2046 }
2047 if (d->bd_filter != NULL) {
2048 bpf_free_filter(d->bd_filter);
2049 d->bd_filter = NULL;
2050 }
2051 d->bd_jitcode = NULL;
2052 }
2053
2054 /*
2055 * Attach an interface to bpf. dlt is the link layer type;
2056 * hdrlen is the fixed size of the link header for the specified dlt
2057 * (variable length headers not yet supported).
2058 */
2059 static void
2060 _bpfattach(struct ifnet *ifp, u_int dlt, u_int hdrlen, struct bpf_if **driverp)
2061 {
2062 struct bpf_if *bp;
2063 bp = kmem_alloc(sizeof(*bp), KM_NOSLEEP);
2064 if (bp == NULL)
2065 panic("bpfattach");
2066
2067 mutex_enter(&bpf_mtx);
2068 bp->bif_driverp = driverp;
2069 bp->bif_ifp = ifp;
2070 bp->bif_dlt = dlt;
2071 bp->bif_si = NULL;
2072 BPF_IFLIST_ENTRY_INIT(bp);
2073 PSLIST_INIT(&bp->bif_dlist_head);
2074 psref_target_init(&bp->bif_psref, bpf_psref_class);
2075
2076 BPF_IFLIST_WRITER_INSERT_HEAD(bp);
2077
2078 *bp->bif_driverp = NULL;
2079
2080 bp->bif_hdrlen = hdrlen;
2081 mutex_exit(&bpf_mtx);
2082 #if 0
2083 printf("bpf: %s attached\n", ifp->if_xname);
2084 #endif
2085 }
2086
2087 static void
2088 _bpf_mtap_softint_init(struct ifnet *ifp)
2089 {
2090 struct bpf_if *bp;
2091
2092 mutex_enter(&bpf_mtx);
2093 BPF_IFLIST_WRITER_FOREACH(bp) {
2094 if (bp->bif_ifp != ifp)
2095 continue;
2096
2097 bp->bif_mbuf_head = NULL;
2098 bp->bif_mbuf_tail = NULL;
2099 bp->bif_si = softint_establish(SOFTINT_NET, bpf_mtap_si, bp);
2100 if (bp->bif_si == NULL)
2101 panic("%s: softint_establish() failed", __func__);
2102 break;
2103 }
2104 mutex_exit(&bpf_mtx);
2105
2106 if (bp == NULL)
2107 panic("%s: no bpf_if found for %s", __func__, ifp->if_xname);
2108 }
2109
2110 /*
2111 * Remove an interface from bpf.
2112 */
2113 static void
2114 _bpfdetach(struct ifnet *ifp)
2115 {
2116 struct bpf_if *bp;
2117 struct bpf_d *d;
2118 int s;
2119
2120 mutex_enter(&bpf_mtx);
2121 /* Nuke the vnodes for any open instances */
2122 again_d:
2123 BPF_DLIST_WRITER_FOREACH(d) {
2124 mutex_enter(d->bd_mtx);
2125 if (d->bd_bif != NULL && d->bd_bif->bif_ifp == ifp) {
2126 /*
2127 * Detach the descriptor from an interface now.
2128 * It will be free'ed later by close routine.
2129 */
2130 d->bd_promisc = 0; /* we can't touch device. */
2131 bpf_detachd(d);
2132 mutex_exit(d->bd_mtx);
2133 goto again_d;
2134 }
2135 mutex_exit(d->bd_mtx);
2136 }
2137
2138 again:
2139 BPF_IFLIST_WRITER_FOREACH(bp) {
2140 if (bp->bif_ifp == ifp) {
2141 BPF_IFLIST_WRITER_REMOVE(bp);
2142
2143 pserialize_perform(bpf_psz);
2144 psref_target_destroy(&bp->bif_psref, bpf_psref_class);
2145
2146 BPF_IFLIST_ENTRY_DESTROY(bp);
2147 if (bp->bif_si != NULL) {
2148 /* XXX NOMPSAFE: assumed running on one CPU */
2149 s = splnet();
2150 while (bp->bif_mbuf_head != NULL) {
2151 struct mbuf *m = bp->bif_mbuf_head;
2152 bp->bif_mbuf_head = m->m_nextpkt;
2153 m_freem(m);
2154 }
2155 splx(s);
2156 softint_disestablish(bp->bif_si);
2157 }
2158 kmem_free(bp, sizeof(*bp));
2159 goto again;
2160 }
2161 }
2162 mutex_exit(&bpf_mtx);
2163 }
2164
2165 /*
2166 * Change the data link type of a interface.
2167 */
2168 static void
2169 _bpf_change_type(struct ifnet *ifp, u_int dlt, u_int hdrlen)
2170 {
2171 struct bpf_if *bp;
2172
2173 mutex_enter(&bpf_mtx);
2174 BPF_IFLIST_WRITER_FOREACH(bp) {
2175 if (bp->bif_driverp == &ifp->if_bpf)
2176 break;
2177 }
2178 if (bp == NULL)
2179 panic("bpf_change_type");
2180
2181 bp->bif_dlt = dlt;
2182
2183 bp->bif_hdrlen = hdrlen;
2184 mutex_exit(&bpf_mtx);
2185 }
2186
2187 /*
2188 * Get a list of available data link type of the interface.
2189 */
2190 static int
2191 bpf_getdltlist(struct bpf_d *d, struct bpf_dltlist *bfl)
2192 {
2193 int n, error;
2194 struct ifnet *ifp;
2195 struct bpf_if *bp;
2196 int s, bound;
2197
2198 KASSERT(mutex_owned(d->bd_mtx));
2199
2200 ifp = d->bd_bif->bif_ifp;
2201 n = 0;
2202 error = 0;
2203
2204 bound = curlwp_bind();
2205 s = pserialize_read_enter();
2206 BPF_IFLIST_READER_FOREACH(bp) {
2207 if (bp->bif_ifp != ifp)
2208 continue;
2209 if (bfl->bfl_list != NULL) {
2210 struct psref psref;
2211
2212 if (n >= bfl->bfl_len) {
2213 pserialize_read_exit(s);
2214 return ENOMEM;
2215 }
2216
2217 bpf_if_acquire(bp, &psref);
2218 pserialize_read_exit(s);
2219
2220 error = copyout(&bp->bif_dlt,
2221 bfl->bfl_list + n, sizeof(u_int));
2222
2223 s = pserialize_read_enter();
2224 bpf_if_release(bp, &psref);
2225 }
2226 n++;
2227 }
2228 pserialize_read_exit(s);
2229 curlwp_bindx(bound);
2230
2231 bfl->bfl_len = n;
2232 return error;
2233 }
2234
2235 /*
2236 * Set the data link type of a BPF instance.
2237 */
2238 static int
2239 bpf_setdlt(struct bpf_d *d, u_int dlt)
2240 {
2241 int error, opromisc;
2242 struct ifnet *ifp;
2243 struct bpf_if *bp;
2244
2245 KASSERT(mutex_owned(&bpf_mtx));
2246 KASSERT(mutex_owned(d->bd_mtx));
2247
2248 if (d->bd_bif->bif_dlt == dlt)
2249 return 0;
2250 ifp = d->bd_bif->bif_ifp;
2251 BPF_IFLIST_WRITER_FOREACH(bp) {
2252 if (bp->bif_ifp == ifp && bp->bif_dlt == dlt)
2253 break;
2254 }
2255 if (bp == NULL)
2256 return EINVAL;
2257 opromisc = d->bd_promisc;
2258 bpf_detachd(d);
2259 BPFIF_DLIST_ENTRY_INIT(d);
2260 bpf_attachd(d, bp);
2261 reset_d(d);
2262 if (opromisc) {
2263 KERNEL_LOCK_UNLESS_NET_MPSAFE();
2264 error = ifpromisc(bp->bif_ifp, 1);
2265 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
2266 if (error)
2267 printf("%s: bpf_setdlt: ifpromisc failed (%d)\n",
2268 bp->bif_ifp->if_xname, error);
2269 else
2270 d->bd_promisc = 1;
2271 }
2272 return 0;
2273 }
2274
2275 static int
2276 sysctl_net_bpf_maxbufsize(SYSCTLFN_ARGS)
2277 {
2278 int newsize, error;
2279 struct sysctlnode node;
2280
2281 node = *rnode;
2282 node.sysctl_data = &newsize;
2283 newsize = bpf_maxbufsize;
2284 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2285 if (error || newp == NULL)
2286 return (error);
2287
2288 if (newsize < BPF_MINBUFSIZE || newsize > BPF_MAXBUFSIZE)
2289 return (EINVAL);
2290
2291 bpf_maxbufsize = newsize;
2292
2293 return (0);
2294 }
2295
2296 #if defined(MODULAR) || defined(BPFJIT)
2297 static int
2298 sysctl_net_bpf_jit(SYSCTLFN_ARGS)
2299 {
2300 bool newval;
2301 int error;
2302 struct sysctlnode node;
2303
2304 node = *rnode;
2305 node.sysctl_data = &newval;
2306 newval = bpf_jit;
2307 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2308 if (error != 0 || newp == NULL)
2309 return error;
2310
2311 bpf_jit = newval;
2312 if (newval && bpfjit_module_ops.bj_generate_code == NULL) {
2313 printf("JIT compilation is postponed "
2314 "until after bpfjit module is loaded\n");
2315 }
2316
2317 return 0;
2318 }
2319 #endif
2320
2321 static int
2322 sysctl_net_bpf_peers(SYSCTLFN_ARGS)
2323 {
2324 int error, elem_count;
2325 struct bpf_d *dp;
2326 struct bpf_d_ext dpe;
2327 size_t len, needed, elem_size, out_size;
2328 char *sp;
2329
2330 if (namelen == 1 && name[0] == CTL_QUERY)
2331 return (sysctl_query(SYSCTLFN_CALL(rnode)));
2332
2333 if (namelen != 2)
2334 return (EINVAL);
2335
2336 /* BPF peers is privileged information. */
2337 error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_INTERFACE,
2338 KAUTH_REQ_NETWORK_INTERFACE_GETPRIV, NULL, NULL, NULL);
2339 if (error)
2340 return (EPERM);
2341
2342 len = (oldp != NULL) ? *oldlenp : 0;
2343 sp = oldp;
2344 elem_size = name[0];
2345 elem_count = name[1];
2346 out_size = MIN(sizeof(dpe), elem_size);
2347 needed = 0;
2348
2349 if (elem_size < 1 || elem_count < 0)
2350 return (EINVAL);
2351
2352 mutex_enter(&bpf_mtx);
2353 BPF_DLIST_WRITER_FOREACH(dp) {
2354 if (len >= elem_size && elem_count > 0) {
2355 #define BPF_EXT(field) dpe.bde_ ## field = dp->bd_ ## field
2356 BPF_EXT(bufsize);
2357 BPF_EXT(promisc);
2358 BPF_EXT(state);
2359 BPF_EXT(immediate);
2360 BPF_EXT(hdrcmplt);
2361 BPF_EXT(direction);
2362 BPF_EXT(pid);
2363 BPF_EXT(rcount);
2364 BPF_EXT(dcount);
2365 BPF_EXT(ccount);
2366 #undef BPF_EXT
2367 mutex_enter(dp->bd_mtx);
2368 if (dp->bd_bif)
2369 (void)strlcpy(dpe.bde_ifname,
2370 dp->bd_bif->bif_ifp->if_xname,
2371 IFNAMSIZ - 1);
2372 else
2373 dpe.bde_ifname[0] = '\0';
2374 mutex_exit(dp->bd_mtx);
2375
2376 error = copyout(&dpe, sp, out_size);
2377 if (error)
2378 break;
2379 sp += elem_size;
2380 len -= elem_size;
2381 }
2382 needed += elem_size;
2383 if (elem_count > 0 && elem_count != INT_MAX)
2384 elem_count--;
2385 }
2386 mutex_exit(&bpf_mtx);
2387
2388 *oldlenp = needed;
2389
2390 return (error);
2391 }
2392
2393 static void
2394 bpf_stats(void *p, void *arg, struct cpu_info *ci __unused)
2395 {
2396 struct bpf_stat *const stats = p;
2397 struct bpf_stat *sum = arg;
2398
2399 int s = splnet();
2400
2401 sum->bs_recv += stats->bs_recv;
2402 sum->bs_drop += stats->bs_drop;
2403 sum->bs_capt += stats->bs_capt;
2404
2405 splx(s);
2406 }
2407
2408 static int
2409 bpf_sysctl_gstats_handler(SYSCTLFN_ARGS)
2410 {
2411 struct sysctlnode node;
2412 int error;
2413 struct bpf_stat sum;
2414
2415 memset(&sum, 0, sizeof(sum));
2416 node = *rnode;
2417
2418 percpu_foreach_xcall(bpf_gstats_percpu, XC_HIGHPRI_IPL(IPL_SOFTNET),
2419 bpf_stats, &sum);
2420
2421 node.sysctl_data = ∑
2422 node.sysctl_size = sizeof(sum);
2423 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2424 if (error != 0 || newp == NULL)
2425 return error;
2426
2427 return 0;
2428 }
2429
2430 SYSCTL_SETUP(sysctl_net_bpf_setup, "bpf sysctls")
2431 {
2432 const struct sysctlnode *node;
2433
2434 node = NULL;
2435 sysctl_createv(clog, 0, NULL, &node,
2436 CTLFLAG_PERMANENT,
2437 CTLTYPE_NODE, "bpf",
2438 SYSCTL_DESCR("BPF options"),
2439 NULL, 0, NULL, 0,
2440 CTL_NET, CTL_CREATE, CTL_EOL);
2441 if (node != NULL) {
2442 #if defined(MODULAR) || defined(BPFJIT)
2443 sysctl_createv(clog, 0, NULL, NULL,
2444 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2445 CTLTYPE_BOOL, "jit",
2446 SYSCTL_DESCR("Toggle Just-In-Time compilation"),
2447 sysctl_net_bpf_jit, 0, &bpf_jit, 0,
2448 CTL_NET, node->sysctl_num, CTL_CREATE, CTL_EOL);
2449 #endif
2450 sysctl_createv(clog, 0, NULL, NULL,
2451 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2452 CTLTYPE_INT, "maxbufsize",
2453 SYSCTL_DESCR("Maximum size for data capture buffer"),
2454 sysctl_net_bpf_maxbufsize, 0, &bpf_maxbufsize, 0,
2455 CTL_NET, node->sysctl_num, CTL_CREATE, CTL_EOL);
2456 sysctl_createv(clog, 0, NULL, NULL,
2457 CTLFLAG_PERMANENT,
2458 CTLTYPE_STRUCT, "stats",
2459 SYSCTL_DESCR("BPF stats"),
2460 bpf_sysctl_gstats_handler, 0, NULL, 0,
2461 CTL_NET, node->sysctl_num, CTL_CREATE, CTL_EOL);
2462 sysctl_createv(clog, 0, NULL, NULL,
2463 CTLFLAG_PERMANENT,
2464 CTLTYPE_STRUCT, "peers",
2465 SYSCTL_DESCR("BPF peers"),
2466 sysctl_net_bpf_peers, 0, NULL, 0,
2467 CTL_NET, node->sysctl_num, CTL_CREATE, CTL_EOL);
2468 }
2469
2470 }
2471
2472 struct bpf_ops bpf_ops_kernel = {
2473 .bpf_attach = _bpfattach,
2474 .bpf_detach = _bpfdetach,
2475 .bpf_change_type = _bpf_change_type,
2476
2477 .bpf_mtap = _bpf_mtap,
2478 .bpf_mtap2 = _bpf_mtap2,
2479 .bpf_mtap_af = _bpf_mtap_af,
2480 .bpf_mtap_sl_in = _bpf_mtap_sl_in,
2481 .bpf_mtap_sl_out = _bpf_mtap_sl_out,
2482
2483 .bpf_mtap_softint = _bpf_mtap_softint,
2484 .bpf_mtap_softint_init = _bpf_mtap_softint_init,
2485 };
2486
2487 MODULE(MODULE_CLASS_DRIVER, bpf, "bpf_filter");
2488
2489 static int
2490 bpf_modcmd(modcmd_t cmd, void *arg)
2491 {
2492 #ifdef _MODULE
2493 devmajor_t bmajor, cmajor;
2494 #endif
2495 int error = 0;
2496
2497 switch (cmd) {
2498 case MODULE_CMD_INIT:
2499 bpf_init();
2500 #ifdef _MODULE
2501 bmajor = cmajor = NODEVMAJOR;
2502 error = devsw_attach("bpf", NULL, &bmajor,
2503 &bpf_cdevsw, &cmajor);
2504 if (error)
2505 break;
2506 #endif
2507
2508 bpf_ops_handover_enter(&bpf_ops_kernel);
2509 atomic_swap_ptr(&bpf_ops, &bpf_ops_kernel);
2510 bpf_ops_handover_exit();
2511 break;
2512
2513 case MODULE_CMD_FINI:
2514 /*
2515 * While there is no reference counting for bpf callers,
2516 * unload could at least in theory be done similarly to
2517 * system call disestablishment. This should even be
2518 * a little simpler:
2519 *
2520 * 1) replace op vector with stubs
2521 * 2) post update to all cpus with xc
2522 * 3) check that nobody is in bpf anymore
2523 * (it's doubtful we'd want something like l_sysent,
2524 * but we could do something like *signed* percpu
2525 * counters. if the sum is 0, we're good).
2526 * 4) if fail, unroll changes
2527 *
2528 * NOTE: change won't be atomic to the outside. some
2529 * packets may be not captured even if unload is
2530 * not succesful. I think packet capture not working
2531 * is a perfectly logical consequence of trying to
2532 * disable packet capture.
2533 */
2534 error = EOPNOTSUPP;
2535 break;
2536
2537 default:
2538 error = ENOTTY;
2539 break;
2540 }
2541
2542 return error;
2543 }
2544