bpf.c revision 1.255 1 /* $NetBSD: bpf.c,v 1.255 2024/08/15 11:23:39 riastradh Exp $ */
2
3 /*
4 * Copyright (c) 1990, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from the Stanford/CMU enet packet filter,
8 * (net/enet.c) distributed as part of 4.3BSD, and code contributed
9 * to Berkeley by Steven McCanne and Van Jacobson both of Lawrence
10 * Berkeley Laboratory.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)bpf.c 8.4 (Berkeley) 1/9/95
37 * static char rcsid[] =
38 * "Header: bpf.c,v 1.67 96/09/26 22:00:52 leres Exp ";
39 */
40
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: bpf.c,v 1.255 2024/08/15 11:23:39 riastradh Exp $");
43
44 #if defined(_KERNEL_OPT)
45 #include "opt_bpf.h"
46 #include "sl.h"
47 #include "opt_net_mpsafe.h"
48 #endif
49
50 #include <sys/param.h>
51
52 #include <sys/atomic.h>
53 #include <sys/buf.h>
54 #include <sys/conf.h>
55 #include <sys/cpu.h>
56 #include <sys/errno.h>
57 #include <sys/file.h>
58 #include <sys/filedesc.h>
59 #include <sys/ioctl.h>
60 #include <sys/kauth.h>
61 #include <sys/kernel.h>
62 #include <sys/lwp.h>
63 #include <sys/mbuf.h>
64 #include <sys/module.h>
65 #include <sys/percpu.h>
66 #include <sys/poll.h>
67 #include <sys/proc.h>
68 #include <sys/protosw.h>
69 #include <sys/pserialize.h>
70 #include <sys/queue.h>
71 #include <sys/socket.h>
72 #include <sys/stat.h>
73 #include <sys/sysctl.h>
74 #include <sys/syslog.h>
75 #include <sys/systm.h>
76 #include <sys/time.h>
77 #include <sys/tty.h>
78 #include <sys/uio.h>
79 #include <sys/vnode.h>
80 #include <sys/xcall.h>
81
82 #include <net/bpf.h>
83 #include <net/bpfdesc.h>
84 #include <net/bpfjit.h>
85 #include <net/if.h>
86 #include <net/if_arc.h>
87 #include <net/if_ether.h>
88 #include <net/if_types.h>
89 #include <net/slip.h>
90
91 #include <netinet/if_inarp.h>
92 #include <netinet/in.h>
93
94 #include <compat/sys/sockio.h>
95
96 #ifndef BPF_BUFSIZE
97 /*
98 * 4096 is too small for FDDI frames. 8192 is too small for gigabit Ethernet
99 * jumbos (circa 9k), ATM, or Intel gig/10gig ethernet jumbos (16k).
100 */
101 # define BPF_BUFSIZE 32768
102 #endif
103
104 #define PRINET 26 /* interruptible */
105
106 /*
107 * The default read buffer size, and limit for BIOCSBLEN, is sysctl'able.
108 * XXX the default values should be computed dynamically based
109 * on available memory size and available mbuf clusters.
110 */
111 static int bpf_bufsize = BPF_BUFSIZE;
112 static int bpf_maxbufsize = BPF_DFLTBUFSIZE; /* XXX set dynamically, see above */
113 static bool bpf_jit = false;
114
115 struct bpfjit_ops bpfjit_module_ops = {
116 .bj_generate_code = NULL,
117 .bj_free_code = NULL
118 };
119
120 /*
121 * Global BPF statistics returned by net.bpf.stats sysctl.
122 */
123 static struct percpu *bpf_gstats_percpu; /* struct bpf_stat */
124
125 #define BPF_STATINC(id) \
126 { \
127 struct bpf_stat *__stats = \
128 percpu_getref(bpf_gstats_percpu); \
129 __stats->bs_##id++; \
130 percpu_putref(bpf_gstats_percpu); \
131 }
132
133 /*
134 * Locking notes:
135 * - bpf_mtx (adaptive mutex) protects:
136 * - Gobal lists: bpf_iflist and bpf_dlist
137 * - struct bpf_if
138 * - bpf_close
139 * - bpf_psz (pserialize)
140 * - struct bpf_d has two mutexes:
141 * - bd_buf_mtx (spin mutex) protects the buffers that can be accessed
142 * on packet tapping
143 * - bd_mtx (adaptive mutex) protects member variables other than the buffers
144 * - Locking order: bpf_mtx => bpf_d#bd_mtx => bpf_d#bd_buf_mtx
145 * - struct bpf_d obtained via fp->f_bpf in bpf_read and bpf_write is
146 * never freed because struct bpf_d is only freed in bpf_close and
147 * bpf_close never be called while executing bpf_read and bpf_write
148 * - A filter that is assigned to bpf_d can be replaced with another filter
149 * while tapping packets, so it needs to be done atomically
150 * - struct bpf_d is iterated on bpf_dlist with psz
151 * - struct bpf_if is iterated on bpf_iflist with psz or psref
152 */
153 /*
154 * Use a mutex to avoid a race condition between gathering the stats/peers
155 * and opening/closing the device.
156 */
157 static kmutex_t bpf_mtx;
158
159 static struct psref_class *bpf_psref_class __read_mostly;
160 static pserialize_t bpf_psz;
161
162 static inline void
163 bpf_if_acquire(struct bpf_if *bp, struct psref *psref)
164 {
165
166 psref_acquire(psref, &bp->bif_psref, bpf_psref_class);
167 }
168
169 static inline void
170 bpf_if_release(struct bpf_if *bp, struct psref *psref)
171 {
172
173 psref_release(psref, &bp->bif_psref, bpf_psref_class);
174 }
175
176 /*
177 * bpf_iflist is the list of interfaces; each corresponds to an ifnet
178 * bpf_dtab holds the descriptors, indexed by minor device #
179 */
180 static struct pslist_head bpf_iflist;
181 static struct pslist_head bpf_dlist;
182
183 /* Macros for bpf_d on bpf_dlist */
184 #define BPF_DLIST_WRITER_INSERT_HEAD(__d) \
185 PSLIST_WRITER_INSERT_HEAD(&bpf_dlist, (__d), bd_bpf_dlist_entry)
186 #define BPF_DLIST_READER_FOREACH(__d) \
187 PSLIST_READER_FOREACH((__d), &bpf_dlist, struct bpf_d, \
188 bd_bpf_dlist_entry)
189 #define BPF_DLIST_WRITER_FOREACH(__d) \
190 PSLIST_WRITER_FOREACH((__d), &bpf_dlist, struct bpf_d, \
191 bd_bpf_dlist_entry)
192 #define BPF_DLIST_ENTRY_INIT(__d) \
193 PSLIST_ENTRY_INIT((__d), bd_bpf_dlist_entry)
194 #define BPF_DLIST_WRITER_REMOVE(__d) \
195 PSLIST_WRITER_REMOVE((__d), bd_bpf_dlist_entry)
196 #define BPF_DLIST_ENTRY_DESTROY(__d) \
197 PSLIST_ENTRY_DESTROY((__d), bd_bpf_dlist_entry)
198
199 /* Macros for bpf_if on bpf_iflist */
200 #define BPF_IFLIST_WRITER_INSERT_HEAD(__bp) \
201 PSLIST_WRITER_INSERT_HEAD(&bpf_iflist, (__bp), bif_iflist_entry)
202 #define BPF_IFLIST_READER_FOREACH(__bp) \
203 PSLIST_READER_FOREACH((__bp), &bpf_iflist, struct bpf_if, \
204 bif_iflist_entry)
205 #define BPF_IFLIST_WRITER_FOREACH(__bp) \
206 PSLIST_WRITER_FOREACH((__bp), &bpf_iflist, struct bpf_if, \
207 bif_iflist_entry)
208 #define BPF_IFLIST_WRITER_REMOVE(__bp) \
209 PSLIST_WRITER_REMOVE((__bp), bif_iflist_entry)
210 #define BPF_IFLIST_ENTRY_INIT(__bp) \
211 PSLIST_ENTRY_INIT((__bp), bif_iflist_entry)
212 #define BPF_IFLIST_ENTRY_DESTROY(__bp) \
213 PSLIST_ENTRY_DESTROY((__bp), bif_iflist_entry)
214
215 /* Macros for bpf_d on bpf_if#bif_dlist_pslist */
216 #define BPFIF_DLIST_READER_FOREACH(__d, __bp) \
217 PSLIST_READER_FOREACH((__d), &(__bp)->bif_dlist_head, struct bpf_d, \
218 bd_bif_dlist_entry)
219 #define BPFIF_DLIST_WRITER_INSERT_HEAD(__bp, __d) \
220 PSLIST_WRITER_INSERT_HEAD(&(__bp)->bif_dlist_head, (__d), \
221 bd_bif_dlist_entry)
222 #define BPFIF_DLIST_WRITER_REMOVE(__d) \
223 PSLIST_WRITER_REMOVE((__d), bd_bif_dlist_entry)
224 #define BPFIF_DLIST_ENTRY_INIT(__d) \
225 PSLIST_ENTRY_INIT((__d), bd_bif_dlist_entry)
226 #define BPFIF_DLIST_READER_EMPTY(__bp) \
227 (PSLIST_READER_FIRST(&(__bp)->bif_dlist_head, struct bpf_d, \
228 bd_bif_dlist_entry) == NULL)
229 #define BPFIF_DLIST_WRITER_EMPTY(__bp) \
230 (PSLIST_WRITER_FIRST(&(__bp)->bif_dlist_head, struct bpf_d, \
231 bd_bif_dlist_entry) == NULL)
232 #define BPFIF_DLIST_ENTRY_DESTROY(__d) \
233 PSLIST_ENTRY_DESTROY((__d), bd_bif_dlist_entry)
234
235 static int bpf_allocbufs(struct bpf_d *);
236 static u_int bpf_xfilter(struct bpf_filter **, void *, u_int, u_int);
237 static void bpf_deliver(struct bpf_if *,
238 void *(*cpfn)(void *, const void *, size_t),
239 void *, u_int, u_int, const u_int);
240 static void bpf_freed(struct bpf_d *);
241 static void bpf_free_filter(struct bpf_filter *);
242 static void bpf_ifname(struct ifnet *, struct ifreq *);
243 static void *bpf_mcpy(void *, const void *, size_t);
244 static int bpf_movein(struct ifnet *, struct uio *, int, uint64_t,
245 struct mbuf **, struct sockaddr *,
246 struct bpf_filter **);
247 static void bpf_attachd(struct bpf_d *, struct bpf_if *);
248 static void bpf_detachd(struct bpf_d *);
249 static int bpf_setif(struct bpf_d *, struct ifreq *);
250 static int bpf_setf(struct bpf_d *, struct bpf_program *, u_long);
251 static void bpf_timed_out(void *);
252 static inline void
253 bpf_wakeup(struct bpf_d *);
254 static int bpf_hdrlen(struct bpf_d *);
255 static void catchpacket(struct bpf_d *, u_char *, u_int, u_int,
256 void *(*)(void *, const void *, size_t),
257 struct timespec *);
258 static void reset_d(struct bpf_d *);
259 static int bpf_getdltlist(struct bpf_d *, struct bpf_dltlist *);
260 static int bpf_setdlt(struct bpf_d *, u_int);
261
262 static int bpf_read(struct file *, off_t *, struct uio *, kauth_cred_t,
263 int);
264 static int bpf_write(struct file *, off_t *, struct uio *, kauth_cred_t,
265 int);
266 static int bpf_ioctl(struct file *, u_long, void *);
267 static int bpf_poll(struct file *, int);
268 static int bpf_stat(struct file *, struct stat *);
269 static int bpf_close(struct file *);
270 static int bpf_kqfilter(struct file *, struct knote *);
271
272 static const struct fileops bpf_fileops = {
273 .fo_name = "bpf",
274 .fo_read = bpf_read,
275 .fo_write = bpf_write,
276 .fo_ioctl = bpf_ioctl,
277 .fo_fcntl = fnullop_fcntl,
278 .fo_poll = bpf_poll,
279 .fo_stat = bpf_stat,
280 .fo_close = bpf_close,
281 .fo_kqfilter = bpf_kqfilter,
282 .fo_restart = fnullop_restart,
283 };
284
285 dev_type_open(bpfopen);
286
287 const struct cdevsw bpf_cdevsw = {
288 .d_open = bpfopen,
289 .d_close = noclose,
290 .d_read = noread,
291 .d_write = nowrite,
292 .d_ioctl = noioctl,
293 .d_stop = nostop,
294 .d_tty = notty,
295 .d_poll = nopoll,
296 .d_mmap = nommap,
297 .d_kqfilter = nokqfilter,
298 .d_discard = nodiscard,
299 .d_flag = D_OTHER | D_MPSAFE
300 };
301
302 bpfjit_func_t
303 bpf_jit_generate(bpf_ctx_t *bc, void *code, size_t size)
304 {
305 struct bpfjit_ops *ops = &bpfjit_module_ops;
306 bpfjit_func_t (*generate_code)(const bpf_ctx_t *,
307 const struct bpf_insn *, size_t);
308
309 generate_code = atomic_load_acquire(&ops->bj_generate_code);
310 if (generate_code != NULL) {
311 return generate_code(bc, code, size);
312 }
313 return NULL;
314 }
315
316 void
317 bpf_jit_freecode(bpfjit_func_t jcode)
318 {
319 KASSERT(bpfjit_module_ops.bj_free_code != NULL);
320 bpfjit_module_ops.bj_free_code(jcode);
321 }
322
323 static int
324 bpf_movein(struct ifnet *ifp, struct uio *uio, int linktype, uint64_t mtu,
325 struct mbuf **mp, struct sockaddr *sockp, struct bpf_filter **wfilter)
326 {
327 struct mbuf *m, *m0, *n;
328 int error;
329 size_t len;
330 size_t hlen;
331 size_t align;
332 u_int slen;
333
334 /*
335 * Build a sockaddr based on the data link layer type.
336 * We do this at this level because the ethernet header
337 * is copied directly into the data field of the sockaddr.
338 * In the case of SLIP, there is no header and the packet
339 * is forwarded as is.
340 * Also, we are careful to leave room at the front of the mbuf
341 * for the link level header.
342 */
343 switch (linktype) {
344
345 case DLT_SLIP:
346 sockp->sa_family = AF_INET;
347 hlen = 0;
348 align = 0;
349 break;
350
351 case DLT_PPP:
352 sockp->sa_family = AF_UNSPEC;
353 hlen = 0;
354 align = 0;
355 break;
356
357 case DLT_EN10MB:
358 sockp->sa_family = AF_UNSPEC;
359 /* XXX Would MAXLINKHDR be better? */
360 /* 6(dst)+6(src)+2(type) */
361 hlen = sizeof(struct ether_header);
362 align = 2;
363 break;
364
365 case DLT_ARCNET:
366 sockp->sa_family = AF_UNSPEC;
367 hlen = ARC_HDRLEN;
368 align = 5;
369 break;
370
371 case DLT_FDDI:
372 sockp->sa_family = AF_LINK;
373 /* XXX 4(FORMAC)+6(dst)+6(src) */
374 hlen = 16;
375 align = 0;
376 break;
377
378 case DLT_ECONET:
379 sockp->sa_family = AF_UNSPEC;
380 hlen = 6;
381 align = 2;
382 break;
383
384 case DLT_NULL:
385 sockp->sa_family = AF_UNSPEC;
386 if (ifp->if_type == IFT_LOOP) {
387 /* Set here to apply the following validations */
388 hlen = sizeof(uint32_t);
389 } else
390 hlen = 0;
391 align = 0;
392 break;
393
394 default:
395 return (EIO);
396 }
397
398 len = uio->uio_resid;
399 /*
400 * If there aren't enough bytes for a link level header or the
401 * packet length exceeds the interface mtu, return an error.
402 */
403 if (len - hlen > mtu)
404 return (EMSGSIZE);
405
406 m0 = m = m_gethdr(M_WAIT, MT_DATA);
407 m_reset_rcvif(m);
408 m->m_pkthdr.len = (int)(len - hlen);
409 if (len + align > MHLEN) {
410 m_clget(m, M_WAIT);
411 if ((m->m_flags & M_EXT) == 0) {
412 error = ENOBUFS;
413 goto bad;
414 }
415 }
416
417 /* Ensure the data is properly aligned */
418 if (align > 0)
419 m->m_data += align;
420
421 for (;;) {
422 len = M_TRAILINGSPACE(m);
423 if (len > uio->uio_resid)
424 len = uio->uio_resid;
425 error = uiomove(mtod(m, void *), len, uio);
426 if (error)
427 goto bad;
428 m->m_len = len;
429
430 if (uio->uio_resid == 0)
431 break;
432
433 n = m_get(M_WAIT, MT_DATA);
434 m_clget(n, M_WAIT); /* if fails, there is no problem */
435 m->m_next = n;
436 m = n;
437 }
438
439 slen = bpf_xfilter(wfilter, mtod(m, u_char *), len, len);
440 if (slen == 0) {
441 error = EPERM;
442 goto bad;
443 }
444
445 if (hlen != 0) {
446 if (linktype == DLT_NULL && ifp->if_type == IFT_LOOP) {
447 uint32_t af;
448 /* the link header indicates the address family */
449 memcpy(&af, mtod(m0, void *), sizeof(af));
450 sockp->sa_family = af;
451 } else {
452 /* move link level header in the top of mbuf to sa_data */
453 memcpy(sockp->sa_data, mtod(m0, void *), hlen);
454 }
455 m0->m_data += hlen;
456 m0->m_len -= hlen;
457 }
458
459 *mp = m0;
460 return (0);
461
462 bad:
463 m_freem(m0);
464 return (error);
465 }
466
467 /*
468 * Attach file to the bpf interface, i.e. make d listen on bp.
469 */
470 static void
471 bpf_attachd(struct bpf_d *d, struct bpf_if *bp)
472 {
473 struct bpf_event_tracker *t;
474
475 KASSERT(mutex_owned(&bpf_mtx));
476 KASSERT(mutex_owned(d->bd_mtx));
477 /*
478 * Point d at bp, and add d to the interface's list of listeners.
479 * Finally, point the driver's bpf cookie at the interface so
480 * it will divert packets to bpf.
481 */
482 d->bd_bif = bp;
483 BPFIF_DLIST_WRITER_INSERT_HEAD(bp, d);
484
485 *bp->bif_driverp = bp;
486
487 SLIST_FOREACH(t, &bp->bif_trackers, bet_entries) {
488 t->bet_notify(bp, bp->bif_ifp, bp->bif_dlt,
489 BPF_TRACK_EVENT_ATTACH);
490 }
491 }
492
493 /*
494 * Detach a file from its interface.
495 */
496 static void
497 bpf_detachd(struct bpf_d *d)
498 {
499 struct bpf_if *bp;
500 struct bpf_event_tracker *t;
501
502 KASSERT(mutex_owned(&bpf_mtx));
503 KASSERT(mutex_owned(d->bd_mtx));
504
505 bp = d->bd_bif;
506 /*
507 * Check if this descriptor had requested promiscuous mode.
508 * If so, turn it off.
509 */
510 if (d->bd_promisc) {
511 int error __diagused;
512
513 d->bd_promisc = 0;
514 /*
515 * Take device out of promiscuous mode. Since we were
516 * able to enter promiscuous mode, we should be able
517 * to turn it off. But we can get an error if
518 * the interface was configured down, so only panic
519 * if we don't get an unexpected error.
520 */
521 KERNEL_LOCK_UNLESS_NET_MPSAFE();
522 error = ifpromisc(bp->bif_ifp, 0);
523 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
524 #ifdef DIAGNOSTIC
525 if (error)
526 printf("%s: ifpromisc failed: %d", __func__, error);
527 #endif
528 }
529
530 /* Remove d from the interface's descriptor list. */
531 BPFIF_DLIST_WRITER_REMOVE(d);
532
533 pserialize_perform(bpf_psz);
534
535 if (BPFIF_DLIST_WRITER_EMPTY(bp)) {
536 /*
537 * Let the driver know that there are no more listeners.
538 */
539 *d->bd_bif->bif_driverp = NULL;
540 }
541
542 d->bd_bif = NULL;
543
544 SLIST_FOREACH(t, &bp->bif_trackers, bet_entries) {
545 t->bet_notify(bp, bp->bif_ifp, bp->bif_dlt,
546 BPF_TRACK_EVENT_DETACH);
547 }
548 }
549
550 static void
551 bpf_init(void)
552 {
553
554 mutex_init(&bpf_mtx, MUTEX_DEFAULT, IPL_NONE);
555 bpf_psz = pserialize_create();
556 bpf_psref_class = psref_class_create("bpf", IPL_SOFTNET);
557
558 PSLIST_INIT(&bpf_iflist);
559 PSLIST_INIT(&bpf_dlist);
560
561 bpf_gstats_percpu = percpu_alloc(sizeof(struct bpf_stat));
562
563 return;
564 }
565
566 /*
567 * bpfilterattach() is called at boot time. We don't need to do anything
568 * here, since any initialization will happen as part of module init code.
569 */
570 /* ARGSUSED */
571 void
572 bpfilterattach(int n)
573 {
574
575 }
576
577 /*
578 * Open ethernet device. Clones.
579 */
580 /* ARGSUSED */
581 int
582 bpfopen(dev_t dev, int flag, int mode, struct lwp *l)
583 {
584 struct bpf_d *d;
585 struct file *fp;
586 int error, fd;
587
588 /* falloc() will fill in the descriptor for us. */
589 if ((error = fd_allocfile(&fp, &fd)) != 0)
590 return error;
591
592 d = kmem_zalloc(sizeof(*d), KM_SLEEP);
593 d->bd_bufsize = bpf_bufsize;
594 d->bd_direction = BPF_D_INOUT;
595 d->bd_feedback = 0;
596 d->bd_pid = l->l_proc->p_pid;
597 #ifdef _LP64
598 if (curproc->p_flag & PK_32)
599 d->bd_compat32 = 1;
600 #endif
601 getnanotime(&d->bd_btime);
602 d->bd_atime = d->bd_mtime = d->bd_btime;
603 callout_init(&d->bd_callout, CALLOUT_MPSAFE);
604 selinit(&d->bd_sel);
605 d->bd_jitcode = NULL;
606 d->bd_rfilter = NULL;
607 d->bd_wfilter = NULL;
608 d->bd_locked = 0;
609 BPF_DLIST_ENTRY_INIT(d);
610 BPFIF_DLIST_ENTRY_INIT(d);
611 d->bd_mtx = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
612 d->bd_buf_mtx = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);
613 cv_init(&d->bd_cv, "bpf");
614
615 mutex_enter(&bpf_mtx);
616 BPF_DLIST_WRITER_INSERT_HEAD(d);
617 mutex_exit(&bpf_mtx);
618
619 return fd_clone(fp, fd, flag, &bpf_fileops, d);
620 }
621
622 /*
623 * Close the descriptor by detaching it from its interface,
624 * deallocating its buffers, and marking it free.
625 */
626 /* ARGSUSED */
627 static int
628 bpf_close(struct file *fp)
629 {
630 struct bpf_d *d;
631
632 mutex_enter(&bpf_mtx);
633
634 if ((d = fp->f_bpf) == NULL) {
635 mutex_exit(&bpf_mtx);
636 return 0;
637 }
638
639 /*
640 * Refresh the PID associated with this bpf file.
641 */
642 d->bd_pid = curproc->p_pid;
643
644 mutex_enter(d->bd_mtx);
645 if (d->bd_state == BPF_WAITING)
646 callout_halt(&d->bd_callout, d->bd_mtx);
647 d->bd_state = BPF_IDLE;
648 if (d->bd_bif)
649 bpf_detachd(d);
650 mutex_exit(d->bd_mtx);
651
652 BPF_DLIST_WRITER_REMOVE(d);
653
654 pserialize_perform(bpf_psz);
655 mutex_exit(&bpf_mtx);
656
657 BPFIF_DLIST_ENTRY_DESTROY(d);
658 BPF_DLIST_ENTRY_DESTROY(d);
659 fp->f_bpf = NULL;
660 bpf_freed(d);
661 callout_destroy(&d->bd_callout);
662 seldestroy(&d->bd_sel);
663 mutex_obj_free(d->bd_mtx);
664 mutex_obj_free(d->bd_buf_mtx);
665 cv_destroy(&d->bd_cv);
666
667 kmem_free(d, sizeof(*d));
668
669 return (0);
670 }
671
672 /*
673 * Rotate the packet buffers in descriptor d. Move the store buffer
674 * into the hold slot, and the free buffer into the store slot.
675 * Zero the length of the new store buffer.
676 */
677 #define ROTATE_BUFFERS(d) \
678 (d)->bd_hbuf = (d)->bd_sbuf; \
679 (d)->bd_hlen = (d)->bd_slen; \
680 (d)->bd_sbuf = (d)->bd_fbuf; \
681 (d)->bd_slen = 0; \
682 (d)->bd_fbuf = NULL;
683 /*
684 * bpfread - read next chunk of packets from buffers
685 */
686 static int
687 bpf_read(struct file *fp, off_t *offp, struct uio *uio,
688 kauth_cred_t cred, int flags)
689 {
690 struct bpf_d *d = fp->f_bpf;
691 int timed_out;
692 int error;
693
694 /*
695 * Refresh the PID associated with this bpf file.
696 */
697 d->bd_pid = curproc->p_pid;
698
699 getnanotime(&d->bd_atime);
700 /*
701 * Restrict application to use a buffer the same size as
702 * the kernel buffers.
703 */
704 if (uio->uio_resid != d->bd_bufsize)
705 return (EINVAL);
706
707 mutex_enter(d->bd_mtx);
708 if (d->bd_state == BPF_WAITING)
709 callout_halt(&d->bd_callout, d->bd_mtx);
710 timed_out = (d->bd_state == BPF_TIMED_OUT);
711 d->bd_state = BPF_IDLE;
712 mutex_exit(d->bd_mtx);
713 /*
714 * If the hold buffer is empty, then do a timed sleep, which
715 * ends when the timeout expires or when enough packets
716 * have arrived to fill the store buffer.
717 */
718 mutex_enter(d->bd_buf_mtx);
719 while (d->bd_hbuf == NULL) {
720 if (fp->f_flag & FNONBLOCK) {
721 if (d->bd_slen == 0) {
722 error = EWOULDBLOCK;
723 goto out;
724 }
725 ROTATE_BUFFERS(d);
726 break;
727 }
728
729 if ((d->bd_immediate || timed_out) && d->bd_slen != 0) {
730 /*
731 * A packet(s) either arrived since the previous
732 * read or arrived while we were asleep.
733 * Rotate the buffers and return what's here.
734 */
735 ROTATE_BUFFERS(d);
736 break;
737 }
738
739 error = cv_timedwait_sig(&d->bd_cv, d->bd_buf_mtx, d->bd_rtout);
740
741 if (error == EINTR || error == ERESTART)
742 goto out;
743
744 if (error == EWOULDBLOCK) {
745 /*
746 * On a timeout, return what's in the buffer,
747 * which may be nothing. If there is something
748 * in the store buffer, we can rotate the buffers.
749 */
750 if (d->bd_hbuf)
751 /*
752 * We filled up the buffer in between
753 * getting the timeout and arriving
754 * here, so we don't need to rotate.
755 */
756 break;
757
758 if (d->bd_slen == 0) {
759 error = 0;
760 goto out;
761 }
762 ROTATE_BUFFERS(d);
763 break;
764 }
765 if (error != 0)
766 goto out;
767 }
768 /*
769 * At this point, we know we have something in the hold slot.
770 */
771 mutex_exit(d->bd_buf_mtx);
772
773 /*
774 * Move data from hold buffer into user space.
775 * We know the entire buffer is transferred since
776 * we checked above that the read buffer is bpf_bufsize bytes.
777 */
778 error = uiomove(d->bd_hbuf, d->bd_hlen, uio);
779
780 mutex_enter(d->bd_buf_mtx);
781 d->bd_fbuf = d->bd_hbuf;
782 d->bd_hbuf = NULL;
783 d->bd_hlen = 0;
784 out:
785 mutex_exit(d->bd_buf_mtx);
786 return (error);
787 }
788
789 /*
790 * If there are processes sleeping on this descriptor, wake them up.
791 */
792 static inline void
793 bpf_wakeup(struct bpf_d *d)
794 {
795
796 mutex_enter(d->bd_buf_mtx);
797 cv_broadcast(&d->bd_cv);
798 mutex_exit(d->bd_buf_mtx);
799
800 if (d->bd_async)
801 fownsignal(d->bd_pgid, SIGIO, 0, 0, NULL);
802 selnotify(&d->bd_sel, 0, 0);
803 }
804
805 static void
806 bpf_timed_out(void *arg)
807 {
808 struct bpf_d *d = arg;
809
810 mutex_enter(d->bd_mtx);
811 if (d->bd_state == BPF_WAITING) {
812 d->bd_state = BPF_TIMED_OUT;
813 if (d->bd_slen != 0)
814 bpf_wakeup(d);
815 }
816 mutex_exit(d->bd_mtx);
817 }
818
819 static int
820 bpf_write(struct file *fp, off_t *offp, struct uio *uio,
821 kauth_cred_t cred, int flags)
822 {
823 struct bpf_d *d = fp->f_bpf;
824 struct bpf_if *bp;
825 struct ifnet *ifp;
826 struct mbuf *m, *mc;
827 int error;
828 static struct sockaddr_storage dst;
829 struct psref psref;
830 int bound;
831
832 /*
833 * Refresh the PID associated with this bpf file.
834 */
835 d->bd_pid = curproc->p_pid;
836
837 m = NULL; /* XXX gcc */
838
839 bound = curlwp_bind();
840 mutex_enter(d->bd_mtx);
841 bp = d->bd_bif;
842 if (bp == NULL) {
843 mutex_exit(d->bd_mtx);
844 error = ENXIO;
845 goto out_bindx;
846 }
847 bpf_if_acquire(bp, &psref);
848 mutex_exit(d->bd_mtx);
849
850 getnanotime(&d->bd_mtime);
851
852 ifp = bp->bif_ifp;
853 if (if_is_deactivated(ifp)) {
854 error = ENXIO;
855 goto out;
856 }
857
858 if (uio->uio_resid == 0) {
859 error = 0;
860 goto out;
861 }
862
863 error = bpf_movein(ifp, uio, (int)bp->bif_dlt, ifp->if_mtu, &m,
864 (struct sockaddr *) &dst, &d->bd_wfilter);
865 if (error)
866 goto out;
867
868 if (m->m_pkthdr.len > ifp->if_mtu) {
869 m_freem(m);
870 error = EMSGSIZE;
871 goto out;
872 }
873
874 /*
875 * If writing to a loopback interface, the address family has
876 * already been specially computed in bpf_movein(), so don't
877 * clobber it, or the loopback will reject it in looutput().
878 */
879 if (d->bd_hdrcmplt && ifp->if_type != IFT_LOOP)
880 dst.ss_family = pseudo_AF_HDRCMPLT;
881
882 if (d->bd_feedback) {
883 mc = m_dup(m, 0, M_COPYALL, M_NOWAIT);
884 if (mc != NULL)
885 m_set_rcvif(mc, ifp);
886 /* Set M_PROMISC for outgoing packets to be discarded. */
887 if (1 /*d->bd_direction == BPF_D_INOUT*/)
888 m->m_flags |= M_PROMISC;
889 } else
890 mc = NULL;
891
892 error = if_output_lock(ifp, ifp, m, (struct sockaddr *) &dst, NULL);
893
894 if (mc != NULL) {
895 if (error == 0) {
896 int s = splsoftnet();
897 KERNEL_LOCK_UNLESS_IFP_MPSAFE(ifp);
898 ifp->_if_input(ifp, mc);
899 KERNEL_UNLOCK_UNLESS_IFP_MPSAFE(ifp);
900 splx(s);
901 } else
902 m_freem(mc);
903 }
904 /*
905 * The driver frees the mbuf.
906 */
907 out:
908 bpf_if_release(bp, &psref);
909 out_bindx:
910 curlwp_bindx(bound);
911 return error;
912 }
913
914 /*
915 * Reset a descriptor by flushing its packet buffer and clearing the
916 * receive and drop counts.
917 */
918 static void
919 reset_d(struct bpf_d *d)
920 {
921
922 KASSERT(mutex_owned(d->bd_mtx));
923
924 mutex_enter(d->bd_buf_mtx);
925 if (d->bd_hbuf) {
926 /* Free the hold buffer. */
927 d->bd_fbuf = d->bd_hbuf;
928 d->bd_hbuf = NULL;
929 }
930 d->bd_slen = 0;
931 d->bd_hlen = 0;
932 d->bd_rcount = 0;
933 d->bd_dcount = 0;
934 d->bd_ccount = 0;
935 mutex_exit(d->bd_buf_mtx);
936 }
937
938 /*
939 * FIONREAD Check for read packet available.
940 * BIOCGBLEN Get buffer len [for read()].
941 * BIOCSETF Set ethernet read filter.
942 * BIOCFLUSH Flush read packet buffer.
943 * BIOCPROMISC Put interface into promiscuous mode.
944 * BIOCGDLT Get link layer type.
945 * BIOCGETIF Get interface name.
946 * BIOCSETIF Set interface.
947 * BIOCSRTIMEOUT Set read timeout.
948 * BIOCGRTIMEOUT Get read timeout.
949 * BIOCGSTATS Get packet stats.
950 * BIOCIMMEDIATE Set immediate mode.
951 * BIOCVERSION Get filter language version.
952 * BIOCGHDRCMPLT Get "header already complete" flag.
953 * BIOCSHDRCMPLT Set "header already complete" flag.
954 * BIOCSFEEDBACK Set packet feedback mode.
955 * BIOCGFEEDBACK Get packet feedback mode.
956 * BIOCGDIRECTION Get packet direction flag
957 * BIOCSDIRECTION Set packet direction flag
958 */
959 /* ARGSUSED */
960 static int
961 bpf_ioctl(struct file *fp, u_long cmd, void *addr)
962 {
963 struct bpf_d *d = fp->f_bpf;
964 int error = 0;
965
966 /*
967 * Refresh the PID associated with this bpf file.
968 */
969 d->bd_pid = curproc->p_pid;
970 #ifdef _LP64
971 if (curproc->p_flag & PK_32)
972 d->bd_compat32 = 1;
973 else
974 d->bd_compat32 = 0;
975 #endif
976
977 mutex_enter(d->bd_mtx);
978 if (d->bd_state == BPF_WAITING)
979 callout_halt(&d->bd_callout, d->bd_mtx);
980 d->bd_state = BPF_IDLE;
981 mutex_exit(d->bd_mtx);
982
983 if (d->bd_locked) {
984 switch (cmd) {
985 case BIOCGBLEN: /* FALLTHROUGH */
986 case BIOCFLUSH: /* FALLTHROUGH */
987 case BIOCGDLT: /* FALLTHROUGH */
988 case BIOCGDLTLIST: /* FALLTHROUGH */
989 case BIOCGETIF: /* FALLTHROUGH */
990 case BIOCGRTIMEOUT: /* FALLTHROUGH */
991 case BIOCGSTATS: /* FALLTHROUGH */
992 case BIOCVERSION: /* FALLTHROUGH */
993 case BIOCGHDRCMPLT: /* FALLTHROUGH */
994 case FIONREAD: /* FALLTHROUGH */
995 case BIOCLOCK: /* FALLTHROUGH */
996 case BIOCSRTIMEOUT: /* FALLTHROUGH */
997 case BIOCIMMEDIATE: /* FALLTHROUGH */
998 case TIOCGPGRP:
999 break;
1000 default:
1001 return EPERM;
1002 }
1003 }
1004
1005 switch (cmd) {
1006
1007 default:
1008 error = EINVAL;
1009 break;
1010
1011 /*
1012 * Check for read packet available.
1013 */
1014 case FIONREAD: {
1015 int n;
1016
1017 mutex_enter(d->bd_buf_mtx);
1018 n = d->bd_slen;
1019 if (d->bd_hbuf)
1020 n += d->bd_hlen;
1021 mutex_exit(d->bd_buf_mtx);
1022
1023 *(int *)addr = n;
1024 break;
1025 }
1026
1027 /*
1028 * Get buffer len [for read()].
1029 */
1030 case BIOCGBLEN:
1031 *(u_int *)addr = d->bd_bufsize;
1032 break;
1033
1034 /*
1035 * Set buffer length.
1036 */
1037 case BIOCSBLEN:
1038 /*
1039 * Forbid to change the buffer length if buffers are already
1040 * allocated.
1041 */
1042 mutex_enter(d->bd_mtx);
1043 mutex_enter(d->bd_buf_mtx);
1044 if (d->bd_bif != NULL || d->bd_sbuf != NULL)
1045 error = EINVAL;
1046 else {
1047 u_int size = *(u_int *)addr;
1048
1049 if (size > bpf_maxbufsize)
1050 *(u_int *)addr = size = bpf_maxbufsize;
1051 else if (size < BPF_MINBUFSIZE)
1052 *(u_int *)addr = size = BPF_MINBUFSIZE;
1053 d->bd_bufsize = size;
1054 }
1055 mutex_exit(d->bd_buf_mtx);
1056 mutex_exit(d->bd_mtx);
1057 break;
1058
1059 /*
1060 * Set link layer read filter.
1061 */
1062 case BIOCSETF: /* FALLTHROUGH */
1063 case BIOCSETWF:
1064 error = bpf_setf(d, addr, cmd);
1065 break;
1066
1067 case BIOCLOCK:
1068 d->bd_locked = 1;
1069 break;
1070
1071 /*
1072 * Flush read packet buffer.
1073 */
1074 case BIOCFLUSH:
1075 mutex_enter(d->bd_mtx);
1076 reset_d(d);
1077 mutex_exit(d->bd_mtx);
1078 break;
1079
1080 /*
1081 * Put interface into promiscuous mode.
1082 */
1083 case BIOCPROMISC:
1084 mutex_enter(d->bd_mtx);
1085 if (d->bd_bif == NULL) {
1086 mutex_exit(d->bd_mtx);
1087 /*
1088 * No interface attached yet.
1089 */
1090 error = EINVAL;
1091 break;
1092 }
1093 if (d->bd_promisc == 0) {
1094 KERNEL_LOCK_UNLESS_NET_MPSAFE();
1095 error = ifpromisc(d->bd_bif->bif_ifp, 1);
1096 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
1097 if (error == 0)
1098 d->bd_promisc = 1;
1099 }
1100 mutex_exit(d->bd_mtx);
1101 break;
1102
1103 /*
1104 * Get device parameters.
1105 */
1106 case BIOCGDLT:
1107 mutex_enter(d->bd_mtx);
1108 if (d->bd_bif == NULL)
1109 error = EINVAL;
1110 else
1111 *(u_int *)addr = d->bd_bif->bif_dlt;
1112 mutex_exit(d->bd_mtx);
1113 break;
1114
1115 /*
1116 * Get a list of supported device parameters.
1117 */
1118 case BIOCGDLTLIST:
1119 mutex_enter(d->bd_mtx);
1120 if (d->bd_bif == NULL)
1121 error = EINVAL;
1122 else
1123 error = bpf_getdltlist(d, addr);
1124 mutex_exit(d->bd_mtx);
1125 break;
1126
1127 /*
1128 * Set device parameters.
1129 */
1130 case BIOCSDLT:
1131 mutex_enter(&bpf_mtx);
1132 mutex_enter(d->bd_mtx);
1133 if (d->bd_bif == NULL)
1134 error = EINVAL;
1135 else
1136 error = bpf_setdlt(d, *(u_int *)addr);
1137 mutex_exit(d->bd_mtx);
1138 mutex_exit(&bpf_mtx);
1139 break;
1140
1141 /*
1142 * Set interface name.
1143 */
1144 #ifdef OBIOCGETIF
1145 case OBIOCGETIF:
1146 #endif
1147 case BIOCGETIF:
1148 mutex_enter(d->bd_mtx);
1149 if (d->bd_bif == NULL)
1150 error = EINVAL;
1151 else
1152 bpf_ifname(d->bd_bif->bif_ifp, addr);
1153 mutex_exit(d->bd_mtx);
1154 break;
1155
1156 /*
1157 * Set interface.
1158 */
1159 #ifdef OBIOCSETIF
1160 case OBIOCSETIF:
1161 #endif
1162 case BIOCSETIF:
1163 mutex_enter(&bpf_mtx);
1164 error = bpf_setif(d, addr);
1165 mutex_exit(&bpf_mtx);
1166 break;
1167
1168 /*
1169 * Set read timeout.
1170 */
1171 case BIOCSRTIMEOUT: {
1172 struct timeval *tv = addr;
1173
1174 /* Compute number of ticks. */
1175 if (tv->tv_sec < 0 ||
1176 tv->tv_usec < 0 || tv->tv_usec >= 1000000) {
1177 error = EINVAL;
1178 break;
1179 } else if (tv->tv_sec > INT_MAX/hz - 1) {
1180 d->bd_rtout = INT_MAX;
1181 } else {
1182 d->bd_rtout = tv->tv_sec * hz + tv->tv_usec / tick;
1183 }
1184 if ((d->bd_rtout == 0) && (tv->tv_usec != 0))
1185 d->bd_rtout = 1;
1186 break;
1187 }
1188
1189 #ifdef BIOCGORTIMEOUT
1190 /*
1191 * Get read timeout.
1192 */
1193 case BIOCGORTIMEOUT: {
1194 struct timeval50 *tv = addr;
1195
1196 tv->tv_sec = d->bd_rtout / hz;
1197 tv->tv_usec = (d->bd_rtout % hz) * tick;
1198 break;
1199 }
1200 #endif
1201
1202 #ifdef BIOCSORTIMEOUT
1203 /*
1204 * Set read timeout.
1205 */
1206 case BIOCSORTIMEOUT: {
1207 struct timeval50 *tv = addr;
1208
1209 /* Compute number of ticks. */
1210 if (tv->tv_sec < 0 ||
1211 tv->tv_usec < 0 || tv->tv_usec >= 1000000) {
1212 error = EINVAL;
1213 break;
1214 } else if (tv->tv_sec > INT_MAX/hz - 1) {
1215 d->bd_rtout = INT_MAX;
1216 } else {
1217 d->bd_rtout = tv->tv_sec * hz + tv->tv_usec / tick;
1218 }
1219 if ((d->bd_rtout == 0) && (tv->tv_usec != 0))
1220 d->bd_rtout = 1;
1221 break;
1222 }
1223 #endif
1224
1225 /*
1226 * Get read timeout.
1227 */
1228 case BIOCGRTIMEOUT: {
1229 struct timeval *tv = addr;
1230
1231 tv->tv_sec = d->bd_rtout / hz;
1232 tv->tv_usec = (d->bd_rtout % hz) * tick;
1233 break;
1234 }
1235 /*
1236 * Get packet stats.
1237 */
1238 case BIOCGSTATS: {
1239 struct bpf_stat *bs = addr;
1240
1241 bs->bs_recv = d->bd_rcount;
1242 bs->bs_drop = d->bd_dcount;
1243 bs->bs_capt = d->bd_ccount;
1244 break;
1245 }
1246
1247 case BIOCGSTATS_30: {
1248 struct bpf_stat30 *bs = addr;
1249
1250 bs->bs_recv = d->bd_rcount;
1251 bs->bs_drop = d->bd_dcount;
1252 break;
1253 }
1254
1255 /*
1256 * Set immediate mode.
1257 */
1258 case BIOCIMMEDIATE:
1259 d->bd_immediate = *(u_int *)addr;
1260 break;
1261
1262 case BIOCVERSION: {
1263 struct bpf_version *bv = addr;
1264
1265 bv->bv_major = BPF_MAJOR_VERSION;
1266 bv->bv_minor = BPF_MINOR_VERSION;
1267 break;
1268 }
1269
1270 case BIOCGHDRCMPLT: /* get "header already complete" flag */
1271 *(u_int *)addr = d->bd_hdrcmplt;
1272 break;
1273
1274 case BIOCSHDRCMPLT: /* set "header already complete" flag */
1275 d->bd_hdrcmplt = *(u_int *)addr ? 1 : 0;
1276 break;
1277
1278 /*
1279 * Get packet direction flag
1280 */
1281 case BIOCGDIRECTION:
1282 *(u_int *)addr = d->bd_direction;
1283 break;
1284
1285 /*
1286 * Set packet direction flag
1287 */
1288 case BIOCSDIRECTION: {
1289 u_int direction;
1290
1291 direction = *(u_int *)addr;
1292 switch (direction) {
1293 case BPF_D_IN:
1294 case BPF_D_INOUT:
1295 case BPF_D_OUT:
1296 d->bd_direction = direction;
1297 break;
1298 default:
1299 error = EINVAL;
1300 }
1301 }
1302 break;
1303
1304 /*
1305 * Set "feed packets from bpf back to input" mode
1306 */
1307 case BIOCSFEEDBACK:
1308 d->bd_feedback = *(u_int *)addr;
1309 break;
1310
1311 /*
1312 * Get "feed packets from bpf back to input" mode
1313 */
1314 case BIOCGFEEDBACK:
1315 *(u_int *)addr = d->bd_feedback;
1316 break;
1317
1318 case FIONBIO: /* Non-blocking I/O */
1319 /*
1320 * No need to do anything special as we use IO_NDELAY in
1321 * bpfread() as an indication of whether or not to block
1322 * the read.
1323 */
1324 break;
1325
1326 case FIOASYNC: /* Send signal on receive packets */
1327 mutex_enter(d->bd_mtx);
1328 d->bd_async = *(int *)addr;
1329 mutex_exit(d->bd_mtx);
1330 break;
1331
1332 case TIOCSPGRP: /* Process or group to send signals to */
1333 case FIOSETOWN:
1334 error = fsetown(&d->bd_pgid, cmd, addr);
1335 break;
1336
1337 case TIOCGPGRP:
1338 case FIOGETOWN:
1339 error = fgetown(d->bd_pgid, cmd, addr);
1340 break;
1341 }
1342 return (error);
1343 }
1344
1345 /*
1346 * Set d's packet filter program to fp. If this file already has a filter,
1347 * free it and replace it. Returns EINVAL for bogus requests.
1348 */
1349 static int
1350 bpf_setf(struct bpf_d *d, struct bpf_program *fp, u_long cmd)
1351 {
1352 struct bpf_insn *fcode;
1353 bpfjit_func_t jcode;
1354 size_t flen, size = 0;
1355 struct bpf_filter *oldf, *newf, **storef;
1356
1357 jcode = NULL;
1358 flen = fp->bf_len;
1359
1360 if ((fp->bf_insns == NULL && flen) || flen > BPF_MAXINSNS) {
1361 return EINVAL;
1362 }
1363
1364 if (flen) {
1365 /*
1366 * Allocate the buffer, copy the byte-code from
1367 * userspace and validate it.
1368 */
1369 size = flen * sizeof(*fp->bf_insns);
1370 fcode = kmem_alloc(size, KM_SLEEP);
1371 if (copyin(fp->bf_insns, fcode, size) != 0 ||
1372 !bpf_validate(fcode, (int)flen)) {
1373 kmem_free(fcode, size);
1374 return EINVAL;
1375 }
1376 if (bpf_jit)
1377 jcode = bpf_jit_generate(NULL, fcode, flen);
1378 } else {
1379 fcode = NULL;
1380 }
1381
1382 newf = kmem_alloc(sizeof(*newf), KM_SLEEP);
1383 newf->bf_insn = fcode;
1384 newf->bf_size = size;
1385 newf->bf_jitcode = jcode;
1386 if (cmd == BIOCSETF)
1387 d->bd_jitcode = jcode; /* XXX just for kvm(3) users */
1388
1389 /* Need to hold bpf_mtx for pserialize_perform */
1390 mutex_enter(&bpf_mtx);
1391 mutex_enter(d->bd_mtx);
1392 if (cmd == BIOCSETWF) {
1393 oldf = d->bd_wfilter;
1394 storef = &d->bd_wfilter;
1395 } else {
1396 oldf = d->bd_rfilter;
1397 storef = &d->bd_rfilter;
1398 }
1399 atomic_store_release(storef, newf);
1400 reset_d(d);
1401 pserialize_perform(bpf_psz);
1402 mutex_exit(d->bd_mtx);
1403 mutex_exit(&bpf_mtx);
1404
1405 if (oldf != NULL)
1406 bpf_free_filter(oldf);
1407
1408 return 0;
1409 }
1410
1411 /*
1412 * Detach a file from its current interface (if attached at all) and attach
1413 * to the interface indicated by the name stored in ifr.
1414 * Return an errno or 0.
1415 */
1416 static int
1417 bpf_setif(struct bpf_d *d, struct ifreq *ifr)
1418 {
1419 struct bpf_if *bp;
1420 char *cp;
1421 int unit_seen, i, error;
1422
1423 KASSERT(mutex_owned(&bpf_mtx));
1424 /*
1425 * Make sure the provided name has a unit number, and default
1426 * it to '0' if not specified.
1427 * XXX This is ugly ... do this differently?
1428 */
1429 unit_seen = 0;
1430 cp = ifr->ifr_name;
1431 cp[sizeof(ifr->ifr_name) - 1] = '\0'; /* sanity */
1432 while (*cp++)
1433 if (*cp >= '0' && *cp <= '9')
1434 unit_seen = 1;
1435 if (!unit_seen) {
1436 /* Make sure to leave room for the '\0'. */
1437 for (i = 0; i < (IFNAMSIZ - 1); ++i) {
1438 if ((ifr->ifr_name[i] >= 'a' &&
1439 ifr->ifr_name[i] <= 'z') ||
1440 (ifr->ifr_name[i] >= 'A' &&
1441 ifr->ifr_name[i] <= 'Z'))
1442 continue;
1443 ifr->ifr_name[i] = '0';
1444 }
1445 }
1446
1447 /*
1448 * Look through attached interfaces for the named one.
1449 */
1450 BPF_IFLIST_WRITER_FOREACH(bp) {
1451 struct ifnet *ifp = bp->bif_ifp;
1452
1453 if (ifp == NULL ||
1454 strcmp(ifp->if_xname, ifr->ifr_name) != 0)
1455 continue;
1456 /* skip additional entry */
1457 if (bp->bif_driverp != &ifp->if_bpf)
1458 continue;
1459 /*
1460 * We found the requested interface.
1461 * Allocate the packet buffers if we need to.
1462 * If we're already attached to requested interface,
1463 * just flush the buffer.
1464 */
1465 /*
1466 * bpf_allocbufs is called only here. bpf_mtx ensures that
1467 * no race condition happen on d->bd_sbuf.
1468 */
1469 if (d->bd_sbuf == NULL) {
1470 error = bpf_allocbufs(d);
1471 if (error != 0)
1472 return (error);
1473 }
1474 mutex_enter(d->bd_mtx);
1475 if (bp != d->bd_bif) {
1476 if (d->bd_bif) {
1477 /*
1478 * Detach if attached to something else.
1479 */
1480 bpf_detachd(d);
1481 BPFIF_DLIST_ENTRY_INIT(d);
1482 }
1483
1484 bpf_attachd(d, bp);
1485 }
1486 reset_d(d);
1487 mutex_exit(d->bd_mtx);
1488 return (0);
1489 }
1490 /* Not found. */
1491 return (ENXIO);
1492 }
1493
1494 /*
1495 * Copy the interface name to the ifreq.
1496 */
1497 static void
1498 bpf_ifname(struct ifnet *ifp, struct ifreq *ifr)
1499 {
1500 memcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
1501 }
1502
1503 static int
1504 bpf_stat(struct file *fp, struct stat *st)
1505 {
1506 struct bpf_d *d = fp->f_bpf;
1507
1508 (void)memset(st, 0, sizeof(*st));
1509 mutex_enter(d->bd_mtx);
1510 st->st_dev = makedev(cdevsw_lookup_major(&bpf_cdevsw), d->bd_pid);
1511 st->st_atimespec = d->bd_atime;
1512 st->st_mtimespec = d->bd_mtime;
1513 st->st_ctimespec = st->st_birthtimespec = d->bd_btime;
1514 st->st_uid = kauth_cred_geteuid(fp->f_cred);
1515 st->st_gid = kauth_cred_getegid(fp->f_cred);
1516 st->st_mode = S_IFCHR;
1517 mutex_exit(d->bd_mtx);
1518 return 0;
1519 }
1520
1521 /*
1522 * Support for poll() system call
1523 *
1524 * Return true iff the specific operation will not block indefinitely - with
1525 * the assumption that it is safe to positively acknowledge a request for the
1526 * ability to write to the BPF device.
1527 * Otherwise, return false but make a note that a selnotify() must be done.
1528 */
1529 static int
1530 bpf_poll(struct file *fp, int events)
1531 {
1532 struct bpf_d *d = fp->f_bpf;
1533 int revents;
1534
1535 /*
1536 * Refresh the PID associated with this bpf file.
1537 */
1538 mutex_enter(&bpf_mtx);
1539 d->bd_pid = curproc->p_pid;
1540
1541 revents = events & (POLLOUT | POLLWRNORM);
1542 if (events & (POLLIN | POLLRDNORM)) {
1543 /*
1544 * An imitation of the FIONREAD ioctl code.
1545 */
1546 mutex_enter(d->bd_mtx);
1547 if (d->bd_hlen != 0 ||
1548 ((d->bd_immediate || d->bd_state == BPF_TIMED_OUT) &&
1549 d->bd_slen != 0)) {
1550 revents |= events & (POLLIN | POLLRDNORM);
1551 } else {
1552 selrecord(curlwp, &d->bd_sel);
1553 /* Start the read timeout if necessary */
1554 if (d->bd_rtout > 0 && d->bd_state == BPF_IDLE) {
1555 callout_reset(&d->bd_callout, d->bd_rtout,
1556 bpf_timed_out, d);
1557 d->bd_state = BPF_WAITING;
1558 }
1559 }
1560 mutex_exit(d->bd_mtx);
1561 }
1562
1563 mutex_exit(&bpf_mtx);
1564 return (revents);
1565 }
1566
1567 static void
1568 filt_bpfrdetach(struct knote *kn)
1569 {
1570 struct bpf_d *d = kn->kn_hook;
1571
1572 mutex_enter(d->bd_buf_mtx);
1573 selremove_knote(&d->bd_sel, kn);
1574 mutex_exit(d->bd_buf_mtx);
1575 }
1576
1577 static int
1578 filt_bpfread(struct knote *kn, long hint)
1579 {
1580 struct bpf_d *d = kn->kn_hook;
1581 int rv;
1582
1583 /*
1584 * Refresh the PID associated with this bpf file.
1585 */
1586 d->bd_pid = curproc->p_pid;
1587
1588 mutex_enter(d->bd_buf_mtx);
1589 kn->kn_data = d->bd_hlen;
1590 if (d->bd_immediate)
1591 kn->kn_data += d->bd_slen;
1592 rv = (kn->kn_data > 0);
1593 mutex_exit(d->bd_buf_mtx);
1594 return rv;
1595 }
1596
1597 static const struct filterops bpfread_filtops = {
1598 .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
1599 .f_attach = NULL,
1600 .f_detach = filt_bpfrdetach,
1601 .f_event = filt_bpfread,
1602 };
1603
1604 static int
1605 bpf_kqfilter(struct file *fp, struct knote *kn)
1606 {
1607 struct bpf_d *d = fp->f_bpf;
1608
1609 switch (kn->kn_filter) {
1610 case EVFILT_READ:
1611 kn->kn_fop = &bpfread_filtops;
1612 break;
1613
1614 default:
1615 return (EINVAL);
1616 }
1617
1618 kn->kn_hook = d;
1619
1620 mutex_enter(d->bd_buf_mtx);
1621 selrecord_knote(&d->bd_sel, kn);
1622 mutex_exit(d->bd_buf_mtx);
1623
1624 return (0);
1625 }
1626
1627 /*
1628 * Copy data from an mbuf chain into a buffer. This code is derived
1629 * from m_copydata in sys/uipc_mbuf.c.
1630 */
1631 static void *
1632 bpf_mcpy(void *dst_arg, const void *src_arg, size_t len)
1633 {
1634 const struct mbuf *m;
1635 u_int count;
1636 u_char *dst;
1637
1638 m = src_arg;
1639 dst = dst_arg;
1640 while (len > 0) {
1641 if (m == NULL)
1642 panic("bpf_mcpy");
1643 count = uimin(m->m_len, len);
1644 memcpy(dst, mtod(m, const void *), count);
1645 m = m->m_next;
1646 dst += count;
1647 len -= count;
1648 }
1649 return dst_arg;
1650 }
1651
1652 static inline u_int
1653 bpf_xfilter(struct bpf_filter **filter, void *pkt, u_int pktlen, u_int buflen)
1654 {
1655 struct bpf_filter *filt;
1656 uint32_t mem[BPF_MEMWORDS];
1657 bpf_args_t args = {
1658 .pkt = (const uint8_t *)pkt,
1659 .wirelen = pktlen,
1660 .buflen = buflen,
1661 .mem = mem,
1662 .arg = NULL
1663 };
1664 u_int slen;
1665
1666 filt = atomic_load_consume(filter);
1667 if (filt == NULL) /* No filter means accept all. */
1668 return (u_int)-1;
1669
1670 if (filt->bf_jitcode != NULL)
1671 slen = filt->bf_jitcode(NULL, &args);
1672 else
1673 slen = bpf_filter_ext(NULL, filt->bf_insn, &args);
1674 return slen;
1675 }
1676
1677 /*
1678 * Dispatch a packet to all the listeners on interface bp.
1679 *
1680 * pkt pointer to the packet, either a data buffer or an mbuf chain
1681 * buflen buffer length, if pkt is a data buffer
1682 * cpfn a function that can copy pkt into the listener's buffer
1683 * pktlen length of the packet
1684 * direction BPF_D_IN or BPF_D_OUT
1685 */
1686 static inline void
1687 bpf_deliver(struct bpf_if *bp, void *(*cpfn)(void *, const void *, size_t),
1688 void *pkt, u_int pktlen, u_int buflen, const u_int direction)
1689 {
1690 bool gottime = false;
1691 struct timespec ts;
1692 struct bpf_d *d;
1693 int s;
1694 u_int slen;
1695
1696 KASSERT(!cpu_intr_p());
1697
1698 /*
1699 * Note that the IPL does not have to be raised at this point.
1700 * The only problem that could arise here is that if two different
1701 * interfaces shared any data. This is not the case.
1702 */
1703 s = pserialize_read_enter();
1704 BPFIF_DLIST_READER_FOREACH(d, bp) {
1705 if (direction == BPF_D_IN) {
1706 if (d->bd_direction == BPF_D_OUT)
1707 continue;
1708 } else { /* BPF_D_OUT */
1709 if (d->bd_direction == BPF_D_IN)
1710 continue;
1711 }
1712
1713 atomic_inc_ulong(&d->bd_rcount);
1714 BPF_STATINC(recv);
1715
1716 slen = bpf_xfilter(&d->bd_rfilter, pkt, pktlen, buflen);
1717 if (slen == 0)
1718 continue;
1719
1720 if (!gottime) {
1721 gottime = true;
1722 nanotime(&ts);
1723 }
1724 /* Assume catchpacket doesn't sleep */
1725 catchpacket(d, pkt, pktlen, slen, cpfn, &ts);
1726 }
1727 pserialize_read_exit(s);
1728 }
1729
1730 /*
1731 * Incoming linkage from device drivers, when the head of the packet is in
1732 * a buffer, and the tail is in an mbuf chain.
1733 */
1734 static void
1735 _bpf_mtap2(struct bpf_if *bp, void *data, u_int dlen, struct mbuf *m,
1736 u_int direction)
1737 {
1738 u_int pktlen;
1739 struct mbuf mb;
1740
1741 /* Skip outgoing duplicate packets. */
1742 if ((m->m_flags & M_PROMISC) != 0 && m->m_pkthdr.rcvif_index == 0) {
1743 m->m_flags &= ~M_PROMISC;
1744 return;
1745 }
1746
1747 pktlen = m_length(m) + dlen;
1748
1749 /*
1750 * Craft on-stack mbuf suitable for passing to bpf_filter.
1751 * Note that we cut corners here; we only set up what's
1752 * absolutely needed--this mbuf should never go anywhere else.
1753 */
1754 (void)memset(&mb, 0, sizeof(mb));
1755 mb.m_type = MT_DATA;
1756 mb.m_next = m;
1757 mb.m_data = data;
1758 mb.m_len = dlen;
1759
1760 bpf_deliver(bp, bpf_mcpy, &mb, pktlen, 0, direction);
1761 }
1762
1763 /*
1764 * Incoming linkage from device drivers, when packet is in an mbuf chain.
1765 */
1766 static void
1767 _bpf_mtap(struct bpf_if *bp, struct mbuf *m, u_int direction)
1768 {
1769 void *(*cpfn)(void *, const void *, size_t);
1770 u_int pktlen, buflen;
1771 void *marg;
1772
1773 /* Skip outgoing duplicate packets. */
1774 if ((m->m_flags & M_PROMISC) != 0 && m->m_pkthdr.rcvif_index == 0) {
1775 m->m_flags &= ~M_PROMISC;
1776 return;
1777 }
1778
1779 pktlen = m_length(m);
1780
1781 /* Skip zero-sized packets. */
1782 if (__predict_false(pktlen == 0)) {
1783 return;
1784 }
1785
1786 if (pktlen == m->m_len) {
1787 cpfn = (void *)memcpy;
1788 marg = mtod(m, void *);
1789 buflen = pktlen;
1790 KASSERT(buflen != 0);
1791 } else {
1792 cpfn = bpf_mcpy;
1793 marg = m;
1794 buflen = 0;
1795 }
1796
1797 bpf_deliver(bp, cpfn, marg, pktlen, buflen, direction);
1798 }
1799
1800 /*
1801 * We need to prepend the address family as
1802 * a four byte field. Cons up a dummy header
1803 * to pacify bpf. This is safe because bpf
1804 * will only read from the mbuf (i.e., it won't
1805 * try to free it or keep a pointer a to it).
1806 */
1807 static void
1808 _bpf_mtap_af(struct bpf_if *bp, uint32_t af, struct mbuf *m, u_int direction)
1809 {
1810 struct mbuf m0;
1811
1812 m0.m_type = MT_DATA;
1813 m0.m_flags = 0;
1814 m0.m_next = m;
1815 m0.m_nextpkt = NULL;
1816 m0.m_owner = NULL;
1817 m0.m_len = 4;
1818 m0.m_data = (char *)⁡
1819
1820 _bpf_mtap(bp, &m0, direction);
1821 }
1822
1823 /*
1824 * Put the SLIP pseudo-"link header" in place.
1825 * Note this M_PREPEND() should never fail,
1826 * since we know we always have enough space
1827 * in the input buffer.
1828 */
1829 static void
1830 _bpf_mtap_sl_in(struct bpf_if *bp, u_char *chdr, struct mbuf **m)
1831 {
1832 u_char *hp;
1833
1834 M_PREPEND(*m, SLIP_HDRLEN, M_DONTWAIT);
1835 if (*m == NULL)
1836 return;
1837
1838 hp = mtod(*m, u_char *);
1839 hp[SLX_DIR] = SLIPDIR_IN;
1840 (void)memcpy(&hp[SLX_CHDR], chdr, CHDR_LEN);
1841
1842 _bpf_mtap(bp, *m, BPF_D_IN);
1843
1844 m_adj(*m, SLIP_HDRLEN);
1845 }
1846
1847 /*
1848 * Put the SLIP pseudo-"link header" in
1849 * place. The compressed header is now
1850 * at the beginning of the mbuf.
1851 */
1852 static void
1853 _bpf_mtap_sl_out(struct bpf_if *bp, u_char *chdr, struct mbuf *m)
1854 {
1855 struct mbuf m0;
1856 u_char *hp;
1857
1858 m0.m_type = MT_DATA;
1859 m0.m_flags = 0;
1860 m0.m_next = m;
1861 m0.m_nextpkt = NULL;
1862 m0.m_owner = NULL;
1863 m0.m_data = m0.m_dat;
1864 m0.m_len = SLIP_HDRLEN;
1865
1866 hp = mtod(&m0, u_char *);
1867
1868 hp[SLX_DIR] = SLIPDIR_OUT;
1869 (void)memcpy(&hp[SLX_CHDR], chdr, CHDR_LEN);
1870
1871 _bpf_mtap(bp, &m0, BPF_D_OUT);
1872 m_freem(m);
1873 }
1874
1875 static struct mbuf *
1876 bpf_mbuf_enqueue(struct bpf_if *bp, struct mbuf *m)
1877 {
1878 struct mbuf *dup;
1879
1880 dup = m_dup(m, 0, M_COPYALL, M_NOWAIT);
1881 if (dup == NULL)
1882 return NULL;
1883
1884 if (bp->bif_mbuf_tail != NULL) {
1885 bp->bif_mbuf_tail->m_nextpkt = dup;
1886 } else {
1887 bp->bif_mbuf_head = dup;
1888 }
1889 bp->bif_mbuf_tail = dup;
1890 #ifdef BPF_MTAP_SOFTINT_DEBUG
1891 log(LOG_DEBUG, "%s: enqueued mbuf=%p to %s\n",
1892 __func__, dup, bp->bif_ifp->if_xname);
1893 #endif
1894
1895 return dup;
1896 }
1897
1898 static struct mbuf *
1899 bpf_mbuf_dequeue(struct bpf_if *bp)
1900 {
1901 struct mbuf *m;
1902 int s;
1903
1904 /* XXX NOMPSAFE: assumed running on one CPU */
1905 s = splnet();
1906 m = bp->bif_mbuf_head;
1907 if (m != NULL) {
1908 bp->bif_mbuf_head = m->m_nextpkt;
1909 m->m_nextpkt = NULL;
1910
1911 if (bp->bif_mbuf_head == NULL)
1912 bp->bif_mbuf_tail = NULL;
1913 #ifdef BPF_MTAP_SOFTINT_DEBUG
1914 log(LOG_DEBUG, "%s: dequeued mbuf=%p from %s\n",
1915 __func__, m, bp->bif_ifp->if_xname);
1916 #endif
1917 }
1918 splx(s);
1919
1920 return m;
1921 }
1922
1923 static void
1924 bpf_mtap_si(void *arg)
1925 {
1926 struct bpf_if *bp = arg;
1927 struct mbuf *m;
1928
1929 while ((m = bpf_mbuf_dequeue(bp)) != NULL) {
1930 #ifdef BPF_MTAP_SOFTINT_DEBUG
1931 log(LOG_DEBUG, "%s: tapping mbuf=%p on %s\n",
1932 __func__, m, bp->bif_ifp->if_xname);
1933 #endif
1934 bpf_ops->bpf_mtap(bp, m, BPF_D_IN);
1935 m_freem(m);
1936 }
1937 }
1938
1939 static void
1940 _bpf_mtap_softint(struct ifnet *ifp, struct mbuf *m)
1941 {
1942 struct bpf_if *bp = ifp->if_bpf;
1943 struct mbuf *dup;
1944
1945 KASSERT(cpu_intr_p());
1946
1947 /* To avoid extra invocations of the softint */
1948 if (BPFIF_DLIST_READER_EMPTY(bp))
1949 return;
1950 KASSERT(bp->bif_si != NULL);
1951
1952 dup = bpf_mbuf_enqueue(bp, m);
1953 if (dup != NULL)
1954 softint_schedule(bp->bif_si);
1955 }
1956
1957 static int
1958 bpf_hdrlen(struct bpf_d *d)
1959 {
1960 int hdrlen = d->bd_bif->bif_hdrlen;
1961 /*
1962 * Compute the length of the bpf header. This is not necessarily
1963 * equal to SIZEOF_BPF_HDR because we want to insert spacing such
1964 * that the network layer header begins on a longword boundary (for
1965 * performance reasons and to alleviate alignment restrictions).
1966 */
1967 #ifdef _LP64
1968 if (d->bd_compat32)
1969 return (BPF_WORDALIGN32(hdrlen + SIZEOF_BPF_HDR32) - hdrlen);
1970 else
1971 #endif
1972 return (BPF_WORDALIGN(hdrlen + SIZEOF_BPF_HDR) - hdrlen);
1973 }
1974
1975 /*
1976 * Move the packet data from interface memory (pkt) into the
1977 * store buffer. Call the wakeup functions if it's time to wake up
1978 * a listener (buffer full), "cpfn" is the routine called to do the
1979 * actual data transfer. memcpy is passed in to copy contiguous chunks,
1980 * while bpf_mcpy is passed in to copy mbuf chains. In the latter case,
1981 * pkt is really an mbuf.
1982 */
1983 static void
1984 catchpacket(struct bpf_d *d, u_char *pkt, u_int pktlen, u_int snaplen,
1985 void *(*cpfn)(void *, const void *, size_t), struct timespec *ts)
1986 {
1987 char *h;
1988 int totlen, curlen, caplen;
1989 int hdrlen = bpf_hdrlen(d);
1990 int do_wakeup = 0;
1991
1992 atomic_inc_ulong(&d->bd_ccount);
1993 BPF_STATINC(capt);
1994 /*
1995 * Figure out how many bytes to move. If the packet is
1996 * greater or equal to the snapshot length, transfer that
1997 * much. Otherwise, transfer the whole packet (unless
1998 * we hit the buffer size limit).
1999 */
2000 totlen = hdrlen + uimin(snaplen, pktlen);
2001 if (totlen > d->bd_bufsize)
2002 totlen = d->bd_bufsize;
2003 /*
2004 * If we adjusted totlen to fit the bufsize, it could be that
2005 * totlen is smaller than hdrlen because of the link layer header.
2006 */
2007 caplen = totlen - hdrlen;
2008 if (caplen < 0)
2009 caplen = 0;
2010
2011 mutex_enter(d->bd_buf_mtx);
2012 /*
2013 * Round up the end of the previous packet to the next longword.
2014 */
2015 #ifdef _LP64
2016 if (d->bd_compat32)
2017 curlen = BPF_WORDALIGN32(d->bd_slen);
2018 else
2019 #endif
2020 curlen = BPF_WORDALIGN(d->bd_slen);
2021 if (curlen + totlen > d->bd_bufsize) {
2022 /*
2023 * This packet will overflow the storage buffer.
2024 * Rotate the buffers if we can, then wakeup any
2025 * pending reads.
2026 */
2027 if (d->bd_fbuf == NULL) {
2028 mutex_exit(d->bd_buf_mtx);
2029 /*
2030 * We haven't completed the previous read yet,
2031 * so drop the packet.
2032 */
2033 atomic_inc_ulong(&d->bd_dcount);
2034 BPF_STATINC(drop);
2035 return;
2036 }
2037 ROTATE_BUFFERS(d);
2038 do_wakeup = 1;
2039 curlen = 0;
2040 } else if (d->bd_immediate || d->bd_state == BPF_TIMED_OUT) {
2041 /*
2042 * Immediate mode is set, or the read timeout has
2043 * already expired during a select call. A packet
2044 * arrived, so the reader should be woken up.
2045 */
2046 do_wakeup = 1;
2047 }
2048
2049 /*
2050 * Append the bpf header.
2051 */
2052 h = (char *)d->bd_sbuf + curlen;
2053 #ifdef _LP64
2054 if (d->bd_compat32) {
2055 struct bpf_hdr32 *hp32;
2056
2057 hp32 = (struct bpf_hdr32 *)h;
2058 hp32->bh_tstamp.tv_sec = ts->tv_sec;
2059 hp32->bh_tstamp.tv_usec = ts->tv_nsec / 1000;
2060 hp32->bh_datalen = pktlen;
2061 hp32->bh_hdrlen = hdrlen;
2062 hp32->bh_caplen = caplen;
2063 } else
2064 #endif
2065 {
2066 struct bpf_hdr *hp;
2067
2068 hp = (struct bpf_hdr *)h;
2069 hp->bh_tstamp.tv_sec = ts->tv_sec;
2070 hp->bh_tstamp.tv_usec = ts->tv_nsec / 1000;
2071 hp->bh_datalen = pktlen;
2072 hp->bh_hdrlen = hdrlen;
2073 hp->bh_caplen = caplen;
2074 }
2075
2076 /*
2077 * Copy the packet data into the store buffer and update its length.
2078 */
2079 (*cpfn)(h + hdrlen, pkt, caplen);
2080 d->bd_slen = curlen + totlen;
2081 mutex_exit(d->bd_buf_mtx);
2082
2083 /*
2084 * Call bpf_wakeup after bd_slen has been updated so that kevent(2)
2085 * will cause filt_bpfread() to be called with it adjusted.
2086 */
2087 if (do_wakeup)
2088 bpf_wakeup(d);
2089 }
2090
2091 /*
2092 * Initialize all nonzero fields of a descriptor.
2093 */
2094 static int
2095 bpf_allocbufs(struct bpf_d *d)
2096 {
2097
2098 d->bd_fbuf = kmem_zalloc(d->bd_bufsize, KM_NOSLEEP);
2099 if (!d->bd_fbuf)
2100 return (ENOBUFS);
2101 d->bd_sbuf = kmem_zalloc(d->bd_bufsize, KM_NOSLEEP);
2102 if (!d->bd_sbuf) {
2103 kmem_free(d->bd_fbuf, d->bd_bufsize);
2104 return (ENOBUFS);
2105 }
2106 d->bd_slen = 0;
2107 d->bd_hlen = 0;
2108 return (0);
2109 }
2110
2111 static void
2112 bpf_free_filter(struct bpf_filter *filter)
2113 {
2114
2115 KASSERT(filter != NULL);
2116
2117 if (filter->bf_insn != NULL)
2118 kmem_free(filter->bf_insn, filter->bf_size);
2119 if (filter->bf_jitcode != NULL)
2120 bpf_jit_freecode(filter->bf_jitcode);
2121 kmem_free(filter, sizeof(*filter));
2122 }
2123
2124 /*
2125 * Free buffers currently in use by a descriptor.
2126 * Called on close.
2127 */
2128 static void
2129 bpf_freed(struct bpf_d *d)
2130 {
2131 /*
2132 * We don't need to lock out interrupts since this descriptor has
2133 * been detached from its interface and it yet hasn't been marked
2134 * free.
2135 */
2136 if (d->bd_sbuf != NULL) {
2137 kmem_free(d->bd_sbuf, d->bd_bufsize);
2138 if (d->bd_hbuf != NULL)
2139 kmem_free(d->bd_hbuf, d->bd_bufsize);
2140 if (d->bd_fbuf != NULL)
2141 kmem_free(d->bd_fbuf, d->bd_bufsize);
2142 }
2143 if (d->bd_rfilter != NULL) {
2144 bpf_free_filter(d->bd_rfilter);
2145 d->bd_rfilter = NULL;
2146 }
2147 if (d->bd_wfilter != NULL) {
2148 bpf_free_filter(d->bd_wfilter);
2149 d->bd_wfilter = NULL;
2150 }
2151 d->bd_jitcode = NULL;
2152 }
2153
2154 /*
2155 * Attach an interface to bpf. dlt is the link layer type;
2156 * hdrlen is the fixed size of the link header for the specified dlt
2157 * (variable length headers not yet supported).
2158 */
2159 static void
2160 _bpfattach(struct ifnet *ifp, u_int dlt, u_int hdrlen, struct bpf_if **driverp)
2161 {
2162 struct bpf_if *bp;
2163
2164 bp = kmem_alloc(sizeof(*bp), KM_SLEEP);
2165
2166 mutex_enter(&bpf_mtx);
2167 bp->bif_driverp = driverp;
2168 bp->bif_ifp = ifp;
2169 bp->bif_dlt = dlt;
2170 bp->bif_si = NULL;
2171 BPF_IFLIST_ENTRY_INIT(bp);
2172 PSLIST_INIT(&bp->bif_dlist_head);
2173 psref_target_init(&bp->bif_psref, bpf_psref_class);
2174 SLIST_INIT(&bp->bif_trackers);
2175
2176 BPF_IFLIST_WRITER_INSERT_HEAD(bp);
2177
2178 *bp->bif_driverp = NULL;
2179
2180 bp->bif_hdrlen = hdrlen;
2181 mutex_exit(&bpf_mtx);
2182 #if 0
2183 printf("bpf: %s attached with dlt %x\n", ifp->if_xname, dlt);
2184 #endif
2185 }
2186
2187 static void
2188 _bpf_mtap_softint_init(struct ifnet *ifp)
2189 {
2190 struct bpf_if *bp;
2191
2192 mutex_enter(&bpf_mtx);
2193 BPF_IFLIST_WRITER_FOREACH(bp) {
2194 if (bp->bif_ifp != ifp)
2195 continue;
2196
2197 bp->bif_mbuf_head = NULL;
2198 bp->bif_mbuf_tail = NULL;
2199 bp->bif_si = softint_establish(SOFTINT_NET, bpf_mtap_si, bp);
2200 if (bp->bif_si == NULL)
2201 panic("%s: softint_establish() failed", __func__);
2202 break;
2203 }
2204 mutex_exit(&bpf_mtx);
2205
2206 if (bp == NULL)
2207 panic("%s: no bpf_if found for %s", __func__, ifp->if_xname);
2208 }
2209
2210 /*
2211 * Remove an interface from bpf.
2212 */
2213 static void
2214 _bpfdetach(struct ifnet *ifp)
2215 {
2216 struct bpf_if *bp;
2217 struct bpf_d *d;
2218 int s;
2219
2220 mutex_enter(&bpf_mtx);
2221 /* Nuke the vnodes for any open instances */
2222 again_d:
2223 BPF_DLIST_WRITER_FOREACH(d) {
2224 mutex_enter(d->bd_mtx);
2225 if (d->bd_bif != NULL && d->bd_bif->bif_ifp == ifp) {
2226 /*
2227 * Detach the descriptor from an interface now.
2228 * It will be free'ed later by close routine.
2229 */
2230 bpf_detachd(d);
2231 mutex_exit(d->bd_mtx);
2232 goto again_d;
2233 }
2234 mutex_exit(d->bd_mtx);
2235 }
2236
2237 again:
2238 BPF_IFLIST_WRITER_FOREACH(bp) {
2239 if (bp->bif_ifp == ifp) {
2240 BPF_IFLIST_WRITER_REMOVE(bp);
2241
2242 pserialize_perform(bpf_psz);
2243 psref_target_destroy(&bp->bif_psref, bpf_psref_class);
2244
2245 while (!SLIST_EMPTY(&bp->bif_trackers)) {
2246 struct bpf_event_tracker *t =
2247 SLIST_FIRST(&bp->bif_trackers);
2248 SLIST_REMOVE_HEAD(&bp->bif_trackers,
2249 bet_entries);
2250 kmem_free(t, sizeof(*t));
2251 }
2252
2253 BPF_IFLIST_ENTRY_DESTROY(bp);
2254 if (bp->bif_si != NULL) {
2255 /* XXX NOMPSAFE: assumed running on one CPU */
2256 s = splnet();
2257 while (bp->bif_mbuf_head != NULL) {
2258 struct mbuf *m = bp->bif_mbuf_head;
2259 bp->bif_mbuf_head = m->m_nextpkt;
2260 m_freem(m);
2261 }
2262 splx(s);
2263 softint_disestablish(bp->bif_si);
2264 }
2265 kmem_free(bp, sizeof(*bp));
2266 goto again;
2267 }
2268 }
2269 mutex_exit(&bpf_mtx);
2270 }
2271
2272 /*
2273 * Change the data link type of a interface.
2274 */
2275 static void
2276 _bpf_change_type(struct ifnet *ifp, u_int dlt, u_int hdrlen)
2277 {
2278 struct bpf_if *bp;
2279
2280 mutex_enter(&bpf_mtx);
2281 BPF_IFLIST_WRITER_FOREACH(bp) {
2282 if (bp->bif_driverp == &ifp->if_bpf)
2283 break;
2284 }
2285 if (bp == NULL)
2286 panic("bpf_change_type");
2287
2288 bp->bif_dlt = dlt;
2289
2290 bp->bif_hdrlen = hdrlen;
2291 mutex_exit(&bpf_mtx);
2292 }
2293
2294 /*
2295 * Get a list of available data link type of the interface.
2296 */
2297 static int
2298 bpf_getdltlist(struct bpf_d *d, struct bpf_dltlist *bfl)
2299 {
2300 int n, error;
2301 struct ifnet *ifp;
2302 struct bpf_if *bp;
2303 int s, bound;
2304
2305 KASSERT(mutex_owned(d->bd_mtx));
2306
2307 ifp = d->bd_bif->bif_ifp;
2308 n = 0;
2309 error = 0;
2310
2311 bound = curlwp_bind();
2312 s = pserialize_read_enter();
2313 BPF_IFLIST_READER_FOREACH(bp) {
2314 if (bp->bif_ifp != ifp)
2315 continue;
2316 if (bfl->bfl_list != NULL) {
2317 struct psref psref;
2318
2319 if (n >= bfl->bfl_len) {
2320 pserialize_read_exit(s);
2321 return ENOMEM;
2322 }
2323
2324 bpf_if_acquire(bp, &psref);
2325 pserialize_read_exit(s);
2326
2327 error = copyout(&bp->bif_dlt,
2328 bfl->bfl_list + n, sizeof(u_int));
2329
2330 s = pserialize_read_enter();
2331 bpf_if_release(bp, &psref);
2332 }
2333 n++;
2334 }
2335 pserialize_read_exit(s);
2336 curlwp_bindx(bound);
2337
2338 bfl->bfl_len = n;
2339 return error;
2340 }
2341
2342 /*
2343 * Set the data link type of a BPF instance.
2344 */
2345 static int
2346 bpf_setdlt(struct bpf_d *d, u_int dlt)
2347 {
2348 int error, opromisc;
2349 struct ifnet *ifp;
2350 struct bpf_if *bp;
2351
2352 KASSERT(mutex_owned(&bpf_mtx));
2353 KASSERT(mutex_owned(d->bd_mtx));
2354
2355 if (d->bd_bif->bif_dlt == dlt)
2356 return 0;
2357 ifp = d->bd_bif->bif_ifp;
2358 BPF_IFLIST_WRITER_FOREACH(bp) {
2359 if (bp->bif_ifp == ifp && bp->bif_dlt == dlt)
2360 break;
2361 }
2362 if (bp == NULL)
2363 return EINVAL;
2364 opromisc = d->bd_promisc;
2365 bpf_detachd(d);
2366 BPFIF_DLIST_ENTRY_INIT(d);
2367 bpf_attachd(d, bp);
2368 reset_d(d);
2369 if (opromisc) {
2370 KERNEL_LOCK_UNLESS_NET_MPSAFE();
2371 error = ifpromisc(bp->bif_ifp, 1);
2372 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
2373 if (error)
2374 printf("%s: bpf_setdlt: ifpromisc failed (%d)\n",
2375 bp->bif_ifp->if_xname, error);
2376 else
2377 d->bd_promisc = 1;
2378 }
2379 return 0;
2380 }
2381
2382 static int
2383 sysctl_net_bpf_maxbufsize(SYSCTLFN_ARGS)
2384 {
2385 int newsize, error;
2386 struct sysctlnode node;
2387
2388 node = *rnode;
2389 node.sysctl_data = &newsize;
2390 newsize = bpf_maxbufsize;
2391 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2392 if (error || newp == NULL)
2393 return (error);
2394
2395 if (newsize < BPF_MINBUFSIZE || newsize > BPF_MAXBUFSIZE)
2396 return (EINVAL);
2397
2398 bpf_maxbufsize = newsize;
2399
2400 return (0);
2401 }
2402
2403 #if defined(MODULAR) || defined(BPFJIT)
2404 static int
2405 sysctl_net_bpf_jit(SYSCTLFN_ARGS)
2406 {
2407 bool newval;
2408 int error;
2409 struct sysctlnode node;
2410
2411 node = *rnode;
2412 node.sysctl_data = &newval;
2413 newval = bpf_jit;
2414 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2415 if (error != 0 || newp == NULL)
2416 return error;
2417
2418 bpf_jit = newval;
2419 if (newval && bpfjit_module_ops.bj_generate_code == NULL) {
2420 printf("JIT compilation is postponed "
2421 "until after bpfjit module is loaded\n");
2422 }
2423
2424 return 0;
2425 }
2426 #endif
2427
2428 static int
2429 sysctl_net_bpf_peers(SYSCTLFN_ARGS)
2430 {
2431 int error, elem_count;
2432 struct bpf_d *dp;
2433 struct bpf_d_ext dpe;
2434 size_t len, needed, elem_size, out_size;
2435 char *sp;
2436
2437 if (namelen == 1 && name[0] == CTL_QUERY)
2438 return (sysctl_query(SYSCTLFN_CALL(rnode)));
2439
2440 if (namelen != 2)
2441 return (EINVAL);
2442
2443 /* BPF peers is privileged information. */
2444 error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_INTERFACE,
2445 KAUTH_REQ_NETWORK_INTERFACE_GETPRIV, NULL, NULL, NULL);
2446 if (error)
2447 return (EPERM);
2448
2449 len = (oldp != NULL) ? *oldlenp : 0;
2450 sp = oldp;
2451 elem_size = name[0];
2452 elem_count = name[1];
2453 out_size = MIN(sizeof(dpe), elem_size);
2454 needed = 0;
2455
2456 if (elem_size < 1 || elem_count < 0)
2457 return (EINVAL);
2458
2459 mutex_enter(&bpf_mtx);
2460 BPF_DLIST_WRITER_FOREACH(dp) {
2461 if (len >= elem_size && elem_count > 0) {
2462 #define BPF_EXT(field) dpe.bde_ ## field = dp->bd_ ## field
2463 BPF_EXT(bufsize);
2464 BPF_EXT(promisc);
2465 BPF_EXT(state);
2466 BPF_EXT(immediate);
2467 BPF_EXT(hdrcmplt);
2468 BPF_EXT(direction);
2469 BPF_EXT(pid);
2470 BPF_EXT(rcount);
2471 BPF_EXT(dcount);
2472 BPF_EXT(ccount);
2473 #undef BPF_EXT
2474 mutex_enter(dp->bd_mtx);
2475 if (dp->bd_bif)
2476 (void)strlcpy(dpe.bde_ifname,
2477 dp->bd_bif->bif_ifp->if_xname,
2478 IFNAMSIZ - 1);
2479 else
2480 dpe.bde_ifname[0] = '\0';
2481 dpe.bde_locked = dp->bd_locked;
2482 mutex_exit(dp->bd_mtx);
2483
2484 error = copyout(&dpe, sp, out_size);
2485 if (error)
2486 break;
2487 sp += elem_size;
2488 len -= elem_size;
2489 }
2490 needed += elem_size;
2491 if (elem_count > 0 && elem_count != INT_MAX)
2492 elem_count--;
2493 }
2494 mutex_exit(&bpf_mtx);
2495
2496 *oldlenp = needed;
2497
2498 return (error);
2499 }
2500
2501 static void
2502 bpf_stats(void *p, void *arg, struct cpu_info *ci __unused)
2503 {
2504 struct bpf_stat *const stats = p;
2505 struct bpf_stat *sum = arg;
2506
2507 int s = splnet();
2508
2509 sum->bs_recv += stats->bs_recv;
2510 sum->bs_drop += stats->bs_drop;
2511 sum->bs_capt += stats->bs_capt;
2512
2513 splx(s);
2514 }
2515
2516 static int
2517 bpf_sysctl_gstats_handler(SYSCTLFN_ARGS)
2518 {
2519 struct sysctlnode node;
2520 int error;
2521 struct bpf_stat sum;
2522
2523 memset(&sum, 0, sizeof(sum));
2524 node = *rnode;
2525
2526 percpu_foreach_xcall(bpf_gstats_percpu, XC_HIGHPRI_IPL(IPL_SOFTNET),
2527 bpf_stats, &sum);
2528
2529 node.sysctl_data = ∑
2530 node.sysctl_size = sizeof(sum);
2531 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2532 if (error != 0 || newp == NULL)
2533 return error;
2534
2535 return 0;
2536 }
2537
2538 SYSCTL_SETUP(sysctl_net_bpf_setup, "bpf sysctls")
2539 {
2540 const struct sysctlnode *node;
2541
2542 node = NULL;
2543 sysctl_createv(clog, 0, NULL, &node,
2544 CTLFLAG_PERMANENT,
2545 CTLTYPE_NODE, "bpf",
2546 SYSCTL_DESCR("BPF options"),
2547 NULL, 0, NULL, 0,
2548 CTL_NET, CTL_CREATE, CTL_EOL);
2549 if (node != NULL) {
2550 #if defined(MODULAR) || defined(BPFJIT)
2551 sysctl_createv(clog, 0, NULL, NULL,
2552 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2553 CTLTYPE_BOOL, "jit",
2554 SYSCTL_DESCR("Toggle Just-In-Time compilation"),
2555 sysctl_net_bpf_jit, 0, &bpf_jit, 0,
2556 CTL_NET, node->sysctl_num, CTL_CREATE, CTL_EOL);
2557 #endif
2558 sysctl_createv(clog, 0, NULL, NULL,
2559 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2560 CTLTYPE_INT, "maxbufsize",
2561 SYSCTL_DESCR("Maximum size for data capture buffer"),
2562 sysctl_net_bpf_maxbufsize, 0, &bpf_maxbufsize, 0,
2563 CTL_NET, node->sysctl_num, CTL_CREATE, CTL_EOL);
2564 sysctl_createv(clog, 0, NULL, NULL,
2565 CTLFLAG_PERMANENT,
2566 CTLTYPE_STRUCT, "stats",
2567 SYSCTL_DESCR("BPF stats"),
2568 bpf_sysctl_gstats_handler, 0, NULL, 0,
2569 CTL_NET, node->sysctl_num, CTL_CREATE, CTL_EOL);
2570 sysctl_createv(clog, 0, NULL, NULL,
2571 CTLFLAG_PERMANENT,
2572 CTLTYPE_STRUCT, "peers",
2573 SYSCTL_DESCR("BPF peers"),
2574 sysctl_net_bpf_peers, 0, NULL, 0,
2575 CTL_NET, node->sysctl_num, CTL_CREATE, CTL_EOL);
2576 }
2577
2578 }
2579
2580 static int
2581 _bpf_register_track_event(struct bpf_if **driverp,
2582 void (*_fun)(struct bpf_if *, struct ifnet *, int, int))
2583 {
2584 struct bpf_if *bp;
2585 struct bpf_event_tracker *t;
2586 int ret = ENOENT;
2587
2588 t = kmem_zalloc(sizeof(*t), KM_SLEEP);
2589 if (!t)
2590 return ENOMEM;
2591 t->bet_notify = _fun;
2592
2593 mutex_enter(&bpf_mtx);
2594 BPF_IFLIST_WRITER_FOREACH(bp) {
2595 if (bp->bif_driverp != driverp)
2596 continue;
2597 SLIST_INSERT_HEAD(&bp->bif_trackers, t, bet_entries);
2598 ret = 0;
2599 break;
2600 }
2601 mutex_exit(&bpf_mtx);
2602
2603 return ret;
2604 }
2605
2606 static int
2607 _bpf_deregister_track_event(struct bpf_if **driverp,
2608 void (*_fun)(struct bpf_if *, struct ifnet *, int, int))
2609 {
2610 struct bpf_if *bp;
2611 struct bpf_event_tracker *t = NULL;
2612 int ret = ENOENT;
2613
2614 mutex_enter(&bpf_mtx);
2615 BPF_IFLIST_WRITER_FOREACH(bp) {
2616 if (bp->bif_driverp != driverp)
2617 continue;
2618 SLIST_FOREACH(t, &bp->bif_trackers, bet_entries) {
2619 if (t->bet_notify == _fun) {
2620 ret = 0;
2621 break;
2622 }
2623 }
2624 if (ret == 0)
2625 break;
2626 }
2627 if (ret == 0 && t && t->bet_notify == _fun) {
2628 SLIST_REMOVE(&bp->bif_trackers, t, bpf_event_tracker,
2629 bet_entries);
2630 }
2631 mutex_exit(&bpf_mtx);
2632 if (ret == 0)
2633 kmem_free(t, sizeof(*t));
2634 return ret;
2635 }
2636
2637 struct bpf_ops bpf_ops_kernel = {
2638 .bpf_attach = _bpfattach,
2639 .bpf_detach = _bpfdetach,
2640 .bpf_change_type = _bpf_change_type,
2641 .bpf_register_track_event = _bpf_register_track_event,
2642 .bpf_deregister_track_event = _bpf_deregister_track_event,
2643
2644 .bpf_mtap = _bpf_mtap,
2645 .bpf_mtap2 = _bpf_mtap2,
2646 .bpf_mtap_af = _bpf_mtap_af,
2647 .bpf_mtap_sl_in = _bpf_mtap_sl_in,
2648 .bpf_mtap_sl_out = _bpf_mtap_sl_out,
2649
2650 .bpf_mtap_softint = _bpf_mtap_softint,
2651 .bpf_mtap_softint_init = _bpf_mtap_softint_init,
2652 };
2653
2654 MODULE(MODULE_CLASS_DRIVER, bpf, "bpf_filter");
2655
2656 static int
2657 bpf_modcmd(modcmd_t cmd, void *arg)
2658 {
2659 #ifdef _MODULE
2660 devmajor_t bmajor, cmajor;
2661 #endif
2662 int error = 0;
2663
2664 switch (cmd) {
2665 case MODULE_CMD_INIT:
2666 bpf_init();
2667 #ifdef _MODULE
2668 bmajor = cmajor = NODEVMAJOR;
2669 error = devsw_attach("bpf", NULL, &bmajor,
2670 &bpf_cdevsw, &cmajor);
2671 if (error)
2672 break;
2673 #endif
2674
2675 bpf_ops_handover_enter(&bpf_ops_kernel);
2676 atomic_swap_ptr(&bpf_ops, &bpf_ops_kernel);
2677 bpf_ops_handover_exit();
2678 break;
2679
2680 case MODULE_CMD_FINI:
2681 /*
2682 * While there is no reference counting for bpf callers,
2683 * unload could at least in theory be done similarly to
2684 * system call disestablishment. This should even be
2685 * a little simpler:
2686 *
2687 * 1) replace op vector with stubs
2688 * 2) post update to all cpus with xc
2689 * 3) check that nobody is in bpf anymore
2690 * (it's doubtful we'd want something like l_sysent,
2691 * but we could do something like *signed* percpu
2692 * counters. if the sum is 0, we're good).
2693 * 4) if fail, unroll changes
2694 *
2695 * NOTE: change won't be atomic to the outside. some
2696 * packets may be not captured even if unload is
2697 * not successful. I think packet capture not working
2698 * is a perfectly logical consequence of trying to
2699 * disable packet capture.
2700 */
2701 error = EOPNOTSUPP;
2702 break;
2703
2704 default:
2705 error = ENOTTY;
2706 break;
2707 }
2708
2709 return error;
2710 }
2711