Home | History | Annotate | Line # | Download | only in net
bpfjit.c revision 1.12
      1  1.12  alnsn /*	$NetBSD: bpfjit.c,v 1.12 2014/06/17 16:52:33 alnsn Exp $	*/
      2   1.3  rmind 
      3   1.1  alnsn /*-
      4   1.7  alnsn  * Copyright (c) 2011-2014 Alexander Nasonov.
      5   1.1  alnsn  * All rights reserved.
      6   1.1  alnsn  *
      7   1.1  alnsn  * Redistribution and use in source and binary forms, with or without
      8   1.1  alnsn  * modification, are permitted provided that the following conditions
      9   1.1  alnsn  * are met:
     10   1.1  alnsn  *
     11   1.1  alnsn  * 1. Redistributions of source code must retain the above copyright
     12   1.1  alnsn  *    notice, this list of conditions and the following disclaimer.
     13   1.1  alnsn  * 2. Redistributions in binary form must reproduce the above copyright
     14   1.1  alnsn  *    notice, this list of conditions and the following disclaimer in
     15   1.1  alnsn  *    the documentation and/or other materials provided with the
     16   1.1  alnsn  *    distribution.
     17   1.1  alnsn  *
     18   1.1  alnsn  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     19   1.1  alnsn  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     20   1.1  alnsn  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
     21   1.1  alnsn  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
     22   1.1  alnsn  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
     23   1.1  alnsn  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
     24   1.1  alnsn  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     25   1.1  alnsn  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     26   1.1  alnsn  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     27   1.1  alnsn  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
     28   1.1  alnsn  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29   1.1  alnsn  * SUCH DAMAGE.
     30   1.1  alnsn  */
     31   1.1  alnsn 
     32   1.2  alnsn #include <sys/cdefs.h>
     33   1.2  alnsn #ifdef _KERNEL
     34  1.12  alnsn __KERNEL_RCSID(0, "$NetBSD: bpfjit.c,v 1.12 2014/06/17 16:52:33 alnsn Exp $");
     35   1.2  alnsn #else
     36  1.12  alnsn __RCSID("$NetBSD: bpfjit.c,v 1.12 2014/06/17 16:52:33 alnsn Exp $");
     37   1.2  alnsn #endif
     38   1.2  alnsn 
     39   1.3  rmind #include <sys/types.h>
     40   1.3  rmind #include <sys/queue.h>
     41   1.1  alnsn 
     42   1.1  alnsn #ifndef _KERNEL
     43   1.7  alnsn #include <assert.h>
     44   1.7  alnsn #define BJ_ASSERT(c) assert(c)
     45   1.7  alnsn #else
     46   1.7  alnsn #define BJ_ASSERT(c) KASSERT(c)
     47   1.7  alnsn #endif
     48   1.7  alnsn 
     49   1.7  alnsn #ifndef _KERNEL
     50   1.3  rmind #include <stdlib.h>
     51   1.7  alnsn #define BJ_ALLOC(sz) malloc(sz)
     52   1.7  alnsn #define BJ_FREE(p, sz) free(p)
     53   1.1  alnsn #else
     54   1.3  rmind #include <sys/kmem.h>
     55   1.7  alnsn #define BJ_ALLOC(sz) kmem_alloc(sz, KM_SLEEP)
     56   1.7  alnsn #define BJ_FREE(p, sz) kmem_free(p, sz)
     57   1.1  alnsn #endif
     58   1.1  alnsn 
     59   1.1  alnsn #ifndef _KERNEL
     60   1.1  alnsn #include <limits.h>
     61   1.1  alnsn #include <stdbool.h>
     62   1.1  alnsn #include <stddef.h>
     63   1.1  alnsn #include <stdint.h>
     64   1.1  alnsn #else
     65   1.1  alnsn #include <sys/atomic.h>
     66   1.1  alnsn #include <sys/module.h>
     67   1.1  alnsn #endif
     68   1.1  alnsn 
     69   1.5  rmind #define	__BPF_PRIVATE
     70   1.5  rmind #include <net/bpf.h>
     71   1.3  rmind #include <net/bpfjit.h>
     72   1.1  alnsn #include <sljitLir.h>
     73   1.1  alnsn 
     74   1.7  alnsn #if !defined(_KERNEL) && defined(SLJIT_VERBOSE) && SLJIT_VERBOSE
     75   1.7  alnsn #include <stdio.h> /* for stderr */
     76   1.7  alnsn #endif
     77   1.7  alnsn 
     78   1.7  alnsn /*
     79   1.7  alnsn  * Permanent register assignments.
     80   1.7  alnsn  */
     81   1.7  alnsn #define BJ_BUF		SLJIT_SAVED_REG1
     82   1.7  alnsn #define BJ_WIRELEN	SLJIT_SAVED_REG2
     83   1.7  alnsn #define BJ_BUFLEN	SLJIT_SAVED_REG3
     84  1.12  alnsn #define BJ_AREG		SLJIT_SCRATCH_REG1
     85  1.12  alnsn #define BJ_TMP1REG	SLJIT_SCRATCH_REG2
     86  1.12  alnsn #define BJ_TMP2REG	SLJIT_SCRATCH_REG3
     87   1.7  alnsn #define BJ_XREG		SLJIT_TEMPORARY_EREG1
     88   1.7  alnsn #define BJ_TMP3REG	SLJIT_TEMPORARY_EREG2
     89   1.7  alnsn 
     90   1.7  alnsn typedef unsigned int bpfjit_init_mask_t;
     91   1.7  alnsn #define BJ_INIT_NOBITS  0u
     92   1.7  alnsn #define BJ_INIT_MBIT(k) (1u << (k))
     93   1.7  alnsn #define BJ_INIT_MMASK   (BJ_INIT_MBIT(BPF_MEMWORDS) - 1u)
     94   1.7  alnsn #define BJ_INIT_ABIT    BJ_INIT_MBIT(BPF_MEMWORDS)
     95   1.7  alnsn #define BJ_INIT_XBIT    BJ_INIT_MBIT(BPF_MEMWORDS + 1)
     96   1.1  alnsn 
     97   1.9  alnsn /*
     98   1.9  alnsn  * Datatype for Array Bounds Check Elimination (ABC) pass.
     99   1.9  alnsn  */
    100   1.9  alnsn typedef uint64_t bpfjit_abc_length_t;
    101   1.9  alnsn #define MAX_ABC_LENGTH (UINT32_MAX + UINT64_C(4)) /* max. width is 4 */
    102   1.8  alnsn 
    103   1.7  alnsn struct bpfjit_stack
    104   1.7  alnsn {
    105   1.7  alnsn 	uint32_t mem[BPF_MEMWORDS];
    106   1.7  alnsn #ifdef _KERNEL
    107   1.7  alnsn 	void *tmp;
    108   1.7  alnsn #endif
    109   1.7  alnsn };
    110   1.7  alnsn 
    111   1.7  alnsn /*
    112   1.7  alnsn  * Data for BPF_JMP instruction.
    113   1.7  alnsn  * Forward declaration for struct bpfjit_jump.
    114   1.1  alnsn  */
    115   1.7  alnsn struct bpfjit_jump_data;
    116   1.1  alnsn 
    117   1.1  alnsn /*
    118   1.7  alnsn  * Node of bjumps list.
    119   1.1  alnsn  */
    120   1.3  rmind struct bpfjit_jump {
    121   1.7  alnsn 	struct sljit_jump *sjump;
    122   1.7  alnsn 	SLIST_ENTRY(bpfjit_jump) entries;
    123   1.7  alnsn 	struct bpfjit_jump_data *jdata;
    124   1.1  alnsn };
    125   1.1  alnsn 
    126   1.1  alnsn /*
    127   1.1  alnsn  * Data for BPF_JMP instruction.
    128   1.1  alnsn  */
    129   1.3  rmind struct bpfjit_jump_data {
    130   1.1  alnsn 	/*
    131   1.7  alnsn 	 * These entries make up bjumps list:
    132   1.7  alnsn 	 * jtf[0] - when coming from jt path,
    133   1.7  alnsn 	 * jtf[1] - when coming from jf path.
    134   1.1  alnsn 	 */
    135   1.7  alnsn 	struct bpfjit_jump jtf[2];
    136   1.7  alnsn 	/*
    137   1.7  alnsn 	 * Length calculated by Array Bounds Check Elimination (ABC) pass.
    138   1.7  alnsn 	 */
    139   1.8  alnsn 	bpfjit_abc_length_t abc_length;
    140   1.7  alnsn 	/*
    141   1.7  alnsn 	 * Length checked by the last out-of-bounds check.
    142   1.7  alnsn 	 */
    143   1.8  alnsn 	bpfjit_abc_length_t checked_length;
    144   1.1  alnsn };
    145   1.1  alnsn 
    146   1.1  alnsn /*
    147   1.1  alnsn  * Data for "read from packet" instructions.
    148   1.1  alnsn  * See also read_pkt_insn() function below.
    149   1.1  alnsn  */
    150   1.3  rmind struct bpfjit_read_pkt_data {
    151   1.1  alnsn 	/*
    152   1.7  alnsn 	 * Length calculated by Array Bounds Check Elimination (ABC) pass.
    153   1.7  alnsn 	 */
    154   1.8  alnsn 	bpfjit_abc_length_t abc_length;
    155   1.7  alnsn 	/*
    156   1.7  alnsn 	 * If positive, emit "if (buflen < check_length) return 0"
    157   1.7  alnsn 	 * out-of-bounds check.
    158   1.9  alnsn 	 * Values greater than UINT32_MAX generate unconditional "return 0".
    159   1.1  alnsn 	 */
    160   1.8  alnsn 	bpfjit_abc_length_t check_length;
    161   1.1  alnsn };
    162   1.1  alnsn 
    163   1.1  alnsn /*
    164   1.1  alnsn  * Additional (optimization-related) data for bpf_insn.
    165   1.1  alnsn  */
    166   1.3  rmind struct bpfjit_insn_data {
    167   1.1  alnsn 	/* List of jumps to this insn. */
    168   1.7  alnsn 	SLIST_HEAD(, bpfjit_jump) bjumps;
    169   1.1  alnsn 
    170   1.1  alnsn 	union {
    171   1.7  alnsn 		struct bpfjit_jump_data     jdata;
    172   1.7  alnsn 		struct bpfjit_read_pkt_data rdata;
    173   1.7  alnsn 	} u;
    174   1.1  alnsn 
    175   1.7  alnsn 	bpfjit_init_mask_t invalid;
    176   1.7  alnsn 	bool unreachable;
    177   1.1  alnsn };
    178   1.1  alnsn 
    179   1.1  alnsn #ifdef _KERNEL
    180   1.1  alnsn 
    181   1.1  alnsn uint32_t m_xword(const struct mbuf *, uint32_t, int *);
    182   1.1  alnsn uint32_t m_xhalf(const struct mbuf *, uint32_t, int *);
    183   1.1  alnsn uint32_t m_xbyte(const struct mbuf *, uint32_t, int *);
    184   1.1  alnsn 
    185   1.1  alnsn MODULE(MODULE_CLASS_MISC, bpfjit, "sljit")
    186   1.1  alnsn 
    187   1.1  alnsn static int
    188   1.1  alnsn bpfjit_modcmd(modcmd_t cmd, void *arg)
    189   1.1  alnsn {
    190   1.1  alnsn 
    191   1.1  alnsn 	switch (cmd) {
    192   1.1  alnsn 	case MODULE_CMD_INIT:
    193   1.1  alnsn 		bpfjit_module_ops.bj_free_code = &bpfjit_free_code;
    194   1.1  alnsn 		membar_producer();
    195   1.1  alnsn 		bpfjit_module_ops.bj_generate_code = &bpfjit_generate_code;
    196   1.1  alnsn 		membar_producer();
    197   1.1  alnsn 		return 0;
    198   1.1  alnsn 
    199   1.1  alnsn 	case MODULE_CMD_FINI:
    200   1.1  alnsn 		return EOPNOTSUPP;
    201   1.1  alnsn 
    202   1.1  alnsn 	default:
    203   1.1  alnsn 		return ENOTTY;
    204   1.1  alnsn 	}
    205   1.1  alnsn }
    206   1.1  alnsn #endif
    207   1.1  alnsn 
    208   1.1  alnsn static uint32_t
    209   1.7  alnsn read_width(const struct bpf_insn *pc)
    210   1.1  alnsn {
    211   1.1  alnsn 
    212   1.1  alnsn 	switch (BPF_SIZE(pc->code)) {
    213   1.1  alnsn 	case BPF_W:
    214   1.1  alnsn 		return 4;
    215   1.1  alnsn 	case BPF_H:
    216   1.1  alnsn 		return 2;
    217   1.1  alnsn 	case BPF_B:
    218   1.1  alnsn 		return 1;
    219   1.1  alnsn 	default:
    220   1.7  alnsn 		BJ_ASSERT(false);
    221   1.1  alnsn 		return 0;
    222   1.1  alnsn 	}
    223   1.1  alnsn }
    224   1.1  alnsn 
    225   1.7  alnsn static bool
    226   1.7  alnsn grow_jumps(struct sljit_jump ***jumps, size_t *size)
    227   1.7  alnsn {
    228   1.7  alnsn 	struct sljit_jump **newptr;
    229   1.7  alnsn 	const size_t elemsz = sizeof(struct sljit_jump *);
    230   1.7  alnsn 	size_t old_size = *size;
    231   1.7  alnsn 	size_t new_size = 2 * old_size;
    232   1.7  alnsn 
    233   1.7  alnsn 	if (new_size < old_size || new_size > SIZE_MAX / elemsz)
    234   1.7  alnsn 		return false;
    235   1.7  alnsn 
    236   1.7  alnsn 	newptr = BJ_ALLOC(new_size * elemsz);
    237   1.7  alnsn 	if (newptr == NULL)
    238   1.7  alnsn 		return false;
    239   1.7  alnsn 
    240   1.7  alnsn 	memcpy(newptr, *jumps, old_size * elemsz);
    241   1.7  alnsn 	BJ_FREE(*jumps, old_size * elemsz);
    242   1.7  alnsn 
    243   1.7  alnsn 	*jumps = newptr;
    244   1.7  alnsn 	*size = new_size;
    245   1.7  alnsn 	return true;
    246   1.7  alnsn }
    247   1.7  alnsn 
    248   1.7  alnsn static bool
    249   1.7  alnsn append_jump(struct sljit_jump *jump, struct sljit_jump ***jumps,
    250   1.7  alnsn     size_t *size, size_t *max_size)
    251   1.1  alnsn {
    252   1.7  alnsn 	if (*size == *max_size && !grow_jumps(jumps, max_size))
    253   1.7  alnsn 		return false;
    254   1.1  alnsn 
    255   1.7  alnsn 	(*jumps)[(*size)++] = jump;
    256   1.7  alnsn 	return true;
    257   1.1  alnsn }
    258   1.1  alnsn 
    259   1.1  alnsn /*
    260   1.1  alnsn  * Generate code for BPF_LD+BPF_B+BPF_ABS    A <- P[k:1].
    261   1.1  alnsn  */
    262   1.1  alnsn static int
    263   1.1  alnsn emit_read8(struct sljit_compiler* compiler, uint32_t k)
    264   1.1  alnsn {
    265   1.1  alnsn 
    266   1.1  alnsn 	return sljit_emit_op1(compiler,
    267   1.1  alnsn 	    SLJIT_MOV_UB,
    268   1.7  alnsn 	    BJ_AREG, 0,
    269   1.7  alnsn 	    SLJIT_MEM1(BJ_BUF), k);
    270   1.1  alnsn }
    271   1.1  alnsn 
    272   1.1  alnsn /*
    273   1.1  alnsn  * Generate code for BPF_LD+BPF_H+BPF_ABS    A <- P[k:2].
    274   1.1  alnsn  */
    275   1.1  alnsn static int
    276   1.1  alnsn emit_read16(struct sljit_compiler* compiler, uint32_t k)
    277   1.1  alnsn {
    278   1.1  alnsn 	int status;
    279   1.1  alnsn 
    280   1.1  alnsn 	/* tmp1 = buf[k]; */
    281   1.1  alnsn 	status = sljit_emit_op1(compiler,
    282   1.1  alnsn 	    SLJIT_MOV_UB,
    283   1.7  alnsn 	    BJ_TMP1REG, 0,
    284   1.7  alnsn 	    SLJIT_MEM1(BJ_BUF), k);
    285   1.1  alnsn 	if (status != SLJIT_SUCCESS)
    286   1.1  alnsn 		return status;
    287   1.1  alnsn 
    288   1.1  alnsn 	/* A = buf[k+1]; */
    289   1.1  alnsn 	status = sljit_emit_op1(compiler,
    290   1.1  alnsn 	    SLJIT_MOV_UB,
    291   1.7  alnsn 	    BJ_AREG, 0,
    292   1.7  alnsn 	    SLJIT_MEM1(BJ_BUF), k+1);
    293   1.1  alnsn 	if (status != SLJIT_SUCCESS)
    294   1.1  alnsn 		return status;
    295   1.1  alnsn 
    296   1.1  alnsn 	/* tmp1 = tmp1 << 8; */
    297   1.1  alnsn 	status = sljit_emit_op2(compiler,
    298   1.1  alnsn 	    SLJIT_SHL,
    299   1.7  alnsn 	    BJ_TMP1REG, 0,
    300   1.7  alnsn 	    BJ_TMP1REG, 0,
    301   1.1  alnsn 	    SLJIT_IMM, 8);
    302   1.1  alnsn 	if (status != SLJIT_SUCCESS)
    303   1.1  alnsn 		return status;
    304   1.1  alnsn 
    305   1.1  alnsn 	/* A = A + tmp1; */
    306   1.1  alnsn 	status = sljit_emit_op2(compiler,
    307   1.1  alnsn 	    SLJIT_ADD,
    308   1.7  alnsn 	    BJ_AREG, 0,
    309   1.7  alnsn 	    BJ_AREG, 0,
    310   1.7  alnsn 	    BJ_TMP1REG, 0);
    311   1.1  alnsn 	return status;
    312   1.1  alnsn }
    313   1.1  alnsn 
    314   1.1  alnsn /*
    315   1.1  alnsn  * Generate code for BPF_LD+BPF_W+BPF_ABS    A <- P[k:4].
    316   1.1  alnsn  */
    317   1.1  alnsn static int
    318   1.1  alnsn emit_read32(struct sljit_compiler* compiler, uint32_t k)
    319   1.1  alnsn {
    320   1.1  alnsn 	int status;
    321   1.1  alnsn 
    322   1.1  alnsn 	/* tmp1 = buf[k]; */
    323   1.1  alnsn 	status = sljit_emit_op1(compiler,
    324   1.1  alnsn 	    SLJIT_MOV_UB,
    325   1.7  alnsn 	    BJ_TMP1REG, 0,
    326   1.7  alnsn 	    SLJIT_MEM1(BJ_BUF), k);
    327   1.1  alnsn 	if (status != SLJIT_SUCCESS)
    328   1.1  alnsn 		return status;
    329   1.1  alnsn 
    330   1.1  alnsn 	/* tmp2 = buf[k+1]; */
    331   1.1  alnsn 	status = sljit_emit_op1(compiler,
    332   1.1  alnsn 	    SLJIT_MOV_UB,
    333   1.7  alnsn 	    BJ_TMP2REG, 0,
    334   1.7  alnsn 	    SLJIT_MEM1(BJ_BUF), k+1);
    335   1.1  alnsn 	if (status != SLJIT_SUCCESS)
    336   1.1  alnsn 		return status;
    337   1.1  alnsn 
    338   1.1  alnsn 	/* A = buf[k+3]; */
    339   1.1  alnsn 	status = sljit_emit_op1(compiler,
    340   1.1  alnsn 	    SLJIT_MOV_UB,
    341   1.7  alnsn 	    BJ_AREG, 0,
    342   1.7  alnsn 	    SLJIT_MEM1(BJ_BUF), k+3);
    343   1.1  alnsn 	if (status != SLJIT_SUCCESS)
    344   1.1  alnsn 		return status;
    345   1.1  alnsn 
    346   1.1  alnsn 	/* tmp1 = tmp1 << 24; */
    347   1.1  alnsn 	status = sljit_emit_op2(compiler,
    348   1.1  alnsn 	    SLJIT_SHL,
    349   1.7  alnsn 	    BJ_TMP1REG, 0,
    350   1.7  alnsn 	    BJ_TMP1REG, 0,
    351   1.1  alnsn 	    SLJIT_IMM, 24);
    352   1.1  alnsn 	if (status != SLJIT_SUCCESS)
    353   1.1  alnsn 		return status;
    354   1.1  alnsn 
    355   1.1  alnsn 	/* A = A + tmp1; */
    356   1.1  alnsn 	status = sljit_emit_op2(compiler,
    357   1.1  alnsn 	    SLJIT_ADD,
    358   1.7  alnsn 	    BJ_AREG, 0,
    359   1.7  alnsn 	    BJ_AREG, 0,
    360   1.7  alnsn 	    BJ_TMP1REG, 0);
    361   1.1  alnsn 	if (status != SLJIT_SUCCESS)
    362   1.1  alnsn 		return status;
    363   1.1  alnsn 
    364   1.1  alnsn 	/* tmp1 = buf[k+2]; */
    365   1.1  alnsn 	status = sljit_emit_op1(compiler,
    366   1.1  alnsn 	    SLJIT_MOV_UB,
    367   1.7  alnsn 	    BJ_TMP1REG, 0,
    368   1.7  alnsn 	    SLJIT_MEM1(BJ_BUF), k+2);
    369   1.1  alnsn 	if (status != SLJIT_SUCCESS)
    370   1.1  alnsn 		return status;
    371   1.1  alnsn 
    372   1.1  alnsn 	/* tmp2 = tmp2 << 16; */
    373   1.1  alnsn 	status = sljit_emit_op2(compiler,
    374   1.1  alnsn 	    SLJIT_SHL,
    375   1.7  alnsn 	    BJ_TMP2REG, 0,
    376   1.7  alnsn 	    BJ_TMP2REG, 0,
    377   1.1  alnsn 	    SLJIT_IMM, 16);
    378   1.1  alnsn 	if (status != SLJIT_SUCCESS)
    379   1.1  alnsn 		return status;
    380   1.1  alnsn 
    381   1.1  alnsn 	/* A = A + tmp2; */
    382   1.1  alnsn 	status = sljit_emit_op2(compiler,
    383   1.1  alnsn 	    SLJIT_ADD,
    384   1.7  alnsn 	    BJ_AREG, 0,
    385   1.7  alnsn 	    BJ_AREG, 0,
    386   1.7  alnsn 	    BJ_TMP2REG, 0);
    387   1.1  alnsn 	if (status != SLJIT_SUCCESS)
    388   1.1  alnsn 		return status;
    389   1.1  alnsn 
    390   1.1  alnsn 	/* tmp1 = tmp1 << 8; */
    391   1.1  alnsn 	status = sljit_emit_op2(compiler,
    392   1.1  alnsn 	    SLJIT_SHL,
    393   1.7  alnsn 	    BJ_TMP1REG, 0,
    394   1.7  alnsn 	    BJ_TMP1REG, 0,
    395   1.1  alnsn 	    SLJIT_IMM, 8);
    396   1.1  alnsn 	if (status != SLJIT_SUCCESS)
    397   1.1  alnsn 		return status;
    398   1.1  alnsn 
    399   1.1  alnsn 	/* A = A + tmp1; */
    400   1.1  alnsn 	status = sljit_emit_op2(compiler,
    401   1.1  alnsn 	    SLJIT_ADD,
    402   1.7  alnsn 	    BJ_AREG, 0,
    403   1.7  alnsn 	    BJ_AREG, 0,
    404   1.7  alnsn 	    BJ_TMP1REG, 0);
    405   1.1  alnsn 	return status;
    406   1.1  alnsn }
    407   1.1  alnsn 
    408   1.1  alnsn #ifdef _KERNEL
    409   1.1  alnsn /*
    410   1.1  alnsn  * Generate m_xword/m_xhalf/m_xbyte call.
    411   1.1  alnsn  *
    412   1.1  alnsn  * pc is one of:
    413   1.1  alnsn  * BPF_LD+BPF_W+BPF_ABS    A <- P[k:4]
    414   1.1  alnsn  * BPF_LD+BPF_H+BPF_ABS    A <- P[k:2]
    415   1.1  alnsn  * BPF_LD+BPF_B+BPF_ABS    A <- P[k:1]
    416   1.1  alnsn  * BPF_LD+BPF_W+BPF_IND    A <- P[X+k:4]
    417   1.1  alnsn  * BPF_LD+BPF_H+BPF_IND    A <- P[X+k:2]
    418   1.1  alnsn  * BPF_LD+BPF_B+BPF_IND    A <- P[X+k:1]
    419   1.1  alnsn  * BPF_LDX+BPF_B+BPF_MSH   X <- 4*(P[k:1]&0xf)
    420   1.1  alnsn  *
    421   1.7  alnsn  * The dst variable should be
    422   1.7  alnsn  *  - BJ_AREG when emitting code for BPF_LD instructions,
    423   1.7  alnsn  *  - BJ_XREG or any of BJ_TMP[1-3]REG registers when emitting
    424   1.7  alnsn  *    code for BPF_MSH instruction.
    425   1.1  alnsn  */
    426   1.1  alnsn static int
    427   1.7  alnsn emit_xcall(struct sljit_compiler* compiler, const struct bpf_insn *pc,
    428  1.12  alnsn     int dst, sljit_sw dstw, struct sljit_jump **ret0_jump,
    429   1.1  alnsn     uint32_t (*fn)(const struct mbuf *, uint32_t, int *))
    430   1.1  alnsn {
    431   1.7  alnsn #if BJ_XREG == SLJIT_RETURN_REG   || \
    432  1.12  alnsn     BJ_XREG == SLJIT_SCRATCH_REG1 || \
    433  1.12  alnsn     BJ_XREG == SLJIT_SCRATCH_REG2 || \
    434  1.12  alnsn     BJ_XREG == SLJIT_SCRATCH_REG3
    435   1.1  alnsn #error "Not supported assignment of registers."
    436   1.1  alnsn #endif
    437   1.1  alnsn 	int status;
    438   1.1  alnsn 
    439   1.1  alnsn 	/*
    440   1.1  alnsn 	 * The third argument of fn is an address on stack.
    441   1.1  alnsn 	 */
    442   1.7  alnsn 	const int arg3_offset = offsetof(struct bpfjit_stack, tmp);
    443   1.1  alnsn 
    444   1.1  alnsn 	if (BPF_CLASS(pc->code) == BPF_LDX) {
    445   1.1  alnsn 		/* save A */
    446   1.1  alnsn 		status = sljit_emit_op1(compiler,
    447   1.1  alnsn 		    SLJIT_MOV,
    448   1.7  alnsn 		    BJ_TMP3REG, 0,
    449   1.7  alnsn 		    BJ_AREG, 0);
    450   1.1  alnsn 		if (status != SLJIT_SUCCESS)
    451   1.1  alnsn 			return status;
    452   1.1  alnsn 	}
    453   1.1  alnsn 
    454   1.1  alnsn 	/*
    455   1.1  alnsn 	 * Prepare registers for fn(buf, k, &err) call.
    456   1.1  alnsn 	 */
    457   1.1  alnsn 	status = sljit_emit_op1(compiler,
    458   1.1  alnsn 	    SLJIT_MOV,
    459  1.12  alnsn 	    SLJIT_SCRATCH_REG1, 0,
    460   1.7  alnsn 	    BJ_BUF, 0);
    461   1.1  alnsn 	if (status != SLJIT_SUCCESS)
    462   1.1  alnsn 		return status;
    463   1.1  alnsn 
    464   1.1  alnsn 	if (BPF_CLASS(pc->code) == BPF_LD && BPF_MODE(pc->code) == BPF_IND) {
    465   1.1  alnsn 		status = sljit_emit_op2(compiler,
    466   1.1  alnsn 		    SLJIT_ADD,
    467  1.12  alnsn 		    SLJIT_SCRATCH_REG2, 0,
    468   1.7  alnsn 		    BJ_XREG, 0,
    469   1.1  alnsn 		    SLJIT_IMM, (uint32_t)pc->k);
    470   1.1  alnsn 	} else {
    471   1.1  alnsn 		status = sljit_emit_op1(compiler,
    472   1.1  alnsn 		    SLJIT_MOV,
    473  1.12  alnsn 		    SLJIT_SCRATCH_REG2, 0,
    474   1.1  alnsn 		    SLJIT_IMM, (uint32_t)pc->k);
    475   1.1  alnsn 	}
    476   1.1  alnsn 
    477   1.1  alnsn 	if (status != SLJIT_SUCCESS)
    478   1.1  alnsn 		return status;
    479   1.1  alnsn 
    480   1.1  alnsn 	status = sljit_get_local_base(compiler,
    481  1.12  alnsn 	    SLJIT_SCRATCH_REG3, 0, arg3_offset);
    482   1.1  alnsn 	if (status != SLJIT_SUCCESS)
    483   1.1  alnsn 		return status;
    484   1.1  alnsn 
    485   1.1  alnsn 	/* fn(buf, k, &err); */
    486   1.1  alnsn 	status = sljit_emit_ijump(compiler,
    487   1.1  alnsn 	    SLJIT_CALL3,
    488   1.1  alnsn 	    SLJIT_IMM, SLJIT_FUNC_OFFSET(fn));
    489   1.1  alnsn 
    490   1.7  alnsn 	if (dst != SLJIT_RETURN_REG) {
    491   1.1  alnsn 		/* move return value to dst */
    492   1.1  alnsn 		status = sljit_emit_op1(compiler,
    493   1.1  alnsn 		    SLJIT_MOV,
    494   1.1  alnsn 		    dst, dstw,
    495   1.1  alnsn 		    SLJIT_RETURN_REG, 0);
    496   1.1  alnsn 		if (status != SLJIT_SUCCESS)
    497   1.1  alnsn 			return status;
    498   1.7  alnsn 	}
    499   1.1  alnsn 
    500   1.7  alnsn 	if (BPF_CLASS(pc->code) == BPF_LDX) {
    501   1.1  alnsn 		/* restore A */
    502   1.1  alnsn 		status = sljit_emit_op1(compiler,
    503   1.1  alnsn 		    SLJIT_MOV,
    504   1.7  alnsn 		    BJ_AREG, 0,
    505   1.7  alnsn 		    BJ_TMP3REG, 0);
    506   1.1  alnsn 		if (status != SLJIT_SUCCESS)
    507   1.1  alnsn 			return status;
    508   1.1  alnsn 	}
    509   1.1  alnsn 
    510   1.1  alnsn 	/* tmp3 = *err; */
    511   1.1  alnsn 	status = sljit_emit_op1(compiler,
    512   1.1  alnsn 	    SLJIT_MOV_UI,
    513  1.12  alnsn 	    SLJIT_SCRATCH_REG3, 0,
    514   1.1  alnsn 	    SLJIT_MEM1(SLJIT_LOCALS_REG), arg3_offset);
    515   1.1  alnsn 	if (status != SLJIT_SUCCESS)
    516   1.1  alnsn 		return status;
    517   1.1  alnsn 
    518   1.1  alnsn 	/* if (tmp3 != 0) return 0; */
    519   1.1  alnsn 	*ret0_jump = sljit_emit_cmp(compiler,
    520   1.1  alnsn 	    SLJIT_C_NOT_EQUAL,
    521  1.12  alnsn 	    SLJIT_SCRATCH_REG3, 0,
    522   1.1  alnsn 	    SLJIT_IMM, 0);
    523   1.1  alnsn 	if (*ret0_jump == NULL)
    524   1.1  alnsn 		return SLJIT_ERR_ALLOC_FAILED;
    525   1.1  alnsn 
    526   1.1  alnsn 	return status;
    527   1.1  alnsn }
    528   1.1  alnsn #endif
    529   1.1  alnsn 
    530   1.1  alnsn /*
    531   1.1  alnsn  * Generate code for
    532   1.1  alnsn  * BPF_LD+BPF_W+BPF_ABS    A <- P[k:4]
    533   1.1  alnsn  * BPF_LD+BPF_H+BPF_ABS    A <- P[k:2]
    534   1.1  alnsn  * BPF_LD+BPF_B+BPF_ABS    A <- P[k:1]
    535   1.1  alnsn  * BPF_LD+BPF_W+BPF_IND    A <- P[X+k:4]
    536   1.1  alnsn  * BPF_LD+BPF_H+BPF_IND    A <- P[X+k:2]
    537   1.1  alnsn  * BPF_LD+BPF_B+BPF_IND    A <- P[X+k:1]
    538   1.1  alnsn  */
    539   1.1  alnsn static int
    540   1.1  alnsn emit_pkt_read(struct sljit_compiler* compiler,
    541   1.7  alnsn     const struct bpf_insn *pc, struct sljit_jump *to_mchain_jump,
    542   1.7  alnsn     struct sljit_jump ***ret0, size_t *ret0_size, size_t *ret0_maxsize)
    543   1.1  alnsn {
    544   1.6  pooka 	int status = 0; /* XXX gcc 4.1 */
    545   1.1  alnsn 	uint32_t width;
    546   1.1  alnsn 	struct sljit_jump *jump;
    547   1.1  alnsn #ifdef _KERNEL
    548   1.1  alnsn 	struct sljit_label *label;
    549   1.1  alnsn 	struct sljit_jump *over_mchain_jump;
    550   1.1  alnsn 	const bool check_zero_buflen = (to_mchain_jump != NULL);
    551   1.1  alnsn #endif
    552   1.1  alnsn 	const uint32_t k = pc->k;
    553   1.1  alnsn 
    554   1.1  alnsn #ifdef _KERNEL
    555   1.1  alnsn 	if (to_mchain_jump == NULL) {
    556   1.1  alnsn 		to_mchain_jump = sljit_emit_cmp(compiler,
    557   1.1  alnsn 		    SLJIT_C_EQUAL,
    558   1.7  alnsn 		    BJ_BUFLEN, 0,
    559   1.1  alnsn 		    SLJIT_IMM, 0);
    560   1.1  alnsn 		if (to_mchain_jump == NULL)
    561   1.7  alnsn 			return SLJIT_ERR_ALLOC_FAILED;
    562   1.1  alnsn 	}
    563   1.1  alnsn #endif
    564   1.1  alnsn 
    565   1.1  alnsn 	width = read_width(pc);
    566   1.1  alnsn 
    567   1.1  alnsn 	if (BPF_MODE(pc->code) == BPF_IND) {
    568   1.1  alnsn 		/* tmp1 = buflen - (pc->k + width); */
    569   1.1  alnsn 		status = sljit_emit_op2(compiler,
    570   1.1  alnsn 		    SLJIT_SUB,
    571   1.7  alnsn 		    BJ_TMP1REG, 0,
    572   1.7  alnsn 		    BJ_BUFLEN, 0,
    573   1.1  alnsn 		    SLJIT_IMM, k + width);
    574   1.1  alnsn 		if (status != SLJIT_SUCCESS)
    575   1.1  alnsn 			return status;
    576   1.1  alnsn 
    577   1.1  alnsn 		/* buf += X; */
    578   1.1  alnsn 		status = sljit_emit_op2(compiler,
    579   1.1  alnsn 		    SLJIT_ADD,
    580   1.7  alnsn 		    BJ_BUF, 0,
    581   1.7  alnsn 		    BJ_BUF, 0,
    582   1.7  alnsn 		    BJ_XREG, 0);
    583   1.1  alnsn 		if (status != SLJIT_SUCCESS)
    584   1.1  alnsn 			return status;
    585   1.1  alnsn 
    586   1.1  alnsn 		/* if (tmp1 < X) return 0; */
    587   1.1  alnsn 		jump = sljit_emit_cmp(compiler,
    588   1.1  alnsn 		    SLJIT_C_LESS,
    589   1.7  alnsn 		    BJ_TMP1REG, 0,
    590   1.7  alnsn 		    BJ_XREG, 0);
    591   1.1  alnsn 		if (jump == NULL)
    592   1.7  alnsn 			return SLJIT_ERR_ALLOC_FAILED;
    593   1.7  alnsn 		if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
    594   1.7  alnsn 			return SLJIT_ERR_ALLOC_FAILED;
    595   1.1  alnsn 	}
    596   1.1  alnsn 
    597   1.1  alnsn 	switch (width) {
    598   1.1  alnsn 	case 4:
    599   1.1  alnsn 		status = emit_read32(compiler, k);
    600   1.1  alnsn 		break;
    601   1.1  alnsn 	case 2:
    602   1.1  alnsn 		status = emit_read16(compiler, k);
    603   1.1  alnsn 		break;
    604   1.1  alnsn 	case 1:
    605   1.1  alnsn 		status = emit_read8(compiler, k);
    606   1.1  alnsn 		break;
    607   1.1  alnsn 	}
    608   1.1  alnsn 
    609   1.1  alnsn 	if (status != SLJIT_SUCCESS)
    610   1.1  alnsn 		return status;
    611   1.1  alnsn 
    612   1.1  alnsn 	if (BPF_MODE(pc->code) == BPF_IND) {
    613   1.1  alnsn 		/* buf -= X; */
    614   1.1  alnsn 		status = sljit_emit_op2(compiler,
    615   1.1  alnsn 		    SLJIT_SUB,
    616   1.7  alnsn 		    BJ_BUF, 0,
    617   1.7  alnsn 		    BJ_BUF, 0,
    618   1.7  alnsn 		    BJ_XREG, 0);
    619   1.1  alnsn 		if (status != SLJIT_SUCCESS)
    620   1.1  alnsn 			return status;
    621   1.1  alnsn 	}
    622   1.1  alnsn 
    623   1.1  alnsn #ifdef _KERNEL
    624   1.1  alnsn 	over_mchain_jump = sljit_emit_jump(compiler, SLJIT_JUMP);
    625   1.1  alnsn 	if (over_mchain_jump == NULL)
    626   1.7  alnsn 		return SLJIT_ERR_ALLOC_FAILED;
    627   1.1  alnsn 
    628   1.1  alnsn 	/* entry point to mchain handler */
    629   1.1  alnsn 	label = sljit_emit_label(compiler);
    630   1.1  alnsn 	if (label == NULL)
    631   1.7  alnsn 		return SLJIT_ERR_ALLOC_FAILED;
    632   1.1  alnsn 	sljit_set_label(to_mchain_jump, label);
    633   1.1  alnsn 
    634   1.1  alnsn 	if (check_zero_buflen) {
    635   1.1  alnsn 		/* if (buflen != 0) return 0; */
    636   1.1  alnsn 		jump = sljit_emit_cmp(compiler,
    637   1.1  alnsn 		    SLJIT_C_NOT_EQUAL,
    638   1.7  alnsn 		    BJ_BUFLEN, 0,
    639   1.1  alnsn 		    SLJIT_IMM, 0);
    640   1.1  alnsn 		if (jump == NULL)
    641   1.1  alnsn 			return SLJIT_ERR_ALLOC_FAILED;
    642   1.7  alnsn 		if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
    643   1.7  alnsn 			return SLJIT_ERR_ALLOC_FAILED;
    644   1.1  alnsn 	}
    645   1.1  alnsn 
    646   1.1  alnsn 	switch (width) {
    647   1.1  alnsn 	case 4:
    648   1.7  alnsn 		status = emit_xcall(compiler, pc, BJ_AREG, 0, &jump, &m_xword);
    649   1.1  alnsn 		break;
    650   1.1  alnsn 	case 2:
    651   1.7  alnsn 		status = emit_xcall(compiler, pc, BJ_AREG, 0, &jump, &m_xhalf);
    652   1.1  alnsn 		break;
    653   1.1  alnsn 	case 1:
    654   1.7  alnsn 		status = emit_xcall(compiler, pc, BJ_AREG, 0, &jump, &m_xbyte);
    655   1.1  alnsn 		break;
    656   1.1  alnsn 	}
    657   1.1  alnsn 
    658   1.1  alnsn 	if (status != SLJIT_SUCCESS)
    659   1.1  alnsn 		return status;
    660   1.1  alnsn 
    661   1.7  alnsn 	if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
    662   1.7  alnsn 		return SLJIT_ERR_ALLOC_FAILED;
    663   1.1  alnsn 
    664   1.1  alnsn 	label = sljit_emit_label(compiler);
    665   1.1  alnsn 	if (label == NULL)
    666   1.1  alnsn 		return SLJIT_ERR_ALLOC_FAILED;
    667   1.1  alnsn 	sljit_set_label(over_mchain_jump, label);
    668   1.1  alnsn #endif
    669   1.1  alnsn 
    670   1.1  alnsn 	return status;
    671   1.1  alnsn }
    672   1.1  alnsn 
    673   1.1  alnsn /*
    674   1.1  alnsn  * Generate code for BPF_LDX+BPF_B+BPF_MSH    X <- 4*(P[k:1]&0xf).
    675   1.1  alnsn  */
    676   1.1  alnsn static int
    677   1.1  alnsn emit_msh(struct sljit_compiler* compiler,
    678   1.7  alnsn     const struct bpf_insn *pc, struct sljit_jump *to_mchain_jump,
    679   1.7  alnsn     struct sljit_jump ***ret0, size_t *ret0_size, size_t *ret0_maxsize)
    680   1.1  alnsn {
    681   1.1  alnsn 	int status;
    682   1.1  alnsn #ifdef _KERNEL
    683   1.1  alnsn 	struct sljit_label *label;
    684   1.1  alnsn 	struct sljit_jump *jump, *over_mchain_jump;
    685   1.1  alnsn 	const bool check_zero_buflen = (to_mchain_jump != NULL);
    686   1.1  alnsn #endif
    687   1.1  alnsn 	const uint32_t k = pc->k;
    688   1.1  alnsn 
    689   1.1  alnsn #ifdef _KERNEL
    690   1.1  alnsn 	if (to_mchain_jump == NULL) {
    691   1.1  alnsn 		to_mchain_jump = sljit_emit_cmp(compiler,
    692   1.1  alnsn 		    SLJIT_C_EQUAL,
    693   1.7  alnsn 		    BJ_BUFLEN, 0,
    694   1.1  alnsn 		    SLJIT_IMM, 0);
    695   1.1  alnsn 		if (to_mchain_jump == NULL)
    696   1.7  alnsn 			return SLJIT_ERR_ALLOC_FAILED;
    697   1.1  alnsn 	}
    698   1.1  alnsn #endif
    699   1.1  alnsn 
    700   1.1  alnsn 	/* tmp1 = buf[k] */
    701   1.1  alnsn 	status = sljit_emit_op1(compiler,
    702   1.1  alnsn 	    SLJIT_MOV_UB,
    703   1.7  alnsn 	    BJ_TMP1REG, 0,
    704   1.7  alnsn 	    SLJIT_MEM1(BJ_BUF), k);
    705   1.1  alnsn 	if (status != SLJIT_SUCCESS)
    706   1.1  alnsn 		return status;
    707   1.1  alnsn 
    708   1.1  alnsn 	/* tmp1 &= 0xf */
    709   1.1  alnsn 	status = sljit_emit_op2(compiler,
    710   1.1  alnsn 	    SLJIT_AND,
    711   1.7  alnsn 	    BJ_TMP1REG, 0,
    712   1.7  alnsn 	    BJ_TMP1REG, 0,
    713   1.1  alnsn 	    SLJIT_IMM, 0xf);
    714   1.1  alnsn 	if (status != SLJIT_SUCCESS)
    715   1.1  alnsn 		return status;
    716   1.1  alnsn 
    717   1.1  alnsn 	/* tmp1 = tmp1 << 2 */
    718   1.1  alnsn 	status = sljit_emit_op2(compiler,
    719   1.1  alnsn 	    SLJIT_SHL,
    720   1.7  alnsn 	    BJ_XREG, 0,
    721   1.7  alnsn 	    BJ_TMP1REG, 0,
    722   1.1  alnsn 	    SLJIT_IMM, 2);
    723   1.1  alnsn 	if (status != SLJIT_SUCCESS)
    724   1.1  alnsn 		return status;
    725   1.1  alnsn 
    726   1.1  alnsn #ifdef _KERNEL
    727   1.1  alnsn 	over_mchain_jump = sljit_emit_jump(compiler, SLJIT_JUMP);
    728   1.1  alnsn 	if (over_mchain_jump == NULL)
    729   1.1  alnsn 		return SLJIT_ERR_ALLOC_FAILED;
    730   1.1  alnsn 
    731   1.1  alnsn 	/* entry point to mchain handler */
    732   1.1  alnsn 	label = sljit_emit_label(compiler);
    733   1.1  alnsn 	if (label == NULL)
    734   1.1  alnsn 		return SLJIT_ERR_ALLOC_FAILED;
    735   1.1  alnsn 	sljit_set_label(to_mchain_jump, label);
    736   1.1  alnsn 
    737   1.1  alnsn 	if (check_zero_buflen) {
    738   1.1  alnsn 		/* if (buflen != 0) return 0; */
    739   1.1  alnsn 		jump = sljit_emit_cmp(compiler,
    740   1.1  alnsn 		    SLJIT_C_NOT_EQUAL,
    741   1.7  alnsn 		    BJ_BUFLEN, 0,
    742   1.1  alnsn 		    SLJIT_IMM, 0);
    743   1.1  alnsn 		if (jump == NULL)
    744   1.7  alnsn 			return SLJIT_ERR_ALLOC_FAILED;
    745   1.7  alnsn 		if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
    746   1.7  alnsn 			return SLJIT_ERR_ALLOC_FAILED;
    747   1.1  alnsn 	}
    748   1.1  alnsn 
    749   1.7  alnsn 	status = emit_xcall(compiler, pc, BJ_TMP1REG, 0, &jump, &m_xbyte);
    750   1.1  alnsn 	if (status != SLJIT_SUCCESS)
    751   1.1  alnsn 		return status;
    752   1.7  alnsn 
    753   1.7  alnsn 	if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
    754   1.7  alnsn 		return SLJIT_ERR_ALLOC_FAILED;
    755   1.1  alnsn 
    756   1.1  alnsn 	/* tmp1 &= 0xf */
    757   1.1  alnsn 	status = sljit_emit_op2(compiler,
    758   1.1  alnsn 	    SLJIT_AND,
    759   1.7  alnsn 	    BJ_TMP1REG, 0,
    760   1.7  alnsn 	    BJ_TMP1REG, 0,
    761   1.1  alnsn 	    SLJIT_IMM, 0xf);
    762   1.1  alnsn 	if (status != SLJIT_SUCCESS)
    763   1.1  alnsn 		return status;
    764   1.1  alnsn 
    765   1.1  alnsn 	/* tmp1 = tmp1 << 2 */
    766   1.1  alnsn 	status = sljit_emit_op2(compiler,
    767   1.1  alnsn 	    SLJIT_SHL,
    768   1.7  alnsn 	    BJ_XREG, 0,
    769   1.7  alnsn 	    BJ_TMP1REG, 0,
    770   1.1  alnsn 	    SLJIT_IMM, 2);
    771   1.1  alnsn 	if (status != SLJIT_SUCCESS)
    772   1.1  alnsn 		return status;
    773   1.1  alnsn 
    774   1.1  alnsn 
    775   1.1  alnsn 	label = sljit_emit_label(compiler);
    776   1.1  alnsn 	if (label == NULL)
    777   1.1  alnsn 		return SLJIT_ERR_ALLOC_FAILED;
    778   1.1  alnsn 	sljit_set_label(over_mchain_jump, label);
    779   1.1  alnsn #endif
    780   1.1  alnsn 
    781   1.1  alnsn 	return status;
    782   1.1  alnsn }
    783   1.1  alnsn 
    784   1.1  alnsn static int
    785   1.1  alnsn emit_pow2_division(struct sljit_compiler* compiler, uint32_t k)
    786   1.1  alnsn {
    787   1.1  alnsn 	int shift = 0;
    788   1.1  alnsn 	int status = SLJIT_SUCCESS;
    789   1.1  alnsn 
    790   1.1  alnsn 	while (k > 1) {
    791   1.1  alnsn 		k >>= 1;
    792   1.1  alnsn 		shift++;
    793   1.1  alnsn 	}
    794   1.1  alnsn 
    795   1.7  alnsn 	BJ_ASSERT(k == 1 && shift < 32);
    796   1.1  alnsn 
    797   1.1  alnsn 	if (shift != 0) {
    798   1.1  alnsn 		status = sljit_emit_op2(compiler,
    799   1.1  alnsn 		    SLJIT_LSHR|SLJIT_INT_OP,
    800   1.7  alnsn 		    BJ_AREG, 0,
    801   1.7  alnsn 		    BJ_AREG, 0,
    802   1.1  alnsn 		    SLJIT_IMM, shift);
    803   1.1  alnsn 	}
    804   1.1  alnsn 
    805   1.1  alnsn 	return status;
    806   1.1  alnsn }
    807   1.1  alnsn 
    808   1.1  alnsn #if !defined(BPFJIT_USE_UDIV)
    809   1.1  alnsn static sljit_uw
    810   1.1  alnsn divide(sljit_uw x, sljit_uw y)
    811   1.1  alnsn {
    812   1.1  alnsn 
    813   1.1  alnsn 	return (uint32_t)x / (uint32_t)y;
    814   1.1  alnsn }
    815   1.1  alnsn #endif
    816   1.1  alnsn 
    817   1.1  alnsn /*
    818   1.1  alnsn  * Generate A = A / div.
    819   1.7  alnsn  * divt,divw are either SLJIT_IMM,pc->k or BJ_XREG,0.
    820   1.1  alnsn  */
    821   1.1  alnsn static int
    822  1.12  alnsn emit_division(struct sljit_compiler* compiler, int divt, sljit_sw divw)
    823   1.1  alnsn {
    824   1.1  alnsn 	int status;
    825   1.1  alnsn 
    826   1.7  alnsn #if BJ_XREG == SLJIT_RETURN_REG   || \
    827  1.12  alnsn     BJ_XREG == SLJIT_SCRATCH_REG1 || \
    828  1.12  alnsn     BJ_XREG == SLJIT_SCRATCH_REG2 || \
    829  1.12  alnsn     BJ_AREG == SLJIT_SCRATCH_REG2
    830   1.1  alnsn #error "Not supported assignment of registers."
    831   1.1  alnsn #endif
    832   1.1  alnsn 
    833  1.12  alnsn #if BJ_AREG != SLJIT_SCRATCH_REG1
    834   1.1  alnsn 	status = sljit_emit_op1(compiler,
    835   1.1  alnsn 	    SLJIT_MOV,
    836  1.12  alnsn 	    SLJIT_SCRATCH_REG1, 0,
    837   1.7  alnsn 	    BJ_AREG, 0);
    838   1.1  alnsn 	if (status != SLJIT_SUCCESS)
    839   1.1  alnsn 		return status;
    840   1.1  alnsn #endif
    841   1.1  alnsn 
    842   1.1  alnsn 	status = sljit_emit_op1(compiler,
    843   1.1  alnsn 	    SLJIT_MOV,
    844  1.12  alnsn 	    SLJIT_SCRATCH_REG2, 0,
    845   1.1  alnsn 	    divt, divw);
    846   1.1  alnsn 	if (status != SLJIT_SUCCESS)
    847   1.1  alnsn 		return status;
    848   1.1  alnsn 
    849   1.1  alnsn #if defined(BPFJIT_USE_UDIV)
    850   1.1  alnsn 	status = sljit_emit_op0(compiler, SLJIT_UDIV|SLJIT_INT_OP);
    851   1.1  alnsn 
    852  1.12  alnsn #if BJ_AREG != SLJIT_SCRATCH_REG1
    853   1.1  alnsn 	status = sljit_emit_op1(compiler,
    854   1.1  alnsn 	    SLJIT_MOV,
    855   1.7  alnsn 	    BJ_AREG, 0,
    856  1.12  alnsn 	    SLJIT_SCRATCH_REG1, 0);
    857   1.1  alnsn 	if (status != SLJIT_SUCCESS)
    858   1.1  alnsn 		return status;
    859   1.1  alnsn #endif
    860   1.1  alnsn #else
    861   1.1  alnsn 	status = sljit_emit_ijump(compiler,
    862   1.1  alnsn 	    SLJIT_CALL2,
    863   1.1  alnsn 	    SLJIT_IMM, SLJIT_FUNC_OFFSET(divide));
    864   1.1  alnsn 
    865   1.7  alnsn #if BJ_AREG != SLJIT_RETURN_REG
    866   1.1  alnsn 	status = sljit_emit_op1(compiler,
    867   1.1  alnsn 	    SLJIT_MOV,
    868   1.7  alnsn 	    BJ_AREG, 0,
    869   1.1  alnsn 	    SLJIT_RETURN_REG, 0);
    870   1.1  alnsn 	if (status != SLJIT_SUCCESS)
    871   1.1  alnsn 		return status;
    872   1.1  alnsn #endif
    873   1.1  alnsn #endif
    874   1.1  alnsn 
    875   1.1  alnsn 	return status;
    876   1.1  alnsn }
    877   1.1  alnsn 
    878   1.1  alnsn /*
    879   1.1  alnsn  * Return true if pc is a "read from packet" instruction.
    880   1.1  alnsn  * If length is not NULL and return value is true, *length will
    881   1.1  alnsn  * be set to a safe length required to read a packet.
    882   1.1  alnsn  */
    883   1.1  alnsn static bool
    884   1.8  alnsn read_pkt_insn(const struct bpf_insn *pc, bpfjit_abc_length_t *length)
    885   1.1  alnsn {
    886   1.1  alnsn 	bool rv;
    887   1.8  alnsn 	bpfjit_abc_length_t width;
    888   1.1  alnsn 
    889   1.1  alnsn 	switch (BPF_CLASS(pc->code)) {
    890   1.1  alnsn 	default:
    891   1.1  alnsn 		rv = false;
    892   1.1  alnsn 		break;
    893   1.1  alnsn 
    894   1.1  alnsn 	case BPF_LD:
    895   1.1  alnsn 		rv = BPF_MODE(pc->code) == BPF_ABS ||
    896   1.1  alnsn 		     BPF_MODE(pc->code) == BPF_IND;
    897   1.1  alnsn 		if (rv)
    898   1.1  alnsn 			width = read_width(pc);
    899   1.1  alnsn 		break;
    900   1.1  alnsn 
    901   1.1  alnsn 	case BPF_LDX:
    902   1.1  alnsn 		rv = pc->code == (BPF_LDX|BPF_B|BPF_MSH);
    903   1.1  alnsn 		width = 1;
    904   1.1  alnsn 		break;
    905   1.1  alnsn 	}
    906   1.1  alnsn 
    907   1.1  alnsn 	if (rv && length != NULL) {
    908   1.9  alnsn 		/*
    909   1.9  alnsn 		 * Values greater than UINT32_MAX will generate
    910   1.9  alnsn 		 * unconditional "return 0".
    911   1.9  alnsn 		 */
    912   1.9  alnsn 		*length = (uint32_t)pc->k + width;
    913   1.1  alnsn 	}
    914   1.1  alnsn 
    915   1.1  alnsn 	return rv;
    916   1.1  alnsn }
    917   1.1  alnsn 
    918   1.1  alnsn static void
    919   1.7  alnsn optimize_init(struct bpfjit_insn_data *insn_dat, size_t insn_count)
    920   1.1  alnsn {
    921   1.7  alnsn 	size_t i;
    922   1.1  alnsn 
    923   1.7  alnsn 	for (i = 0; i < insn_count; i++) {
    924   1.7  alnsn 		SLIST_INIT(&insn_dat[i].bjumps);
    925   1.7  alnsn 		insn_dat[i].invalid = BJ_INIT_NOBITS;
    926   1.1  alnsn 	}
    927   1.1  alnsn }
    928   1.1  alnsn 
    929   1.1  alnsn /*
    930   1.1  alnsn  * The function divides instructions into blocks. Destination of a jump
    931   1.1  alnsn  * instruction starts a new block. BPF_RET and BPF_JMP instructions
    932   1.1  alnsn  * terminate a block. Blocks are linear, that is, there are no jumps out
    933   1.1  alnsn  * from the middle of a block and there are no jumps in to the middle of
    934   1.1  alnsn  * a block.
    935   1.7  alnsn  *
    936   1.7  alnsn  * The function also sets bits in *initmask for memwords that
    937   1.7  alnsn  * need to be initialized to zero. Note that this set should be empty
    938   1.7  alnsn  * for any valid kernel filter program.
    939   1.1  alnsn  */
    940   1.7  alnsn static bool
    941   1.7  alnsn optimize_pass1(const struct bpf_insn *insns,
    942   1.7  alnsn     struct bpfjit_insn_data *insn_dat, size_t insn_count,
    943   1.7  alnsn     bpfjit_init_mask_t *initmask, int *nscratches)
    944   1.1  alnsn {
    945   1.7  alnsn 	struct bpfjit_jump *jtf;
    946   1.1  alnsn 	size_t i;
    947   1.7  alnsn 	uint32_t jt, jf;
    948  1.10  alnsn 	bpfjit_abc_length_t length;
    949   1.7  alnsn 	bpfjit_init_mask_t invalid; /* borrowed from bpf_filter() */
    950   1.1  alnsn 	bool unreachable;
    951   1.1  alnsn 
    952   1.7  alnsn 	*nscratches = 2;
    953   1.7  alnsn 	*initmask = BJ_INIT_NOBITS;
    954   1.1  alnsn 
    955   1.1  alnsn 	unreachable = false;
    956   1.7  alnsn 	invalid = ~BJ_INIT_NOBITS;
    957   1.1  alnsn 
    958   1.1  alnsn 	for (i = 0; i < insn_count; i++) {
    959   1.7  alnsn 		if (!SLIST_EMPTY(&insn_dat[i].bjumps))
    960   1.1  alnsn 			unreachable = false;
    961   1.7  alnsn 		insn_dat[i].unreachable = unreachable;
    962   1.1  alnsn 
    963   1.1  alnsn 		if (unreachable)
    964   1.1  alnsn 			continue;
    965   1.1  alnsn 
    966   1.7  alnsn 		invalid |= insn_dat[i].invalid;
    967   1.1  alnsn 
    968  1.10  alnsn 		if (read_pkt_insn(&insns[i], &length) && length > UINT32_MAX)
    969  1.10  alnsn 			unreachable = true;
    970  1.10  alnsn 
    971   1.1  alnsn 		switch (BPF_CLASS(insns[i].code)) {
    972   1.1  alnsn 		case BPF_RET:
    973   1.7  alnsn 			if (BPF_RVAL(insns[i].code) == BPF_A)
    974   1.7  alnsn 				*initmask |= invalid & BJ_INIT_ABIT;
    975   1.7  alnsn 
    976   1.1  alnsn 			unreachable = true;
    977   1.1  alnsn 			continue;
    978   1.1  alnsn 
    979   1.7  alnsn 		case BPF_LD:
    980   1.7  alnsn 			if (BPF_MODE(insns[i].code) == BPF_IND ||
    981   1.7  alnsn 			    BPF_MODE(insns[i].code) == BPF_ABS) {
    982   1.7  alnsn 				if (BPF_MODE(insns[i].code) == BPF_IND &&
    983   1.7  alnsn 				    *nscratches < 4) {
    984   1.7  alnsn 					/* uses BJ_XREG */
    985   1.7  alnsn 					*nscratches = 4;
    986   1.7  alnsn 				}
    987   1.7  alnsn 				if (*nscratches < 3 &&
    988   1.7  alnsn 				    read_width(&insns[i]) == 4) {
    989   1.7  alnsn 					/* uses BJ_TMP2REG */
    990   1.7  alnsn 					*nscratches = 3;
    991   1.7  alnsn 				}
    992   1.7  alnsn 			}
    993   1.7  alnsn 
    994   1.7  alnsn 			if (BPF_MODE(insns[i].code) == BPF_IND)
    995   1.7  alnsn 				*initmask |= invalid & BJ_INIT_XBIT;
    996   1.7  alnsn 
    997   1.7  alnsn 			if (BPF_MODE(insns[i].code) == BPF_MEM &&
    998   1.7  alnsn 			    (uint32_t)insns[i].k < BPF_MEMWORDS) {
    999   1.7  alnsn 				*initmask |= invalid & BJ_INIT_MBIT(insns[i].k);
   1000   1.7  alnsn 			}
   1001   1.7  alnsn 
   1002   1.7  alnsn 			invalid &= ~BJ_INIT_ABIT;
   1003   1.7  alnsn 			continue;
   1004   1.7  alnsn 
   1005   1.7  alnsn 		case BPF_LDX:
   1006   1.7  alnsn #if defined(_KERNEL)
   1007   1.7  alnsn 			/* uses BJ_TMP3REG */
   1008   1.7  alnsn 			*nscratches = 5;
   1009   1.7  alnsn #endif
   1010   1.7  alnsn 			/* uses BJ_XREG */
   1011   1.7  alnsn 			if (*nscratches < 4)
   1012   1.7  alnsn 				*nscratches = 4;
   1013   1.7  alnsn 
   1014   1.7  alnsn 			if (BPF_MODE(insns[i].code) == BPF_MEM &&
   1015   1.7  alnsn 			    (uint32_t)insns[i].k < BPF_MEMWORDS) {
   1016   1.7  alnsn 				*initmask |= invalid & BJ_INIT_MBIT(insns[i].k);
   1017   1.7  alnsn 			}
   1018   1.7  alnsn 
   1019   1.7  alnsn 			invalid &= ~BJ_INIT_XBIT;
   1020   1.7  alnsn 			continue;
   1021   1.7  alnsn 
   1022   1.7  alnsn 		case BPF_ST:
   1023   1.7  alnsn 			*initmask |= invalid & BJ_INIT_ABIT;
   1024   1.7  alnsn 
   1025   1.7  alnsn 			if ((uint32_t)insns[i].k < BPF_MEMWORDS)
   1026   1.7  alnsn 				invalid &= ~BJ_INIT_MBIT(insns[i].k);
   1027   1.7  alnsn 
   1028   1.7  alnsn 			continue;
   1029   1.7  alnsn 
   1030   1.7  alnsn 		case BPF_STX:
   1031   1.7  alnsn 			/* uses BJ_XREG */
   1032   1.7  alnsn 			if (*nscratches < 4)
   1033   1.7  alnsn 				*nscratches = 4;
   1034   1.7  alnsn 
   1035   1.7  alnsn 			*initmask |= invalid & BJ_INIT_XBIT;
   1036   1.7  alnsn 
   1037   1.7  alnsn 			if ((uint32_t)insns[i].k < BPF_MEMWORDS)
   1038   1.7  alnsn 				invalid &= ~BJ_INIT_MBIT(insns[i].k);
   1039   1.7  alnsn 
   1040   1.7  alnsn 			continue;
   1041   1.7  alnsn 
   1042   1.7  alnsn 		case BPF_ALU:
   1043   1.7  alnsn 			*initmask |= invalid & BJ_INIT_ABIT;
   1044   1.7  alnsn 
   1045   1.7  alnsn 			if (insns[i].code != (BPF_ALU|BPF_NEG) &&
   1046   1.7  alnsn 			    BPF_SRC(insns[i].code) == BPF_X) {
   1047   1.7  alnsn 				*initmask |= invalid & BJ_INIT_XBIT;
   1048   1.7  alnsn 				/* uses BJ_XREG */
   1049   1.7  alnsn 				if (*nscratches < 4)
   1050   1.7  alnsn 					*nscratches = 4;
   1051   1.7  alnsn 
   1052   1.7  alnsn 			}
   1053   1.7  alnsn 
   1054   1.7  alnsn 			invalid &= ~BJ_INIT_ABIT;
   1055   1.7  alnsn 			continue;
   1056   1.7  alnsn 
   1057   1.7  alnsn 		case BPF_MISC:
   1058   1.7  alnsn 			switch (BPF_MISCOP(insns[i].code)) {
   1059   1.7  alnsn 			case BPF_TAX: // X <- A
   1060   1.7  alnsn 				/* uses BJ_XREG */
   1061   1.7  alnsn 				if (*nscratches < 4)
   1062   1.7  alnsn 					*nscratches = 4;
   1063   1.7  alnsn 
   1064   1.7  alnsn 				*initmask |= invalid & BJ_INIT_ABIT;
   1065   1.7  alnsn 				invalid &= ~BJ_INIT_XBIT;
   1066   1.7  alnsn 				continue;
   1067   1.7  alnsn 
   1068   1.7  alnsn 			case BPF_TXA: // A <- X
   1069   1.7  alnsn 				/* uses BJ_XREG */
   1070   1.7  alnsn 				if (*nscratches < 4)
   1071   1.7  alnsn 					*nscratches = 4;
   1072   1.7  alnsn 
   1073   1.7  alnsn 				*initmask |= invalid & BJ_INIT_XBIT;
   1074   1.7  alnsn 				invalid &= ~BJ_INIT_ABIT;
   1075   1.7  alnsn 				continue;
   1076   1.7  alnsn 			}
   1077   1.7  alnsn 
   1078   1.7  alnsn 			continue;
   1079   1.7  alnsn 
   1080   1.1  alnsn 		case BPF_JMP:
   1081   1.7  alnsn 			/* Initialize abc_length for ABC pass. */
   1082   1.8  alnsn 			insn_dat[i].u.jdata.abc_length = MAX_ABC_LENGTH;
   1083   1.7  alnsn 
   1084   1.7  alnsn 			if (BPF_OP(insns[i].code) == BPF_JA) {
   1085   1.1  alnsn 				jt = jf = insns[i].k;
   1086   1.1  alnsn 			} else {
   1087   1.1  alnsn 				jt = insns[i].jt;
   1088   1.1  alnsn 				jf = insns[i].jf;
   1089   1.1  alnsn 			}
   1090   1.1  alnsn 
   1091   1.1  alnsn 			if (jt >= insn_count - (i + 1) ||
   1092   1.1  alnsn 			    jf >= insn_count - (i + 1)) {
   1093   1.7  alnsn 				return false;
   1094   1.1  alnsn 			}
   1095   1.1  alnsn 
   1096   1.1  alnsn 			if (jt > 0 && jf > 0)
   1097   1.1  alnsn 				unreachable = true;
   1098   1.1  alnsn 
   1099   1.7  alnsn 			jt += i + 1;
   1100   1.7  alnsn 			jf += i + 1;
   1101   1.7  alnsn 
   1102   1.7  alnsn 			jtf = insn_dat[i].u.jdata.jtf;
   1103   1.1  alnsn 
   1104   1.7  alnsn 			jtf[0].sjump = NULL;
   1105   1.7  alnsn 			jtf[0].jdata = &insn_dat[i].u.jdata;
   1106   1.7  alnsn 			SLIST_INSERT_HEAD(&insn_dat[jt].bjumps,
   1107   1.7  alnsn 			    &jtf[0], entries);
   1108   1.1  alnsn 
   1109   1.1  alnsn 			if (jf != jt) {
   1110   1.7  alnsn 				jtf[1].sjump = NULL;
   1111   1.7  alnsn 				jtf[1].jdata = &insn_dat[i].u.jdata;
   1112   1.7  alnsn 				SLIST_INSERT_HEAD(&insn_dat[jf].bjumps,
   1113   1.7  alnsn 				    &jtf[1], entries);
   1114   1.1  alnsn 			}
   1115   1.1  alnsn 
   1116   1.7  alnsn 			insn_dat[jf].invalid |= invalid;
   1117   1.7  alnsn 			insn_dat[jt].invalid |= invalid;
   1118   1.7  alnsn 			invalid = 0;
   1119   1.7  alnsn 
   1120   1.1  alnsn 			continue;
   1121   1.1  alnsn 		}
   1122   1.1  alnsn 	}
   1123   1.1  alnsn 
   1124   1.7  alnsn 	return true;
   1125   1.1  alnsn }
   1126   1.1  alnsn 
   1127   1.1  alnsn /*
   1128   1.7  alnsn  * Array Bounds Check Elimination (ABC) pass.
   1129   1.1  alnsn  */
   1130   1.7  alnsn static void
   1131   1.7  alnsn optimize_pass2(const struct bpf_insn *insns,
   1132   1.7  alnsn     struct bpfjit_insn_data *insn_dat, size_t insn_count)
   1133   1.7  alnsn {
   1134   1.7  alnsn 	struct bpfjit_jump *jmp;
   1135   1.7  alnsn 	const struct bpf_insn *pc;
   1136   1.7  alnsn 	struct bpfjit_insn_data *pd;
   1137   1.7  alnsn 	size_t i;
   1138   1.8  alnsn 	bpfjit_abc_length_t length, abc_length = 0;
   1139   1.7  alnsn 
   1140   1.7  alnsn 	for (i = insn_count; i != 0; i--) {
   1141   1.7  alnsn 		pc = &insns[i-1];
   1142   1.7  alnsn 		pd = &insn_dat[i-1];
   1143   1.7  alnsn 
   1144   1.7  alnsn 		if (pd->unreachable)
   1145   1.7  alnsn 			continue;
   1146   1.7  alnsn 
   1147   1.7  alnsn 		switch (BPF_CLASS(pc->code)) {
   1148   1.7  alnsn 		case BPF_RET:
   1149  1.11  alnsn 			/*
   1150  1.11  alnsn 			 * It's quite common for bpf programs to
   1151  1.11  alnsn 			 * check packet bytes in increasing order
   1152  1.11  alnsn 			 * and return zero if bytes don't match
   1153  1.11  alnsn 			 * specified critetion. Such programs disable
   1154  1.11  alnsn 			 * ABC optimization completely because for
   1155  1.11  alnsn 			 * every jump there is a branch with no read
   1156  1.11  alnsn 			 * instruction.
   1157  1.11  alnsn 			 * With no side effects, BPF_RET+BPF_K 0 is
   1158  1.11  alnsn 			 * indistinguishable from out-of-bound load.
   1159  1.11  alnsn 			 * Therefore, abc_length can be set to
   1160  1.11  alnsn 			 * MAX_ABC_LENGTH and enable ABC for many
   1161  1.11  alnsn 			 * bpf programs.
   1162  1.11  alnsn 			 * If this optimization pass encounters any
   1163  1.11  alnsn 			 * instruction with a side effect, it will
   1164  1.11  alnsn 			 * reset abc_length.
   1165  1.11  alnsn 			 */
   1166  1.11  alnsn 			if (BPF_RVAL(pc->code) == BPF_K && pc->k == 0)
   1167  1.11  alnsn 				abc_length = MAX_ABC_LENGTH;
   1168  1.11  alnsn 			else
   1169  1.11  alnsn 				abc_length = 0;
   1170   1.7  alnsn 			break;
   1171   1.7  alnsn 
   1172   1.7  alnsn 		case BPF_JMP:
   1173   1.7  alnsn 			abc_length = pd->u.jdata.abc_length;
   1174   1.7  alnsn 			break;
   1175   1.7  alnsn 
   1176   1.7  alnsn 		default:
   1177   1.7  alnsn 			if (read_pkt_insn(pc, &length)) {
   1178   1.7  alnsn 				if (abc_length < length)
   1179   1.7  alnsn 					abc_length = length;
   1180   1.7  alnsn 				pd->u.rdata.abc_length = abc_length;
   1181   1.7  alnsn 			}
   1182   1.7  alnsn 			break;
   1183   1.7  alnsn 		}
   1184   1.7  alnsn 
   1185   1.7  alnsn 		SLIST_FOREACH(jmp, &pd->bjumps, entries) {
   1186   1.7  alnsn 			if (jmp->jdata->abc_length > abc_length)
   1187   1.7  alnsn 				jmp->jdata->abc_length = abc_length;
   1188   1.7  alnsn 		}
   1189   1.7  alnsn 	}
   1190   1.7  alnsn }
   1191   1.7  alnsn 
   1192   1.7  alnsn static void
   1193   1.7  alnsn optimize_pass3(const struct bpf_insn *insns,
   1194   1.7  alnsn     struct bpfjit_insn_data *insn_dat, size_t insn_count)
   1195   1.1  alnsn {
   1196   1.7  alnsn 	struct bpfjit_jump *jmp;
   1197   1.1  alnsn 	size_t i;
   1198   1.8  alnsn 	bpfjit_abc_length_t checked_length = 0;
   1199   1.1  alnsn 
   1200   1.1  alnsn 	for (i = 0; i < insn_count; i++) {
   1201   1.7  alnsn 		if (insn_dat[i].unreachable)
   1202   1.7  alnsn 			continue;
   1203   1.1  alnsn 
   1204   1.7  alnsn 		SLIST_FOREACH(jmp, &insn_dat[i].bjumps, entries) {
   1205   1.7  alnsn 			if (jmp->jdata->checked_length < checked_length)
   1206   1.7  alnsn 				checked_length = jmp->jdata->checked_length;
   1207   1.1  alnsn 		}
   1208   1.1  alnsn 
   1209   1.7  alnsn 		if (BPF_CLASS(insns[i].code) == BPF_JMP) {
   1210   1.7  alnsn 			insn_dat[i].u.jdata.checked_length = checked_length;
   1211   1.8  alnsn 		} else if (read_pkt_insn(&insns[i], NULL)) {
   1212   1.7  alnsn 			struct bpfjit_read_pkt_data *rdata =
   1213   1.7  alnsn 			    &insn_dat[i].u.rdata;
   1214   1.7  alnsn 			rdata->check_length = 0;
   1215   1.7  alnsn 			if (checked_length < rdata->abc_length) {
   1216   1.7  alnsn 				checked_length = rdata->abc_length;
   1217   1.7  alnsn 				rdata->check_length = checked_length;
   1218   1.7  alnsn 			}
   1219   1.1  alnsn 		}
   1220   1.7  alnsn 	}
   1221   1.7  alnsn }
   1222   1.1  alnsn 
   1223   1.7  alnsn static bool
   1224   1.7  alnsn optimize(const struct bpf_insn *insns,
   1225   1.7  alnsn     struct bpfjit_insn_data *insn_dat, size_t insn_count,
   1226   1.7  alnsn     bpfjit_init_mask_t *initmask, int *nscratches)
   1227   1.7  alnsn {
   1228   1.1  alnsn 
   1229   1.7  alnsn 	optimize_init(insn_dat, insn_count);
   1230   1.7  alnsn 
   1231   1.7  alnsn 	if (!optimize_pass1(insns, insn_dat, insn_count,
   1232   1.7  alnsn 	    initmask, nscratches)) {
   1233   1.7  alnsn 		return false;
   1234   1.1  alnsn 	}
   1235   1.1  alnsn 
   1236   1.7  alnsn 	optimize_pass2(insns, insn_dat, insn_count);
   1237   1.7  alnsn 	optimize_pass3(insns, insn_dat, insn_count);
   1238   1.7  alnsn 
   1239   1.7  alnsn 	return true;
   1240   1.1  alnsn }
   1241   1.1  alnsn 
   1242   1.1  alnsn /*
   1243   1.1  alnsn  * Convert BPF_ALU operations except BPF_NEG and BPF_DIV to sljit operation.
   1244   1.1  alnsn  */
   1245   1.1  alnsn static int
   1246   1.7  alnsn bpf_alu_to_sljit_op(const struct bpf_insn *pc)
   1247   1.1  alnsn {
   1248   1.1  alnsn 
   1249   1.1  alnsn 	/*
   1250   1.1  alnsn 	 * Note: all supported 64bit arches have 32bit multiply
   1251   1.1  alnsn 	 * instruction so SLJIT_INT_OP doesn't have any overhead.
   1252   1.1  alnsn 	 */
   1253   1.1  alnsn 	switch (BPF_OP(pc->code)) {
   1254   1.1  alnsn 	case BPF_ADD: return SLJIT_ADD;
   1255   1.1  alnsn 	case BPF_SUB: return SLJIT_SUB;
   1256   1.1  alnsn 	case BPF_MUL: return SLJIT_MUL|SLJIT_INT_OP;
   1257   1.1  alnsn 	case BPF_OR:  return SLJIT_OR;
   1258   1.1  alnsn 	case BPF_AND: return SLJIT_AND;
   1259   1.1  alnsn 	case BPF_LSH: return SLJIT_SHL;
   1260   1.1  alnsn 	case BPF_RSH: return SLJIT_LSHR|SLJIT_INT_OP;
   1261   1.1  alnsn 	default:
   1262   1.7  alnsn 		BJ_ASSERT(false);
   1263   1.1  alnsn 		return 0;
   1264   1.1  alnsn 	}
   1265   1.1  alnsn }
   1266   1.1  alnsn 
   1267   1.1  alnsn /*
   1268   1.1  alnsn  * Convert BPF_JMP operations except BPF_JA to sljit condition.
   1269   1.1  alnsn  */
   1270   1.1  alnsn static int
   1271   1.7  alnsn bpf_jmp_to_sljit_cond(const struct bpf_insn *pc, bool negate)
   1272   1.1  alnsn {
   1273   1.1  alnsn 	/*
   1274   1.1  alnsn 	 * Note: all supported 64bit arches have 32bit comparison
   1275   1.1  alnsn 	 * instructions so SLJIT_INT_OP doesn't have any overhead.
   1276   1.1  alnsn 	 */
   1277   1.1  alnsn 	int rv = SLJIT_INT_OP;
   1278   1.1  alnsn 
   1279   1.1  alnsn 	switch (BPF_OP(pc->code)) {
   1280   1.1  alnsn 	case BPF_JGT:
   1281   1.1  alnsn 		rv |= negate ? SLJIT_C_LESS_EQUAL : SLJIT_C_GREATER;
   1282   1.1  alnsn 		break;
   1283   1.1  alnsn 	case BPF_JGE:
   1284   1.1  alnsn 		rv |= negate ? SLJIT_C_LESS : SLJIT_C_GREATER_EQUAL;
   1285   1.1  alnsn 		break;
   1286   1.1  alnsn 	case BPF_JEQ:
   1287   1.1  alnsn 		rv |= negate ? SLJIT_C_NOT_EQUAL : SLJIT_C_EQUAL;
   1288   1.1  alnsn 		break;
   1289   1.1  alnsn 	case BPF_JSET:
   1290   1.1  alnsn 		rv |= negate ? SLJIT_C_EQUAL : SLJIT_C_NOT_EQUAL;
   1291   1.1  alnsn 		break;
   1292   1.1  alnsn 	default:
   1293   1.7  alnsn 		BJ_ASSERT(false);
   1294   1.1  alnsn 	}
   1295   1.1  alnsn 
   1296   1.1  alnsn 	return rv;
   1297   1.1  alnsn }
   1298   1.1  alnsn 
   1299   1.1  alnsn /*
   1300   1.1  alnsn  * Convert BPF_K and BPF_X to sljit register.
   1301   1.1  alnsn  */
   1302   1.1  alnsn static int
   1303   1.7  alnsn kx_to_reg(const struct bpf_insn *pc)
   1304   1.1  alnsn {
   1305   1.1  alnsn 
   1306   1.1  alnsn 	switch (BPF_SRC(pc->code)) {
   1307   1.1  alnsn 	case BPF_K: return SLJIT_IMM;
   1308   1.7  alnsn 	case BPF_X: return BJ_XREG;
   1309   1.1  alnsn 	default:
   1310   1.7  alnsn 		BJ_ASSERT(false);
   1311   1.1  alnsn 		return 0;
   1312   1.1  alnsn 	}
   1313   1.1  alnsn }
   1314   1.1  alnsn 
   1315  1.12  alnsn static sljit_sw
   1316   1.7  alnsn kx_to_reg_arg(const struct bpf_insn *pc)
   1317   1.1  alnsn {
   1318   1.1  alnsn 
   1319   1.1  alnsn 	switch (BPF_SRC(pc->code)) {
   1320   1.1  alnsn 	case BPF_K: return (uint32_t)pc->k; /* SLJIT_IMM, pc->k, */
   1321   1.7  alnsn 	case BPF_X: return 0;               /* BJ_XREG, 0,      */
   1322   1.1  alnsn 	default:
   1323   1.7  alnsn 		BJ_ASSERT(false);
   1324   1.1  alnsn 		return 0;
   1325   1.1  alnsn 	}
   1326   1.1  alnsn }
   1327   1.1  alnsn 
   1328   1.4  rmind bpfjit_func_t
   1329   1.4  rmind bpfjit_generate_code(bpf_ctx_t *bc, struct bpf_insn *insns, size_t insn_count)
   1330   1.1  alnsn {
   1331   1.1  alnsn 	void *rv;
   1332   1.7  alnsn 	struct sljit_compiler *compiler;
   1333   1.7  alnsn 
   1334   1.1  alnsn 	size_t i;
   1335   1.1  alnsn 	int status;
   1336   1.1  alnsn 	int branching, negate;
   1337   1.1  alnsn 	unsigned int rval, mode, src;
   1338   1.7  alnsn 
   1339   1.7  alnsn 	/* optimization related */
   1340   1.7  alnsn 	bpfjit_init_mask_t initmask;
   1341   1.7  alnsn 	int nscratches;
   1342   1.1  alnsn 
   1343   1.1  alnsn 	/* a list of jumps to out-of-bound return from a generated function */
   1344   1.1  alnsn 	struct sljit_jump **ret0;
   1345   1.7  alnsn 	size_t ret0_size, ret0_maxsize;
   1346   1.1  alnsn 
   1347   1.7  alnsn 	const struct bpf_insn *pc;
   1348   1.1  alnsn 	struct bpfjit_insn_data *insn_dat;
   1349   1.1  alnsn 
   1350   1.1  alnsn 	/* for local use */
   1351   1.1  alnsn 	struct sljit_label *label;
   1352   1.1  alnsn 	struct sljit_jump *jump;
   1353   1.1  alnsn 	struct bpfjit_jump *bjump, *jtf;
   1354   1.1  alnsn 
   1355   1.1  alnsn 	struct sljit_jump *to_mchain_jump;
   1356   1.9  alnsn 	bool unconditional_ret;
   1357   1.1  alnsn 
   1358   1.1  alnsn 	uint32_t jt, jf;
   1359   1.1  alnsn 
   1360   1.1  alnsn 	rv = NULL;
   1361   1.1  alnsn 	compiler = NULL;
   1362   1.1  alnsn 	insn_dat = NULL;
   1363   1.1  alnsn 	ret0 = NULL;
   1364   1.1  alnsn 
   1365   1.7  alnsn 	if (insn_count == 0 || insn_count > SIZE_MAX / sizeof(insn_dat[0]))
   1366   1.1  alnsn 		goto fail;
   1367   1.1  alnsn 
   1368   1.7  alnsn 	insn_dat = BJ_ALLOC(insn_count * sizeof(insn_dat[0]));
   1369   1.1  alnsn 	if (insn_dat == NULL)
   1370   1.1  alnsn 		goto fail;
   1371   1.1  alnsn 
   1372   1.7  alnsn 	if (!optimize(insns, insn_dat, insn_count,
   1373   1.7  alnsn 	    &initmask, &nscratches)) {
   1374   1.1  alnsn 		goto fail;
   1375   1.7  alnsn 	}
   1376   1.7  alnsn 
   1377   1.7  alnsn #if defined(_KERNEL)
   1378   1.7  alnsn 	/* bpf_filter() checks initialization of memwords. */
   1379   1.7  alnsn 	BJ_ASSERT((initmask & BJ_INIT_MMASK) == 0);
   1380   1.7  alnsn #endif
   1381   1.1  alnsn 
   1382   1.1  alnsn 	ret0_size = 0;
   1383   1.7  alnsn 	ret0_maxsize = 64;
   1384   1.7  alnsn 	ret0 = BJ_ALLOC(ret0_maxsize * sizeof(ret0[0]));
   1385   1.7  alnsn 	if (ret0 == NULL)
   1386   1.1  alnsn 		goto fail;
   1387   1.1  alnsn 
   1388   1.1  alnsn 	compiler = sljit_create_compiler();
   1389   1.1  alnsn 	if (compiler == NULL)
   1390   1.1  alnsn 		goto fail;
   1391   1.1  alnsn 
   1392   1.1  alnsn #if !defined(_KERNEL) && defined(SLJIT_VERBOSE) && SLJIT_VERBOSE
   1393   1.1  alnsn 	sljit_compiler_verbose(compiler, stderr);
   1394   1.1  alnsn #endif
   1395   1.1  alnsn 
   1396   1.7  alnsn 	status = sljit_emit_enter(compiler,
   1397   1.7  alnsn 	    3, nscratches, 3, sizeof(struct bpfjit_stack));
   1398   1.1  alnsn 	if (status != SLJIT_SUCCESS)
   1399   1.1  alnsn 		goto fail;
   1400   1.1  alnsn 
   1401   1.7  alnsn 	for (i = 0; i < BPF_MEMWORDS; i++) {
   1402   1.7  alnsn 		if (initmask & BJ_INIT_MBIT(i)) {
   1403   1.7  alnsn 			status = sljit_emit_op1(compiler,
   1404   1.7  alnsn 			    SLJIT_MOV_UI,
   1405   1.7  alnsn 			    SLJIT_MEM1(SLJIT_LOCALS_REG),
   1406   1.7  alnsn 			    offsetof(struct bpfjit_stack, mem) +
   1407   1.7  alnsn 			        i * sizeof(uint32_t),
   1408   1.7  alnsn 			    SLJIT_IMM, 0);
   1409   1.7  alnsn 			if (status != SLJIT_SUCCESS)
   1410   1.7  alnsn 				goto fail;
   1411   1.7  alnsn 		}
   1412   1.1  alnsn 	}
   1413   1.1  alnsn 
   1414   1.7  alnsn 	if (initmask & BJ_INIT_ABIT) {
   1415   1.1  alnsn 		/* A = 0; */
   1416   1.1  alnsn 		status = sljit_emit_op1(compiler,
   1417   1.1  alnsn 		    SLJIT_MOV,
   1418   1.7  alnsn 		    BJ_AREG, 0,
   1419   1.1  alnsn 		    SLJIT_IMM, 0);
   1420   1.1  alnsn 		if (status != SLJIT_SUCCESS)
   1421   1.1  alnsn 			goto fail;
   1422   1.1  alnsn 	}
   1423   1.1  alnsn 
   1424   1.7  alnsn 	if (initmask & BJ_INIT_XBIT) {
   1425   1.1  alnsn 		/* X = 0; */
   1426   1.1  alnsn 		status = sljit_emit_op1(compiler,
   1427   1.1  alnsn 		    SLJIT_MOV,
   1428   1.7  alnsn 		    BJ_XREG, 0,
   1429   1.1  alnsn 		    SLJIT_IMM, 0);
   1430   1.1  alnsn 		if (status != SLJIT_SUCCESS)
   1431   1.1  alnsn 			goto fail;
   1432   1.1  alnsn 	}
   1433   1.1  alnsn 
   1434   1.1  alnsn 	for (i = 0; i < insn_count; i++) {
   1435   1.7  alnsn 		if (insn_dat[i].unreachable)
   1436   1.1  alnsn 			continue;
   1437   1.1  alnsn 
   1438   1.1  alnsn 		/*
   1439   1.1  alnsn 		 * Resolve jumps to the current insn.
   1440   1.1  alnsn 		 */
   1441   1.1  alnsn 		label = NULL;
   1442   1.7  alnsn 		SLIST_FOREACH(bjump, &insn_dat[i].bjumps, entries) {
   1443   1.7  alnsn 			if (bjump->sjump != NULL) {
   1444   1.1  alnsn 				if (label == NULL)
   1445   1.1  alnsn 					label = sljit_emit_label(compiler);
   1446   1.1  alnsn 				if (label == NULL)
   1447   1.1  alnsn 					goto fail;
   1448   1.7  alnsn 				sljit_set_label(bjump->sjump, label);
   1449   1.1  alnsn 			}
   1450   1.1  alnsn 		}
   1451   1.1  alnsn 
   1452   1.9  alnsn 		to_mchain_jump = NULL;
   1453   1.9  alnsn 		unconditional_ret = false;
   1454   1.9  alnsn 
   1455   1.9  alnsn 		if (read_pkt_insn(&insns[i], NULL)) {
   1456   1.9  alnsn 			if (insn_dat[i].u.rdata.check_length > UINT32_MAX) {
   1457   1.9  alnsn 				/* Jump to "return 0" unconditionally. */
   1458   1.9  alnsn 				unconditional_ret = true;
   1459   1.9  alnsn 				jump = sljit_emit_jump(compiler, SLJIT_JUMP);
   1460   1.9  alnsn 				if (jump == NULL)
   1461   1.9  alnsn 					goto fail;
   1462   1.9  alnsn 				if (!append_jump(jump, &ret0,
   1463   1.9  alnsn 				    &ret0_size, &ret0_maxsize))
   1464   1.9  alnsn 					goto fail;
   1465   1.9  alnsn 			} else if (insn_dat[i].u.rdata.check_length > 0) {
   1466   1.9  alnsn 				/* if (buflen < check_length) return 0; */
   1467   1.9  alnsn 				jump = sljit_emit_cmp(compiler,
   1468   1.9  alnsn 				    SLJIT_C_LESS,
   1469   1.9  alnsn 				    BJ_BUFLEN, 0,
   1470   1.9  alnsn 				    SLJIT_IMM,
   1471   1.9  alnsn 				    insn_dat[i].u.rdata.check_length);
   1472   1.9  alnsn 				if (jump == NULL)
   1473   1.9  alnsn 					goto fail;
   1474   1.1  alnsn #ifdef _KERNEL
   1475   1.9  alnsn 				to_mchain_jump = jump;
   1476   1.1  alnsn #else
   1477   1.9  alnsn 				if (!append_jump(jump, &ret0,
   1478   1.9  alnsn 				    &ret0_size, &ret0_maxsize))
   1479   1.9  alnsn 					goto fail;
   1480   1.1  alnsn #endif
   1481   1.9  alnsn 			}
   1482   1.1  alnsn 		}
   1483   1.1  alnsn 
   1484   1.1  alnsn 		pc = &insns[i];
   1485   1.1  alnsn 		switch (BPF_CLASS(pc->code)) {
   1486   1.1  alnsn 
   1487   1.1  alnsn 		default:
   1488   1.1  alnsn 			goto fail;
   1489   1.1  alnsn 
   1490   1.1  alnsn 		case BPF_LD:
   1491   1.1  alnsn 			/* BPF_LD+BPF_IMM          A <- k */
   1492   1.1  alnsn 			if (pc->code == (BPF_LD|BPF_IMM)) {
   1493   1.1  alnsn 				status = sljit_emit_op1(compiler,
   1494   1.1  alnsn 				    SLJIT_MOV,
   1495   1.7  alnsn 				    BJ_AREG, 0,
   1496   1.1  alnsn 				    SLJIT_IMM, (uint32_t)pc->k);
   1497   1.1  alnsn 				if (status != SLJIT_SUCCESS)
   1498   1.1  alnsn 					goto fail;
   1499   1.1  alnsn 
   1500   1.1  alnsn 				continue;
   1501   1.1  alnsn 			}
   1502   1.1  alnsn 
   1503   1.1  alnsn 			/* BPF_LD+BPF_MEM          A <- M[k] */
   1504   1.1  alnsn 			if (pc->code == (BPF_LD|BPF_MEM)) {
   1505   1.8  alnsn 				if ((uint32_t)pc->k >= BPF_MEMWORDS)
   1506   1.1  alnsn 					goto fail;
   1507   1.1  alnsn 				status = sljit_emit_op1(compiler,
   1508   1.1  alnsn 				    SLJIT_MOV_UI,
   1509   1.7  alnsn 				    BJ_AREG, 0,
   1510   1.1  alnsn 				    SLJIT_MEM1(SLJIT_LOCALS_REG),
   1511   1.7  alnsn 				    offsetof(struct bpfjit_stack, mem) +
   1512   1.7  alnsn 				        pc->k * sizeof(uint32_t));
   1513   1.1  alnsn 				if (status != SLJIT_SUCCESS)
   1514   1.1  alnsn 					goto fail;
   1515   1.1  alnsn 
   1516   1.1  alnsn 				continue;
   1517   1.1  alnsn 			}
   1518   1.1  alnsn 
   1519   1.1  alnsn 			/* BPF_LD+BPF_W+BPF_LEN    A <- len */
   1520   1.1  alnsn 			if (pc->code == (BPF_LD|BPF_W|BPF_LEN)) {
   1521   1.1  alnsn 				status = sljit_emit_op1(compiler,
   1522   1.1  alnsn 				    SLJIT_MOV,
   1523   1.7  alnsn 				    BJ_AREG, 0,
   1524   1.7  alnsn 				    BJ_WIRELEN, 0);
   1525   1.1  alnsn 				if (status != SLJIT_SUCCESS)
   1526   1.1  alnsn 					goto fail;
   1527   1.1  alnsn 
   1528   1.1  alnsn 				continue;
   1529   1.1  alnsn 			}
   1530   1.1  alnsn 
   1531   1.1  alnsn 			mode = BPF_MODE(pc->code);
   1532   1.1  alnsn 			if (mode != BPF_ABS && mode != BPF_IND)
   1533   1.1  alnsn 				goto fail;
   1534   1.1  alnsn 
   1535   1.9  alnsn 			if (unconditional_ret)
   1536   1.9  alnsn 				continue;
   1537   1.9  alnsn 
   1538   1.1  alnsn 			status = emit_pkt_read(compiler, pc,
   1539   1.7  alnsn 			    to_mchain_jump, &ret0, &ret0_size, &ret0_maxsize);
   1540   1.1  alnsn 			if (status != SLJIT_SUCCESS)
   1541   1.1  alnsn 				goto fail;
   1542   1.1  alnsn 
   1543   1.1  alnsn 			continue;
   1544   1.1  alnsn 
   1545   1.1  alnsn 		case BPF_LDX:
   1546   1.1  alnsn 			mode = BPF_MODE(pc->code);
   1547   1.1  alnsn 
   1548   1.1  alnsn 			/* BPF_LDX+BPF_W+BPF_IMM    X <- k */
   1549   1.1  alnsn 			if (mode == BPF_IMM) {
   1550   1.1  alnsn 				if (BPF_SIZE(pc->code) != BPF_W)
   1551   1.1  alnsn 					goto fail;
   1552   1.1  alnsn 				status = sljit_emit_op1(compiler,
   1553   1.1  alnsn 				    SLJIT_MOV,
   1554   1.7  alnsn 				    BJ_XREG, 0,
   1555   1.1  alnsn 				    SLJIT_IMM, (uint32_t)pc->k);
   1556   1.1  alnsn 				if (status != SLJIT_SUCCESS)
   1557   1.1  alnsn 					goto fail;
   1558   1.1  alnsn 
   1559   1.1  alnsn 				continue;
   1560   1.1  alnsn 			}
   1561   1.1  alnsn 
   1562   1.1  alnsn 			/* BPF_LDX+BPF_W+BPF_LEN    X <- len */
   1563   1.1  alnsn 			if (mode == BPF_LEN) {
   1564   1.1  alnsn 				if (BPF_SIZE(pc->code) != BPF_W)
   1565   1.1  alnsn 					goto fail;
   1566   1.1  alnsn 				status = sljit_emit_op1(compiler,
   1567   1.1  alnsn 				    SLJIT_MOV,
   1568   1.7  alnsn 				    BJ_XREG, 0,
   1569   1.7  alnsn 				    BJ_WIRELEN, 0);
   1570   1.1  alnsn 				if (status != SLJIT_SUCCESS)
   1571   1.1  alnsn 					goto fail;
   1572   1.1  alnsn 
   1573   1.1  alnsn 				continue;
   1574   1.1  alnsn 			}
   1575   1.1  alnsn 
   1576   1.1  alnsn 			/* BPF_LDX+BPF_W+BPF_MEM    X <- M[k] */
   1577   1.1  alnsn 			if (mode == BPF_MEM) {
   1578   1.1  alnsn 				if (BPF_SIZE(pc->code) != BPF_W)
   1579   1.1  alnsn 					goto fail;
   1580   1.8  alnsn 				if ((uint32_t)pc->k >= BPF_MEMWORDS)
   1581   1.1  alnsn 					goto fail;
   1582   1.1  alnsn 				status = sljit_emit_op1(compiler,
   1583   1.1  alnsn 				    SLJIT_MOV_UI,
   1584   1.7  alnsn 				    BJ_XREG, 0,
   1585   1.1  alnsn 				    SLJIT_MEM1(SLJIT_LOCALS_REG),
   1586   1.7  alnsn 				    offsetof(struct bpfjit_stack, mem) +
   1587   1.7  alnsn 				        pc->k * sizeof(uint32_t));
   1588   1.1  alnsn 				if (status != SLJIT_SUCCESS)
   1589   1.1  alnsn 					goto fail;
   1590   1.1  alnsn 
   1591   1.1  alnsn 				continue;
   1592   1.1  alnsn 			}
   1593   1.1  alnsn 
   1594   1.1  alnsn 			/* BPF_LDX+BPF_B+BPF_MSH    X <- 4*(P[k:1]&0xf) */
   1595   1.1  alnsn 			if (mode != BPF_MSH || BPF_SIZE(pc->code) != BPF_B)
   1596   1.1  alnsn 				goto fail;
   1597   1.1  alnsn 
   1598   1.9  alnsn 			if (unconditional_ret)
   1599   1.9  alnsn 				continue;
   1600   1.9  alnsn 
   1601   1.1  alnsn 			status = emit_msh(compiler, pc,
   1602   1.7  alnsn 			    to_mchain_jump, &ret0, &ret0_size, &ret0_maxsize);
   1603   1.1  alnsn 			if (status != SLJIT_SUCCESS)
   1604   1.1  alnsn 				goto fail;
   1605   1.1  alnsn 
   1606   1.1  alnsn 			continue;
   1607   1.1  alnsn 
   1608   1.1  alnsn 		case BPF_ST:
   1609   1.8  alnsn 			if (pc->code != BPF_ST ||
   1610   1.8  alnsn 			    (uint32_t)pc->k >= BPF_MEMWORDS) {
   1611   1.1  alnsn 				goto fail;
   1612   1.8  alnsn 			}
   1613   1.1  alnsn 
   1614   1.1  alnsn 			status = sljit_emit_op1(compiler,
   1615   1.1  alnsn 			    SLJIT_MOV_UI,
   1616   1.1  alnsn 			    SLJIT_MEM1(SLJIT_LOCALS_REG),
   1617   1.7  alnsn 			    offsetof(struct bpfjit_stack, mem) +
   1618   1.7  alnsn 			        pc->k * sizeof(uint32_t),
   1619   1.7  alnsn 			    BJ_AREG, 0);
   1620   1.1  alnsn 			if (status != SLJIT_SUCCESS)
   1621   1.1  alnsn 				goto fail;
   1622   1.1  alnsn 
   1623   1.1  alnsn 			continue;
   1624   1.1  alnsn 
   1625   1.1  alnsn 		case BPF_STX:
   1626   1.8  alnsn 			if (pc->code != BPF_STX ||
   1627   1.8  alnsn 			    (uint32_t)pc->k >= BPF_MEMWORDS) {
   1628   1.1  alnsn 				goto fail;
   1629   1.8  alnsn 			}
   1630   1.1  alnsn 
   1631   1.1  alnsn 			status = sljit_emit_op1(compiler,
   1632   1.1  alnsn 			    SLJIT_MOV_UI,
   1633   1.1  alnsn 			    SLJIT_MEM1(SLJIT_LOCALS_REG),
   1634   1.7  alnsn 			    offsetof(struct bpfjit_stack, mem) +
   1635   1.7  alnsn 			        pc->k * sizeof(uint32_t),
   1636   1.7  alnsn 			    BJ_XREG, 0);
   1637   1.1  alnsn 			if (status != SLJIT_SUCCESS)
   1638   1.1  alnsn 				goto fail;
   1639   1.1  alnsn 
   1640   1.1  alnsn 			continue;
   1641   1.1  alnsn 
   1642   1.1  alnsn 		case BPF_ALU:
   1643   1.1  alnsn 			if (pc->code == (BPF_ALU|BPF_NEG)) {
   1644   1.1  alnsn 				status = sljit_emit_op1(compiler,
   1645   1.1  alnsn 				    SLJIT_NEG,
   1646   1.7  alnsn 				    BJ_AREG, 0,
   1647   1.7  alnsn 				    BJ_AREG, 0);
   1648   1.1  alnsn 				if (status != SLJIT_SUCCESS)
   1649   1.1  alnsn 					goto fail;
   1650   1.1  alnsn 
   1651   1.1  alnsn 				continue;
   1652   1.1  alnsn 			}
   1653   1.1  alnsn 
   1654   1.1  alnsn 			if (BPF_OP(pc->code) != BPF_DIV) {
   1655   1.1  alnsn 				status = sljit_emit_op2(compiler,
   1656   1.1  alnsn 				    bpf_alu_to_sljit_op(pc),
   1657   1.7  alnsn 				    BJ_AREG, 0,
   1658   1.7  alnsn 				    BJ_AREG, 0,
   1659   1.1  alnsn 				    kx_to_reg(pc), kx_to_reg_arg(pc));
   1660   1.1  alnsn 				if (status != SLJIT_SUCCESS)
   1661   1.1  alnsn 					goto fail;
   1662   1.1  alnsn 
   1663   1.1  alnsn 				continue;
   1664   1.1  alnsn 			}
   1665   1.1  alnsn 
   1666   1.1  alnsn 			/* BPF_DIV */
   1667   1.1  alnsn 
   1668   1.1  alnsn 			src = BPF_SRC(pc->code);
   1669   1.1  alnsn 			if (src != BPF_X && src != BPF_K)
   1670   1.1  alnsn 				goto fail;
   1671   1.1  alnsn 
   1672   1.1  alnsn 			/* division by zero? */
   1673   1.1  alnsn 			if (src == BPF_X) {
   1674   1.1  alnsn 				jump = sljit_emit_cmp(compiler,
   1675   1.1  alnsn 				    SLJIT_C_EQUAL|SLJIT_INT_OP,
   1676   1.8  alnsn 				    BJ_XREG, 0,
   1677   1.1  alnsn 				    SLJIT_IMM, 0);
   1678   1.1  alnsn 				if (jump == NULL)
   1679   1.1  alnsn 					goto fail;
   1680   1.7  alnsn 				if (!append_jump(jump, &ret0,
   1681   1.7  alnsn 				    &ret0_size, &ret0_maxsize))
   1682   1.7  alnsn 					goto fail;
   1683   1.1  alnsn 			} else if (pc->k == 0) {
   1684   1.1  alnsn 				jump = sljit_emit_jump(compiler, SLJIT_JUMP);
   1685   1.1  alnsn 				if (jump == NULL)
   1686   1.1  alnsn 					goto fail;
   1687   1.7  alnsn 				if (!append_jump(jump, &ret0,
   1688   1.7  alnsn 				    &ret0_size, &ret0_maxsize))
   1689   1.7  alnsn 					goto fail;
   1690   1.1  alnsn 			}
   1691   1.1  alnsn 
   1692   1.1  alnsn 			if (src == BPF_X) {
   1693   1.7  alnsn 				status = emit_division(compiler, BJ_XREG, 0);
   1694   1.1  alnsn 				if (status != SLJIT_SUCCESS)
   1695   1.1  alnsn 					goto fail;
   1696   1.1  alnsn 			} else if (pc->k != 0) {
   1697   1.1  alnsn 				if (pc->k & (pc->k - 1)) {
   1698   1.1  alnsn 				    status = emit_division(compiler,
   1699   1.1  alnsn 				        SLJIT_IMM, (uint32_t)pc->k);
   1700   1.1  alnsn 				} else {
   1701   1.7  alnsn 				    status = emit_pow2_division(compiler,
   1702   1.1  alnsn 				        (uint32_t)pc->k);
   1703   1.1  alnsn 				}
   1704   1.1  alnsn 				if (status != SLJIT_SUCCESS)
   1705   1.1  alnsn 					goto fail;
   1706   1.1  alnsn 			}
   1707   1.1  alnsn 
   1708   1.1  alnsn 			continue;
   1709   1.1  alnsn 
   1710   1.1  alnsn 		case BPF_JMP:
   1711   1.7  alnsn 			if (BPF_OP(pc->code) == BPF_JA) {
   1712   1.1  alnsn 				jt = jf = pc->k;
   1713   1.1  alnsn 			} else {
   1714   1.1  alnsn 				jt = pc->jt;
   1715   1.1  alnsn 				jf = pc->jf;
   1716   1.1  alnsn 			}
   1717   1.1  alnsn 
   1718   1.1  alnsn 			negate = (jt == 0) ? 1 : 0;
   1719   1.1  alnsn 			branching = (jt == jf) ? 0 : 1;
   1720   1.7  alnsn 			jtf = insn_dat[i].u.jdata.jtf;
   1721   1.1  alnsn 
   1722   1.1  alnsn 			if (branching) {
   1723   1.1  alnsn 				if (BPF_OP(pc->code) != BPF_JSET) {
   1724   1.1  alnsn 					jump = sljit_emit_cmp(compiler,
   1725   1.1  alnsn 					    bpf_jmp_to_sljit_cond(pc, negate),
   1726   1.7  alnsn 					    BJ_AREG, 0,
   1727   1.1  alnsn 					    kx_to_reg(pc), kx_to_reg_arg(pc));
   1728   1.1  alnsn 				} else {
   1729   1.1  alnsn 					status = sljit_emit_op2(compiler,
   1730   1.1  alnsn 					    SLJIT_AND,
   1731   1.7  alnsn 					    BJ_TMP1REG, 0,
   1732   1.7  alnsn 					    BJ_AREG, 0,
   1733   1.1  alnsn 					    kx_to_reg(pc), kx_to_reg_arg(pc));
   1734   1.1  alnsn 					if (status != SLJIT_SUCCESS)
   1735   1.1  alnsn 						goto fail;
   1736   1.1  alnsn 
   1737   1.1  alnsn 					jump = sljit_emit_cmp(compiler,
   1738   1.1  alnsn 					    bpf_jmp_to_sljit_cond(pc, negate),
   1739   1.7  alnsn 					    BJ_TMP1REG, 0,
   1740   1.1  alnsn 					    SLJIT_IMM, 0);
   1741   1.1  alnsn 				}
   1742   1.1  alnsn 
   1743   1.1  alnsn 				if (jump == NULL)
   1744   1.1  alnsn 					goto fail;
   1745   1.1  alnsn 
   1746   1.7  alnsn 				BJ_ASSERT(jtf[negate].sjump == NULL);
   1747   1.7  alnsn 				jtf[negate].sjump = jump;
   1748   1.1  alnsn 			}
   1749   1.1  alnsn 
   1750   1.1  alnsn 			if (!branching || (jt != 0 && jf != 0)) {
   1751   1.1  alnsn 				jump = sljit_emit_jump(compiler, SLJIT_JUMP);
   1752   1.1  alnsn 				if (jump == NULL)
   1753   1.1  alnsn 					goto fail;
   1754   1.1  alnsn 
   1755   1.7  alnsn 				BJ_ASSERT(jtf[branching].sjump == NULL);
   1756   1.7  alnsn 				jtf[branching].sjump = jump;
   1757   1.1  alnsn 			}
   1758   1.1  alnsn 
   1759   1.1  alnsn 			continue;
   1760   1.1  alnsn 
   1761   1.1  alnsn 		case BPF_RET:
   1762   1.1  alnsn 			rval = BPF_RVAL(pc->code);
   1763   1.1  alnsn 			if (rval == BPF_X)
   1764   1.1  alnsn 				goto fail;
   1765   1.1  alnsn 
   1766   1.1  alnsn 			/* BPF_RET+BPF_K    accept k bytes */
   1767   1.1  alnsn 			if (rval == BPF_K) {
   1768   1.7  alnsn 				status = sljit_emit_return(compiler,
   1769   1.7  alnsn 				    SLJIT_MOV_UI,
   1770   1.1  alnsn 				    SLJIT_IMM, (uint32_t)pc->k);
   1771   1.1  alnsn 				if (status != SLJIT_SUCCESS)
   1772   1.1  alnsn 					goto fail;
   1773   1.1  alnsn 			}
   1774   1.1  alnsn 
   1775   1.1  alnsn 			/* BPF_RET+BPF_A    accept A bytes */
   1776   1.1  alnsn 			if (rval == BPF_A) {
   1777   1.7  alnsn 				status = sljit_emit_return(compiler,
   1778   1.7  alnsn 				    SLJIT_MOV_UI,
   1779   1.7  alnsn 				    BJ_AREG, 0);
   1780   1.1  alnsn 				if (status != SLJIT_SUCCESS)
   1781   1.1  alnsn 					goto fail;
   1782   1.1  alnsn 			}
   1783   1.1  alnsn 
   1784   1.1  alnsn 			continue;
   1785   1.1  alnsn 
   1786   1.1  alnsn 		case BPF_MISC:
   1787   1.7  alnsn 			switch (BPF_MISCOP(pc->code)) {
   1788   1.7  alnsn 			case BPF_TAX:
   1789   1.1  alnsn 				status = sljit_emit_op1(compiler,
   1790   1.1  alnsn 				    SLJIT_MOV_UI,
   1791   1.7  alnsn 				    BJ_XREG, 0,
   1792   1.7  alnsn 				    BJ_AREG, 0);
   1793   1.1  alnsn 				if (status != SLJIT_SUCCESS)
   1794   1.1  alnsn 					goto fail;
   1795   1.1  alnsn 
   1796   1.1  alnsn 				continue;
   1797   1.1  alnsn 
   1798   1.7  alnsn 			case BPF_TXA:
   1799   1.1  alnsn 				status = sljit_emit_op1(compiler,
   1800   1.1  alnsn 				    SLJIT_MOV,
   1801   1.7  alnsn 				    BJ_AREG, 0,
   1802   1.7  alnsn 				    BJ_XREG, 0);
   1803   1.1  alnsn 				if (status != SLJIT_SUCCESS)
   1804   1.1  alnsn 					goto fail;
   1805   1.1  alnsn 
   1806   1.1  alnsn 				continue;
   1807   1.1  alnsn 			}
   1808   1.1  alnsn 
   1809   1.1  alnsn 			goto fail;
   1810   1.1  alnsn 		} /* switch */
   1811   1.1  alnsn 	} /* main loop */
   1812   1.1  alnsn 
   1813   1.7  alnsn 	BJ_ASSERT(ret0_size <= ret0_maxsize);
   1814   1.1  alnsn 
   1815   1.7  alnsn 	if (ret0_size > 0) {
   1816   1.1  alnsn 		label = sljit_emit_label(compiler);
   1817   1.1  alnsn 		if (label == NULL)
   1818   1.1  alnsn 			goto fail;
   1819   1.7  alnsn 		for (i = 0; i < ret0_size; i++)
   1820   1.7  alnsn 			sljit_set_label(ret0[i], label);
   1821   1.1  alnsn 	}
   1822   1.1  alnsn 
   1823   1.1  alnsn 	status = sljit_emit_return(compiler,
   1824   1.1  alnsn 	    SLJIT_MOV_UI,
   1825   1.7  alnsn 	    SLJIT_IMM, 0);
   1826   1.1  alnsn 	if (status != SLJIT_SUCCESS)
   1827   1.1  alnsn 		goto fail;
   1828   1.1  alnsn 
   1829   1.1  alnsn 	rv = sljit_generate_code(compiler);
   1830   1.1  alnsn 
   1831   1.1  alnsn fail:
   1832   1.1  alnsn 	if (compiler != NULL)
   1833   1.1  alnsn 		sljit_free_compiler(compiler);
   1834   1.1  alnsn 
   1835   1.1  alnsn 	if (insn_dat != NULL)
   1836   1.7  alnsn 		BJ_FREE(insn_dat, insn_count * sizeof(insn_dat[0]));
   1837   1.1  alnsn 
   1838   1.1  alnsn 	if (ret0 != NULL)
   1839   1.7  alnsn 		BJ_FREE(ret0, ret0_maxsize * sizeof(ret0[0]));
   1840   1.1  alnsn 
   1841   1.4  rmind 	return (bpfjit_func_t)rv;
   1842   1.1  alnsn }
   1843   1.1  alnsn 
   1844   1.1  alnsn void
   1845   1.4  rmind bpfjit_free_code(bpfjit_func_t code)
   1846   1.1  alnsn {
   1847   1.7  alnsn 
   1848   1.1  alnsn 	sljit_free_code((void *)code);
   1849   1.1  alnsn }
   1850