bpfjit.c revision 1.12 1 1.12 alnsn /* $NetBSD: bpfjit.c,v 1.12 2014/06/17 16:52:33 alnsn Exp $ */
2 1.3 rmind
3 1.1 alnsn /*-
4 1.7 alnsn * Copyright (c) 2011-2014 Alexander Nasonov.
5 1.1 alnsn * All rights reserved.
6 1.1 alnsn *
7 1.1 alnsn * Redistribution and use in source and binary forms, with or without
8 1.1 alnsn * modification, are permitted provided that the following conditions
9 1.1 alnsn * are met:
10 1.1 alnsn *
11 1.1 alnsn * 1. Redistributions of source code must retain the above copyright
12 1.1 alnsn * notice, this list of conditions and the following disclaimer.
13 1.1 alnsn * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 alnsn * notice, this list of conditions and the following disclaimer in
15 1.1 alnsn * the documentation and/or other materials provided with the
16 1.1 alnsn * distribution.
17 1.1 alnsn *
18 1.1 alnsn * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 1.1 alnsn * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 1.1 alnsn * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
21 1.1 alnsn * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
22 1.1 alnsn * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
23 1.1 alnsn * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
24 1.1 alnsn * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
25 1.1 alnsn * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
26 1.1 alnsn * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
27 1.1 alnsn * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
28 1.1 alnsn * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 1.1 alnsn * SUCH DAMAGE.
30 1.1 alnsn */
31 1.1 alnsn
32 1.2 alnsn #include <sys/cdefs.h>
33 1.2 alnsn #ifdef _KERNEL
34 1.12 alnsn __KERNEL_RCSID(0, "$NetBSD: bpfjit.c,v 1.12 2014/06/17 16:52:33 alnsn Exp $");
35 1.2 alnsn #else
36 1.12 alnsn __RCSID("$NetBSD: bpfjit.c,v 1.12 2014/06/17 16:52:33 alnsn Exp $");
37 1.2 alnsn #endif
38 1.2 alnsn
39 1.3 rmind #include <sys/types.h>
40 1.3 rmind #include <sys/queue.h>
41 1.1 alnsn
42 1.1 alnsn #ifndef _KERNEL
43 1.7 alnsn #include <assert.h>
44 1.7 alnsn #define BJ_ASSERT(c) assert(c)
45 1.7 alnsn #else
46 1.7 alnsn #define BJ_ASSERT(c) KASSERT(c)
47 1.7 alnsn #endif
48 1.7 alnsn
49 1.7 alnsn #ifndef _KERNEL
50 1.3 rmind #include <stdlib.h>
51 1.7 alnsn #define BJ_ALLOC(sz) malloc(sz)
52 1.7 alnsn #define BJ_FREE(p, sz) free(p)
53 1.1 alnsn #else
54 1.3 rmind #include <sys/kmem.h>
55 1.7 alnsn #define BJ_ALLOC(sz) kmem_alloc(sz, KM_SLEEP)
56 1.7 alnsn #define BJ_FREE(p, sz) kmem_free(p, sz)
57 1.1 alnsn #endif
58 1.1 alnsn
59 1.1 alnsn #ifndef _KERNEL
60 1.1 alnsn #include <limits.h>
61 1.1 alnsn #include <stdbool.h>
62 1.1 alnsn #include <stddef.h>
63 1.1 alnsn #include <stdint.h>
64 1.1 alnsn #else
65 1.1 alnsn #include <sys/atomic.h>
66 1.1 alnsn #include <sys/module.h>
67 1.1 alnsn #endif
68 1.1 alnsn
69 1.5 rmind #define __BPF_PRIVATE
70 1.5 rmind #include <net/bpf.h>
71 1.3 rmind #include <net/bpfjit.h>
72 1.1 alnsn #include <sljitLir.h>
73 1.1 alnsn
74 1.7 alnsn #if !defined(_KERNEL) && defined(SLJIT_VERBOSE) && SLJIT_VERBOSE
75 1.7 alnsn #include <stdio.h> /* for stderr */
76 1.7 alnsn #endif
77 1.7 alnsn
78 1.7 alnsn /*
79 1.7 alnsn * Permanent register assignments.
80 1.7 alnsn */
81 1.7 alnsn #define BJ_BUF SLJIT_SAVED_REG1
82 1.7 alnsn #define BJ_WIRELEN SLJIT_SAVED_REG2
83 1.7 alnsn #define BJ_BUFLEN SLJIT_SAVED_REG3
84 1.12 alnsn #define BJ_AREG SLJIT_SCRATCH_REG1
85 1.12 alnsn #define BJ_TMP1REG SLJIT_SCRATCH_REG2
86 1.12 alnsn #define BJ_TMP2REG SLJIT_SCRATCH_REG3
87 1.7 alnsn #define BJ_XREG SLJIT_TEMPORARY_EREG1
88 1.7 alnsn #define BJ_TMP3REG SLJIT_TEMPORARY_EREG2
89 1.7 alnsn
90 1.7 alnsn typedef unsigned int bpfjit_init_mask_t;
91 1.7 alnsn #define BJ_INIT_NOBITS 0u
92 1.7 alnsn #define BJ_INIT_MBIT(k) (1u << (k))
93 1.7 alnsn #define BJ_INIT_MMASK (BJ_INIT_MBIT(BPF_MEMWORDS) - 1u)
94 1.7 alnsn #define BJ_INIT_ABIT BJ_INIT_MBIT(BPF_MEMWORDS)
95 1.7 alnsn #define BJ_INIT_XBIT BJ_INIT_MBIT(BPF_MEMWORDS + 1)
96 1.1 alnsn
97 1.9 alnsn /*
98 1.9 alnsn * Datatype for Array Bounds Check Elimination (ABC) pass.
99 1.9 alnsn */
100 1.9 alnsn typedef uint64_t bpfjit_abc_length_t;
101 1.9 alnsn #define MAX_ABC_LENGTH (UINT32_MAX + UINT64_C(4)) /* max. width is 4 */
102 1.8 alnsn
103 1.7 alnsn struct bpfjit_stack
104 1.7 alnsn {
105 1.7 alnsn uint32_t mem[BPF_MEMWORDS];
106 1.7 alnsn #ifdef _KERNEL
107 1.7 alnsn void *tmp;
108 1.7 alnsn #endif
109 1.7 alnsn };
110 1.7 alnsn
111 1.7 alnsn /*
112 1.7 alnsn * Data for BPF_JMP instruction.
113 1.7 alnsn * Forward declaration for struct bpfjit_jump.
114 1.1 alnsn */
115 1.7 alnsn struct bpfjit_jump_data;
116 1.1 alnsn
117 1.1 alnsn /*
118 1.7 alnsn * Node of bjumps list.
119 1.1 alnsn */
120 1.3 rmind struct bpfjit_jump {
121 1.7 alnsn struct sljit_jump *sjump;
122 1.7 alnsn SLIST_ENTRY(bpfjit_jump) entries;
123 1.7 alnsn struct bpfjit_jump_data *jdata;
124 1.1 alnsn };
125 1.1 alnsn
126 1.1 alnsn /*
127 1.1 alnsn * Data for BPF_JMP instruction.
128 1.1 alnsn */
129 1.3 rmind struct bpfjit_jump_data {
130 1.1 alnsn /*
131 1.7 alnsn * These entries make up bjumps list:
132 1.7 alnsn * jtf[0] - when coming from jt path,
133 1.7 alnsn * jtf[1] - when coming from jf path.
134 1.1 alnsn */
135 1.7 alnsn struct bpfjit_jump jtf[2];
136 1.7 alnsn /*
137 1.7 alnsn * Length calculated by Array Bounds Check Elimination (ABC) pass.
138 1.7 alnsn */
139 1.8 alnsn bpfjit_abc_length_t abc_length;
140 1.7 alnsn /*
141 1.7 alnsn * Length checked by the last out-of-bounds check.
142 1.7 alnsn */
143 1.8 alnsn bpfjit_abc_length_t checked_length;
144 1.1 alnsn };
145 1.1 alnsn
146 1.1 alnsn /*
147 1.1 alnsn * Data for "read from packet" instructions.
148 1.1 alnsn * See also read_pkt_insn() function below.
149 1.1 alnsn */
150 1.3 rmind struct bpfjit_read_pkt_data {
151 1.1 alnsn /*
152 1.7 alnsn * Length calculated by Array Bounds Check Elimination (ABC) pass.
153 1.7 alnsn */
154 1.8 alnsn bpfjit_abc_length_t abc_length;
155 1.7 alnsn /*
156 1.7 alnsn * If positive, emit "if (buflen < check_length) return 0"
157 1.7 alnsn * out-of-bounds check.
158 1.9 alnsn * Values greater than UINT32_MAX generate unconditional "return 0".
159 1.1 alnsn */
160 1.8 alnsn bpfjit_abc_length_t check_length;
161 1.1 alnsn };
162 1.1 alnsn
163 1.1 alnsn /*
164 1.1 alnsn * Additional (optimization-related) data for bpf_insn.
165 1.1 alnsn */
166 1.3 rmind struct bpfjit_insn_data {
167 1.1 alnsn /* List of jumps to this insn. */
168 1.7 alnsn SLIST_HEAD(, bpfjit_jump) bjumps;
169 1.1 alnsn
170 1.1 alnsn union {
171 1.7 alnsn struct bpfjit_jump_data jdata;
172 1.7 alnsn struct bpfjit_read_pkt_data rdata;
173 1.7 alnsn } u;
174 1.1 alnsn
175 1.7 alnsn bpfjit_init_mask_t invalid;
176 1.7 alnsn bool unreachable;
177 1.1 alnsn };
178 1.1 alnsn
179 1.1 alnsn #ifdef _KERNEL
180 1.1 alnsn
181 1.1 alnsn uint32_t m_xword(const struct mbuf *, uint32_t, int *);
182 1.1 alnsn uint32_t m_xhalf(const struct mbuf *, uint32_t, int *);
183 1.1 alnsn uint32_t m_xbyte(const struct mbuf *, uint32_t, int *);
184 1.1 alnsn
185 1.1 alnsn MODULE(MODULE_CLASS_MISC, bpfjit, "sljit")
186 1.1 alnsn
187 1.1 alnsn static int
188 1.1 alnsn bpfjit_modcmd(modcmd_t cmd, void *arg)
189 1.1 alnsn {
190 1.1 alnsn
191 1.1 alnsn switch (cmd) {
192 1.1 alnsn case MODULE_CMD_INIT:
193 1.1 alnsn bpfjit_module_ops.bj_free_code = &bpfjit_free_code;
194 1.1 alnsn membar_producer();
195 1.1 alnsn bpfjit_module_ops.bj_generate_code = &bpfjit_generate_code;
196 1.1 alnsn membar_producer();
197 1.1 alnsn return 0;
198 1.1 alnsn
199 1.1 alnsn case MODULE_CMD_FINI:
200 1.1 alnsn return EOPNOTSUPP;
201 1.1 alnsn
202 1.1 alnsn default:
203 1.1 alnsn return ENOTTY;
204 1.1 alnsn }
205 1.1 alnsn }
206 1.1 alnsn #endif
207 1.1 alnsn
208 1.1 alnsn static uint32_t
209 1.7 alnsn read_width(const struct bpf_insn *pc)
210 1.1 alnsn {
211 1.1 alnsn
212 1.1 alnsn switch (BPF_SIZE(pc->code)) {
213 1.1 alnsn case BPF_W:
214 1.1 alnsn return 4;
215 1.1 alnsn case BPF_H:
216 1.1 alnsn return 2;
217 1.1 alnsn case BPF_B:
218 1.1 alnsn return 1;
219 1.1 alnsn default:
220 1.7 alnsn BJ_ASSERT(false);
221 1.1 alnsn return 0;
222 1.1 alnsn }
223 1.1 alnsn }
224 1.1 alnsn
225 1.7 alnsn static bool
226 1.7 alnsn grow_jumps(struct sljit_jump ***jumps, size_t *size)
227 1.7 alnsn {
228 1.7 alnsn struct sljit_jump **newptr;
229 1.7 alnsn const size_t elemsz = sizeof(struct sljit_jump *);
230 1.7 alnsn size_t old_size = *size;
231 1.7 alnsn size_t new_size = 2 * old_size;
232 1.7 alnsn
233 1.7 alnsn if (new_size < old_size || new_size > SIZE_MAX / elemsz)
234 1.7 alnsn return false;
235 1.7 alnsn
236 1.7 alnsn newptr = BJ_ALLOC(new_size * elemsz);
237 1.7 alnsn if (newptr == NULL)
238 1.7 alnsn return false;
239 1.7 alnsn
240 1.7 alnsn memcpy(newptr, *jumps, old_size * elemsz);
241 1.7 alnsn BJ_FREE(*jumps, old_size * elemsz);
242 1.7 alnsn
243 1.7 alnsn *jumps = newptr;
244 1.7 alnsn *size = new_size;
245 1.7 alnsn return true;
246 1.7 alnsn }
247 1.7 alnsn
248 1.7 alnsn static bool
249 1.7 alnsn append_jump(struct sljit_jump *jump, struct sljit_jump ***jumps,
250 1.7 alnsn size_t *size, size_t *max_size)
251 1.1 alnsn {
252 1.7 alnsn if (*size == *max_size && !grow_jumps(jumps, max_size))
253 1.7 alnsn return false;
254 1.1 alnsn
255 1.7 alnsn (*jumps)[(*size)++] = jump;
256 1.7 alnsn return true;
257 1.1 alnsn }
258 1.1 alnsn
259 1.1 alnsn /*
260 1.1 alnsn * Generate code for BPF_LD+BPF_B+BPF_ABS A <- P[k:1].
261 1.1 alnsn */
262 1.1 alnsn static int
263 1.1 alnsn emit_read8(struct sljit_compiler* compiler, uint32_t k)
264 1.1 alnsn {
265 1.1 alnsn
266 1.1 alnsn return sljit_emit_op1(compiler,
267 1.1 alnsn SLJIT_MOV_UB,
268 1.7 alnsn BJ_AREG, 0,
269 1.7 alnsn SLJIT_MEM1(BJ_BUF), k);
270 1.1 alnsn }
271 1.1 alnsn
272 1.1 alnsn /*
273 1.1 alnsn * Generate code for BPF_LD+BPF_H+BPF_ABS A <- P[k:2].
274 1.1 alnsn */
275 1.1 alnsn static int
276 1.1 alnsn emit_read16(struct sljit_compiler* compiler, uint32_t k)
277 1.1 alnsn {
278 1.1 alnsn int status;
279 1.1 alnsn
280 1.1 alnsn /* tmp1 = buf[k]; */
281 1.1 alnsn status = sljit_emit_op1(compiler,
282 1.1 alnsn SLJIT_MOV_UB,
283 1.7 alnsn BJ_TMP1REG, 0,
284 1.7 alnsn SLJIT_MEM1(BJ_BUF), k);
285 1.1 alnsn if (status != SLJIT_SUCCESS)
286 1.1 alnsn return status;
287 1.1 alnsn
288 1.1 alnsn /* A = buf[k+1]; */
289 1.1 alnsn status = sljit_emit_op1(compiler,
290 1.1 alnsn SLJIT_MOV_UB,
291 1.7 alnsn BJ_AREG, 0,
292 1.7 alnsn SLJIT_MEM1(BJ_BUF), k+1);
293 1.1 alnsn if (status != SLJIT_SUCCESS)
294 1.1 alnsn return status;
295 1.1 alnsn
296 1.1 alnsn /* tmp1 = tmp1 << 8; */
297 1.1 alnsn status = sljit_emit_op2(compiler,
298 1.1 alnsn SLJIT_SHL,
299 1.7 alnsn BJ_TMP1REG, 0,
300 1.7 alnsn BJ_TMP1REG, 0,
301 1.1 alnsn SLJIT_IMM, 8);
302 1.1 alnsn if (status != SLJIT_SUCCESS)
303 1.1 alnsn return status;
304 1.1 alnsn
305 1.1 alnsn /* A = A + tmp1; */
306 1.1 alnsn status = sljit_emit_op2(compiler,
307 1.1 alnsn SLJIT_ADD,
308 1.7 alnsn BJ_AREG, 0,
309 1.7 alnsn BJ_AREG, 0,
310 1.7 alnsn BJ_TMP1REG, 0);
311 1.1 alnsn return status;
312 1.1 alnsn }
313 1.1 alnsn
314 1.1 alnsn /*
315 1.1 alnsn * Generate code for BPF_LD+BPF_W+BPF_ABS A <- P[k:4].
316 1.1 alnsn */
317 1.1 alnsn static int
318 1.1 alnsn emit_read32(struct sljit_compiler* compiler, uint32_t k)
319 1.1 alnsn {
320 1.1 alnsn int status;
321 1.1 alnsn
322 1.1 alnsn /* tmp1 = buf[k]; */
323 1.1 alnsn status = sljit_emit_op1(compiler,
324 1.1 alnsn SLJIT_MOV_UB,
325 1.7 alnsn BJ_TMP1REG, 0,
326 1.7 alnsn SLJIT_MEM1(BJ_BUF), k);
327 1.1 alnsn if (status != SLJIT_SUCCESS)
328 1.1 alnsn return status;
329 1.1 alnsn
330 1.1 alnsn /* tmp2 = buf[k+1]; */
331 1.1 alnsn status = sljit_emit_op1(compiler,
332 1.1 alnsn SLJIT_MOV_UB,
333 1.7 alnsn BJ_TMP2REG, 0,
334 1.7 alnsn SLJIT_MEM1(BJ_BUF), k+1);
335 1.1 alnsn if (status != SLJIT_SUCCESS)
336 1.1 alnsn return status;
337 1.1 alnsn
338 1.1 alnsn /* A = buf[k+3]; */
339 1.1 alnsn status = sljit_emit_op1(compiler,
340 1.1 alnsn SLJIT_MOV_UB,
341 1.7 alnsn BJ_AREG, 0,
342 1.7 alnsn SLJIT_MEM1(BJ_BUF), k+3);
343 1.1 alnsn if (status != SLJIT_SUCCESS)
344 1.1 alnsn return status;
345 1.1 alnsn
346 1.1 alnsn /* tmp1 = tmp1 << 24; */
347 1.1 alnsn status = sljit_emit_op2(compiler,
348 1.1 alnsn SLJIT_SHL,
349 1.7 alnsn BJ_TMP1REG, 0,
350 1.7 alnsn BJ_TMP1REG, 0,
351 1.1 alnsn SLJIT_IMM, 24);
352 1.1 alnsn if (status != SLJIT_SUCCESS)
353 1.1 alnsn return status;
354 1.1 alnsn
355 1.1 alnsn /* A = A + tmp1; */
356 1.1 alnsn status = sljit_emit_op2(compiler,
357 1.1 alnsn SLJIT_ADD,
358 1.7 alnsn BJ_AREG, 0,
359 1.7 alnsn BJ_AREG, 0,
360 1.7 alnsn BJ_TMP1REG, 0);
361 1.1 alnsn if (status != SLJIT_SUCCESS)
362 1.1 alnsn return status;
363 1.1 alnsn
364 1.1 alnsn /* tmp1 = buf[k+2]; */
365 1.1 alnsn status = sljit_emit_op1(compiler,
366 1.1 alnsn SLJIT_MOV_UB,
367 1.7 alnsn BJ_TMP1REG, 0,
368 1.7 alnsn SLJIT_MEM1(BJ_BUF), k+2);
369 1.1 alnsn if (status != SLJIT_SUCCESS)
370 1.1 alnsn return status;
371 1.1 alnsn
372 1.1 alnsn /* tmp2 = tmp2 << 16; */
373 1.1 alnsn status = sljit_emit_op2(compiler,
374 1.1 alnsn SLJIT_SHL,
375 1.7 alnsn BJ_TMP2REG, 0,
376 1.7 alnsn BJ_TMP2REG, 0,
377 1.1 alnsn SLJIT_IMM, 16);
378 1.1 alnsn if (status != SLJIT_SUCCESS)
379 1.1 alnsn return status;
380 1.1 alnsn
381 1.1 alnsn /* A = A + tmp2; */
382 1.1 alnsn status = sljit_emit_op2(compiler,
383 1.1 alnsn SLJIT_ADD,
384 1.7 alnsn BJ_AREG, 0,
385 1.7 alnsn BJ_AREG, 0,
386 1.7 alnsn BJ_TMP2REG, 0);
387 1.1 alnsn if (status != SLJIT_SUCCESS)
388 1.1 alnsn return status;
389 1.1 alnsn
390 1.1 alnsn /* tmp1 = tmp1 << 8; */
391 1.1 alnsn status = sljit_emit_op2(compiler,
392 1.1 alnsn SLJIT_SHL,
393 1.7 alnsn BJ_TMP1REG, 0,
394 1.7 alnsn BJ_TMP1REG, 0,
395 1.1 alnsn SLJIT_IMM, 8);
396 1.1 alnsn if (status != SLJIT_SUCCESS)
397 1.1 alnsn return status;
398 1.1 alnsn
399 1.1 alnsn /* A = A + tmp1; */
400 1.1 alnsn status = sljit_emit_op2(compiler,
401 1.1 alnsn SLJIT_ADD,
402 1.7 alnsn BJ_AREG, 0,
403 1.7 alnsn BJ_AREG, 0,
404 1.7 alnsn BJ_TMP1REG, 0);
405 1.1 alnsn return status;
406 1.1 alnsn }
407 1.1 alnsn
408 1.1 alnsn #ifdef _KERNEL
409 1.1 alnsn /*
410 1.1 alnsn * Generate m_xword/m_xhalf/m_xbyte call.
411 1.1 alnsn *
412 1.1 alnsn * pc is one of:
413 1.1 alnsn * BPF_LD+BPF_W+BPF_ABS A <- P[k:4]
414 1.1 alnsn * BPF_LD+BPF_H+BPF_ABS A <- P[k:2]
415 1.1 alnsn * BPF_LD+BPF_B+BPF_ABS A <- P[k:1]
416 1.1 alnsn * BPF_LD+BPF_W+BPF_IND A <- P[X+k:4]
417 1.1 alnsn * BPF_LD+BPF_H+BPF_IND A <- P[X+k:2]
418 1.1 alnsn * BPF_LD+BPF_B+BPF_IND A <- P[X+k:1]
419 1.1 alnsn * BPF_LDX+BPF_B+BPF_MSH X <- 4*(P[k:1]&0xf)
420 1.1 alnsn *
421 1.7 alnsn * The dst variable should be
422 1.7 alnsn * - BJ_AREG when emitting code for BPF_LD instructions,
423 1.7 alnsn * - BJ_XREG or any of BJ_TMP[1-3]REG registers when emitting
424 1.7 alnsn * code for BPF_MSH instruction.
425 1.1 alnsn */
426 1.1 alnsn static int
427 1.7 alnsn emit_xcall(struct sljit_compiler* compiler, const struct bpf_insn *pc,
428 1.12 alnsn int dst, sljit_sw dstw, struct sljit_jump **ret0_jump,
429 1.1 alnsn uint32_t (*fn)(const struct mbuf *, uint32_t, int *))
430 1.1 alnsn {
431 1.7 alnsn #if BJ_XREG == SLJIT_RETURN_REG || \
432 1.12 alnsn BJ_XREG == SLJIT_SCRATCH_REG1 || \
433 1.12 alnsn BJ_XREG == SLJIT_SCRATCH_REG2 || \
434 1.12 alnsn BJ_XREG == SLJIT_SCRATCH_REG3
435 1.1 alnsn #error "Not supported assignment of registers."
436 1.1 alnsn #endif
437 1.1 alnsn int status;
438 1.1 alnsn
439 1.1 alnsn /*
440 1.1 alnsn * The third argument of fn is an address on stack.
441 1.1 alnsn */
442 1.7 alnsn const int arg3_offset = offsetof(struct bpfjit_stack, tmp);
443 1.1 alnsn
444 1.1 alnsn if (BPF_CLASS(pc->code) == BPF_LDX) {
445 1.1 alnsn /* save A */
446 1.1 alnsn status = sljit_emit_op1(compiler,
447 1.1 alnsn SLJIT_MOV,
448 1.7 alnsn BJ_TMP3REG, 0,
449 1.7 alnsn BJ_AREG, 0);
450 1.1 alnsn if (status != SLJIT_SUCCESS)
451 1.1 alnsn return status;
452 1.1 alnsn }
453 1.1 alnsn
454 1.1 alnsn /*
455 1.1 alnsn * Prepare registers for fn(buf, k, &err) call.
456 1.1 alnsn */
457 1.1 alnsn status = sljit_emit_op1(compiler,
458 1.1 alnsn SLJIT_MOV,
459 1.12 alnsn SLJIT_SCRATCH_REG1, 0,
460 1.7 alnsn BJ_BUF, 0);
461 1.1 alnsn if (status != SLJIT_SUCCESS)
462 1.1 alnsn return status;
463 1.1 alnsn
464 1.1 alnsn if (BPF_CLASS(pc->code) == BPF_LD && BPF_MODE(pc->code) == BPF_IND) {
465 1.1 alnsn status = sljit_emit_op2(compiler,
466 1.1 alnsn SLJIT_ADD,
467 1.12 alnsn SLJIT_SCRATCH_REG2, 0,
468 1.7 alnsn BJ_XREG, 0,
469 1.1 alnsn SLJIT_IMM, (uint32_t)pc->k);
470 1.1 alnsn } else {
471 1.1 alnsn status = sljit_emit_op1(compiler,
472 1.1 alnsn SLJIT_MOV,
473 1.12 alnsn SLJIT_SCRATCH_REG2, 0,
474 1.1 alnsn SLJIT_IMM, (uint32_t)pc->k);
475 1.1 alnsn }
476 1.1 alnsn
477 1.1 alnsn if (status != SLJIT_SUCCESS)
478 1.1 alnsn return status;
479 1.1 alnsn
480 1.1 alnsn status = sljit_get_local_base(compiler,
481 1.12 alnsn SLJIT_SCRATCH_REG3, 0, arg3_offset);
482 1.1 alnsn if (status != SLJIT_SUCCESS)
483 1.1 alnsn return status;
484 1.1 alnsn
485 1.1 alnsn /* fn(buf, k, &err); */
486 1.1 alnsn status = sljit_emit_ijump(compiler,
487 1.1 alnsn SLJIT_CALL3,
488 1.1 alnsn SLJIT_IMM, SLJIT_FUNC_OFFSET(fn));
489 1.1 alnsn
490 1.7 alnsn if (dst != SLJIT_RETURN_REG) {
491 1.1 alnsn /* move return value to dst */
492 1.1 alnsn status = sljit_emit_op1(compiler,
493 1.1 alnsn SLJIT_MOV,
494 1.1 alnsn dst, dstw,
495 1.1 alnsn SLJIT_RETURN_REG, 0);
496 1.1 alnsn if (status != SLJIT_SUCCESS)
497 1.1 alnsn return status;
498 1.7 alnsn }
499 1.1 alnsn
500 1.7 alnsn if (BPF_CLASS(pc->code) == BPF_LDX) {
501 1.1 alnsn /* restore A */
502 1.1 alnsn status = sljit_emit_op1(compiler,
503 1.1 alnsn SLJIT_MOV,
504 1.7 alnsn BJ_AREG, 0,
505 1.7 alnsn BJ_TMP3REG, 0);
506 1.1 alnsn if (status != SLJIT_SUCCESS)
507 1.1 alnsn return status;
508 1.1 alnsn }
509 1.1 alnsn
510 1.1 alnsn /* tmp3 = *err; */
511 1.1 alnsn status = sljit_emit_op1(compiler,
512 1.1 alnsn SLJIT_MOV_UI,
513 1.12 alnsn SLJIT_SCRATCH_REG3, 0,
514 1.1 alnsn SLJIT_MEM1(SLJIT_LOCALS_REG), arg3_offset);
515 1.1 alnsn if (status != SLJIT_SUCCESS)
516 1.1 alnsn return status;
517 1.1 alnsn
518 1.1 alnsn /* if (tmp3 != 0) return 0; */
519 1.1 alnsn *ret0_jump = sljit_emit_cmp(compiler,
520 1.1 alnsn SLJIT_C_NOT_EQUAL,
521 1.12 alnsn SLJIT_SCRATCH_REG3, 0,
522 1.1 alnsn SLJIT_IMM, 0);
523 1.1 alnsn if (*ret0_jump == NULL)
524 1.1 alnsn return SLJIT_ERR_ALLOC_FAILED;
525 1.1 alnsn
526 1.1 alnsn return status;
527 1.1 alnsn }
528 1.1 alnsn #endif
529 1.1 alnsn
530 1.1 alnsn /*
531 1.1 alnsn * Generate code for
532 1.1 alnsn * BPF_LD+BPF_W+BPF_ABS A <- P[k:4]
533 1.1 alnsn * BPF_LD+BPF_H+BPF_ABS A <- P[k:2]
534 1.1 alnsn * BPF_LD+BPF_B+BPF_ABS A <- P[k:1]
535 1.1 alnsn * BPF_LD+BPF_W+BPF_IND A <- P[X+k:4]
536 1.1 alnsn * BPF_LD+BPF_H+BPF_IND A <- P[X+k:2]
537 1.1 alnsn * BPF_LD+BPF_B+BPF_IND A <- P[X+k:1]
538 1.1 alnsn */
539 1.1 alnsn static int
540 1.1 alnsn emit_pkt_read(struct sljit_compiler* compiler,
541 1.7 alnsn const struct bpf_insn *pc, struct sljit_jump *to_mchain_jump,
542 1.7 alnsn struct sljit_jump ***ret0, size_t *ret0_size, size_t *ret0_maxsize)
543 1.1 alnsn {
544 1.6 pooka int status = 0; /* XXX gcc 4.1 */
545 1.1 alnsn uint32_t width;
546 1.1 alnsn struct sljit_jump *jump;
547 1.1 alnsn #ifdef _KERNEL
548 1.1 alnsn struct sljit_label *label;
549 1.1 alnsn struct sljit_jump *over_mchain_jump;
550 1.1 alnsn const bool check_zero_buflen = (to_mchain_jump != NULL);
551 1.1 alnsn #endif
552 1.1 alnsn const uint32_t k = pc->k;
553 1.1 alnsn
554 1.1 alnsn #ifdef _KERNEL
555 1.1 alnsn if (to_mchain_jump == NULL) {
556 1.1 alnsn to_mchain_jump = sljit_emit_cmp(compiler,
557 1.1 alnsn SLJIT_C_EQUAL,
558 1.7 alnsn BJ_BUFLEN, 0,
559 1.1 alnsn SLJIT_IMM, 0);
560 1.1 alnsn if (to_mchain_jump == NULL)
561 1.7 alnsn return SLJIT_ERR_ALLOC_FAILED;
562 1.1 alnsn }
563 1.1 alnsn #endif
564 1.1 alnsn
565 1.1 alnsn width = read_width(pc);
566 1.1 alnsn
567 1.1 alnsn if (BPF_MODE(pc->code) == BPF_IND) {
568 1.1 alnsn /* tmp1 = buflen - (pc->k + width); */
569 1.1 alnsn status = sljit_emit_op2(compiler,
570 1.1 alnsn SLJIT_SUB,
571 1.7 alnsn BJ_TMP1REG, 0,
572 1.7 alnsn BJ_BUFLEN, 0,
573 1.1 alnsn SLJIT_IMM, k + width);
574 1.1 alnsn if (status != SLJIT_SUCCESS)
575 1.1 alnsn return status;
576 1.1 alnsn
577 1.1 alnsn /* buf += X; */
578 1.1 alnsn status = sljit_emit_op2(compiler,
579 1.1 alnsn SLJIT_ADD,
580 1.7 alnsn BJ_BUF, 0,
581 1.7 alnsn BJ_BUF, 0,
582 1.7 alnsn BJ_XREG, 0);
583 1.1 alnsn if (status != SLJIT_SUCCESS)
584 1.1 alnsn return status;
585 1.1 alnsn
586 1.1 alnsn /* if (tmp1 < X) return 0; */
587 1.1 alnsn jump = sljit_emit_cmp(compiler,
588 1.1 alnsn SLJIT_C_LESS,
589 1.7 alnsn BJ_TMP1REG, 0,
590 1.7 alnsn BJ_XREG, 0);
591 1.1 alnsn if (jump == NULL)
592 1.7 alnsn return SLJIT_ERR_ALLOC_FAILED;
593 1.7 alnsn if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
594 1.7 alnsn return SLJIT_ERR_ALLOC_FAILED;
595 1.1 alnsn }
596 1.1 alnsn
597 1.1 alnsn switch (width) {
598 1.1 alnsn case 4:
599 1.1 alnsn status = emit_read32(compiler, k);
600 1.1 alnsn break;
601 1.1 alnsn case 2:
602 1.1 alnsn status = emit_read16(compiler, k);
603 1.1 alnsn break;
604 1.1 alnsn case 1:
605 1.1 alnsn status = emit_read8(compiler, k);
606 1.1 alnsn break;
607 1.1 alnsn }
608 1.1 alnsn
609 1.1 alnsn if (status != SLJIT_SUCCESS)
610 1.1 alnsn return status;
611 1.1 alnsn
612 1.1 alnsn if (BPF_MODE(pc->code) == BPF_IND) {
613 1.1 alnsn /* buf -= X; */
614 1.1 alnsn status = sljit_emit_op2(compiler,
615 1.1 alnsn SLJIT_SUB,
616 1.7 alnsn BJ_BUF, 0,
617 1.7 alnsn BJ_BUF, 0,
618 1.7 alnsn BJ_XREG, 0);
619 1.1 alnsn if (status != SLJIT_SUCCESS)
620 1.1 alnsn return status;
621 1.1 alnsn }
622 1.1 alnsn
623 1.1 alnsn #ifdef _KERNEL
624 1.1 alnsn over_mchain_jump = sljit_emit_jump(compiler, SLJIT_JUMP);
625 1.1 alnsn if (over_mchain_jump == NULL)
626 1.7 alnsn return SLJIT_ERR_ALLOC_FAILED;
627 1.1 alnsn
628 1.1 alnsn /* entry point to mchain handler */
629 1.1 alnsn label = sljit_emit_label(compiler);
630 1.1 alnsn if (label == NULL)
631 1.7 alnsn return SLJIT_ERR_ALLOC_FAILED;
632 1.1 alnsn sljit_set_label(to_mchain_jump, label);
633 1.1 alnsn
634 1.1 alnsn if (check_zero_buflen) {
635 1.1 alnsn /* if (buflen != 0) return 0; */
636 1.1 alnsn jump = sljit_emit_cmp(compiler,
637 1.1 alnsn SLJIT_C_NOT_EQUAL,
638 1.7 alnsn BJ_BUFLEN, 0,
639 1.1 alnsn SLJIT_IMM, 0);
640 1.1 alnsn if (jump == NULL)
641 1.1 alnsn return SLJIT_ERR_ALLOC_FAILED;
642 1.7 alnsn if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
643 1.7 alnsn return SLJIT_ERR_ALLOC_FAILED;
644 1.1 alnsn }
645 1.1 alnsn
646 1.1 alnsn switch (width) {
647 1.1 alnsn case 4:
648 1.7 alnsn status = emit_xcall(compiler, pc, BJ_AREG, 0, &jump, &m_xword);
649 1.1 alnsn break;
650 1.1 alnsn case 2:
651 1.7 alnsn status = emit_xcall(compiler, pc, BJ_AREG, 0, &jump, &m_xhalf);
652 1.1 alnsn break;
653 1.1 alnsn case 1:
654 1.7 alnsn status = emit_xcall(compiler, pc, BJ_AREG, 0, &jump, &m_xbyte);
655 1.1 alnsn break;
656 1.1 alnsn }
657 1.1 alnsn
658 1.1 alnsn if (status != SLJIT_SUCCESS)
659 1.1 alnsn return status;
660 1.1 alnsn
661 1.7 alnsn if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
662 1.7 alnsn return SLJIT_ERR_ALLOC_FAILED;
663 1.1 alnsn
664 1.1 alnsn label = sljit_emit_label(compiler);
665 1.1 alnsn if (label == NULL)
666 1.1 alnsn return SLJIT_ERR_ALLOC_FAILED;
667 1.1 alnsn sljit_set_label(over_mchain_jump, label);
668 1.1 alnsn #endif
669 1.1 alnsn
670 1.1 alnsn return status;
671 1.1 alnsn }
672 1.1 alnsn
673 1.1 alnsn /*
674 1.1 alnsn * Generate code for BPF_LDX+BPF_B+BPF_MSH X <- 4*(P[k:1]&0xf).
675 1.1 alnsn */
676 1.1 alnsn static int
677 1.1 alnsn emit_msh(struct sljit_compiler* compiler,
678 1.7 alnsn const struct bpf_insn *pc, struct sljit_jump *to_mchain_jump,
679 1.7 alnsn struct sljit_jump ***ret0, size_t *ret0_size, size_t *ret0_maxsize)
680 1.1 alnsn {
681 1.1 alnsn int status;
682 1.1 alnsn #ifdef _KERNEL
683 1.1 alnsn struct sljit_label *label;
684 1.1 alnsn struct sljit_jump *jump, *over_mchain_jump;
685 1.1 alnsn const bool check_zero_buflen = (to_mchain_jump != NULL);
686 1.1 alnsn #endif
687 1.1 alnsn const uint32_t k = pc->k;
688 1.1 alnsn
689 1.1 alnsn #ifdef _KERNEL
690 1.1 alnsn if (to_mchain_jump == NULL) {
691 1.1 alnsn to_mchain_jump = sljit_emit_cmp(compiler,
692 1.1 alnsn SLJIT_C_EQUAL,
693 1.7 alnsn BJ_BUFLEN, 0,
694 1.1 alnsn SLJIT_IMM, 0);
695 1.1 alnsn if (to_mchain_jump == NULL)
696 1.7 alnsn return SLJIT_ERR_ALLOC_FAILED;
697 1.1 alnsn }
698 1.1 alnsn #endif
699 1.1 alnsn
700 1.1 alnsn /* tmp1 = buf[k] */
701 1.1 alnsn status = sljit_emit_op1(compiler,
702 1.1 alnsn SLJIT_MOV_UB,
703 1.7 alnsn BJ_TMP1REG, 0,
704 1.7 alnsn SLJIT_MEM1(BJ_BUF), k);
705 1.1 alnsn if (status != SLJIT_SUCCESS)
706 1.1 alnsn return status;
707 1.1 alnsn
708 1.1 alnsn /* tmp1 &= 0xf */
709 1.1 alnsn status = sljit_emit_op2(compiler,
710 1.1 alnsn SLJIT_AND,
711 1.7 alnsn BJ_TMP1REG, 0,
712 1.7 alnsn BJ_TMP1REG, 0,
713 1.1 alnsn SLJIT_IMM, 0xf);
714 1.1 alnsn if (status != SLJIT_SUCCESS)
715 1.1 alnsn return status;
716 1.1 alnsn
717 1.1 alnsn /* tmp1 = tmp1 << 2 */
718 1.1 alnsn status = sljit_emit_op2(compiler,
719 1.1 alnsn SLJIT_SHL,
720 1.7 alnsn BJ_XREG, 0,
721 1.7 alnsn BJ_TMP1REG, 0,
722 1.1 alnsn SLJIT_IMM, 2);
723 1.1 alnsn if (status != SLJIT_SUCCESS)
724 1.1 alnsn return status;
725 1.1 alnsn
726 1.1 alnsn #ifdef _KERNEL
727 1.1 alnsn over_mchain_jump = sljit_emit_jump(compiler, SLJIT_JUMP);
728 1.1 alnsn if (over_mchain_jump == NULL)
729 1.1 alnsn return SLJIT_ERR_ALLOC_FAILED;
730 1.1 alnsn
731 1.1 alnsn /* entry point to mchain handler */
732 1.1 alnsn label = sljit_emit_label(compiler);
733 1.1 alnsn if (label == NULL)
734 1.1 alnsn return SLJIT_ERR_ALLOC_FAILED;
735 1.1 alnsn sljit_set_label(to_mchain_jump, label);
736 1.1 alnsn
737 1.1 alnsn if (check_zero_buflen) {
738 1.1 alnsn /* if (buflen != 0) return 0; */
739 1.1 alnsn jump = sljit_emit_cmp(compiler,
740 1.1 alnsn SLJIT_C_NOT_EQUAL,
741 1.7 alnsn BJ_BUFLEN, 0,
742 1.1 alnsn SLJIT_IMM, 0);
743 1.1 alnsn if (jump == NULL)
744 1.7 alnsn return SLJIT_ERR_ALLOC_FAILED;
745 1.7 alnsn if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
746 1.7 alnsn return SLJIT_ERR_ALLOC_FAILED;
747 1.1 alnsn }
748 1.1 alnsn
749 1.7 alnsn status = emit_xcall(compiler, pc, BJ_TMP1REG, 0, &jump, &m_xbyte);
750 1.1 alnsn if (status != SLJIT_SUCCESS)
751 1.1 alnsn return status;
752 1.7 alnsn
753 1.7 alnsn if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
754 1.7 alnsn return SLJIT_ERR_ALLOC_FAILED;
755 1.1 alnsn
756 1.1 alnsn /* tmp1 &= 0xf */
757 1.1 alnsn status = sljit_emit_op2(compiler,
758 1.1 alnsn SLJIT_AND,
759 1.7 alnsn BJ_TMP1REG, 0,
760 1.7 alnsn BJ_TMP1REG, 0,
761 1.1 alnsn SLJIT_IMM, 0xf);
762 1.1 alnsn if (status != SLJIT_SUCCESS)
763 1.1 alnsn return status;
764 1.1 alnsn
765 1.1 alnsn /* tmp1 = tmp1 << 2 */
766 1.1 alnsn status = sljit_emit_op2(compiler,
767 1.1 alnsn SLJIT_SHL,
768 1.7 alnsn BJ_XREG, 0,
769 1.7 alnsn BJ_TMP1REG, 0,
770 1.1 alnsn SLJIT_IMM, 2);
771 1.1 alnsn if (status != SLJIT_SUCCESS)
772 1.1 alnsn return status;
773 1.1 alnsn
774 1.1 alnsn
775 1.1 alnsn label = sljit_emit_label(compiler);
776 1.1 alnsn if (label == NULL)
777 1.1 alnsn return SLJIT_ERR_ALLOC_FAILED;
778 1.1 alnsn sljit_set_label(over_mchain_jump, label);
779 1.1 alnsn #endif
780 1.1 alnsn
781 1.1 alnsn return status;
782 1.1 alnsn }
783 1.1 alnsn
784 1.1 alnsn static int
785 1.1 alnsn emit_pow2_division(struct sljit_compiler* compiler, uint32_t k)
786 1.1 alnsn {
787 1.1 alnsn int shift = 0;
788 1.1 alnsn int status = SLJIT_SUCCESS;
789 1.1 alnsn
790 1.1 alnsn while (k > 1) {
791 1.1 alnsn k >>= 1;
792 1.1 alnsn shift++;
793 1.1 alnsn }
794 1.1 alnsn
795 1.7 alnsn BJ_ASSERT(k == 1 && shift < 32);
796 1.1 alnsn
797 1.1 alnsn if (shift != 0) {
798 1.1 alnsn status = sljit_emit_op2(compiler,
799 1.1 alnsn SLJIT_LSHR|SLJIT_INT_OP,
800 1.7 alnsn BJ_AREG, 0,
801 1.7 alnsn BJ_AREG, 0,
802 1.1 alnsn SLJIT_IMM, shift);
803 1.1 alnsn }
804 1.1 alnsn
805 1.1 alnsn return status;
806 1.1 alnsn }
807 1.1 alnsn
808 1.1 alnsn #if !defined(BPFJIT_USE_UDIV)
809 1.1 alnsn static sljit_uw
810 1.1 alnsn divide(sljit_uw x, sljit_uw y)
811 1.1 alnsn {
812 1.1 alnsn
813 1.1 alnsn return (uint32_t)x / (uint32_t)y;
814 1.1 alnsn }
815 1.1 alnsn #endif
816 1.1 alnsn
817 1.1 alnsn /*
818 1.1 alnsn * Generate A = A / div.
819 1.7 alnsn * divt,divw are either SLJIT_IMM,pc->k or BJ_XREG,0.
820 1.1 alnsn */
821 1.1 alnsn static int
822 1.12 alnsn emit_division(struct sljit_compiler* compiler, int divt, sljit_sw divw)
823 1.1 alnsn {
824 1.1 alnsn int status;
825 1.1 alnsn
826 1.7 alnsn #if BJ_XREG == SLJIT_RETURN_REG || \
827 1.12 alnsn BJ_XREG == SLJIT_SCRATCH_REG1 || \
828 1.12 alnsn BJ_XREG == SLJIT_SCRATCH_REG2 || \
829 1.12 alnsn BJ_AREG == SLJIT_SCRATCH_REG2
830 1.1 alnsn #error "Not supported assignment of registers."
831 1.1 alnsn #endif
832 1.1 alnsn
833 1.12 alnsn #if BJ_AREG != SLJIT_SCRATCH_REG1
834 1.1 alnsn status = sljit_emit_op1(compiler,
835 1.1 alnsn SLJIT_MOV,
836 1.12 alnsn SLJIT_SCRATCH_REG1, 0,
837 1.7 alnsn BJ_AREG, 0);
838 1.1 alnsn if (status != SLJIT_SUCCESS)
839 1.1 alnsn return status;
840 1.1 alnsn #endif
841 1.1 alnsn
842 1.1 alnsn status = sljit_emit_op1(compiler,
843 1.1 alnsn SLJIT_MOV,
844 1.12 alnsn SLJIT_SCRATCH_REG2, 0,
845 1.1 alnsn divt, divw);
846 1.1 alnsn if (status != SLJIT_SUCCESS)
847 1.1 alnsn return status;
848 1.1 alnsn
849 1.1 alnsn #if defined(BPFJIT_USE_UDIV)
850 1.1 alnsn status = sljit_emit_op0(compiler, SLJIT_UDIV|SLJIT_INT_OP);
851 1.1 alnsn
852 1.12 alnsn #if BJ_AREG != SLJIT_SCRATCH_REG1
853 1.1 alnsn status = sljit_emit_op1(compiler,
854 1.1 alnsn SLJIT_MOV,
855 1.7 alnsn BJ_AREG, 0,
856 1.12 alnsn SLJIT_SCRATCH_REG1, 0);
857 1.1 alnsn if (status != SLJIT_SUCCESS)
858 1.1 alnsn return status;
859 1.1 alnsn #endif
860 1.1 alnsn #else
861 1.1 alnsn status = sljit_emit_ijump(compiler,
862 1.1 alnsn SLJIT_CALL2,
863 1.1 alnsn SLJIT_IMM, SLJIT_FUNC_OFFSET(divide));
864 1.1 alnsn
865 1.7 alnsn #if BJ_AREG != SLJIT_RETURN_REG
866 1.1 alnsn status = sljit_emit_op1(compiler,
867 1.1 alnsn SLJIT_MOV,
868 1.7 alnsn BJ_AREG, 0,
869 1.1 alnsn SLJIT_RETURN_REG, 0);
870 1.1 alnsn if (status != SLJIT_SUCCESS)
871 1.1 alnsn return status;
872 1.1 alnsn #endif
873 1.1 alnsn #endif
874 1.1 alnsn
875 1.1 alnsn return status;
876 1.1 alnsn }
877 1.1 alnsn
878 1.1 alnsn /*
879 1.1 alnsn * Return true if pc is a "read from packet" instruction.
880 1.1 alnsn * If length is not NULL and return value is true, *length will
881 1.1 alnsn * be set to a safe length required to read a packet.
882 1.1 alnsn */
883 1.1 alnsn static bool
884 1.8 alnsn read_pkt_insn(const struct bpf_insn *pc, bpfjit_abc_length_t *length)
885 1.1 alnsn {
886 1.1 alnsn bool rv;
887 1.8 alnsn bpfjit_abc_length_t width;
888 1.1 alnsn
889 1.1 alnsn switch (BPF_CLASS(pc->code)) {
890 1.1 alnsn default:
891 1.1 alnsn rv = false;
892 1.1 alnsn break;
893 1.1 alnsn
894 1.1 alnsn case BPF_LD:
895 1.1 alnsn rv = BPF_MODE(pc->code) == BPF_ABS ||
896 1.1 alnsn BPF_MODE(pc->code) == BPF_IND;
897 1.1 alnsn if (rv)
898 1.1 alnsn width = read_width(pc);
899 1.1 alnsn break;
900 1.1 alnsn
901 1.1 alnsn case BPF_LDX:
902 1.1 alnsn rv = pc->code == (BPF_LDX|BPF_B|BPF_MSH);
903 1.1 alnsn width = 1;
904 1.1 alnsn break;
905 1.1 alnsn }
906 1.1 alnsn
907 1.1 alnsn if (rv && length != NULL) {
908 1.9 alnsn /*
909 1.9 alnsn * Values greater than UINT32_MAX will generate
910 1.9 alnsn * unconditional "return 0".
911 1.9 alnsn */
912 1.9 alnsn *length = (uint32_t)pc->k + width;
913 1.1 alnsn }
914 1.1 alnsn
915 1.1 alnsn return rv;
916 1.1 alnsn }
917 1.1 alnsn
918 1.1 alnsn static void
919 1.7 alnsn optimize_init(struct bpfjit_insn_data *insn_dat, size_t insn_count)
920 1.1 alnsn {
921 1.7 alnsn size_t i;
922 1.1 alnsn
923 1.7 alnsn for (i = 0; i < insn_count; i++) {
924 1.7 alnsn SLIST_INIT(&insn_dat[i].bjumps);
925 1.7 alnsn insn_dat[i].invalid = BJ_INIT_NOBITS;
926 1.1 alnsn }
927 1.1 alnsn }
928 1.1 alnsn
929 1.1 alnsn /*
930 1.1 alnsn * The function divides instructions into blocks. Destination of a jump
931 1.1 alnsn * instruction starts a new block. BPF_RET and BPF_JMP instructions
932 1.1 alnsn * terminate a block. Blocks are linear, that is, there are no jumps out
933 1.1 alnsn * from the middle of a block and there are no jumps in to the middle of
934 1.1 alnsn * a block.
935 1.7 alnsn *
936 1.7 alnsn * The function also sets bits in *initmask for memwords that
937 1.7 alnsn * need to be initialized to zero. Note that this set should be empty
938 1.7 alnsn * for any valid kernel filter program.
939 1.1 alnsn */
940 1.7 alnsn static bool
941 1.7 alnsn optimize_pass1(const struct bpf_insn *insns,
942 1.7 alnsn struct bpfjit_insn_data *insn_dat, size_t insn_count,
943 1.7 alnsn bpfjit_init_mask_t *initmask, int *nscratches)
944 1.1 alnsn {
945 1.7 alnsn struct bpfjit_jump *jtf;
946 1.1 alnsn size_t i;
947 1.7 alnsn uint32_t jt, jf;
948 1.10 alnsn bpfjit_abc_length_t length;
949 1.7 alnsn bpfjit_init_mask_t invalid; /* borrowed from bpf_filter() */
950 1.1 alnsn bool unreachable;
951 1.1 alnsn
952 1.7 alnsn *nscratches = 2;
953 1.7 alnsn *initmask = BJ_INIT_NOBITS;
954 1.1 alnsn
955 1.1 alnsn unreachable = false;
956 1.7 alnsn invalid = ~BJ_INIT_NOBITS;
957 1.1 alnsn
958 1.1 alnsn for (i = 0; i < insn_count; i++) {
959 1.7 alnsn if (!SLIST_EMPTY(&insn_dat[i].bjumps))
960 1.1 alnsn unreachable = false;
961 1.7 alnsn insn_dat[i].unreachable = unreachable;
962 1.1 alnsn
963 1.1 alnsn if (unreachable)
964 1.1 alnsn continue;
965 1.1 alnsn
966 1.7 alnsn invalid |= insn_dat[i].invalid;
967 1.1 alnsn
968 1.10 alnsn if (read_pkt_insn(&insns[i], &length) && length > UINT32_MAX)
969 1.10 alnsn unreachable = true;
970 1.10 alnsn
971 1.1 alnsn switch (BPF_CLASS(insns[i].code)) {
972 1.1 alnsn case BPF_RET:
973 1.7 alnsn if (BPF_RVAL(insns[i].code) == BPF_A)
974 1.7 alnsn *initmask |= invalid & BJ_INIT_ABIT;
975 1.7 alnsn
976 1.1 alnsn unreachable = true;
977 1.1 alnsn continue;
978 1.1 alnsn
979 1.7 alnsn case BPF_LD:
980 1.7 alnsn if (BPF_MODE(insns[i].code) == BPF_IND ||
981 1.7 alnsn BPF_MODE(insns[i].code) == BPF_ABS) {
982 1.7 alnsn if (BPF_MODE(insns[i].code) == BPF_IND &&
983 1.7 alnsn *nscratches < 4) {
984 1.7 alnsn /* uses BJ_XREG */
985 1.7 alnsn *nscratches = 4;
986 1.7 alnsn }
987 1.7 alnsn if (*nscratches < 3 &&
988 1.7 alnsn read_width(&insns[i]) == 4) {
989 1.7 alnsn /* uses BJ_TMP2REG */
990 1.7 alnsn *nscratches = 3;
991 1.7 alnsn }
992 1.7 alnsn }
993 1.7 alnsn
994 1.7 alnsn if (BPF_MODE(insns[i].code) == BPF_IND)
995 1.7 alnsn *initmask |= invalid & BJ_INIT_XBIT;
996 1.7 alnsn
997 1.7 alnsn if (BPF_MODE(insns[i].code) == BPF_MEM &&
998 1.7 alnsn (uint32_t)insns[i].k < BPF_MEMWORDS) {
999 1.7 alnsn *initmask |= invalid & BJ_INIT_MBIT(insns[i].k);
1000 1.7 alnsn }
1001 1.7 alnsn
1002 1.7 alnsn invalid &= ~BJ_INIT_ABIT;
1003 1.7 alnsn continue;
1004 1.7 alnsn
1005 1.7 alnsn case BPF_LDX:
1006 1.7 alnsn #if defined(_KERNEL)
1007 1.7 alnsn /* uses BJ_TMP3REG */
1008 1.7 alnsn *nscratches = 5;
1009 1.7 alnsn #endif
1010 1.7 alnsn /* uses BJ_XREG */
1011 1.7 alnsn if (*nscratches < 4)
1012 1.7 alnsn *nscratches = 4;
1013 1.7 alnsn
1014 1.7 alnsn if (BPF_MODE(insns[i].code) == BPF_MEM &&
1015 1.7 alnsn (uint32_t)insns[i].k < BPF_MEMWORDS) {
1016 1.7 alnsn *initmask |= invalid & BJ_INIT_MBIT(insns[i].k);
1017 1.7 alnsn }
1018 1.7 alnsn
1019 1.7 alnsn invalid &= ~BJ_INIT_XBIT;
1020 1.7 alnsn continue;
1021 1.7 alnsn
1022 1.7 alnsn case BPF_ST:
1023 1.7 alnsn *initmask |= invalid & BJ_INIT_ABIT;
1024 1.7 alnsn
1025 1.7 alnsn if ((uint32_t)insns[i].k < BPF_MEMWORDS)
1026 1.7 alnsn invalid &= ~BJ_INIT_MBIT(insns[i].k);
1027 1.7 alnsn
1028 1.7 alnsn continue;
1029 1.7 alnsn
1030 1.7 alnsn case BPF_STX:
1031 1.7 alnsn /* uses BJ_XREG */
1032 1.7 alnsn if (*nscratches < 4)
1033 1.7 alnsn *nscratches = 4;
1034 1.7 alnsn
1035 1.7 alnsn *initmask |= invalid & BJ_INIT_XBIT;
1036 1.7 alnsn
1037 1.7 alnsn if ((uint32_t)insns[i].k < BPF_MEMWORDS)
1038 1.7 alnsn invalid &= ~BJ_INIT_MBIT(insns[i].k);
1039 1.7 alnsn
1040 1.7 alnsn continue;
1041 1.7 alnsn
1042 1.7 alnsn case BPF_ALU:
1043 1.7 alnsn *initmask |= invalid & BJ_INIT_ABIT;
1044 1.7 alnsn
1045 1.7 alnsn if (insns[i].code != (BPF_ALU|BPF_NEG) &&
1046 1.7 alnsn BPF_SRC(insns[i].code) == BPF_X) {
1047 1.7 alnsn *initmask |= invalid & BJ_INIT_XBIT;
1048 1.7 alnsn /* uses BJ_XREG */
1049 1.7 alnsn if (*nscratches < 4)
1050 1.7 alnsn *nscratches = 4;
1051 1.7 alnsn
1052 1.7 alnsn }
1053 1.7 alnsn
1054 1.7 alnsn invalid &= ~BJ_INIT_ABIT;
1055 1.7 alnsn continue;
1056 1.7 alnsn
1057 1.7 alnsn case BPF_MISC:
1058 1.7 alnsn switch (BPF_MISCOP(insns[i].code)) {
1059 1.7 alnsn case BPF_TAX: // X <- A
1060 1.7 alnsn /* uses BJ_XREG */
1061 1.7 alnsn if (*nscratches < 4)
1062 1.7 alnsn *nscratches = 4;
1063 1.7 alnsn
1064 1.7 alnsn *initmask |= invalid & BJ_INIT_ABIT;
1065 1.7 alnsn invalid &= ~BJ_INIT_XBIT;
1066 1.7 alnsn continue;
1067 1.7 alnsn
1068 1.7 alnsn case BPF_TXA: // A <- X
1069 1.7 alnsn /* uses BJ_XREG */
1070 1.7 alnsn if (*nscratches < 4)
1071 1.7 alnsn *nscratches = 4;
1072 1.7 alnsn
1073 1.7 alnsn *initmask |= invalid & BJ_INIT_XBIT;
1074 1.7 alnsn invalid &= ~BJ_INIT_ABIT;
1075 1.7 alnsn continue;
1076 1.7 alnsn }
1077 1.7 alnsn
1078 1.7 alnsn continue;
1079 1.7 alnsn
1080 1.1 alnsn case BPF_JMP:
1081 1.7 alnsn /* Initialize abc_length for ABC pass. */
1082 1.8 alnsn insn_dat[i].u.jdata.abc_length = MAX_ABC_LENGTH;
1083 1.7 alnsn
1084 1.7 alnsn if (BPF_OP(insns[i].code) == BPF_JA) {
1085 1.1 alnsn jt = jf = insns[i].k;
1086 1.1 alnsn } else {
1087 1.1 alnsn jt = insns[i].jt;
1088 1.1 alnsn jf = insns[i].jf;
1089 1.1 alnsn }
1090 1.1 alnsn
1091 1.1 alnsn if (jt >= insn_count - (i + 1) ||
1092 1.1 alnsn jf >= insn_count - (i + 1)) {
1093 1.7 alnsn return false;
1094 1.1 alnsn }
1095 1.1 alnsn
1096 1.1 alnsn if (jt > 0 && jf > 0)
1097 1.1 alnsn unreachable = true;
1098 1.1 alnsn
1099 1.7 alnsn jt += i + 1;
1100 1.7 alnsn jf += i + 1;
1101 1.7 alnsn
1102 1.7 alnsn jtf = insn_dat[i].u.jdata.jtf;
1103 1.1 alnsn
1104 1.7 alnsn jtf[0].sjump = NULL;
1105 1.7 alnsn jtf[0].jdata = &insn_dat[i].u.jdata;
1106 1.7 alnsn SLIST_INSERT_HEAD(&insn_dat[jt].bjumps,
1107 1.7 alnsn &jtf[0], entries);
1108 1.1 alnsn
1109 1.1 alnsn if (jf != jt) {
1110 1.7 alnsn jtf[1].sjump = NULL;
1111 1.7 alnsn jtf[1].jdata = &insn_dat[i].u.jdata;
1112 1.7 alnsn SLIST_INSERT_HEAD(&insn_dat[jf].bjumps,
1113 1.7 alnsn &jtf[1], entries);
1114 1.1 alnsn }
1115 1.1 alnsn
1116 1.7 alnsn insn_dat[jf].invalid |= invalid;
1117 1.7 alnsn insn_dat[jt].invalid |= invalid;
1118 1.7 alnsn invalid = 0;
1119 1.7 alnsn
1120 1.1 alnsn continue;
1121 1.1 alnsn }
1122 1.1 alnsn }
1123 1.1 alnsn
1124 1.7 alnsn return true;
1125 1.1 alnsn }
1126 1.1 alnsn
1127 1.1 alnsn /*
1128 1.7 alnsn * Array Bounds Check Elimination (ABC) pass.
1129 1.1 alnsn */
1130 1.7 alnsn static void
1131 1.7 alnsn optimize_pass2(const struct bpf_insn *insns,
1132 1.7 alnsn struct bpfjit_insn_data *insn_dat, size_t insn_count)
1133 1.7 alnsn {
1134 1.7 alnsn struct bpfjit_jump *jmp;
1135 1.7 alnsn const struct bpf_insn *pc;
1136 1.7 alnsn struct bpfjit_insn_data *pd;
1137 1.7 alnsn size_t i;
1138 1.8 alnsn bpfjit_abc_length_t length, abc_length = 0;
1139 1.7 alnsn
1140 1.7 alnsn for (i = insn_count; i != 0; i--) {
1141 1.7 alnsn pc = &insns[i-1];
1142 1.7 alnsn pd = &insn_dat[i-1];
1143 1.7 alnsn
1144 1.7 alnsn if (pd->unreachable)
1145 1.7 alnsn continue;
1146 1.7 alnsn
1147 1.7 alnsn switch (BPF_CLASS(pc->code)) {
1148 1.7 alnsn case BPF_RET:
1149 1.11 alnsn /*
1150 1.11 alnsn * It's quite common for bpf programs to
1151 1.11 alnsn * check packet bytes in increasing order
1152 1.11 alnsn * and return zero if bytes don't match
1153 1.11 alnsn * specified critetion. Such programs disable
1154 1.11 alnsn * ABC optimization completely because for
1155 1.11 alnsn * every jump there is a branch with no read
1156 1.11 alnsn * instruction.
1157 1.11 alnsn * With no side effects, BPF_RET+BPF_K 0 is
1158 1.11 alnsn * indistinguishable from out-of-bound load.
1159 1.11 alnsn * Therefore, abc_length can be set to
1160 1.11 alnsn * MAX_ABC_LENGTH and enable ABC for many
1161 1.11 alnsn * bpf programs.
1162 1.11 alnsn * If this optimization pass encounters any
1163 1.11 alnsn * instruction with a side effect, it will
1164 1.11 alnsn * reset abc_length.
1165 1.11 alnsn */
1166 1.11 alnsn if (BPF_RVAL(pc->code) == BPF_K && pc->k == 0)
1167 1.11 alnsn abc_length = MAX_ABC_LENGTH;
1168 1.11 alnsn else
1169 1.11 alnsn abc_length = 0;
1170 1.7 alnsn break;
1171 1.7 alnsn
1172 1.7 alnsn case BPF_JMP:
1173 1.7 alnsn abc_length = pd->u.jdata.abc_length;
1174 1.7 alnsn break;
1175 1.7 alnsn
1176 1.7 alnsn default:
1177 1.7 alnsn if (read_pkt_insn(pc, &length)) {
1178 1.7 alnsn if (abc_length < length)
1179 1.7 alnsn abc_length = length;
1180 1.7 alnsn pd->u.rdata.abc_length = abc_length;
1181 1.7 alnsn }
1182 1.7 alnsn break;
1183 1.7 alnsn }
1184 1.7 alnsn
1185 1.7 alnsn SLIST_FOREACH(jmp, &pd->bjumps, entries) {
1186 1.7 alnsn if (jmp->jdata->abc_length > abc_length)
1187 1.7 alnsn jmp->jdata->abc_length = abc_length;
1188 1.7 alnsn }
1189 1.7 alnsn }
1190 1.7 alnsn }
1191 1.7 alnsn
1192 1.7 alnsn static void
1193 1.7 alnsn optimize_pass3(const struct bpf_insn *insns,
1194 1.7 alnsn struct bpfjit_insn_data *insn_dat, size_t insn_count)
1195 1.1 alnsn {
1196 1.7 alnsn struct bpfjit_jump *jmp;
1197 1.1 alnsn size_t i;
1198 1.8 alnsn bpfjit_abc_length_t checked_length = 0;
1199 1.1 alnsn
1200 1.1 alnsn for (i = 0; i < insn_count; i++) {
1201 1.7 alnsn if (insn_dat[i].unreachable)
1202 1.7 alnsn continue;
1203 1.1 alnsn
1204 1.7 alnsn SLIST_FOREACH(jmp, &insn_dat[i].bjumps, entries) {
1205 1.7 alnsn if (jmp->jdata->checked_length < checked_length)
1206 1.7 alnsn checked_length = jmp->jdata->checked_length;
1207 1.1 alnsn }
1208 1.1 alnsn
1209 1.7 alnsn if (BPF_CLASS(insns[i].code) == BPF_JMP) {
1210 1.7 alnsn insn_dat[i].u.jdata.checked_length = checked_length;
1211 1.8 alnsn } else if (read_pkt_insn(&insns[i], NULL)) {
1212 1.7 alnsn struct bpfjit_read_pkt_data *rdata =
1213 1.7 alnsn &insn_dat[i].u.rdata;
1214 1.7 alnsn rdata->check_length = 0;
1215 1.7 alnsn if (checked_length < rdata->abc_length) {
1216 1.7 alnsn checked_length = rdata->abc_length;
1217 1.7 alnsn rdata->check_length = checked_length;
1218 1.7 alnsn }
1219 1.1 alnsn }
1220 1.7 alnsn }
1221 1.7 alnsn }
1222 1.1 alnsn
1223 1.7 alnsn static bool
1224 1.7 alnsn optimize(const struct bpf_insn *insns,
1225 1.7 alnsn struct bpfjit_insn_data *insn_dat, size_t insn_count,
1226 1.7 alnsn bpfjit_init_mask_t *initmask, int *nscratches)
1227 1.7 alnsn {
1228 1.1 alnsn
1229 1.7 alnsn optimize_init(insn_dat, insn_count);
1230 1.7 alnsn
1231 1.7 alnsn if (!optimize_pass1(insns, insn_dat, insn_count,
1232 1.7 alnsn initmask, nscratches)) {
1233 1.7 alnsn return false;
1234 1.1 alnsn }
1235 1.1 alnsn
1236 1.7 alnsn optimize_pass2(insns, insn_dat, insn_count);
1237 1.7 alnsn optimize_pass3(insns, insn_dat, insn_count);
1238 1.7 alnsn
1239 1.7 alnsn return true;
1240 1.1 alnsn }
1241 1.1 alnsn
1242 1.1 alnsn /*
1243 1.1 alnsn * Convert BPF_ALU operations except BPF_NEG and BPF_DIV to sljit operation.
1244 1.1 alnsn */
1245 1.1 alnsn static int
1246 1.7 alnsn bpf_alu_to_sljit_op(const struct bpf_insn *pc)
1247 1.1 alnsn {
1248 1.1 alnsn
1249 1.1 alnsn /*
1250 1.1 alnsn * Note: all supported 64bit arches have 32bit multiply
1251 1.1 alnsn * instruction so SLJIT_INT_OP doesn't have any overhead.
1252 1.1 alnsn */
1253 1.1 alnsn switch (BPF_OP(pc->code)) {
1254 1.1 alnsn case BPF_ADD: return SLJIT_ADD;
1255 1.1 alnsn case BPF_SUB: return SLJIT_SUB;
1256 1.1 alnsn case BPF_MUL: return SLJIT_MUL|SLJIT_INT_OP;
1257 1.1 alnsn case BPF_OR: return SLJIT_OR;
1258 1.1 alnsn case BPF_AND: return SLJIT_AND;
1259 1.1 alnsn case BPF_LSH: return SLJIT_SHL;
1260 1.1 alnsn case BPF_RSH: return SLJIT_LSHR|SLJIT_INT_OP;
1261 1.1 alnsn default:
1262 1.7 alnsn BJ_ASSERT(false);
1263 1.1 alnsn return 0;
1264 1.1 alnsn }
1265 1.1 alnsn }
1266 1.1 alnsn
1267 1.1 alnsn /*
1268 1.1 alnsn * Convert BPF_JMP operations except BPF_JA to sljit condition.
1269 1.1 alnsn */
1270 1.1 alnsn static int
1271 1.7 alnsn bpf_jmp_to_sljit_cond(const struct bpf_insn *pc, bool negate)
1272 1.1 alnsn {
1273 1.1 alnsn /*
1274 1.1 alnsn * Note: all supported 64bit arches have 32bit comparison
1275 1.1 alnsn * instructions so SLJIT_INT_OP doesn't have any overhead.
1276 1.1 alnsn */
1277 1.1 alnsn int rv = SLJIT_INT_OP;
1278 1.1 alnsn
1279 1.1 alnsn switch (BPF_OP(pc->code)) {
1280 1.1 alnsn case BPF_JGT:
1281 1.1 alnsn rv |= negate ? SLJIT_C_LESS_EQUAL : SLJIT_C_GREATER;
1282 1.1 alnsn break;
1283 1.1 alnsn case BPF_JGE:
1284 1.1 alnsn rv |= negate ? SLJIT_C_LESS : SLJIT_C_GREATER_EQUAL;
1285 1.1 alnsn break;
1286 1.1 alnsn case BPF_JEQ:
1287 1.1 alnsn rv |= negate ? SLJIT_C_NOT_EQUAL : SLJIT_C_EQUAL;
1288 1.1 alnsn break;
1289 1.1 alnsn case BPF_JSET:
1290 1.1 alnsn rv |= negate ? SLJIT_C_EQUAL : SLJIT_C_NOT_EQUAL;
1291 1.1 alnsn break;
1292 1.1 alnsn default:
1293 1.7 alnsn BJ_ASSERT(false);
1294 1.1 alnsn }
1295 1.1 alnsn
1296 1.1 alnsn return rv;
1297 1.1 alnsn }
1298 1.1 alnsn
1299 1.1 alnsn /*
1300 1.1 alnsn * Convert BPF_K and BPF_X to sljit register.
1301 1.1 alnsn */
1302 1.1 alnsn static int
1303 1.7 alnsn kx_to_reg(const struct bpf_insn *pc)
1304 1.1 alnsn {
1305 1.1 alnsn
1306 1.1 alnsn switch (BPF_SRC(pc->code)) {
1307 1.1 alnsn case BPF_K: return SLJIT_IMM;
1308 1.7 alnsn case BPF_X: return BJ_XREG;
1309 1.1 alnsn default:
1310 1.7 alnsn BJ_ASSERT(false);
1311 1.1 alnsn return 0;
1312 1.1 alnsn }
1313 1.1 alnsn }
1314 1.1 alnsn
1315 1.12 alnsn static sljit_sw
1316 1.7 alnsn kx_to_reg_arg(const struct bpf_insn *pc)
1317 1.1 alnsn {
1318 1.1 alnsn
1319 1.1 alnsn switch (BPF_SRC(pc->code)) {
1320 1.1 alnsn case BPF_K: return (uint32_t)pc->k; /* SLJIT_IMM, pc->k, */
1321 1.7 alnsn case BPF_X: return 0; /* BJ_XREG, 0, */
1322 1.1 alnsn default:
1323 1.7 alnsn BJ_ASSERT(false);
1324 1.1 alnsn return 0;
1325 1.1 alnsn }
1326 1.1 alnsn }
1327 1.1 alnsn
1328 1.4 rmind bpfjit_func_t
1329 1.4 rmind bpfjit_generate_code(bpf_ctx_t *bc, struct bpf_insn *insns, size_t insn_count)
1330 1.1 alnsn {
1331 1.1 alnsn void *rv;
1332 1.7 alnsn struct sljit_compiler *compiler;
1333 1.7 alnsn
1334 1.1 alnsn size_t i;
1335 1.1 alnsn int status;
1336 1.1 alnsn int branching, negate;
1337 1.1 alnsn unsigned int rval, mode, src;
1338 1.7 alnsn
1339 1.7 alnsn /* optimization related */
1340 1.7 alnsn bpfjit_init_mask_t initmask;
1341 1.7 alnsn int nscratches;
1342 1.1 alnsn
1343 1.1 alnsn /* a list of jumps to out-of-bound return from a generated function */
1344 1.1 alnsn struct sljit_jump **ret0;
1345 1.7 alnsn size_t ret0_size, ret0_maxsize;
1346 1.1 alnsn
1347 1.7 alnsn const struct bpf_insn *pc;
1348 1.1 alnsn struct bpfjit_insn_data *insn_dat;
1349 1.1 alnsn
1350 1.1 alnsn /* for local use */
1351 1.1 alnsn struct sljit_label *label;
1352 1.1 alnsn struct sljit_jump *jump;
1353 1.1 alnsn struct bpfjit_jump *bjump, *jtf;
1354 1.1 alnsn
1355 1.1 alnsn struct sljit_jump *to_mchain_jump;
1356 1.9 alnsn bool unconditional_ret;
1357 1.1 alnsn
1358 1.1 alnsn uint32_t jt, jf;
1359 1.1 alnsn
1360 1.1 alnsn rv = NULL;
1361 1.1 alnsn compiler = NULL;
1362 1.1 alnsn insn_dat = NULL;
1363 1.1 alnsn ret0 = NULL;
1364 1.1 alnsn
1365 1.7 alnsn if (insn_count == 0 || insn_count > SIZE_MAX / sizeof(insn_dat[0]))
1366 1.1 alnsn goto fail;
1367 1.1 alnsn
1368 1.7 alnsn insn_dat = BJ_ALLOC(insn_count * sizeof(insn_dat[0]));
1369 1.1 alnsn if (insn_dat == NULL)
1370 1.1 alnsn goto fail;
1371 1.1 alnsn
1372 1.7 alnsn if (!optimize(insns, insn_dat, insn_count,
1373 1.7 alnsn &initmask, &nscratches)) {
1374 1.1 alnsn goto fail;
1375 1.7 alnsn }
1376 1.7 alnsn
1377 1.7 alnsn #if defined(_KERNEL)
1378 1.7 alnsn /* bpf_filter() checks initialization of memwords. */
1379 1.7 alnsn BJ_ASSERT((initmask & BJ_INIT_MMASK) == 0);
1380 1.7 alnsn #endif
1381 1.1 alnsn
1382 1.1 alnsn ret0_size = 0;
1383 1.7 alnsn ret0_maxsize = 64;
1384 1.7 alnsn ret0 = BJ_ALLOC(ret0_maxsize * sizeof(ret0[0]));
1385 1.7 alnsn if (ret0 == NULL)
1386 1.1 alnsn goto fail;
1387 1.1 alnsn
1388 1.1 alnsn compiler = sljit_create_compiler();
1389 1.1 alnsn if (compiler == NULL)
1390 1.1 alnsn goto fail;
1391 1.1 alnsn
1392 1.1 alnsn #if !defined(_KERNEL) && defined(SLJIT_VERBOSE) && SLJIT_VERBOSE
1393 1.1 alnsn sljit_compiler_verbose(compiler, stderr);
1394 1.1 alnsn #endif
1395 1.1 alnsn
1396 1.7 alnsn status = sljit_emit_enter(compiler,
1397 1.7 alnsn 3, nscratches, 3, sizeof(struct bpfjit_stack));
1398 1.1 alnsn if (status != SLJIT_SUCCESS)
1399 1.1 alnsn goto fail;
1400 1.1 alnsn
1401 1.7 alnsn for (i = 0; i < BPF_MEMWORDS; i++) {
1402 1.7 alnsn if (initmask & BJ_INIT_MBIT(i)) {
1403 1.7 alnsn status = sljit_emit_op1(compiler,
1404 1.7 alnsn SLJIT_MOV_UI,
1405 1.7 alnsn SLJIT_MEM1(SLJIT_LOCALS_REG),
1406 1.7 alnsn offsetof(struct bpfjit_stack, mem) +
1407 1.7 alnsn i * sizeof(uint32_t),
1408 1.7 alnsn SLJIT_IMM, 0);
1409 1.7 alnsn if (status != SLJIT_SUCCESS)
1410 1.7 alnsn goto fail;
1411 1.7 alnsn }
1412 1.1 alnsn }
1413 1.1 alnsn
1414 1.7 alnsn if (initmask & BJ_INIT_ABIT) {
1415 1.1 alnsn /* A = 0; */
1416 1.1 alnsn status = sljit_emit_op1(compiler,
1417 1.1 alnsn SLJIT_MOV,
1418 1.7 alnsn BJ_AREG, 0,
1419 1.1 alnsn SLJIT_IMM, 0);
1420 1.1 alnsn if (status != SLJIT_SUCCESS)
1421 1.1 alnsn goto fail;
1422 1.1 alnsn }
1423 1.1 alnsn
1424 1.7 alnsn if (initmask & BJ_INIT_XBIT) {
1425 1.1 alnsn /* X = 0; */
1426 1.1 alnsn status = sljit_emit_op1(compiler,
1427 1.1 alnsn SLJIT_MOV,
1428 1.7 alnsn BJ_XREG, 0,
1429 1.1 alnsn SLJIT_IMM, 0);
1430 1.1 alnsn if (status != SLJIT_SUCCESS)
1431 1.1 alnsn goto fail;
1432 1.1 alnsn }
1433 1.1 alnsn
1434 1.1 alnsn for (i = 0; i < insn_count; i++) {
1435 1.7 alnsn if (insn_dat[i].unreachable)
1436 1.1 alnsn continue;
1437 1.1 alnsn
1438 1.1 alnsn /*
1439 1.1 alnsn * Resolve jumps to the current insn.
1440 1.1 alnsn */
1441 1.1 alnsn label = NULL;
1442 1.7 alnsn SLIST_FOREACH(bjump, &insn_dat[i].bjumps, entries) {
1443 1.7 alnsn if (bjump->sjump != NULL) {
1444 1.1 alnsn if (label == NULL)
1445 1.1 alnsn label = sljit_emit_label(compiler);
1446 1.1 alnsn if (label == NULL)
1447 1.1 alnsn goto fail;
1448 1.7 alnsn sljit_set_label(bjump->sjump, label);
1449 1.1 alnsn }
1450 1.1 alnsn }
1451 1.1 alnsn
1452 1.9 alnsn to_mchain_jump = NULL;
1453 1.9 alnsn unconditional_ret = false;
1454 1.9 alnsn
1455 1.9 alnsn if (read_pkt_insn(&insns[i], NULL)) {
1456 1.9 alnsn if (insn_dat[i].u.rdata.check_length > UINT32_MAX) {
1457 1.9 alnsn /* Jump to "return 0" unconditionally. */
1458 1.9 alnsn unconditional_ret = true;
1459 1.9 alnsn jump = sljit_emit_jump(compiler, SLJIT_JUMP);
1460 1.9 alnsn if (jump == NULL)
1461 1.9 alnsn goto fail;
1462 1.9 alnsn if (!append_jump(jump, &ret0,
1463 1.9 alnsn &ret0_size, &ret0_maxsize))
1464 1.9 alnsn goto fail;
1465 1.9 alnsn } else if (insn_dat[i].u.rdata.check_length > 0) {
1466 1.9 alnsn /* if (buflen < check_length) return 0; */
1467 1.9 alnsn jump = sljit_emit_cmp(compiler,
1468 1.9 alnsn SLJIT_C_LESS,
1469 1.9 alnsn BJ_BUFLEN, 0,
1470 1.9 alnsn SLJIT_IMM,
1471 1.9 alnsn insn_dat[i].u.rdata.check_length);
1472 1.9 alnsn if (jump == NULL)
1473 1.9 alnsn goto fail;
1474 1.1 alnsn #ifdef _KERNEL
1475 1.9 alnsn to_mchain_jump = jump;
1476 1.1 alnsn #else
1477 1.9 alnsn if (!append_jump(jump, &ret0,
1478 1.9 alnsn &ret0_size, &ret0_maxsize))
1479 1.9 alnsn goto fail;
1480 1.1 alnsn #endif
1481 1.9 alnsn }
1482 1.1 alnsn }
1483 1.1 alnsn
1484 1.1 alnsn pc = &insns[i];
1485 1.1 alnsn switch (BPF_CLASS(pc->code)) {
1486 1.1 alnsn
1487 1.1 alnsn default:
1488 1.1 alnsn goto fail;
1489 1.1 alnsn
1490 1.1 alnsn case BPF_LD:
1491 1.1 alnsn /* BPF_LD+BPF_IMM A <- k */
1492 1.1 alnsn if (pc->code == (BPF_LD|BPF_IMM)) {
1493 1.1 alnsn status = sljit_emit_op1(compiler,
1494 1.1 alnsn SLJIT_MOV,
1495 1.7 alnsn BJ_AREG, 0,
1496 1.1 alnsn SLJIT_IMM, (uint32_t)pc->k);
1497 1.1 alnsn if (status != SLJIT_SUCCESS)
1498 1.1 alnsn goto fail;
1499 1.1 alnsn
1500 1.1 alnsn continue;
1501 1.1 alnsn }
1502 1.1 alnsn
1503 1.1 alnsn /* BPF_LD+BPF_MEM A <- M[k] */
1504 1.1 alnsn if (pc->code == (BPF_LD|BPF_MEM)) {
1505 1.8 alnsn if ((uint32_t)pc->k >= BPF_MEMWORDS)
1506 1.1 alnsn goto fail;
1507 1.1 alnsn status = sljit_emit_op1(compiler,
1508 1.1 alnsn SLJIT_MOV_UI,
1509 1.7 alnsn BJ_AREG, 0,
1510 1.1 alnsn SLJIT_MEM1(SLJIT_LOCALS_REG),
1511 1.7 alnsn offsetof(struct bpfjit_stack, mem) +
1512 1.7 alnsn pc->k * sizeof(uint32_t));
1513 1.1 alnsn if (status != SLJIT_SUCCESS)
1514 1.1 alnsn goto fail;
1515 1.1 alnsn
1516 1.1 alnsn continue;
1517 1.1 alnsn }
1518 1.1 alnsn
1519 1.1 alnsn /* BPF_LD+BPF_W+BPF_LEN A <- len */
1520 1.1 alnsn if (pc->code == (BPF_LD|BPF_W|BPF_LEN)) {
1521 1.1 alnsn status = sljit_emit_op1(compiler,
1522 1.1 alnsn SLJIT_MOV,
1523 1.7 alnsn BJ_AREG, 0,
1524 1.7 alnsn BJ_WIRELEN, 0);
1525 1.1 alnsn if (status != SLJIT_SUCCESS)
1526 1.1 alnsn goto fail;
1527 1.1 alnsn
1528 1.1 alnsn continue;
1529 1.1 alnsn }
1530 1.1 alnsn
1531 1.1 alnsn mode = BPF_MODE(pc->code);
1532 1.1 alnsn if (mode != BPF_ABS && mode != BPF_IND)
1533 1.1 alnsn goto fail;
1534 1.1 alnsn
1535 1.9 alnsn if (unconditional_ret)
1536 1.9 alnsn continue;
1537 1.9 alnsn
1538 1.1 alnsn status = emit_pkt_read(compiler, pc,
1539 1.7 alnsn to_mchain_jump, &ret0, &ret0_size, &ret0_maxsize);
1540 1.1 alnsn if (status != SLJIT_SUCCESS)
1541 1.1 alnsn goto fail;
1542 1.1 alnsn
1543 1.1 alnsn continue;
1544 1.1 alnsn
1545 1.1 alnsn case BPF_LDX:
1546 1.1 alnsn mode = BPF_MODE(pc->code);
1547 1.1 alnsn
1548 1.1 alnsn /* BPF_LDX+BPF_W+BPF_IMM X <- k */
1549 1.1 alnsn if (mode == BPF_IMM) {
1550 1.1 alnsn if (BPF_SIZE(pc->code) != BPF_W)
1551 1.1 alnsn goto fail;
1552 1.1 alnsn status = sljit_emit_op1(compiler,
1553 1.1 alnsn SLJIT_MOV,
1554 1.7 alnsn BJ_XREG, 0,
1555 1.1 alnsn SLJIT_IMM, (uint32_t)pc->k);
1556 1.1 alnsn if (status != SLJIT_SUCCESS)
1557 1.1 alnsn goto fail;
1558 1.1 alnsn
1559 1.1 alnsn continue;
1560 1.1 alnsn }
1561 1.1 alnsn
1562 1.1 alnsn /* BPF_LDX+BPF_W+BPF_LEN X <- len */
1563 1.1 alnsn if (mode == BPF_LEN) {
1564 1.1 alnsn if (BPF_SIZE(pc->code) != BPF_W)
1565 1.1 alnsn goto fail;
1566 1.1 alnsn status = sljit_emit_op1(compiler,
1567 1.1 alnsn SLJIT_MOV,
1568 1.7 alnsn BJ_XREG, 0,
1569 1.7 alnsn BJ_WIRELEN, 0);
1570 1.1 alnsn if (status != SLJIT_SUCCESS)
1571 1.1 alnsn goto fail;
1572 1.1 alnsn
1573 1.1 alnsn continue;
1574 1.1 alnsn }
1575 1.1 alnsn
1576 1.1 alnsn /* BPF_LDX+BPF_W+BPF_MEM X <- M[k] */
1577 1.1 alnsn if (mode == BPF_MEM) {
1578 1.1 alnsn if (BPF_SIZE(pc->code) != BPF_W)
1579 1.1 alnsn goto fail;
1580 1.8 alnsn if ((uint32_t)pc->k >= BPF_MEMWORDS)
1581 1.1 alnsn goto fail;
1582 1.1 alnsn status = sljit_emit_op1(compiler,
1583 1.1 alnsn SLJIT_MOV_UI,
1584 1.7 alnsn BJ_XREG, 0,
1585 1.1 alnsn SLJIT_MEM1(SLJIT_LOCALS_REG),
1586 1.7 alnsn offsetof(struct bpfjit_stack, mem) +
1587 1.7 alnsn pc->k * sizeof(uint32_t));
1588 1.1 alnsn if (status != SLJIT_SUCCESS)
1589 1.1 alnsn goto fail;
1590 1.1 alnsn
1591 1.1 alnsn continue;
1592 1.1 alnsn }
1593 1.1 alnsn
1594 1.1 alnsn /* BPF_LDX+BPF_B+BPF_MSH X <- 4*(P[k:1]&0xf) */
1595 1.1 alnsn if (mode != BPF_MSH || BPF_SIZE(pc->code) != BPF_B)
1596 1.1 alnsn goto fail;
1597 1.1 alnsn
1598 1.9 alnsn if (unconditional_ret)
1599 1.9 alnsn continue;
1600 1.9 alnsn
1601 1.1 alnsn status = emit_msh(compiler, pc,
1602 1.7 alnsn to_mchain_jump, &ret0, &ret0_size, &ret0_maxsize);
1603 1.1 alnsn if (status != SLJIT_SUCCESS)
1604 1.1 alnsn goto fail;
1605 1.1 alnsn
1606 1.1 alnsn continue;
1607 1.1 alnsn
1608 1.1 alnsn case BPF_ST:
1609 1.8 alnsn if (pc->code != BPF_ST ||
1610 1.8 alnsn (uint32_t)pc->k >= BPF_MEMWORDS) {
1611 1.1 alnsn goto fail;
1612 1.8 alnsn }
1613 1.1 alnsn
1614 1.1 alnsn status = sljit_emit_op1(compiler,
1615 1.1 alnsn SLJIT_MOV_UI,
1616 1.1 alnsn SLJIT_MEM1(SLJIT_LOCALS_REG),
1617 1.7 alnsn offsetof(struct bpfjit_stack, mem) +
1618 1.7 alnsn pc->k * sizeof(uint32_t),
1619 1.7 alnsn BJ_AREG, 0);
1620 1.1 alnsn if (status != SLJIT_SUCCESS)
1621 1.1 alnsn goto fail;
1622 1.1 alnsn
1623 1.1 alnsn continue;
1624 1.1 alnsn
1625 1.1 alnsn case BPF_STX:
1626 1.8 alnsn if (pc->code != BPF_STX ||
1627 1.8 alnsn (uint32_t)pc->k >= BPF_MEMWORDS) {
1628 1.1 alnsn goto fail;
1629 1.8 alnsn }
1630 1.1 alnsn
1631 1.1 alnsn status = sljit_emit_op1(compiler,
1632 1.1 alnsn SLJIT_MOV_UI,
1633 1.1 alnsn SLJIT_MEM1(SLJIT_LOCALS_REG),
1634 1.7 alnsn offsetof(struct bpfjit_stack, mem) +
1635 1.7 alnsn pc->k * sizeof(uint32_t),
1636 1.7 alnsn BJ_XREG, 0);
1637 1.1 alnsn if (status != SLJIT_SUCCESS)
1638 1.1 alnsn goto fail;
1639 1.1 alnsn
1640 1.1 alnsn continue;
1641 1.1 alnsn
1642 1.1 alnsn case BPF_ALU:
1643 1.1 alnsn if (pc->code == (BPF_ALU|BPF_NEG)) {
1644 1.1 alnsn status = sljit_emit_op1(compiler,
1645 1.1 alnsn SLJIT_NEG,
1646 1.7 alnsn BJ_AREG, 0,
1647 1.7 alnsn BJ_AREG, 0);
1648 1.1 alnsn if (status != SLJIT_SUCCESS)
1649 1.1 alnsn goto fail;
1650 1.1 alnsn
1651 1.1 alnsn continue;
1652 1.1 alnsn }
1653 1.1 alnsn
1654 1.1 alnsn if (BPF_OP(pc->code) != BPF_DIV) {
1655 1.1 alnsn status = sljit_emit_op2(compiler,
1656 1.1 alnsn bpf_alu_to_sljit_op(pc),
1657 1.7 alnsn BJ_AREG, 0,
1658 1.7 alnsn BJ_AREG, 0,
1659 1.1 alnsn kx_to_reg(pc), kx_to_reg_arg(pc));
1660 1.1 alnsn if (status != SLJIT_SUCCESS)
1661 1.1 alnsn goto fail;
1662 1.1 alnsn
1663 1.1 alnsn continue;
1664 1.1 alnsn }
1665 1.1 alnsn
1666 1.1 alnsn /* BPF_DIV */
1667 1.1 alnsn
1668 1.1 alnsn src = BPF_SRC(pc->code);
1669 1.1 alnsn if (src != BPF_X && src != BPF_K)
1670 1.1 alnsn goto fail;
1671 1.1 alnsn
1672 1.1 alnsn /* division by zero? */
1673 1.1 alnsn if (src == BPF_X) {
1674 1.1 alnsn jump = sljit_emit_cmp(compiler,
1675 1.1 alnsn SLJIT_C_EQUAL|SLJIT_INT_OP,
1676 1.8 alnsn BJ_XREG, 0,
1677 1.1 alnsn SLJIT_IMM, 0);
1678 1.1 alnsn if (jump == NULL)
1679 1.1 alnsn goto fail;
1680 1.7 alnsn if (!append_jump(jump, &ret0,
1681 1.7 alnsn &ret0_size, &ret0_maxsize))
1682 1.7 alnsn goto fail;
1683 1.1 alnsn } else if (pc->k == 0) {
1684 1.1 alnsn jump = sljit_emit_jump(compiler, SLJIT_JUMP);
1685 1.1 alnsn if (jump == NULL)
1686 1.1 alnsn goto fail;
1687 1.7 alnsn if (!append_jump(jump, &ret0,
1688 1.7 alnsn &ret0_size, &ret0_maxsize))
1689 1.7 alnsn goto fail;
1690 1.1 alnsn }
1691 1.1 alnsn
1692 1.1 alnsn if (src == BPF_X) {
1693 1.7 alnsn status = emit_division(compiler, BJ_XREG, 0);
1694 1.1 alnsn if (status != SLJIT_SUCCESS)
1695 1.1 alnsn goto fail;
1696 1.1 alnsn } else if (pc->k != 0) {
1697 1.1 alnsn if (pc->k & (pc->k - 1)) {
1698 1.1 alnsn status = emit_division(compiler,
1699 1.1 alnsn SLJIT_IMM, (uint32_t)pc->k);
1700 1.1 alnsn } else {
1701 1.7 alnsn status = emit_pow2_division(compiler,
1702 1.1 alnsn (uint32_t)pc->k);
1703 1.1 alnsn }
1704 1.1 alnsn if (status != SLJIT_SUCCESS)
1705 1.1 alnsn goto fail;
1706 1.1 alnsn }
1707 1.1 alnsn
1708 1.1 alnsn continue;
1709 1.1 alnsn
1710 1.1 alnsn case BPF_JMP:
1711 1.7 alnsn if (BPF_OP(pc->code) == BPF_JA) {
1712 1.1 alnsn jt = jf = pc->k;
1713 1.1 alnsn } else {
1714 1.1 alnsn jt = pc->jt;
1715 1.1 alnsn jf = pc->jf;
1716 1.1 alnsn }
1717 1.1 alnsn
1718 1.1 alnsn negate = (jt == 0) ? 1 : 0;
1719 1.1 alnsn branching = (jt == jf) ? 0 : 1;
1720 1.7 alnsn jtf = insn_dat[i].u.jdata.jtf;
1721 1.1 alnsn
1722 1.1 alnsn if (branching) {
1723 1.1 alnsn if (BPF_OP(pc->code) != BPF_JSET) {
1724 1.1 alnsn jump = sljit_emit_cmp(compiler,
1725 1.1 alnsn bpf_jmp_to_sljit_cond(pc, negate),
1726 1.7 alnsn BJ_AREG, 0,
1727 1.1 alnsn kx_to_reg(pc), kx_to_reg_arg(pc));
1728 1.1 alnsn } else {
1729 1.1 alnsn status = sljit_emit_op2(compiler,
1730 1.1 alnsn SLJIT_AND,
1731 1.7 alnsn BJ_TMP1REG, 0,
1732 1.7 alnsn BJ_AREG, 0,
1733 1.1 alnsn kx_to_reg(pc), kx_to_reg_arg(pc));
1734 1.1 alnsn if (status != SLJIT_SUCCESS)
1735 1.1 alnsn goto fail;
1736 1.1 alnsn
1737 1.1 alnsn jump = sljit_emit_cmp(compiler,
1738 1.1 alnsn bpf_jmp_to_sljit_cond(pc, negate),
1739 1.7 alnsn BJ_TMP1REG, 0,
1740 1.1 alnsn SLJIT_IMM, 0);
1741 1.1 alnsn }
1742 1.1 alnsn
1743 1.1 alnsn if (jump == NULL)
1744 1.1 alnsn goto fail;
1745 1.1 alnsn
1746 1.7 alnsn BJ_ASSERT(jtf[negate].sjump == NULL);
1747 1.7 alnsn jtf[negate].sjump = jump;
1748 1.1 alnsn }
1749 1.1 alnsn
1750 1.1 alnsn if (!branching || (jt != 0 && jf != 0)) {
1751 1.1 alnsn jump = sljit_emit_jump(compiler, SLJIT_JUMP);
1752 1.1 alnsn if (jump == NULL)
1753 1.1 alnsn goto fail;
1754 1.1 alnsn
1755 1.7 alnsn BJ_ASSERT(jtf[branching].sjump == NULL);
1756 1.7 alnsn jtf[branching].sjump = jump;
1757 1.1 alnsn }
1758 1.1 alnsn
1759 1.1 alnsn continue;
1760 1.1 alnsn
1761 1.1 alnsn case BPF_RET:
1762 1.1 alnsn rval = BPF_RVAL(pc->code);
1763 1.1 alnsn if (rval == BPF_X)
1764 1.1 alnsn goto fail;
1765 1.1 alnsn
1766 1.1 alnsn /* BPF_RET+BPF_K accept k bytes */
1767 1.1 alnsn if (rval == BPF_K) {
1768 1.7 alnsn status = sljit_emit_return(compiler,
1769 1.7 alnsn SLJIT_MOV_UI,
1770 1.1 alnsn SLJIT_IMM, (uint32_t)pc->k);
1771 1.1 alnsn if (status != SLJIT_SUCCESS)
1772 1.1 alnsn goto fail;
1773 1.1 alnsn }
1774 1.1 alnsn
1775 1.1 alnsn /* BPF_RET+BPF_A accept A bytes */
1776 1.1 alnsn if (rval == BPF_A) {
1777 1.7 alnsn status = sljit_emit_return(compiler,
1778 1.7 alnsn SLJIT_MOV_UI,
1779 1.7 alnsn BJ_AREG, 0);
1780 1.1 alnsn if (status != SLJIT_SUCCESS)
1781 1.1 alnsn goto fail;
1782 1.1 alnsn }
1783 1.1 alnsn
1784 1.1 alnsn continue;
1785 1.1 alnsn
1786 1.1 alnsn case BPF_MISC:
1787 1.7 alnsn switch (BPF_MISCOP(pc->code)) {
1788 1.7 alnsn case BPF_TAX:
1789 1.1 alnsn status = sljit_emit_op1(compiler,
1790 1.1 alnsn SLJIT_MOV_UI,
1791 1.7 alnsn BJ_XREG, 0,
1792 1.7 alnsn BJ_AREG, 0);
1793 1.1 alnsn if (status != SLJIT_SUCCESS)
1794 1.1 alnsn goto fail;
1795 1.1 alnsn
1796 1.1 alnsn continue;
1797 1.1 alnsn
1798 1.7 alnsn case BPF_TXA:
1799 1.1 alnsn status = sljit_emit_op1(compiler,
1800 1.1 alnsn SLJIT_MOV,
1801 1.7 alnsn BJ_AREG, 0,
1802 1.7 alnsn BJ_XREG, 0);
1803 1.1 alnsn if (status != SLJIT_SUCCESS)
1804 1.1 alnsn goto fail;
1805 1.1 alnsn
1806 1.1 alnsn continue;
1807 1.1 alnsn }
1808 1.1 alnsn
1809 1.1 alnsn goto fail;
1810 1.1 alnsn } /* switch */
1811 1.1 alnsn } /* main loop */
1812 1.1 alnsn
1813 1.7 alnsn BJ_ASSERT(ret0_size <= ret0_maxsize);
1814 1.1 alnsn
1815 1.7 alnsn if (ret0_size > 0) {
1816 1.1 alnsn label = sljit_emit_label(compiler);
1817 1.1 alnsn if (label == NULL)
1818 1.1 alnsn goto fail;
1819 1.7 alnsn for (i = 0; i < ret0_size; i++)
1820 1.7 alnsn sljit_set_label(ret0[i], label);
1821 1.1 alnsn }
1822 1.1 alnsn
1823 1.1 alnsn status = sljit_emit_return(compiler,
1824 1.1 alnsn SLJIT_MOV_UI,
1825 1.7 alnsn SLJIT_IMM, 0);
1826 1.1 alnsn if (status != SLJIT_SUCCESS)
1827 1.1 alnsn goto fail;
1828 1.1 alnsn
1829 1.1 alnsn rv = sljit_generate_code(compiler);
1830 1.1 alnsn
1831 1.1 alnsn fail:
1832 1.1 alnsn if (compiler != NULL)
1833 1.1 alnsn sljit_free_compiler(compiler);
1834 1.1 alnsn
1835 1.1 alnsn if (insn_dat != NULL)
1836 1.7 alnsn BJ_FREE(insn_dat, insn_count * sizeof(insn_dat[0]));
1837 1.1 alnsn
1838 1.1 alnsn if (ret0 != NULL)
1839 1.7 alnsn BJ_FREE(ret0, ret0_maxsize * sizeof(ret0[0]));
1840 1.1 alnsn
1841 1.4 rmind return (bpfjit_func_t)rv;
1842 1.1 alnsn }
1843 1.1 alnsn
1844 1.1 alnsn void
1845 1.4 rmind bpfjit_free_code(bpfjit_func_t code)
1846 1.1 alnsn {
1847 1.7 alnsn
1848 1.1 alnsn sljit_free_code((void *)code);
1849 1.1 alnsn }
1850