bpf_filter.c revision 1.73 1 /* $NetBSD: bpf_filter.c,v 1.73 2024/09/02 15:34:08 christos Exp $ */
2
3 /*-
4 * Copyright (c) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from the Stanford/CMU enet packet filter,
8 * (net/enet.c) distributed as part of 4.3BSD, and code contributed
9 * to Berkeley by Steven McCanne and Van Jacobson both of Lawrence
10 * Berkeley Laboratory.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)bpf_filter.c 8.1 (Berkeley) 6/10/93
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: bpf_filter.c,v 1.73 2024/09/02 15:34:08 christos Exp $");
41
42 #if 0
43 #if !(defined(lint) || defined(KERNEL))
44 static const char rcsid[] =
45 "@(#) Header: bpf_filter.c,v 1.33 97/04/26 13:37:18 leres Exp (LBL)";
46 #endif
47 #endif
48
49 #include <sys/param.h>
50 #include <sys/time.h>
51 #include <sys/kmem.h>
52 #include <sys/endian.h>
53
54 #ifdef _KERNEL
55 #include <sys/module.h>
56 #endif
57
58 #define __BPF_PRIVATE
59 #include <net/bpf.h>
60
61 #ifdef _KERNEL
62
63 bpf_ctx_t *
64 bpf_create(void)
65 {
66 return kmem_zalloc(sizeof(bpf_ctx_t), KM_SLEEP);
67 }
68
69 void
70 bpf_destroy(bpf_ctx_t *bc)
71 {
72 kmem_free(bc, sizeof(bpf_ctx_t));
73 }
74
75 int
76 bpf_set_cop(bpf_ctx_t *bc, const bpf_copfunc_t *funcs, size_t n)
77 {
78 bc->copfuncs = funcs;
79 bc->nfuncs = n;
80 return 0;
81 }
82
83 int
84 bpf_set_extmem(bpf_ctx_t *bc, size_t nwords, bpf_memword_init_t preinited)
85 {
86 if (nwords > BPF_MAX_MEMWORDS || (preinited >> nwords) != 0) {
87 return EINVAL;
88 }
89 bc->extwords = nwords;
90 bc->preinited = preinited;
91 return 0;
92 }
93
94 #endif
95
96 #define EXTRACT_SHORT(p) be16dec(p)
97 #define EXTRACT_LONG(p) be32dec(p)
98
99 #ifdef _KERNEL
100 #include <sys/mbuf.h>
101 #define MINDEX(len, m, k) \
102 { \
103 len = m->m_len; \
104 while (k >= len) { \
105 k -= len; \
106 m = m->m_next; \
107 if (m == 0) \
108 return 0; \
109 len = m->m_len; \
110 } \
111 }
112
113 uint32_t m_xword(const struct mbuf *, uint32_t, int *);
114 uint32_t m_xhalf(const struct mbuf *, uint32_t, int *);
115 uint32_t m_xbyte(const struct mbuf *, uint32_t, int *);
116
117 #define xword(p, k, err) m_xword((const struct mbuf *)(p), (k), (err))
118 #define xhalf(p, k, err) m_xhalf((const struct mbuf *)(p), (k), (err))
119 #define xbyte(p, k, err) m_xbyte((const struct mbuf *)(p), (k), (err))
120
121 uint32_t
122 m_xword(const struct mbuf *m, uint32_t k, int *err)
123 {
124 int len;
125 u_char *cp, *np;
126 struct mbuf *m0;
127
128 *err = 1;
129 MINDEX(len, m, k);
130 cp = mtod(m, u_char *) + k;
131 if (len - k >= 4) {
132 *err = 0;
133 return EXTRACT_LONG(cp);
134 }
135 m0 = m->m_next;
136 if (m0 == 0 || (len - k) + m0->m_len < 4)
137 return 0;
138 *err = 0;
139 np = mtod(m0, u_char *);
140
141 switch (len - k) {
142 case 1:
143 return (cp[0] << 24) | (np[0] << 16) | (np[1] << 8) | np[2];
144 case 2:
145 return (cp[0] << 24) | (cp[1] << 16) | (np[0] << 8) | np[1];
146 default:
147 return (cp[0] << 24) | (cp[1] << 16) | (cp[2] << 8) | np[0];
148 }
149 }
150
151 uint32_t
152 m_xhalf(const struct mbuf *m, uint32_t k, int *err)
153 {
154 int len;
155 u_char *cp;
156 struct mbuf *m0;
157
158 *err = 1;
159 MINDEX(len, m, k);
160 cp = mtod(m, u_char *) + k;
161 if (len - k >= 2) {
162 *err = 0;
163 return EXTRACT_SHORT(cp);
164 }
165 m0 = m->m_next;
166 if (m0 == 0)
167 return 0;
168 *err = 0;
169 return (cp[0] << 8) | mtod(m0, u_char *)[0];
170 }
171
172 uint32_t
173 m_xbyte(const struct mbuf *m, uint32_t k, int *err)
174 {
175 int len;
176
177 *err = 1;
178 MINDEX(len, m, k);
179 *err = 0;
180 return mtod(m, u_char *)[k];
181 }
182 #else /* _KERNEL */
183 #include <stdlib.h>
184 #endif /* !_KERNEL */
185
186 #include <net/bpf.h>
187
188 /*
189 * Execute the filter program starting at pc on the packet p
190 * wirelen is the length of the original packet
191 * buflen is the amount of data present
192 */
193 #ifdef _KERNEL
194
195 u_int
196 bpf_filter(const struct bpf_insn *pc, const u_char *p, u_int wirelen,
197 u_int buflen)
198 {
199 uint32_t mem[BPF_MEMWORDS];
200 bpf_args_t args = {
201 .pkt = p,
202 .wirelen = wirelen,
203 .buflen = buflen,
204 .mem = mem,
205 .arg = NULL
206 };
207
208 return bpf_filter_ext(NULL, pc, &args);
209 }
210
211 u_int
212 bpf_filter_ext(const bpf_ctx_t *bc, const struct bpf_insn *pc, bpf_args_t *args)
213 #else
214 __strong_alias(pcapint_filter, bpf_filter)
215 u_int
216 bpf_filter(const struct bpf_insn *pc, const u_char *p, u_int wirelen,
217 u_int buflen)
218 #endif
219 {
220 uint32_t A, X, k;
221 #ifndef _KERNEL
222 uint32_t mem[BPF_MEMWORDS];
223 bpf_args_t args_store = {
224 .pkt = p,
225 .wirelen = wirelen,
226 .buflen = buflen,
227 .mem = mem,
228 .arg = NULL
229 };
230 bpf_args_t * const args = &args_store;
231 #else
232 const uint8_t * const p = args->pkt;
233 #endif
234 if (pc == 0) {
235 /*
236 * No filter means accept all.
237 */
238 return (u_int)-1;
239 }
240
241 /*
242 * Note: safe to leave memwords uninitialised, as the validation
243 * step ensures that it will not be read, if it was not written.
244 */
245 A = 0;
246 X = 0;
247 --pc;
248
249 for (;;) {
250 ++pc;
251 switch (pc->code) {
252
253 default:
254 #ifdef _KERNEL
255 return 0;
256 #else
257 abort();
258 /*NOTREACHED*/
259 #endif
260 case BPF_RET|BPF_K:
261 return (u_int)pc->k;
262
263 case BPF_RET|BPF_A:
264 return (u_int)A;
265
266 case BPF_LD|BPF_W|BPF_ABS:
267 k = pc->k;
268 if (k > args->buflen ||
269 sizeof(int32_t) > args->buflen - k) {
270 #ifdef _KERNEL
271 int merr;
272
273 if (args->buflen != 0)
274 return 0;
275 A = xword(args->pkt, k, &merr);
276 if (merr != 0)
277 return 0;
278 continue;
279 #else
280 return 0;
281 #endif
282 }
283 A = EXTRACT_LONG(&p[k]);
284 continue;
285
286 case BPF_LD|BPF_H|BPF_ABS:
287 k = pc->k;
288 if (k > args->buflen ||
289 sizeof(int16_t) > args->buflen - k) {
290 #ifdef _KERNEL
291 int merr;
292
293 if (args->buflen != 0)
294 return 0;
295 A = xhalf(args->pkt, k, &merr);
296 if (merr != 0)
297 return 0;
298 continue;
299 #else
300 return 0;
301 #endif
302 }
303 A = EXTRACT_SHORT(&p[k]);
304 continue;
305
306 case BPF_LD|BPF_B|BPF_ABS:
307 k = pc->k;
308 if (k >= args->buflen) {
309 #ifdef _KERNEL
310 int merr;
311
312 if (args->buflen != 0)
313 return 0;
314 A = xbyte(args->pkt, k, &merr);
315 if (merr != 0)
316 return 0;
317 continue;
318 #else
319 return 0;
320 #endif
321 }
322 A = p[k];
323 continue;
324
325 case BPF_LD|BPF_W|BPF_LEN:
326 A = args->wirelen;
327 continue;
328
329 case BPF_LDX|BPF_W|BPF_LEN:
330 X = args->wirelen;
331 continue;
332
333 case BPF_LD|BPF_W|BPF_IND:
334 k = X + pc->k;
335 if (k < X || k >= args->buflen ||
336 sizeof(int32_t) > args->buflen - k) {
337 #ifdef _KERNEL
338 int merr;
339
340 if (k < X || args->buflen != 0)
341 return 0;
342 A = xword(args->pkt, k, &merr);
343 if (merr != 0)
344 return 0;
345 continue;
346 #else
347 return 0;
348 #endif
349 }
350 A = EXTRACT_LONG(&p[k]);
351 continue;
352
353 case BPF_LD|BPF_H|BPF_IND:
354 k = X + pc->k;
355 if (k < X || k >= args->buflen ||
356 sizeof(int16_t) > args->buflen - k) {
357 #ifdef _KERNEL
358 int merr;
359
360 if (k < X || args->buflen != 0)
361 return 0;
362 A = xhalf(args->pkt, k, &merr);
363 if (merr != 0)
364 return 0;
365 continue;
366 #else
367 return 0;
368 #endif
369 }
370 A = EXTRACT_SHORT(&p[k]);
371 continue;
372
373 case BPF_LD|BPF_B|BPF_IND:
374 k = X + pc->k;
375 if (k < X || k >= args->buflen) {
376 #ifdef _KERNEL
377 int merr;
378
379 if (k < X || args->buflen != 0)
380 return 0;
381 A = xbyte(args->pkt, k, &merr);
382 if (merr != 0)
383 return 0;
384 continue;
385 #else
386 return 0;
387 #endif
388 }
389 A = p[k];
390 continue;
391
392 case BPF_LDX|BPF_MSH|BPF_B:
393 k = pc->k;
394 if (k >= args->buflen) {
395 #ifdef _KERNEL
396 int merr;
397
398 if (args->buflen != 0)
399 return 0;
400 X = (xbyte(args->pkt, k, &merr) & 0xf) << 2;
401 if (merr != 0)
402 return 0;
403 continue;
404 #else
405 return 0;
406 #endif
407 }
408 X = (p[pc->k] & 0xf) << 2;
409 continue;
410
411 case BPF_LD|BPF_IMM:
412 A = pc->k;
413 continue;
414
415 case BPF_LDX|BPF_IMM:
416 X = pc->k;
417 continue;
418
419 case BPF_LD|BPF_MEM:
420 A = args->mem[pc->k];
421 continue;
422
423 case BPF_LDX|BPF_MEM:
424 X = args->mem[pc->k];
425 continue;
426
427 case BPF_ST:
428 args->mem[pc->k] = A;
429 continue;
430
431 case BPF_STX:
432 args->mem[pc->k] = X;
433 continue;
434
435 case BPF_JMP|BPF_JA:
436 pc += pc->k;
437 continue;
438
439 case BPF_JMP|BPF_JGT|BPF_K:
440 pc += (A > pc->k) ? pc->jt : pc->jf;
441 continue;
442
443 case BPF_JMP|BPF_JGE|BPF_K:
444 pc += (A >= pc->k) ? pc->jt : pc->jf;
445 continue;
446
447 case BPF_JMP|BPF_JEQ|BPF_K:
448 pc += (A == pc->k) ? pc->jt : pc->jf;
449 continue;
450
451 case BPF_JMP|BPF_JSET|BPF_K:
452 pc += (A & pc->k) ? pc->jt : pc->jf;
453 continue;
454
455 case BPF_JMP|BPF_JGT|BPF_X:
456 pc += (A > X) ? pc->jt : pc->jf;
457 continue;
458
459 case BPF_JMP|BPF_JGE|BPF_X:
460 pc += (A >= X) ? pc->jt : pc->jf;
461 continue;
462
463 case BPF_JMP|BPF_JEQ|BPF_X:
464 pc += (A == X) ? pc->jt : pc->jf;
465 continue;
466
467 case BPF_JMP|BPF_JSET|BPF_X:
468 pc += (A & X) ? pc->jt : pc->jf;
469 continue;
470
471 case BPF_ALU|BPF_ADD|BPF_X:
472 A += X;
473 continue;
474
475 case BPF_ALU|BPF_SUB|BPF_X:
476 A -= X;
477 continue;
478
479 case BPF_ALU|BPF_MUL|BPF_X:
480 A *= X;
481 continue;
482
483 case BPF_ALU|BPF_DIV|BPF_X:
484 if (X == 0)
485 return 0;
486 A /= X;
487 continue;
488
489 case BPF_ALU|BPF_MOD|BPF_X:
490 if (X == 0)
491 return 0;
492 A %= X;
493 continue;
494
495 case BPF_ALU|BPF_AND|BPF_X:
496 A &= X;
497 continue;
498
499 case BPF_ALU|BPF_OR|BPF_X:
500 A |= X;
501 continue;
502
503 case BPF_ALU|BPF_XOR|BPF_X:
504 A ^= X;
505 continue;
506
507 case BPF_ALU|BPF_LSH|BPF_X:
508 A <<= X;
509 continue;
510
511 case BPF_ALU|BPF_RSH|BPF_X:
512 A >>= X;
513 continue;
514
515 case BPF_ALU|BPF_ADD|BPF_K:
516 A += pc->k;
517 continue;
518
519 case BPF_ALU|BPF_SUB|BPF_K:
520 A -= pc->k;
521 continue;
522
523 case BPF_ALU|BPF_MUL|BPF_K:
524 A *= pc->k;
525 continue;
526
527 case BPF_ALU|BPF_DIV|BPF_K:
528 A /= pc->k;
529 continue;
530
531 case BPF_ALU|BPF_MOD|BPF_K:
532 A %= pc->k;
533 continue;
534
535 case BPF_ALU|BPF_AND|BPF_K:
536 A &= pc->k;
537 continue;
538
539 case BPF_ALU|BPF_OR|BPF_K:
540 A |= pc->k;
541 continue;
542
543 case BPF_ALU|BPF_XOR|BPF_K:
544 A ^= pc->k;
545 continue;
546
547 case BPF_ALU|BPF_LSH|BPF_K:
548 A <<= pc->k;
549 continue;
550
551 case BPF_ALU|BPF_RSH|BPF_K:
552 A >>= pc->k;
553 continue;
554
555 case BPF_ALU|BPF_NEG:
556 A = -A;
557 continue;
558
559 case BPF_MISC|BPF_TAX:
560 X = A;
561 continue;
562
563 case BPF_MISC|BPF_TXA:
564 A = X;
565 continue;
566
567 case BPF_MISC|BPF_COP:
568 #ifdef _KERNEL
569 if (pc->k < bc->nfuncs) {
570 const bpf_copfunc_t fn = bc->copfuncs[pc->k];
571 A = fn(bc, args, A);
572 continue;
573 }
574 #endif
575 return 0;
576
577 case BPF_MISC|BPF_COPX:
578 #ifdef _KERNEL
579 if (X < bc->nfuncs) {
580 const bpf_copfunc_t fn = bc->copfuncs[X];
581 A = fn(bc, args, A);
582 continue;
583 }
584 #endif
585 return 0;
586 }
587 }
588 }
589
590 /*
591 * Return true if the 'fcode' is a valid filter program.
592 * The constraints are that each jump be forward and to a valid
593 * code, that memory accesses are within valid ranges (to the
594 * extent that this can be checked statically; loads of packet
595 * data have to be, and are, also checked at run time), and that
596 * the code terminates with either an accept or reject.
597 *
598 * The kernel needs to be able to verify an application's filter code.
599 * Otherwise, a bogus program could easily crash the system.
600 */
601
602 #if defined(KERNEL) || defined(_KERNEL)
603
604 int
605 bpf_validate(const struct bpf_insn *f, int signed_len)
606 {
607 return bpf_validate_ext(NULL, f, signed_len);
608 }
609
610 int
611 bpf_validate_ext(const bpf_ctx_t *bc, const struct bpf_insn *f, int signed_len)
612 #else
613 __strong_alias(pcapint_validate_filter, bpf_validate)
614 int
615 bpf_validate(const struct bpf_insn *f, int signed_len)
616 #endif
617 {
618 u_int i, from, len, ok = 0;
619 const struct bpf_insn *p;
620 #if defined(KERNEL) || defined(_KERNEL)
621 bpf_memword_init_t *mem, invalid;
622 size_t size;
623 const size_t extwords = bc ? bc->extwords : 0;
624 const size_t memwords = extwords ? extwords : BPF_MEMWORDS;
625 const bpf_memword_init_t preinited = extwords ? bc->preinited : 0;
626 #else
627 const size_t memwords = BPF_MEMWORDS;
628 #endif
629
630 len = (u_int)signed_len;
631 if (len < 1)
632 return 0;
633 #if defined(KERNEL) || defined(_KERNEL)
634 if (len > BPF_MAXINSNS)
635 return 0;
636 #endif
637 if (f[len - 1].code != (BPF_RET|BPF_K) &&
638 f[len - 1].code != (BPF_RET|BPF_A)) {
639 return 0;
640 }
641
642 #if defined(KERNEL) || defined(_KERNEL)
643 /* Note: only the pre-initialised is valid on startup */
644 mem = kmem_zalloc(size = sizeof(*mem) * len, KM_SLEEP);
645 invalid = ~preinited;
646 #endif
647
648 for (i = 0; i < len; ++i) {
649 #if defined(KERNEL) || defined(_KERNEL)
650 /* blend in any invalid bits for current pc */
651 invalid |= mem[i];
652 #endif
653 p = &f[i];
654 switch (BPF_CLASS(p->code)) {
655 /*
656 * Check that memory operations use valid addresses.
657 */
658 case BPF_LD:
659 case BPF_LDX:
660 switch (BPF_MODE(p->code)) {
661 case BPF_MEM:
662 /*
663 * There's no maximum packet data size
664 * in userland. The runtime packet length
665 * check suffices.
666 */
667 #if defined(KERNEL) || defined(_KERNEL)
668 /*
669 * More strict check with actual packet length
670 * is done runtime.
671 */
672 if (p->k >= memwords)
673 goto out;
674 /* check for current memory invalid */
675 if (invalid & BPF_MEMWORD_INIT(p->k))
676 goto out;
677 #endif
678 break;
679 case BPF_ABS:
680 case BPF_IND:
681 case BPF_MSH:
682 case BPF_IMM:
683 case BPF_LEN:
684 break;
685 default:
686 goto out;
687 }
688 break;
689 case BPF_ST:
690 case BPF_STX:
691 if (p->k >= memwords)
692 goto out;
693 #if defined(KERNEL) || defined(_KERNEL)
694 /* validate the memory word */
695 invalid &= ~BPF_MEMWORD_INIT(p->k);
696 #endif
697 break;
698 case BPF_ALU:
699 switch (BPF_OP(p->code)) {
700 case BPF_ADD:
701 case BPF_SUB:
702 case BPF_MUL:
703 case BPF_OR:
704 case BPF_XOR:
705 case BPF_AND:
706 case BPF_LSH:
707 case BPF_RSH:
708 case BPF_NEG:
709 break;
710 case BPF_DIV:
711 case BPF_MOD:
712 /*
713 * Check for constant division by 0.
714 */
715 if (BPF_SRC(p->code) == BPF_K && p->k == 0)
716 goto out;
717 break;
718 default:
719 goto out;
720 }
721 break;
722 case BPF_JMP:
723 /*
724 * Check that jumps are within the code block,
725 * and that unconditional branches don't go
726 * backwards as a result of an overflow.
727 * Unconditional branches have a 32-bit offset,
728 * so they could overflow; we check to make
729 * sure they don't. Conditional branches have
730 * an 8-bit offset, and the from address is <=
731 * BPF_MAXINSNS, and we assume that BPF_MAXINSNS
732 * is sufficiently small that adding 255 to it
733 * won't overflow.
734 *
735 * We know that len is <= BPF_MAXINSNS, and we
736 * assume that BPF_MAXINSNS is < the maximum size
737 * of a u_int, so that i + 1 doesn't overflow.
738 *
739 * For userland, we don't know that the from
740 * or len are <= BPF_MAXINSNS, but we know that
741 * from <= len, and, except on a 64-bit system,
742 * it's unlikely that len, if it truly reflects
743 * the size of the program we've been handed,
744 * will be anywhere near the maximum size of
745 * a u_int. We also don't check for backward
746 * branches, as we currently support them in
747 * userland for the protochain operation.
748 */
749 from = i + 1;
750 switch (BPF_OP(p->code)) {
751 case BPF_JA:
752 if (from + p->k >= len)
753 goto out;
754 #if defined(KERNEL) || defined(_KERNEL)
755 if (from + p->k < from)
756 goto out;
757 /*
758 * mark the currently invalid bits for the
759 * destination
760 */
761 mem[from + p->k] |= invalid;
762 invalid = 0;
763 #endif
764 break;
765 case BPF_JEQ:
766 case BPF_JGT:
767 case BPF_JGE:
768 case BPF_JSET:
769 if (from + p->jt >= len || from + p->jf >= len)
770 goto out;
771 #if defined(KERNEL) || defined(_KERNEL)
772 /*
773 * mark the currently invalid bits for both
774 * possible jump destinations
775 */
776 mem[from + p->jt] |= invalid;
777 mem[from + p->jf] |= invalid;
778 invalid = 0;
779 #endif
780 break;
781 default:
782 goto out;
783 }
784 break;
785 case BPF_RET:
786 break;
787 case BPF_MISC:
788 switch (BPF_MISCOP(p->code)) {
789 case BPF_COP:
790 case BPF_COPX:
791 /* In-kernel COP use only. */
792 #if defined(KERNEL) || defined(_KERNEL)
793 if (bc == NULL || bc->copfuncs == NULL)
794 goto out;
795 if (BPF_MISCOP(p->code) == BPF_COP &&
796 p->k >= bc->nfuncs) {
797 goto out;
798 }
799 break;
800 #else
801 goto out;
802 #endif
803 default:
804 break;
805 }
806 break;
807 default:
808 goto out;
809 }
810 }
811 ok = 1;
812 out:
813 #if defined(KERNEL) || defined(_KERNEL)
814 kmem_free(mem, size);
815 #endif
816 return ok;
817 }
818
819 /* Kernel module interface */
820
821 #ifdef _KERNEL
822 MODULE(MODULE_CLASS_MISC, bpf_filter, NULL);
823
824 static int
825 bpf_filter_modcmd(modcmd_t cmd, void *opaque)
826 {
827
828 switch (cmd) {
829 case MODULE_CMD_INIT:
830 case MODULE_CMD_FINI:
831 return 0;
832 default:
833 return ENOTTY;
834 }
835 }
836 #endif
837