bpf_filter.c revision 1.55.2.1 1 /* $NetBSD: bpf_filter.c,v 1.55.2.1 2014/05/18 17:46:12 rmind Exp $ */
2
3 /*-
4 * Copyright (c) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from the Stanford/CMU enet packet filter,
8 * (net/enet.c) distributed as part of 4.3BSD, and code contributed
9 * to Berkeley by Steven McCanne and Van Jacobson both of Lawrence
10 * Berkeley Laboratory.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)bpf_filter.c 8.1 (Berkeley) 6/10/93
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: bpf_filter.c,v 1.55.2.1 2014/05/18 17:46:12 rmind Exp $");
41
42 #if 0
43 #if !(defined(lint) || defined(KERNEL))
44 static const char rcsid[] =
45 "@(#) Header: bpf_filter.c,v 1.33 97/04/26 13:37:18 leres Exp (LBL)";
46 #endif
47 #endif
48
49 #include <sys/param.h>
50 #include <sys/time.h>
51 #include <sys/kmem.h>
52 #include <sys/endian.h>
53
54 #define __BPF_PRIVATE
55 #include <net/bpf.h>
56
57 #ifdef _KERNEL
58
59 /* Default BPF context (zeroed). */
60 static bpf_ctx_t bpf_def_ctx;
61
62 bpf_ctx_t *
63 bpf_create(void)
64 {
65 return kmem_zalloc(sizeof(bpf_ctx_t), KM_SLEEP);
66 }
67
68 void
69 bpf_destroy(bpf_ctx_t *bc)
70 {
71 kmem_free(bc, sizeof(bpf_ctx_t));
72 }
73
74 int
75 bpf_set_cop(bpf_ctx_t *bc, const bpf_copfunc_t *funcs, size_t n)
76 {
77 bc->copfuncs = funcs;
78 bc->nfuncs = n;
79 return 0;
80 }
81
82 bpf_ctx_t *
83 bpf_default_ctx(void)
84 {
85 return &bpf_def_ctx;
86 }
87
88 #endif
89
90 #define EXTRACT_SHORT(p) be16dec(p)
91 #define EXTRACT_LONG(p) be32dec(p)
92
93 #ifdef _KERNEL
94 #include <sys/mbuf.h>
95 #define MINDEX(len, m, k) \
96 { \
97 len = m->m_len; \
98 while (k >= len) { \
99 k -= len; \
100 m = m->m_next; \
101 if (m == 0) \
102 return 0; \
103 len = m->m_len; \
104 } \
105 }
106
107 uint32_t m_xword (const struct mbuf *, uint32_t, int *);
108 uint32_t m_xhalf (const struct mbuf *, uint32_t, int *);
109 uint32_t m_xbyte (const struct mbuf *, uint32_t, int *);
110
111 uint32_t
112 m_xword(const struct mbuf *m, uint32_t k, int *err)
113 {
114 int len;
115 u_char *cp, *np;
116 struct mbuf *m0;
117
118 *err = 1;
119 MINDEX(len, m, k);
120 cp = mtod(m, u_char *) + k;
121 if (len >= k + 4) {
122 *err = 0;
123 return EXTRACT_LONG(cp);
124 }
125 m0 = m->m_next;
126 if (m0 == 0 || m0->m_len + len - k < 4)
127 return 0;
128 *err = 0;
129 np = mtod(m0, u_char *);
130
131 switch (len - k) {
132 case 1:
133 return (cp[0] << 24) | (np[0] << 16) | (np[1] << 8) | np[2];
134 case 2:
135 return (cp[0] << 24) | (cp[1] << 16) | (np[0] << 8) | np[1];
136 default:
137 return (cp[0] << 24) | (cp[1] << 16) | (cp[2] << 8) | np[0];
138 }
139 }
140
141 uint32_t
142 m_xhalf(const struct mbuf *m, uint32_t k, int *err)
143 {
144 int len;
145 u_char *cp;
146 struct mbuf *m0;
147
148 *err = 1;
149 MINDEX(len, m, k);
150 cp = mtod(m, u_char *) + k;
151 if (len >= k + 2) {
152 *err = 0;
153 return EXTRACT_SHORT(cp);
154 }
155 m0 = m->m_next;
156 if (m0 == 0)
157 return 0;
158 *err = 0;
159 return (cp[0] << 8) | mtod(m0, u_char *)[0];
160 }
161
162 uint32_t
163 m_xbyte(const struct mbuf *m, uint32_t k, int *err)
164 {
165 int len;
166
167 *err = 0;
168 MINDEX(len, m, k);
169 return mtod(m, u_char *)[k];
170 }
171 #else /* _KERNEL */
172 #include <stdlib.h>
173 #endif /* !_KERNEL */
174
175 #include <net/bpf.h>
176
177 /*
178 * Execute the filter program starting at pc on the packet p
179 * wirelen is the length of the original packet
180 * buflen is the amount of data present
181 */
182 #ifdef _KERNEL
183
184 u_int
185 bpf_filter(const struct bpf_insn *pc, const u_char *p, u_int wirelen,
186 u_int buflen)
187 {
188 bpf_args_t args = {
189 .pkt = (const struct mbuf *)p,
190 .wirelen = wirelen,
191 .buflen = buflen,
192 .arg = NULL
193 };
194 return bpf_filter_ext(&bpf_def_ctx, pc, &args);
195 }
196
197 u_int
198 bpf_filter_ext(bpf_ctx_t *bc, const struct bpf_insn *pc, bpf_args_t *args)
199 #else
200 u_int
201 bpf_filter(const struct bpf_insn *pc, const u_char *p, u_int wirelen,
202 u_int buflen)
203 #endif
204 {
205 uint32_t A, X, k;
206 #ifndef _KERNEL
207 bpf_args_t args_store = {
208 .pkt = (const struct mbuf *)p,
209 .wirelen = wirelen,
210 .buflen = buflen,
211 .arg = NULL
212 };
213 bpf_args_t * const args = &args_store;
214 #else
215 const uint8_t * const p = (const uint8_t *)args->pkt;
216 #endif
217 if (pc == 0) {
218 /*
219 * No filter means accept all.
220 */
221 return (u_int)-1;
222 }
223
224 /*
225 * Note: safe to leave memwords uninitialised, as the validation
226 * step ensures that it will not be read, if it was not written.
227 */
228 A = 0;
229 X = 0;
230 --pc;
231
232 for (;;) {
233 ++pc;
234 switch (pc->code) {
235
236 default:
237 #ifdef _KERNEL
238 return 0;
239 #else
240 abort();
241 /*NOTREACHED*/
242 #endif
243 case BPF_RET|BPF_K:
244 return (u_int)pc->k;
245
246 case BPF_RET|BPF_A:
247 return (u_int)A;
248
249 case BPF_LD|BPF_W|BPF_ABS:
250 k = pc->k;
251 if (k > args->buflen ||
252 sizeof(int32_t) > args->buflen - k) {
253 #ifdef _KERNEL
254 int merr;
255
256 if (args->buflen != 0)
257 return 0;
258 A = m_xword(args->pkt, k, &merr);
259 if (merr != 0)
260 return 0;
261 continue;
262 #else
263 return 0;
264 #endif
265 }
266 A = EXTRACT_LONG(&p[k]);
267 continue;
268
269 case BPF_LD|BPF_H|BPF_ABS:
270 k = pc->k;
271 if (k > args->buflen ||
272 sizeof(int16_t) > args->buflen - k) {
273 #ifdef _KERNEL
274 int merr;
275
276 if (args->buflen != 0)
277 return 0;
278 A = m_xhalf(args->pkt, k, &merr);
279 if (merr != 0)
280 return 0;
281 continue;
282 #else
283 return 0;
284 #endif
285 }
286 A = EXTRACT_SHORT(&p[k]);
287 continue;
288
289 case BPF_LD|BPF_B|BPF_ABS:
290 k = pc->k;
291 if (k >= args->buflen) {
292 #ifdef _KERNEL
293 int merr;
294
295 if (args->buflen != 0)
296 return 0;
297 A = m_xbyte(args->pkt, k, &merr);
298 continue;
299 #else
300 return 0;
301 #endif
302 }
303 A = p[k];
304 continue;
305
306 case BPF_LD|BPF_W|BPF_LEN:
307 A = args->wirelen;
308 continue;
309
310 case BPF_LDX|BPF_W|BPF_LEN:
311 X = args->wirelen;
312 continue;
313
314 case BPF_LD|BPF_W|BPF_IND:
315 k = X + pc->k;
316 if (pc->k > args->buflen ||
317 X > args->buflen - pc->k ||
318 sizeof(int32_t) > args->buflen - k) {
319 #ifdef _KERNEL
320 int merr;
321
322 if (args->buflen != 0)
323 return 0;
324 A = m_xword(args->pkt, k, &merr);
325 if (merr != 0)
326 return 0;
327 continue;
328 #else
329 return 0;
330 #endif
331 }
332 A = EXTRACT_LONG(&p[k]);
333 continue;
334
335 case BPF_LD|BPF_H|BPF_IND:
336 k = X + pc->k;
337 if (pc->k > args->buflen ||
338 X > args->buflen - pc->k ||
339 sizeof(int16_t) > args->buflen - k) {
340 #ifdef _KERNEL
341 int merr;
342
343 if (args->buflen != 0)
344 return 0;
345 A = m_xhalf(args->pkt, k, &merr);
346 if (merr != 0)
347 return 0;
348 continue;
349 #else
350 return 0;
351 #endif
352 }
353 A = EXTRACT_SHORT(&p[k]);
354 continue;
355
356 case BPF_LD|BPF_B|BPF_IND:
357 k = X + pc->k;
358 if (pc->k >= args->buflen ||
359 X >= args->buflen - pc->k) {
360 #ifdef _KERNEL
361 int merr;
362
363 if (args->buflen != 0)
364 return 0;
365 A = m_xbyte(args->pkt, k, &merr);
366 continue;
367 #else
368 return 0;
369 #endif
370 }
371 A = p[k];
372 continue;
373
374 case BPF_LDX|BPF_MSH|BPF_B:
375 k = pc->k;
376 if (k >= args->buflen) {
377 #ifdef _KERNEL
378 int merr;
379
380 if (args->buflen != 0)
381 return 0;
382 X = (m_xbyte(args->pkt, k, &merr) & 0xf) << 2;
383 continue;
384 #else
385 return 0;
386 #endif
387 }
388 X = (p[pc->k] & 0xf) << 2;
389 continue;
390
391 case BPF_LD|BPF_IMM:
392 A = pc->k;
393 continue;
394
395 case BPF_LDX|BPF_IMM:
396 X = pc->k;
397 continue;
398
399 case BPF_LD|BPF_MEM:
400 A = args->mem[pc->k];
401 continue;
402
403 case BPF_LDX|BPF_MEM:
404 X = args->mem[pc->k];
405 continue;
406
407 case BPF_ST:
408 args->mem[pc->k] = A;
409 continue;
410
411 case BPF_STX:
412 args->mem[pc->k] = X;
413 continue;
414
415 case BPF_JMP|BPF_JA:
416 pc += pc->k;
417 continue;
418
419 case BPF_JMP|BPF_JGT|BPF_K:
420 pc += (A > pc->k) ? pc->jt : pc->jf;
421 continue;
422
423 case BPF_JMP|BPF_JGE|BPF_K:
424 pc += (A >= pc->k) ? pc->jt : pc->jf;
425 continue;
426
427 case BPF_JMP|BPF_JEQ|BPF_K:
428 pc += (A == pc->k) ? pc->jt : pc->jf;
429 continue;
430
431 case BPF_JMP|BPF_JSET|BPF_K:
432 pc += (A & pc->k) ? pc->jt : pc->jf;
433 continue;
434
435 case BPF_JMP|BPF_JGT|BPF_X:
436 pc += (A > X) ? pc->jt : pc->jf;
437 continue;
438
439 case BPF_JMP|BPF_JGE|BPF_X:
440 pc += (A >= X) ? pc->jt : pc->jf;
441 continue;
442
443 case BPF_JMP|BPF_JEQ|BPF_X:
444 pc += (A == X) ? pc->jt : pc->jf;
445 continue;
446
447 case BPF_JMP|BPF_JSET|BPF_X:
448 pc += (A & X) ? pc->jt : pc->jf;
449 continue;
450
451 case BPF_ALU|BPF_ADD|BPF_X:
452 A += X;
453 continue;
454
455 case BPF_ALU|BPF_SUB|BPF_X:
456 A -= X;
457 continue;
458
459 case BPF_ALU|BPF_MUL|BPF_X:
460 A *= X;
461 continue;
462
463 case BPF_ALU|BPF_DIV|BPF_X:
464 if (X == 0)
465 return 0;
466 A /= X;
467 continue;
468
469 case BPF_ALU|BPF_AND|BPF_X:
470 A &= X;
471 continue;
472
473 case BPF_ALU|BPF_OR|BPF_X:
474 A |= X;
475 continue;
476
477 case BPF_ALU|BPF_LSH|BPF_X:
478 A <<= X;
479 continue;
480
481 case BPF_ALU|BPF_RSH|BPF_X:
482 A >>= X;
483 continue;
484
485 case BPF_ALU|BPF_ADD|BPF_K:
486 A += pc->k;
487 continue;
488
489 case BPF_ALU|BPF_SUB|BPF_K:
490 A -= pc->k;
491 continue;
492
493 case BPF_ALU|BPF_MUL|BPF_K:
494 A *= pc->k;
495 continue;
496
497 case BPF_ALU|BPF_DIV|BPF_K:
498 A /= pc->k;
499 continue;
500
501 case BPF_ALU|BPF_AND|BPF_K:
502 A &= pc->k;
503 continue;
504
505 case BPF_ALU|BPF_OR|BPF_K:
506 A |= pc->k;
507 continue;
508
509 case BPF_ALU|BPF_LSH|BPF_K:
510 A <<= pc->k;
511 continue;
512
513 case BPF_ALU|BPF_RSH|BPF_K:
514 A >>= pc->k;
515 continue;
516
517 case BPF_ALU|BPF_NEG:
518 A = -A;
519 continue;
520
521 case BPF_MISC|BPF_TAX:
522 X = A;
523 continue;
524
525 case BPF_MISC|BPF_TXA:
526 A = X;
527 continue;
528
529 case BPF_MISC|BPF_COP:
530 #ifdef _KERNEL
531 if (pc->k < bc->nfuncs) {
532 const bpf_copfunc_t fn = bc->copfuncs[pc->k];
533 A = fn(bc, args, A);
534 continue;
535 }
536 #endif
537 return 0;
538
539 case BPF_MISC|BPF_COPX:
540 #ifdef _KERNEL
541 if (X < bc->nfuncs) {
542 const bpf_copfunc_t fn = bc->copfuncs[X];
543 A = fn(bc, args, A);
544 continue;
545 }
546 #endif
547 return 0;
548 }
549 }
550 }
551
552 /*
553 * Return true if the 'fcode' is a valid filter program.
554 * The constraints are that each jump be forward and to a valid
555 * code, that memory accesses are within valid ranges (to the
556 * extent that this can be checked statically; loads of packet
557 * data have to be, and are, also checked at run time), and that
558 * the code terminates with either an accept or reject.
559 *
560 * The kernel needs to be able to verify an application's filter code.
561 * Otherwise, a bogus program could easily crash the system.
562 */
563 __CTASSERT(BPF_MEMWORDS == sizeof(uint16_t) * NBBY);
564
565 #if defined(KERNEL) || defined(_KERNEL)
566
567 int
568 bpf_validate(const struct bpf_insn *f, int signed_len)
569 {
570 return bpf_validate_ext(&bpf_def_ctx, f, signed_len);
571 }
572
573 int
574 bpf_validate_ext(bpf_ctx_t *bc, const struct bpf_insn *f, int signed_len)
575 #else
576 int
577 bpf_validate(const struct bpf_insn *f, int signed_len)
578 #endif
579 {
580 u_int i, from, len, ok = 0;
581 const struct bpf_insn *p;
582 #if defined(KERNEL) || defined(_KERNEL)
583 uint16_t *mem, invalid;
584 size_t size;
585 #endif
586
587 len = (u_int)signed_len;
588 if (len < 1)
589 return 0;
590 #if defined(KERNEL) || defined(_KERNEL)
591 if (len > BPF_MAXINSNS)
592 return 0;
593 #endif
594 if (BPF_CLASS(f[len - 1].code) != BPF_RET)
595 return 0;
596
597 #if defined(KERNEL) || defined(_KERNEL)
598 mem = kmem_zalloc(size = sizeof(*mem) * len, KM_SLEEP);
599 invalid = ~0; /* All is invalid on startup */
600 #endif
601
602 for (i = 0; i < len; ++i) {
603 #if defined(KERNEL) || defined(_KERNEL)
604 /* blend in any invalid bits for current pc */
605 invalid |= mem[i];
606 #endif
607 p = &f[i];
608 switch (BPF_CLASS(p->code)) {
609 /*
610 * Check that memory operations use valid addresses.
611 */
612 case BPF_LD:
613 case BPF_LDX:
614 switch (BPF_MODE(p->code)) {
615 case BPF_MEM:
616 /*
617 * There's no maximum packet data size
618 * in userland. The runtime packet length
619 * check suffices.
620 */
621 #if defined(KERNEL) || defined(_KERNEL)
622 /*
623 * More strict check with actual packet length
624 * is done runtime.
625 */
626 if (p->k >= BPF_MEMWORDS)
627 goto out;
628 /* check for current memory invalid */
629 if (invalid & (1 << p->k))
630 goto out;
631 #endif
632 break;
633 case BPF_ABS:
634 case BPF_IND:
635 case BPF_MSH:
636 case BPF_IMM:
637 case BPF_LEN:
638 break;
639 default:
640 goto out;
641 }
642 break;
643 case BPF_ST:
644 case BPF_STX:
645 if (p->k >= BPF_MEMWORDS)
646 goto out;
647 #if defined(KERNEL) || defined(_KERNEL)
648 /* validate the memory word */
649 invalid &= ~(1 << p->k);
650 #endif
651 break;
652 case BPF_ALU:
653 switch (BPF_OP(p->code)) {
654 case BPF_ADD:
655 case BPF_SUB:
656 case BPF_MUL:
657 case BPF_OR:
658 case BPF_AND:
659 case BPF_LSH:
660 case BPF_RSH:
661 case BPF_NEG:
662 break;
663 case BPF_DIV:
664 /*
665 * Check for constant division by 0.
666 */
667 if (BPF_SRC(p->code) == BPF_K && p->k == 0)
668 goto out;
669 break;
670 default:
671 goto out;
672 }
673 break;
674 case BPF_JMP:
675 /*
676 * Check that jumps are within the code block,
677 * and that unconditional branches don't go
678 * backwards as a result of an overflow.
679 * Unconditional branches have a 32-bit offset,
680 * so they could overflow; we check to make
681 * sure they don't. Conditional branches have
682 * an 8-bit offset, and the from address is <=
683 * BPF_MAXINSNS, and we assume that BPF_MAXINSNS
684 * is sufficiently small that adding 255 to it
685 * won't overflow.
686 *
687 * We know that len is <= BPF_MAXINSNS, and we
688 * assume that BPF_MAXINSNS is < the maximum size
689 * of a u_int, so that i + 1 doesn't overflow.
690 *
691 * For userland, we don't know that the from
692 * or len are <= BPF_MAXINSNS, but we know that
693 * from <= len, and, except on a 64-bit system,
694 * it's unlikely that len, if it truly reflects
695 * the size of the program we've been handed,
696 * will be anywhere near the maximum size of
697 * a u_int. We also don't check for backward
698 * branches, as we currently support them in
699 * userland for the protochain operation.
700 */
701 from = i + 1;
702 switch (BPF_OP(p->code)) {
703 case BPF_JA:
704 if (from + p->k >= len)
705 goto out;
706 #if defined(KERNEL) || defined(_KERNEL)
707 if (from + p->k < from)
708 goto out;
709 /*
710 * mark the currently invalid bits for the
711 * destination
712 */
713 mem[from + p->k] |= invalid;
714 invalid = 0;
715 #endif
716 break;
717 case BPF_JEQ:
718 case BPF_JGT:
719 case BPF_JGE:
720 case BPF_JSET:
721 if (from + p->jt >= len || from + p->jf >= len)
722 goto out;
723 #if defined(KERNEL) || defined(_KERNEL)
724 /*
725 * mark the currently invalid bits for both
726 * possible jump destinations
727 */
728 mem[from + p->jt] |= invalid;
729 mem[from + p->jf] |= invalid;
730 invalid = 0;
731 #endif
732 break;
733 default:
734 goto out;
735 }
736 break;
737 case BPF_RET:
738 break;
739 case BPF_MISC:
740 #if defined(KERNEL) || defined(_KERNEL)
741 switch (BPF_MISCOP(p->code)) {
742 case BPF_COP:
743 case BPF_COPX:
744 /* In-kernel COP use only. */
745 if (bc->copfuncs) {
746 invalid = 0;
747 }
748 break;
749 default:
750 break;
751 }
752 #endif
753 break;
754 default:
755 goto out;
756 }
757 }
758 ok = 1;
759 out:
760 #if defined(KERNEL) || defined(_KERNEL)
761 kmem_free(mem, size);
762 #endif
763 return ok;
764 }
765