bpf.c revision 1.257 1 /* $NetBSD: bpf.c,v 1.257 2024/08/19 07:47:16 ozaki-r Exp $ */
2
3 /*
4 * Copyright (c) 1990, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from the Stanford/CMU enet packet filter,
8 * (net/enet.c) distributed as part of 4.3BSD, and code contributed
9 * to Berkeley by Steven McCanne and Van Jacobson both of Lawrence
10 * Berkeley Laboratory.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)bpf.c 8.4 (Berkeley) 1/9/95
37 * static char rcsid[] =
38 * "Header: bpf.c,v 1.67 96/09/26 22:00:52 leres Exp ";
39 */
40
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: bpf.c,v 1.257 2024/08/19 07:47:16 ozaki-r Exp $");
43
44 #if defined(_KERNEL_OPT)
45 #include "opt_bpf.h"
46 #include "sl.h"
47 #include "opt_net_mpsafe.h"
48 #endif
49
50 #include <sys/param.h>
51
52 #include <sys/atomic.h>
53 #include <sys/buf.h>
54 #include <sys/conf.h>
55 #include <sys/cpu.h>
56 #include <sys/errno.h>
57 #include <sys/file.h>
58 #include <sys/filedesc.h>
59 #include <sys/ioctl.h>
60 #include <sys/kauth.h>
61 #include <sys/kernel.h>
62 #include <sys/lwp.h>
63 #include <sys/mbuf.h>
64 #include <sys/module.h>
65 #include <sys/percpu.h>
66 #include <sys/poll.h>
67 #include <sys/proc.h>
68 #include <sys/protosw.h>
69 #include <sys/pserialize.h>
70 #include <sys/queue.h>
71 #include <sys/socket.h>
72 #include <sys/stat.h>
73 #include <sys/sysctl.h>
74 #include <sys/syslog.h>
75 #include <sys/systm.h>
76 #include <sys/time.h>
77 #include <sys/tty.h>
78 #include <sys/uio.h>
79 #include <sys/vnode.h>
80 #include <sys/xcall.h>
81
82 #include <net/bpf.h>
83 #include <net/bpfdesc.h>
84 #include <net/bpfjit.h>
85 #include <net/if.h>
86 #include <net/if_arc.h>
87 #include <net/if_ether.h>
88 #include <net/if_types.h>
89 #include <net/slip.h>
90
91 #include <netinet/if_inarp.h>
92 #include <netinet/in.h>
93
94 #include <compat/sys/sockio.h>
95
96 #ifndef BPF_BUFSIZE
97 /*
98 * 4096 is too small for FDDI frames. 8192 is too small for gigabit Ethernet
99 * jumbos (circa 9k), ATM, or Intel gig/10gig ethernet jumbos (16k).
100 */
101 # define BPF_BUFSIZE 32768
102 #endif
103
104 #define PRINET 26 /* interruptible */
105
106 /*
107 * The default read buffer size, and limit for BIOCSBLEN, is sysctl'able.
108 * XXX the default values should be computed dynamically based
109 * on available memory size and available mbuf clusters.
110 */
111 static int bpf_bufsize = BPF_BUFSIZE;
112 static int bpf_maxbufsize = BPF_DFLTBUFSIZE; /* XXX set dynamically, see above */
113 static bool bpf_jit = false;
114
115 struct bpfjit_ops bpfjit_module_ops = {
116 .bj_generate_code = NULL,
117 .bj_free_code = NULL
118 };
119
120 /*
121 * Global BPF statistics returned by net.bpf.stats sysctl.
122 */
123 static struct percpu *bpf_gstats_percpu; /* struct bpf_stat */
124
125 #define BPF_STATINC(id) \
126 { \
127 struct bpf_stat *__stats = \
128 percpu_getref(bpf_gstats_percpu); \
129 __stats->bs_##id++; \
130 percpu_putref(bpf_gstats_percpu); \
131 }
132
133 /*
134 * Locking notes:
135 * - bpf_mtx (adaptive mutex) protects:
136 * - Gobal lists: bpf_iflist and bpf_dlist
137 * - struct bpf_if
138 * - bpf_close
139 * - bpf_psz (pserialize)
140 * - struct bpf_d has two mutexes:
141 * - bd_buf_mtx (spin mutex) protects the buffers that can be accessed
142 * on packet tapping
143 * - bd_mtx (adaptive mutex) protects member variables other than the buffers
144 * - Locking order: bpf_mtx => bpf_d#bd_mtx => bpf_d#bd_buf_mtx
145 * - struct bpf_d obtained via fp->f_bpf in bpf_read and bpf_write is
146 * never freed because struct bpf_d is only freed in bpf_close and
147 * bpf_close never be called while executing bpf_read and bpf_write
148 * - A filter that is assigned to bpf_d can be replaced with another filter
149 * while tapping packets, so it needs to be done atomically
150 * - struct bpf_d is iterated on bpf_dlist with psz
151 * - struct bpf_if is iterated on bpf_iflist with psz or psref
152 */
153 /*
154 * Use a mutex to avoid a race condition between gathering the stats/peers
155 * and opening/closing the device.
156 */
157 static kmutex_t bpf_mtx;
158
159 static struct psref_class *bpf_psref_class __read_mostly;
160 static pserialize_t bpf_psz;
161
162 static inline void
163 bpf_if_acquire(struct bpf_if *bp, struct psref *psref)
164 {
165
166 psref_acquire(psref, &bp->bif_psref, bpf_psref_class);
167 }
168
169 static inline void
170 bpf_if_release(struct bpf_if *bp, struct psref *psref)
171 {
172
173 psref_release(psref, &bp->bif_psref, bpf_psref_class);
174 }
175
176 /*
177 * bpf_iflist is the list of interfaces; each corresponds to an ifnet
178 * bpf_dtab holds the descriptors, indexed by minor device #
179 */
180 static struct pslist_head bpf_iflist;
181 static struct pslist_head bpf_dlist;
182
183 /* Macros for bpf_d on bpf_dlist */
184 #define BPF_DLIST_WRITER_INSERT_HEAD(__d) \
185 PSLIST_WRITER_INSERT_HEAD(&bpf_dlist, (__d), bd_bpf_dlist_entry)
186 #define BPF_DLIST_READER_FOREACH(__d) \
187 PSLIST_READER_FOREACH((__d), &bpf_dlist, struct bpf_d, \
188 bd_bpf_dlist_entry)
189 #define BPF_DLIST_WRITER_FOREACH(__d) \
190 PSLIST_WRITER_FOREACH((__d), &bpf_dlist, struct bpf_d, \
191 bd_bpf_dlist_entry)
192 #define BPF_DLIST_ENTRY_INIT(__d) \
193 PSLIST_ENTRY_INIT((__d), bd_bpf_dlist_entry)
194 #define BPF_DLIST_WRITER_REMOVE(__d) \
195 PSLIST_WRITER_REMOVE((__d), bd_bpf_dlist_entry)
196 #define BPF_DLIST_ENTRY_DESTROY(__d) \
197 PSLIST_ENTRY_DESTROY((__d), bd_bpf_dlist_entry)
198
199 /* Macros for bpf_if on bpf_iflist */
200 #define BPF_IFLIST_WRITER_INSERT_HEAD(__bp) \
201 PSLIST_WRITER_INSERT_HEAD(&bpf_iflist, (__bp), bif_iflist_entry)
202 #define BPF_IFLIST_READER_FOREACH(__bp) \
203 PSLIST_READER_FOREACH((__bp), &bpf_iflist, struct bpf_if, \
204 bif_iflist_entry)
205 #define BPF_IFLIST_WRITER_FOREACH(__bp) \
206 PSLIST_WRITER_FOREACH((__bp), &bpf_iflist, struct bpf_if, \
207 bif_iflist_entry)
208 #define BPF_IFLIST_WRITER_REMOVE(__bp) \
209 PSLIST_WRITER_REMOVE((__bp), bif_iflist_entry)
210 #define BPF_IFLIST_ENTRY_INIT(__bp) \
211 PSLIST_ENTRY_INIT((__bp), bif_iflist_entry)
212 #define BPF_IFLIST_ENTRY_DESTROY(__bp) \
213 PSLIST_ENTRY_DESTROY((__bp), bif_iflist_entry)
214
215 /* Macros for bpf_d on bpf_if#bif_dlist_pslist */
216 #define BPFIF_DLIST_READER_FOREACH(__d, __bp) \
217 PSLIST_READER_FOREACH((__d), &(__bp)->bif_dlist_head, struct bpf_d, \
218 bd_bif_dlist_entry)
219 #define BPFIF_DLIST_WRITER_INSERT_HEAD(__bp, __d) \
220 PSLIST_WRITER_INSERT_HEAD(&(__bp)->bif_dlist_head, (__d), \
221 bd_bif_dlist_entry)
222 #define BPFIF_DLIST_WRITER_REMOVE(__d) \
223 PSLIST_WRITER_REMOVE((__d), bd_bif_dlist_entry)
224 #define BPFIF_DLIST_ENTRY_INIT(__d) \
225 PSLIST_ENTRY_INIT((__d), bd_bif_dlist_entry)
226 #define BPFIF_DLIST_READER_EMPTY(__bp) \
227 (PSLIST_READER_FIRST(&(__bp)->bif_dlist_head, struct bpf_d, \
228 bd_bif_dlist_entry) == NULL)
229 #define BPFIF_DLIST_WRITER_EMPTY(__bp) \
230 (PSLIST_WRITER_FIRST(&(__bp)->bif_dlist_head, struct bpf_d, \
231 bd_bif_dlist_entry) == NULL)
232 #define BPFIF_DLIST_ENTRY_DESTROY(__d) \
233 PSLIST_ENTRY_DESTROY((__d), bd_bif_dlist_entry)
234
235 static int bpf_allocbufs(struct bpf_d *);
236 static u_int bpf_xfilter(struct bpf_filter **, void *, u_int, u_int);
237 static void bpf_deliver(struct bpf_if *,
238 void *(*cpfn)(void *, const void *, size_t),
239 void *, u_int, u_int, const u_int);
240 static void bpf_freed(struct bpf_d *);
241 static void bpf_free_filter(struct bpf_filter *);
242 static void bpf_ifname(struct ifnet *, struct ifreq *);
243 static void *bpf_mcpy(void *, const void *, size_t);
244 static int bpf_movein(struct ifnet *, struct uio *, int, uint64_t,
245 struct mbuf **, struct sockaddr *,
246 struct bpf_filter **);
247 static void bpf_attachd(struct bpf_d *, struct bpf_if *);
248 static void bpf_detachd(struct bpf_d *);
249 static int bpf_setif(struct bpf_d *, struct ifreq *);
250 static int bpf_setf(struct bpf_d *, struct bpf_program *, u_long);
251 static void bpf_timed_out(void *);
252 static inline void
253 bpf_wakeup(struct bpf_d *);
254 static int bpf_hdrlen(struct bpf_d *);
255 static void catchpacket(struct bpf_d *, u_char *, u_int, u_int,
256 void *(*)(void *, const void *, size_t),
257 struct timespec *);
258 static void reset_d(struct bpf_d *);
259 static int bpf_getdltlist(struct bpf_d *, struct bpf_dltlist *);
260 static int bpf_setdlt(struct bpf_d *, u_int);
261
262 static int bpf_read(struct file *, off_t *, struct uio *, kauth_cred_t,
263 int);
264 static int bpf_write(struct file *, off_t *, struct uio *, kauth_cred_t,
265 int);
266 static int bpf_ioctl(struct file *, u_long, void *);
267 static int bpf_poll(struct file *, int);
268 static int bpf_stat(struct file *, struct stat *);
269 static int bpf_close(struct file *);
270 static int bpf_kqfilter(struct file *, struct knote *);
271 static void bpf_softintr(void *);
272
273 static const struct fileops bpf_fileops = {
274 .fo_name = "bpf",
275 .fo_read = bpf_read,
276 .fo_write = bpf_write,
277 .fo_ioctl = bpf_ioctl,
278 .fo_fcntl = fnullop_fcntl,
279 .fo_poll = bpf_poll,
280 .fo_stat = bpf_stat,
281 .fo_close = bpf_close,
282 .fo_kqfilter = bpf_kqfilter,
283 .fo_restart = fnullop_restart,
284 };
285
286 dev_type_open(bpfopen);
287
288 const struct cdevsw bpf_cdevsw = {
289 .d_open = bpfopen,
290 .d_close = noclose,
291 .d_read = noread,
292 .d_write = nowrite,
293 .d_ioctl = noioctl,
294 .d_stop = nostop,
295 .d_tty = notty,
296 .d_poll = nopoll,
297 .d_mmap = nommap,
298 .d_kqfilter = nokqfilter,
299 .d_discard = nodiscard,
300 .d_flag = D_OTHER | D_MPSAFE
301 };
302
303 bpfjit_func_t
304 bpf_jit_generate(bpf_ctx_t *bc, void *code, size_t size)
305 {
306 struct bpfjit_ops *ops = &bpfjit_module_ops;
307 bpfjit_func_t (*generate_code)(const bpf_ctx_t *,
308 const struct bpf_insn *, size_t);
309
310 generate_code = atomic_load_acquire(&ops->bj_generate_code);
311 if (generate_code != NULL) {
312 return generate_code(bc, code, size);
313 }
314 return NULL;
315 }
316
317 void
318 bpf_jit_freecode(bpfjit_func_t jcode)
319 {
320 KASSERT(bpfjit_module_ops.bj_free_code != NULL);
321 bpfjit_module_ops.bj_free_code(jcode);
322 }
323
324 static int
325 bpf_movein(struct ifnet *ifp, struct uio *uio, int linktype, uint64_t mtu,
326 struct mbuf **mp, struct sockaddr *sockp, struct bpf_filter **wfilter)
327 {
328 struct mbuf *m, *m0, *n;
329 int error;
330 size_t len;
331 size_t hlen;
332 size_t align;
333 u_int slen;
334
335 /*
336 * Build a sockaddr based on the data link layer type.
337 * We do this at this level because the ethernet header
338 * is copied directly into the data field of the sockaddr.
339 * In the case of SLIP, there is no header and the packet
340 * is forwarded as is.
341 * Also, we are careful to leave room at the front of the mbuf
342 * for the link level header.
343 */
344 switch (linktype) {
345
346 case DLT_SLIP:
347 sockp->sa_family = AF_INET;
348 hlen = 0;
349 align = 0;
350 break;
351
352 case DLT_PPP:
353 sockp->sa_family = AF_UNSPEC;
354 hlen = 0;
355 align = 0;
356 break;
357
358 case DLT_EN10MB:
359 sockp->sa_family = AF_UNSPEC;
360 /* XXX Would MAXLINKHDR be better? */
361 /* 6(dst)+6(src)+2(type) */
362 hlen = sizeof(struct ether_header);
363 align = 2;
364 break;
365
366 case DLT_ARCNET:
367 sockp->sa_family = AF_UNSPEC;
368 hlen = ARC_HDRLEN;
369 align = 5;
370 break;
371
372 case DLT_FDDI:
373 sockp->sa_family = AF_LINK;
374 /* XXX 4(FORMAC)+6(dst)+6(src) */
375 hlen = 16;
376 align = 0;
377 break;
378
379 case DLT_ECONET:
380 sockp->sa_family = AF_UNSPEC;
381 hlen = 6;
382 align = 2;
383 break;
384
385 case DLT_NULL:
386 sockp->sa_family = AF_UNSPEC;
387 if (ifp->if_type == IFT_LOOP) {
388 /* Set here to apply the following validations */
389 hlen = sizeof(uint32_t);
390 } else
391 hlen = 0;
392 align = 0;
393 break;
394
395 default:
396 return (EIO);
397 }
398
399 len = uio->uio_resid;
400 /*
401 * If there aren't enough bytes for a link level header or the
402 * packet length exceeds the interface mtu, return an error.
403 */
404 if (len - hlen > mtu)
405 return (EMSGSIZE);
406
407 m0 = m = m_gethdr(M_WAIT, MT_DATA);
408 m_reset_rcvif(m);
409 m->m_pkthdr.len = (int)(len - hlen);
410 if (len + align > MHLEN) {
411 m_clget(m, M_WAIT);
412 if ((m->m_flags & M_EXT) == 0) {
413 error = ENOBUFS;
414 goto bad;
415 }
416 }
417
418 /* Ensure the data is properly aligned */
419 if (align > 0)
420 m->m_data += align;
421
422 for (;;) {
423 len = M_TRAILINGSPACE(m);
424 if (len > uio->uio_resid)
425 len = uio->uio_resid;
426 error = uiomove(mtod(m, void *), len, uio);
427 if (error)
428 goto bad;
429 m->m_len = len;
430
431 if (uio->uio_resid == 0)
432 break;
433
434 n = m_get(M_WAIT, MT_DATA);
435 m_clget(n, M_WAIT); /* if fails, there is no problem */
436 m->m_next = n;
437 m = n;
438 }
439
440 slen = bpf_xfilter(wfilter, mtod(m, u_char *), len, len);
441 if (slen == 0) {
442 error = EPERM;
443 goto bad;
444 }
445
446 if (hlen != 0) {
447 if (linktype == DLT_NULL && ifp->if_type == IFT_LOOP) {
448 uint32_t af;
449 /* the link header indicates the address family */
450 memcpy(&af, mtod(m0, void *), sizeof(af));
451 sockp->sa_family = af;
452 } else {
453 /* move link level header in the top of mbuf to sa_data */
454 memcpy(sockp->sa_data, mtod(m0, void *), hlen);
455 }
456 m0->m_data += hlen;
457 m0->m_len -= hlen;
458 }
459
460 *mp = m0;
461 return (0);
462
463 bad:
464 m_freem(m0);
465 return (error);
466 }
467
468 /*
469 * Attach file to the bpf interface, i.e. make d listen on bp.
470 */
471 static void
472 bpf_attachd(struct bpf_d *d, struct bpf_if *bp)
473 {
474 struct bpf_event_tracker *t;
475
476 KASSERT(mutex_owned(&bpf_mtx));
477 KASSERT(mutex_owned(d->bd_mtx));
478 /*
479 * Point d at bp, and add d to the interface's list of listeners.
480 * Finally, point the driver's bpf cookie at the interface so
481 * it will divert packets to bpf.
482 */
483 d->bd_bif = bp;
484 BPFIF_DLIST_WRITER_INSERT_HEAD(bp, d);
485
486 *bp->bif_driverp = bp;
487
488 SLIST_FOREACH(t, &bp->bif_trackers, bet_entries) {
489 t->bet_notify(bp, bp->bif_ifp, bp->bif_dlt,
490 BPF_TRACK_EVENT_ATTACH);
491 }
492 }
493
494 /*
495 * Detach a file from its interface.
496 */
497 static void
498 bpf_detachd(struct bpf_d *d)
499 {
500 struct bpf_if *bp;
501 struct bpf_event_tracker *t;
502
503 KASSERT(mutex_owned(&bpf_mtx));
504 KASSERT(mutex_owned(d->bd_mtx));
505
506 bp = d->bd_bif;
507 /*
508 * Check if this descriptor had requested promiscuous mode.
509 * If so, turn it off.
510 */
511 if (d->bd_promisc) {
512 int error __diagused;
513
514 d->bd_promisc = 0;
515 /*
516 * Take device out of promiscuous mode. Since we were
517 * able to enter promiscuous mode, we should be able
518 * to turn it off. But we can get an error if
519 * the interface was configured down, so only panic
520 * if we don't get an unexpected error.
521 */
522 KERNEL_LOCK_UNLESS_NET_MPSAFE();
523 error = ifpromisc(bp->bif_ifp, 0);
524 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
525 #ifdef DIAGNOSTIC
526 if (error)
527 printf("%s: ifpromisc failed: %d", __func__, error);
528 #endif
529 }
530
531 /* Remove d from the interface's descriptor list. */
532 BPFIF_DLIST_WRITER_REMOVE(d);
533
534 pserialize_perform(bpf_psz);
535
536 if (BPFIF_DLIST_WRITER_EMPTY(bp)) {
537 /*
538 * Let the driver know that there are no more listeners.
539 */
540 *d->bd_bif->bif_driverp = NULL;
541 }
542
543 d->bd_bif = NULL;
544
545 SLIST_FOREACH(t, &bp->bif_trackers, bet_entries) {
546 t->bet_notify(bp, bp->bif_ifp, bp->bif_dlt,
547 BPF_TRACK_EVENT_DETACH);
548 }
549 }
550
551 static void
552 bpf_init(void)
553 {
554
555 mutex_init(&bpf_mtx, MUTEX_DEFAULT, IPL_NONE);
556 bpf_psz = pserialize_create();
557 bpf_psref_class = psref_class_create("bpf", IPL_SOFTNET);
558
559 PSLIST_INIT(&bpf_iflist);
560 PSLIST_INIT(&bpf_dlist);
561
562 bpf_gstats_percpu = percpu_alloc(sizeof(struct bpf_stat));
563
564 return;
565 }
566
567 /*
568 * bpfilterattach() is called at boot time. We don't need to do anything
569 * here, since any initialization will happen as part of module init code.
570 */
571 /* ARGSUSED */
572 void
573 bpfilterattach(int n)
574 {
575
576 }
577
578 /*
579 * Open ethernet device. Clones.
580 */
581 /* ARGSUSED */
582 int
583 bpfopen(dev_t dev, int flag, int mode, struct lwp *l)
584 {
585 struct bpf_d *d;
586 struct file *fp;
587 int error, fd;
588
589 /* falloc() will fill in the descriptor for us. */
590 if ((error = fd_allocfile(&fp, &fd)) != 0)
591 return error;
592
593 d = kmem_zalloc(sizeof(*d), KM_SLEEP);
594 d->bd_bufsize = bpf_bufsize;
595 d->bd_direction = BPF_D_INOUT;
596 d->bd_feedback = 0;
597 d->bd_pid = l->l_proc->p_pid;
598 #ifdef _LP64
599 if (curproc->p_flag & PK_32)
600 d->bd_compat32 = 1;
601 #endif
602 getnanotime(&d->bd_btime);
603 d->bd_atime = d->bd_mtime = d->bd_btime;
604 callout_init(&d->bd_callout, CALLOUT_MPSAFE);
605 selinit(&d->bd_sel);
606 d->bd_sih = softint_establish(SOFTINT_CLOCK, bpf_softintr, d);
607 d->bd_jitcode = NULL;
608 d->bd_rfilter = NULL;
609 d->bd_wfilter = NULL;
610 d->bd_locked = 0;
611 BPF_DLIST_ENTRY_INIT(d);
612 BPFIF_DLIST_ENTRY_INIT(d);
613 d->bd_mtx = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
614 d->bd_buf_mtx = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);
615 cv_init(&d->bd_cv, "bpf");
616
617 mutex_enter(&bpf_mtx);
618 BPF_DLIST_WRITER_INSERT_HEAD(d);
619 mutex_exit(&bpf_mtx);
620
621 return fd_clone(fp, fd, flag, &bpf_fileops, d);
622 }
623
624 /*
625 * Close the descriptor by detaching it from its interface,
626 * deallocating its buffers, and marking it free.
627 */
628 /* ARGSUSED */
629 static int
630 bpf_close(struct file *fp)
631 {
632 struct bpf_d *d;
633
634 mutex_enter(&bpf_mtx);
635
636 if ((d = fp->f_bpf) == NULL) {
637 mutex_exit(&bpf_mtx);
638 return 0;
639 }
640
641 /*
642 * Refresh the PID associated with this bpf file.
643 */
644 d->bd_pid = curproc->p_pid;
645
646 mutex_enter(d->bd_buf_mtx);
647 if (d->bd_state == BPF_WAITING)
648 callout_halt(&d->bd_callout, d->bd_buf_mtx);
649 d->bd_state = BPF_IDLE;
650 mutex_exit(d->bd_buf_mtx);
651 mutex_enter(d->bd_mtx);
652 if (d->bd_bif)
653 bpf_detachd(d);
654 mutex_exit(d->bd_mtx);
655
656 BPF_DLIST_WRITER_REMOVE(d);
657
658 pserialize_perform(bpf_psz);
659 mutex_exit(&bpf_mtx);
660
661 BPFIF_DLIST_ENTRY_DESTROY(d);
662 BPF_DLIST_ENTRY_DESTROY(d);
663 fp->f_bpf = NULL;
664 bpf_freed(d);
665 callout_destroy(&d->bd_callout);
666 seldestroy(&d->bd_sel);
667 softint_disestablish(d->bd_sih);
668 mutex_obj_free(d->bd_mtx);
669 mutex_obj_free(d->bd_buf_mtx);
670 cv_destroy(&d->bd_cv);
671
672 kmem_free(d, sizeof(*d));
673
674 return (0);
675 }
676
677 /*
678 * Rotate the packet buffers in descriptor d. Move the store buffer
679 * into the hold slot, and the free buffer into the store slot.
680 * Zero the length of the new store buffer.
681 */
682 #define ROTATE_BUFFERS(d) \
683 (d)->bd_hbuf = (d)->bd_sbuf; \
684 (d)->bd_hlen = (d)->bd_slen; \
685 (d)->bd_sbuf = (d)->bd_fbuf; \
686 (d)->bd_slen = 0; \
687 (d)->bd_fbuf = NULL;
688 /*
689 * bpfread - read next chunk of packets from buffers
690 */
691 static int
692 bpf_read(struct file *fp, off_t *offp, struct uio *uio,
693 kauth_cred_t cred, int flags)
694 {
695 struct bpf_d *d = fp->f_bpf;
696 int timed_out;
697 int error;
698
699 /*
700 * Refresh the PID associated with this bpf file.
701 */
702 d->bd_pid = curproc->p_pid;
703
704 getnanotime(&d->bd_atime);
705 /*
706 * Restrict application to use a buffer the same size as
707 * the kernel buffers.
708 */
709 if (uio->uio_resid != d->bd_bufsize)
710 return (EINVAL);
711
712 mutex_enter(d->bd_buf_mtx);
713 if (d->bd_state == BPF_WAITING)
714 callout_halt(&d->bd_callout, d->bd_buf_mtx);
715 timed_out = (d->bd_state == BPF_TIMED_OUT);
716 d->bd_state = BPF_IDLE;
717 mutex_exit(d->bd_buf_mtx);
718 /*
719 * If the hold buffer is empty, then do a timed sleep, which
720 * ends when the timeout expires or when enough packets
721 * have arrived to fill the store buffer.
722 */
723 mutex_enter(d->bd_buf_mtx);
724 while (d->bd_hbuf == NULL) {
725 if (fp->f_flag & FNONBLOCK) {
726 if (d->bd_slen == 0) {
727 error = EWOULDBLOCK;
728 goto out;
729 }
730 ROTATE_BUFFERS(d);
731 break;
732 }
733
734 if ((d->bd_immediate || timed_out) && d->bd_slen != 0) {
735 /*
736 * A packet(s) either arrived since the previous
737 * read or arrived while we were asleep.
738 * Rotate the buffers and return what's here.
739 */
740 ROTATE_BUFFERS(d);
741 break;
742 }
743
744 error = cv_timedwait_sig(&d->bd_cv, d->bd_buf_mtx, d->bd_rtout);
745
746 if (error == EINTR || error == ERESTART)
747 goto out;
748
749 if (error == EWOULDBLOCK) {
750 /*
751 * On a timeout, return what's in the buffer,
752 * which may be nothing. If there is something
753 * in the store buffer, we can rotate the buffers.
754 */
755 if (d->bd_hbuf)
756 /*
757 * We filled up the buffer in between
758 * getting the timeout and arriving
759 * here, so we don't need to rotate.
760 */
761 break;
762
763 if (d->bd_slen == 0) {
764 error = 0;
765 goto out;
766 }
767 ROTATE_BUFFERS(d);
768 break;
769 }
770 if (error != 0)
771 goto out;
772 }
773 /*
774 * At this point, we know we have something in the hold slot.
775 */
776 mutex_exit(d->bd_buf_mtx);
777
778 /*
779 * Move data from hold buffer into user space.
780 * We know the entire buffer is transferred since
781 * we checked above that the read buffer is bpf_bufsize bytes.
782 */
783 error = uiomove(d->bd_hbuf, d->bd_hlen, uio);
784
785 mutex_enter(d->bd_buf_mtx);
786 d->bd_fbuf = d->bd_hbuf;
787 d->bd_hbuf = NULL;
788 d->bd_hlen = 0;
789 out:
790 mutex_exit(d->bd_buf_mtx);
791 return (error);
792 }
793
794 /*
795 * If there are processes sleeping on this descriptor, wake them up.
796 */
797 static inline void
798 bpf_wakeup(struct bpf_d *d)
799 {
800
801 KASSERT(mutex_owned(d->bd_buf_mtx));
802
803 cv_broadcast(&d->bd_cv);
804
805 if (d->bd_async)
806 softint_schedule(d->bd_sih);
807 selnotify(&d->bd_sel, 0, NOTE_SUBMIT);
808 }
809
810 static void
811 bpf_softintr(void *cookie)
812 {
813 struct bpf_d *d;
814
815 d = cookie;
816 if (d->bd_async)
817 fownsignal(d->bd_pgid, SIGIO, 0, 0, NULL);
818 }
819
820 static void
821 bpf_timed_out(void *arg)
822 {
823 struct bpf_d *d = arg;
824
825 mutex_enter(d->bd_buf_mtx);
826 if (d->bd_state == BPF_WAITING) {
827 d->bd_state = BPF_TIMED_OUT;
828 if (d->bd_slen != 0)
829 bpf_wakeup(d);
830 }
831 mutex_exit(d->bd_buf_mtx);
832 }
833
834 static int
835 bpf_write(struct file *fp, off_t *offp, struct uio *uio,
836 kauth_cred_t cred, int flags)
837 {
838 struct bpf_d *d = fp->f_bpf;
839 struct bpf_if *bp;
840 struct ifnet *ifp;
841 struct mbuf *m, *mc;
842 int error;
843 static struct sockaddr_storage dst;
844 struct psref psref;
845 int bound;
846
847 /*
848 * Refresh the PID associated with this bpf file.
849 */
850 d->bd_pid = curproc->p_pid;
851
852 m = NULL; /* XXX gcc */
853
854 bound = curlwp_bind();
855 mutex_enter(d->bd_mtx);
856 bp = d->bd_bif;
857 if (bp == NULL) {
858 mutex_exit(d->bd_mtx);
859 error = ENXIO;
860 goto out_bindx;
861 }
862 bpf_if_acquire(bp, &psref);
863 mutex_exit(d->bd_mtx);
864
865 getnanotime(&d->bd_mtime);
866
867 ifp = bp->bif_ifp;
868 if (if_is_deactivated(ifp)) {
869 error = ENXIO;
870 goto out;
871 }
872
873 if (uio->uio_resid == 0) {
874 error = 0;
875 goto out;
876 }
877
878 error = bpf_movein(ifp, uio, (int)bp->bif_dlt, ifp->if_mtu, &m,
879 (struct sockaddr *) &dst, &d->bd_wfilter);
880 if (error)
881 goto out;
882
883 if (m->m_pkthdr.len > ifp->if_mtu) {
884 m_freem(m);
885 error = EMSGSIZE;
886 goto out;
887 }
888
889 /*
890 * If writing to a loopback interface, the address family has
891 * already been specially computed in bpf_movein(), so don't
892 * clobber it, or the loopback will reject it in looutput().
893 */
894 if (d->bd_hdrcmplt && ifp->if_type != IFT_LOOP)
895 dst.ss_family = pseudo_AF_HDRCMPLT;
896
897 if (d->bd_feedback) {
898 mc = m_dup(m, 0, M_COPYALL, M_NOWAIT);
899 if (mc != NULL)
900 m_set_rcvif(mc, ifp);
901 /* Set M_PROMISC for outgoing packets to be discarded. */
902 if (1 /*d->bd_direction == BPF_D_INOUT*/)
903 m->m_flags |= M_PROMISC;
904 } else
905 mc = NULL;
906
907 error = if_output_lock(ifp, ifp, m, (struct sockaddr *) &dst, NULL);
908
909 if (mc != NULL) {
910 if (error == 0) {
911 int s = splsoftnet();
912 KERNEL_LOCK_UNLESS_IFP_MPSAFE(ifp);
913 ifp->_if_input(ifp, mc);
914 KERNEL_UNLOCK_UNLESS_IFP_MPSAFE(ifp);
915 splx(s);
916 } else
917 m_freem(mc);
918 }
919 /*
920 * The driver frees the mbuf.
921 */
922 out:
923 bpf_if_release(bp, &psref);
924 out_bindx:
925 curlwp_bindx(bound);
926 return error;
927 }
928
929 /*
930 * Reset a descriptor by flushing its packet buffer and clearing the
931 * receive and drop counts.
932 */
933 static void
934 reset_d(struct bpf_d *d)
935 {
936
937 KASSERT(mutex_owned(d->bd_mtx));
938
939 mutex_enter(d->bd_buf_mtx);
940 if (d->bd_hbuf) {
941 /* Free the hold buffer. */
942 d->bd_fbuf = d->bd_hbuf;
943 d->bd_hbuf = NULL;
944 }
945 d->bd_slen = 0;
946 d->bd_hlen = 0;
947 d->bd_rcount = 0;
948 d->bd_dcount = 0;
949 d->bd_ccount = 0;
950 mutex_exit(d->bd_buf_mtx);
951 }
952
953 /*
954 * FIONREAD Check for read packet available.
955 * BIOCGBLEN Get buffer len [for read()].
956 * BIOCSETF Set ethernet read filter.
957 * BIOCFLUSH Flush read packet buffer.
958 * BIOCPROMISC Put interface into promiscuous mode.
959 * BIOCGDLT Get link layer type.
960 * BIOCGETIF Get interface name.
961 * BIOCSETIF Set interface.
962 * BIOCSRTIMEOUT Set read timeout.
963 * BIOCGRTIMEOUT Get read timeout.
964 * BIOCGSTATS Get packet stats.
965 * BIOCIMMEDIATE Set immediate mode.
966 * BIOCVERSION Get filter language version.
967 * BIOCGHDRCMPLT Get "header already complete" flag.
968 * BIOCSHDRCMPLT Set "header already complete" flag.
969 * BIOCSFEEDBACK Set packet feedback mode.
970 * BIOCGFEEDBACK Get packet feedback mode.
971 * BIOCGDIRECTION Get packet direction flag
972 * BIOCSDIRECTION Set packet direction flag
973 */
974 /* ARGSUSED */
975 static int
976 bpf_ioctl(struct file *fp, u_long cmd, void *addr)
977 {
978 struct bpf_d *d = fp->f_bpf;
979 int error = 0;
980
981 /*
982 * Refresh the PID associated with this bpf file.
983 */
984 d->bd_pid = curproc->p_pid;
985 #ifdef _LP64
986 if (curproc->p_flag & PK_32)
987 d->bd_compat32 = 1;
988 else
989 d->bd_compat32 = 0;
990 #endif
991
992 mutex_enter(d->bd_buf_mtx);
993 if (d->bd_state == BPF_WAITING)
994 callout_halt(&d->bd_callout, d->bd_buf_mtx);
995 d->bd_state = BPF_IDLE;
996 mutex_exit(d->bd_buf_mtx);
997
998 if (d->bd_locked) {
999 switch (cmd) {
1000 case BIOCGBLEN: /* FALLTHROUGH */
1001 case BIOCFLUSH: /* FALLTHROUGH */
1002 case BIOCGDLT: /* FALLTHROUGH */
1003 case BIOCGDLTLIST: /* FALLTHROUGH */
1004 case BIOCGETIF: /* FALLTHROUGH */
1005 case BIOCGRTIMEOUT: /* FALLTHROUGH */
1006 case BIOCGSTATS: /* FALLTHROUGH */
1007 case BIOCVERSION: /* FALLTHROUGH */
1008 case BIOCGHDRCMPLT: /* FALLTHROUGH */
1009 case FIONREAD: /* FALLTHROUGH */
1010 case BIOCLOCK: /* FALLTHROUGH */
1011 case BIOCSRTIMEOUT: /* FALLTHROUGH */
1012 case BIOCIMMEDIATE: /* FALLTHROUGH */
1013 case TIOCGPGRP:
1014 break;
1015 default:
1016 return EPERM;
1017 }
1018 }
1019
1020 switch (cmd) {
1021
1022 default:
1023 error = EINVAL;
1024 break;
1025
1026 /*
1027 * Check for read packet available.
1028 */
1029 case FIONREAD: {
1030 int n;
1031
1032 mutex_enter(d->bd_buf_mtx);
1033 n = d->bd_slen;
1034 if (d->bd_hbuf)
1035 n += d->bd_hlen;
1036 mutex_exit(d->bd_buf_mtx);
1037
1038 *(int *)addr = n;
1039 break;
1040 }
1041
1042 /*
1043 * Get buffer len [for read()].
1044 */
1045 case BIOCGBLEN:
1046 *(u_int *)addr = d->bd_bufsize;
1047 break;
1048
1049 /*
1050 * Set buffer length.
1051 */
1052 case BIOCSBLEN:
1053 /*
1054 * Forbid to change the buffer length if buffers are already
1055 * allocated.
1056 */
1057 mutex_enter(d->bd_mtx);
1058 mutex_enter(d->bd_buf_mtx);
1059 if (d->bd_bif != NULL || d->bd_sbuf != NULL)
1060 error = EINVAL;
1061 else {
1062 u_int size = *(u_int *)addr;
1063
1064 if (size > bpf_maxbufsize)
1065 *(u_int *)addr = size = bpf_maxbufsize;
1066 else if (size < BPF_MINBUFSIZE)
1067 *(u_int *)addr = size = BPF_MINBUFSIZE;
1068 d->bd_bufsize = size;
1069 }
1070 mutex_exit(d->bd_buf_mtx);
1071 mutex_exit(d->bd_mtx);
1072 break;
1073
1074 /*
1075 * Set link layer read filter.
1076 */
1077 case BIOCSETF: /* FALLTHROUGH */
1078 case BIOCSETWF:
1079 error = bpf_setf(d, addr, cmd);
1080 break;
1081
1082 case BIOCLOCK:
1083 d->bd_locked = 1;
1084 break;
1085
1086 /*
1087 * Flush read packet buffer.
1088 */
1089 case BIOCFLUSH:
1090 mutex_enter(d->bd_mtx);
1091 reset_d(d);
1092 mutex_exit(d->bd_mtx);
1093 break;
1094
1095 /*
1096 * Put interface into promiscuous mode.
1097 */
1098 case BIOCPROMISC:
1099 mutex_enter(d->bd_mtx);
1100 if (d->bd_bif == NULL) {
1101 mutex_exit(d->bd_mtx);
1102 /*
1103 * No interface attached yet.
1104 */
1105 error = EINVAL;
1106 break;
1107 }
1108 if (d->bd_promisc == 0) {
1109 KERNEL_LOCK_UNLESS_NET_MPSAFE();
1110 error = ifpromisc(d->bd_bif->bif_ifp, 1);
1111 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
1112 if (error == 0)
1113 d->bd_promisc = 1;
1114 }
1115 mutex_exit(d->bd_mtx);
1116 break;
1117
1118 /*
1119 * Get device parameters.
1120 */
1121 case BIOCGDLT:
1122 mutex_enter(d->bd_mtx);
1123 if (d->bd_bif == NULL)
1124 error = EINVAL;
1125 else
1126 *(u_int *)addr = d->bd_bif->bif_dlt;
1127 mutex_exit(d->bd_mtx);
1128 break;
1129
1130 /*
1131 * Get a list of supported device parameters.
1132 */
1133 case BIOCGDLTLIST:
1134 mutex_enter(d->bd_mtx);
1135 if (d->bd_bif == NULL)
1136 error = EINVAL;
1137 else
1138 error = bpf_getdltlist(d, addr);
1139 mutex_exit(d->bd_mtx);
1140 break;
1141
1142 /*
1143 * Set device parameters.
1144 */
1145 case BIOCSDLT:
1146 mutex_enter(&bpf_mtx);
1147 mutex_enter(d->bd_mtx);
1148 if (d->bd_bif == NULL)
1149 error = EINVAL;
1150 else
1151 error = bpf_setdlt(d, *(u_int *)addr);
1152 mutex_exit(d->bd_mtx);
1153 mutex_exit(&bpf_mtx);
1154 break;
1155
1156 /*
1157 * Set interface name.
1158 */
1159 #ifdef OBIOCGETIF
1160 case OBIOCGETIF:
1161 #endif
1162 case BIOCGETIF:
1163 mutex_enter(d->bd_mtx);
1164 if (d->bd_bif == NULL)
1165 error = EINVAL;
1166 else
1167 bpf_ifname(d->bd_bif->bif_ifp, addr);
1168 mutex_exit(d->bd_mtx);
1169 break;
1170
1171 /*
1172 * Set interface.
1173 */
1174 #ifdef OBIOCSETIF
1175 case OBIOCSETIF:
1176 #endif
1177 case BIOCSETIF:
1178 mutex_enter(&bpf_mtx);
1179 error = bpf_setif(d, addr);
1180 mutex_exit(&bpf_mtx);
1181 break;
1182
1183 /*
1184 * Set read timeout.
1185 */
1186 case BIOCSRTIMEOUT: {
1187 struct timeval *tv = addr;
1188
1189 /* Compute number of ticks. */
1190 if (tv->tv_sec < 0 ||
1191 tv->tv_usec < 0 || tv->tv_usec >= 1000000) {
1192 error = EINVAL;
1193 break;
1194 } else if (tv->tv_sec > INT_MAX/hz - 1) {
1195 d->bd_rtout = INT_MAX;
1196 } else {
1197 d->bd_rtout = tv->tv_sec * hz + tv->tv_usec / tick;
1198 }
1199 if ((d->bd_rtout == 0) && (tv->tv_usec != 0))
1200 d->bd_rtout = 1;
1201 break;
1202 }
1203
1204 #ifdef BIOCGORTIMEOUT
1205 /*
1206 * Get read timeout.
1207 */
1208 case BIOCGORTIMEOUT: {
1209 struct timeval50 *tv = addr;
1210
1211 tv->tv_sec = d->bd_rtout / hz;
1212 tv->tv_usec = (d->bd_rtout % hz) * tick;
1213 break;
1214 }
1215 #endif
1216
1217 #ifdef BIOCSORTIMEOUT
1218 /*
1219 * Set read timeout.
1220 */
1221 case BIOCSORTIMEOUT: {
1222 struct timeval50 *tv = addr;
1223
1224 /* Compute number of ticks. */
1225 if (tv->tv_sec < 0 ||
1226 tv->tv_usec < 0 || tv->tv_usec >= 1000000) {
1227 error = EINVAL;
1228 break;
1229 } else if (tv->tv_sec > INT_MAX/hz - 1) {
1230 d->bd_rtout = INT_MAX;
1231 } else {
1232 d->bd_rtout = tv->tv_sec * hz + tv->tv_usec / tick;
1233 }
1234 if ((d->bd_rtout == 0) && (tv->tv_usec != 0))
1235 d->bd_rtout = 1;
1236 break;
1237 }
1238 #endif
1239
1240 /*
1241 * Get read timeout.
1242 */
1243 case BIOCGRTIMEOUT: {
1244 struct timeval *tv = addr;
1245
1246 tv->tv_sec = d->bd_rtout / hz;
1247 tv->tv_usec = (d->bd_rtout % hz) * tick;
1248 break;
1249 }
1250 /*
1251 * Get packet stats.
1252 */
1253 case BIOCGSTATS: {
1254 struct bpf_stat *bs = addr;
1255
1256 bs->bs_recv = d->bd_rcount;
1257 bs->bs_drop = d->bd_dcount;
1258 bs->bs_capt = d->bd_ccount;
1259 break;
1260 }
1261
1262 case BIOCGSTATS_30: {
1263 struct bpf_stat30 *bs = addr;
1264
1265 bs->bs_recv = d->bd_rcount;
1266 bs->bs_drop = d->bd_dcount;
1267 break;
1268 }
1269
1270 /*
1271 * Set immediate mode.
1272 */
1273 case BIOCIMMEDIATE:
1274 d->bd_immediate = *(u_int *)addr;
1275 break;
1276
1277 case BIOCVERSION: {
1278 struct bpf_version *bv = addr;
1279
1280 bv->bv_major = BPF_MAJOR_VERSION;
1281 bv->bv_minor = BPF_MINOR_VERSION;
1282 break;
1283 }
1284
1285 case BIOCGHDRCMPLT: /* get "header already complete" flag */
1286 *(u_int *)addr = d->bd_hdrcmplt;
1287 break;
1288
1289 case BIOCSHDRCMPLT: /* set "header already complete" flag */
1290 d->bd_hdrcmplt = *(u_int *)addr ? 1 : 0;
1291 break;
1292
1293 /*
1294 * Get packet direction flag
1295 */
1296 case BIOCGDIRECTION:
1297 *(u_int *)addr = d->bd_direction;
1298 break;
1299
1300 /*
1301 * Set packet direction flag
1302 */
1303 case BIOCSDIRECTION: {
1304 u_int direction;
1305
1306 direction = *(u_int *)addr;
1307 switch (direction) {
1308 case BPF_D_IN:
1309 case BPF_D_INOUT:
1310 case BPF_D_OUT:
1311 d->bd_direction = direction;
1312 break;
1313 default:
1314 error = EINVAL;
1315 }
1316 }
1317 break;
1318
1319 /*
1320 * Set "feed packets from bpf back to input" mode
1321 */
1322 case BIOCSFEEDBACK:
1323 d->bd_feedback = *(u_int *)addr;
1324 break;
1325
1326 /*
1327 * Get "feed packets from bpf back to input" mode
1328 */
1329 case BIOCGFEEDBACK:
1330 *(u_int *)addr = d->bd_feedback;
1331 break;
1332
1333 case FIONBIO: /* Non-blocking I/O */
1334 /*
1335 * No need to do anything special as we use IO_NDELAY in
1336 * bpfread() as an indication of whether or not to block
1337 * the read.
1338 */
1339 break;
1340
1341 case FIOASYNC: /* Send signal on receive packets */
1342 mutex_enter(d->bd_mtx);
1343 d->bd_async = *(int *)addr;
1344 mutex_exit(d->bd_mtx);
1345 break;
1346
1347 case TIOCSPGRP: /* Process or group to send signals to */
1348 case FIOSETOWN:
1349 error = fsetown(&d->bd_pgid, cmd, addr);
1350 break;
1351
1352 case TIOCGPGRP:
1353 case FIOGETOWN:
1354 error = fgetown(d->bd_pgid, cmd, addr);
1355 break;
1356 }
1357 return (error);
1358 }
1359
1360 /*
1361 * Set d's packet filter program to fp. If this file already has a filter,
1362 * free it and replace it. Returns EINVAL for bogus requests.
1363 */
1364 static int
1365 bpf_setf(struct bpf_d *d, struct bpf_program *fp, u_long cmd)
1366 {
1367 struct bpf_insn *fcode;
1368 bpfjit_func_t jcode;
1369 size_t flen, size = 0;
1370 struct bpf_filter *oldf, *newf, **storef;
1371
1372 jcode = NULL;
1373 flen = fp->bf_len;
1374
1375 if ((fp->bf_insns == NULL && flen) || flen > BPF_MAXINSNS) {
1376 return EINVAL;
1377 }
1378
1379 if (flen) {
1380 /*
1381 * Allocate the buffer, copy the byte-code from
1382 * userspace and validate it.
1383 */
1384 size = flen * sizeof(*fp->bf_insns);
1385 fcode = kmem_alloc(size, KM_SLEEP);
1386 if (copyin(fp->bf_insns, fcode, size) != 0 ||
1387 !bpf_validate(fcode, (int)flen)) {
1388 kmem_free(fcode, size);
1389 return EINVAL;
1390 }
1391 if (bpf_jit)
1392 jcode = bpf_jit_generate(NULL, fcode, flen);
1393 } else {
1394 fcode = NULL;
1395 }
1396
1397 newf = kmem_alloc(sizeof(*newf), KM_SLEEP);
1398 newf->bf_insn = fcode;
1399 newf->bf_size = size;
1400 newf->bf_jitcode = jcode;
1401 if (cmd == BIOCSETF)
1402 d->bd_jitcode = jcode; /* XXX just for kvm(3) users */
1403
1404 /* Need to hold bpf_mtx for pserialize_perform */
1405 mutex_enter(&bpf_mtx);
1406 mutex_enter(d->bd_mtx);
1407 if (cmd == BIOCSETWF) {
1408 oldf = d->bd_wfilter;
1409 storef = &d->bd_wfilter;
1410 } else {
1411 oldf = d->bd_rfilter;
1412 storef = &d->bd_rfilter;
1413 }
1414 atomic_store_release(storef, newf);
1415 reset_d(d);
1416 pserialize_perform(bpf_psz);
1417 mutex_exit(d->bd_mtx);
1418 mutex_exit(&bpf_mtx);
1419
1420 if (oldf != NULL)
1421 bpf_free_filter(oldf);
1422
1423 return 0;
1424 }
1425
1426 /*
1427 * Detach a file from its current interface (if attached at all) and attach
1428 * to the interface indicated by the name stored in ifr.
1429 * Return an errno or 0.
1430 */
1431 static int
1432 bpf_setif(struct bpf_d *d, struct ifreq *ifr)
1433 {
1434 struct bpf_if *bp;
1435 char *cp;
1436 int unit_seen, i, error;
1437
1438 KASSERT(mutex_owned(&bpf_mtx));
1439 /*
1440 * Make sure the provided name has a unit number, and default
1441 * it to '0' if not specified.
1442 * XXX This is ugly ... do this differently?
1443 */
1444 unit_seen = 0;
1445 cp = ifr->ifr_name;
1446 cp[sizeof(ifr->ifr_name) - 1] = '\0'; /* sanity */
1447 while (*cp++)
1448 if (*cp >= '0' && *cp <= '9')
1449 unit_seen = 1;
1450 if (!unit_seen) {
1451 /* Make sure to leave room for the '\0'. */
1452 for (i = 0; i < (IFNAMSIZ - 1); ++i) {
1453 if ((ifr->ifr_name[i] >= 'a' &&
1454 ifr->ifr_name[i] <= 'z') ||
1455 (ifr->ifr_name[i] >= 'A' &&
1456 ifr->ifr_name[i] <= 'Z'))
1457 continue;
1458 ifr->ifr_name[i] = '0';
1459 }
1460 }
1461
1462 /*
1463 * Look through attached interfaces for the named one.
1464 */
1465 BPF_IFLIST_WRITER_FOREACH(bp) {
1466 struct ifnet *ifp = bp->bif_ifp;
1467
1468 if (ifp == NULL ||
1469 strcmp(ifp->if_xname, ifr->ifr_name) != 0)
1470 continue;
1471 /* skip additional entry */
1472 if (bp->bif_driverp != &ifp->if_bpf)
1473 continue;
1474 /*
1475 * We found the requested interface.
1476 * Allocate the packet buffers if we need to.
1477 * If we're already attached to requested interface,
1478 * just flush the buffer.
1479 */
1480 /*
1481 * bpf_allocbufs is called only here. bpf_mtx ensures that
1482 * no race condition happen on d->bd_sbuf.
1483 */
1484 if (d->bd_sbuf == NULL) {
1485 error = bpf_allocbufs(d);
1486 if (error != 0)
1487 return (error);
1488 }
1489 mutex_enter(d->bd_mtx);
1490 if (bp != d->bd_bif) {
1491 if (d->bd_bif) {
1492 /*
1493 * Detach if attached to something else.
1494 */
1495 bpf_detachd(d);
1496 BPFIF_DLIST_ENTRY_INIT(d);
1497 }
1498
1499 bpf_attachd(d, bp);
1500 }
1501 reset_d(d);
1502 mutex_exit(d->bd_mtx);
1503 return (0);
1504 }
1505 /* Not found. */
1506 return (ENXIO);
1507 }
1508
1509 /*
1510 * Copy the interface name to the ifreq.
1511 */
1512 static void
1513 bpf_ifname(struct ifnet *ifp, struct ifreq *ifr)
1514 {
1515 memcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
1516 }
1517
1518 static int
1519 bpf_stat(struct file *fp, struct stat *st)
1520 {
1521 struct bpf_d *d = fp->f_bpf;
1522
1523 (void)memset(st, 0, sizeof(*st));
1524 mutex_enter(d->bd_mtx);
1525 st->st_dev = makedev(cdevsw_lookup_major(&bpf_cdevsw), d->bd_pid);
1526 st->st_atimespec = d->bd_atime;
1527 st->st_mtimespec = d->bd_mtime;
1528 st->st_ctimespec = st->st_birthtimespec = d->bd_btime;
1529 st->st_uid = kauth_cred_geteuid(fp->f_cred);
1530 st->st_gid = kauth_cred_getegid(fp->f_cred);
1531 st->st_mode = S_IFCHR;
1532 mutex_exit(d->bd_mtx);
1533 return 0;
1534 }
1535
1536 /*
1537 * Support for poll() system call
1538 *
1539 * Return true iff the specific operation will not block indefinitely - with
1540 * the assumption that it is safe to positively acknowledge a request for the
1541 * ability to write to the BPF device.
1542 * Otherwise, return false but make a note that a selnotify() must be done.
1543 */
1544 static int
1545 bpf_poll(struct file *fp, int events)
1546 {
1547 struct bpf_d *d = fp->f_bpf;
1548 int revents;
1549
1550 /*
1551 * Refresh the PID associated with this bpf file.
1552 */
1553 mutex_enter(&bpf_mtx);
1554 d->bd_pid = curproc->p_pid;
1555
1556 revents = events & (POLLOUT | POLLWRNORM);
1557 if (events & (POLLIN | POLLRDNORM)) {
1558 /*
1559 * An imitation of the FIONREAD ioctl code.
1560 */
1561 mutex_enter(d->bd_mtx);
1562 mutex_enter(d->bd_buf_mtx);
1563 if (d->bd_hlen != 0 ||
1564 ((d->bd_immediate || d->bd_state == BPF_TIMED_OUT) &&
1565 d->bd_slen != 0)) {
1566 revents |= events & (POLLIN | POLLRDNORM);
1567 } else {
1568 selrecord(curlwp, &d->bd_sel);
1569 /* Start the read timeout if necessary */
1570 if (d->bd_rtout > 0 && d->bd_state == BPF_IDLE) {
1571 callout_reset(&d->bd_callout, d->bd_rtout,
1572 bpf_timed_out, d);
1573 d->bd_state = BPF_WAITING;
1574 }
1575 }
1576 mutex_exit(d->bd_buf_mtx);
1577 mutex_exit(d->bd_mtx);
1578 }
1579
1580 mutex_exit(&bpf_mtx);
1581 return (revents);
1582 }
1583
1584 static void
1585 filt_bpfrdetach(struct knote *kn)
1586 {
1587 struct bpf_d *d = kn->kn_hook;
1588
1589 mutex_enter(d->bd_buf_mtx);
1590 selremove_knote(&d->bd_sel, kn);
1591 mutex_exit(d->bd_buf_mtx);
1592 }
1593
1594 static int
1595 filt_bpfread(struct knote *kn, long hint)
1596 {
1597 struct bpf_d *d = kn->kn_hook;
1598 int rv;
1599
1600 /*
1601 * Refresh the PID associated with this bpf file.
1602 */
1603 d->bd_pid = curproc->p_pid;
1604
1605 if (hint & NOTE_SUBMIT)
1606 KASSERT(mutex_owned(d->bd_buf_mtx));
1607 else
1608 mutex_enter(d->bd_buf_mtx);
1609 kn->kn_data = d->bd_hlen;
1610 if (d->bd_immediate)
1611 kn->kn_data += d->bd_slen;
1612 rv = (kn->kn_data > 0);
1613 if (hint & NOTE_SUBMIT)
1614 KASSERT(mutex_owned(d->bd_buf_mtx));
1615 else
1616 mutex_exit(d->bd_buf_mtx);
1617 return rv;
1618 }
1619
1620 static const struct filterops bpfread_filtops = {
1621 .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
1622 .f_attach = NULL,
1623 .f_detach = filt_bpfrdetach,
1624 .f_event = filt_bpfread,
1625 };
1626
1627 static int
1628 bpf_kqfilter(struct file *fp, struct knote *kn)
1629 {
1630 struct bpf_d *d = fp->f_bpf;
1631
1632 switch (kn->kn_filter) {
1633 case EVFILT_READ:
1634 kn->kn_fop = &bpfread_filtops;
1635 break;
1636
1637 default:
1638 return (EINVAL);
1639 }
1640
1641 kn->kn_hook = d;
1642
1643 mutex_enter(d->bd_buf_mtx);
1644 selrecord_knote(&d->bd_sel, kn);
1645 mutex_exit(d->bd_buf_mtx);
1646
1647 return (0);
1648 }
1649
1650 /*
1651 * Copy data from an mbuf chain into a buffer. This code is derived
1652 * from m_copydata in sys/uipc_mbuf.c.
1653 */
1654 static void *
1655 bpf_mcpy(void *dst_arg, const void *src_arg, size_t len)
1656 {
1657 const struct mbuf *m;
1658 u_int count;
1659 u_char *dst;
1660
1661 m = src_arg;
1662 dst = dst_arg;
1663 while (len > 0) {
1664 if (m == NULL)
1665 panic("bpf_mcpy");
1666 count = uimin(m->m_len, len);
1667 memcpy(dst, mtod(m, const void *), count);
1668 m = m->m_next;
1669 dst += count;
1670 len -= count;
1671 }
1672 return dst_arg;
1673 }
1674
1675 static inline u_int
1676 bpf_xfilter(struct bpf_filter **filter, void *pkt, u_int pktlen, u_int buflen)
1677 {
1678 struct bpf_filter *filt;
1679 uint32_t mem[BPF_MEMWORDS];
1680 bpf_args_t args = {
1681 .pkt = (const uint8_t *)pkt,
1682 .wirelen = pktlen,
1683 .buflen = buflen,
1684 .mem = mem,
1685 .arg = NULL
1686 };
1687 u_int slen;
1688
1689 filt = atomic_load_consume(filter);
1690 if (filt == NULL) /* No filter means accept all. */
1691 return (u_int)-1;
1692
1693 if (filt->bf_jitcode != NULL)
1694 slen = filt->bf_jitcode(NULL, &args);
1695 else
1696 slen = bpf_filter_ext(NULL, filt->bf_insn, &args);
1697 return slen;
1698 }
1699
1700 /*
1701 * Dispatch a packet to all the listeners on interface bp.
1702 *
1703 * pkt pointer to the packet, either a data buffer or an mbuf chain
1704 * buflen buffer length, if pkt is a data buffer
1705 * cpfn a function that can copy pkt into the listener's buffer
1706 * pktlen length of the packet
1707 * direction BPF_D_IN or BPF_D_OUT
1708 */
1709 static inline void
1710 bpf_deliver(struct bpf_if *bp, void *(*cpfn)(void *, const void *, size_t),
1711 void *pkt, u_int pktlen, u_int buflen, const u_int direction)
1712 {
1713 bool gottime = false;
1714 struct timespec ts;
1715 struct bpf_d *d;
1716 int s;
1717 u_int slen;
1718
1719 KASSERT(!cpu_intr_p());
1720
1721 /*
1722 * Note that the IPL does not have to be raised at this point.
1723 * The only problem that could arise here is that if two different
1724 * interfaces shared any data. This is not the case.
1725 */
1726 s = pserialize_read_enter();
1727 BPFIF_DLIST_READER_FOREACH(d, bp) {
1728 if (direction == BPF_D_IN) {
1729 if (d->bd_direction == BPF_D_OUT)
1730 continue;
1731 } else { /* BPF_D_OUT */
1732 if (d->bd_direction == BPF_D_IN)
1733 continue;
1734 }
1735
1736 atomic_inc_ulong(&d->bd_rcount);
1737 BPF_STATINC(recv);
1738
1739 slen = bpf_xfilter(&d->bd_rfilter, pkt, pktlen, buflen);
1740 if (slen == 0)
1741 continue;
1742
1743 if (!gottime) {
1744 gottime = true;
1745 nanotime(&ts);
1746 }
1747 /* Assume catchpacket doesn't sleep */
1748 catchpacket(d, pkt, pktlen, slen, cpfn, &ts);
1749 }
1750 pserialize_read_exit(s);
1751 }
1752
1753 /*
1754 * Incoming linkage from device drivers, when the head of the packet is in
1755 * a buffer, and the tail is in an mbuf chain.
1756 */
1757 static void
1758 _bpf_mtap2(struct bpf_if *bp, void *data, u_int dlen, struct mbuf *m,
1759 u_int direction)
1760 {
1761 u_int pktlen;
1762 struct mbuf mb;
1763
1764 /* Skip outgoing duplicate packets. */
1765 if ((m->m_flags & M_PROMISC) != 0 && m->m_pkthdr.rcvif_index == 0) {
1766 m->m_flags &= ~M_PROMISC;
1767 return;
1768 }
1769
1770 pktlen = m_length(m) + dlen;
1771
1772 /*
1773 * Craft on-stack mbuf suitable for passing to bpf_filter.
1774 * Note that we cut corners here; we only set up what's
1775 * absolutely needed--this mbuf should never go anywhere else.
1776 */
1777 (void)memset(&mb, 0, sizeof(mb));
1778 mb.m_type = MT_DATA;
1779 mb.m_next = m;
1780 mb.m_data = data;
1781 mb.m_len = dlen;
1782
1783 bpf_deliver(bp, bpf_mcpy, &mb, pktlen, 0, direction);
1784 }
1785
1786 /*
1787 * Incoming linkage from device drivers, when packet is in an mbuf chain.
1788 */
1789 static void
1790 _bpf_mtap(struct bpf_if *bp, struct mbuf *m, u_int direction)
1791 {
1792 void *(*cpfn)(void *, const void *, size_t);
1793 u_int pktlen, buflen;
1794 void *marg;
1795
1796 /* Skip outgoing duplicate packets. */
1797 if ((m->m_flags & M_PROMISC) != 0 && m->m_pkthdr.rcvif_index == 0) {
1798 m->m_flags &= ~M_PROMISC;
1799 return;
1800 }
1801
1802 pktlen = m_length(m);
1803
1804 /* Skip zero-sized packets. */
1805 if (__predict_false(pktlen == 0)) {
1806 return;
1807 }
1808
1809 if (pktlen == m->m_len) {
1810 cpfn = (void *)memcpy;
1811 marg = mtod(m, void *);
1812 buflen = pktlen;
1813 KASSERT(buflen != 0);
1814 } else {
1815 cpfn = bpf_mcpy;
1816 marg = m;
1817 buflen = 0;
1818 }
1819
1820 bpf_deliver(bp, cpfn, marg, pktlen, buflen, direction);
1821 }
1822
1823 /*
1824 * We need to prepend the address family as
1825 * a four byte field. Cons up a dummy header
1826 * to pacify bpf. This is safe because bpf
1827 * will only read from the mbuf (i.e., it won't
1828 * try to free it or keep a pointer a to it).
1829 */
1830 static void
1831 _bpf_mtap_af(struct bpf_if *bp, uint32_t af, struct mbuf *m, u_int direction)
1832 {
1833 struct mbuf m0;
1834
1835 m0.m_type = MT_DATA;
1836 m0.m_flags = 0;
1837 m0.m_next = m;
1838 m0.m_nextpkt = NULL;
1839 m0.m_owner = NULL;
1840 m0.m_len = 4;
1841 m0.m_data = (char *)⁡
1842
1843 _bpf_mtap(bp, &m0, direction);
1844 }
1845
1846 /*
1847 * Put the SLIP pseudo-"link header" in place.
1848 * Note this M_PREPEND() should never fail,
1849 * since we know we always have enough space
1850 * in the input buffer.
1851 */
1852 static void
1853 _bpf_mtap_sl_in(struct bpf_if *bp, u_char *chdr, struct mbuf **m)
1854 {
1855 u_char *hp;
1856
1857 M_PREPEND(*m, SLIP_HDRLEN, M_DONTWAIT);
1858 if (*m == NULL)
1859 return;
1860
1861 hp = mtod(*m, u_char *);
1862 hp[SLX_DIR] = SLIPDIR_IN;
1863 (void)memcpy(&hp[SLX_CHDR], chdr, CHDR_LEN);
1864
1865 _bpf_mtap(bp, *m, BPF_D_IN);
1866
1867 m_adj(*m, SLIP_HDRLEN);
1868 }
1869
1870 /*
1871 * Put the SLIP pseudo-"link header" in
1872 * place. The compressed header is now
1873 * at the beginning of the mbuf.
1874 */
1875 static void
1876 _bpf_mtap_sl_out(struct bpf_if *bp, u_char *chdr, struct mbuf *m)
1877 {
1878 struct mbuf m0;
1879 u_char *hp;
1880
1881 m0.m_type = MT_DATA;
1882 m0.m_flags = 0;
1883 m0.m_next = m;
1884 m0.m_nextpkt = NULL;
1885 m0.m_owner = NULL;
1886 m0.m_data = m0.m_dat;
1887 m0.m_len = SLIP_HDRLEN;
1888
1889 hp = mtod(&m0, u_char *);
1890
1891 hp[SLX_DIR] = SLIPDIR_OUT;
1892 (void)memcpy(&hp[SLX_CHDR], chdr, CHDR_LEN);
1893
1894 _bpf_mtap(bp, &m0, BPF_D_OUT);
1895 m_freem(m);
1896 }
1897
1898 static struct mbuf *
1899 bpf_mbuf_enqueue(struct bpf_if *bp, struct mbuf *m)
1900 {
1901 struct mbuf *dup;
1902
1903 dup = m_dup(m, 0, M_COPYALL, M_NOWAIT);
1904 if (dup == NULL)
1905 return NULL;
1906
1907 if (bp->bif_mbuf_tail != NULL) {
1908 bp->bif_mbuf_tail->m_nextpkt = dup;
1909 } else {
1910 bp->bif_mbuf_head = dup;
1911 }
1912 bp->bif_mbuf_tail = dup;
1913 #ifdef BPF_MTAP_SOFTINT_DEBUG
1914 log(LOG_DEBUG, "%s: enqueued mbuf=%p to %s\n",
1915 __func__, dup, bp->bif_ifp->if_xname);
1916 #endif
1917
1918 return dup;
1919 }
1920
1921 static struct mbuf *
1922 bpf_mbuf_dequeue(struct bpf_if *bp)
1923 {
1924 struct mbuf *m;
1925 int s;
1926
1927 /* XXX NOMPSAFE: assumed running on one CPU */
1928 s = splnet();
1929 m = bp->bif_mbuf_head;
1930 if (m != NULL) {
1931 bp->bif_mbuf_head = m->m_nextpkt;
1932 m->m_nextpkt = NULL;
1933
1934 if (bp->bif_mbuf_head == NULL)
1935 bp->bif_mbuf_tail = NULL;
1936 #ifdef BPF_MTAP_SOFTINT_DEBUG
1937 log(LOG_DEBUG, "%s: dequeued mbuf=%p from %s\n",
1938 __func__, m, bp->bif_ifp->if_xname);
1939 #endif
1940 }
1941 splx(s);
1942
1943 return m;
1944 }
1945
1946 static void
1947 bpf_mtap_si(void *arg)
1948 {
1949 struct bpf_if *bp = arg;
1950 struct mbuf *m;
1951
1952 while ((m = bpf_mbuf_dequeue(bp)) != NULL) {
1953 #ifdef BPF_MTAP_SOFTINT_DEBUG
1954 log(LOG_DEBUG, "%s: tapping mbuf=%p on %s\n",
1955 __func__, m, bp->bif_ifp->if_xname);
1956 #endif
1957 bpf_ops->bpf_mtap(bp, m, BPF_D_IN);
1958 m_freem(m);
1959 }
1960 }
1961
1962 static void
1963 _bpf_mtap_softint(struct ifnet *ifp, struct mbuf *m)
1964 {
1965 struct bpf_if *bp = ifp->if_bpf;
1966 struct mbuf *dup;
1967
1968 KASSERT(cpu_intr_p());
1969
1970 /* To avoid extra invocations of the softint */
1971 if (BPFIF_DLIST_READER_EMPTY(bp))
1972 return;
1973 KASSERT(bp->bif_si != NULL);
1974
1975 dup = bpf_mbuf_enqueue(bp, m);
1976 if (dup != NULL)
1977 softint_schedule(bp->bif_si);
1978 }
1979
1980 static int
1981 bpf_hdrlen(struct bpf_d *d)
1982 {
1983 int hdrlen = d->bd_bif->bif_hdrlen;
1984 /*
1985 * Compute the length of the bpf header. This is not necessarily
1986 * equal to SIZEOF_BPF_HDR because we want to insert spacing such
1987 * that the network layer header begins on a longword boundary (for
1988 * performance reasons and to alleviate alignment restrictions).
1989 */
1990 #ifdef _LP64
1991 if (d->bd_compat32)
1992 return (BPF_WORDALIGN32(hdrlen + SIZEOF_BPF_HDR32) - hdrlen);
1993 else
1994 #endif
1995 return (BPF_WORDALIGN(hdrlen + SIZEOF_BPF_HDR) - hdrlen);
1996 }
1997
1998 /*
1999 * Move the packet data from interface memory (pkt) into the
2000 * store buffer. Call the wakeup functions if it's time to wake up
2001 * a listener (buffer full), "cpfn" is the routine called to do the
2002 * actual data transfer. memcpy is passed in to copy contiguous chunks,
2003 * while bpf_mcpy is passed in to copy mbuf chains. In the latter case,
2004 * pkt is really an mbuf.
2005 */
2006 static void
2007 catchpacket(struct bpf_d *d, u_char *pkt, u_int pktlen, u_int snaplen,
2008 void *(*cpfn)(void *, const void *, size_t), struct timespec *ts)
2009 {
2010 char *h;
2011 int totlen, curlen, caplen;
2012 int hdrlen = bpf_hdrlen(d);
2013 int do_wakeup = 0;
2014
2015 atomic_inc_ulong(&d->bd_ccount);
2016 BPF_STATINC(capt);
2017 /*
2018 * Figure out how many bytes to move. If the packet is
2019 * greater or equal to the snapshot length, transfer that
2020 * much. Otherwise, transfer the whole packet (unless
2021 * we hit the buffer size limit).
2022 */
2023 totlen = hdrlen + uimin(snaplen, pktlen);
2024 if (totlen > d->bd_bufsize)
2025 totlen = d->bd_bufsize;
2026 /*
2027 * If we adjusted totlen to fit the bufsize, it could be that
2028 * totlen is smaller than hdrlen because of the link layer header.
2029 */
2030 caplen = totlen - hdrlen;
2031 if (caplen < 0)
2032 caplen = 0;
2033
2034 mutex_enter(d->bd_buf_mtx);
2035 /*
2036 * Round up the end of the previous packet to the next longword.
2037 */
2038 #ifdef _LP64
2039 if (d->bd_compat32)
2040 curlen = BPF_WORDALIGN32(d->bd_slen);
2041 else
2042 #endif
2043 curlen = BPF_WORDALIGN(d->bd_slen);
2044 if (curlen + totlen > d->bd_bufsize) {
2045 /*
2046 * This packet will overflow the storage buffer.
2047 * Rotate the buffers if we can, then wakeup any
2048 * pending reads.
2049 */
2050 if (d->bd_fbuf == NULL) {
2051 mutex_exit(d->bd_buf_mtx);
2052 /*
2053 * We haven't completed the previous read yet,
2054 * so drop the packet.
2055 */
2056 atomic_inc_ulong(&d->bd_dcount);
2057 BPF_STATINC(drop);
2058 return;
2059 }
2060 ROTATE_BUFFERS(d);
2061 do_wakeup = 1;
2062 curlen = 0;
2063 } else if (d->bd_immediate || d->bd_state == BPF_TIMED_OUT) {
2064 /*
2065 * Immediate mode is set, or the read timeout has
2066 * already expired during a select call. A packet
2067 * arrived, so the reader should be woken up.
2068 */
2069 do_wakeup = 1;
2070 }
2071
2072 /*
2073 * Append the bpf header.
2074 */
2075 h = (char *)d->bd_sbuf + curlen;
2076 #ifdef _LP64
2077 if (d->bd_compat32) {
2078 struct bpf_hdr32 *hp32;
2079
2080 hp32 = (struct bpf_hdr32 *)h;
2081 hp32->bh_tstamp.tv_sec = ts->tv_sec;
2082 hp32->bh_tstamp.tv_usec = ts->tv_nsec / 1000;
2083 hp32->bh_datalen = pktlen;
2084 hp32->bh_hdrlen = hdrlen;
2085 hp32->bh_caplen = caplen;
2086 } else
2087 #endif
2088 {
2089 struct bpf_hdr *hp;
2090
2091 hp = (struct bpf_hdr *)h;
2092 hp->bh_tstamp.tv_sec = ts->tv_sec;
2093 hp->bh_tstamp.tv_usec = ts->tv_nsec / 1000;
2094 hp->bh_datalen = pktlen;
2095 hp->bh_hdrlen = hdrlen;
2096 hp->bh_caplen = caplen;
2097 }
2098
2099 /*
2100 * Copy the packet data into the store buffer and update its length.
2101 */
2102 (*cpfn)(h + hdrlen, pkt, caplen);
2103 d->bd_slen = curlen + totlen;
2104
2105 /*
2106 * Call bpf_wakeup after bd_slen has been updated so that kevent(2)
2107 * will cause filt_bpfread() to be called with it adjusted.
2108 */
2109 if (do_wakeup)
2110 bpf_wakeup(d);
2111
2112 mutex_exit(d->bd_buf_mtx);
2113 }
2114
2115 /*
2116 * Initialize all nonzero fields of a descriptor.
2117 */
2118 static int
2119 bpf_allocbufs(struct bpf_d *d)
2120 {
2121
2122 d->bd_fbuf = kmem_zalloc(d->bd_bufsize, KM_NOSLEEP);
2123 if (!d->bd_fbuf)
2124 return (ENOBUFS);
2125 d->bd_sbuf = kmem_zalloc(d->bd_bufsize, KM_NOSLEEP);
2126 if (!d->bd_sbuf) {
2127 kmem_free(d->bd_fbuf, d->bd_bufsize);
2128 return (ENOBUFS);
2129 }
2130 d->bd_slen = 0;
2131 d->bd_hlen = 0;
2132 return (0);
2133 }
2134
2135 static void
2136 bpf_free_filter(struct bpf_filter *filter)
2137 {
2138
2139 KASSERT(filter != NULL);
2140
2141 if (filter->bf_insn != NULL)
2142 kmem_free(filter->bf_insn, filter->bf_size);
2143 if (filter->bf_jitcode != NULL)
2144 bpf_jit_freecode(filter->bf_jitcode);
2145 kmem_free(filter, sizeof(*filter));
2146 }
2147
2148 /*
2149 * Free buffers currently in use by a descriptor.
2150 * Called on close.
2151 */
2152 static void
2153 bpf_freed(struct bpf_d *d)
2154 {
2155 /*
2156 * We don't need to lock out interrupts since this descriptor has
2157 * been detached from its interface and it yet hasn't been marked
2158 * free.
2159 */
2160 if (d->bd_sbuf != NULL) {
2161 kmem_free(d->bd_sbuf, d->bd_bufsize);
2162 if (d->bd_hbuf != NULL)
2163 kmem_free(d->bd_hbuf, d->bd_bufsize);
2164 if (d->bd_fbuf != NULL)
2165 kmem_free(d->bd_fbuf, d->bd_bufsize);
2166 }
2167 if (d->bd_rfilter != NULL) {
2168 bpf_free_filter(d->bd_rfilter);
2169 d->bd_rfilter = NULL;
2170 }
2171 if (d->bd_wfilter != NULL) {
2172 bpf_free_filter(d->bd_wfilter);
2173 d->bd_wfilter = NULL;
2174 }
2175 d->bd_jitcode = NULL;
2176 }
2177
2178 /*
2179 * Attach an interface to bpf. dlt is the link layer type;
2180 * hdrlen is the fixed size of the link header for the specified dlt
2181 * (variable length headers not yet supported).
2182 */
2183 static void
2184 _bpfattach(struct ifnet *ifp, u_int dlt, u_int hdrlen, struct bpf_if **driverp)
2185 {
2186 struct bpf_if *bp;
2187
2188 bp = kmem_alloc(sizeof(*bp), KM_SLEEP);
2189
2190 mutex_enter(&bpf_mtx);
2191 bp->bif_driverp = driverp;
2192 bp->bif_ifp = ifp;
2193 bp->bif_dlt = dlt;
2194 bp->bif_si = NULL;
2195 BPF_IFLIST_ENTRY_INIT(bp);
2196 PSLIST_INIT(&bp->bif_dlist_head);
2197 psref_target_init(&bp->bif_psref, bpf_psref_class);
2198 SLIST_INIT(&bp->bif_trackers);
2199
2200 BPF_IFLIST_WRITER_INSERT_HEAD(bp);
2201
2202 *bp->bif_driverp = NULL;
2203
2204 bp->bif_hdrlen = hdrlen;
2205 mutex_exit(&bpf_mtx);
2206 #if 0
2207 printf("bpf: %s attached with dlt %x\n", ifp->if_xname, dlt);
2208 #endif
2209 }
2210
2211 static void
2212 _bpf_mtap_softint_init(struct ifnet *ifp)
2213 {
2214 struct bpf_if *bp;
2215
2216 mutex_enter(&bpf_mtx);
2217 BPF_IFLIST_WRITER_FOREACH(bp) {
2218 if (bp->bif_ifp != ifp)
2219 continue;
2220
2221 bp->bif_mbuf_head = NULL;
2222 bp->bif_mbuf_tail = NULL;
2223 bp->bif_si = softint_establish(SOFTINT_NET, bpf_mtap_si, bp);
2224 if (bp->bif_si == NULL)
2225 panic("%s: softint_establish() failed", __func__);
2226 break;
2227 }
2228 mutex_exit(&bpf_mtx);
2229
2230 if (bp == NULL)
2231 panic("%s: no bpf_if found for %s", __func__, ifp->if_xname);
2232 }
2233
2234 /*
2235 * Remove an interface from bpf.
2236 */
2237 static void
2238 _bpfdetach(struct ifnet *ifp)
2239 {
2240 struct bpf_if *bp;
2241 struct bpf_d *d;
2242 int s;
2243
2244 mutex_enter(&bpf_mtx);
2245 /* Nuke the vnodes for any open instances */
2246 again_d:
2247 BPF_DLIST_WRITER_FOREACH(d) {
2248 mutex_enter(d->bd_mtx);
2249 if (d->bd_bif != NULL && d->bd_bif->bif_ifp == ifp) {
2250 /*
2251 * Detach the descriptor from an interface now.
2252 * It will be free'ed later by close routine.
2253 */
2254 bpf_detachd(d);
2255 mutex_exit(d->bd_mtx);
2256 goto again_d;
2257 }
2258 mutex_exit(d->bd_mtx);
2259 }
2260
2261 again:
2262 BPF_IFLIST_WRITER_FOREACH(bp) {
2263 if (bp->bif_ifp == ifp) {
2264 BPF_IFLIST_WRITER_REMOVE(bp);
2265
2266 pserialize_perform(bpf_psz);
2267 psref_target_destroy(&bp->bif_psref, bpf_psref_class);
2268
2269 while (!SLIST_EMPTY(&bp->bif_trackers)) {
2270 struct bpf_event_tracker *t =
2271 SLIST_FIRST(&bp->bif_trackers);
2272 SLIST_REMOVE_HEAD(&bp->bif_trackers,
2273 bet_entries);
2274 kmem_free(t, sizeof(*t));
2275 }
2276
2277 BPF_IFLIST_ENTRY_DESTROY(bp);
2278 if (bp->bif_si != NULL) {
2279 /* XXX NOMPSAFE: assumed running on one CPU */
2280 s = splnet();
2281 while (bp->bif_mbuf_head != NULL) {
2282 struct mbuf *m = bp->bif_mbuf_head;
2283 bp->bif_mbuf_head = m->m_nextpkt;
2284 m_freem(m);
2285 }
2286 splx(s);
2287 softint_disestablish(bp->bif_si);
2288 }
2289 kmem_free(bp, sizeof(*bp));
2290 goto again;
2291 }
2292 }
2293 mutex_exit(&bpf_mtx);
2294 }
2295
2296 /*
2297 * Change the data link type of a interface.
2298 */
2299 static void
2300 _bpf_change_type(struct ifnet *ifp, u_int dlt, u_int hdrlen)
2301 {
2302 struct bpf_if *bp;
2303
2304 mutex_enter(&bpf_mtx);
2305 BPF_IFLIST_WRITER_FOREACH(bp) {
2306 if (bp->bif_driverp == &ifp->if_bpf)
2307 break;
2308 }
2309 if (bp == NULL)
2310 panic("bpf_change_type");
2311
2312 bp->bif_dlt = dlt;
2313
2314 bp->bif_hdrlen = hdrlen;
2315 mutex_exit(&bpf_mtx);
2316 }
2317
2318 /*
2319 * Get a list of available data link type of the interface.
2320 */
2321 static int
2322 bpf_getdltlist(struct bpf_d *d, struct bpf_dltlist *bfl)
2323 {
2324 int n, error;
2325 struct ifnet *ifp;
2326 struct bpf_if *bp;
2327 int s, bound;
2328
2329 KASSERT(mutex_owned(d->bd_mtx));
2330
2331 ifp = d->bd_bif->bif_ifp;
2332 n = 0;
2333 error = 0;
2334
2335 bound = curlwp_bind();
2336 s = pserialize_read_enter();
2337 BPF_IFLIST_READER_FOREACH(bp) {
2338 if (bp->bif_ifp != ifp)
2339 continue;
2340 if (bfl->bfl_list != NULL) {
2341 struct psref psref;
2342
2343 if (n >= bfl->bfl_len) {
2344 pserialize_read_exit(s);
2345 return ENOMEM;
2346 }
2347
2348 bpf_if_acquire(bp, &psref);
2349 pserialize_read_exit(s);
2350
2351 error = copyout(&bp->bif_dlt,
2352 bfl->bfl_list + n, sizeof(u_int));
2353
2354 s = pserialize_read_enter();
2355 bpf_if_release(bp, &psref);
2356 }
2357 n++;
2358 }
2359 pserialize_read_exit(s);
2360 curlwp_bindx(bound);
2361
2362 bfl->bfl_len = n;
2363 return error;
2364 }
2365
2366 /*
2367 * Set the data link type of a BPF instance.
2368 */
2369 static int
2370 bpf_setdlt(struct bpf_d *d, u_int dlt)
2371 {
2372 int error, opromisc;
2373 struct ifnet *ifp;
2374 struct bpf_if *bp;
2375
2376 KASSERT(mutex_owned(&bpf_mtx));
2377 KASSERT(mutex_owned(d->bd_mtx));
2378
2379 if (d->bd_bif->bif_dlt == dlt)
2380 return 0;
2381 ifp = d->bd_bif->bif_ifp;
2382 BPF_IFLIST_WRITER_FOREACH(bp) {
2383 if (bp->bif_ifp == ifp && bp->bif_dlt == dlt)
2384 break;
2385 }
2386 if (bp == NULL)
2387 return EINVAL;
2388 opromisc = d->bd_promisc;
2389 bpf_detachd(d);
2390 BPFIF_DLIST_ENTRY_INIT(d);
2391 bpf_attachd(d, bp);
2392 reset_d(d);
2393 if (opromisc) {
2394 KERNEL_LOCK_UNLESS_NET_MPSAFE();
2395 error = ifpromisc(bp->bif_ifp, 1);
2396 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
2397 if (error)
2398 printf("%s: bpf_setdlt: ifpromisc failed (%d)\n",
2399 bp->bif_ifp->if_xname, error);
2400 else
2401 d->bd_promisc = 1;
2402 }
2403 return 0;
2404 }
2405
2406 static int
2407 sysctl_net_bpf_maxbufsize(SYSCTLFN_ARGS)
2408 {
2409 int newsize, error;
2410 struct sysctlnode node;
2411
2412 node = *rnode;
2413 node.sysctl_data = &newsize;
2414 newsize = bpf_maxbufsize;
2415 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2416 if (error || newp == NULL)
2417 return (error);
2418
2419 if (newsize < BPF_MINBUFSIZE || newsize > BPF_MAXBUFSIZE)
2420 return (EINVAL);
2421
2422 bpf_maxbufsize = newsize;
2423
2424 return (0);
2425 }
2426
2427 #if defined(MODULAR) || defined(BPFJIT)
2428 static int
2429 sysctl_net_bpf_jit(SYSCTLFN_ARGS)
2430 {
2431 bool newval;
2432 int error;
2433 struct sysctlnode node;
2434
2435 node = *rnode;
2436 node.sysctl_data = &newval;
2437 newval = bpf_jit;
2438 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2439 if (error != 0 || newp == NULL)
2440 return error;
2441
2442 bpf_jit = newval;
2443 if (newval && bpfjit_module_ops.bj_generate_code == NULL) {
2444 printf("JIT compilation is postponed "
2445 "until after bpfjit module is loaded\n");
2446 }
2447
2448 return 0;
2449 }
2450 #endif
2451
2452 static int
2453 sysctl_net_bpf_peers(SYSCTLFN_ARGS)
2454 {
2455 int error, elem_count;
2456 struct bpf_d *dp;
2457 struct bpf_d_ext dpe;
2458 size_t len, needed, elem_size, out_size;
2459 char *sp;
2460
2461 if (namelen == 1 && name[0] == CTL_QUERY)
2462 return (sysctl_query(SYSCTLFN_CALL(rnode)));
2463
2464 if (namelen != 2)
2465 return (EINVAL);
2466
2467 /* BPF peers is privileged information. */
2468 error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_INTERFACE,
2469 KAUTH_REQ_NETWORK_INTERFACE_GETPRIV, NULL, NULL, NULL);
2470 if (error)
2471 return (EPERM);
2472
2473 len = (oldp != NULL) ? *oldlenp : 0;
2474 sp = oldp;
2475 elem_size = name[0];
2476 elem_count = name[1];
2477 out_size = MIN(sizeof(dpe), elem_size);
2478 needed = 0;
2479
2480 if (elem_size < 1 || elem_count < 0)
2481 return (EINVAL);
2482
2483 mutex_enter(&bpf_mtx);
2484 BPF_DLIST_WRITER_FOREACH(dp) {
2485 if (len >= elem_size && elem_count > 0) {
2486 #define BPF_EXT(field) dpe.bde_ ## field = dp->bd_ ## field
2487 BPF_EXT(bufsize);
2488 BPF_EXT(promisc);
2489 BPF_EXT(state);
2490 BPF_EXT(immediate);
2491 BPF_EXT(hdrcmplt);
2492 BPF_EXT(direction);
2493 BPF_EXT(pid);
2494 BPF_EXT(rcount);
2495 BPF_EXT(dcount);
2496 BPF_EXT(ccount);
2497 #undef BPF_EXT
2498 mutex_enter(dp->bd_mtx);
2499 if (dp->bd_bif)
2500 (void)strlcpy(dpe.bde_ifname,
2501 dp->bd_bif->bif_ifp->if_xname,
2502 IFNAMSIZ - 1);
2503 else
2504 dpe.bde_ifname[0] = '\0';
2505 dpe.bde_locked = dp->bd_locked;
2506 mutex_exit(dp->bd_mtx);
2507
2508 error = copyout(&dpe, sp, out_size);
2509 if (error)
2510 break;
2511 sp += elem_size;
2512 len -= elem_size;
2513 }
2514 needed += elem_size;
2515 if (elem_count > 0 && elem_count != INT_MAX)
2516 elem_count--;
2517 }
2518 mutex_exit(&bpf_mtx);
2519
2520 *oldlenp = needed;
2521
2522 return (error);
2523 }
2524
2525 static void
2526 bpf_stats(void *p, void *arg, struct cpu_info *ci __unused)
2527 {
2528 struct bpf_stat *const stats = p;
2529 struct bpf_stat *sum = arg;
2530
2531 int s = splnet();
2532
2533 sum->bs_recv += stats->bs_recv;
2534 sum->bs_drop += stats->bs_drop;
2535 sum->bs_capt += stats->bs_capt;
2536
2537 splx(s);
2538 }
2539
2540 static int
2541 bpf_sysctl_gstats_handler(SYSCTLFN_ARGS)
2542 {
2543 struct sysctlnode node;
2544 int error;
2545 struct bpf_stat sum;
2546
2547 memset(&sum, 0, sizeof(sum));
2548 node = *rnode;
2549
2550 percpu_foreach_xcall(bpf_gstats_percpu, XC_HIGHPRI_IPL(IPL_SOFTNET),
2551 bpf_stats, &sum);
2552
2553 node.sysctl_data = ∑
2554 node.sysctl_size = sizeof(sum);
2555 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2556 if (error != 0 || newp == NULL)
2557 return error;
2558
2559 return 0;
2560 }
2561
2562 SYSCTL_SETUP(sysctl_net_bpf_setup, "bpf sysctls")
2563 {
2564 const struct sysctlnode *node;
2565
2566 node = NULL;
2567 sysctl_createv(clog, 0, NULL, &node,
2568 CTLFLAG_PERMANENT,
2569 CTLTYPE_NODE, "bpf",
2570 SYSCTL_DESCR("BPF options"),
2571 NULL, 0, NULL, 0,
2572 CTL_NET, CTL_CREATE, CTL_EOL);
2573 if (node != NULL) {
2574 #if defined(MODULAR) || defined(BPFJIT)
2575 sysctl_createv(clog, 0, NULL, NULL,
2576 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2577 CTLTYPE_BOOL, "jit",
2578 SYSCTL_DESCR("Toggle Just-In-Time compilation"),
2579 sysctl_net_bpf_jit, 0, &bpf_jit, 0,
2580 CTL_NET, node->sysctl_num, CTL_CREATE, CTL_EOL);
2581 #endif
2582 sysctl_createv(clog, 0, NULL, NULL,
2583 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2584 CTLTYPE_INT, "maxbufsize",
2585 SYSCTL_DESCR("Maximum size for data capture buffer"),
2586 sysctl_net_bpf_maxbufsize, 0, &bpf_maxbufsize, 0,
2587 CTL_NET, node->sysctl_num, CTL_CREATE, CTL_EOL);
2588 sysctl_createv(clog, 0, NULL, NULL,
2589 CTLFLAG_PERMANENT,
2590 CTLTYPE_STRUCT, "stats",
2591 SYSCTL_DESCR("BPF stats"),
2592 bpf_sysctl_gstats_handler, 0, NULL, 0,
2593 CTL_NET, node->sysctl_num, CTL_CREATE, CTL_EOL);
2594 sysctl_createv(clog, 0, NULL, NULL,
2595 CTLFLAG_PERMANENT,
2596 CTLTYPE_STRUCT, "peers",
2597 SYSCTL_DESCR("BPF peers"),
2598 sysctl_net_bpf_peers, 0, NULL, 0,
2599 CTL_NET, node->sysctl_num, CTL_CREATE, CTL_EOL);
2600 }
2601
2602 }
2603
2604 static int
2605 _bpf_register_track_event(struct bpf_if **driverp,
2606 void (*_fun)(struct bpf_if *, struct ifnet *, int, int))
2607 {
2608 struct bpf_if *bp;
2609 struct bpf_event_tracker *t;
2610 int ret = ENOENT;
2611
2612 t = kmem_zalloc(sizeof(*t), KM_SLEEP);
2613 if (!t)
2614 return ENOMEM;
2615 t->bet_notify = _fun;
2616
2617 mutex_enter(&bpf_mtx);
2618 BPF_IFLIST_WRITER_FOREACH(bp) {
2619 if (bp->bif_driverp != driverp)
2620 continue;
2621 SLIST_INSERT_HEAD(&bp->bif_trackers, t, bet_entries);
2622 ret = 0;
2623 break;
2624 }
2625 mutex_exit(&bpf_mtx);
2626
2627 return ret;
2628 }
2629
2630 static int
2631 _bpf_deregister_track_event(struct bpf_if **driverp,
2632 void (*_fun)(struct bpf_if *, struct ifnet *, int, int))
2633 {
2634 struct bpf_if *bp;
2635 struct bpf_event_tracker *t = NULL;
2636 int ret = ENOENT;
2637
2638 mutex_enter(&bpf_mtx);
2639 BPF_IFLIST_WRITER_FOREACH(bp) {
2640 if (bp->bif_driverp != driverp)
2641 continue;
2642 SLIST_FOREACH(t, &bp->bif_trackers, bet_entries) {
2643 if (t->bet_notify == _fun) {
2644 ret = 0;
2645 break;
2646 }
2647 }
2648 if (ret == 0)
2649 break;
2650 }
2651 if (ret == 0 && t && t->bet_notify == _fun) {
2652 SLIST_REMOVE(&bp->bif_trackers, t, bpf_event_tracker,
2653 bet_entries);
2654 }
2655 mutex_exit(&bpf_mtx);
2656 if (ret == 0)
2657 kmem_free(t, sizeof(*t));
2658 return ret;
2659 }
2660
2661 struct bpf_ops bpf_ops_kernel = {
2662 .bpf_attach = _bpfattach,
2663 .bpf_detach = _bpfdetach,
2664 .bpf_change_type = _bpf_change_type,
2665 .bpf_register_track_event = _bpf_register_track_event,
2666 .bpf_deregister_track_event = _bpf_deregister_track_event,
2667
2668 .bpf_mtap = _bpf_mtap,
2669 .bpf_mtap2 = _bpf_mtap2,
2670 .bpf_mtap_af = _bpf_mtap_af,
2671 .bpf_mtap_sl_in = _bpf_mtap_sl_in,
2672 .bpf_mtap_sl_out = _bpf_mtap_sl_out,
2673
2674 .bpf_mtap_softint = _bpf_mtap_softint,
2675 .bpf_mtap_softint_init = _bpf_mtap_softint_init,
2676 };
2677
2678 MODULE(MODULE_CLASS_DRIVER, bpf, "bpf_filter");
2679
2680 static int
2681 bpf_modcmd(modcmd_t cmd, void *arg)
2682 {
2683 #ifdef _MODULE
2684 devmajor_t bmajor, cmajor;
2685 #endif
2686 int error = 0;
2687
2688 switch (cmd) {
2689 case MODULE_CMD_INIT:
2690 bpf_init();
2691 #ifdef _MODULE
2692 bmajor = cmajor = NODEVMAJOR;
2693 error = devsw_attach("bpf", NULL, &bmajor,
2694 &bpf_cdevsw, &cmajor);
2695 if (error)
2696 break;
2697 #endif
2698
2699 bpf_ops_handover_enter(&bpf_ops_kernel);
2700 atomic_swap_ptr(&bpf_ops, &bpf_ops_kernel);
2701 bpf_ops_handover_exit();
2702 break;
2703
2704 case MODULE_CMD_FINI:
2705 /*
2706 * While there is no reference counting for bpf callers,
2707 * unload could at least in theory be done similarly to
2708 * system call disestablishment. This should even be
2709 * a little simpler:
2710 *
2711 * 1) replace op vector with stubs
2712 * 2) post update to all cpus with xc
2713 * 3) check that nobody is in bpf anymore
2714 * (it's doubtful we'd want something like l_sysent,
2715 * but we could do something like *signed* percpu
2716 * counters. if the sum is 0, we're good).
2717 * 4) if fail, unroll changes
2718 *
2719 * NOTE: change won't be atomic to the outside. some
2720 * packets may be not captured even if unload is
2721 * not successful. I think packet capture not working
2722 * is a perfectly logical consequence of trying to
2723 * disable packet capture.
2724 */
2725 error = EOPNOTSUPP;
2726 break;
2727
2728 default:
2729 error = ENOTTY;
2730 break;
2731 }
2732
2733 return error;
2734 }
2735