bpf.c revision 1.238 1 /* $NetBSD: bpf.c,v 1.238 2020/08/02 07:19:39 maxv Exp $ */
2
3 /*
4 * Copyright (c) 1990, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from the Stanford/CMU enet packet filter,
8 * (net/enet.c) distributed as part of 4.3BSD, and code contributed
9 * to Berkeley by Steven McCanne and Van Jacobson both of Lawrence
10 * Berkeley Laboratory.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)bpf.c 8.4 (Berkeley) 1/9/95
37 * static char rcsid[] =
38 * "Header: bpf.c,v 1.67 96/09/26 22:00:52 leres Exp ";
39 */
40
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: bpf.c,v 1.238 2020/08/02 07:19:39 maxv Exp $");
43
44 #if defined(_KERNEL_OPT)
45 #include "opt_bpf.h"
46 #include "sl.h"
47 #include "opt_net_mpsafe.h"
48 #endif
49
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/mbuf.h>
53 #include <sys/buf.h>
54 #include <sys/time.h>
55 #include <sys/proc.h>
56 #include <sys/ioctl.h>
57 #include <sys/conf.h>
58 #include <sys/vnode.h>
59 #include <sys/queue.h>
60 #include <sys/stat.h>
61 #include <sys/module.h>
62 #include <sys/atomic.h>
63 #include <sys/cpu.h>
64
65 #include <sys/file.h>
66 #include <sys/filedesc.h>
67 #include <sys/tty.h>
68 #include <sys/uio.h>
69
70 #include <sys/protosw.h>
71 #include <sys/socket.h>
72 #include <sys/errno.h>
73 #include <sys/kernel.h>
74 #include <sys/poll.h>
75 #include <sys/sysctl.h>
76 #include <sys/kauth.h>
77 #include <sys/syslog.h>
78 #include <sys/percpu.h>
79 #include <sys/pserialize.h>
80 #include <sys/lwp.h>
81 #include <sys/xcall.h>
82
83 #include <net/if.h>
84 #include <net/slip.h>
85
86 #include <net/bpf.h>
87 #include <net/bpfdesc.h>
88 #include <net/bpfjit.h>
89
90 #include <net/if_arc.h>
91 #include <net/if_ether.h>
92
93 #include <netinet/in.h>
94 #include <netinet/if_inarp.h>
95
96
97 #include <compat/sys/sockio.h>
98
99 #ifndef BPF_BUFSIZE
100 /*
101 * 4096 is too small for FDDI frames. 8192 is too small for gigabit Ethernet
102 * jumbos (circa 9k), ATM, or Intel gig/10gig ethernet jumbos (16k).
103 */
104 # define BPF_BUFSIZE 32768
105 #endif
106
107 #define PRINET 26 /* interruptible */
108
109 /*
110 * The default read buffer size, and limit for BIOCSBLEN, is sysctl'able.
111 * XXX the default values should be computed dynamically based
112 * on available memory size and available mbuf clusters.
113 */
114 static int bpf_bufsize = BPF_BUFSIZE;
115 static int bpf_maxbufsize = BPF_DFLTBUFSIZE; /* XXX set dynamically, see above */
116 static bool bpf_jit = false;
117
118 struct bpfjit_ops bpfjit_module_ops = {
119 .bj_generate_code = NULL,
120 .bj_free_code = NULL
121 };
122
123 /*
124 * Global BPF statistics returned by net.bpf.stats sysctl.
125 */
126 static struct percpu *bpf_gstats_percpu; /* struct bpf_stat */
127
128 #define BPF_STATINC(id) \
129 { \
130 struct bpf_stat *__stats = \
131 percpu_getref(bpf_gstats_percpu); \
132 __stats->bs_##id++; \
133 percpu_putref(bpf_gstats_percpu); \
134 }
135
136 /*
137 * Locking notes:
138 * - bpf_mtx (adaptive mutex) protects:
139 * - Gobal lists: bpf_iflist and bpf_dlist
140 * - struct bpf_if
141 * - bpf_close
142 * - bpf_psz (pserialize)
143 * - struct bpf_d has two mutexes:
144 * - bd_buf_mtx (spin mutex) protects the buffers that can be accessed
145 * on packet tapping
146 * - bd_mtx (adaptive mutex) protects member variables other than the buffers
147 * - Locking order: bpf_mtx => bpf_d#bd_mtx => bpf_d#bd_buf_mtx
148 * - struct bpf_d obtained via fp->f_bpf in bpf_read and bpf_write is
149 * never freed because struct bpf_d is only freed in bpf_close and
150 * bpf_close never be called while executing bpf_read and bpf_write
151 * - A filter that is assigned to bpf_d can be replaced with another filter
152 * while tapping packets, so it needs to be done atomically
153 * - struct bpf_d is iterated on bpf_dlist with psz
154 * - struct bpf_if is iterated on bpf_iflist with psz or psref
155 */
156 /*
157 * Use a mutex to avoid a race condition between gathering the stats/peers
158 * and opening/closing the device.
159 */
160 static kmutex_t bpf_mtx;
161
162 static struct psref_class *bpf_psref_class __read_mostly;
163 static pserialize_t bpf_psz;
164
165 static inline void
166 bpf_if_acquire(struct bpf_if *bp, struct psref *psref)
167 {
168
169 psref_acquire(psref, &bp->bif_psref, bpf_psref_class);
170 }
171
172 static inline void
173 bpf_if_release(struct bpf_if *bp, struct psref *psref)
174 {
175
176 psref_release(psref, &bp->bif_psref, bpf_psref_class);
177 }
178
179 /*
180 * bpf_iflist is the list of interfaces; each corresponds to an ifnet
181 * bpf_dtab holds the descriptors, indexed by minor device #
182 */
183 static struct pslist_head bpf_iflist;
184 static struct pslist_head bpf_dlist;
185
186 /* Macros for bpf_d on bpf_dlist */
187 #define BPF_DLIST_WRITER_INSERT_HEAD(__d) \
188 PSLIST_WRITER_INSERT_HEAD(&bpf_dlist, (__d), bd_bpf_dlist_entry)
189 #define BPF_DLIST_READER_FOREACH(__d) \
190 PSLIST_READER_FOREACH((__d), &bpf_dlist, struct bpf_d, \
191 bd_bpf_dlist_entry)
192 #define BPF_DLIST_WRITER_FOREACH(__d) \
193 PSLIST_WRITER_FOREACH((__d), &bpf_dlist, struct bpf_d, \
194 bd_bpf_dlist_entry)
195 #define BPF_DLIST_ENTRY_INIT(__d) \
196 PSLIST_ENTRY_INIT((__d), bd_bpf_dlist_entry)
197 #define BPF_DLIST_WRITER_REMOVE(__d) \
198 PSLIST_WRITER_REMOVE((__d), bd_bpf_dlist_entry)
199 #define BPF_DLIST_ENTRY_DESTROY(__d) \
200 PSLIST_ENTRY_DESTROY((__d), bd_bpf_dlist_entry)
201
202 /* Macros for bpf_if on bpf_iflist */
203 #define BPF_IFLIST_WRITER_INSERT_HEAD(__bp) \
204 PSLIST_WRITER_INSERT_HEAD(&bpf_iflist, (__bp), bif_iflist_entry)
205 #define BPF_IFLIST_READER_FOREACH(__bp) \
206 PSLIST_READER_FOREACH((__bp), &bpf_iflist, struct bpf_if, \
207 bif_iflist_entry)
208 #define BPF_IFLIST_WRITER_FOREACH(__bp) \
209 PSLIST_WRITER_FOREACH((__bp), &bpf_iflist, struct bpf_if, \
210 bif_iflist_entry)
211 #define BPF_IFLIST_WRITER_REMOVE(__bp) \
212 PSLIST_WRITER_REMOVE((__bp), bif_iflist_entry)
213 #define BPF_IFLIST_ENTRY_INIT(__bp) \
214 PSLIST_ENTRY_INIT((__bp), bif_iflist_entry)
215 #define BPF_IFLIST_ENTRY_DESTROY(__bp) \
216 PSLIST_ENTRY_DESTROY((__bp), bif_iflist_entry)
217
218 /* Macros for bpf_d on bpf_if#bif_dlist_pslist */
219 #define BPFIF_DLIST_READER_FOREACH(__d, __bp) \
220 PSLIST_READER_FOREACH((__d), &(__bp)->bif_dlist_head, struct bpf_d, \
221 bd_bif_dlist_entry)
222 #define BPFIF_DLIST_WRITER_INSERT_HEAD(__bp, __d) \
223 PSLIST_WRITER_INSERT_HEAD(&(__bp)->bif_dlist_head, (__d), \
224 bd_bif_dlist_entry)
225 #define BPFIF_DLIST_WRITER_REMOVE(__d) \
226 PSLIST_WRITER_REMOVE((__d), bd_bif_dlist_entry)
227 #define BPFIF_DLIST_ENTRY_INIT(__d) \
228 PSLIST_ENTRY_INIT((__d), bd_bif_dlist_entry)
229 #define BPFIF_DLIST_READER_EMPTY(__bp) \
230 (PSLIST_READER_FIRST(&(__bp)->bif_dlist_head, struct bpf_d, \
231 bd_bif_dlist_entry) == NULL)
232 #define BPFIF_DLIST_WRITER_EMPTY(__bp) \
233 (PSLIST_WRITER_FIRST(&(__bp)->bif_dlist_head, struct bpf_d, \
234 bd_bif_dlist_entry) == NULL)
235 #define BPFIF_DLIST_ENTRY_DESTROY(__d) \
236 PSLIST_ENTRY_DESTROY((__d), bd_bif_dlist_entry)
237
238 static int bpf_allocbufs(struct bpf_d *);
239 static u_int bpf_xfilter(struct bpf_filter **, void *, u_int, u_int);
240 static void bpf_deliver(struct bpf_if *,
241 void *(*cpfn)(void *, const void *, size_t),
242 void *, u_int, u_int, const u_int);
243 static void bpf_freed(struct bpf_d *);
244 static void bpf_free_filter(struct bpf_filter *);
245 static void bpf_ifname(struct ifnet *, struct ifreq *);
246 static void *bpf_mcpy(void *, const void *, size_t);
247 static int bpf_movein(struct uio *, int, uint64_t,
248 struct mbuf **, struct sockaddr *,
249 struct bpf_filter **);
250 static void bpf_attachd(struct bpf_d *, struct bpf_if *);
251 static void bpf_detachd(struct bpf_d *);
252 static int bpf_setif(struct bpf_d *, struct ifreq *);
253 static int bpf_setf(struct bpf_d *, struct bpf_program *, u_long);
254 static void bpf_timed_out(void *);
255 static inline void
256 bpf_wakeup(struct bpf_d *);
257 static int bpf_hdrlen(struct bpf_d *);
258 static void catchpacket(struct bpf_d *, u_char *, u_int, u_int,
259 void *(*)(void *, const void *, size_t), struct timespec *);
260 static void reset_d(struct bpf_d *);
261 static int bpf_getdltlist(struct bpf_d *, struct bpf_dltlist *);
262 static int bpf_setdlt(struct bpf_d *, u_int);
263
264 static int bpf_read(struct file *, off_t *, struct uio *, kauth_cred_t,
265 int);
266 static int bpf_write(struct file *, off_t *, struct uio *, kauth_cred_t,
267 int);
268 static int bpf_ioctl(struct file *, u_long, void *);
269 static int bpf_poll(struct file *, int);
270 static int bpf_stat(struct file *, struct stat *);
271 static int bpf_close(struct file *);
272 static int bpf_kqfilter(struct file *, struct knote *);
273
274 static const struct fileops bpf_fileops = {
275 .fo_name = "bpf",
276 .fo_read = bpf_read,
277 .fo_write = bpf_write,
278 .fo_ioctl = bpf_ioctl,
279 .fo_fcntl = fnullop_fcntl,
280 .fo_poll = bpf_poll,
281 .fo_stat = bpf_stat,
282 .fo_close = bpf_close,
283 .fo_kqfilter = bpf_kqfilter,
284 .fo_restart = fnullop_restart,
285 };
286
287 dev_type_open(bpfopen);
288
289 const struct cdevsw bpf_cdevsw = {
290 .d_open = bpfopen,
291 .d_close = noclose,
292 .d_read = noread,
293 .d_write = nowrite,
294 .d_ioctl = noioctl,
295 .d_stop = nostop,
296 .d_tty = notty,
297 .d_poll = nopoll,
298 .d_mmap = nommap,
299 .d_kqfilter = nokqfilter,
300 .d_discard = nodiscard,
301 .d_flag = D_OTHER | D_MPSAFE
302 };
303
304 bpfjit_func_t
305 bpf_jit_generate(bpf_ctx_t *bc, void *code, size_t size)
306 {
307 struct bpfjit_ops *ops = &bpfjit_module_ops;
308 bpfjit_func_t (*generate_code)(const bpf_ctx_t *,
309 const struct bpf_insn *, size_t);
310
311 generate_code = atomic_load_acquire(&ops->bj_generate_code);
312 if (generate_code != NULL) {
313 return generate_code(bc, code, size);
314 }
315 return NULL;
316 }
317
318 void
319 bpf_jit_freecode(bpfjit_func_t jcode)
320 {
321 KASSERT(bpfjit_module_ops.bj_free_code != NULL);
322 bpfjit_module_ops.bj_free_code(jcode);
323 }
324
325 static int
326 bpf_movein(struct uio *uio, int linktype, uint64_t mtu, struct mbuf **mp,
327 struct sockaddr *sockp, struct bpf_filter **wfilter)
328 {
329 struct mbuf *m, *m0, *n;
330 int error;
331 size_t len;
332 size_t hlen;
333 size_t align;
334 u_int slen;
335
336 /*
337 * Build a sockaddr based on the data link layer type.
338 * We do this at this level because the ethernet header
339 * is copied directly into the data field of the sockaddr.
340 * In the case of SLIP, there is no header and the packet
341 * is forwarded as is.
342 * Also, we are careful to leave room at the front of the mbuf
343 * for the link level header.
344 */
345 switch (linktype) {
346
347 case DLT_SLIP:
348 sockp->sa_family = AF_INET;
349 hlen = 0;
350 align = 0;
351 break;
352
353 case DLT_PPP:
354 sockp->sa_family = AF_UNSPEC;
355 hlen = 0;
356 align = 0;
357 break;
358
359 case DLT_EN10MB:
360 sockp->sa_family = AF_UNSPEC;
361 /* XXX Would MAXLINKHDR be better? */
362 /* 6(dst)+6(src)+2(type) */
363 hlen = sizeof(struct ether_header);
364 align = 2;
365 break;
366
367 case DLT_ARCNET:
368 sockp->sa_family = AF_UNSPEC;
369 hlen = ARC_HDRLEN;
370 align = 5;
371 break;
372
373 case DLT_FDDI:
374 sockp->sa_family = AF_LINK;
375 /* XXX 4(FORMAC)+6(dst)+6(src) */
376 hlen = 16;
377 align = 0;
378 break;
379
380 case DLT_ECONET:
381 sockp->sa_family = AF_UNSPEC;
382 hlen = 6;
383 align = 2;
384 break;
385
386 case DLT_NULL:
387 sockp->sa_family = AF_UNSPEC;
388 hlen = 0;
389 align = 0;
390 break;
391
392 default:
393 return (EIO);
394 }
395
396 len = uio->uio_resid;
397 /*
398 * If there aren't enough bytes for a link level header or the
399 * packet length exceeds the interface mtu, return an error.
400 */
401 if (len - hlen > mtu)
402 return (EMSGSIZE);
403
404 m0 = m = m_gethdr(M_WAIT, MT_DATA);
405 m_reset_rcvif(m);
406 m->m_pkthdr.len = (int)(len - hlen);
407 if (len + align > MHLEN) {
408 m_clget(m, M_WAIT);
409 if ((m->m_flags & M_EXT) == 0) {
410 error = ENOBUFS;
411 goto bad;
412 }
413 }
414
415 /* Insure the data is properly aligned */
416 if (align > 0)
417 m->m_data += align;
418
419 for (;;) {
420 len = M_TRAILINGSPACE(m);
421 if (len > uio->uio_resid)
422 len = uio->uio_resid;
423 error = uiomove(mtod(m, void *), len, uio);
424 if (error)
425 goto bad;
426 m->m_len = len;
427
428 if (uio->uio_resid == 0)
429 break;
430
431 n = m_get(M_WAIT, MT_DATA);
432 m_clget(n, M_WAIT); /* if fails, there is no problem */
433 m->m_next = n;
434 m = n;
435 }
436
437 slen = bpf_xfilter(wfilter, mtod(m, u_char *), len, len);
438 if (slen == 0) {
439 error = EPERM;
440 goto bad;
441 }
442
443 if (hlen != 0) {
444 /* move link level header in the top of mbuf to sa_data */
445 memcpy(sockp->sa_data, mtod(m0, void *), hlen);
446 m0->m_data += hlen;
447 m0->m_len -= hlen;
448 }
449
450 *mp = m0;
451 return (0);
452
453 bad:
454 m_freem(m0);
455 return (error);
456 }
457
458 /*
459 * Attach file to the bpf interface, i.e. make d listen on bp.
460 */
461 static void
462 bpf_attachd(struct bpf_d *d, struct bpf_if *bp)
463 {
464
465 KASSERT(mutex_owned(&bpf_mtx));
466 KASSERT(mutex_owned(d->bd_mtx));
467 /*
468 * Point d at bp, and add d to the interface's list of listeners.
469 * Finally, point the driver's bpf cookie at the interface so
470 * it will divert packets to bpf.
471 */
472 d->bd_bif = bp;
473 BPFIF_DLIST_WRITER_INSERT_HEAD(bp, d);
474
475 *bp->bif_driverp = bp;
476 }
477
478 /*
479 * Detach a file from its interface.
480 */
481 static void
482 bpf_detachd(struct bpf_d *d)
483 {
484 struct bpf_if *bp;
485
486 KASSERT(mutex_owned(&bpf_mtx));
487 KASSERT(mutex_owned(d->bd_mtx));
488
489 bp = d->bd_bif;
490 /*
491 * Check if this descriptor had requested promiscuous mode.
492 * If so, turn it off.
493 */
494 if (d->bd_promisc) {
495 int error __diagused;
496
497 d->bd_promisc = 0;
498 /*
499 * Take device out of promiscuous mode. Since we were
500 * able to enter promiscuous mode, we should be able
501 * to turn it off. But we can get an error if
502 * the interface was configured down, so only panic
503 * if we don't get an unexpected error.
504 */
505 KERNEL_LOCK_UNLESS_NET_MPSAFE();
506 error = ifpromisc(bp->bif_ifp, 0);
507 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
508 #ifdef DIAGNOSTIC
509 if (error)
510 printf("%s: ifpromisc failed: %d", __func__, error);
511 #endif
512 }
513
514 /* Remove d from the interface's descriptor list. */
515 BPFIF_DLIST_WRITER_REMOVE(d);
516
517 pserialize_perform(bpf_psz);
518
519 if (BPFIF_DLIST_WRITER_EMPTY(bp)) {
520 /*
521 * Let the driver know that there are no more listeners.
522 */
523 *d->bd_bif->bif_driverp = NULL;
524 }
525 d->bd_bif = NULL;
526 }
527
528 static void
529 bpf_init(void)
530 {
531
532 mutex_init(&bpf_mtx, MUTEX_DEFAULT, IPL_NONE);
533 bpf_psz = pserialize_create();
534 bpf_psref_class = psref_class_create("bpf", IPL_SOFTNET);
535
536 PSLIST_INIT(&bpf_iflist);
537 PSLIST_INIT(&bpf_dlist);
538
539 bpf_gstats_percpu = percpu_alloc(sizeof(struct bpf_stat));
540
541 return;
542 }
543
544 /*
545 * bpfilterattach() is called at boot time. We don't need to do anything
546 * here, since any initialization will happen as part of module init code.
547 */
548 /* ARGSUSED */
549 void
550 bpfilterattach(int n)
551 {
552
553 }
554
555 /*
556 * Open ethernet device. Clones.
557 */
558 /* ARGSUSED */
559 int
560 bpfopen(dev_t dev, int flag, int mode, struct lwp *l)
561 {
562 struct bpf_d *d;
563 struct file *fp;
564 int error, fd;
565
566 /* falloc() will fill in the descriptor for us. */
567 if ((error = fd_allocfile(&fp, &fd)) != 0)
568 return error;
569
570 d = kmem_zalloc(sizeof(*d), KM_SLEEP);
571 d->bd_bufsize = bpf_bufsize;
572 d->bd_direction = BPF_D_INOUT;
573 d->bd_feedback = 0;
574 d->bd_pid = l->l_proc->p_pid;
575 #ifdef _LP64
576 if (curproc->p_flag & PK_32)
577 d->bd_compat32 = 1;
578 #endif
579 getnanotime(&d->bd_btime);
580 d->bd_atime = d->bd_mtime = d->bd_btime;
581 callout_init(&d->bd_callout, CALLOUT_MPSAFE);
582 selinit(&d->bd_sel);
583 d->bd_jitcode = NULL;
584 d->bd_rfilter = NULL;
585 d->bd_wfilter = NULL;
586 d->bd_locked = 0;
587 BPF_DLIST_ENTRY_INIT(d);
588 BPFIF_DLIST_ENTRY_INIT(d);
589 d->bd_mtx = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
590 d->bd_buf_mtx = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);
591 cv_init(&d->bd_cv, "bpf");
592
593 mutex_enter(&bpf_mtx);
594 BPF_DLIST_WRITER_INSERT_HEAD(d);
595 mutex_exit(&bpf_mtx);
596
597 return fd_clone(fp, fd, flag, &bpf_fileops, d);
598 }
599
600 /*
601 * Close the descriptor by detaching it from its interface,
602 * deallocating its buffers, and marking it free.
603 */
604 /* ARGSUSED */
605 static int
606 bpf_close(struct file *fp)
607 {
608 struct bpf_d *d;
609
610 mutex_enter(&bpf_mtx);
611
612 if ((d = fp->f_bpf) == NULL) {
613 mutex_exit(&bpf_mtx);
614 return 0;
615 }
616
617 /*
618 * Refresh the PID associated with this bpf file.
619 */
620 d->bd_pid = curproc->p_pid;
621
622 mutex_enter(d->bd_mtx);
623 if (d->bd_state == BPF_WAITING)
624 callout_halt(&d->bd_callout, d->bd_mtx);
625 d->bd_state = BPF_IDLE;
626 if (d->bd_bif)
627 bpf_detachd(d);
628 mutex_exit(d->bd_mtx);
629
630 BPF_DLIST_WRITER_REMOVE(d);
631
632 pserialize_perform(bpf_psz);
633 mutex_exit(&bpf_mtx);
634
635 BPFIF_DLIST_ENTRY_DESTROY(d);
636 BPF_DLIST_ENTRY_DESTROY(d);
637 fp->f_bpf = NULL;
638 bpf_freed(d);
639 callout_destroy(&d->bd_callout);
640 seldestroy(&d->bd_sel);
641 mutex_obj_free(d->bd_mtx);
642 mutex_obj_free(d->bd_buf_mtx);
643 cv_destroy(&d->bd_cv);
644
645 kmem_free(d, sizeof(*d));
646
647 return (0);
648 }
649
650 /*
651 * Rotate the packet buffers in descriptor d. Move the store buffer
652 * into the hold slot, and the free buffer into the store slot.
653 * Zero the length of the new store buffer.
654 */
655 #define ROTATE_BUFFERS(d) \
656 (d)->bd_hbuf = (d)->bd_sbuf; \
657 (d)->bd_hlen = (d)->bd_slen; \
658 (d)->bd_sbuf = (d)->bd_fbuf; \
659 (d)->bd_slen = 0; \
660 (d)->bd_fbuf = NULL;
661 /*
662 * bpfread - read next chunk of packets from buffers
663 */
664 static int
665 bpf_read(struct file *fp, off_t *offp, struct uio *uio,
666 kauth_cred_t cred, int flags)
667 {
668 struct bpf_d *d = fp->f_bpf;
669 int timed_out;
670 int error;
671
672 getnanotime(&d->bd_atime);
673 /*
674 * Restrict application to use a buffer the same size as
675 * the kernel buffers.
676 */
677 if (uio->uio_resid != d->bd_bufsize)
678 return (EINVAL);
679
680 mutex_enter(d->bd_mtx);
681 if (d->bd_state == BPF_WAITING)
682 callout_halt(&d->bd_callout, d->bd_mtx);
683 timed_out = (d->bd_state == BPF_TIMED_OUT);
684 d->bd_state = BPF_IDLE;
685 mutex_exit(d->bd_mtx);
686 /*
687 * If the hold buffer is empty, then do a timed sleep, which
688 * ends when the timeout expires or when enough packets
689 * have arrived to fill the store buffer.
690 */
691 mutex_enter(d->bd_buf_mtx);
692 while (d->bd_hbuf == NULL) {
693 if (fp->f_flag & FNONBLOCK) {
694 if (d->bd_slen == 0) {
695 error = EWOULDBLOCK;
696 goto out;
697 }
698 ROTATE_BUFFERS(d);
699 break;
700 }
701
702 if ((d->bd_immediate || timed_out) && d->bd_slen != 0) {
703 /*
704 * A packet(s) either arrived since the previous
705 * read or arrived while we were asleep.
706 * Rotate the buffers and return what's here.
707 */
708 ROTATE_BUFFERS(d);
709 break;
710 }
711
712 error = cv_timedwait_sig(&d->bd_cv, d->bd_buf_mtx, d->bd_rtout);
713
714 if (error == EINTR || error == ERESTART)
715 goto out;
716
717 if (error == EWOULDBLOCK) {
718 /*
719 * On a timeout, return what's in the buffer,
720 * which may be nothing. If there is something
721 * in the store buffer, we can rotate the buffers.
722 */
723 if (d->bd_hbuf)
724 /*
725 * We filled up the buffer in between
726 * getting the timeout and arriving
727 * here, so we don't need to rotate.
728 */
729 break;
730
731 if (d->bd_slen == 0) {
732 error = 0;
733 goto out;
734 }
735 ROTATE_BUFFERS(d);
736 break;
737 }
738 if (error != 0)
739 goto out;
740 }
741 /*
742 * At this point, we know we have something in the hold slot.
743 */
744 mutex_exit(d->bd_buf_mtx);
745
746 /*
747 * Move data from hold buffer into user space.
748 * We know the entire buffer is transferred since
749 * we checked above that the read buffer is bpf_bufsize bytes.
750 */
751 error = uiomove(d->bd_hbuf, d->bd_hlen, uio);
752
753 mutex_enter(d->bd_buf_mtx);
754 d->bd_fbuf = d->bd_hbuf;
755 d->bd_hbuf = NULL;
756 d->bd_hlen = 0;
757 out:
758 mutex_exit(d->bd_buf_mtx);
759 return (error);
760 }
761
762
763 /*
764 * If there are processes sleeping on this descriptor, wake them up.
765 */
766 static inline void
767 bpf_wakeup(struct bpf_d *d)
768 {
769
770 mutex_enter(d->bd_buf_mtx);
771 cv_broadcast(&d->bd_cv);
772 mutex_exit(d->bd_buf_mtx);
773
774 if (d->bd_async)
775 fownsignal(d->bd_pgid, SIGIO, 0, 0, NULL);
776 selnotify(&d->bd_sel, 0, 0);
777 }
778
779 static void
780 bpf_timed_out(void *arg)
781 {
782 struct bpf_d *d = arg;
783
784 mutex_enter(d->bd_mtx);
785 if (d->bd_state == BPF_WAITING) {
786 d->bd_state = BPF_TIMED_OUT;
787 if (d->bd_slen != 0)
788 bpf_wakeup(d);
789 }
790 mutex_exit(d->bd_mtx);
791 }
792
793
794 static int
795 bpf_write(struct file *fp, off_t *offp, struct uio *uio,
796 kauth_cred_t cred, int flags)
797 {
798 struct bpf_d *d = fp->f_bpf;
799 struct bpf_if *bp;
800 struct ifnet *ifp;
801 struct mbuf *m, *mc;
802 int error;
803 static struct sockaddr_storage dst;
804 struct psref psref;
805 int bound;
806
807 m = NULL; /* XXX gcc */
808
809 bound = curlwp_bind();
810 mutex_enter(d->bd_mtx);
811 bp = d->bd_bif;
812 if (bp == NULL) {
813 mutex_exit(d->bd_mtx);
814 error = ENXIO;
815 goto out_bindx;
816 }
817 bpf_if_acquire(bp, &psref);
818 mutex_exit(d->bd_mtx);
819
820 getnanotime(&d->bd_mtime);
821
822 ifp = bp->bif_ifp;
823 if (if_is_deactivated(ifp)) {
824 error = ENXIO;
825 goto out;
826 }
827
828 if (uio->uio_resid == 0) {
829 error = 0;
830 goto out;
831 }
832
833 error = bpf_movein(uio, (int)bp->bif_dlt, ifp->if_mtu, &m,
834 (struct sockaddr *) &dst, &d->bd_wfilter);
835 if (error)
836 goto out;
837
838 if (m->m_pkthdr.len > ifp->if_mtu) {
839 m_freem(m);
840 error = EMSGSIZE;
841 goto out;
842 }
843
844 if (d->bd_hdrcmplt)
845 dst.ss_family = pseudo_AF_HDRCMPLT;
846
847 if (d->bd_feedback) {
848 mc = m_dup(m, 0, M_COPYALL, M_NOWAIT);
849 if (mc != NULL)
850 m_set_rcvif(mc, ifp);
851 /* Set M_PROMISC for outgoing packets to be discarded. */
852 if (1 /*d->bd_direction == BPF_D_INOUT*/)
853 m->m_flags |= M_PROMISC;
854 } else
855 mc = NULL;
856
857 error = if_output_lock(ifp, ifp, m, (struct sockaddr *) &dst, NULL);
858
859 if (mc != NULL) {
860 if (error == 0) {
861 int s = splsoftnet();
862 KERNEL_LOCK_UNLESS_IFP_MPSAFE(ifp);
863 ifp->_if_input(ifp, mc);
864 KERNEL_UNLOCK_UNLESS_IFP_MPSAFE(ifp);
865 splx(s);
866 } else
867 m_freem(mc);
868 }
869 /*
870 * The driver frees the mbuf.
871 */
872 out:
873 bpf_if_release(bp, &psref);
874 out_bindx:
875 curlwp_bindx(bound);
876 return error;
877 }
878
879 /*
880 * Reset a descriptor by flushing its packet buffer and clearing the
881 * receive and drop counts.
882 */
883 static void
884 reset_d(struct bpf_d *d)
885 {
886
887 KASSERT(mutex_owned(d->bd_mtx));
888
889 mutex_enter(d->bd_buf_mtx);
890 if (d->bd_hbuf) {
891 /* Free the hold buffer. */
892 d->bd_fbuf = d->bd_hbuf;
893 d->bd_hbuf = NULL;
894 }
895 d->bd_slen = 0;
896 d->bd_hlen = 0;
897 d->bd_rcount = 0;
898 d->bd_dcount = 0;
899 d->bd_ccount = 0;
900 mutex_exit(d->bd_buf_mtx);
901 }
902
903 /*
904 * FIONREAD Check for read packet available.
905 * BIOCGBLEN Get buffer len [for read()].
906 * BIOCSETF Set ethernet read filter.
907 * BIOCFLUSH Flush read packet buffer.
908 * BIOCPROMISC Put interface into promiscuous mode.
909 * BIOCGDLT Get link layer type.
910 * BIOCGETIF Get interface name.
911 * BIOCSETIF Set interface.
912 * BIOCSRTIMEOUT Set read timeout.
913 * BIOCGRTIMEOUT Get read timeout.
914 * BIOCGSTATS Get packet stats.
915 * BIOCIMMEDIATE Set immediate mode.
916 * BIOCVERSION Get filter language version.
917 * BIOCGHDRCMPLT Get "header already complete" flag.
918 * BIOCSHDRCMPLT Set "header already complete" flag.
919 * BIOCSFEEDBACK Set packet feedback mode.
920 * BIOCGFEEDBACK Get packet feedback mode.
921 * BIOCGDIRECTION Get packet direction flag
922 * BIOCSDIRECTION Set packet direction flag
923 */
924 /* ARGSUSED */
925 static int
926 bpf_ioctl(struct file *fp, u_long cmd, void *addr)
927 {
928 struct bpf_d *d = fp->f_bpf;
929 int error = 0;
930
931 /*
932 * Refresh the PID associated with this bpf file.
933 */
934 d->bd_pid = curproc->p_pid;
935 #ifdef _LP64
936 if (curproc->p_flag & PK_32)
937 d->bd_compat32 = 1;
938 else
939 d->bd_compat32 = 0;
940 #endif
941
942 mutex_enter(d->bd_mtx);
943 if (d->bd_state == BPF_WAITING)
944 callout_halt(&d->bd_callout, d->bd_mtx);
945 d->bd_state = BPF_IDLE;
946 mutex_exit(d->bd_mtx);
947
948 if (d->bd_locked) {
949 switch (cmd) {
950 case BIOCGBLEN: /* FALLTHROUGH */
951 case BIOCFLUSH: /* FALLTHROUGH */
952 case BIOCGDLT: /* FALLTHROUGH */
953 case BIOCGDLTLIST: /* FALLTHROUGH */
954 case BIOCGETIF: /* FALLTHROUGH */
955 case BIOCGRTIMEOUT: /* FALLTHROUGH */
956 case BIOCGSTATS: /* FALLTHROUGH */
957 case BIOCVERSION: /* FALLTHROUGH */
958 case BIOCGHDRCMPLT: /* FALLTHROUGH */
959 case FIONREAD: /* FALLTHROUGH */
960 case BIOCLOCK: /* FALLTHROUGH */
961 case BIOCSRTIMEOUT: /* FALLTHROUGH */
962 case BIOCIMMEDIATE: /* FALLTHROUGH */
963 case TIOCGPGRP:
964 break;
965 default:
966 return EPERM;
967 }
968 }
969
970 switch (cmd) {
971
972 default:
973 error = EINVAL;
974 break;
975
976 /*
977 * Check for read packet available.
978 */
979 case FIONREAD:
980 {
981 int n;
982
983 mutex_enter(d->bd_buf_mtx);
984 n = d->bd_slen;
985 if (d->bd_hbuf)
986 n += d->bd_hlen;
987 mutex_exit(d->bd_buf_mtx);
988
989 *(int *)addr = n;
990 break;
991 }
992
993 /*
994 * Get buffer len [for read()].
995 */
996 case BIOCGBLEN:
997 *(u_int *)addr = d->bd_bufsize;
998 break;
999
1000 /*
1001 * Set buffer length.
1002 */
1003 case BIOCSBLEN:
1004 /*
1005 * Forbid to change the buffer length if buffers are already
1006 * allocated.
1007 */
1008 mutex_enter(d->bd_mtx);
1009 mutex_enter(d->bd_buf_mtx);
1010 if (d->bd_bif != NULL || d->bd_sbuf != NULL)
1011 error = EINVAL;
1012 else {
1013 u_int size = *(u_int *)addr;
1014
1015 if (size > bpf_maxbufsize)
1016 *(u_int *)addr = size = bpf_maxbufsize;
1017 else if (size < BPF_MINBUFSIZE)
1018 *(u_int *)addr = size = BPF_MINBUFSIZE;
1019 d->bd_bufsize = size;
1020 }
1021 mutex_exit(d->bd_buf_mtx);
1022 mutex_exit(d->bd_mtx);
1023 break;
1024
1025 /*
1026 * Set link layer read filter.
1027 */
1028 case BIOCSETF: /* FALLTHROUGH */
1029 case BIOCSETWF:
1030 error = bpf_setf(d, addr, cmd);
1031 break;
1032
1033 case BIOCLOCK:
1034 d->bd_locked = 1;
1035 break;
1036
1037 /*
1038 * Flush read packet buffer.
1039 */
1040 case BIOCFLUSH:
1041 mutex_enter(d->bd_mtx);
1042 reset_d(d);
1043 mutex_exit(d->bd_mtx);
1044 break;
1045
1046 /*
1047 * Put interface into promiscuous mode.
1048 */
1049 case BIOCPROMISC:
1050 mutex_enter(d->bd_mtx);
1051 if (d->bd_bif == NULL) {
1052 mutex_exit(d->bd_mtx);
1053 /*
1054 * No interface attached yet.
1055 */
1056 error = EINVAL;
1057 break;
1058 }
1059 if (d->bd_promisc == 0) {
1060 KERNEL_LOCK_UNLESS_NET_MPSAFE();
1061 error = ifpromisc(d->bd_bif->bif_ifp, 1);
1062 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
1063 if (error == 0)
1064 d->bd_promisc = 1;
1065 }
1066 mutex_exit(d->bd_mtx);
1067 break;
1068
1069 /*
1070 * Get device parameters.
1071 */
1072 case BIOCGDLT:
1073 mutex_enter(d->bd_mtx);
1074 if (d->bd_bif == NULL)
1075 error = EINVAL;
1076 else
1077 *(u_int *)addr = d->bd_bif->bif_dlt;
1078 mutex_exit(d->bd_mtx);
1079 break;
1080
1081 /*
1082 * Get a list of supported device parameters.
1083 */
1084 case BIOCGDLTLIST:
1085 mutex_enter(d->bd_mtx);
1086 if (d->bd_bif == NULL)
1087 error = EINVAL;
1088 else
1089 error = bpf_getdltlist(d, addr);
1090 mutex_exit(d->bd_mtx);
1091 break;
1092
1093 /*
1094 * Set device parameters.
1095 */
1096 case BIOCSDLT:
1097 mutex_enter(&bpf_mtx);
1098 mutex_enter(d->bd_mtx);
1099 if (d->bd_bif == NULL)
1100 error = EINVAL;
1101 else
1102 error = bpf_setdlt(d, *(u_int *)addr);
1103 mutex_exit(d->bd_mtx);
1104 mutex_exit(&bpf_mtx);
1105 break;
1106
1107 /*
1108 * Set interface name.
1109 */
1110 #ifdef OBIOCGETIF
1111 case OBIOCGETIF:
1112 #endif
1113 case BIOCGETIF:
1114 mutex_enter(d->bd_mtx);
1115 if (d->bd_bif == NULL)
1116 error = EINVAL;
1117 else
1118 bpf_ifname(d->bd_bif->bif_ifp, addr);
1119 mutex_exit(d->bd_mtx);
1120 break;
1121
1122 /*
1123 * Set interface.
1124 */
1125 #ifdef OBIOCSETIF
1126 case OBIOCSETIF:
1127 #endif
1128 case BIOCSETIF:
1129 mutex_enter(&bpf_mtx);
1130 error = bpf_setif(d, addr);
1131 mutex_exit(&bpf_mtx);
1132 break;
1133
1134 /*
1135 * Set read timeout.
1136 */
1137 case BIOCSRTIMEOUT:
1138 {
1139 struct timeval *tv = addr;
1140
1141 /* Compute number of ticks. */
1142 d->bd_rtout = tv->tv_sec * hz + tv->tv_usec / tick;
1143 if ((d->bd_rtout == 0) && (tv->tv_usec != 0))
1144 d->bd_rtout = 1;
1145 break;
1146 }
1147
1148 #ifdef BIOCGORTIMEOUT
1149 /*
1150 * Get read timeout.
1151 */
1152 case BIOCGORTIMEOUT:
1153 {
1154 struct timeval50 *tv = addr;
1155
1156 tv->tv_sec = d->bd_rtout / hz;
1157 tv->tv_usec = (d->bd_rtout % hz) * tick;
1158 break;
1159 }
1160 #endif
1161
1162 #ifdef BIOCSORTIMEOUT
1163 /*
1164 * Set read timeout.
1165 */
1166 case BIOCSORTIMEOUT:
1167 {
1168 struct timeval50 *tv = addr;
1169
1170 /* Compute number of ticks. */
1171 d->bd_rtout = tv->tv_sec * hz + tv->tv_usec / tick;
1172 if ((d->bd_rtout == 0) && (tv->tv_usec != 0))
1173 d->bd_rtout = 1;
1174 break;
1175 }
1176 #endif
1177
1178 /*
1179 * Get read timeout.
1180 */
1181 case BIOCGRTIMEOUT:
1182 {
1183 struct timeval *tv = addr;
1184
1185 tv->tv_sec = d->bd_rtout / hz;
1186 tv->tv_usec = (d->bd_rtout % hz) * tick;
1187 break;
1188 }
1189 /*
1190 * Get packet stats.
1191 */
1192 case BIOCGSTATS:
1193 {
1194 struct bpf_stat *bs = addr;
1195
1196 bs->bs_recv = d->bd_rcount;
1197 bs->bs_drop = d->bd_dcount;
1198 bs->bs_capt = d->bd_ccount;
1199 break;
1200 }
1201
1202 case BIOCGSTATSOLD:
1203 {
1204 struct bpf_stat_old *bs = addr;
1205
1206 bs->bs_recv = d->bd_rcount;
1207 bs->bs_drop = d->bd_dcount;
1208 break;
1209 }
1210
1211 /*
1212 * Set immediate mode.
1213 */
1214 case BIOCIMMEDIATE:
1215 d->bd_immediate = *(u_int *)addr;
1216 break;
1217
1218 case BIOCVERSION:
1219 {
1220 struct bpf_version *bv = addr;
1221
1222 bv->bv_major = BPF_MAJOR_VERSION;
1223 bv->bv_minor = BPF_MINOR_VERSION;
1224 break;
1225 }
1226
1227 case BIOCGHDRCMPLT: /* get "header already complete" flag */
1228 *(u_int *)addr = d->bd_hdrcmplt;
1229 break;
1230
1231 case BIOCSHDRCMPLT: /* set "header already complete" flag */
1232 d->bd_hdrcmplt = *(u_int *)addr ? 1 : 0;
1233 break;
1234
1235 /*
1236 * Get packet direction flag
1237 */
1238 case BIOCGDIRECTION:
1239 *(u_int *)addr = d->bd_direction;
1240 break;
1241
1242 /*
1243 * Set packet direction flag
1244 */
1245 case BIOCSDIRECTION:
1246 {
1247 u_int direction;
1248
1249 direction = *(u_int *)addr;
1250 switch (direction) {
1251 case BPF_D_IN:
1252 case BPF_D_INOUT:
1253 case BPF_D_OUT:
1254 d->bd_direction = direction;
1255 break;
1256 default:
1257 error = EINVAL;
1258 }
1259 }
1260 break;
1261
1262 /*
1263 * Set "feed packets from bpf back to input" mode
1264 */
1265 case BIOCSFEEDBACK:
1266 d->bd_feedback = *(u_int *)addr;
1267 break;
1268
1269 /*
1270 * Get "feed packets from bpf back to input" mode
1271 */
1272 case BIOCGFEEDBACK:
1273 *(u_int *)addr = d->bd_feedback;
1274 break;
1275
1276 case FIONBIO: /* Non-blocking I/O */
1277 /*
1278 * No need to do anything special as we use IO_NDELAY in
1279 * bpfread() as an indication of whether or not to block
1280 * the read.
1281 */
1282 break;
1283
1284 case FIOASYNC: /* Send signal on receive packets */
1285 mutex_enter(d->bd_mtx);
1286 d->bd_async = *(int *)addr;
1287 mutex_exit(d->bd_mtx);
1288 break;
1289
1290 case TIOCSPGRP: /* Process or group to send signals to */
1291 case FIOSETOWN:
1292 error = fsetown(&d->bd_pgid, cmd, addr);
1293 break;
1294
1295 case TIOCGPGRP:
1296 case FIOGETOWN:
1297 error = fgetown(d->bd_pgid, cmd, addr);
1298 break;
1299 }
1300 return (error);
1301 }
1302
1303 /*
1304 * Set d's packet filter program to fp. If this file already has a filter,
1305 * free it and replace it. Returns EINVAL for bogus requests.
1306 */
1307 static int
1308 bpf_setf(struct bpf_d *d, struct bpf_program *fp, u_long cmd)
1309 {
1310 struct bpf_insn *fcode;
1311 bpfjit_func_t jcode;
1312 size_t flen, size = 0;
1313 struct bpf_filter *oldf, *newf, **storef;
1314
1315 jcode = NULL;
1316 flen = fp->bf_len;
1317
1318 if ((fp->bf_insns == NULL && flen) || flen > BPF_MAXINSNS) {
1319 return EINVAL;
1320 }
1321
1322 if (flen) {
1323 /*
1324 * Allocate the buffer, copy the byte-code from
1325 * userspace and validate it.
1326 */
1327 size = flen * sizeof(*fp->bf_insns);
1328 fcode = kmem_alloc(size, KM_SLEEP);
1329 if (copyin(fp->bf_insns, fcode, size) != 0 ||
1330 !bpf_validate(fcode, (int)flen)) {
1331 kmem_free(fcode, size);
1332 return EINVAL;
1333 }
1334 if (bpf_jit)
1335 jcode = bpf_jit_generate(NULL, fcode, flen);
1336 } else {
1337 fcode = NULL;
1338 }
1339
1340 newf = kmem_alloc(sizeof(*newf), KM_SLEEP);
1341 newf->bf_insn = fcode;
1342 newf->bf_size = size;
1343 newf->bf_jitcode = jcode;
1344 if (cmd == BIOCSETF)
1345 d->bd_jitcode = jcode; /* XXX just for kvm(3) users */
1346
1347 /* Need to hold bpf_mtx for pserialize_perform */
1348 mutex_enter(&bpf_mtx);
1349 mutex_enter(d->bd_mtx);
1350 if (cmd == BIOCSETWF) {
1351 oldf = d->bd_wfilter;
1352 storef = &d->bd_wfilter;
1353 } else {
1354 oldf = d->bd_rfilter;
1355 storef = &d->bd_rfilter;
1356 }
1357 atomic_store_release(storef, newf);
1358 reset_d(d);
1359 pserialize_perform(bpf_psz);
1360 mutex_exit(d->bd_mtx);
1361 mutex_exit(&bpf_mtx);
1362
1363 if (oldf != NULL)
1364 bpf_free_filter(oldf);
1365
1366 return 0;
1367 }
1368
1369 /*
1370 * Detach a file from its current interface (if attached at all) and attach
1371 * to the interface indicated by the name stored in ifr.
1372 * Return an errno or 0.
1373 */
1374 static int
1375 bpf_setif(struct bpf_d *d, struct ifreq *ifr)
1376 {
1377 struct bpf_if *bp;
1378 char *cp;
1379 int unit_seen, i, error;
1380
1381 KASSERT(mutex_owned(&bpf_mtx));
1382 /*
1383 * Make sure the provided name has a unit number, and default
1384 * it to '0' if not specified.
1385 * XXX This is ugly ... do this differently?
1386 */
1387 unit_seen = 0;
1388 cp = ifr->ifr_name;
1389 cp[sizeof(ifr->ifr_name) - 1] = '\0'; /* sanity */
1390 while (*cp++)
1391 if (*cp >= '0' && *cp <= '9')
1392 unit_seen = 1;
1393 if (!unit_seen) {
1394 /* Make sure to leave room for the '\0'. */
1395 for (i = 0; i < (IFNAMSIZ - 1); ++i) {
1396 if ((ifr->ifr_name[i] >= 'a' &&
1397 ifr->ifr_name[i] <= 'z') ||
1398 (ifr->ifr_name[i] >= 'A' &&
1399 ifr->ifr_name[i] <= 'Z'))
1400 continue;
1401 ifr->ifr_name[i] = '0';
1402 }
1403 }
1404
1405 /*
1406 * Look through attached interfaces for the named one.
1407 */
1408 BPF_IFLIST_WRITER_FOREACH(bp) {
1409 struct ifnet *ifp = bp->bif_ifp;
1410
1411 if (ifp == NULL ||
1412 strcmp(ifp->if_xname, ifr->ifr_name) != 0)
1413 continue;
1414 /* skip additional entry */
1415 if (bp->bif_driverp != &ifp->if_bpf)
1416 continue;
1417 /*
1418 * We found the requested interface.
1419 * Allocate the packet buffers if we need to.
1420 * If we're already attached to requested interface,
1421 * just flush the buffer.
1422 */
1423 /*
1424 * bpf_allocbufs is called only here. bpf_mtx ensures that
1425 * no race condition happen on d->bd_sbuf.
1426 */
1427 if (d->bd_sbuf == NULL) {
1428 error = bpf_allocbufs(d);
1429 if (error != 0)
1430 return (error);
1431 }
1432 mutex_enter(d->bd_mtx);
1433 if (bp != d->bd_bif) {
1434 if (d->bd_bif) {
1435 /*
1436 * Detach if attached to something else.
1437 */
1438 bpf_detachd(d);
1439 BPFIF_DLIST_ENTRY_INIT(d);
1440 }
1441
1442 bpf_attachd(d, bp);
1443 }
1444 reset_d(d);
1445 mutex_exit(d->bd_mtx);
1446 return (0);
1447 }
1448 /* Not found. */
1449 return (ENXIO);
1450 }
1451
1452 /*
1453 * Copy the interface name to the ifreq.
1454 */
1455 static void
1456 bpf_ifname(struct ifnet *ifp, struct ifreq *ifr)
1457 {
1458 memcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
1459 }
1460
1461 static int
1462 bpf_stat(struct file *fp, struct stat *st)
1463 {
1464 struct bpf_d *d = fp->f_bpf;
1465
1466 (void)memset(st, 0, sizeof(*st));
1467 mutex_enter(d->bd_mtx);
1468 st->st_dev = makedev(cdevsw_lookup_major(&bpf_cdevsw), d->bd_pid);
1469 st->st_atimespec = d->bd_atime;
1470 st->st_mtimespec = d->bd_mtime;
1471 st->st_ctimespec = st->st_birthtimespec = d->bd_btime;
1472 st->st_uid = kauth_cred_geteuid(fp->f_cred);
1473 st->st_gid = kauth_cred_getegid(fp->f_cred);
1474 st->st_mode = S_IFCHR;
1475 mutex_exit(d->bd_mtx);
1476 return 0;
1477 }
1478
1479 /*
1480 * Support for poll() system call
1481 *
1482 * Return true iff the specific operation will not block indefinitely - with
1483 * the assumption that it is safe to positively acknowledge a request for the
1484 * ability to write to the BPF device.
1485 * Otherwise, return false but make a note that a selnotify() must be done.
1486 */
1487 static int
1488 bpf_poll(struct file *fp, int events)
1489 {
1490 struct bpf_d *d = fp->f_bpf;
1491 int revents;
1492
1493 /*
1494 * Refresh the PID associated with this bpf file.
1495 */
1496 mutex_enter(&bpf_mtx);
1497 d->bd_pid = curproc->p_pid;
1498
1499 revents = events & (POLLOUT | POLLWRNORM);
1500 if (events & (POLLIN | POLLRDNORM)) {
1501 /*
1502 * An imitation of the FIONREAD ioctl code.
1503 */
1504 mutex_enter(d->bd_mtx);
1505 if (d->bd_hlen != 0 ||
1506 ((d->bd_immediate || d->bd_state == BPF_TIMED_OUT) &&
1507 d->bd_slen != 0)) {
1508 revents |= events & (POLLIN | POLLRDNORM);
1509 } else {
1510 selrecord(curlwp, &d->bd_sel);
1511 /* Start the read timeout if necessary */
1512 if (d->bd_rtout > 0 && d->bd_state == BPF_IDLE) {
1513 callout_reset(&d->bd_callout, d->bd_rtout,
1514 bpf_timed_out, d);
1515 d->bd_state = BPF_WAITING;
1516 }
1517 }
1518 mutex_exit(d->bd_mtx);
1519 }
1520
1521 mutex_exit(&bpf_mtx);
1522 return (revents);
1523 }
1524
1525 static void
1526 filt_bpfrdetach(struct knote *kn)
1527 {
1528 struct bpf_d *d = kn->kn_hook;
1529
1530 mutex_enter(d->bd_buf_mtx);
1531 SLIST_REMOVE(&d->bd_sel.sel_klist, kn, knote, kn_selnext);
1532 mutex_exit(d->bd_buf_mtx);
1533 }
1534
1535 static int
1536 filt_bpfread(struct knote *kn, long hint)
1537 {
1538 struct bpf_d *d = kn->kn_hook;
1539 int rv;
1540
1541 mutex_enter(d->bd_buf_mtx);
1542 kn->kn_data = d->bd_hlen;
1543 if (d->bd_immediate)
1544 kn->kn_data += d->bd_slen;
1545 rv = (kn->kn_data > 0);
1546 mutex_exit(d->bd_buf_mtx);
1547 return rv;
1548 }
1549
1550 static const struct filterops bpfread_filtops = {
1551 .f_isfd = 1,
1552 .f_attach = NULL,
1553 .f_detach = filt_bpfrdetach,
1554 .f_event = filt_bpfread,
1555 };
1556
1557 static int
1558 bpf_kqfilter(struct file *fp, struct knote *kn)
1559 {
1560 struct bpf_d *d = fp->f_bpf;
1561 struct klist *klist;
1562
1563 mutex_enter(d->bd_buf_mtx);
1564 switch (kn->kn_filter) {
1565 case EVFILT_READ:
1566 klist = &d->bd_sel.sel_klist;
1567 kn->kn_fop = &bpfread_filtops;
1568 break;
1569
1570 default:
1571 mutex_exit(d->bd_buf_mtx);
1572 return (EINVAL);
1573 }
1574
1575 kn->kn_hook = d;
1576
1577 SLIST_INSERT_HEAD(klist, kn, kn_selnext);
1578 mutex_exit(d->bd_buf_mtx);
1579
1580 return (0);
1581 }
1582
1583 /*
1584 * Copy data from an mbuf chain into a buffer. This code is derived
1585 * from m_copydata in sys/uipc_mbuf.c.
1586 */
1587 static void *
1588 bpf_mcpy(void *dst_arg, const void *src_arg, size_t len)
1589 {
1590 const struct mbuf *m;
1591 u_int count;
1592 u_char *dst;
1593
1594 m = src_arg;
1595 dst = dst_arg;
1596 while (len > 0) {
1597 if (m == NULL)
1598 panic("bpf_mcpy");
1599 count = uimin(m->m_len, len);
1600 memcpy(dst, mtod(m, const void *), count);
1601 m = m->m_next;
1602 dst += count;
1603 len -= count;
1604 }
1605 return dst_arg;
1606 }
1607
1608 static inline u_int
1609 bpf_xfilter(struct bpf_filter **filter, void *pkt, u_int pktlen, u_int buflen)
1610 {
1611 struct bpf_filter *filt;
1612 uint32_t mem[BPF_MEMWORDS];
1613 bpf_args_t args = {
1614 .pkt = (const uint8_t *)pkt,
1615 .wirelen = pktlen,
1616 .buflen = buflen,
1617 .mem = mem,
1618 .arg = NULL
1619 };
1620 u_int slen;
1621
1622 filt = atomic_load_consume(filter);
1623 if (filt == NULL) /* No filter means accept all. */
1624 return (u_int)-1;
1625
1626 if (filt->bf_jitcode != NULL)
1627 slen = filt->bf_jitcode(NULL, &args);
1628 else
1629 slen = bpf_filter_ext(NULL, filt->bf_insn, &args);
1630 return slen;
1631 }
1632
1633 /*
1634 * Dispatch a packet to all the listeners on interface bp.
1635 *
1636 * pkt pointer to the packet, either a data buffer or an mbuf chain
1637 * buflen buffer length, if pkt is a data buffer
1638 * cpfn a function that can copy pkt into the listener's buffer
1639 * pktlen length of the packet
1640 * direction BPF_D_IN or BPF_D_OUT
1641 */
1642 static inline void
1643 bpf_deliver(struct bpf_if *bp, void *(*cpfn)(void *, const void *, size_t),
1644 void *pkt, u_int pktlen, u_int buflen, const u_int direction)
1645 {
1646 bool gottime = false;
1647 struct timespec ts;
1648 struct bpf_d *d;
1649 int s;
1650 u_int slen;
1651
1652 KASSERT(!cpu_intr_p());
1653
1654 /*
1655 * Note that the IPL does not have to be raised at this point.
1656 * The only problem that could arise here is that if two different
1657 * interfaces shared any data. This is not the case.
1658 */
1659 s = pserialize_read_enter();
1660 BPFIF_DLIST_READER_FOREACH(d, bp) {
1661 if (direction == BPF_D_IN) {
1662 if (d->bd_direction == BPF_D_OUT)
1663 continue;
1664 } else { /* BPF_D_OUT */
1665 if (d->bd_direction == BPF_D_IN)
1666 continue;
1667 }
1668
1669 atomic_inc_ulong(&d->bd_rcount);
1670 BPF_STATINC(recv);
1671
1672 slen = bpf_xfilter(&d->bd_rfilter, pkt, pktlen, buflen);
1673 if (slen == 0)
1674 continue;
1675
1676 if (!gottime) {
1677 gottime = true;
1678 nanotime(&ts);
1679 }
1680 /* Assume catchpacket doesn't sleep */
1681 catchpacket(d, pkt, pktlen, slen, cpfn, &ts);
1682 }
1683 pserialize_read_exit(s);
1684 }
1685
1686 /*
1687 * Incoming linkage from device drivers, when the head of the packet is in
1688 * a buffer, and the tail is in an mbuf chain.
1689 */
1690 static void
1691 _bpf_mtap2(struct bpf_if *bp, void *data, u_int dlen, struct mbuf *m,
1692 u_int direction)
1693 {
1694 u_int pktlen;
1695 struct mbuf mb;
1696
1697 /* Skip outgoing duplicate packets. */
1698 if ((m->m_flags & M_PROMISC) != 0 && m->m_pkthdr.rcvif_index == 0) {
1699 m->m_flags &= ~M_PROMISC;
1700 return;
1701 }
1702
1703 pktlen = m_length(m) + dlen;
1704
1705 /*
1706 * Craft on-stack mbuf suitable for passing to bpf_filter.
1707 * Note that we cut corners here; we only setup what's
1708 * absolutely needed--this mbuf should never go anywhere else.
1709 */
1710 (void)memset(&mb, 0, sizeof(mb));
1711 mb.m_type = MT_DATA;
1712 mb.m_next = m;
1713 mb.m_data = data;
1714 mb.m_len = dlen;
1715
1716 bpf_deliver(bp, bpf_mcpy, &mb, pktlen, 0, direction);
1717 }
1718
1719 /*
1720 * Incoming linkage from device drivers, when packet is in an mbuf chain.
1721 */
1722 static void
1723 _bpf_mtap(struct bpf_if *bp, struct mbuf *m, u_int direction)
1724 {
1725 void *(*cpfn)(void *, const void *, size_t);
1726 u_int pktlen, buflen;
1727 void *marg;
1728
1729 /* Skip outgoing duplicate packets. */
1730 if ((m->m_flags & M_PROMISC) != 0 && m->m_pkthdr.rcvif_index == 0) {
1731 m->m_flags &= ~M_PROMISC;
1732 return;
1733 }
1734
1735 pktlen = m_length(m);
1736
1737 /* Skip zero-sized packets. */
1738 if (__predict_false(pktlen == 0)) {
1739 return;
1740 }
1741
1742 if (pktlen == m->m_len) {
1743 cpfn = (void *)memcpy;
1744 marg = mtod(m, void *);
1745 buflen = pktlen;
1746 KASSERT(buflen != 0);
1747 } else {
1748 cpfn = bpf_mcpy;
1749 marg = m;
1750 buflen = 0;
1751 }
1752
1753 bpf_deliver(bp, cpfn, marg, pktlen, buflen, direction);
1754 }
1755
1756 /*
1757 * We need to prepend the address family as
1758 * a four byte field. Cons up a dummy header
1759 * to pacify bpf. This is safe because bpf
1760 * will only read from the mbuf (i.e., it won't
1761 * try to free it or keep a pointer a to it).
1762 */
1763 static void
1764 _bpf_mtap_af(struct bpf_if *bp, uint32_t af, struct mbuf *m, u_int direction)
1765 {
1766 struct mbuf m0;
1767
1768 m0.m_type = MT_DATA;
1769 m0.m_flags = 0;
1770 m0.m_next = m;
1771 m0.m_nextpkt = NULL;
1772 m0.m_owner = NULL;
1773 m0.m_len = 4;
1774 m0.m_data = (char *)⁡
1775
1776 _bpf_mtap(bp, &m0, direction);
1777 }
1778
1779 /*
1780 * Put the SLIP pseudo-"link header" in place.
1781 * Note this M_PREPEND() should never fail,
1782 * swince we know we always have enough space
1783 * in the input buffer.
1784 */
1785 static void
1786 _bpf_mtap_sl_in(struct bpf_if *bp, u_char *chdr, struct mbuf **m)
1787 {
1788 u_char *hp;
1789
1790 M_PREPEND(*m, SLIP_HDRLEN, M_DONTWAIT);
1791 if (*m == NULL)
1792 return;
1793
1794 hp = mtod(*m, u_char *);
1795 hp[SLX_DIR] = SLIPDIR_IN;
1796 (void)memcpy(&hp[SLX_CHDR], chdr, CHDR_LEN);
1797
1798 _bpf_mtap(bp, *m, BPF_D_IN);
1799
1800 m_adj(*m, SLIP_HDRLEN);
1801 }
1802
1803 /*
1804 * Put the SLIP pseudo-"link header" in
1805 * place. The compressed header is now
1806 * at the beginning of the mbuf.
1807 */
1808 static void
1809 _bpf_mtap_sl_out(struct bpf_if *bp, u_char *chdr, struct mbuf *m)
1810 {
1811 struct mbuf m0;
1812 u_char *hp;
1813
1814 m0.m_type = MT_DATA;
1815 m0.m_flags = 0;
1816 m0.m_next = m;
1817 m0.m_nextpkt = NULL;
1818 m0.m_owner = NULL;
1819 m0.m_data = m0.m_dat;
1820 m0.m_len = SLIP_HDRLEN;
1821
1822 hp = mtod(&m0, u_char *);
1823
1824 hp[SLX_DIR] = SLIPDIR_OUT;
1825 (void)memcpy(&hp[SLX_CHDR], chdr, CHDR_LEN);
1826
1827 _bpf_mtap(bp, &m0, BPF_D_OUT);
1828 m_freem(m);
1829 }
1830
1831 static struct mbuf *
1832 bpf_mbuf_enqueue(struct bpf_if *bp, struct mbuf *m)
1833 {
1834 struct mbuf *dup;
1835
1836 dup = m_dup(m, 0, M_COPYALL, M_NOWAIT);
1837 if (dup == NULL)
1838 return NULL;
1839
1840 if (bp->bif_mbuf_tail != NULL) {
1841 bp->bif_mbuf_tail->m_nextpkt = dup;
1842 } else {
1843 bp->bif_mbuf_head = dup;
1844 }
1845 bp->bif_mbuf_tail = dup;
1846 #ifdef BPF_MTAP_SOFTINT_DEBUG
1847 log(LOG_DEBUG, "%s: enqueued mbuf=%p to %s\n",
1848 __func__, dup, bp->bif_ifp->if_xname);
1849 #endif
1850
1851 return dup;
1852 }
1853
1854 static struct mbuf *
1855 bpf_mbuf_dequeue(struct bpf_if *bp)
1856 {
1857 struct mbuf *m;
1858 int s;
1859
1860 /* XXX NOMPSAFE: assumed running on one CPU */
1861 s = splnet();
1862 m = bp->bif_mbuf_head;
1863 if (m != NULL) {
1864 bp->bif_mbuf_head = m->m_nextpkt;
1865 m->m_nextpkt = NULL;
1866
1867 if (bp->bif_mbuf_head == NULL)
1868 bp->bif_mbuf_tail = NULL;
1869 #ifdef BPF_MTAP_SOFTINT_DEBUG
1870 log(LOG_DEBUG, "%s: dequeued mbuf=%p from %s\n",
1871 __func__, m, bp->bif_ifp->if_xname);
1872 #endif
1873 }
1874 splx(s);
1875
1876 return m;
1877 }
1878
1879 static void
1880 bpf_mtap_si(void *arg)
1881 {
1882 struct bpf_if *bp = arg;
1883 struct mbuf *m;
1884
1885 while ((m = bpf_mbuf_dequeue(bp)) != NULL) {
1886 #ifdef BPF_MTAP_SOFTINT_DEBUG
1887 log(LOG_DEBUG, "%s: tapping mbuf=%p on %s\n",
1888 __func__, m, bp->bif_ifp->if_xname);
1889 #endif
1890 bpf_ops->bpf_mtap(bp, m, BPF_D_IN);
1891 m_freem(m);
1892 }
1893 }
1894
1895 static void
1896 _bpf_mtap_softint(struct ifnet *ifp, struct mbuf *m)
1897 {
1898 struct bpf_if *bp = ifp->if_bpf;
1899 struct mbuf *dup;
1900
1901 KASSERT(cpu_intr_p());
1902
1903 /* To avoid extra invocations of the softint */
1904 if (BPFIF_DLIST_READER_EMPTY(bp))
1905 return;
1906 KASSERT(bp->bif_si != NULL);
1907
1908 dup = bpf_mbuf_enqueue(bp, m);
1909 if (dup != NULL)
1910 softint_schedule(bp->bif_si);
1911 }
1912
1913 static int
1914 bpf_hdrlen(struct bpf_d *d)
1915 {
1916 int hdrlen = d->bd_bif->bif_hdrlen;
1917 /*
1918 * Compute the length of the bpf header. This is not necessarily
1919 * equal to SIZEOF_BPF_HDR because we want to insert spacing such
1920 * that the network layer header begins on a longword boundary (for
1921 * performance reasons and to alleviate alignment restrictions).
1922 */
1923 #ifdef _LP64
1924 if (d->bd_compat32)
1925 return (BPF_WORDALIGN32(hdrlen + SIZEOF_BPF_HDR32) - hdrlen);
1926 else
1927 #endif
1928 return (BPF_WORDALIGN(hdrlen + SIZEOF_BPF_HDR) - hdrlen);
1929 }
1930
1931 /*
1932 * Move the packet data from interface memory (pkt) into the
1933 * store buffer. Call the wakeup functions if it's time to wakeup
1934 * a listener (buffer full), "cpfn" is the routine called to do the
1935 * actual data transfer. memcpy is passed in to copy contiguous chunks,
1936 * while bpf_mcpy is passed in to copy mbuf chains. In the latter case,
1937 * pkt is really an mbuf.
1938 */
1939 static void
1940 catchpacket(struct bpf_d *d, u_char *pkt, u_int pktlen, u_int snaplen,
1941 void *(*cpfn)(void *, const void *, size_t), struct timespec *ts)
1942 {
1943 char *h;
1944 int totlen, curlen, caplen;
1945 int hdrlen = bpf_hdrlen(d);
1946 int do_wakeup = 0;
1947
1948 atomic_inc_ulong(&d->bd_ccount);
1949 BPF_STATINC(capt);
1950 /*
1951 * Figure out how many bytes to move. If the packet is
1952 * greater or equal to the snapshot length, transfer that
1953 * much. Otherwise, transfer the whole packet (unless
1954 * we hit the buffer size limit).
1955 */
1956 totlen = hdrlen + uimin(snaplen, pktlen);
1957 if (totlen > d->bd_bufsize)
1958 totlen = d->bd_bufsize;
1959 /*
1960 * If we adjusted totlen to fit the bufsize, it could be that
1961 * totlen is smaller than hdrlen because of the link layer header.
1962 */
1963 caplen = totlen - hdrlen;
1964 if (caplen < 0)
1965 caplen = 0;
1966
1967 mutex_enter(d->bd_buf_mtx);
1968 /*
1969 * Round up the end of the previous packet to the next longword.
1970 */
1971 #ifdef _LP64
1972 if (d->bd_compat32)
1973 curlen = BPF_WORDALIGN32(d->bd_slen);
1974 else
1975 #endif
1976 curlen = BPF_WORDALIGN(d->bd_slen);
1977 if (curlen + totlen > d->bd_bufsize) {
1978 /*
1979 * This packet will overflow the storage buffer.
1980 * Rotate the buffers if we can, then wakeup any
1981 * pending reads.
1982 */
1983 if (d->bd_fbuf == NULL) {
1984 mutex_exit(d->bd_buf_mtx);
1985 /*
1986 * We haven't completed the previous read yet,
1987 * so drop the packet.
1988 */
1989 atomic_inc_ulong(&d->bd_dcount);
1990 BPF_STATINC(drop);
1991 return;
1992 }
1993 ROTATE_BUFFERS(d);
1994 do_wakeup = 1;
1995 curlen = 0;
1996 } else if (d->bd_immediate || d->bd_state == BPF_TIMED_OUT) {
1997 /*
1998 * Immediate mode is set, or the read timeout has
1999 * already expired during a select call. A packet
2000 * arrived, so the reader should be woken up.
2001 */
2002 do_wakeup = 1;
2003 }
2004
2005 /*
2006 * Append the bpf header.
2007 */
2008 h = (char *)d->bd_sbuf + curlen;
2009 #ifdef _LP64
2010 if (d->bd_compat32) {
2011 struct bpf_hdr32 *hp32;
2012
2013 hp32 = (struct bpf_hdr32 *)h;
2014 hp32->bh_tstamp.tv_sec = ts->tv_sec;
2015 hp32->bh_tstamp.tv_usec = ts->tv_nsec / 1000;
2016 hp32->bh_datalen = pktlen;
2017 hp32->bh_hdrlen = hdrlen;
2018 hp32->bh_caplen = caplen;
2019 } else
2020 #endif
2021 {
2022 struct bpf_hdr *hp;
2023
2024 hp = (struct bpf_hdr *)h;
2025 hp->bh_tstamp.tv_sec = ts->tv_sec;
2026 hp->bh_tstamp.tv_usec = ts->tv_nsec / 1000;
2027 hp->bh_datalen = pktlen;
2028 hp->bh_hdrlen = hdrlen;
2029 hp->bh_caplen = caplen;
2030 }
2031
2032 /*
2033 * Copy the packet data into the store buffer and update its length.
2034 */
2035 (*cpfn)(h + hdrlen, pkt, caplen);
2036 d->bd_slen = curlen + totlen;
2037 mutex_exit(d->bd_buf_mtx);
2038
2039 /*
2040 * Call bpf_wakeup after bd_slen has been updated so that kevent(2)
2041 * will cause filt_bpfread() to be called with it adjusted.
2042 */
2043 if (do_wakeup)
2044 bpf_wakeup(d);
2045 }
2046
2047 /*
2048 * Initialize all nonzero fields of a descriptor.
2049 */
2050 static int
2051 bpf_allocbufs(struct bpf_d *d)
2052 {
2053
2054 d->bd_fbuf = kmem_zalloc(d->bd_bufsize, KM_NOSLEEP);
2055 if (!d->bd_fbuf)
2056 return (ENOBUFS);
2057 d->bd_sbuf = kmem_zalloc(d->bd_bufsize, KM_NOSLEEP);
2058 if (!d->bd_sbuf) {
2059 kmem_free(d->bd_fbuf, d->bd_bufsize);
2060 return (ENOBUFS);
2061 }
2062 d->bd_slen = 0;
2063 d->bd_hlen = 0;
2064 return (0);
2065 }
2066
2067 static void
2068 bpf_free_filter(struct bpf_filter *filter)
2069 {
2070
2071 KASSERT(filter != NULL);
2072 KASSERT(filter->bf_insn != NULL);
2073
2074 kmem_free(filter->bf_insn, filter->bf_size);
2075 if (filter->bf_jitcode != NULL)
2076 bpf_jit_freecode(filter->bf_jitcode);
2077 kmem_free(filter, sizeof(*filter));
2078 }
2079
2080 /*
2081 * Free buffers currently in use by a descriptor.
2082 * Called on close.
2083 */
2084 static void
2085 bpf_freed(struct bpf_d *d)
2086 {
2087 /*
2088 * We don't need to lock out interrupts since this descriptor has
2089 * been detached from its interface and it yet hasn't been marked
2090 * free.
2091 */
2092 if (d->bd_sbuf != NULL) {
2093 kmem_free(d->bd_sbuf, d->bd_bufsize);
2094 if (d->bd_hbuf != NULL)
2095 kmem_free(d->bd_hbuf, d->bd_bufsize);
2096 if (d->bd_fbuf != NULL)
2097 kmem_free(d->bd_fbuf, d->bd_bufsize);
2098 }
2099 if (d->bd_rfilter != NULL) {
2100 bpf_free_filter(d->bd_rfilter);
2101 d->bd_rfilter = NULL;
2102 }
2103 if (d->bd_wfilter != NULL) {
2104 bpf_free_filter(d->bd_wfilter);
2105 d->bd_wfilter = NULL;
2106 }
2107 d->bd_jitcode = NULL;
2108 }
2109
2110 /*
2111 * Attach an interface to bpf. dlt is the link layer type;
2112 * hdrlen is the fixed size of the link header for the specified dlt
2113 * (variable length headers not yet supported).
2114 */
2115 static void
2116 _bpfattach(struct ifnet *ifp, u_int dlt, u_int hdrlen, struct bpf_if **driverp)
2117 {
2118 struct bpf_if *bp;
2119 bp = kmem_alloc(sizeof(*bp), KM_NOSLEEP);
2120 if (bp == NULL)
2121 panic("%s: out of memory", __func__);
2122
2123 mutex_enter(&bpf_mtx);
2124 bp->bif_driverp = driverp;
2125 bp->bif_ifp = ifp;
2126 bp->bif_dlt = dlt;
2127 bp->bif_si = NULL;
2128 BPF_IFLIST_ENTRY_INIT(bp);
2129 PSLIST_INIT(&bp->bif_dlist_head);
2130 psref_target_init(&bp->bif_psref, bpf_psref_class);
2131
2132 BPF_IFLIST_WRITER_INSERT_HEAD(bp);
2133
2134 *bp->bif_driverp = NULL;
2135
2136 bp->bif_hdrlen = hdrlen;
2137 mutex_exit(&bpf_mtx);
2138 #if 0
2139 printf("bpf: %s attached\n", ifp->if_xname);
2140 #endif
2141 }
2142
2143 static void
2144 _bpf_mtap_softint_init(struct ifnet *ifp)
2145 {
2146 struct bpf_if *bp;
2147
2148 mutex_enter(&bpf_mtx);
2149 BPF_IFLIST_WRITER_FOREACH(bp) {
2150 if (bp->bif_ifp != ifp)
2151 continue;
2152
2153 bp->bif_mbuf_head = NULL;
2154 bp->bif_mbuf_tail = NULL;
2155 bp->bif_si = softint_establish(SOFTINT_NET, bpf_mtap_si, bp);
2156 if (bp->bif_si == NULL)
2157 panic("%s: softint_establish() failed", __func__);
2158 break;
2159 }
2160 mutex_exit(&bpf_mtx);
2161
2162 if (bp == NULL)
2163 panic("%s: no bpf_if found for %s", __func__, ifp->if_xname);
2164 }
2165
2166 /*
2167 * Remove an interface from bpf.
2168 */
2169 static void
2170 _bpfdetach(struct ifnet *ifp)
2171 {
2172 struct bpf_if *bp;
2173 struct bpf_d *d;
2174 int s;
2175
2176 mutex_enter(&bpf_mtx);
2177 /* Nuke the vnodes for any open instances */
2178 again_d:
2179 BPF_DLIST_WRITER_FOREACH(d) {
2180 mutex_enter(d->bd_mtx);
2181 if (d->bd_bif != NULL && d->bd_bif->bif_ifp == ifp) {
2182 /*
2183 * Detach the descriptor from an interface now.
2184 * It will be free'ed later by close routine.
2185 */
2186 d->bd_promisc = 0; /* we can't touch device. */
2187 bpf_detachd(d);
2188 mutex_exit(d->bd_mtx);
2189 goto again_d;
2190 }
2191 mutex_exit(d->bd_mtx);
2192 }
2193
2194 again:
2195 BPF_IFLIST_WRITER_FOREACH(bp) {
2196 if (bp->bif_ifp == ifp) {
2197 BPF_IFLIST_WRITER_REMOVE(bp);
2198
2199 pserialize_perform(bpf_psz);
2200 psref_target_destroy(&bp->bif_psref, bpf_psref_class);
2201
2202 BPF_IFLIST_ENTRY_DESTROY(bp);
2203 if (bp->bif_si != NULL) {
2204 /* XXX NOMPSAFE: assumed running on one CPU */
2205 s = splnet();
2206 while (bp->bif_mbuf_head != NULL) {
2207 struct mbuf *m = bp->bif_mbuf_head;
2208 bp->bif_mbuf_head = m->m_nextpkt;
2209 m_freem(m);
2210 }
2211 splx(s);
2212 softint_disestablish(bp->bif_si);
2213 }
2214 kmem_free(bp, sizeof(*bp));
2215 goto again;
2216 }
2217 }
2218 mutex_exit(&bpf_mtx);
2219 }
2220
2221 /*
2222 * Change the data link type of a interface.
2223 */
2224 static void
2225 _bpf_change_type(struct ifnet *ifp, u_int dlt, u_int hdrlen)
2226 {
2227 struct bpf_if *bp;
2228
2229 mutex_enter(&bpf_mtx);
2230 BPF_IFLIST_WRITER_FOREACH(bp) {
2231 if (bp->bif_driverp == &ifp->if_bpf)
2232 break;
2233 }
2234 if (bp == NULL)
2235 panic("bpf_change_type");
2236
2237 bp->bif_dlt = dlt;
2238
2239 bp->bif_hdrlen = hdrlen;
2240 mutex_exit(&bpf_mtx);
2241 }
2242
2243 /*
2244 * Get a list of available data link type of the interface.
2245 */
2246 static int
2247 bpf_getdltlist(struct bpf_d *d, struct bpf_dltlist *bfl)
2248 {
2249 int n, error;
2250 struct ifnet *ifp;
2251 struct bpf_if *bp;
2252 int s, bound;
2253
2254 KASSERT(mutex_owned(d->bd_mtx));
2255
2256 ifp = d->bd_bif->bif_ifp;
2257 n = 0;
2258 error = 0;
2259
2260 bound = curlwp_bind();
2261 s = pserialize_read_enter();
2262 BPF_IFLIST_READER_FOREACH(bp) {
2263 if (bp->bif_ifp != ifp)
2264 continue;
2265 if (bfl->bfl_list != NULL) {
2266 struct psref psref;
2267
2268 if (n >= bfl->bfl_len) {
2269 pserialize_read_exit(s);
2270 return ENOMEM;
2271 }
2272
2273 bpf_if_acquire(bp, &psref);
2274 pserialize_read_exit(s);
2275
2276 error = copyout(&bp->bif_dlt,
2277 bfl->bfl_list + n, sizeof(u_int));
2278
2279 s = pserialize_read_enter();
2280 bpf_if_release(bp, &psref);
2281 }
2282 n++;
2283 }
2284 pserialize_read_exit(s);
2285 curlwp_bindx(bound);
2286
2287 bfl->bfl_len = n;
2288 return error;
2289 }
2290
2291 /*
2292 * Set the data link type of a BPF instance.
2293 */
2294 static int
2295 bpf_setdlt(struct bpf_d *d, u_int dlt)
2296 {
2297 int error, opromisc;
2298 struct ifnet *ifp;
2299 struct bpf_if *bp;
2300
2301 KASSERT(mutex_owned(&bpf_mtx));
2302 KASSERT(mutex_owned(d->bd_mtx));
2303
2304 if (d->bd_bif->bif_dlt == dlt)
2305 return 0;
2306 ifp = d->bd_bif->bif_ifp;
2307 BPF_IFLIST_WRITER_FOREACH(bp) {
2308 if (bp->bif_ifp == ifp && bp->bif_dlt == dlt)
2309 break;
2310 }
2311 if (bp == NULL)
2312 return EINVAL;
2313 opromisc = d->bd_promisc;
2314 bpf_detachd(d);
2315 BPFIF_DLIST_ENTRY_INIT(d);
2316 bpf_attachd(d, bp);
2317 reset_d(d);
2318 if (opromisc) {
2319 KERNEL_LOCK_UNLESS_NET_MPSAFE();
2320 error = ifpromisc(bp->bif_ifp, 1);
2321 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
2322 if (error)
2323 printf("%s: bpf_setdlt: ifpromisc failed (%d)\n",
2324 bp->bif_ifp->if_xname, error);
2325 else
2326 d->bd_promisc = 1;
2327 }
2328 return 0;
2329 }
2330
2331 static int
2332 sysctl_net_bpf_maxbufsize(SYSCTLFN_ARGS)
2333 {
2334 int newsize, error;
2335 struct sysctlnode node;
2336
2337 node = *rnode;
2338 node.sysctl_data = &newsize;
2339 newsize = bpf_maxbufsize;
2340 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2341 if (error || newp == NULL)
2342 return (error);
2343
2344 if (newsize < BPF_MINBUFSIZE || newsize > BPF_MAXBUFSIZE)
2345 return (EINVAL);
2346
2347 bpf_maxbufsize = newsize;
2348
2349 return (0);
2350 }
2351
2352 #if defined(MODULAR) || defined(BPFJIT)
2353 static int
2354 sysctl_net_bpf_jit(SYSCTLFN_ARGS)
2355 {
2356 bool newval;
2357 int error;
2358 struct sysctlnode node;
2359
2360 node = *rnode;
2361 node.sysctl_data = &newval;
2362 newval = bpf_jit;
2363 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2364 if (error != 0 || newp == NULL)
2365 return error;
2366
2367 bpf_jit = newval;
2368 if (newval && bpfjit_module_ops.bj_generate_code == NULL) {
2369 printf("JIT compilation is postponed "
2370 "until after bpfjit module is loaded\n");
2371 }
2372
2373 return 0;
2374 }
2375 #endif
2376
2377 static int
2378 sysctl_net_bpf_peers(SYSCTLFN_ARGS)
2379 {
2380 int error, elem_count;
2381 struct bpf_d *dp;
2382 struct bpf_d_ext dpe;
2383 size_t len, needed, elem_size, out_size;
2384 char *sp;
2385
2386 if (namelen == 1 && name[0] == CTL_QUERY)
2387 return (sysctl_query(SYSCTLFN_CALL(rnode)));
2388
2389 if (namelen != 2)
2390 return (EINVAL);
2391
2392 /* BPF peers is privileged information. */
2393 error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_INTERFACE,
2394 KAUTH_REQ_NETWORK_INTERFACE_GETPRIV, NULL, NULL, NULL);
2395 if (error)
2396 return (EPERM);
2397
2398 len = (oldp != NULL) ? *oldlenp : 0;
2399 sp = oldp;
2400 elem_size = name[0];
2401 elem_count = name[1];
2402 out_size = MIN(sizeof(dpe), elem_size);
2403 needed = 0;
2404
2405 if (elem_size < 1 || elem_count < 0)
2406 return (EINVAL);
2407
2408 mutex_enter(&bpf_mtx);
2409 BPF_DLIST_WRITER_FOREACH(dp) {
2410 if (len >= elem_size && elem_count > 0) {
2411 #define BPF_EXT(field) dpe.bde_ ## field = dp->bd_ ## field
2412 BPF_EXT(bufsize);
2413 BPF_EXT(promisc);
2414 BPF_EXT(state);
2415 BPF_EXT(immediate);
2416 BPF_EXT(hdrcmplt);
2417 BPF_EXT(direction);
2418 BPF_EXT(pid);
2419 BPF_EXT(rcount);
2420 BPF_EXT(dcount);
2421 BPF_EXT(ccount);
2422 #undef BPF_EXT
2423 mutex_enter(dp->bd_mtx);
2424 if (dp->bd_bif)
2425 (void)strlcpy(dpe.bde_ifname,
2426 dp->bd_bif->bif_ifp->if_xname,
2427 IFNAMSIZ - 1);
2428 else
2429 dpe.bde_ifname[0] = '\0';
2430 dpe.bde_locked = dp->bd_locked;
2431 mutex_exit(dp->bd_mtx);
2432
2433 error = copyout(&dpe, sp, out_size);
2434 if (error)
2435 break;
2436 sp += elem_size;
2437 len -= elem_size;
2438 }
2439 needed += elem_size;
2440 if (elem_count > 0 && elem_count != INT_MAX)
2441 elem_count--;
2442 }
2443 mutex_exit(&bpf_mtx);
2444
2445 *oldlenp = needed;
2446
2447 return (error);
2448 }
2449
2450 static void
2451 bpf_stats(void *p, void *arg, struct cpu_info *ci __unused)
2452 {
2453 struct bpf_stat *const stats = p;
2454 struct bpf_stat *sum = arg;
2455
2456 int s = splnet();
2457
2458 sum->bs_recv += stats->bs_recv;
2459 sum->bs_drop += stats->bs_drop;
2460 sum->bs_capt += stats->bs_capt;
2461
2462 splx(s);
2463 }
2464
2465 static int
2466 bpf_sysctl_gstats_handler(SYSCTLFN_ARGS)
2467 {
2468 struct sysctlnode node;
2469 int error;
2470 struct bpf_stat sum;
2471
2472 memset(&sum, 0, sizeof(sum));
2473 node = *rnode;
2474
2475 percpu_foreach_xcall(bpf_gstats_percpu, XC_HIGHPRI_IPL(IPL_SOFTNET),
2476 bpf_stats, &sum);
2477
2478 node.sysctl_data = ∑
2479 node.sysctl_size = sizeof(sum);
2480 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2481 if (error != 0 || newp == NULL)
2482 return error;
2483
2484 return 0;
2485 }
2486
2487 SYSCTL_SETUP(sysctl_net_bpf_setup, "bpf sysctls")
2488 {
2489 const struct sysctlnode *node;
2490
2491 node = NULL;
2492 sysctl_createv(clog, 0, NULL, &node,
2493 CTLFLAG_PERMANENT,
2494 CTLTYPE_NODE, "bpf",
2495 SYSCTL_DESCR("BPF options"),
2496 NULL, 0, NULL, 0,
2497 CTL_NET, CTL_CREATE, CTL_EOL);
2498 if (node != NULL) {
2499 #if defined(MODULAR) || defined(BPFJIT)
2500 sysctl_createv(clog, 0, NULL, NULL,
2501 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2502 CTLTYPE_BOOL, "jit",
2503 SYSCTL_DESCR("Toggle Just-In-Time compilation"),
2504 sysctl_net_bpf_jit, 0, &bpf_jit, 0,
2505 CTL_NET, node->sysctl_num, CTL_CREATE, CTL_EOL);
2506 #endif
2507 sysctl_createv(clog, 0, NULL, NULL,
2508 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2509 CTLTYPE_INT, "maxbufsize",
2510 SYSCTL_DESCR("Maximum size for data capture buffer"),
2511 sysctl_net_bpf_maxbufsize, 0, &bpf_maxbufsize, 0,
2512 CTL_NET, node->sysctl_num, CTL_CREATE, CTL_EOL);
2513 sysctl_createv(clog, 0, NULL, NULL,
2514 CTLFLAG_PERMANENT,
2515 CTLTYPE_STRUCT, "stats",
2516 SYSCTL_DESCR("BPF stats"),
2517 bpf_sysctl_gstats_handler, 0, NULL, 0,
2518 CTL_NET, node->sysctl_num, CTL_CREATE, CTL_EOL);
2519 sysctl_createv(clog, 0, NULL, NULL,
2520 CTLFLAG_PERMANENT,
2521 CTLTYPE_STRUCT, "peers",
2522 SYSCTL_DESCR("BPF peers"),
2523 sysctl_net_bpf_peers, 0, NULL, 0,
2524 CTL_NET, node->sysctl_num, CTL_CREATE, CTL_EOL);
2525 }
2526
2527 }
2528
2529 struct bpf_ops bpf_ops_kernel = {
2530 .bpf_attach = _bpfattach,
2531 .bpf_detach = _bpfdetach,
2532 .bpf_change_type = _bpf_change_type,
2533
2534 .bpf_mtap = _bpf_mtap,
2535 .bpf_mtap2 = _bpf_mtap2,
2536 .bpf_mtap_af = _bpf_mtap_af,
2537 .bpf_mtap_sl_in = _bpf_mtap_sl_in,
2538 .bpf_mtap_sl_out = _bpf_mtap_sl_out,
2539
2540 .bpf_mtap_softint = _bpf_mtap_softint,
2541 .bpf_mtap_softint_init = _bpf_mtap_softint_init,
2542 };
2543
2544 MODULE(MODULE_CLASS_DRIVER, bpf, "bpf_filter");
2545
2546 static int
2547 bpf_modcmd(modcmd_t cmd, void *arg)
2548 {
2549 #ifdef _MODULE
2550 devmajor_t bmajor, cmajor;
2551 #endif
2552 int error = 0;
2553
2554 switch (cmd) {
2555 case MODULE_CMD_INIT:
2556 bpf_init();
2557 #ifdef _MODULE
2558 bmajor = cmajor = NODEVMAJOR;
2559 error = devsw_attach("bpf", NULL, &bmajor,
2560 &bpf_cdevsw, &cmajor);
2561 if (error)
2562 break;
2563 #endif
2564
2565 bpf_ops_handover_enter(&bpf_ops_kernel);
2566 atomic_swap_ptr(&bpf_ops, &bpf_ops_kernel);
2567 bpf_ops_handover_exit();
2568 break;
2569
2570 case MODULE_CMD_FINI:
2571 /*
2572 * While there is no reference counting for bpf callers,
2573 * unload could at least in theory be done similarly to
2574 * system call disestablishment. This should even be
2575 * a little simpler:
2576 *
2577 * 1) replace op vector with stubs
2578 * 2) post update to all cpus with xc
2579 * 3) check that nobody is in bpf anymore
2580 * (it's doubtful we'd want something like l_sysent,
2581 * but we could do something like *signed* percpu
2582 * counters. if the sum is 0, we're good).
2583 * 4) if fail, unroll changes
2584 *
2585 * NOTE: change won't be atomic to the outside. some
2586 * packets may be not captured even if unload is
2587 * not succesful. I think packet capture not working
2588 * is a perfectly logical consequence of trying to
2589 * disable packet capture.
2590 */
2591 error = EOPNOTSUPP;
2592 break;
2593
2594 default:
2595 error = ENOTTY;
2596 break;
2597 }
2598
2599 return error;
2600 }
2601