bpf.c revision 1.249.2.3 1 /* $NetBSD: bpf.c,v 1.249.2.3 2024/09/13 14:13:05 martin Exp $ */
2
3 /*
4 * Copyright (c) 1990, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from the Stanford/CMU enet packet filter,
8 * (net/enet.c) distributed as part of 4.3BSD, and code contributed
9 * to Berkeley by Steven McCanne and Van Jacobson both of Lawrence
10 * Berkeley Laboratory.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)bpf.c 8.4 (Berkeley) 1/9/95
37 * static char rcsid[] =
38 * "Header: bpf.c,v 1.67 96/09/26 22:00:52 leres Exp ";
39 */
40
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: bpf.c,v 1.249.2.3 2024/09/13 14:13:05 martin Exp $");
43
44 #if defined(_KERNEL_OPT)
45 #include "opt_bpf.h"
46 #include "sl.h"
47 #include "opt_net_mpsafe.h"
48 #endif
49
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/mbuf.h>
53 #include <sys/buf.h>
54 #include <sys/time.h>
55 #include <sys/proc.h>
56 #include <sys/ioctl.h>
57 #include <sys/conf.h>
58 #include <sys/vnode.h>
59 #include <sys/queue.h>
60 #include <sys/stat.h>
61 #include <sys/module.h>
62 #include <sys/atomic.h>
63 #include <sys/cpu.h>
64
65 #include <sys/file.h>
66 #include <sys/filedesc.h>
67 #include <sys/tty.h>
68 #include <sys/uio.h>
69
70 #include <sys/protosw.h>
71 #include <sys/socket.h>
72 #include <sys/errno.h>
73 #include <sys/kernel.h>
74 #include <sys/poll.h>
75 #include <sys/sysctl.h>
76 #include <sys/kauth.h>
77 #include <sys/syslog.h>
78 #include <sys/percpu.h>
79 #include <sys/pserialize.h>
80 #include <sys/lwp.h>
81 #include <sys/xcall.h>
82
83 #include <net/if.h>
84 #include <net/slip.h>
85
86 #include <net/bpf.h>
87 #include <net/bpfdesc.h>
88 #include <net/bpfjit.h>
89
90 #include <net/if_arc.h>
91 #include <net/if_ether.h>
92 #include <net/if_types.h>
93
94 #include <netinet/in.h>
95 #include <netinet/if_inarp.h>
96
97
98 #include <compat/sys/sockio.h>
99
100 #ifndef BPF_BUFSIZE
101 /*
102 * 4096 is too small for FDDI frames. 8192 is too small for gigabit Ethernet
103 * jumbos (circa 9k), ATM, or Intel gig/10gig ethernet jumbos (16k).
104 */
105 # define BPF_BUFSIZE 32768
106 #endif
107
108 #define PRINET 26 /* interruptible */
109
110 /*
111 * The default read buffer size, and limit for BIOCSBLEN, is sysctl'able.
112 * XXX the default values should be computed dynamically based
113 * on available memory size and available mbuf clusters.
114 */
115 static int bpf_bufsize = BPF_BUFSIZE;
116 static int bpf_maxbufsize = BPF_DFLTBUFSIZE; /* XXX set dynamically, see above */
117 static bool bpf_jit = false;
118
119 struct bpfjit_ops bpfjit_module_ops = {
120 .bj_generate_code = NULL,
121 .bj_free_code = NULL
122 };
123
124 /*
125 * Global BPF statistics returned by net.bpf.stats sysctl.
126 */
127 static struct percpu *bpf_gstats_percpu; /* struct bpf_stat */
128
129 #define BPF_STATINC(id) \
130 { \
131 struct bpf_stat *__stats = \
132 percpu_getref(bpf_gstats_percpu); \
133 __stats->bs_##id++; \
134 percpu_putref(bpf_gstats_percpu); \
135 }
136
137 /*
138 * Locking notes:
139 * - bpf_mtx (adaptive mutex) protects:
140 * - Gobal lists: bpf_iflist and bpf_dlist
141 * - struct bpf_if
142 * - bpf_close
143 * - bpf_psz (pserialize)
144 * - struct bpf_d has two mutexes:
145 * - bd_buf_mtx (spin mutex) protects the buffers that can be accessed
146 * on packet tapping
147 * - bd_mtx (adaptive mutex) protects member variables other than the buffers
148 * - Locking order: bpf_mtx => bpf_d#bd_mtx => bpf_d#bd_buf_mtx
149 * - struct bpf_d obtained via fp->f_bpf in bpf_read and bpf_write is
150 * never freed because struct bpf_d is only freed in bpf_close and
151 * bpf_close never be called while executing bpf_read and bpf_write
152 * - A filter that is assigned to bpf_d can be replaced with another filter
153 * while tapping packets, so it needs to be done atomically
154 * - struct bpf_d is iterated on bpf_dlist with psz
155 * - struct bpf_if is iterated on bpf_iflist with psz or psref
156 */
157 /*
158 * Use a mutex to avoid a race condition between gathering the stats/peers
159 * and opening/closing the device.
160 */
161 static kmutex_t bpf_mtx;
162
163 static struct psref_class *bpf_psref_class __read_mostly;
164 static pserialize_t bpf_psz;
165
166 static inline void
167 bpf_if_acquire(struct bpf_if *bp, struct psref *psref)
168 {
169
170 psref_acquire(psref, &bp->bif_psref, bpf_psref_class);
171 }
172
173 static inline void
174 bpf_if_release(struct bpf_if *bp, struct psref *psref)
175 {
176
177 psref_release(psref, &bp->bif_psref, bpf_psref_class);
178 }
179
180 /*
181 * bpf_iflist is the list of interfaces; each corresponds to an ifnet
182 * bpf_dtab holds the descriptors, indexed by minor device #
183 */
184 static struct pslist_head bpf_iflist;
185 static struct pslist_head bpf_dlist;
186
187 /* Macros for bpf_d on bpf_dlist */
188 #define BPF_DLIST_WRITER_INSERT_HEAD(__d) \
189 PSLIST_WRITER_INSERT_HEAD(&bpf_dlist, (__d), bd_bpf_dlist_entry)
190 #define BPF_DLIST_READER_FOREACH(__d) \
191 PSLIST_READER_FOREACH((__d), &bpf_dlist, struct bpf_d, \
192 bd_bpf_dlist_entry)
193 #define BPF_DLIST_WRITER_FOREACH(__d) \
194 PSLIST_WRITER_FOREACH((__d), &bpf_dlist, struct bpf_d, \
195 bd_bpf_dlist_entry)
196 #define BPF_DLIST_ENTRY_INIT(__d) \
197 PSLIST_ENTRY_INIT((__d), bd_bpf_dlist_entry)
198 #define BPF_DLIST_WRITER_REMOVE(__d) \
199 PSLIST_WRITER_REMOVE((__d), bd_bpf_dlist_entry)
200 #define BPF_DLIST_ENTRY_DESTROY(__d) \
201 PSLIST_ENTRY_DESTROY((__d), bd_bpf_dlist_entry)
202
203 /* Macros for bpf_if on bpf_iflist */
204 #define BPF_IFLIST_WRITER_INSERT_HEAD(__bp) \
205 PSLIST_WRITER_INSERT_HEAD(&bpf_iflist, (__bp), bif_iflist_entry)
206 #define BPF_IFLIST_READER_FOREACH(__bp) \
207 PSLIST_READER_FOREACH((__bp), &bpf_iflist, struct bpf_if, \
208 bif_iflist_entry)
209 #define BPF_IFLIST_WRITER_FOREACH(__bp) \
210 PSLIST_WRITER_FOREACH((__bp), &bpf_iflist, struct bpf_if, \
211 bif_iflist_entry)
212 #define BPF_IFLIST_WRITER_REMOVE(__bp) \
213 PSLIST_WRITER_REMOVE((__bp), bif_iflist_entry)
214 #define BPF_IFLIST_ENTRY_INIT(__bp) \
215 PSLIST_ENTRY_INIT((__bp), bif_iflist_entry)
216 #define BPF_IFLIST_ENTRY_DESTROY(__bp) \
217 PSLIST_ENTRY_DESTROY((__bp), bif_iflist_entry)
218
219 /* Macros for bpf_d on bpf_if#bif_dlist_pslist */
220 #define BPFIF_DLIST_READER_FOREACH(__d, __bp) \
221 PSLIST_READER_FOREACH((__d), &(__bp)->bif_dlist_head, struct bpf_d, \
222 bd_bif_dlist_entry)
223 #define BPFIF_DLIST_WRITER_INSERT_HEAD(__bp, __d) \
224 PSLIST_WRITER_INSERT_HEAD(&(__bp)->bif_dlist_head, (__d), \
225 bd_bif_dlist_entry)
226 #define BPFIF_DLIST_WRITER_REMOVE(__d) \
227 PSLIST_WRITER_REMOVE((__d), bd_bif_dlist_entry)
228 #define BPFIF_DLIST_ENTRY_INIT(__d) \
229 PSLIST_ENTRY_INIT((__d), bd_bif_dlist_entry)
230 #define BPFIF_DLIST_READER_EMPTY(__bp) \
231 (PSLIST_READER_FIRST(&(__bp)->bif_dlist_head, struct bpf_d, \
232 bd_bif_dlist_entry) == NULL)
233 #define BPFIF_DLIST_WRITER_EMPTY(__bp) \
234 (PSLIST_WRITER_FIRST(&(__bp)->bif_dlist_head, struct bpf_d, \
235 bd_bif_dlist_entry) == NULL)
236 #define BPFIF_DLIST_ENTRY_DESTROY(__d) \
237 PSLIST_ENTRY_DESTROY((__d), bd_bif_dlist_entry)
238
239 static int bpf_allocbufs(struct bpf_d *);
240 static u_int bpf_xfilter(struct bpf_filter **, void *, u_int, u_int);
241 static void bpf_deliver(struct bpf_if *,
242 void *(*cpfn)(void *, const void *, size_t),
243 void *, u_int, u_int, const u_int);
244 static void bpf_freed(struct bpf_d *);
245 static void bpf_free_filter(struct bpf_filter *);
246 static void bpf_ifname(struct ifnet *, struct ifreq *);
247 static void *bpf_mcpy(void *, const void *, size_t);
248 static int bpf_movein(struct ifnet *, struct uio *, int, uint64_t,
249 struct mbuf **, struct sockaddr *,
250 struct bpf_filter **);
251 static void bpf_attachd(struct bpf_d *, struct bpf_if *);
252 static void bpf_detachd(struct bpf_d *);
253 static int bpf_setif(struct bpf_d *, struct ifreq *);
254 static int bpf_setf(struct bpf_d *, struct bpf_program *, u_long);
255 static void bpf_timed_out(void *);
256 static inline void
257 bpf_wakeup(struct bpf_d *);
258 static int bpf_hdrlen(struct bpf_d *);
259 static void catchpacket(struct bpf_d *, u_char *, u_int, u_int,
260 void *(*)(void *, const void *, size_t), struct timespec *);
261 static void reset_d(struct bpf_d *);
262 static int bpf_getdltlist(struct bpf_d *, struct bpf_dltlist *);
263 static int bpf_setdlt(struct bpf_d *, u_int);
264
265 static int bpf_read(struct file *, off_t *, struct uio *, kauth_cred_t,
266 int);
267 static int bpf_write(struct file *, off_t *, struct uio *, kauth_cred_t,
268 int);
269 static int bpf_ioctl(struct file *, u_long, void *);
270 static int bpf_poll(struct file *, int);
271 static int bpf_stat(struct file *, struct stat *);
272 static int bpf_close(struct file *);
273 static int bpf_kqfilter(struct file *, struct knote *);
274 static void bpf_softintr(void *);
275
276 static const struct fileops bpf_fileops = {
277 .fo_name = "bpf",
278 .fo_read = bpf_read,
279 .fo_write = bpf_write,
280 .fo_ioctl = bpf_ioctl,
281 .fo_fcntl = fnullop_fcntl,
282 .fo_poll = bpf_poll,
283 .fo_stat = bpf_stat,
284 .fo_close = bpf_close,
285 .fo_kqfilter = bpf_kqfilter,
286 .fo_restart = fnullop_restart,
287 };
288
289 dev_type_open(bpfopen);
290
291 const struct cdevsw bpf_cdevsw = {
292 .d_open = bpfopen,
293 .d_close = noclose,
294 .d_read = noread,
295 .d_write = nowrite,
296 .d_ioctl = noioctl,
297 .d_stop = nostop,
298 .d_tty = notty,
299 .d_poll = nopoll,
300 .d_mmap = nommap,
301 .d_kqfilter = nokqfilter,
302 .d_discard = nodiscard,
303 .d_flag = D_OTHER | D_MPSAFE
304 };
305
306 bpfjit_func_t
307 bpf_jit_generate(bpf_ctx_t *bc, void *code, size_t size)
308 {
309 struct bpfjit_ops *ops = &bpfjit_module_ops;
310 bpfjit_func_t (*generate_code)(const bpf_ctx_t *,
311 const struct bpf_insn *, size_t);
312
313 generate_code = atomic_load_acquire(&ops->bj_generate_code);
314 if (generate_code != NULL) {
315 return generate_code(bc, code, size);
316 }
317 return NULL;
318 }
319
320 void
321 bpf_jit_freecode(bpfjit_func_t jcode)
322 {
323 KASSERT(bpfjit_module_ops.bj_free_code != NULL);
324 bpfjit_module_ops.bj_free_code(jcode);
325 }
326
327 static int
328 bpf_movein(struct ifnet *ifp, struct uio *uio, int linktype, uint64_t mtu, struct mbuf **mp,
329 struct sockaddr *sockp, struct bpf_filter **wfilter)
330 {
331 struct mbuf *m, *m0, *n;
332 int error;
333 size_t len;
334 size_t hlen;
335 size_t align;
336 u_int slen;
337
338 /*
339 * Build a sockaddr based on the data link layer type.
340 * We do this at this level because the ethernet header
341 * is copied directly into the data field of the sockaddr.
342 * In the case of SLIP, there is no header and the packet
343 * is forwarded as is.
344 * Also, we are careful to leave room at the front of the mbuf
345 * for the link level header.
346 */
347 switch (linktype) {
348
349 case DLT_SLIP:
350 sockp->sa_family = AF_INET;
351 hlen = 0;
352 align = 0;
353 break;
354
355 case DLT_PPP:
356 sockp->sa_family = AF_UNSPEC;
357 hlen = 0;
358 align = 0;
359 break;
360
361 case DLT_EN10MB:
362 sockp->sa_family = AF_UNSPEC;
363 /* XXX Would MAXLINKHDR be better? */
364 /* 6(dst)+6(src)+2(type) */
365 hlen = sizeof(struct ether_header);
366 align = 2;
367 break;
368
369 case DLT_ARCNET:
370 sockp->sa_family = AF_UNSPEC;
371 hlen = ARC_HDRLEN;
372 align = 5;
373 break;
374
375 case DLT_FDDI:
376 sockp->sa_family = AF_LINK;
377 /* XXX 4(FORMAC)+6(dst)+6(src) */
378 hlen = 16;
379 align = 0;
380 break;
381
382 case DLT_ECONET:
383 sockp->sa_family = AF_UNSPEC;
384 hlen = 6;
385 align = 2;
386 break;
387
388 case DLT_NULL:
389 sockp->sa_family = AF_UNSPEC;
390 if (ifp->if_type == IFT_LOOP) {
391 /* Set here to apply the following validations */
392 hlen = sizeof(uint32_t);
393 } else
394 hlen = 0;
395 align = 0;
396 break;
397
398 default:
399 return (EIO);
400 }
401
402 len = uio->uio_resid;
403 /*
404 * If there aren't enough bytes for a link level header or the
405 * packet length exceeds the interface mtu, return an error.
406 */
407 if (len - hlen > mtu)
408 return (EMSGSIZE);
409
410 m0 = m = m_gethdr(M_WAIT, MT_DATA);
411 m_reset_rcvif(m);
412 m->m_pkthdr.len = (int)(len - hlen);
413 if (len + align > MHLEN) {
414 m_clget(m, M_WAIT);
415 if ((m->m_flags & M_EXT) == 0) {
416 error = ENOBUFS;
417 goto bad;
418 }
419 }
420
421 /* Insure the data is properly aligned */
422 if (align > 0)
423 m->m_data += align;
424
425 for (;;) {
426 len = M_TRAILINGSPACE(m);
427 if (len > uio->uio_resid)
428 len = uio->uio_resid;
429 error = uiomove(mtod(m, void *), len, uio);
430 if (error)
431 goto bad;
432 m->m_len = len;
433
434 if (uio->uio_resid == 0)
435 break;
436
437 n = m_get(M_WAIT, MT_DATA);
438 m_clget(n, M_WAIT); /* if fails, there is no problem */
439 m->m_next = n;
440 m = n;
441 }
442
443 slen = bpf_xfilter(wfilter, mtod(m, u_char *), len, len);
444 if (slen == 0) {
445 error = EPERM;
446 goto bad;
447 }
448
449 if (hlen != 0) {
450 if (linktype == DLT_NULL && ifp->if_type == IFT_LOOP) {
451 uint32_t af;
452 /* the link header indicates the address family */
453 memcpy(&af, mtod(m0, void *), sizeof(af));
454 sockp->sa_family = af;
455 } else {
456 /* move link level header in the top of mbuf to sa_data */
457 memcpy(sockp->sa_data, mtod(m0, void *), hlen);
458 }
459 m0->m_data += hlen;
460 m0->m_len -= hlen;
461 }
462
463 *mp = m0;
464 return (0);
465
466 bad:
467 m_freem(m0);
468 return (error);
469 }
470
471 /*
472 * Attach file to the bpf interface, i.e. make d listen on bp.
473 */
474 static void
475 bpf_attachd(struct bpf_d *d, struct bpf_if *bp)
476 {
477 struct bpf_event_tracker *t;
478
479 KASSERT(mutex_owned(&bpf_mtx));
480 KASSERT(mutex_owned(d->bd_mtx));
481 /*
482 * Point d at bp, and add d to the interface's list of listeners.
483 * Finally, point the driver's bpf cookie at the interface so
484 * it will divert packets to bpf.
485 */
486 d->bd_bif = bp;
487 BPFIF_DLIST_WRITER_INSERT_HEAD(bp, d);
488
489 *bp->bif_driverp = bp;
490
491 SLIST_FOREACH(t, &bp->bif_trackers, bet_entries) {
492 t->bet_notify(bp, bp->bif_ifp, bp->bif_dlt,
493 BPF_TRACK_EVENT_ATTACH);
494 }
495 }
496
497 /*
498 * Detach a file from its interface.
499 */
500 static void
501 bpf_detachd(struct bpf_d *d)
502 {
503 struct bpf_if *bp;
504 struct bpf_event_tracker *t;
505
506 KASSERT(mutex_owned(&bpf_mtx));
507 KASSERT(mutex_owned(d->bd_mtx));
508
509 bp = d->bd_bif;
510 /*
511 * Check if this descriptor had requested promiscuous mode.
512 * If so, turn it off.
513 */
514 if (d->bd_promisc) {
515 int error __diagused;
516
517 d->bd_promisc = 0;
518 /*
519 * Take device out of promiscuous mode. Since we were
520 * able to enter promiscuous mode, we should be able
521 * to turn it off. But we can get an error if
522 * the interface was configured down, so only panic
523 * if we don't get an unexpected error.
524 */
525 KERNEL_LOCK_UNLESS_NET_MPSAFE();
526 error = ifpromisc(bp->bif_ifp, 0);
527 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
528 #ifdef DIAGNOSTIC
529 if (error)
530 printf("%s: ifpromisc failed: %d", __func__, error);
531 #endif
532 }
533
534 /* Remove d from the interface's descriptor list. */
535 BPFIF_DLIST_WRITER_REMOVE(d);
536
537 pserialize_perform(bpf_psz);
538
539 if (BPFIF_DLIST_WRITER_EMPTY(bp)) {
540 /*
541 * Let the driver know that there are no more listeners.
542 */
543 *d->bd_bif->bif_driverp = NULL;
544 }
545
546 d->bd_bif = NULL;
547
548 SLIST_FOREACH(t, &bp->bif_trackers, bet_entries) {
549 t->bet_notify(bp, bp->bif_ifp, bp->bif_dlt,
550 BPF_TRACK_EVENT_DETACH);
551 }
552 }
553
554 static void
555 bpf_init(void)
556 {
557
558 mutex_init(&bpf_mtx, MUTEX_DEFAULT, IPL_NONE);
559 bpf_psz = pserialize_create();
560 bpf_psref_class = psref_class_create("bpf", IPL_SOFTNET);
561
562 PSLIST_INIT(&bpf_iflist);
563 PSLIST_INIT(&bpf_dlist);
564
565 bpf_gstats_percpu = percpu_alloc(sizeof(struct bpf_stat));
566
567 return;
568 }
569
570 /*
571 * bpfilterattach() is called at boot time. We don't need to do anything
572 * here, since any initialization will happen as part of module init code.
573 */
574 /* ARGSUSED */
575 void
576 bpfilterattach(int n)
577 {
578
579 }
580
581 /*
582 * Open ethernet device. Clones.
583 */
584 /* ARGSUSED */
585 int
586 bpfopen(dev_t dev, int flag, int mode, struct lwp *l)
587 {
588 struct bpf_d *d;
589 struct file *fp;
590 int error, fd;
591
592 /* falloc() will fill in the descriptor for us. */
593 if ((error = fd_allocfile(&fp, &fd)) != 0)
594 return error;
595
596 d = kmem_zalloc(sizeof(*d), KM_SLEEP);
597 d->bd_bufsize = bpf_bufsize;
598 d->bd_direction = BPF_D_INOUT;
599 d->bd_feedback = 0;
600 d->bd_pid = l->l_proc->p_pid;
601 #ifdef _LP64
602 if (curproc->p_flag & PK_32)
603 d->bd_compat32 = 1;
604 #endif
605 getnanotime(&d->bd_btime);
606 d->bd_atime = d->bd_mtime = d->bd_btime;
607 callout_init(&d->bd_callout, CALLOUT_MPSAFE);
608 selinit(&d->bd_sel);
609 d->bd_sih = softint_establish(SOFTINT_CLOCK, bpf_softintr, d);
610 d->bd_jitcode = NULL;
611 d->bd_rfilter = NULL;
612 d->bd_wfilter = NULL;
613 d->bd_locked = 0;
614 BPF_DLIST_ENTRY_INIT(d);
615 BPFIF_DLIST_ENTRY_INIT(d);
616 d->bd_mtx = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
617 d->bd_buf_mtx = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);
618 cv_init(&d->bd_cv, "bpf");
619
620 mutex_enter(&bpf_mtx);
621 BPF_DLIST_WRITER_INSERT_HEAD(d);
622 mutex_exit(&bpf_mtx);
623
624 return fd_clone(fp, fd, flag, &bpf_fileops, d);
625 }
626
627 /*
628 * Close the descriptor by detaching it from its interface,
629 * deallocating its buffers, and marking it free.
630 */
631 /* ARGSUSED */
632 static int
633 bpf_close(struct file *fp)
634 {
635 struct bpf_d *d;
636
637 mutex_enter(&bpf_mtx);
638
639 if ((d = fp->f_bpf) == NULL) {
640 mutex_exit(&bpf_mtx);
641 return 0;
642 }
643
644 /*
645 * Refresh the PID associated with this bpf file.
646 */
647 d->bd_pid = curproc->p_pid;
648
649 mutex_enter(d->bd_buf_mtx);
650 if (d->bd_state == BPF_WAITING)
651 callout_halt(&d->bd_callout, d->bd_buf_mtx);
652 d->bd_state = BPF_IDLE;
653 mutex_exit(d->bd_buf_mtx);
654 mutex_enter(d->bd_mtx);
655 if (d->bd_bif)
656 bpf_detachd(d);
657 mutex_exit(d->bd_mtx);
658
659 BPF_DLIST_WRITER_REMOVE(d);
660
661 pserialize_perform(bpf_psz);
662 mutex_exit(&bpf_mtx);
663
664 BPFIF_DLIST_ENTRY_DESTROY(d);
665 BPF_DLIST_ENTRY_DESTROY(d);
666 fp->f_bpf = NULL;
667 bpf_freed(d);
668 callout_destroy(&d->bd_callout);
669 seldestroy(&d->bd_sel);
670 softint_disestablish(d->bd_sih);
671 mutex_obj_free(d->bd_mtx);
672 mutex_obj_free(d->bd_buf_mtx);
673 cv_destroy(&d->bd_cv);
674
675 kmem_free(d, sizeof(*d));
676
677 return (0);
678 }
679
680 /*
681 * Rotate the packet buffers in descriptor d. Move the store buffer
682 * into the hold slot, and the free buffer into the store slot.
683 * Zero the length of the new store buffer.
684 */
685 #define ROTATE_BUFFERS(d) \
686 (d)->bd_hbuf = (d)->bd_sbuf; \
687 (d)->bd_hlen = (d)->bd_slen; \
688 (d)->bd_sbuf = (d)->bd_fbuf; \
689 (d)->bd_slen = 0; \
690 (d)->bd_fbuf = NULL;
691 /*
692 * bpfread - read next chunk of packets from buffers
693 */
694 static int
695 bpf_read(struct file *fp, off_t *offp, struct uio *uio,
696 kauth_cred_t cred, int flags)
697 {
698 struct bpf_d *d = fp->f_bpf;
699 int timed_out;
700 int error;
701
702 /*
703 * Refresh the PID associated with this bpf file.
704 */
705 d->bd_pid = curproc->p_pid;
706
707 getnanotime(&d->bd_atime);
708 /*
709 * Restrict application to use a buffer the same size as
710 * the kernel buffers.
711 */
712 if (uio->uio_resid != d->bd_bufsize)
713 return (EINVAL);
714
715 mutex_enter(d->bd_buf_mtx);
716 if (d->bd_state == BPF_WAITING)
717 callout_halt(&d->bd_callout, d->bd_buf_mtx);
718 timed_out = (d->bd_state == BPF_TIMED_OUT);
719 d->bd_state = BPF_IDLE;
720 mutex_exit(d->bd_buf_mtx);
721 /*
722 * If the hold buffer is empty, then do a timed sleep, which
723 * ends when the timeout expires or when enough packets
724 * have arrived to fill the store buffer.
725 */
726 mutex_enter(d->bd_buf_mtx);
727 while (d->bd_hbuf == NULL) {
728 if (fp->f_flag & FNONBLOCK) {
729 if (d->bd_slen == 0) {
730 error = EWOULDBLOCK;
731 goto out;
732 }
733 ROTATE_BUFFERS(d);
734 break;
735 }
736
737 if ((d->bd_immediate || timed_out) && d->bd_slen != 0) {
738 /*
739 * A packet(s) either arrived since the previous
740 * read or arrived while we were asleep.
741 * Rotate the buffers and return what's here.
742 */
743 ROTATE_BUFFERS(d);
744 break;
745 }
746
747 error = cv_timedwait_sig(&d->bd_cv, d->bd_buf_mtx, d->bd_rtout);
748
749 if (error == EINTR || error == ERESTART)
750 goto out;
751
752 if (error == EWOULDBLOCK) {
753 /*
754 * On a timeout, return what's in the buffer,
755 * which may be nothing. If there is something
756 * in the store buffer, we can rotate the buffers.
757 */
758 if (d->bd_hbuf)
759 /*
760 * We filled up the buffer in between
761 * getting the timeout and arriving
762 * here, so we don't need to rotate.
763 */
764 break;
765
766 if (d->bd_slen == 0) {
767 error = 0;
768 goto out;
769 }
770 ROTATE_BUFFERS(d);
771 break;
772 }
773 if (error != 0)
774 goto out;
775 }
776 /*
777 * At this point, we know we have something in the hold slot.
778 */
779 mutex_exit(d->bd_buf_mtx);
780
781 /*
782 * Move data from hold buffer into user space.
783 * We know the entire buffer is transferred since
784 * we checked above that the read buffer is bpf_bufsize bytes.
785 */
786 error = uiomove(d->bd_hbuf, d->bd_hlen, uio);
787
788 mutex_enter(d->bd_buf_mtx);
789 d->bd_fbuf = d->bd_hbuf;
790 d->bd_hbuf = NULL;
791 d->bd_hlen = 0;
792 out:
793 mutex_exit(d->bd_buf_mtx);
794 return (error);
795 }
796
797
798 /*
799 * If there are processes sleeping on this descriptor, wake them up.
800 */
801 static inline void
802 bpf_wakeup(struct bpf_d *d)
803 {
804
805 KASSERT(mutex_owned(d->bd_buf_mtx));
806
807 cv_broadcast(&d->bd_cv);
808
809 if (d->bd_async)
810 softint_schedule(d->bd_sih);
811 selnotify(&d->bd_sel, 0, NOTE_SUBMIT);
812 }
813
814 static void
815 bpf_softintr(void *cookie)
816 {
817 struct bpf_d *d;
818
819 d = cookie;
820 if (d->bd_async)
821 fownsignal(d->bd_pgid, SIGIO, 0, 0, NULL);
822 }
823
824 static void
825 bpf_timed_out(void *arg)
826 {
827 struct bpf_d *d = arg;
828
829 mutex_enter(d->bd_buf_mtx);
830 if (d->bd_state == BPF_WAITING) {
831 d->bd_state = BPF_TIMED_OUT;
832 if (d->bd_slen != 0)
833 bpf_wakeup(d);
834 }
835 mutex_exit(d->bd_buf_mtx);
836 }
837
838
839 static int
840 bpf_write(struct file *fp, off_t *offp, struct uio *uio,
841 kauth_cred_t cred, int flags)
842 {
843 struct bpf_d *d = fp->f_bpf;
844 struct bpf_if *bp;
845 struct ifnet *ifp;
846 struct mbuf *m, *mc;
847 int error;
848 static struct sockaddr_storage dst;
849 struct psref psref;
850 int bound;
851
852 /*
853 * Refresh the PID associated with this bpf file.
854 */
855 d->bd_pid = curproc->p_pid;
856
857 m = NULL; /* XXX gcc */
858
859 bound = curlwp_bind();
860 mutex_enter(d->bd_mtx);
861 bp = d->bd_bif;
862 if (bp == NULL) {
863 mutex_exit(d->bd_mtx);
864 error = ENXIO;
865 goto out_bindx;
866 }
867 bpf_if_acquire(bp, &psref);
868 mutex_exit(d->bd_mtx);
869
870 getnanotime(&d->bd_mtime);
871
872 ifp = bp->bif_ifp;
873 if (if_is_deactivated(ifp)) {
874 error = ENXIO;
875 goto out;
876 }
877
878 if (uio->uio_resid == 0) {
879 error = 0;
880 goto out;
881 }
882
883 error = bpf_movein(ifp, uio, (int)bp->bif_dlt, ifp->if_mtu, &m,
884 (struct sockaddr *) &dst, &d->bd_wfilter);
885 if (error)
886 goto out;
887
888 if (m->m_pkthdr.len > ifp->if_mtu) {
889 m_freem(m);
890 error = EMSGSIZE;
891 goto out;
892 }
893
894 /*
895 * If writing to a loopback interface, the address family has
896 * already been specially computed in bpf_movein(), so don't
897 * clobber it, or the loopback will reject it in looutput().
898 */
899 if (d->bd_hdrcmplt && ifp->if_type != IFT_LOOP)
900 dst.ss_family = pseudo_AF_HDRCMPLT;
901
902 if (d->bd_feedback) {
903 mc = m_dup(m, 0, M_COPYALL, M_NOWAIT);
904 if (mc != NULL)
905 m_set_rcvif(mc, ifp);
906 /* Set M_PROMISC for outgoing packets to be discarded. */
907 if (1 /*d->bd_direction == BPF_D_INOUT*/)
908 m->m_flags |= M_PROMISC;
909 } else
910 mc = NULL;
911
912 error = if_output_lock(ifp, ifp, m, (struct sockaddr *) &dst, NULL);
913
914 if (mc != NULL) {
915 if (error == 0) {
916 int s = splsoftnet();
917 KERNEL_LOCK_UNLESS_IFP_MPSAFE(ifp);
918 ifp->_if_input(ifp, mc);
919 KERNEL_UNLOCK_UNLESS_IFP_MPSAFE(ifp);
920 splx(s);
921 } else
922 m_freem(mc);
923 }
924 /*
925 * The driver frees the mbuf.
926 */
927 out:
928 bpf_if_release(bp, &psref);
929 out_bindx:
930 curlwp_bindx(bound);
931 return error;
932 }
933
934 /*
935 * Reset a descriptor by flushing its packet buffer and clearing the
936 * receive and drop counts.
937 */
938 static void
939 reset_d(struct bpf_d *d)
940 {
941
942 KASSERT(mutex_owned(d->bd_mtx));
943
944 mutex_enter(d->bd_buf_mtx);
945 if (d->bd_hbuf) {
946 /* Free the hold buffer. */
947 d->bd_fbuf = d->bd_hbuf;
948 d->bd_hbuf = NULL;
949 }
950 d->bd_slen = 0;
951 d->bd_hlen = 0;
952 d->bd_rcount = 0;
953 d->bd_dcount = 0;
954 d->bd_ccount = 0;
955 mutex_exit(d->bd_buf_mtx);
956 }
957
958 /*
959 * FIONREAD Check for read packet available.
960 * BIOCGBLEN Get buffer len [for read()].
961 * BIOCSETF Set ethernet read filter.
962 * BIOCFLUSH Flush read packet buffer.
963 * BIOCPROMISC Put interface into promiscuous mode.
964 * BIOCGDLT Get link layer type.
965 * BIOCGETIF Get interface name.
966 * BIOCSETIF Set interface.
967 * BIOCSRTIMEOUT Set read timeout.
968 * BIOCGRTIMEOUT Get read timeout.
969 * BIOCGSTATS Get packet stats.
970 * BIOCIMMEDIATE Set immediate mode.
971 * BIOCVERSION Get filter language version.
972 * BIOCGHDRCMPLT Get "header already complete" flag.
973 * BIOCSHDRCMPLT Set "header already complete" flag.
974 * BIOCSFEEDBACK Set packet feedback mode.
975 * BIOCGFEEDBACK Get packet feedback mode.
976 * BIOCGDIRECTION Get packet direction flag
977 * BIOCSDIRECTION Set packet direction flag
978 */
979 /* ARGSUSED */
980 static int
981 bpf_ioctl(struct file *fp, u_long cmd, void *addr)
982 {
983 struct bpf_d *d = fp->f_bpf;
984 int error = 0;
985
986 /*
987 * Refresh the PID associated with this bpf file.
988 */
989 d->bd_pid = curproc->p_pid;
990 #ifdef _LP64
991 if (curproc->p_flag & PK_32)
992 d->bd_compat32 = 1;
993 else
994 d->bd_compat32 = 0;
995 #endif
996
997 mutex_enter(d->bd_buf_mtx);
998 if (d->bd_state == BPF_WAITING)
999 callout_halt(&d->bd_callout, d->bd_buf_mtx);
1000 d->bd_state = BPF_IDLE;
1001 mutex_exit(d->bd_buf_mtx);
1002
1003 if (d->bd_locked) {
1004 switch (cmd) {
1005 case BIOCGBLEN: /* FALLTHROUGH */
1006 case BIOCFLUSH: /* FALLTHROUGH */
1007 case BIOCGDLT: /* FALLTHROUGH */
1008 case BIOCGDLTLIST: /* FALLTHROUGH */
1009 case BIOCGETIF: /* FALLTHROUGH */
1010 case BIOCGRTIMEOUT: /* FALLTHROUGH */
1011 case BIOCGSTATS: /* FALLTHROUGH */
1012 case BIOCVERSION: /* FALLTHROUGH */
1013 case BIOCGHDRCMPLT: /* FALLTHROUGH */
1014 case FIONREAD: /* FALLTHROUGH */
1015 case BIOCLOCK: /* FALLTHROUGH */
1016 case BIOCSRTIMEOUT: /* FALLTHROUGH */
1017 case BIOCIMMEDIATE: /* FALLTHROUGH */
1018 case TIOCGPGRP:
1019 break;
1020 default:
1021 return EPERM;
1022 }
1023 }
1024
1025 switch (cmd) {
1026
1027 default:
1028 error = EINVAL;
1029 break;
1030
1031 /*
1032 * Check for read packet available.
1033 */
1034 case FIONREAD:
1035 {
1036 int n;
1037
1038 mutex_enter(d->bd_buf_mtx);
1039 n = d->bd_slen;
1040 if (d->bd_hbuf)
1041 n += d->bd_hlen;
1042 mutex_exit(d->bd_buf_mtx);
1043
1044 *(int *)addr = n;
1045 break;
1046 }
1047
1048 /*
1049 * Get buffer len [for read()].
1050 */
1051 case BIOCGBLEN:
1052 *(u_int *)addr = d->bd_bufsize;
1053 break;
1054
1055 /*
1056 * Set buffer length.
1057 */
1058 case BIOCSBLEN:
1059 /*
1060 * Forbid to change the buffer length if buffers are already
1061 * allocated.
1062 */
1063 mutex_enter(d->bd_mtx);
1064 mutex_enter(d->bd_buf_mtx);
1065 if (d->bd_bif != NULL || d->bd_sbuf != NULL)
1066 error = EINVAL;
1067 else {
1068 u_int size = *(u_int *)addr;
1069
1070 if (size > bpf_maxbufsize)
1071 *(u_int *)addr = size = bpf_maxbufsize;
1072 else if (size < BPF_MINBUFSIZE)
1073 *(u_int *)addr = size = BPF_MINBUFSIZE;
1074 d->bd_bufsize = size;
1075 }
1076 mutex_exit(d->bd_buf_mtx);
1077 mutex_exit(d->bd_mtx);
1078 break;
1079
1080 /*
1081 * Set link layer read filter.
1082 */
1083 case BIOCSETF: /* FALLTHROUGH */
1084 case BIOCSETWF:
1085 error = bpf_setf(d, addr, cmd);
1086 break;
1087
1088 case BIOCLOCK:
1089 d->bd_locked = 1;
1090 break;
1091
1092 /*
1093 * Flush read packet buffer.
1094 */
1095 case BIOCFLUSH:
1096 mutex_enter(d->bd_mtx);
1097 reset_d(d);
1098 mutex_exit(d->bd_mtx);
1099 break;
1100
1101 /*
1102 * Put interface into promiscuous mode.
1103 */
1104 case BIOCPROMISC:
1105 mutex_enter(d->bd_mtx);
1106 if (d->bd_bif == NULL) {
1107 mutex_exit(d->bd_mtx);
1108 /*
1109 * No interface attached yet.
1110 */
1111 error = EINVAL;
1112 break;
1113 }
1114 if (d->bd_promisc == 0) {
1115 KERNEL_LOCK_UNLESS_NET_MPSAFE();
1116 error = ifpromisc(d->bd_bif->bif_ifp, 1);
1117 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
1118 if (error == 0)
1119 d->bd_promisc = 1;
1120 }
1121 mutex_exit(d->bd_mtx);
1122 break;
1123
1124 /*
1125 * Get device parameters.
1126 */
1127 case BIOCGDLT:
1128 mutex_enter(d->bd_mtx);
1129 if (d->bd_bif == NULL)
1130 error = EINVAL;
1131 else
1132 *(u_int *)addr = d->bd_bif->bif_dlt;
1133 mutex_exit(d->bd_mtx);
1134 break;
1135
1136 /*
1137 * Get a list of supported device parameters.
1138 */
1139 case BIOCGDLTLIST:
1140 mutex_enter(d->bd_mtx);
1141 if (d->bd_bif == NULL)
1142 error = EINVAL;
1143 else
1144 error = bpf_getdltlist(d, addr);
1145 mutex_exit(d->bd_mtx);
1146 break;
1147
1148 /*
1149 * Set device parameters.
1150 */
1151 case BIOCSDLT:
1152 mutex_enter(&bpf_mtx);
1153 mutex_enter(d->bd_mtx);
1154 if (d->bd_bif == NULL)
1155 error = EINVAL;
1156 else
1157 error = bpf_setdlt(d, *(u_int *)addr);
1158 mutex_exit(d->bd_mtx);
1159 mutex_exit(&bpf_mtx);
1160 break;
1161
1162 /*
1163 * Set interface name.
1164 */
1165 #ifdef OBIOCGETIF
1166 case OBIOCGETIF:
1167 #endif
1168 case BIOCGETIF:
1169 mutex_enter(d->bd_mtx);
1170 if (d->bd_bif == NULL)
1171 error = EINVAL;
1172 else
1173 bpf_ifname(d->bd_bif->bif_ifp, addr);
1174 mutex_exit(d->bd_mtx);
1175 break;
1176
1177 /*
1178 * Set interface.
1179 */
1180 #ifdef OBIOCSETIF
1181 case OBIOCSETIF:
1182 #endif
1183 case BIOCSETIF:
1184 mutex_enter(&bpf_mtx);
1185 error = bpf_setif(d, addr);
1186 mutex_exit(&bpf_mtx);
1187 break;
1188
1189 /*
1190 * Set read timeout.
1191 */
1192 case BIOCSRTIMEOUT:
1193 {
1194 struct timeval *tv = addr;
1195
1196 /* Compute number of ticks. */
1197 if (tv->tv_sec < 0 ||
1198 tv->tv_usec < 0 || tv->tv_usec >= 1000000) {
1199 error = EINVAL;
1200 break;
1201 } else if (tv->tv_sec > INT_MAX/hz - 1) {
1202 d->bd_rtout = INT_MAX;
1203 } else {
1204 d->bd_rtout = tv->tv_sec * hz
1205 + tv->tv_usec / tick;
1206 }
1207 if ((d->bd_rtout == 0) && (tv->tv_usec != 0))
1208 d->bd_rtout = 1;
1209 break;
1210 }
1211
1212 #ifdef BIOCGORTIMEOUT
1213 /*
1214 * Get read timeout.
1215 */
1216 case BIOCGORTIMEOUT:
1217 {
1218 struct timeval50 *tv = addr;
1219
1220 tv->tv_sec = d->bd_rtout / hz;
1221 tv->tv_usec = (d->bd_rtout % hz) * tick;
1222 break;
1223 }
1224 #endif
1225
1226 #ifdef BIOCSORTIMEOUT
1227 /*
1228 * Set read timeout.
1229 */
1230 case BIOCSORTIMEOUT:
1231 {
1232 struct timeval50 *tv = addr;
1233
1234 /* Compute number of ticks. */
1235 if (tv->tv_sec < 0 ||
1236 tv->tv_usec < 0 || tv->tv_usec >= 1000000) {
1237 error = EINVAL;
1238 break;
1239 } else if (tv->tv_sec > INT_MAX/hz - 1) {
1240 d->bd_rtout = INT_MAX;
1241 } else {
1242 d->bd_rtout = tv->tv_sec * hz
1243 + tv->tv_usec / tick;
1244 }
1245 if ((d->bd_rtout == 0) && (tv->tv_usec != 0))
1246 d->bd_rtout = 1;
1247 break;
1248 }
1249 #endif
1250
1251 /*
1252 * Get read timeout.
1253 */
1254 case BIOCGRTIMEOUT:
1255 {
1256 struct timeval *tv = addr;
1257
1258 tv->tv_sec = d->bd_rtout / hz;
1259 tv->tv_usec = (d->bd_rtout % hz) * tick;
1260 break;
1261 }
1262 /*
1263 * Get packet stats.
1264 */
1265 case BIOCGSTATS:
1266 {
1267 struct bpf_stat *bs = addr;
1268
1269 bs->bs_recv = d->bd_rcount;
1270 bs->bs_drop = d->bd_dcount;
1271 bs->bs_capt = d->bd_ccount;
1272 break;
1273 }
1274
1275 case BIOCGSTATSOLD:
1276 {
1277 struct bpf_stat_old *bs = addr;
1278
1279 bs->bs_recv = d->bd_rcount;
1280 bs->bs_drop = d->bd_dcount;
1281 break;
1282 }
1283
1284 /*
1285 * Set immediate mode.
1286 */
1287 case BIOCIMMEDIATE:
1288 d->bd_immediate = *(u_int *)addr;
1289 break;
1290
1291 case BIOCVERSION:
1292 {
1293 struct bpf_version *bv = addr;
1294
1295 bv->bv_major = BPF_MAJOR_VERSION;
1296 bv->bv_minor = BPF_MINOR_VERSION;
1297 break;
1298 }
1299
1300 case BIOCGHDRCMPLT: /* get "header already complete" flag */
1301 *(u_int *)addr = d->bd_hdrcmplt;
1302 break;
1303
1304 case BIOCSHDRCMPLT: /* set "header already complete" flag */
1305 d->bd_hdrcmplt = *(u_int *)addr ? 1 : 0;
1306 break;
1307
1308 /*
1309 * Get packet direction flag
1310 */
1311 case BIOCGDIRECTION:
1312 *(u_int *)addr = d->bd_direction;
1313 break;
1314
1315 /*
1316 * Set packet direction flag
1317 */
1318 case BIOCSDIRECTION:
1319 {
1320 u_int direction;
1321
1322 direction = *(u_int *)addr;
1323 switch (direction) {
1324 case BPF_D_IN:
1325 case BPF_D_INOUT:
1326 case BPF_D_OUT:
1327 d->bd_direction = direction;
1328 break;
1329 default:
1330 error = EINVAL;
1331 }
1332 }
1333 break;
1334
1335 /*
1336 * Set "feed packets from bpf back to input" mode
1337 */
1338 case BIOCSFEEDBACK:
1339 d->bd_feedback = *(u_int *)addr;
1340 break;
1341
1342 /*
1343 * Get "feed packets from bpf back to input" mode
1344 */
1345 case BIOCGFEEDBACK:
1346 *(u_int *)addr = d->bd_feedback;
1347 break;
1348
1349 case FIONBIO: /* Non-blocking I/O */
1350 /*
1351 * No need to do anything special as we use IO_NDELAY in
1352 * bpfread() as an indication of whether or not to block
1353 * the read.
1354 */
1355 break;
1356
1357 case FIOASYNC: /* Send signal on receive packets */
1358 mutex_enter(d->bd_mtx);
1359 d->bd_async = *(int *)addr;
1360 mutex_exit(d->bd_mtx);
1361 break;
1362
1363 case TIOCSPGRP: /* Process or group to send signals to */
1364 case FIOSETOWN:
1365 error = fsetown(&d->bd_pgid, cmd, addr);
1366 break;
1367
1368 case TIOCGPGRP:
1369 case FIOGETOWN:
1370 error = fgetown(d->bd_pgid, cmd, addr);
1371 break;
1372 }
1373 return (error);
1374 }
1375
1376 /*
1377 * Set d's packet filter program to fp. If this file already has a filter,
1378 * free it and replace it. Returns EINVAL for bogus requests.
1379 */
1380 static int
1381 bpf_setf(struct bpf_d *d, struct bpf_program *fp, u_long cmd)
1382 {
1383 struct bpf_insn *fcode;
1384 bpfjit_func_t jcode;
1385 size_t flen, size = 0;
1386 struct bpf_filter *oldf, *newf, **storef;
1387
1388 jcode = NULL;
1389 flen = fp->bf_len;
1390
1391 if ((fp->bf_insns == NULL && flen) || flen > BPF_MAXINSNS) {
1392 return EINVAL;
1393 }
1394
1395 if (flen) {
1396 /*
1397 * Allocate the buffer, copy the byte-code from
1398 * userspace and validate it.
1399 */
1400 size = flen * sizeof(*fp->bf_insns);
1401 fcode = kmem_alloc(size, KM_SLEEP);
1402 if (copyin(fp->bf_insns, fcode, size) != 0 ||
1403 !bpf_validate(fcode, (int)flen)) {
1404 kmem_free(fcode, size);
1405 return EINVAL;
1406 }
1407 if (bpf_jit)
1408 jcode = bpf_jit_generate(NULL, fcode, flen);
1409 } else {
1410 fcode = NULL;
1411 }
1412
1413 newf = kmem_alloc(sizeof(*newf), KM_SLEEP);
1414 newf->bf_insn = fcode;
1415 newf->bf_size = size;
1416 newf->bf_jitcode = jcode;
1417 if (cmd == BIOCSETF)
1418 d->bd_jitcode = jcode; /* XXX just for kvm(3) users */
1419
1420 /* Need to hold bpf_mtx for pserialize_perform */
1421 mutex_enter(&bpf_mtx);
1422 mutex_enter(d->bd_mtx);
1423 if (cmd == BIOCSETWF) {
1424 oldf = d->bd_wfilter;
1425 storef = &d->bd_wfilter;
1426 } else {
1427 oldf = d->bd_rfilter;
1428 storef = &d->bd_rfilter;
1429 }
1430 atomic_store_release(storef, newf);
1431 reset_d(d);
1432 pserialize_perform(bpf_psz);
1433 mutex_exit(d->bd_mtx);
1434 mutex_exit(&bpf_mtx);
1435
1436 if (oldf != NULL)
1437 bpf_free_filter(oldf);
1438
1439 return 0;
1440 }
1441
1442 /*
1443 * Detach a file from its current interface (if attached at all) and attach
1444 * to the interface indicated by the name stored in ifr.
1445 * Return an errno or 0.
1446 */
1447 static int
1448 bpf_setif(struct bpf_d *d, struct ifreq *ifr)
1449 {
1450 struct bpf_if *bp;
1451 char *cp;
1452 int unit_seen, i, error;
1453
1454 KASSERT(mutex_owned(&bpf_mtx));
1455 /*
1456 * Make sure the provided name has a unit number, and default
1457 * it to '0' if not specified.
1458 * XXX This is ugly ... do this differently?
1459 */
1460 unit_seen = 0;
1461 cp = ifr->ifr_name;
1462 cp[sizeof(ifr->ifr_name) - 1] = '\0'; /* sanity */
1463 while (*cp++)
1464 if (*cp >= '0' && *cp <= '9')
1465 unit_seen = 1;
1466 if (!unit_seen) {
1467 /* Make sure to leave room for the '\0'. */
1468 for (i = 0; i < (IFNAMSIZ - 1); ++i) {
1469 if ((ifr->ifr_name[i] >= 'a' &&
1470 ifr->ifr_name[i] <= 'z') ||
1471 (ifr->ifr_name[i] >= 'A' &&
1472 ifr->ifr_name[i] <= 'Z'))
1473 continue;
1474 ifr->ifr_name[i] = '0';
1475 }
1476 }
1477
1478 /*
1479 * Look through attached interfaces for the named one.
1480 */
1481 BPF_IFLIST_WRITER_FOREACH(bp) {
1482 struct ifnet *ifp = bp->bif_ifp;
1483
1484 if (ifp == NULL ||
1485 strcmp(ifp->if_xname, ifr->ifr_name) != 0)
1486 continue;
1487 /* skip additional entry */
1488 if (bp->bif_driverp != &ifp->if_bpf)
1489 continue;
1490 /*
1491 * We found the requested interface.
1492 * Allocate the packet buffers if we need to.
1493 * If we're already attached to requested interface,
1494 * just flush the buffer.
1495 */
1496 /*
1497 * bpf_allocbufs is called only here. bpf_mtx ensures that
1498 * no race condition happen on d->bd_sbuf.
1499 */
1500 if (d->bd_sbuf == NULL) {
1501 error = bpf_allocbufs(d);
1502 if (error != 0)
1503 return (error);
1504 }
1505 mutex_enter(d->bd_mtx);
1506 if (bp != d->bd_bif) {
1507 if (d->bd_bif) {
1508 /*
1509 * Detach if attached to something else.
1510 */
1511 bpf_detachd(d);
1512 BPFIF_DLIST_ENTRY_INIT(d);
1513 }
1514
1515 bpf_attachd(d, bp);
1516 }
1517 reset_d(d);
1518 mutex_exit(d->bd_mtx);
1519 return (0);
1520 }
1521 /* Not found. */
1522 return (ENXIO);
1523 }
1524
1525 /*
1526 * Copy the interface name to the ifreq.
1527 */
1528 static void
1529 bpf_ifname(struct ifnet *ifp, struct ifreq *ifr)
1530 {
1531 memcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
1532 }
1533
1534 static int
1535 bpf_stat(struct file *fp, struct stat *st)
1536 {
1537 struct bpf_d *d = fp->f_bpf;
1538
1539 (void)memset(st, 0, sizeof(*st));
1540 mutex_enter(d->bd_mtx);
1541 st->st_dev = makedev(cdevsw_lookup_major(&bpf_cdevsw), d->bd_pid);
1542 st->st_atimespec = d->bd_atime;
1543 st->st_mtimespec = d->bd_mtime;
1544 st->st_ctimespec = st->st_birthtimespec = d->bd_btime;
1545 st->st_uid = kauth_cred_geteuid(fp->f_cred);
1546 st->st_gid = kauth_cred_getegid(fp->f_cred);
1547 st->st_mode = S_IFCHR;
1548 mutex_exit(d->bd_mtx);
1549 return 0;
1550 }
1551
1552 /*
1553 * Support for poll() system call
1554 *
1555 * Return true iff the specific operation will not block indefinitely - with
1556 * the assumption that it is safe to positively acknowledge a request for the
1557 * ability to write to the BPF device.
1558 * Otherwise, return false but make a note that a selnotify() must be done.
1559 */
1560 static int
1561 bpf_poll(struct file *fp, int events)
1562 {
1563 struct bpf_d *d = fp->f_bpf;
1564 int revents;
1565
1566 /*
1567 * Refresh the PID associated with this bpf file.
1568 */
1569 mutex_enter(&bpf_mtx);
1570 d->bd_pid = curproc->p_pid;
1571
1572 revents = events & (POLLOUT | POLLWRNORM);
1573 if (events & (POLLIN | POLLRDNORM)) {
1574 /*
1575 * An imitation of the FIONREAD ioctl code.
1576 */
1577 mutex_enter(d->bd_mtx);
1578 mutex_enter(d->bd_buf_mtx);
1579 if (d->bd_hlen != 0 ||
1580 ((d->bd_immediate || d->bd_state == BPF_TIMED_OUT) &&
1581 d->bd_slen != 0)) {
1582 revents |= events & (POLLIN | POLLRDNORM);
1583 } else {
1584 selrecord(curlwp, &d->bd_sel);
1585 /* Start the read timeout if necessary */
1586 if (d->bd_rtout > 0 && d->bd_state == BPF_IDLE) {
1587 callout_reset(&d->bd_callout, d->bd_rtout,
1588 bpf_timed_out, d);
1589 d->bd_state = BPF_WAITING;
1590 }
1591 }
1592 mutex_exit(d->bd_buf_mtx);
1593 mutex_exit(d->bd_mtx);
1594 }
1595
1596 mutex_exit(&bpf_mtx);
1597 return (revents);
1598 }
1599
1600 static void
1601 filt_bpfrdetach(struct knote *kn)
1602 {
1603 struct bpf_d *d = kn->kn_hook;
1604
1605 mutex_enter(d->bd_buf_mtx);
1606 selremove_knote(&d->bd_sel, kn);
1607 mutex_exit(d->bd_buf_mtx);
1608 }
1609
1610 static int
1611 filt_bpfread(struct knote *kn, long hint)
1612 {
1613 struct bpf_d *d = kn->kn_hook;
1614 int rv;
1615
1616 /*
1617 * Refresh the PID associated with this bpf file.
1618 */
1619 d->bd_pid = curproc->p_pid;
1620
1621 if (hint & NOTE_SUBMIT)
1622 KASSERT(mutex_owned(d->bd_buf_mtx));
1623 else
1624 mutex_enter(d->bd_buf_mtx);
1625 kn->kn_data = d->bd_hlen;
1626 if (d->bd_immediate)
1627 kn->kn_data += d->bd_slen;
1628 rv = (kn->kn_data > 0);
1629 if (hint & NOTE_SUBMIT)
1630 KASSERT(mutex_owned(d->bd_buf_mtx));
1631 else
1632 mutex_exit(d->bd_buf_mtx);
1633 return rv;
1634 }
1635
1636 static const struct filterops bpfread_filtops = {
1637 .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
1638 .f_attach = NULL,
1639 .f_detach = filt_bpfrdetach,
1640 .f_event = filt_bpfread,
1641 };
1642
1643 static int
1644 bpf_kqfilter(struct file *fp, struct knote *kn)
1645 {
1646 struct bpf_d *d = fp->f_bpf;
1647
1648 switch (kn->kn_filter) {
1649 case EVFILT_READ:
1650 kn->kn_fop = &bpfread_filtops;
1651 break;
1652
1653 default:
1654 return (EINVAL);
1655 }
1656
1657 kn->kn_hook = d;
1658
1659 mutex_enter(d->bd_buf_mtx);
1660 selrecord_knote(&d->bd_sel, kn);
1661 mutex_exit(d->bd_buf_mtx);
1662
1663 return (0);
1664 }
1665
1666 /*
1667 * Copy data from an mbuf chain into a buffer. This code is derived
1668 * from m_copydata in sys/uipc_mbuf.c.
1669 */
1670 static void *
1671 bpf_mcpy(void *dst_arg, const void *src_arg, size_t len)
1672 {
1673 const struct mbuf *m;
1674 u_int count;
1675 u_char *dst;
1676
1677 m = src_arg;
1678 dst = dst_arg;
1679 while (len > 0) {
1680 if (m == NULL)
1681 panic("bpf_mcpy");
1682 count = uimin(m->m_len, len);
1683 memcpy(dst, mtod(m, const void *), count);
1684 m = m->m_next;
1685 dst += count;
1686 len -= count;
1687 }
1688 return dst_arg;
1689 }
1690
1691 static inline u_int
1692 bpf_xfilter(struct bpf_filter **filter, void *pkt, u_int pktlen, u_int buflen)
1693 {
1694 struct bpf_filter *filt;
1695 uint32_t mem[BPF_MEMWORDS];
1696 bpf_args_t args = {
1697 .pkt = (const uint8_t *)pkt,
1698 .wirelen = pktlen,
1699 .buflen = buflen,
1700 .mem = mem,
1701 .arg = NULL
1702 };
1703 u_int slen;
1704
1705 filt = atomic_load_consume(filter);
1706 if (filt == NULL) /* No filter means accept all. */
1707 return (u_int)-1;
1708
1709 if (filt->bf_jitcode != NULL)
1710 slen = filt->bf_jitcode(NULL, &args);
1711 else
1712 slen = bpf_filter_ext(NULL, filt->bf_insn, &args);
1713 return slen;
1714 }
1715
1716 /*
1717 * Dispatch a packet to all the listeners on interface bp.
1718 *
1719 * pkt pointer to the packet, either a data buffer or an mbuf chain
1720 * buflen buffer length, if pkt is a data buffer
1721 * cpfn a function that can copy pkt into the listener's buffer
1722 * pktlen length of the packet
1723 * direction BPF_D_IN or BPF_D_OUT
1724 */
1725 static inline void
1726 bpf_deliver(struct bpf_if *bp, void *(*cpfn)(void *, const void *, size_t),
1727 void *pkt, u_int pktlen, u_int buflen, const u_int direction)
1728 {
1729 bool gottime = false;
1730 struct timespec ts;
1731 struct bpf_d *d;
1732 int s;
1733 u_int slen;
1734
1735 KASSERT(!cpu_intr_p());
1736
1737 /*
1738 * Note that the IPL does not have to be raised at this point.
1739 * The only problem that could arise here is that if two different
1740 * interfaces shared any data. This is not the case.
1741 */
1742 s = pserialize_read_enter();
1743 BPFIF_DLIST_READER_FOREACH(d, bp) {
1744 if (direction == BPF_D_IN) {
1745 if (d->bd_direction == BPF_D_OUT)
1746 continue;
1747 } else { /* BPF_D_OUT */
1748 if (d->bd_direction == BPF_D_IN)
1749 continue;
1750 }
1751
1752 atomic_inc_ulong(&d->bd_rcount);
1753 BPF_STATINC(recv);
1754
1755 slen = bpf_xfilter(&d->bd_rfilter, pkt, pktlen, buflen);
1756 if (slen == 0)
1757 continue;
1758
1759 if (!gottime) {
1760 gottime = true;
1761 nanotime(&ts);
1762 }
1763 /* Assume catchpacket doesn't sleep */
1764 catchpacket(d, pkt, pktlen, slen, cpfn, &ts);
1765 }
1766 pserialize_read_exit(s);
1767 }
1768
1769 /*
1770 * Incoming linkage from device drivers, when the head of the packet is in
1771 * a buffer, and the tail is in an mbuf chain.
1772 */
1773 static void
1774 _bpf_mtap2(struct bpf_if *bp, void *data, u_int dlen, struct mbuf *m,
1775 u_int direction)
1776 {
1777 u_int pktlen;
1778 struct mbuf mb;
1779
1780 /* Skip outgoing duplicate packets. */
1781 if ((m->m_flags & M_PROMISC) != 0 && m->m_pkthdr.rcvif_index == 0) {
1782 m->m_flags &= ~M_PROMISC;
1783 return;
1784 }
1785
1786 pktlen = m_length(m) + dlen;
1787
1788 /*
1789 * Craft on-stack mbuf suitable for passing to bpf_filter.
1790 * Note that we cut corners here; we only setup what's
1791 * absolutely needed--this mbuf should never go anywhere else.
1792 */
1793 (void)memset(&mb, 0, sizeof(mb));
1794 mb.m_type = MT_DATA;
1795 mb.m_next = m;
1796 mb.m_data = data;
1797 mb.m_len = dlen;
1798
1799 bpf_deliver(bp, bpf_mcpy, &mb, pktlen, 0, direction);
1800 }
1801
1802 /*
1803 * Incoming linkage from device drivers, when packet is in an mbuf chain.
1804 */
1805 static void
1806 _bpf_mtap(struct bpf_if *bp, struct mbuf *m, u_int direction)
1807 {
1808 void *(*cpfn)(void *, const void *, size_t);
1809 u_int pktlen, buflen;
1810 void *marg;
1811
1812 /* Skip outgoing duplicate packets. */
1813 if ((m->m_flags & M_PROMISC) != 0 && m->m_pkthdr.rcvif_index == 0) {
1814 m->m_flags &= ~M_PROMISC;
1815 return;
1816 }
1817
1818 pktlen = m_length(m);
1819
1820 /* Skip zero-sized packets. */
1821 if (__predict_false(pktlen == 0)) {
1822 return;
1823 }
1824
1825 if (pktlen == m->m_len) {
1826 cpfn = (void *)memcpy;
1827 marg = mtod(m, void *);
1828 buflen = pktlen;
1829 KASSERT(buflen != 0);
1830 } else {
1831 cpfn = bpf_mcpy;
1832 marg = m;
1833 buflen = 0;
1834 }
1835
1836 bpf_deliver(bp, cpfn, marg, pktlen, buflen, direction);
1837 }
1838
1839 /*
1840 * We need to prepend the address family as
1841 * a four byte field. Cons up a dummy header
1842 * to pacify bpf. This is safe because bpf
1843 * will only read from the mbuf (i.e., it won't
1844 * try to free it or keep a pointer a to it).
1845 */
1846 static void
1847 _bpf_mtap_af(struct bpf_if *bp, uint32_t af, struct mbuf *m, u_int direction)
1848 {
1849 struct mbuf m0;
1850
1851 m0.m_type = MT_DATA;
1852 m0.m_flags = 0;
1853 m0.m_next = m;
1854 m0.m_nextpkt = NULL;
1855 m0.m_owner = NULL;
1856 m0.m_len = 4;
1857 m0.m_data = (char *)⁡
1858
1859 _bpf_mtap(bp, &m0, direction);
1860 }
1861
1862 /*
1863 * Put the SLIP pseudo-"link header" in place.
1864 * Note this M_PREPEND() should never fail,
1865 * swince we know we always have enough space
1866 * in the input buffer.
1867 */
1868 static void
1869 _bpf_mtap_sl_in(struct bpf_if *bp, u_char *chdr, struct mbuf **m)
1870 {
1871 u_char *hp;
1872
1873 M_PREPEND(*m, SLIP_HDRLEN, M_DONTWAIT);
1874 if (*m == NULL)
1875 return;
1876
1877 hp = mtod(*m, u_char *);
1878 hp[SLX_DIR] = SLIPDIR_IN;
1879 (void)memcpy(&hp[SLX_CHDR], chdr, CHDR_LEN);
1880
1881 _bpf_mtap(bp, *m, BPF_D_IN);
1882
1883 m_adj(*m, SLIP_HDRLEN);
1884 }
1885
1886 /*
1887 * Put the SLIP pseudo-"link header" in
1888 * place. The compressed header is now
1889 * at the beginning of the mbuf.
1890 */
1891 static void
1892 _bpf_mtap_sl_out(struct bpf_if *bp, u_char *chdr, struct mbuf *m)
1893 {
1894 struct mbuf m0;
1895 u_char *hp;
1896
1897 m0.m_type = MT_DATA;
1898 m0.m_flags = 0;
1899 m0.m_next = m;
1900 m0.m_nextpkt = NULL;
1901 m0.m_owner = NULL;
1902 m0.m_data = m0.m_dat;
1903 m0.m_len = SLIP_HDRLEN;
1904
1905 hp = mtod(&m0, u_char *);
1906
1907 hp[SLX_DIR] = SLIPDIR_OUT;
1908 (void)memcpy(&hp[SLX_CHDR], chdr, CHDR_LEN);
1909
1910 _bpf_mtap(bp, &m0, BPF_D_OUT);
1911 m_freem(m);
1912 }
1913
1914 static struct mbuf *
1915 bpf_mbuf_enqueue(struct bpf_if *bp, struct mbuf *m)
1916 {
1917 struct mbuf *dup;
1918
1919 dup = m_dup(m, 0, M_COPYALL, M_NOWAIT);
1920 if (dup == NULL)
1921 return NULL;
1922
1923 if (bp->bif_mbuf_tail != NULL) {
1924 bp->bif_mbuf_tail->m_nextpkt = dup;
1925 } else {
1926 bp->bif_mbuf_head = dup;
1927 }
1928 bp->bif_mbuf_tail = dup;
1929 #ifdef BPF_MTAP_SOFTINT_DEBUG
1930 log(LOG_DEBUG, "%s: enqueued mbuf=%p to %s\n",
1931 __func__, dup, bp->bif_ifp->if_xname);
1932 #endif
1933
1934 return dup;
1935 }
1936
1937 static struct mbuf *
1938 bpf_mbuf_dequeue(struct bpf_if *bp)
1939 {
1940 struct mbuf *m;
1941 int s;
1942
1943 /* XXX NOMPSAFE: assumed running on one CPU */
1944 s = splnet();
1945 m = bp->bif_mbuf_head;
1946 if (m != NULL) {
1947 bp->bif_mbuf_head = m->m_nextpkt;
1948 m->m_nextpkt = NULL;
1949
1950 if (bp->bif_mbuf_head == NULL)
1951 bp->bif_mbuf_tail = NULL;
1952 #ifdef BPF_MTAP_SOFTINT_DEBUG
1953 log(LOG_DEBUG, "%s: dequeued mbuf=%p from %s\n",
1954 __func__, m, bp->bif_ifp->if_xname);
1955 #endif
1956 }
1957 splx(s);
1958
1959 return m;
1960 }
1961
1962 static void
1963 bpf_mtap_si(void *arg)
1964 {
1965 struct bpf_if *bp = arg;
1966 struct mbuf *m;
1967
1968 while ((m = bpf_mbuf_dequeue(bp)) != NULL) {
1969 #ifdef BPF_MTAP_SOFTINT_DEBUG
1970 log(LOG_DEBUG, "%s: tapping mbuf=%p on %s\n",
1971 __func__, m, bp->bif_ifp->if_xname);
1972 #endif
1973 bpf_ops->bpf_mtap(bp, m, BPF_D_IN);
1974 m_freem(m);
1975 }
1976 }
1977
1978 static void
1979 _bpf_mtap_softint(struct ifnet *ifp, struct mbuf *m)
1980 {
1981 struct bpf_if *bp = ifp->if_bpf;
1982 struct mbuf *dup;
1983
1984 KASSERT(cpu_intr_p());
1985
1986 /* To avoid extra invocations of the softint */
1987 if (BPFIF_DLIST_READER_EMPTY(bp))
1988 return;
1989 KASSERT(bp->bif_si != NULL);
1990
1991 dup = bpf_mbuf_enqueue(bp, m);
1992 if (dup != NULL)
1993 softint_schedule(bp->bif_si);
1994 }
1995
1996 static int
1997 bpf_hdrlen(struct bpf_d *d)
1998 {
1999 int hdrlen = d->bd_bif->bif_hdrlen;
2000 /*
2001 * Compute the length of the bpf header. This is not necessarily
2002 * equal to SIZEOF_BPF_HDR because we want to insert spacing such
2003 * that the network layer header begins on a longword boundary (for
2004 * performance reasons and to alleviate alignment restrictions).
2005 */
2006 #ifdef _LP64
2007 if (d->bd_compat32)
2008 return (BPF_WORDALIGN32(hdrlen + SIZEOF_BPF_HDR32) - hdrlen);
2009 else
2010 #endif
2011 return (BPF_WORDALIGN(hdrlen + SIZEOF_BPF_HDR) - hdrlen);
2012 }
2013
2014 /*
2015 * Move the packet data from interface memory (pkt) into the
2016 * store buffer. Call the wakeup functions if it's time to wakeup
2017 * a listener (buffer full), "cpfn" is the routine called to do the
2018 * actual data transfer. memcpy is passed in to copy contiguous chunks,
2019 * while bpf_mcpy is passed in to copy mbuf chains. In the latter case,
2020 * pkt is really an mbuf.
2021 */
2022 static void
2023 catchpacket(struct bpf_d *d, u_char *pkt, u_int pktlen, u_int snaplen,
2024 void *(*cpfn)(void *, const void *, size_t), struct timespec *ts)
2025 {
2026 char *h;
2027 int totlen, curlen, caplen;
2028 int hdrlen = bpf_hdrlen(d);
2029 int do_wakeup = 0;
2030
2031 atomic_inc_ulong(&d->bd_ccount);
2032 BPF_STATINC(capt);
2033 /*
2034 * Figure out how many bytes to move. If the packet is
2035 * greater or equal to the snapshot length, transfer that
2036 * much. Otherwise, transfer the whole packet (unless
2037 * we hit the buffer size limit).
2038 */
2039 totlen = hdrlen + uimin(snaplen, pktlen);
2040 if (totlen > d->bd_bufsize)
2041 totlen = d->bd_bufsize;
2042 /*
2043 * If we adjusted totlen to fit the bufsize, it could be that
2044 * totlen is smaller than hdrlen because of the link layer header.
2045 */
2046 caplen = totlen - hdrlen;
2047 if (caplen < 0)
2048 caplen = 0;
2049
2050 mutex_enter(d->bd_buf_mtx);
2051 /*
2052 * Round up the end of the previous packet to the next longword.
2053 */
2054 #ifdef _LP64
2055 if (d->bd_compat32)
2056 curlen = BPF_WORDALIGN32(d->bd_slen);
2057 else
2058 #endif
2059 curlen = BPF_WORDALIGN(d->bd_slen);
2060 if (curlen + totlen > d->bd_bufsize) {
2061 /*
2062 * This packet will overflow the storage buffer.
2063 * Rotate the buffers if we can, then wakeup any
2064 * pending reads.
2065 */
2066 if (d->bd_fbuf == NULL) {
2067 mutex_exit(d->bd_buf_mtx);
2068 /*
2069 * We haven't completed the previous read yet,
2070 * so drop the packet.
2071 */
2072 atomic_inc_ulong(&d->bd_dcount);
2073 BPF_STATINC(drop);
2074 return;
2075 }
2076 ROTATE_BUFFERS(d);
2077 do_wakeup = 1;
2078 curlen = 0;
2079 } else if (d->bd_immediate || d->bd_state == BPF_TIMED_OUT) {
2080 /*
2081 * Immediate mode is set, or the read timeout has
2082 * already expired during a select call. A packet
2083 * arrived, so the reader should be woken up.
2084 */
2085 do_wakeup = 1;
2086 }
2087
2088 /*
2089 * Append the bpf header.
2090 */
2091 h = (char *)d->bd_sbuf + curlen;
2092 #ifdef _LP64
2093 if (d->bd_compat32) {
2094 struct bpf_hdr32 *hp32;
2095
2096 hp32 = (struct bpf_hdr32 *)h;
2097 hp32->bh_tstamp.tv_sec = ts->tv_sec;
2098 hp32->bh_tstamp.tv_usec = ts->tv_nsec / 1000;
2099 hp32->bh_datalen = pktlen;
2100 hp32->bh_hdrlen = hdrlen;
2101 hp32->bh_caplen = caplen;
2102 } else
2103 #endif
2104 {
2105 struct bpf_hdr *hp;
2106
2107 hp = (struct bpf_hdr *)h;
2108 hp->bh_tstamp.tv_sec = ts->tv_sec;
2109 hp->bh_tstamp.tv_usec = ts->tv_nsec / 1000;
2110 hp->bh_datalen = pktlen;
2111 hp->bh_hdrlen = hdrlen;
2112 hp->bh_caplen = caplen;
2113 }
2114
2115 /*
2116 * Copy the packet data into the store buffer and update its length.
2117 */
2118 (*cpfn)(h + hdrlen, pkt, caplen);
2119 d->bd_slen = curlen + totlen;
2120
2121 /*
2122 * Call bpf_wakeup after bd_slen has been updated so that kevent(2)
2123 * will cause filt_bpfread() to be called with it adjusted.
2124 */
2125 if (do_wakeup)
2126 bpf_wakeup(d);
2127
2128 mutex_exit(d->bd_buf_mtx);
2129 }
2130
2131 /*
2132 * Initialize all nonzero fields of a descriptor.
2133 */
2134 static int
2135 bpf_allocbufs(struct bpf_d *d)
2136 {
2137
2138 d->bd_fbuf = kmem_zalloc(d->bd_bufsize, KM_NOSLEEP);
2139 if (!d->bd_fbuf)
2140 return (ENOBUFS);
2141 d->bd_sbuf = kmem_zalloc(d->bd_bufsize, KM_NOSLEEP);
2142 if (!d->bd_sbuf) {
2143 kmem_free(d->bd_fbuf, d->bd_bufsize);
2144 return (ENOBUFS);
2145 }
2146 d->bd_slen = 0;
2147 d->bd_hlen = 0;
2148 return (0);
2149 }
2150
2151 static void
2152 bpf_free_filter(struct bpf_filter *filter)
2153 {
2154
2155 KASSERT(filter != NULL);
2156
2157 if (filter->bf_insn != NULL)
2158 kmem_free(filter->bf_insn, filter->bf_size);
2159 if (filter->bf_jitcode != NULL)
2160 bpf_jit_freecode(filter->bf_jitcode);
2161 kmem_free(filter, sizeof(*filter));
2162 }
2163
2164 /*
2165 * Free buffers currently in use by a descriptor.
2166 * Called on close.
2167 */
2168 static void
2169 bpf_freed(struct bpf_d *d)
2170 {
2171 /*
2172 * We don't need to lock out interrupts since this descriptor has
2173 * been detached from its interface and it yet hasn't been marked
2174 * free.
2175 */
2176 if (d->bd_sbuf != NULL) {
2177 kmem_free(d->bd_sbuf, d->bd_bufsize);
2178 if (d->bd_hbuf != NULL)
2179 kmem_free(d->bd_hbuf, d->bd_bufsize);
2180 if (d->bd_fbuf != NULL)
2181 kmem_free(d->bd_fbuf, d->bd_bufsize);
2182 }
2183 if (d->bd_rfilter != NULL) {
2184 bpf_free_filter(d->bd_rfilter);
2185 d->bd_rfilter = NULL;
2186 }
2187 if (d->bd_wfilter != NULL) {
2188 bpf_free_filter(d->bd_wfilter);
2189 d->bd_wfilter = NULL;
2190 }
2191 d->bd_jitcode = NULL;
2192 }
2193
2194 /*
2195 * Attach an interface to bpf. dlt is the link layer type;
2196 * hdrlen is the fixed size of the link header for the specified dlt
2197 * (variable length headers not yet supported).
2198 */
2199 static void
2200 _bpfattach(struct ifnet *ifp, u_int dlt, u_int hdrlen, struct bpf_if **driverp)
2201 {
2202 struct bpf_if *bp;
2203
2204 bp = kmem_alloc(sizeof(*bp), KM_SLEEP);
2205
2206 mutex_enter(&bpf_mtx);
2207 bp->bif_driverp = driverp;
2208 bp->bif_ifp = ifp;
2209 bp->bif_dlt = dlt;
2210 bp->bif_si = NULL;
2211 BPF_IFLIST_ENTRY_INIT(bp);
2212 PSLIST_INIT(&bp->bif_dlist_head);
2213 psref_target_init(&bp->bif_psref, bpf_psref_class);
2214 SLIST_INIT(&bp->bif_trackers);
2215
2216 BPF_IFLIST_WRITER_INSERT_HEAD(bp);
2217
2218 *bp->bif_driverp = NULL;
2219
2220 bp->bif_hdrlen = hdrlen;
2221 mutex_exit(&bpf_mtx);
2222 #if 0
2223 printf("bpf: %s attached with dlt %x\n", ifp->if_xname, dlt);
2224 #endif
2225 }
2226
2227 static void
2228 _bpf_mtap_softint_init(struct ifnet *ifp)
2229 {
2230 struct bpf_if *bp;
2231
2232 mutex_enter(&bpf_mtx);
2233 BPF_IFLIST_WRITER_FOREACH(bp) {
2234 if (bp->bif_ifp != ifp)
2235 continue;
2236
2237 bp->bif_mbuf_head = NULL;
2238 bp->bif_mbuf_tail = NULL;
2239 bp->bif_si = softint_establish(SOFTINT_NET, bpf_mtap_si, bp);
2240 if (bp->bif_si == NULL)
2241 panic("%s: softint_establish() failed", __func__);
2242 break;
2243 }
2244 mutex_exit(&bpf_mtx);
2245
2246 if (bp == NULL)
2247 panic("%s: no bpf_if found for %s", __func__, ifp->if_xname);
2248 }
2249
2250 /*
2251 * Remove an interface from bpf.
2252 */
2253 static void
2254 _bpfdetach(struct ifnet *ifp)
2255 {
2256 struct bpf_if *bp;
2257 struct bpf_d *d;
2258 int s;
2259
2260 mutex_enter(&bpf_mtx);
2261 /* Nuke the vnodes for any open instances */
2262 again_d:
2263 BPF_DLIST_WRITER_FOREACH(d) {
2264 mutex_enter(d->bd_mtx);
2265 if (d->bd_bif != NULL && d->bd_bif->bif_ifp == ifp) {
2266 /*
2267 * Detach the descriptor from an interface now.
2268 * It will be free'ed later by close routine.
2269 */
2270 bpf_detachd(d);
2271 mutex_exit(d->bd_mtx);
2272 goto again_d;
2273 }
2274 mutex_exit(d->bd_mtx);
2275 }
2276
2277 again:
2278 BPF_IFLIST_WRITER_FOREACH(bp) {
2279 if (bp->bif_ifp == ifp) {
2280 BPF_IFLIST_WRITER_REMOVE(bp);
2281
2282 pserialize_perform(bpf_psz);
2283 psref_target_destroy(&bp->bif_psref, bpf_psref_class);
2284
2285 while (!SLIST_EMPTY(&bp->bif_trackers)) {
2286 struct bpf_event_tracker *t =
2287 SLIST_FIRST(&bp->bif_trackers);
2288 SLIST_REMOVE_HEAD(&bp->bif_trackers,
2289 bet_entries);
2290 kmem_free(t, sizeof(*t));
2291 }
2292
2293 BPF_IFLIST_ENTRY_DESTROY(bp);
2294 if (bp->bif_si != NULL) {
2295 /* XXX NOMPSAFE: assumed running on one CPU */
2296 s = splnet();
2297 while (bp->bif_mbuf_head != NULL) {
2298 struct mbuf *m = bp->bif_mbuf_head;
2299 bp->bif_mbuf_head = m->m_nextpkt;
2300 m_freem(m);
2301 }
2302 splx(s);
2303 softint_disestablish(bp->bif_si);
2304 }
2305 kmem_free(bp, sizeof(*bp));
2306 goto again;
2307 }
2308 }
2309 mutex_exit(&bpf_mtx);
2310 }
2311
2312 /*
2313 * Change the data link type of a interface.
2314 */
2315 static void
2316 _bpf_change_type(struct ifnet *ifp, u_int dlt, u_int hdrlen)
2317 {
2318 struct bpf_if *bp;
2319
2320 mutex_enter(&bpf_mtx);
2321 BPF_IFLIST_WRITER_FOREACH(bp) {
2322 if (bp->bif_driverp == &ifp->if_bpf)
2323 break;
2324 }
2325 if (bp == NULL)
2326 panic("bpf_change_type");
2327
2328 bp->bif_dlt = dlt;
2329
2330 bp->bif_hdrlen = hdrlen;
2331 mutex_exit(&bpf_mtx);
2332 }
2333
2334 /*
2335 * Get a list of available data link type of the interface.
2336 */
2337 static int
2338 bpf_getdltlist(struct bpf_d *d, struct bpf_dltlist *bfl)
2339 {
2340 int n, error;
2341 struct ifnet *ifp;
2342 struct bpf_if *bp;
2343 int s, bound;
2344
2345 KASSERT(mutex_owned(d->bd_mtx));
2346
2347 ifp = d->bd_bif->bif_ifp;
2348 n = 0;
2349 error = 0;
2350
2351 bound = curlwp_bind();
2352 s = pserialize_read_enter();
2353 BPF_IFLIST_READER_FOREACH(bp) {
2354 if (bp->bif_ifp != ifp)
2355 continue;
2356 if (bfl->bfl_list != NULL) {
2357 struct psref psref;
2358
2359 if (n >= bfl->bfl_len) {
2360 pserialize_read_exit(s);
2361 return ENOMEM;
2362 }
2363
2364 bpf_if_acquire(bp, &psref);
2365 pserialize_read_exit(s);
2366
2367 error = copyout(&bp->bif_dlt,
2368 bfl->bfl_list + n, sizeof(u_int));
2369
2370 s = pserialize_read_enter();
2371 bpf_if_release(bp, &psref);
2372 }
2373 n++;
2374 }
2375 pserialize_read_exit(s);
2376 curlwp_bindx(bound);
2377
2378 bfl->bfl_len = n;
2379 return error;
2380 }
2381
2382 /*
2383 * Set the data link type of a BPF instance.
2384 */
2385 static int
2386 bpf_setdlt(struct bpf_d *d, u_int dlt)
2387 {
2388 int error, opromisc;
2389 struct ifnet *ifp;
2390 struct bpf_if *bp;
2391
2392 KASSERT(mutex_owned(&bpf_mtx));
2393 KASSERT(mutex_owned(d->bd_mtx));
2394
2395 if (d->bd_bif->bif_dlt == dlt)
2396 return 0;
2397 ifp = d->bd_bif->bif_ifp;
2398 BPF_IFLIST_WRITER_FOREACH(bp) {
2399 if (bp->bif_ifp == ifp && bp->bif_dlt == dlt)
2400 break;
2401 }
2402 if (bp == NULL)
2403 return EINVAL;
2404 opromisc = d->bd_promisc;
2405 bpf_detachd(d);
2406 BPFIF_DLIST_ENTRY_INIT(d);
2407 bpf_attachd(d, bp);
2408 reset_d(d);
2409 if (opromisc) {
2410 KERNEL_LOCK_UNLESS_NET_MPSAFE();
2411 error = ifpromisc(bp->bif_ifp, 1);
2412 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
2413 if (error)
2414 printf("%s: bpf_setdlt: ifpromisc failed (%d)\n",
2415 bp->bif_ifp->if_xname, error);
2416 else
2417 d->bd_promisc = 1;
2418 }
2419 return 0;
2420 }
2421
2422 static int
2423 sysctl_net_bpf_maxbufsize(SYSCTLFN_ARGS)
2424 {
2425 int newsize, error;
2426 struct sysctlnode node;
2427
2428 node = *rnode;
2429 node.sysctl_data = &newsize;
2430 newsize = bpf_maxbufsize;
2431 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2432 if (error || newp == NULL)
2433 return (error);
2434
2435 if (newsize < BPF_MINBUFSIZE || newsize > BPF_MAXBUFSIZE)
2436 return (EINVAL);
2437
2438 bpf_maxbufsize = newsize;
2439
2440 return (0);
2441 }
2442
2443 #if defined(MODULAR) || defined(BPFJIT)
2444 static int
2445 sysctl_net_bpf_jit(SYSCTLFN_ARGS)
2446 {
2447 bool newval;
2448 int error;
2449 struct sysctlnode node;
2450
2451 node = *rnode;
2452 node.sysctl_data = &newval;
2453 newval = bpf_jit;
2454 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2455 if (error != 0 || newp == NULL)
2456 return error;
2457
2458 bpf_jit = newval;
2459 if (newval && bpfjit_module_ops.bj_generate_code == NULL) {
2460 printf("JIT compilation is postponed "
2461 "until after bpfjit module is loaded\n");
2462 }
2463
2464 return 0;
2465 }
2466 #endif
2467
2468 static int
2469 sysctl_net_bpf_peers(SYSCTLFN_ARGS)
2470 {
2471 int error, elem_count;
2472 struct bpf_d *dp;
2473 struct bpf_d_ext dpe;
2474 size_t len, needed, elem_size, out_size;
2475 char *sp;
2476
2477 if (namelen == 1 && name[0] == CTL_QUERY)
2478 return (sysctl_query(SYSCTLFN_CALL(rnode)));
2479
2480 if (namelen != 2)
2481 return (EINVAL);
2482
2483 /* BPF peers is privileged information. */
2484 error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_INTERFACE,
2485 KAUTH_REQ_NETWORK_INTERFACE_GETPRIV, NULL, NULL, NULL);
2486 if (error)
2487 return (EPERM);
2488
2489 len = (oldp != NULL) ? *oldlenp : 0;
2490 sp = oldp;
2491 elem_size = name[0];
2492 elem_count = name[1];
2493 out_size = MIN(sizeof(dpe), elem_size);
2494 needed = 0;
2495
2496 if (elem_size < 1 || elem_count < 0)
2497 return (EINVAL);
2498
2499 mutex_enter(&bpf_mtx);
2500 BPF_DLIST_WRITER_FOREACH(dp) {
2501 if (len >= elem_size && elem_count > 0) {
2502 #define BPF_EXT(field) dpe.bde_ ## field = dp->bd_ ## field
2503 BPF_EXT(bufsize);
2504 BPF_EXT(promisc);
2505 BPF_EXT(state);
2506 BPF_EXT(immediate);
2507 BPF_EXT(hdrcmplt);
2508 BPF_EXT(direction);
2509 BPF_EXT(pid);
2510 BPF_EXT(rcount);
2511 BPF_EXT(dcount);
2512 BPF_EXT(ccount);
2513 #undef BPF_EXT
2514 mutex_enter(dp->bd_mtx);
2515 if (dp->bd_bif)
2516 (void)strlcpy(dpe.bde_ifname,
2517 dp->bd_bif->bif_ifp->if_xname,
2518 IFNAMSIZ - 1);
2519 else
2520 dpe.bde_ifname[0] = '\0';
2521 dpe.bde_locked = dp->bd_locked;
2522 mutex_exit(dp->bd_mtx);
2523
2524 error = copyout(&dpe, sp, out_size);
2525 if (error)
2526 break;
2527 sp += elem_size;
2528 len -= elem_size;
2529 }
2530 needed += elem_size;
2531 if (elem_count > 0 && elem_count != INT_MAX)
2532 elem_count--;
2533 }
2534 mutex_exit(&bpf_mtx);
2535
2536 *oldlenp = needed;
2537
2538 return (error);
2539 }
2540
2541 static void
2542 bpf_stats(void *p, void *arg, struct cpu_info *ci __unused)
2543 {
2544 struct bpf_stat *const stats = p;
2545 struct bpf_stat *sum = arg;
2546
2547 int s = splnet();
2548
2549 sum->bs_recv += stats->bs_recv;
2550 sum->bs_drop += stats->bs_drop;
2551 sum->bs_capt += stats->bs_capt;
2552
2553 splx(s);
2554 }
2555
2556 static int
2557 bpf_sysctl_gstats_handler(SYSCTLFN_ARGS)
2558 {
2559 struct sysctlnode node;
2560 int error;
2561 struct bpf_stat sum;
2562
2563 memset(&sum, 0, sizeof(sum));
2564 node = *rnode;
2565
2566 percpu_foreach_xcall(bpf_gstats_percpu, XC_HIGHPRI_IPL(IPL_SOFTNET),
2567 bpf_stats, &sum);
2568
2569 node.sysctl_data = ∑
2570 node.sysctl_size = sizeof(sum);
2571 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2572 if (error != 0 || newp == NULL)
2573 return error;
2574
2575 return 0;
2576 }
2577
2578 SYSCTL_SETUP(sysctl_net_bpf_setup, "bpf sysctls")
2579 {
2580 const struct sysctlnode *node;
2581
2582 node = NULL;
2583 sysctl_createv(clog, 0, NULL, &node,
2584 CTLFLAG_PERMANENT,
2585 CTLTYPE_NODE, "bpf",
2586 SYSCTL_DESCR("BPF options"),
2587 NULL, 0, NULL, 0,
2588 CTL_NET, CTL_CREATE, CTL_EOL);
2589 if (node != NULL) {
2590 #if defined(MODULAR) || defined(BPFJIT)
2591 sysctl_createv(clog, 0, NULL, NULL,
2592 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2593 CTLTYPE_BOOL, "jit",
2594 SYSCTL_DESCR("Toggle Just-In-Time compilation"),
2595 sysctl_net_bpf_jit, 0, &bpf_jit, 0,
2596 CTL_NET, node->sysctl_num, CTL_CREATE, CTL_EOL);
2597 #endif
2598 sysctl_createv(clog, 0, NULL, NULL,
2599 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2600 CTLTYPE_INT, "maxbufsize",
2601 SYSCTL_DESCR("Maximum size for data capture buffer"),
2602 sysctl_net_bpf_maxbufsize, 0, &bpf_maxbufsize, 0,
2603 CTL_NET, node->sysctl_num, CTL_CREATE, CTL_EOL);
2604 sysctl_createv(clog, 0, NULL, NULL,
2605 CTLFLAG_PERMANENT,
2606 CTLTYPE_STRUCT, "stats",
2607 SYSCTL_DESCR("BPF stats"),
2608 bpf_sysctl_gstats_handler, 0, NULL, 0,
2609 CTL_NET, node->sysctl_num, CTL_CREATE, CTL_EOL);
2610 sysctl_createv(clog, 0, NULL, NULL,
2611 CTLFLAG_PERMANENT,
2612 CTLTYPE_STRUCT, "peers",
2613 SYSCTL_DESCR("BPF peers"),
2614 sysctl_net_bpf_peers, 0, NULL, 0,
2615 CTL_NET, node->sysctl_num, CTL_CREATE, CTL_EOL);
2616 }
2617
2618 }
2619
2620 static int
2621 _bpf_register_track_event(struct bpf_if **driverp,
2622 void (*_fun)(struct bpf_if *, struct ifnet *, int, int))
2623 {
2624 struct bpf_if *bp;
2625 struct bpf_event_tracker *t;
2626 int ret = ENOENT;
2627
2628 t = kmem_zalloc(sizeof(*t), KM_SLEEP);
2629 if (!t)
2630 return ENOMEM;
2631 t->bet_notify = _fun;
2632
2633 mutex_enter(&bpf_mtx);
2634 BPF_IFLIST_WRITER_FOREACH(bp) {
2635 if (bp->bif_driverp != driverp)
2636 continue;
2637 SLIST_INSERT_HEAD(&bp->bif_trackers, t, bet_entries);
2638 ret = 0;
2639 break;
2640 }
2641 mutex_exit(&bpf_mtx);
2642
2643 return ret;
2644 }
2645
2646 static int
2647 _bpf_deregister_track_event(struct bpf_if **driverp,
2648 void (*_fun)(struct bpf_if *, struct ifnet *, int, int))
2649 {
2650 struct bpf_if *bp;
2651 struct bpf_event_tracker *t = NULL;
2652 int ret = ENOENT;
2653
2654 mutex_enter(&bpf_mtx);
2655 BPF_IFLIST_WRITER_FOREACH(bp) {
2656 if (bp->bif_driverp != driverp)
2657 continue;
2658 SLIST_FOREACH(t, &bp->bif_trackers, bet_entries) {
2659 if (t->bet_notify == _fun) {
2660 ret = 0;
2661 break;
2662 }
2663 }
2664 if (ret == 0)
2665 break;
2666 }
2667 if (ret == 0 && t && t->bet_notify == _fun) {
2668 SLIST_REMOVE(&bp->bif_trackers, t, bpf_event_tracker,
2669 bet_entries);
2670 }
2671 mutex_exit(&bpf_mtx);
2672 if (ret == 0)
2673 kmem_free(t, sizeof(*t));
2674 return ret;
2675 }
2676
2677 struct bpf_ops bpf_ops_kernel = {
2678 .bpf_attach = _bpfattach,
2679 .bpf_detach = _bpfdetach,
2680 .bpf_change_type = _bpf_change_type,
2681 .bpf_register_track_event = _bpf_register_track_event,
2682 .bpf_deregister_track_event = _bpf_deregister_track_event,
2683
2684 .bpf_mtap = _bpf_mtap,
2685 .bpf_mtap2 = _bpf_mtap2,
2686 .bpf_mtap_af = _bpf_mtap_af,
2687 .bpf_mtap_sl_in = _bpf_mtap_sl_in,
2688 .bpf_mtap_sl_out = _bpf_mtap_sl_out,
2689
2690 .bpf_mtap_softint = _bpf_mtap_softint,
2691 .bpf_mtap_softint_init = _bpf_mtap_softint_init,
2692 };
2693
2694 MODULE(MODULE_CLASS_DRIVER, bpf, "bpf_filter");
2695
2696 static int
2697 bpf_modcmd(modcmd_t cmd, void *arg)
2698 {
2699 #ifdef _MODULE
2700 devmajor_t bmajor, cmajor;
2701 #endif
2702 int error = 0;
2703
2704 switch (cmd) {
2705 case MODULE_CMD_INIT:
2706 bpf_init();
2707 #ifdef _MODULE
2708 bmajor = cmajor = NODEVMAJOR;
2709 error = devsw_attach("bpf", NULL, &bmajor,
2710 &bpf_cdevsw, &cmajor);
2711 if (error)
2712 break;
2713 #endif
2714
2715 bpf_ops_handover_enter(&bpf_ops_kernel);
2716 atomic_swap_ptr(&bpf_ops, &bpf_ops_kernel);
2717 bpf_ops_handover_exit();
2718 break;
2719
2720 case MODULE_CMD_FINI:
2721 /*
2722 * While there is no reference counting for bpf callers,
2723 * unload could at least in theory be done similarly to
2724 * system call disestablishment. This should even be
2725 * a little simpler:
2726 *
2727 * 1) replace op vector with stubs
2728 * 2) post update to all cpus with xc
2729 * 3) check that nobody is in bpf anymore
2730 * (it's doubtful we'd want something like l_sysent,
2731 * but we could do something like *signed* percpu
2732 * counters. if the sum is 0, we're good).
2733 * 4) if fail, unroll changes
2734 *
2735 * NOTE: change won't be atomic to the outside. some
2736 * packets may be not captured even if unload is
2737 * not successful. I think packet capture not working
2738 * is a perfectly logical consequence of trying to
2739 * disable packet capture.
2740 */
2741 error = EOPNOTSUPP;
2742 break;
2743
2744 default:
2745 error = ENOTTY;
2746 break;
2747 }
2748
2749 return error;
2750 }
2751