Home | History | Annotate | Line # | Download | only in net
bpfjit.c revision 1.13
      1  1.12  alnsn /*	$NetBSD: bpfjit.c,v 1.13 2014/06/24 10:53:30 alnsn Exp $	*/
      2   1.3  rmind 
      3   1.1  alnsn /*-
      4   1.7  alnsn  * Copyright (c) 2011-2014 Alexander Nasonov.
      5   1.1  alnsn  * All rights reserved.
      6   1.1  alnsn  *
      7   1.1  alnsn  * Redistribution and use in source and binary forms, with or without
      8   1.1  alnsn  * modification, are permitted provided that the following conditions
      9   1.1  alnsn  * are met:
     10   1.1  alnsn  *
     11   1.1  alnsn  * 1. Redistributions of source code must retain the above copyright
     12   1.1  alnsn  *    notice, this list of conditions and the following disclaimer.
     13   1.1  alnsn  * 2. Redistributions in binary form must reproduce the above copyright
     14   1.1  alnsn  *    notice, this list of conditions and the following disclaimer in
     15   1.1  alnsn  *    the documentation and/or other materials provided with the
     16   1.1  alnsn  *    distribution.
     17   1.1  alnsn  *
     18   1.1  alnsn  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     19   1.1  alnsn  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     20   1.1  alnsn  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
     21   1.1  alnsn  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
     22   1.1  alnsn  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
     23   1.1  alnsn  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
     24   1.1  alnsn  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     25   1.1  alnsn  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     26   1.1  alnsn  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     27   1.1  alnsn  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
     28   1.1  alnsn  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29   1.1  alnsn  * SUCH DAMAGE.
     30   1.1  alnsn  */
     31   1.1  alnsn 
     32   1.2  alnsn #include <sys/cdefs.h>
     33   1.2  alnsn #ifdef _KERNEL
     34  1.12  alnsn __KERNEL_RCSID(0, "$NetBSD: bpfjit.c,v 1.13 2014/06/24 10:53:30 alnsn Exp $");
     35   1.2  alnsn #else
     36  1.12  alnsn __RCSID("$NetBSD: bpfjit.c,v 1.13 2014/06/24 10:53:30 alnsn Exp $");
     37   1.2  alnsn #endif
     38   1.2  alnsn 
     39   1.3  rmind #include <sys/types.h>
     40   1.3  rmind #include <sys/queue.h>
     41   1.1  alnsn 
     42   1.1  alnsn #ifndef _KERNEL
     43   1.7  alnsn #include <assert.h>
     44   1.7  alnsn #define BJ_ASSERT(c) assert(c)
     45   1.7  alnsn #else
     46   1.7  alnsn #define BJ_ASSERT(c) KASSERT(c)
     47   1.7  alnsn #endif
     48   1.7  alnsn 
     49   1.7  alnsn #ifndef _KERNEL
     50   1.3  rmind #include <stdlib.h>
     51   1.7  alnsn #define BJ_ALLOC(sz) malloc(sz)
     52   1.7  alnsn #define BJ_FREE(p, sz) free(p)
     53   1.1  alnsn #else
     54   1.3  rmind #include <sys/kmem.h>
     55   1.7  alnsn #define BJ_ALLOC(sz) kmem_alloc(sz, KM_SLEEP)
     56   1.7  alnsn #define BJ_FREE(p, sz) kmem_free(p, sz)
     57   1.1  alnsn #endif
     58   1.1  alnsn 
     59   1.1  alnsn #ifndef _KERNEL
     60   1.1  alnsn #include <limits.h>
     61   1.1  alnsn #include <stdbool.h>
     62   1.1  alnsn #include <stddef.h>
     63   1.1  alnsn #include <stdint.h>
     64   1.1  alnsn #else
     65   1.1  alnsn #include <sys/atomic.h>
     66   1.1  alnsn #include <sys/module.h>
     67   1.1  alnsn #endif
     68   1.1  alnsn 
     69   1.5  rmind #define	__BPF_PRIVATE
     70   1.5  rmind #include <net/bpf.h>
     71   1.3  rmind #include <net/bpfjit.h>
     72   1.1  alnsn #include <sljitLir.h>
     73   1.1  alnsn 
     74   1.7  alnsn #if !defined(_KERNEL) && defined(SLJIT_VERBOSE) && SLJIT_VERBOSE
     75   1.7  alnsn #include <stdio.h> /* for stderr */
     76   1.7  alnsn #endif
     77   1.7  alnsn 
     78   1.7  alnsn /*
     79  1.13  alnsn  * Arguments of generated bpfjit_func_t.
     80  1.13  alnsn  * The first argument is reassigned upon entry
     81  1.13  alnsn  * to a more frequently used buf argument.
     82  1.13  alnsn  */
     83  1.13  alnsn #define BJ_CTX_ARG	SLJIT_SAVED_REG1
     84  1.13  alnsn #define BJ_ARGS		SLJIT_SAVED_REG2
     85  1.13  alnsn 
     86  1.13  alnsn /*
     87   1.7  alnsn  * Permanent register assignments.
     88   1.7  alnsn  */
     89   1.7  alnsn #define BJ_BUF		SLJIT_SAVED_REG1
     90  1.13  alnsn //#define BJ_ARGS	SLJIT_SAVED_REG2
     91   1.7  alnsn #define BJ_BUFLEN	SLJIT_SAVED_REG3
     92  1.12  alnsn #define BJ_AREG		SLJIT_SCRATCH_REG1
     93  1.12  alnsn #define BJ_TMP1REG	SLJIT_SCRATCH_REG2
     94  1.12  alnsn #define BJ_TMP2REG	SLJIT_SCRATCH_REG3
     95   1.7  alnsn #define BJ_XREG		SLJIT_TEMPORARY_EREG1
     96   1.7  alnsn #define BJ_TMP3REG	SLJIT_TEMPORARY_EREG2
     97   1.7  alnsn 
     98  1.13  alnsn /*
     99  1.13  alnsn  * EREG registers can't be used for indirect calls, reuse BJ_BUF and
    100  1.13  alnsn  * BJ_BUFLEN registers. They can be easily restored from BJ_ARGS.
    101  1.13  alnsn  */
    102  1.13  alnsn #define BJ_COPF_PTR	SLJIT_SAVED_REG1
    103  1.13  alnsn #define BJ_COPF_IDX	SLJIT_SAVED_REG3
    104  1.13  alnsn 
    105  1.13  alnsn #ifdef _KERNEL
    106  1.13  alnsn #define MAX_MEMWORDS BPF_MAX_MEMWORDS
    107  1.13  alnsn #else
    108  1.13  alnsn #define MAX_MEMWORDS BPF_MEMWORDS
    109  1.13  alnsn #endif
    110  1.13  alnsn 
    111  1.13  alnsn #define BJ_INIT_NOBITS  ((bpf_memword_init_t)0)
    112  1.13  alnsn #define BJ_INIT_MBIT(k) BPF_MEMWORD_INIT(k)
    113  1.13  alnsn #define BJ_INIT_ABIT    BJ_INIT_MBIT(MAX_MEMWORDS)
    114  1.13  alnsn #define BJ_INIT_XBIT    BJ_INIT_MBIT(MAX_MEMWORDS + 1)
    115   1.1  alnsn 
    116   1.9  alnsn /*
    117   1.9  alnsn  * Datatype for Array Bounds Check Elimination (ABC) pass.
    118   1.9  alnsn  */
    119   1.9  alnsn typedef uint64_t bpfjit_abc_length_t;
    120   1.9  alnsn #define MAX_ABC_LENGTH (UINT32_MAX + UINT64_C(4)) /* max. width is 4 */
    121   1.8  alnsn 
    122   1.7  alnsn struct bpfjit_stack
    123   1.7  alnsn {
    124  1.13  alnsn 	bpf_ctx_t *ctx;
    125  1.13  alnsn 	uint32_t *extmem; /* pointer to external memory store */
    126   1.7  alnsn #ifdef _KERNEL
    127   1.7  alnsn 	void *tmp;
    128   1.7  alnsn #endif
    129  1.13  alnsn 	uint32_t mem[BPF_MEMWORDS]; /* internal memory store */
    130   1.7  alnsn };
    131   1.7  alnsn 
    132   1.7  alnsn /*
    133   1.7  alnsn  * Data for BPF_JMP instruction.
    134   1.7  alnsn  * Forward declaration for struct bpfjit_jump.
    135   1.1  alnsn  */
    136   1.7  alnsn struct bpfjit_jump_data;
    137   1.1  alnsn 
    138   1.1  alnsn /*
    139   1.7  alnsn  * Node of bjumps list.
    140   1.1  alnsn  */
    141   1.3  rmind struct bpfjit_jump {
    142   1.7  alnsn 	struct sljit_jump *sjump;
    143   1.7  alnsn 	SLIST_ENTRY(bpfjit_jump) entries;
    144   1.7  alnsn 	struct bpfjit_jump_data *jdata;
    145   1.1  alnsn };
    146   1.1  alnsn 
    147   1.1  alnsn /*
    148   1.1  alnsn  * Data for BPF_JMP instruction.
    149   1.1  alnsn  */
    150   1.3  rmind struct bpfjit_jump_data {
    151   1.1  alnsn 	/*
    152   1.7  alnsn 	 * These entries make up bjumps list:
    153   1.7  alnsn 	 * jtf[0] - when coming from jt path,
    154   1.7  alnsn 	 * jtf[1] - when coming from jf path.
    155   1.1  alnsn 	 */
    156   1.7  alnsn 	struct bpfjit_jump jtf[2];
    157   1.7  alnsn 	/*
    158   1.7  alnsn 	 * Length calculated by Array Bounds Check Elimination (ABC) pass.
    159   1.7  alnsn 	 */
    160   1.8  alnsn 	bpfjit_abc_length_t abc_length;
    161   1.7  alnsn 	/*
    162   1.7  alnsn 	 * Length checked by the last out-of-bounds check.
    163   1.7  alnsn 	 */
    164   1.8  alnsn 	bpfjit_abc_length_t checked_length;
    165   1.1  alnsn };
    166   1.1  alnsn 
    167   1.1  alnsn /*
    168   1.1  alnsn  * Data for "read from packet" instructions.
    169   1.1  alnsn  * See also read_pkt_insn() function below.
    170   1.1  alnsn  */
    171   1.3  rmind struct bpfjit_read_pkt_data {
    172   1.1  alnsn 	/*
    173   1.7  alnsn 	 * Length calculated by Array Bounds Check Elimination (ABC) pass.
    174   1.7  alnsn 	 */
    175   1.8  alnsn 	bpfjit_abc_length_t abc_length;
    176   1.7  alnsn 	/*
    177   1.7  alnsn 	 * If positive, emit "if (buflen < check_length) return 0"
    178   1.7  alnsn 	 * out-of-bounds check.
    179   1.9  alnsn 	 * Values greater than UINT32_MAX generate unconditional "return 0".
    180   1.1  alnsn 	 */
    181   1.8  alnsn 	bpfjit_abc_length_t check_length;
    182   1.1  alnsn };
    183   1.1  alnsn 
    184   1.1  alnsn /*
    185   1.1  alnsn  * Additional (optimization-related) data for bpf_insn.
    186   1.1  alnsn  */
    187   1.3  rmind struct bpfjit_insn_data {
    188   1.1  alnsn 	/* List of jumps to this insn. */
    189   1.7  alnsn 	SLIST_HEAD(, bpfjit_jump) bjumps;
    190   1.1  alnsn 
    191   1.1  alnsn 	union {
    192   1.7  alnsn 		struct bpfjit_jump_data     jdata;
    193   1.7  alnsn 		struct bpfjit_read_pkt_data rdata;
    194   1.7  alnsn 	} u;
    195   1.1  alnsn 
    196  1.13  alnsn 	bpf_memword_init_t invalid;
    197   1.7  alnsn 	bool unreachable;
    198   1.1  alnsn };
    199   1.1  alnsn 
    200   1.1  alnsn #ifdef _KERNEL
    201   1.1  alnsn 
    202   1.1  alnsn uint32_t m_xword(const struct mbuf *, uint32_t, int *);
    203   1.1  alnsn uint32_t m_xhalf(const struct mbuf *, uint32_t, int *);
    204   1.1  alnsn uint32_t m_xbyte(const struct mbuf *, uint32_t, int *);
    205   1.1  alnsn 
    206   1.1  alnsn MODULE(MODULE_CLASS_MISC, bpfjit, "sljit")
    207   1.1  alnsn 
    208   1.1  alnsn static int
    209   1.1  alnsn bpfjit_modcmd(modcmd_t cmd, void *arg)
    210   1.1  alnsn {
    211   1.1  alnsn 
    212   1.1  alnsn 	switch (cmd) {
    213   1.1  alnsn 	case MODULE_CMD_INIT:
    214   1.1  alnsn 		bpfjit_module_ops.bj_free_code = &bpfjit_free_code;
    215   1.1  alnsn 		membar_producer();
    216   1.1  alnsn 		bpfjit_module_ops.bj_generate_code = &bpfjit_generate_code;
    217   1.1  alnsn 		membar_producer();
    218   1.1  alnsn 		return 0;
    219   1.1  alnsn 
    220   1.1  alnsn 	case MODULE_CMD_FINI:
    221   1.1  alnsn 		return EOPNOTSUPP;
    222   1.1  alnsn 
    223   1.1  alnsn 	default:
    224   1.1  alnsn 		return ENOTTY;
    225   1.1  alnsn 	}
    226   1.1  alnsn }
    227   1.1  alnsn #endif
    228   1.1  alnsn 
    229   1.1  alnsn static uint32_t
    230   1.7  alnsn read_width(const struct bpf_insn *pc)
    231   1.1  alnsn {
    232   1.1  alnsn 
    233   1.1  alnsn 	switch (BPF_SIZE(pc->code)) {
    234   1.1  alnsn 	case BPF_W:
    235   1.1  alnsn 		return 4;
    236   1.1  alnsn 	case BPF_H:
    237   1.1  alnsn 		return 2;
    238   1.1  alnsn 	case BPF_B:
    239   1.1  alnsn 		return 1;
    240   1.1  alnsn 	default:
    241   1.7  alnsn 		BJ_ASSERT(false);
    242   1.1  alnsn 		return 0;
    243   1.1  alnsn 	}
    244   1.1  alnsn }
    245   1.1  alnsn 
    246  1.13  alnsn /*
    247  1.13  alnsn  * Copy buf and buflen members of bpf_args from BJ_ARGS
    248  1.13  alnsn  * pointer to BJ_BUF and BJ_BUFLEN registers.
    249  1.13  alnsn  */
    250  1.13  alnsn static int
    251  1.13  alnsn load_buf_buflen(struct sljit_compiler *compiler)
    252  1.13  alnsn {
    253  1.13  alnsn 	int status;
    254  1.13  alnsn 
    255  1.13  alnsn 	status = sljit_emit_op1(compiler,
    256  1.13  alnsn 	    SLJIT_MOV_P,
    257  1.13  alnsn 	    BJ_BUF, 0,
    258  1.13  alnsn 	    SLJIT_MEM1(BJ_ARGS),
    259  1.13  alnsn 	    offsetof(struct bpf_args, pkt));
    260  1.13  alnsn 	if (status != SLJIT_SUCCESS)
    261  1.13  alnsn 		return status;
    262  1.13  alnsn 
    263  1.13  alnsn 	status = sljit_emit_op1(compiler,
    264  1.13  alnsn 	    SLJIT_MOV,
    265  1.13  alnsn 	    BJ_BUFLEN, 0,
    266  1.13  alnsn 	    SLJIT_MEM1(BJ_ARGS),
    267  1.13  alnsn 	    offsetof(struct bpf_args, buflen));
    268  1.13  alnsn 
    269  1.13  alnsn 	return status;
    270  1.13  alnsn }
    271  1.13  alnsn 
    272   1.7  alnsn static bool
    273   1.7  alnsn grow_jumps(struct sljit_jump ***jumps, size_t *size)
    274   1.7  alnsn {
    275   1.7  alnsn 	struct sljit_jump **newptr;
    276   1.7  alnsn 	const size_t elemsz = sizeof(struct sljit_jump *);
    277   1.7  alnsn 	size_t old_size = *size;
    278   1.7  alnsn 	size_t new_size = 2 * old_size;
    279   1.7  alnsn 
    280   1.7  alnsn 	if (new_size < old_size || new_size > SIZE_MAX / elemsz)
    281   1.7  alnsn 		return false;
    282   1.7  alnsn 
    283   1.7  alnsn 	newptr = BJ_ALLOC(new_size * elemsz);
    284   1.7  alnsn 	if (newptr == NULL)
    285   1.7  alnsn 		return false;
    286   1.7  alnsn 
    287   1.7  alnsn 	memcpy(newptr, *jumps, old_size * elemsz);
    288   1.7  alnsn 	BJ_FREE(*jumps, old_size * elemsz);
    289   1.7  alnsn 
    290   1.7  alnsn 	*jumps = newptr;
    291   1.7  alnsn 	*size = new_size;
    292   1.7  alnsn 	return true;
    293   1.7  alnsn }
    294   1.7  alnsn 
    295   1.7  alnsn static bool
    296   1.7  alnsn append_jump(struct sljit_jump *jump, struct sljit_jump ***jumps,
    297   1.7  alnsn     size_t *size, size_t *max_size)
    298   1.1  alnsn {
    299   1.7  alnsn 	if (*size == *max_size && !grow_jumps(jumps, max_size))
    300   1.7  alnsn 		return false;
    301   1.1  alnsn 
    302   1.7  alnsn 	(*jumps)[(*size)++] = jump;
    303   1.7  alnsn 	return true;
    304   1.1  alnsn }
    305   1.1  alnsn 
    306   1.1  alnsn /*
    307   1.1  alnsn  * Generate code for BPF_LD+BPF_B+BPF_ABS    A <- P[k:1].
    308   1.1  alnsn  */
    309   1.1  alnsn static int
    310   1.1  alnsn emit_read8(struct sljit_compiler* compiler, uint32_t k)
    311   1.1  alnsn {
    312   1.1  alnsn 
    313   1.1  alnsn 	return sljit_emit_op1(compiler,
    314   1.1  alnsn 	    SLJIT_MOV_UB,
    315   1.7  alnsn 	    BJ_AREG, 0,
    316   1.7  alnsn 	    SLJIT_MEM1(BJ_BUF), k);
    317   1.1  alnsn }
    318   1.1  alnsn 
    319   1.1  alnsn /*
    320   1.1  alnsn  * Generate code for BPF_LD+BPF_H+BPF_ABS    A <- P[k:2].
    321   1.1  alnsn  */
    322   1.1  alnsn static int
    323   1.1  alnsn emit_read16(struct sljit_compiler* compiler, uint32_t k)
    324   1.1  alnsn {
    325   1.1  alnsn 	int status;
    326   1.1  alnsn 
    327   1.1  alnsn 	/* tmp1 = buf[k]; */
    328   1.1  alnsn 	status = sljit_emit_op1(compiler,
    329   1.1  alnsn 	    SLJIT_MOV_UB,
    330   1.7  alnsn 	    BJ_TMP1REG, 0,
    331   1.7  alnsn 	    SLJIT_MEM1(BJ_BUF), k);
    332   1.1  alnsn 	if (status != SLJIT_SUCCESS)
    333   1.1  alnsn 		return status;
    334   1.1  alnsn 
    335   1.1  alnsn 	/* A = buf[k+1]; */
    336   1.1  alnsn 	status = sljit_emit_op1(compiler,
    337   1.1  alnsn 	    SLJIT_MOV_UB,
    338   1.7  alnsn 	    BJ_AREG, 0,
    339   1.7  alnsn 	    SLJIT_MEM1(BJ_BUF), k+1);
    340   1.1  alnsn 	if (status != SLJIT_SUCCESS)
    341   1.1  alnsn 		return status;
    342   1.1  alnsn 
    343   1.1  alnsn 	/* tmp1 = tmp1 << 8; */
    344   1.1  alnsn 	status = sljit_emit_op2(compiler,
    345   1.1  alnsn 	    SLJIT_SHL,
    346   1.7  alnsn 	    BJ_TMP1REG, 0,
    347   1.7  alnsn 	    BJ_TMP1REG, 0,
    348   1.1  alnsn 	    SLJIT_IMM, 8);
    349   1.1  alnsn 	if (status != SLJIT_SUCCESS)
    350   1.1  alnsn 		return status;
    351   1.1  alnsn 
    352   1.1  alnsn 	/* A = A + tmp1; */
    353   1.1  alnsn 	status = sljit_emit_op2(compiler,
    354   1.1  alnsn 	    SLJIT_ADD,
    355   1.7  alnsn 	    BJ_AREG, 0,
    356   1.7  alnsn 	    BJ_AREG, 0,
    357   1.7  alnsn 	    BJ_TMP1REG, 0);
    358   1.1  alnsn 	return status;
    359   1.1  alnsn }
    360   1.1  alnsn 
    361   1.1  alnsn /*
    362   1.1  alnsn  * Generate code for BPF_LD+BPF_W+BPF_ABS    A <- P[k:4].
    363   1.1  alnsn  */
    364   1.1  alnsn static int
    365   1.1  alnsn emit_read32(struct sljit_compiler* compiler, uint32_t k)
    366   1.1  alnsn {
    367   1.1  alnsn 	int status;
    368   1.1  alnsn 
    369   1.1  alnsn 	/* tmp1 = buf[k]; */
    370   1.1  alnsn 	status = sljit_emit_op1(compiler,
    371   1.1  alnsn 	    SLJIT_MOV_UB,
    372   1.7  alnsn 	    BJ_TMP1REG, 0,
    373   1.7  alnsn 	    SLJIT_MEM1(BJ_BUF), k);
    374   1.1  alnsn 	if (status != SLJIT_SUCCESS)
    375   1.1  alnsn 		return status;
    376   1.1  alnsn 
    377   1.1  alnsn 	/* tmp2 = buf[k+1]; */
    378   1.1  alnsn 	status = sljit_emit_op1(compiler,
    379   1.1  alnsn 	    SLJIT_MOV_UB,
    380   1.7  alnsn 	    BJ_TMP2REG, 0,
    381   1.7  alnsn 	    SLJIT_MEM1(BJ_BUF), k+1);
    382   1.1  alnsn 	if (status != SLJIT_SUCCESS)
    383   1.1  alnsn 		return status;
    384   1.1  alnsn 
    385   1.1  alnsn 	/* A = buf[k+3]; */
    386   1.1  alnsn 	status = sljit_emit_op1(compiler,
    387   1.1  alnsn 	    SLJIT_MOV_UB,
    388   1.7  alnsn 	    BJ_AREG, 0,
    389   1.7  alnsn 	    SLJIT_MEM1(BJ_BUF), k+3);
    390   1.1  alnsn 	if (status != SLJIT_SUCCESS)
    391   1.1  alnsn 		return status;
    392   1.1  alnsn 
    393   1.1  alnsn 	/* tmp1 = tmp1 << 24; */
    394   1.1  alnsn 	status = sljit_emit_op2(compiler,
    395   1.1  alnsn 	    SLJIT_SHL,
    396   1.7  alnsn 	    BJ_TMP1REG, 0,
    397   1.7  alnsn 	    BJ_TMP1REG, 0,
    398   1.1  alnsn 	    SLJIT_IMM, 24);
    399   1.1  alnsn 	if (status != SLJIT_SUCCESS)
    400   1.1  alnsn 		return status;
    401   1.1  alnsn 
    402   1.1  alnsn 	/* A = A + tmp1; */
    403   1.1  alnsn 	status = sljit_emit_op2(compiler,
    404   1.1  alnsn 	    SLJIT_ADD,
    405   1.7  alnsn 	    BJ_AREG, 0,
    406   1.7  alnsn 	    BJ_AREG, 0,
    407   1.7  alnsn 	    BJ_TMP1REG, 0);
    408   1.1  alnsn 	if (status != SLJIT_SUCCESS)
    409   1.1  alnsn 		return status;
    410   1.1  alnsn 
    411   1.1  alnsn 	/* tmp1 = buf[k+2]; */
    412   1.1  alnsn 	status = sljit_emit_op1(compiler,
    413   1.1  alnsn 	    SLJIT_MOV_UB,
    414   1.7  alnsn 	    BJ_TMP1REG, 0,
    415   1.7  alnsn 	    SLJIT_MEM1(BJ_BUF), k+2);
    416   1.1  alnsn 	if (status != SLJIT_SUCCESS)
    417   1.1  alnsn 		return status;
    418   1.1  alnsn 
    419   1.1  alnsn 	/* tmp2 = tmp2 << 16; */
    420   1.1  alnsn 	status = sljit_emit_op2(compiler,
    421   1.1  alnsn 	    SLJIT_SHL,
    422   1.7  alnsn 	    BJ_TMP2REG, 0,
    423   1.7  alnsn 	    BJ_TMP2REG, 0,
    424   1.1  alnsn 	    SLJIT_IMM, 16);
    425   1.1  alnsn 	if (status != SLJIT_SUCCESS)
    426   1.1  alnsn 		return status;
    427   1.1  alnsn 
    428   1.1  alnsn 	/* A = A + tmp2; */
    429   1.1  alnsn 	status = sljit_emit_op2(compiler,
    430   1.1  alnsn 	    SLJIT_ADD,
    431   1.7  alnsn 	    BJ_AREG, 0,
    432   1.7  alnsn 	    BJ_AREG, 0,
    433   1.7  alnsn 	    BJ_TMP2REG, 0);
    434   1.1  alnsn 	if (status != SLJIT_SUCCESS)
    435   1.1  alnsn 		return status;
    436   1.1  alnsn 
    437   1.1  alnsn 	/* tmp1 = tmp1 << 8; */
    438   1.1  alnsn 	status = sljit_emit_op2(compiler,
    439   1.1  alnsn 	    SLJIT_SHL,
    440   1.7  alnsn 	    BJ_TMP1REG, 0,
    441   1.7  alnsn 	    BJ_TMP1REG, 0,
    442   1.1  alnsn 	    SLJIT_IMM, 8);
    443   1.1  alnsn 	if (status != SLJIT_SUCCESS)
    444   1.1  alnsn 		return status;
    445   1.1  alnsn 
    446   1.1  alnsn 	/* A = A + tmp1; */
    447   1.1  alnsn 	status = sljit_emit_op2(compiler,
    448   1.1  alnsn 	    SLJIT_ADD,
    449   1.7  alnsn 	    BJ_AREG, 0,
    450   1.7  alnsn 	    BJ_AREG, 0,
    451   1.7  alnsn 	    BJ_TMP1REG, 0);
    452   1.1  alnsn 	return status;
    453   1.1  alnsn }
    454   1.1  alnsn 
    455   1.1  alnsn #ifdef _KERNEL
    456   1.1  alnsn /*
    457   1.1  alnsn  * Generate m_xword/m_xhalf/m_xbyte call.
    458   1.1  alnsn  *
    459   1.1  alnsn  * pc is one of:
    460   1.1  alnsn  * BPF_LD+BPF_W+BPF_ABS    A <- P[k:4]
    461   1.1  alnsn  * BPF_LD+BPF_H+BPF_ABS    A <- P[k:2]
    462   1.1  alnsn  * BPF_LD+BPF_B+BPF_ABS    A <- P[k:1]
    463   1.1  alnsn  * BPF_LD+BPF_W+BPF_IND    A <- P[X+k:4]
    464   1.1  alnsn  * BPF_LD+BPF_H+BPF_IND    A <- P[X+k:2]
    465   1.1  alnsn  * BPF_LD+BPF_B+BPF_IND    A <- P[X+k:1]
    466   1.1  alnsn  * BPF_LDX+BPF_B+BPF_MSH   X <- 4*(P[k:1]&0xf)
    467   1.1  alnsn  *
    468   1.7  alnsn  * The dst variable should be
    469   1.7  alnsn  *  - BJ_AREG when emitting code for BPF_LD instructions,
    470   1.7  alnsn  *  - BJ_XREG or any of BJ_TMP[1-3]REG registers when emitting
    471   1.7  alnsn  *    code for BPF_MSH instruction.
    472   1.1  alnsn  */
    473   1.1  alnsn static int
    474   1.7  alnsn emit_xcall(struct sljit_compiler* compiler, const struct bpf_insn *pc,
    475  1.12  alnsn     int dst, sljit_sw dstw, struct sljit_jump **ret0_jump,
    476   1.1  alnsn     uint32_t (*fn)(const struct mbuf *, uint32_t, int *))
    477   1.1  alnsn {
    478   1.7  alnsn #if BJ_XREG == SLJIT_RETURN_REG   || \
    479  1.12  alnsn     BJ_XREG == SLJIT_SCRATCH_REG1 || \
    480  1.12  alnsn     BJ_XREG == SLJIT_SCRATCH_REG2 || \
    481  1.12  alnsn     BJ_XREG == SLJIT_SCRATCH_REG3
    482   1.1  alnsn #error "Not supported assignment of registers."
    483   1.1  alnsn #endif
    484   1.1  alnsn 	int status;
    485   1.1  alnsn 
    486   1.1  alnsn 	/*
    487   1.1  alnsn 	 * The third argument of fn is an address on stack.
    488   1.1  alnsn 	 */
    489   1.7  alnsn 	const int arg3_offset = offsetof(struct bpfjit_stack, tmp);
    490   1.1  alnsn 
    491   1.1  alnsn 	if (BPF_CLASS(pc->code) == BPF_LDX) {
    492   1.1  alnsn 		/* save A */
    493   1.1  alnsn 		status = sljit_emit_op1(compiler,
    494   1.1  alnsn 		    SLJIT_MOV,
    495   1.7  alnsn 		    BJ_TMP3REG, 0,
    496   1.7  alnsn 		    BJ_AREG, 0);
    497   1.1  alnsn 		if (status != SLJIT_SUCCESS)
    498   1.1  alnsn 			return status;
    499   1.1  alnsn 	}
    500   1.1  alnsn 
    501   1.1  alnsn 	/*
    502   1.1  alnsn 	 * Prepare registers for fn(buf, k, &err) call.
    503   1.1  alnsn 	 */
    504   1.1  alnsn 	status = sljit_emit_op1(compiler,
    505   1.1  alnsn 	    SLJIT_MOV,
    506  1.12  alnsn 	    SLJIT_SCRATCH_REG1, 0,
    507   1.7  alnsn 	    BJ_BUF, 0);
    508   1.1  alnsn 	if (status != SLJIT_SUCCESS)
    509   1.1  alnsn 		return status;
    510   1.1  alnsn 
    511   1.1  alnsn 	if (BPF_CLASS(pc->code) == BPF_LD && BPF_MODE(pc->code) == BPF_IND) {
    512   1.1  alnsn 		status = sljit_emit_op2(compiler,
    513   1.1  alnsn 		    SLJIT_ADD,
    514  1.12  alnsn 		    SLJIT_SCRATCH_REG2, 0,
    515   1.7  alnsn 		    BJ_XREG, 0,
    516   1.1  alnsn 		    SLJIT_IMM, (uint32_t)pc->k);
    517   1.1  alnsn 	} else {
    518   1.1  alnsn 		status = sljit_emit_op1(compiler,
    519   1.1  alnsn 		    SLJIT_MOV,
    520  1.12  alnsn 		    SLJIT_SCRATCH_REG2, 0,
    521   1.1  alnsn 		    SLJIT_IMM, (uint32_t)pc->k);
    522   1.1  alnsn 	}
    523   1.1  alnsn 
    524   1.1  alnsn 	if (status != SLJIT_SUCCESS)
    525   1.1  alnsn 		return status;
    526   1.1  alnsn 
    527   1.1  alnsn 	status = sljit_get_local_base(compiler,
    528  1.12  alnsn 	    SLJIT_SCRATCH_REG3, 0, arg3_offset);
    529   1.1  alnsn 	if (status != SLJIT_SUCCESS)
    530   1.1  alnsn 		return status;
    531   1.1  alnsn 
    532   1.1  alnsn 	/* fn(buf, k, &err); */
    533   1.1  alnsn 	status = sljit_emit_ijump(compiler,
    534   1.1  alnsn 	    SLJIT_CALL3,
    535   1.1  alnsn 	    SLJIT_IMM, SLJIT_FUNC_OFFSET(fn));
    536   1.1  alnsn 
    537   1.7  alnsn 	if (dst != SLJIT_RETURN_REG) {
    538   1.1  alnsn 		/* move return value to dst */
    539   1.1  alnsn 		status = sljit_emit_op1(compiler,
    540   1.1  alnsn 		    SLJIT_MOV,
    541   1.1  alnsn 		    dst, dstw,
    542   1.1  alnsn 		    SLJIT_RETURN_REG, 0);
    543   1.1  alnsn 		if (status != SLJIT_SUCCESS)
    544   1.1  alnsn 			return status;
    545   1.7  alnsn 	}
    546   1.1  alnsn 
    547   1.7  alnsn 	if (BPF_CLASS(pc->code) == BPF_LDX) {
    548   1.1  alnsn 		/* restore A */
    549   1.1  alnsn 		status = sljit_emit_op1(compiler,
    550   1.1  alnsn 		    SLJIT_MOV,
    551   1.7  alnsn 		    BJ_AREG, 0,
    552   1.7  alnsn 		    BJ_TMP3REG, 0);
    553   1.1  alnsn 		if (status != SLJIT_SUCCESS)
    554   1.1  alnsn 			return status;
    555   1.1  alnsn 	}
    556   1.1  alnsn 
    557   1.1  alnsn 	/* tmp3 = *err; */
    558   1.1  alnsn 	status = sljit_emit_op1(compiler,
    559   1.1  alnsn 	    SLJIT_MOV_UI,
    560  1.12  alnsn 	    SLJIT_SCRATCH_REG3, 0,
    561   1.1  alnsn 	    SLJIT_MEM1(SLJIT_LOCALS_REG), arg3_offset);
    562   1.1  alnsn 	if (status != SLJIT_SUCCESS)
    563   1.1  alnsn 		return status;
    564   1.1  alnsn 
    565   1.1  alnsn 	/* if (tmp3 != 0) return 0; */
    566   1.1  alnsn 	*ret0_jump = sljit_emit_cmp(compiler,
    567   1.1  alnsn 	    SLJIT_C_NOT_EQUAL,
    568  1.12  alnsn 	    SLJIT_SCRATCH_REG3, 0,
    569   1.1  alnsn 	    SLJIT_IMM, 0);
    570   1.1  alnsn 	if (*ret0_jump == NULL)
    571   1.1  alnsn 		return SLJIT_ERR_ALLOC_FAILED;
    572   1.1  alnsn 
    573   1.1  alnsn 	return status;
    574   1.1  alnsn }
    575   1.1  alnsn #endif
    576   1.1  alnsn 
    577   1.1  alnsn /*
    578  1.13  alnsn  * Emit code for BPF_COP and BPF_COPX instructions.
    579  1.13  alnsn  */
    580  1.13  alnsn static int
    581  1.13  alnsn emit_cop(struct sljit_compiler* compiler, const bpf_ctx_t *bc,
    582  1.13  alnsn     const struct bpf_insn *pc, struct sljit_jump **ret0_jump)
    583  1.13  alnsn {
    584  1.13  alnsn #if BJ_XREG == SLJIT_RETURN_REG   || \
    585  1.13  alnsn     BJ_XREG == SLJIT_SCRATCH_REG1 || \
    586  1.13  alnsn     BJ_XREG == SLJIT_SCRATCH_REG2 || \
    587  1.13  alnsn     BJ_XREG == SLJIT_SCRATCH_REG3 || \
    588  1.13  alnsn     BJ_COPF_PTR == BJ_ARGS        || \
    589  1.13  alnsn     BJ_COPF_IDX	== BJ_ARGS
    590  1.13  alnsn #error "Not supported assignment of registers."
    591  1.13  alnsn #endif
    592  1.13  alnsn 
    593  1.13  alnsn 	struct sljit_jump *jump;
    594  1.13  alnsn 	int status;
    595  1.13  alnsn 
    596  1.13  alnsn 	jump = NULL;
    597  1.13  alnsn 
    598  1.13  alnsn 	BJ_ASSERT(bc != NULL && bc->copfuncs != NULL);
    599  1.13  alnsn 
    600  1.13  alnsn 	if (BPF_MISCOP(pc->code) == BPF_COPX) {
    601  1.13  alnsn 		/* if (X >= bc->nfuncs) return 0; */
    602  1.13  alnsn 		jump = sljit_emit_cmp(compiler,
    603  1.13  alnsn 		    SLJIT_C_GREATER_EQUAL,
    604  1.13  alnsn 		    BJ_XREG, 0,
    605  1.13  alnsn 		    SLJIT_IMM, bc->nfuncs);
    606  1.13  alnsn 		if (jump == NULL)
    607  1.13  alnsn 			return SLJIT_ERR_ALLOC_FAILED;
    608  1.13  alnsn 	}
    609  1.13  alnsn 
    610  1.13  alnsn 	if (jump != NULL)
    611  1.13  alnsn 		*ret0_jump = jump;
    612  1.13  alnsn 
    613  1.13  alnsn 	/*
    614  1.13  alnsn 	 * Copy bpf_copfunc_t arguments to registers.
    615  1.13  alnsn 	 */
    616  1.13  alnsn #if BJ_AREG != SLJIT_SCRATCH_REG3
    617  1.13  alnsn 	status = sljit_emit_op1(compiler,
    618  1.13  alnsn 	    SLJIT_MOV_UI,
    619  1.13  alnsn 	    SLJIT_SCRATCH_REG3, 0,
    620  1.13  alnsn 	    BJ_AREG, 0);
    621  1.13  alnsn 	if (status != SLJIT_SUCCESS)
    622  1.13  alnsn 		return status;
    623  1.13  alnsn #endif
    624  1.13  alnsn 
    625  1.13  alnsn 	status = sljit_emit_op1(compiler,
    626  1.13  alnsn 	    SLJIT_MOV_P,
    627  1.13  alnsn 	    SLJIT_SCRATCH_REG1, 0,
    628  1.13  alnsn 	    SLJIT_MEM1(SLJIT_LOCALS_REG),
    629  1.13  alnsn 	    offsetof(struct bpfjit_stack, ctx));
    630  1.13  alnsn 	if (status != SLJIT_SUCCESS)
    631  1.13  alnsn 		return status;
    632  1.13  alnsn 
    633  1.13  alnsn 	status = sljit_emit_op1(compiler,
    634  1.13  alnsn 	    SLJIT_MOV_P,
    635  1.13  alnsn 	    SLJIT_SCRATCH_REG2, 0,
    636  1.13  alnsn 	    BJ_ARGS, 0);
    637  1.13  alnsn 	if (status != SLJIT_SUCCESS)
    638  1.13  alnsn 		return status;
    639  1.13  alnsn 
    640  1.13  alnsn 	if (BPF_MISCOP(pc->code) == BPF_COP) {
    641  1.13  alnsn 		status = sljit_emit_ijump(compiler,
    642  1.13  alnsn 		    SLJIT_CALL3,
    643  1.13  alnsn 		    SLJIT_IMM, SLJIT_FUNC_OFFSET(bc->copfuncs[pc->k]));
    644  1.13  alnsn 		if (status != SLJIT_SUCCESS)
    645  1.13  alnsn 			return status;
    646  1.13  alnsn 	} else if (BPF_MISCOP(pc->code) == BPF_COPX) {
    647  1.13  alnsn 		/* load ctx->copfuncs */
    648  1.13  alnsn 		status = sljit_emit_op1(compiler,
    649  1.13  alnsn 		    SLJIT_MOV_P,
    650  1.13  alnsn 		    BJ_COPF_PTR, 0,
    651  1.13  alnsn 		    SLJIT_MEM1(SLJIT_SCRATCH_REG1),
    652  1.13  alnsn 		    offsetof(struct bpf_ctx, copfuncs));
    653  1.13  alnsn 		if (status != SLJIT_SUCCESS)
    654  1.13  alnsn 			return status;
    655  1.13  alnsn 
    656  1.13  alnsn 		/*
    657  1.13  alnsn 		 * Load X to a register that can be used for
    658  1.13  alnsn 		 * memory addressing.
    659  1.13  alnsn 		 */
    660  1.13  alnsn 		status = sljit_emit_op1(compiler,
    661  1.13  alnsn 		    SLJIT_MOV_P,
    662  1.13  alnsn 		    BJ_COPF_IDX, 0,
    663  1.13  alnsn 		    BJ_XREG, 0);
    664  1.13  alnsn 		if (status != SLJIT_SUCCESS)
    665  1.13  alnsn 			return status;
    666  1.13  alnsn 
    667  1.13  alnsn 		status = sljit_emit_ijump(compiler,
    668  1.13  alnsn 		    SLJIT_CALL3,
    669  1.13  alnsn 		    SLJIT_MEM2(BJ_COPF_PTR, BJ_COPF_IDX),
    670  1.13  alnsn 		    SLJIT_WORD_SHIFT);
    671  1.13  alnsn 		if (status != SLJIT_SUCCESS)
    672  1.13  alnsn 			return status;
    673  1.13  alnsn 
    674  1.13  alnsn 		status = load_buf_buflen(compiler);
    675  1.13  alnsn 		if (status != SLJIT_SUCCESS)
    676  1.13  alnsn 			return status;
    677  1.13  alnsn 	}
    678  1.13  alnsn 
    679  1.13  alnsn #if BJ_AREG != SLJIT_RETURN_REG
    680  1.13  alnsn 	status = sljit_emit_op1(compiler,
    681  1.13  alnsn 	    SLJIT_MOV,
    682  1.13  alnsn 	    BJ_AREG, 0,
    683  1.13  alnsn 	    SLJIT_RETURN_REG, 0);
    684  1.13  alnsn 	if (status != SLJIT_SUCCESS)
    685  1.13  alnsn 		return status;
    686  1.13  alnsn #endif
    687  1.13  alnsn 
    688  1.13  alnsn 	return status;
    689  1.13  alnsn }
    690  1.13  alnsn 
    691  1.13  alnsn /*
    692   1.1  alnsn  * Generate code for
    693   1.1  alnsn  * BPF_LD+BPF_W+BPF_ABS    A <- P[k:4]
    694   1.1  alnsn  * BPF_LD+BPF_H+BPF_ABS    A <- P[k:2]
    695   1.1  alnsn  * BPF_LD+BPF_B+BPF_ABS    A <- P[k:1]
    696   1.1  alnsn  * BPF_LD+BPF_W+BPF_IND    A <- P[X+k:4]
    697   1.1  alnsn  * BPF_LD+BPF_H+BPF_IND    A <- P[X+k:2]
    698   1.1  alnsn  * BPF_LD+BPF_B+BPF_IND    A <- P[X+k:1]
    699   1.1  alnsn  */
    700   1.1  alnsn static int
    701   1.1  alnsn emit_pkt_read(struct sljit_compiler* compiler,
    702   1.7  alnsn     const struct bpf_insn *pc, struct sljit_jump *to_mchain_jump,
    703   1.7  alnsn     struct sljit_jump ***ret0, size_t *ret0_size, size_t *ret0_maxsize)
    704   1.1  alnsn {
    705   1.6  pooka 	int status = 0; /* XXX gcc 4.1 */
    706   1.1  alnsn 	uint32_t width;
    707   1.1  alnsn 	struct sljit_jump *jump;
    708   1.1  alnsn #ifdef _KERNEL
    709   1.1  alnsn 	struct sljit_label *label;
    710   1.1  alnsn 	struct sljit_jump *over_mchain_jump;
    711   1.1  alnsn 	const bool check_zero_buflen = (to_mchain_jump != NULL);
    712   1.1  alnsn #endif
    713   1.1  alnsn 	const uint32_t k = pc->k;
    714   1.1  alnsn 
    715   1.1  alnsn #ifdef _KERNEL
    716   1.1  alnsn 	if (to_mchain_jump == NULL) {
    717   1.1  alnsn 		to_mchain_jump = sljit_emit_cmp(compiler,
    718   1.1  alnsn 		    SLJIT_C_EQUAL,
    719   1.7  alnsn 		    BJ_BUFLEN, 0,
    720   1.1  alnsn 		    SLJIT_IMM, 0);
    721   1.1  alnsn 		if (to_mchain_jump == NULL)
    722   1.7  alnsn 			return SLJIT_ERR_ALLOC_FAILED;
    723   1.1  alnsn 	}
    724   1.1  alnsn #endif
    725   1.1  alnsn 
    726   1.1  alnsn 	width = read_width(pc);
    727   1.1  alnsn 
    728   1.1  alnsn 	if (BPF_MODE(pc->code) == BPF_IND) {
    729   1.1  alnsn 		/* tmp1 = buflen - (pc->k + width); */
    730   1.1  alnsn 		status = sljit_emit_op2(compiler,
    731   1.1  alnsn 		    SLJIT_SUB,
    732   1.7  alnsn 		    BJ_TMP1REG, 0,
    733   1.7  alnsn 		    BJ_BUFLEN, 0,
    734   1.1  alnsn 		    SLJIT_IMM, k + width);
    735   1.1  alnsn 		if (status != SLJIT_SUCCESS)
    736   1.1  alnsn 			return status;
    737   1.1  alnsn 
    738   1.1  alnsn 		/* buf += X; */
    739   1.1  alnsn 		status = sljit_emit_op2(compiler,
    740   1.1  alnsn 		    SLJIT_ADD,
    741   1.7  alnsn 		    BJ_BUF, 0,
    742   1.7  alnsn 		    BJ_BUF, 0,
    743   1.7  alnsn 		    BJ_XREG, 0);
    744   1.1  alnsn 		if (status != SLJIT_SUCCESS)
    745   1.1  alnsn 			return status;
    746   1.1  alnsn 
    747   1.1  alnsn 		/* if (tmp1 < X) return 0; */
    748   1.1  alnsn 		jump = sljit_emit_cmp(compiler,
    749   1.1  alnsn 		    SLJIT_C_LESS,
    750   1.7  alnsn 		    BJ_TMP1REG, 0,
    751   1.7  alnsn 		    BJ_XREG, 0);
    752   1.1  alnsn 		if (jump == NULL)
    753   1.7  alnsn 			return SLJIT_ERR_ALLOC_FAILED;
    754   1.7  alnsn 		if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
    755   1.7  alnsn 			return SLJIT_ERR_ALLOC_FAILED;
    756   1.1  alnsn 	}
    757   1.1  alnsn 
    758   1.1  alnsn 	switch (width) {
    759   1.1  alnsn 	case 4:
    760   1.1  alnsn 		status = emit_read32(compiler, k);
    761   1.1  alnsn 		break;
    762   1.1  alnsn 	case 2:
    763   1.1  alnsn 		status = emit_read16(compiler, k);
    764   1.1  alnsn 		break;
    765   1.1  alnsn 	case 1:
    766   1.1  alnsn 		status = emit_read8(compiler, k);
    767   1.1  alnsn 		break;
    768   1.1  alnsn 	}
    769   1.1  alnsn 
    770   1.1  alnsn 	if (status != SLJIT_SUCCESS)
    771   1.1  alnsn 		return status;
    772   1.1  alnsn 
    773   1.1  alnsn 	if (BPF_MODE(pc->code) == BPF_IND) {
    774   1.1  alnsn 		/* buf -= X; */
    775   1.1  alnsn 		status = sljit_emit_op2(compiler,
    776   1.1  alnsn 		    SLJIT_SUB,
    777   1.7  alnsn 		    BJ_BUF, 0,
    778   1.7  alnsn 		    BJ_BUF, 0,
    779   1.7  alnsn 		    BJ_XREG, 0);
    780   1.1  alnsn 		if (status != SLJIT_SUCCESS)
    781   1.1  alnsn 			return status;
    782   1.1  alnsn 	}
    783   1.1  alnsn 
    784   1.1  alnsn #ifdef _KERNEL
    785   1.1  alnsn 	over_mchain_jump = sljit_emit_jump(compiler, SLJIT_JUMP);
    786   1.1  alnsn 	if (over_mchain_jump == NULL)
    787   1.7  alnsn 		return SLJIT_ERR_ALLOC_FAILED;
    788   1.1  alnsn 
    789   1.1  alnsn 	/* entry point to mchain handler */
    790   1.1  alnsn 	label = sljit_emit_label(compiler);
    791   1.1  alnsn 	if (label == NULL)
    792   1.7  alnsn 		return SLJIT_ERR_ALLOC_FAILED;
    793   1.1  alnsn 	sljit_set_label(to_mchain_jump, label);
    794   1.1  alnsn 
    795   1.1  alnsn 	if (check_zero_buflen) {
    796   1.1  alnsn 		/* if (buflen != 0) return 0; */
    797   1.1  alnsn 		jump = sljit_emit_cmp(compiler,
    798   1.1  alnsn 		    SLJIT_C_NOT_EQUAL,
    799   1.7  alnsn 		    BJ_BUFLEN, 0,
    800   1.1  alnsn 		    SLJIT_IMM, 0);
    801   1.1  alnsn 		if (jump == NULL)
    802   1.1  alnsn 			return SLJIT_ERR_ALLOC_FAILED;
    803   1.7  alnsn 		if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
    804   1.7  alnsn 			return SLJIT_ERR_ALLOC_FAILED;
    805   1.1  alnsn 	}
    806   1.1  alnsn 
    807   1.1  alnsn 	switch (width) {
    808   1.1  alnsn 	case 4:
    809   1.7  alnsn 		status = emit_xcall(compiler, pc, BJ_AREG, 0, &jump, &m_xword);
    810   1.1  alnsn 		break;
    811   1.1  alnsn 	case 2:
    812   1.7  alnsn 		status = emit_xcall(compiler, pc, BJ_AREG, 0, &jump, &m_xhalf);
    813   1.1  alnsn 		break;
    814   1.1  alnsn 	case 1:
    815   1.7  alnsn 		status = emit_xcall(compiler, pc, BJ_AREG, 0, &jump, &m_xbyte);
    816   1.1  alnsn 		break;
    817   1.1  alnsn 	}
    818   1.1  alnsn 
    819   1.1  alnsn 	if (status != SLJIT_SUCCESS)
    820   1.1  alnsn 		return status;
    821   1.1  alnsn 
    822   1.7  alnsn 	if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
    823   1.7  alnsn 		return SLJIT_ERR_ALLOC_FAILED;
    824   1.1  alnsn 
    825   1.1  alnsn 	label = sljit_emit_label(compiler);
    826   1.1  alnsn 	if (label == NULL)
    827   1.1  alnsn 		return SLJIT_ERR_ALLOC_FAILED;
    828   1.1  alnsn 	sljit_set_label(over_mchain_jump, label);
    829   1.1  alnsn #endif
    830   1.1  alnsn 
    831   1.1  alnsn 	return status;
    832   1.1  alnsn }
    833   1.1  alnsn 
    834  1.13  alnsn static int
    835  1.13  alnsn emit_memload(struct sljit_compiler* compiler,
    836  1.13  alnsn     sljit_si dst, uint32_t k, size_t extwords)
    837  1.13  alnsn {
    838  1.13  alnsn 	int status;
    839  1.13  alnsn 	sljit_si src;
    840  1.13  alnsn 	sljit_sw srcw;
    841  1.13  alnsn 
    842  1.13  alnsn 	srcw = k * sizeof(uint32_t);
    843  1.13  alnsn 
    844  1.13  alnsn 	if (extwords == 0) {
    845  1.13  alnsn 		src = SLJIT_MEM1(SLJIT_LOCALS_REG);
    846  1.13  alnsn 		srcw += offsetof(struct bpfjit_stack, mem);
    847  1.13  alnsn 	} else {
    848  1.13  alnsn 		/* copy extmem pointer to the tmp1 register */
    849  1.13  alnsn 		status = sljit_emit_op1(compiler,
    850  1.13  alnsn 		    SLJIT_MOV_UI,
    851  1.13  alnsn 		    BJ_TMP1REG, 0,
    852  1.13  alnsn 		    SLJIT_MEM1(SLJIT_LOCALS_REG),
    853  1.13  alnsn 		    offsetof(struct bpfjit_stack, extmem));
    854  1.13  alnsn 		if (status != SLJIT_SUCCESS)
    855  1.13  alnsn 			return status;
    856  1.13  alnsn 		src = SLJIT_MEM1(BJ_TMP1REG);
    857  1.13  alnsn 	}
    858  1.13  alnsn 
    859  1.13  alnsn 	return sljit_emit_op1(compiler, SLJIT_MOV_UI, dst, 0, src, srcw);
    860  1.13  alnsn }
    861  1.13  alnsn 
    862  1.13  alnsn static int
    863  1.13  alnsn emit_memstore(struct sljit_compiler* compiler,
    864  1.13  alnsn     sljit_si src, uint32_t k, size_t extwords)
    865  1.13  alnsn {
    866  1.13  alnsn 	int status;
    867  1.13  alnsn 	sljit_si dst;
    868  1.13  alnsn 	sljit_sw dstw;
    869  1.13  alnsn 
    870  1.13  alnsn 	dstw = k * sizeof(uint32_t);
    871  1.13  alnsn 
    872  1.13  alnsn 	if (extwords == 0) {
    873  1.13  alnsn 		dst = SLJIT_MEM1(SLJIT_LOCALS_REG);
    874  1.13  alnsn 		dstw += offsetof(struct bpfjit_stack, mem);
    875  1.13  alnsn 	} else {
    876  1.13  alnsn 		/* copy extmem pointer to the tmp1 register */
    877  1.13  alnsn 		status = sljit_emit_op1(compiler,
    878  1.13  alnsn 		    SLJIT_MOV_UI,
    879  1.13  alnsn 		    BJ_TMP1REG, 0,
    880  1.13  alnsn 		    SLJIT_MEM1(SLJIT_LOCALS_REG),
    881  1.13  alnsn 		    offsetof(struct bpfjit_stack, extmem));
    882  1.13  alnsn 		if (status != SLJIT_SUCCESS)
    883  1.13  alnsn 			return status;
    884  1.13  alnsn 		dst = SLJIT_MEM1(BJ_TMP1REG);
    885  1.13  alnsn 	}
    886  1.13  alnsn 
    887  1.13  alnsn 	return sljit_emit_op1(compiler, SLJIT_MOV_UI, dst, dstw, src, 0);
    888  1.13  alnsn }
    889  1.13  alnsn 
    890   1.1  alnsn /*
    891   1.1  alnsn  * Generate code for BPF_LDX+BPF_B+BPF_MSH    X <- 4*(P[k:1]&0xf).
    892   1.1  alnsn  */
    893   1.1  alnsn static int
    894   1.1  alnsn emit_msh(struct sljit_compiler* compiler,
    895   1.7  alnsn     const struct bpf_insn *pc, struct sljit_jump *to_mchain_jump,
    896   1.7  alnsn     struct sljit_jump ***ret0, size_t *ret0_size, size_t *ret0_maxsize)
    897   1.1  alnsn {
    898   1.1  alnsn 	int status;
    899   1.1  alnsn #ifdef _KERNEL
    900   1.1  alnsn 	struct sljit_label *label;
    901   1.1  alnsn 	struct sljit_jump *jump, *over_mchain_jump;
    902   1.1  alnsn 	const bool check_zero_buflen = (to_mchain_jump != NULL);
    903   1.1  alnsn #endif
    904   1.1  alnsn 	const uint32_t k = pc->k;
    905   1.1  alnsn 
    906   1.1  alnsn #ifdef _KERNEL
    907   1.1  alnsn 	if (to_mchain_jump == NULL) {
    908   1.1  alnsn 		to_mchain_jump = sljit_emit_cmp(compiler,
    909   1.1  alnsn 		    SLJIT_C_EQUAL,
    910   1.7  alnsn 		    BJ_BUFLEN, 0,
    911   1.1  alnsn 		    SLJIT_IMM, 0);
    912   1.1  alnsn 		if (to_mchain_jump == NULL)
    913   1.7  alnsn 			return SLJIT_ERR_ALLOC_FAILED;
    914   1.1  alnsn 	}
    915   1.1  alnsn #endif
    916   1.1  alnsn 
    917   1.1  alnsn 	/* tmp1 = buf[k] */
    918   1.1  alnsn 	status = sljit_emit_op1(compiler,
    919   1.1  alnsn 	    SLJIT_MOV_UB,
    920   1.7  alnsn 	    BJ_TMP1REG, 0,
    921   1.7  alnsn 	    SLJIT_MEM1(BJ_BUF), k);
    922   1.1  alnsn 	if (status != SLJIT_SUCCESS)
    923   1.1  alnsn 		return status;
    924   1.1  alnsn 
    925   1.1  alnsn 	/* tmp1 &= 0xf */
    926   1.1  alnsn 	status = sljit_emit_op2(compiler,
    927   1.1  alnsn 	    SLJIT_AND,
    928   1.7  alnsn 	    BJ_TMP1REG, 0,
    929   1.7  alnsn 	    BJ_TMP1REG, 0,
    930   1.1  alnsn 	    SLJIT_IMM, 0xf);
    931   1.1  alnsn 	if (status != SLJIT_SUCCESS)
    932   1.1  alnsn 		return status;
    933   1.1  alnsn 
    934   1.1  alnsn 	/* tmp1 = tmp1 << 2 */
    935   1.1  alnsn 	status = sljit_emit_op2(compiler,
    936   1.1  alnsn 	    SLJIT_SHL,
    937   1.7  alnsn 	    BJ_XREG, 0,
    938   1.7  alnsn 	    BJ_TMP1REG, 0,
    939   1.1  alnsn 	    SLJIT_IMM, 2);
    940   1.1  alnsn 	if (status != SLJIT_SUCCESS)
    941   1.1  alnsn 		return status;
    942   1.1  alnsn 
    943   1.1  alnsn #ifdef _KERNEL
    944   1.1  alnsn 	over_mchain_jump = sljit_emit_jump(compiler, SLJIT_JUMP);
    945   1.1  alnsn 	if (over_mchain_jump == NULL)
    946   1.1  alnsn 		return SLJIT_ERR_ALLOC_FAILED;
    947   1.1  alnsn 
    948   1.1  alnsn 	/* entry point to mchain handler */
    949   1.1  alnsn 	label = sljit_emit_label(compiler);
    950   1.1  alnsn 	if (label == NULL)
    951   1.1  alnsn 		return SLJIT_ERR_ALLOC_FAILED;
    952   1.1  alnsn 	sljit_set_label(to_mchain_jump, label);
    953   1.1  alnsn 
    954   1.1  alnsn 	if (check_zero_buflen) {
    955   1.1  alnsn 		/* if (buflen != 0) return 0; */
    956   1.1  alnsn 		jump = sljit_emit_cmp(compiler,
    957   1.1  alnsn 		    SLJIT_C_NOT_EQUAL,
    958   1.7  alnsn 		    BJ_BUFLEN, 0,
    959   1.1  alnsn 		    SLJIT_IMM, 0);
    960   1.1  alnsn 		if (jump == NULL)
    961   1.7  alnsn 			return SLJIT_ERR_ALLOC_FAILED;
    962   1.7  alnsn 		if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
    963   1.7  alnsn 			return SLJIT_ERR_ALLOC_FAILED;
    964   1.1  alnsn 	}
    965   1.1  alnsn 
    966   1.7  alnsn 	status = emit_xcall(compiler, pc, BJ_TMP1REG, 0, &jump, &m_xbyte);
    967   1.1  alnsn 	if (status != SLJIT_SUCCESS)
    968   1.1  alnsn 		return status;
    969   1.7  alnsn 
    970   1.7  alnsn 	if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
    971   1.7  alnsn 		return SLJIT_ERR_ALLOC_FAILED;
    972   1.1  alnsn 
    973   1.1  alnsn 	/* tmp1 &= 0xf */
    974   1.1  alnsn 	status = sljit_emit_op2(compiler,
    975   1.1  alnsn 	    SLJIT_AND,
    976   1.7  alnsn 	    BJ_TMP1REG, 0,
    977   1.7  alnsn 	    BJ_TMP1REG, 0,
    978   1.1  alnsn 	    SLJIT_IMM, 0xf);
    979   1.1  alnsn 	if (status != SLJIT_SUCCESS)
    980   1.1  alnsn 		return status;
    981   1.1  alnsn 
    982   1.1  alnsn 	/* tmp1 = tmp1 << 2 */
    983   1.1  alnsn 	status = sljit_emit_op2(compiler,
    984   1.1  alnsn 	    SLJIT_SHL,
    985   1.7  alnsn 	    BJ_XREG, 0,
    986   1.7  alnsn 	    BJ_TMP1REG, 0,
    987   1.1  alnsn 	    SLJIT_IMM, 2);
    988   1.1  alnsn 	if (status != SLJIT_SUCCESS)
    989   1.1  alnsn 		return status;
    990   1.1  alnsn 
    991   1.1  alnsn 
    992   1.1  alnsn 	label = sljit_emit_label(compiler);
    993   1.1  alnsn 	if (label == NULL)
    994   1.1  alnsn 		return SLJIT_ERR_ALLOC_FAILED;
    995   1.1  alnsn 	sljit_set_label(over_mchain_jump, label);
    996   1.1  alnsn #endif
    997   1.1  alnsn 
    998   1.1  alnsn 	return status;
    999   1.1  alnsn }
   1000   1.1  alnsn 
   1001   1.1  alnsn static int
   1002   1.1  alnsn emit_pow2_division(struct sljit_compiler* compiler, uint32_t k)
   1003   1.1  alnsn {
   1004   1.1  alnsn 	int shift = 0;
   1005   1.1  alnsn 	int status = SLJIT_SUCCESS;
   1006   1.1  alnsn 
   1007   1.1  alnsn 	while (k > 1) {
   1008   1.1  alnsn 		k >>= 1;
   1009   1.1  alnsn 		shift++;
   1010   1.1  alnsn 	}
   1011   1.1  alnsn 
   1012   1.7  alnsn 	BJ_ASSERT(k == 1 && shift < 32);
   1013   1.1  alnsn 
   1014   1.1  alnsn 	if (shift != 0) {
   1015   1.1  alnsn 		status = sljit_emit_op2(compiler,
   1016   1.1  alnsn 		    SLJIT_LSHR|SLJIT_INT_OP,
   1017   1.7  alnsn 		    BJ_AREG, 0,
   1018   1.7  alnsn 		    BJ_AREG, 0,
   1019   1.1  alnsn 		    SLJIT_IMM, shift);
   1020   1.1  alnsn 	}
   1021   1.1  alnsn 
   1022   1.1  alnsn 	return status;
   1023   1.1  alnsn }
   1024   1.1  alnsn 
   1025   1.1  alnsn #if !defined(BPFJIT_USE_UDIV)
   1026   1.1  alnsn static sljit_uw
   1027   1.1  alnsn divide(sljit_uw x, sljit_uw y)
   1028   1.1  alnsn {
   1029   1.1  alnsn 
   1030   1.1  alnsn 	return (uint32_t)x / (uint32_t)y;
   1031   1.1  alnsn }
   1032   1.1  alnsn #endif
   1033   1.1  alnsn 
   1034   1.1  alnsn /*
   1035   1.1  alnsn  * Generate A = A / div.
   1036   1.7  alnsn  * divt,divw are either SLJIT_IMM,pc->k or BJ_XREG,0.
   1037   1.1  alnsn  */
   1038   1.1  alnsn static int
   1039  1.12  alnsn emit_division(struct sljit_compiler* compiler, int divt, sljit_sw divw)
   1040   1.1  alnsn {
   1041   1.1  alnsn 	int status;
   1042   1.1  alnsn 
   1043   1.7  alnsn #if BJ_XREG == SLJIT_RETURN_REG   || \
   1044  1.12  alnsn     BJ_XREG == SLJIT_SCRATCH_REG1 || \
   1045  1.12  alnsn     BJ_XREG == SLJIT_SCRATCH_REG2 || \
   1046  1.12  alnsn     BJ_AREG == SLJIT_SCRATCH_REG2
   1047   1.1  alnsn #error "Not supported assignment of registers."
   1048   1.1  alnsn #endif
   1049   1.1  alnsn 
   1050  1.12  alnsn #if BJ_AREG != SLJIT_SCRATCH_REG1
   1051   1.1  alnsn 	status = sljit_emit_op1(compiler,
   1052   1.1  alnsn 	    SLJIT_MOV,
   1053  1.12  alnsn 	    SLJIT_SCRATCH_REG1, 0,
   1054   1.7  alnsn 	    BJ_AREG, 0);
   1055   1.1  alnsn 	if (status != SLJIT_SUCCESS)
   1056   1.1  alnsn 		return status;
   1057   1.1  alnsn #endif
   1058   1.1  alnsn 
   1059   1.1  alnsn 	status = sljit_emit_op1(compiler,
   1060   1.1  alnsn 	    SLJIT_MOV,
   1061  1.12  alnsn 	    SLJIT_SCRATCH_REG2, 0,
   1062   1.1  alnsn 	    divt, divw);
   1063   1.1  alnsn 	if (status != SLJIT_SUCCESS)
   1064   1.1  alnsn 		return status;
   1065   1.1  alnsn 
   1066   1.1  alnsn #if defined(BPFJIT_USE_UDIV)
   1067   1.1  alnsn 	status = sljit_emit_op0(compiler, SLJIT_UDIV|SLJIT_INT_OP);
   1068   1.1  alnsn 
   1069  1.12  alnsn #if BJ_AREG != SLJIT_SCRATCH_REG1
   1070   1.1  alnsn 	status = sljit_emit_op1(compiler,
   1071   1.1  alnsn 	    SLJIT_MOV,
   1072   1.7  alnsn 	    BJ_AREG, 0,
   1073  1.12  alnsn 	    SLJIT_SCRATCH_REG1, 0);
   1074   1.1  alnsn 	if (status != SLJIT_SUCCESS)
   1075   1.1  alnsn 		return status;
   1076   1.1  alnsn #endif
   1077   1.1  alnsn #else
   1078   1.1  alnsn 	status = sljit_emit_ijump(compiler,
   1079   1.1  alnsn 	    SLJIT_CALL2,
   1080   1.1  alnsn 	    SLJIT_IMM, SLJIT_FUNC_OFFSET(divide));
   1081   1.1  alnsn 
   1082   1.7  alnsn #if BJ_AREG != SLJIT_RETURN_REG
   1083   1.1  alnsn 	status = sljit_emit_op1(compiler,
   1084   1.1  alnsn 	    SLJIT_MOV,
   1085   1.7  alnsn 	    BJ_AREG, 0,
   1086   1.1  alnsn 	    SLJIT_RETURN_REG, 0);
   1087   1.1  alnsn 	if (status != SLJIT_SUCCESS)
   1088   1.1  alnsn 		return status;
   1089   1.1  alnsn #endif
   1090   1.1  alnsn #endif
   1091   1.1  alnsn 
   1092   1.1  alnsn 	return status;
   1093   1.1  alnsn }
   1094   1.1  alnsn 
   1095   1.1  alnsn /*
   1096   1.1  alnsn  * Return true if pc is a "read from packet" instruction.
   1097   1.1  alnsn  * If length is not NULL and return value is true, *length will
   1098   1.1  alnsn  * be set to a safe length required to read a packet.
   1099   1.1  alnsn  */
   1100   1.1  alnsn static bool
   1101   1.8  alnsn read_pkt_insn(const struct bpf_insn *pc, bpfjit_abc_length_t *length)
   1102   1.1  alnsn {
   1103   1.1  alnsn 	bool rv;
   1104   1.8  alnsn 	bpfjit_abc_length_t width;
   1105   1.1  alnsn 
   1106   1.1  alnsn 	switch (BPF_CLASS(pc->code)) {
   1107   1.1  alnsn 	default:
   1108   1.1  alnsn 		rv = false;
   1109   1.1  alnsn 		break;
   1110   1.1  alnsn 
   1111   1.1  alnsn 	case BPF_LD:
   1112   1.1  alnsn 		rv = BPF_MODE(pc->code) == BPF_ABS ||
   1113   1.1  alnsn 		     BPF_MODE(pc->code) == BPF_IND;
   1114   1.1  alnsn 		if (rv)
   1115   1.1  alnsn 			width = read_width(pc);
   1116   1.1  alnsn 		break;
   1117   1.1  alnsn 
   1118   1.1  alnsn 	case BPF_LDX:
   1119   1.1  alnsn 		rv = pc->code == (BPF_LDX|BPF_B|BPF_MSH);
   1120   1.1  alnsn 		width = 1;
   1121   1.1  alnsn 		break;
   1122   1.1  alnsn 	}
   1123   1.1  alnsn 
   1124   1.1  alnsn 	if (rv && length != NULL) {
   1125   1.9  alnsn 		/*
   1126   1.9  alnsn 		 * Values greater than UINT32_MAX will generate
   1127   1.9  alnsn 		 * unconditional "return 0".
   1128   1.9  alnsn 		 */
   1129   1.9  alnsn 		*length = (uint32_t)pc->k + width;
   1130   1.1  alnsn 	}
   1131   1.1  alnsn 
   1132   1.1  alnsn 	return rv;
   1133   1.1  alnsn }
   1134   1.1  alnsn 
   1135   1.1  alnsn static void
   1136   1.7  alnsn optimize_init(struct bpfjit_insn_data *insn_dat, size_t insn_count)
   1137   1.1  alnsn {
   1138   1.7  alnsn 	size_t i;
   1139   1.1  alnsn 
   1140   1.7  alnsn 	for (i = 0; i < insn_count; i++) {
   1141   1.7  alnsn 		SLIST_INIT(&insn_dat[i].bjumps);
   1142   1.7  alnsn 		insn_dat[i].invalid = BJ_INIT_NOBITS;
   1143   1.1  alnsn 	}
   1144   1.1  alnsn }
   1145   1.1  alnsn 
   1146   1.1  alnsn /*
   1147   1.1  alnsn  * The function divides instructions into blocks. Destination of a jump
   1148   1.1  alnsn  * instruction starts a new block. BPF_RET and BPF_JMP instructions
   1149   1.1  alnsn  * terminate a block. Blocks are linear, that is, there are no jumps out
   1150   1.1  alnsn  * from the middle of a block and there are no jumps in to the middle of
   1151   1.1  alnsn  * a block.
   1152   1.7  alnsn  *
   1153   1.7  alnsn  * The function also sets bits in *initmask for memwords that
   1154   1.7  alnsn  * need to be initialized to zero. Note that this set should be empty
   1155   1.7  alnsn  * for any valid kernel filter program.
   1156   1.1  alnsn  */
   1157   1.7  alnsn static bool
   1158   1.7  alnsn optimize_pass1(const struct bpf_insn *insns,
   1159  1.13  alnsn     struct bpfjit_insn_data *insn_dat, size_t insn_count, size_t extwords,
   1160  1.13  alnsn     bpf_memword_init_t *initmask, int *nscratches, int *ncopfuncs)
   1161   1.1  alnsn {
   1162   1.7  alnsn 	struct bpfjit_jump *jtf;
   1163   1.1  alnsn 	size_t i;
   1164   1.7  alnsn 	uint32_t jt, jf;
   1165  1.10  alnsn 	bpfjit_abc_length_t length;
   1166  1.13  alnsn 	bpf_memword_init_t invalid; /* borrowed from bpf_filter() */
   1167   1.1  alnsn 	bool unreachable;
   1168   1.1  alnsn 
   1169  1.13  alnsn 	const size_t memwords = (extwords != 0) ? extwords : BPF_MEMWORDS;
   1170  1.13  alnsn 
   1171  1.13  alnsn 	*ncopfuncs = 0;
   1172   1.7  alnsn 	*nscratches = 2;
   1173   1.7  alnsn 	*initmask = BJ_INIT_NOBITS;
   1174   1.1  alnsn 
   1175   1.1  alnsn 	unreachable = false;
   1176   1.7  alnsn 	invalid = ~BJ_INIT_NOBITS;
   1177   1.1  alnsn 
   1178   1.1  alnsn 	for (i = 0; i < insn_count; i++) {
   1179   1.7  alnsn 		if (!SLIST_EMPTY(&insn_dat[i].bjumps))
   1180   1.1  alnsn 			unreachable = false;
   1181   1.7  alnsn 		insn_dat[i].unreachable = unreachable;
   1182   1.1  alnsn 
   1183   1.1  alnsn 		if (unreachable)
   1184   1.1  alnsn 			continue;
   1185   1.1  alnsn 
   1186   1.7  alnsn 		invalid |= insn_dat[i].invalid;
   1187   1.1  alnsn 
   1188  1.10  alnsn 		if (read_pkt_insn(&insns[i], &length) && length > UINT32_MAX)
   1189  1.10  alnsn 			unreachable = true;
   1190  1.10  alnsn 
   1191   1.1  alnsn 		switch (BPF_CLASS(insns[i].code)) {
   1192   1.1  alnsn 		case BPF_RET:
   1193   1.7  alnsn 			if (BPF_RVAL(insns[i].code) == BPF_A)
   1194   1.7  alnsn 				*initmask |= invalid & BJ_INIT_ABIT;
   1195   1.7  alnsn 
   1196   1.1  alnsn 			unreachable = true;
   1197   1.1  alnsn 			continue;
   1198   1.1  alnsn 
   1199   1.7  alnsn 		case BPF_LD:
   1200   1.7  alnsn 			if (BPF_MODE(insns[i].code) == BPF_IND ||
   1201   1.7  alnsn 			    BPF_MODE(insns[i].code) == BPF_ABS) {
   1202   1.7  alnsn 				if (BPF_MODE(insns[i].code) == BPF_IND &&
   1203   1.7  alnsn 				    *nscratches < 4) {
   1204   1.7  alnsn 					/* uses BJ_XREG */
   1205   1.7  alnsn 					*nscratches = 4;
   1206   1.7  alnsn 				}
   1207   1.7  alnsn 				if (*nscratches < 3 &&
   1208   1.7  alnsn 				    read_width(&insns[i]) == 4) {
   1209   1.7  alnsn 					/* uses BJ_TMP2REG */
   1210   1.7  alnsn 					*nscratches = 3;
   1211   1.7  alnsn 				}
   1212   1.7  alnsn 			}
   1213   1.7  alnsn 
   1214   1.7  alnsn 			if (BPF_MODE(insns[i].code) == BPF_IND)
   1215   1.7  alnsn 				*initmask |= invalid & BJ_INIT_XBIT;
   1216   1.7  alnsn 
   1217   1.7  alnsn 			if (BPF_MODE(insns[i].code) == BPF_MEM &&
   1218  1.13  alnsn 			    (uint32_t)insns[i].k < memwords) {
   1219   1.7  alnsn 				*initmask |= invalid & BJ_INIT_MBIT(insns[i].k);
   1220   1.7  alnsn 			}
   1221   1.7  alnsn 
   1222   1.7  alnsn 			invalid &= ~BJ_INIT_ABIT;
   1223   1.7  alnsn 			continue;
   1224   1.7  alnsn 
   1225   1.7  alnsn 		case BPF_LDX:
   1226   1.7  alnsn #if defined(_KERNEL)
   1227   1.7  alnsn 			/* uses BJ_TMP3REG */
   1228   1.7  alnsn 			*nscratches = 5;
   1229   1.7  alnsn #endif
   1230   1.7  alnsn 			/* uses BJ_XREG */
   1231   1.7  alnsn 			if (*nscratches < 4)
   1232   1.7  alnsn 				*nscratches = 4;
   1233   1.7  alnsn 
   1234   1.7  alnsn 			if (BPF_MODE(insns[i].code) == BPF_MEM &&
   1235  1.13  alnsn 			    (uint32_t)insns[i].k < memwords) {
   1236   1.7  alnsn 				*initmask |= invalid & BJ_INIT_MBIT(insns[i].k);
   1237   1.7  alnsn 			}
   1238   1.7  alnsn 
   1239   1.7  alnsn 			invalid &= ~BJ_INIT_XBIT;
   1240   1.7  alnsn 			continue;
   1241   1.7  alnsn 
   1242   1.7  alnsn 		case BPF_ST:
   1243   1.7  alnsn 			*initmask |= invalid & BJ_INIT_ABIT;
   1244   1.7  alnsn 
   1245  1.13  alnsn 			if ((uint32_t)insns[i].k < memwords)
   1246   1.7  alnsn 				invalid &= ~BJ_INIT_MBIT(insns[i].k);
   1247   1.7  alnsn 
   1248   1.7  alnsn 			continue;
   1249   1.7  alnsn 
   1250   1.7  alnsn 		case BPF_STX:
   1251   1.7  alnsn 			/* uses BJ_XREG */
   1252   1.7  alnsn 			if (*nscratches < 4)
   1253   1.7  alnsn 				*nscratches = 4;
   1254   1.7  alnsn 
   1255   1.7  alnsn 			*initmask |= invalid & BJ_INIT_XBIT;
   1256   1.7  alnsn 
   1257  1.13  alnsn 			if ((uint32_t)insns[i].k < memwords)
   1258   1.7  alnsn 				invalid &= ~BJ_INIT_MBIT(insns[i].k);
   1259   1.7  alnsn 
   1260   1.7  alnsn 			continue;
   1261   1.7  alnsn 
   1262   1.7  alnsn 		case BPF_ALU:
   1263   1.7  alnsn 			*initmask |= invalid & BJ_INIT_ABIT;
   1264   1.7  alnsn 
   1265   1.7  alnsn 			if (insns[i].code != (BPF_ALU|BPF_NEG) &&
   1266   1.7  alnsn 			    BPF_SRC(insns[i].code) == BPF_X) {
   1267   1.7  alnsn 				*initmask |= invalid & BJ_INIT_XBIT;
   1268   1.7  alnsn 				/* uses BJ_XREG */
   1269   1.7  alnsn 				if (*nscratches < 4)
   1270   1.7  alnsn 					*nscratches = 4;
   1271   1.7  alnsn 
   1272   1.7  alnsn 			}
   1273   1.7  alnsn 
   1274   1.7  alnsn 			invalid &= ~BJ_INIT_ABIT;
   1275   1.7  alnsn 			continue;
   1276   1.7  alnsn 
   1277   1.7  alnsn 		case BPF_MISC:
   1278   1.7  alnsn 			switch (BPF_MISCOP(insns[i].code)) {
   1279   1.7  alnsn 			case BPF_TAX: // X <- A
   1280   1.7  alnsn 				/* uses BJ_XREG */
   1281   1.7  alnsn 				if (*nscratches < 4)
   1282   1.7  alnsn 					*nscratches = 4;
   1283   1.7  alnsn 
   1284   1.7  alnsn 				*initmask |= invalid & BJ_INIT_ABIT;
   1285   1.7  alnsn 				invalid &= ~BJ_INIT_XBIT;
   1286   1.7  alnsn 				continue;
   1287   1.7  alnsn 
   1288   1.7  alnsn 			case BPF_TXA: // A <- X
   1289   1.7  alnsn 				/* uses BJ_XREG */
   1290   1.7  alnsn 				if (*nscratches < 4)
   1291   1.7  alnsn 					*nscratches = 4;
   1292   1.7  alnsn 
   1293   1.7  alnsn 				*initmask |= invalid & BJ_INIT_XBIT;
   1294   1.7  alnsn 				invalid &= ~BJ_INIT_ABIT;
   1295   1.7  alnsn 				continue;
   1296  1.13  alnsn 
   1297  1.13  alnsn 			case BPF_COPX:
   1298  1.13  alnsn 				/* uses BJ_XREG */
   1299  1.13  alnsn 				if (*nscratches < 4)
   1300  1.13  alnsn 					*nscratches = 4;
   1301  1.13  alnsn 				/* FALLTHROUGH */
   1302  1.13  alnsn 
   1303  1.13  alnsn 			case BPF_COP:
   1304  1.13  alnsn 				/* calls copfunc with three arguments */
   1305  1.13  alnsn 				if (*nscratches < 3)
   1306  1.13  alnsn 					*nscratches = 3;
   1307  1.13  alnsn 
   1308  1.13  alnsn 				(*ncopfuncs)++;
   1309  1.13  alnsn 				*initmask |= invalid & BJ_INIT_ABIT;
   1310  1.13  alnsn 				invalid &= ~BJ_INIT_ABIT;
   1311  1.13  alnsn 				continue;
   1312   1.7  alnsn 			}
   1313   1.7  alnsn 
   1314   1.7  alnsn 			continue;
   1315   1.7  alnsn 
   1316   1.1  alnsn 		case BPF_JMP:
   1317   1.7  alnsn 			/* Initialize abc_length for ABC pass. */
   1318   1.8  alnsn 			insn_dat[i].u.jdata.abc_length = MAX_ABC_LENGTH;
   1319   1.7  alnsn 
   1320   1.7  alnsn 			if (BPF_OP(insns[i].code) == BPF_JA) {
   1321   1.1  alnsn 				jt = jf = insns[i].k;
   1322   1.1  alnsn 			} else {
   1323   1.1  alnsn 				jt = insns[i].jt;
   1324   1.1  alnsn 				jf = insns[i].jf;
   1325   1.1  alnsn 			}
   1326   1.1  alnsn 
   1327   1.1  alnsn 			if (jt >= insn_count - (i + 1) ||
   1328   1.1  alnsn 			    jf >= insn_count - (i + 1)) {
   1329   1.7  alnsn 				return false;
   1330   1.1  alnsn 			}
   1331   1.1  alnsn 
   1332   1.1  alnsn 			if (jt > 0 && jf > 0)
   1333   1.1  alnsn 				unreachable = true;
   1334   1.1  alnsn 
   1335   1.7  alnsn 			jt += i + 1;
   1336   1.7  alnsn 			jf += i + 1;
   1337   1.7  alnsn 
   1338   1.7  alnsn 			jtf = insn_dat[i].u.jdata.jtf;
   1339   1.1  alnsn 
   1340   1.7  alnsn 			jtf[0].sjump = NULL;
   1341   1.7  alnsn 			jtf[0].jdata = &insn_dat[i].u.jdata;
   1342   1.7  alnsn 			SLIST_INSERT_HEAD(&insn_dat[jt].bjumps,
   1343   1.7  alnsn 			    &jtf[0], entries);
   1344   1.1  alnsn 
   1345   1.1  alnsn 			if (jf != jt) {
   1346   1.7  alnsn 				jtf[1].sjump = NULL;
   1347   1.7  alnsn 				jtf[1].jdata = &insn_dat[i].u.jdata;
   1348   1.7  alnsn 				SLIST_INSERT_HEAD(&insn_dat[jf].bjumps,
   1349   1.7  alnsn 				    &jtf[1], entries);
   1350   1.1  alnsn 			}
   1351   1.1  alnsn 
   1352   1.7  alnsn 			insn_dat[jf].invalid |= invalid;
   1353   1.7  alnsn 			insn_dat[jt].invalid |= invalid;
   1354   1.7  alnsn 			invalid = 0;
   1355   1.7  alnsn 
   1356   1.1  alnsn 			continue;
   1357   1.1  alnsn 		}
   1358   1.1  alnsn 	}
   1359   1.1  alnsn 
   1360   1.7  alnsn 	return true;
   1361   1.1  alnsn }
   1362   1.1  alnsn 
   1363   1.1  alnsn /*
   1364   1.7  alnsn  * Array Bounds Check Elimination (ABC) pass.
   1365   1.1  alnsn  */
   1366   1.7  alnsn static void
   1367   1.7  alnsn optimize_pass2(const struct bpf_insn *insns,
   1368  1.13  alnsn     struct bpfjit_insn_data *insn_dat, size_t insn_count, size_t extwords)
   1369   1.7  alnsn {
   1370   1.7  alnsn 	struct bpfjit_jump *jmp;
   1371   1.7  alnsn 	const struct bpf_insn *pc;
   1372   1.7  alnsn 	struct bpfjit_insn_data *pd;
   1373   1.7  alnsn 	size_t i;
   1374   1.8  alnsn 	bpfjit_abc_length_t length, abc_length = 0;
   1375   1.7  alnsn 
   1376   1.7  alnsn 	for (i = insn_count; i != 0; i--) {
   1377   1.7  alnsn 		pc = &insns[i-1];
   1378   1.7  alnsn 		pd = &insn_dat[i-1];
   1379   1.7  alnsn 
   1380   1.7  alnsn 		if (pd->unreachable)
   1381   1.7  alnsn 			continue;
   1382   1.7  alnsn 
   1383   1.7  alnsn 		switch (BPF_CLASS(pc->code)) {
   1384   1.7  alnsn 		case BPF_RET:
   1385  1.11  alnsn 			/*
   1386  1.11  alnsn 			 * It's quite common for bpf programs to
   1387  1.11  alnsn 			 * check packet bytes in increasing order
   1388  1.11  alnsn 			 * and return zero if bytes don't match
   1389  1.11  alnsn 			 * specified critetion. Such programs disable
   1390  1.11  alnsn 			 * ABC optimization completely because for
   1391  1.11  alnsn 			 * every jump there is a branch with no read
   1392  1.11  alnsn 			 * instruction.
   1393  1.13  alnsn 			 * With no side effects, BPF_STMT(BPF_RET+BPF_K, 0)
   1394  1.13  alnsn 			 * is indistinguishable from out-of-bound load.
   1395  1.11  alnsn 			 * Therefore, abc_length can be set to
   1396  1.11  alnsn 			 * MAX_ABC_LENGTH and enable ABC for many
   1397  1.11  alnsn 			 * bpf programs.
   1398  1.13  alnsn 			 * If this optimization encounters any
   1399  1.11  alnsn 			 * instruction with a side effect, it will
   1400  1.11  alnsn 			 * reset abc_length.
   1401  1.11  alnsn 			 */
   1402  1.11  alnsn 			if (BPF_RVAL(pc->code) == BPF_K && pc->k == 0)
   1403  1.11  alnsn 				abc_length = MAX_ABC_LENGTH;
   1404  1.11  alnsn 			else
   1405  1.11  alnsn 				abc_length = 0;
   1406   1.7  alnsn 			break;
   1407   1.7  alnsn 
   1408  1.13  alnsn 		case BPF_MISC:
   1409  1.13  alnsn 			if (BPF_MISCOP(pc->code) == BPF_COP ||
   1410  1.13  alnsn 			    BPF_MISCOP(pc->code) == BPF_COPX) {
   1411  1.13  alnsn 				/* COP instructions can have side effects. */
   1412  1.13  alnsn 				abc_length = 0;
   1413  1.13  alnsn 			}
   1414  1.13  alnsn 			break;
   1415  1.13  alnsn 
   1416  1.13  alnsn 		case BPF_ST:
   1417  1.13  alnsn 		case BPF_STX:
   1418  1.13  alnsn 			if (extwords != 0) {
   1419  1.13  alnsn 				/* Write to memory is visible after a call. */
   1420  1.13  alnsn 				abc_length = 0;
   1421  1.13  alnsn 			}
   1422  1.13  alnsn 			break;
   1423  1.13  alnsn 
   1424   1.7  alnsn 		case BPF_JMP:
   1425   1.7  alnsn 			abc_length = pd->u.jdata.abc_length;
   1426   1.7  alnsn 			break;
   1427   1.7  alnsn 
   1428   1.7  alnsn 		default:
   1429   1.7  alnsn 			if (read_pkt_insn(pc, &length)) {
   1430   1.7  alnsn 				if (abc_length < length)
   1431   1.7  alnsn 					abc_length = length;
   1432   1.7  alnsn 				pd->u.rdata.abc_length = abc_length;
   1433   1.7  alnsn 			}
   1434   1.7  alnsn 			break;
   1435   1.7  alnsn 		}
   1436   1.7  alnsn 
   1437   1.7  alnsn 		SLIST_FOREACH(jmp, &pd->bjumps, entries) {
   1438   1.7  alnsn 			if (jmp->jdata->abc_length > abc_length)
   1439   1.7  alnsn 				jmp->jdata->abc_length = abc_length;
   1440   1.7  alnsn 		}
   1441   1.7  alnsn 	}
   1442   1.7  alnsn }
   1443   1.7  alnsn 
   1444   1.7  alnsn static void
   1445   1.7  alnsn optimize_pass3(const struct bpf_insn *insns,
   1446   1.7  alnsn     struct bpfjit_insn_data *insn_dat, size_t insn_count)
   1447   1.1  alnsn {
   1448   1.7  alnsn 	struct bpfjit_jump *jmp;
   1449   1.1  alnsn 	size_t i;
   1450   1.8  alnsn 	bpfjit_abc_length_t checked_length = 0;
   1451   1.1  alnsn 
   1452   1.1  alnsn 	for (i = 0; i < insn_count; i++) {
   1453   1.7  alnsn 		if (insn_dat[i].unreachable)
   1454   1.7  alnsn 			continue;
   1455   1.1  alnsn 
   1456   1.7  alnsn 		SLIST_FOREACH(jmp, &insn_dat[i].bjumps, entries) {
   1457   1.7  alnsn 			if (jmp->jdata->checked_length < checked_length)
   1458   1.7  alnsn 				checked_length = jmp->jdata->checked_length;
   1459   1.1  alnsn 		}
   1460   1.1  alnsn 
   1461   1.7  alnsn 		if (BPF_CLASS(insns[i].code) == BPF_JMP) {
   1462   1.7  alnsn 			insn_dat[i].u.jdata.checked_length = checked_length;
   1463   1.8  alnsn 		} else if (read_pkt_insn(&insns[i], NULL)) {
   1464   1.7  alnsn 			struct bpfjit_read_pkt_data *rdata =
   1465   1.7  alnsn 			    &insn_dat[i].u.rdata;
   1466   1.7  alnsn 			rdata->check_length = 0;
   1467   1.7  alnsn 			if (checked_length < rdata->abc_length) {
   1468   1.7  alnsn 				checked_length = rdata->abc_length;
   1469   1.7  alnsn 				rdata->check_length = checked_length;
   1470   1.7  alnsn 			}
   1471   1.1  alnsn 		}
   1472   1.7  alnsn 	}
   1473   1.7  alnsn }
   1474   1.1  alnsn 
   1475   1.7  alnsn static bool
   1476   1.7  alnsn optimize(const struct bpf_insn *insns,
   1477   1.7  alnsn     struct bpfjit_insn_data *insn_dat, size_t insn_count,
   1478  1.13  alnsn     size_t extwords,
   1479  1.13  alnsn     bpf_memword_init_t *initmask, int *nscratches, int *ncopfuncs)
   1480   1.7  alnsn {
   1481   1.1  alnsn 
   1482   1.7  alnsn 	optimize_init(insn_dat, insn_count);
   1483   1.7  alnsn 
   1484   1.7  alnsn 	if (!optimize_pass1(insns, insn_dat, insn_count,
   1485  1.13  alnsn 	    extwords, initmask, nscratches, ncopfuncs)) {
   1486   1.7  alnsn 		return false;
   1487   1.1  alnsn 	}
   1488   1.1  alnsn 
   1489  1.13  alnsn 	optimize_pass2(insns, insn_dat, insn_count, extwords);
   1490   1.7  alnsn 	optimize_pass3(insns, insn_dat, insn_count);
   1491   1.7  alnsn 
   1492   1.7  alnsn 	return true;
   1493   1.1  alnsn }
   1494   1.1  alnsn 
   1495   1.1  alnsn /*
   1496   1.1  alnsn  * Convert BPF_ALU operations except BPF_NEG and BPF_DIV to sljit operation.
   1497   1.1  alnsn  */
   1498   1.1  alnsn static int
   1499   1.7  alnsn bpf_alu_to_sljit_op(const struct bpf_insn *pc)
   1500   1.1  alnsn {
   1501   1.1  alnsn 
   1502   1.1  alnsn 	/*
   1503   1.1  alnsn 	 * Note: all supported 64bit arches have 32bit multiply
   1504   1.1  alnsn 	 * instruction so SLJIT_INT_OP doesn't have any overhead.
   1505   1.1  alnsn 	 */
   1506   1.1  alnsn 	switch (BPF_OP(pc->code)) {
   1507   1.1  alnsn 	case BPF_ADD: return SLJIT_ADD;
   1508   1.1  alnsn 	case BPF_SUB: return SLJIT_SUB;
   1509   1.1  alnsn 	case BPF_MUL: return SLJIT_MUL|SLJIT_INT_OP;
   1510   1.1  alnsn 	case BPF_OR:  return SLJIT_OR;
   1511   1.1  alnsn 	case BPF_AND: return SLJIT_AND;
   1512   1.1  alnsn 	case BPF_LSH: return SLJIT_SHL;
   1513   1.1  alnsn 	case BPF_RSH: return SLJIT_LSHR|SLJIT_INT_OP;
   1514   1.1  alnsn 	default:
   1515   1.7  alnsn 		BJ_ASSERT(false);
   1516   1.1  alnsn 		return 0;
   1517   1.1  alnsn 	}
   1518   1.1  alnsn }
   1519   1.1  alnsn 
   1520   1.1  alnsn /*
   1521   1.1  alnsn  * Convert BPF_JMP operations except BPF_JA to sljit condition.
   1522   1.1  alnsn  */
   1523   1.1  alnsn static int
   1524   1.7  alnsn bpf_jmp_to_sljit_cond(const struct bpf_insn *pc, bool negate)
   1525   1.1  alnsn {
   1526   1.1  alnsn 	/*
   1527   1.1  alnsn 	 * Note: all supported 64bit arches have 32bit comparison
   1528   1.1  alnsn 	 * instructions so SLJIT_INT_OP doesn't have any overhead.
   1529   1.1  alnsn 	 */
   1530   1.1  alnsn 	int rv = SLJIT_INT_OP;
   1531   1.1  alnsn 
   1532   1.1  alnsn 	switch (BPF_OP(pc->code)) {
   1533   1.1  alnsn 	case BPF_JGT:
   1534   1.1  alnsn 		rv |= negate ? SLJIT_C_LESS_EQUAL : SLJIT_C_GREATER;
   1535   1.1  alnsn 		break;
   1536   1.1  alnsn 	case BPF_JGE:
   1537   1.1  alnsn 		rv |= negate ? SLJIT_C_LESS : SLJIT_C_GREATER_EQUAL;
   1538   1.1  alnsn 		break;
   1539   1.1  alnsn 	case BPF_JEQ:
   1540   1.1  alnsn 		rv |= negate ? SLJIT_C_NOT_EQUAL : SLJIT_C_EQUAL;
   1541   1.1  alnsn 		break;
   1542   1.1  alnsn 	case BPF_JSET:
   1543   1.1  alnsn 		rv |= negate ? SLJIT_C_EQUAL : SLJIT_C_NOT_EQUAL;
   1544   1.1  alnsn 		break;
   1545   1.1  alnsn 	default:
   1546   1.7  alnsn 		BJ_ASSERT(false);
   1547   1.1  alnsn 	}
   1548   1.1  alnsn 
   1549   1.1  alnsn 	return rv;
   1550   1.1  alnsn }
   1551   1.1  alnsn 
   1552   1.1  alnsn /*
   1553   1.1  alnsn  * Convert BPF_K and BPF_X to sljit register.
   1554   1.1  alnsn  */
   1555   1.1  alnsn static int
   1556   1.7  alnsn kx_to_reg(const struct bpf_insn *pc)
   1557   1.1  alnsn {
   1558   1.1  alnsn 
   1559   1.1  alnsn 	switch (BPF_SRC(pc->code)) {
   1560   1.1  alnsn 	case BPF_K: return SLJIT_IMM;
   1561   1.7  alnsn 	case BPF_X: return BJ_XREG;
   1562   1.1  alnsn 	default:
   1563   1.7  alnsn 		BJ_ASSERT(false);
   1564   1.1  alnsn 		return 0;
   1565   1.1  alnsn 	}
   1566   1.1  alnsn }
   1567   1.1  alnsn 
   1568  1.12  alnsn static sljit_sw
   1569   1.7  alnsn kx_to_reg_arg(const struct bpf_insn *pc)
   1570   1.1  alnsn {
   1571   1.1  alnsn 
   1572   1.1  alnsn 	switch (BPF_SRC(pc->code)) {
   1573   1.1  alnsn 	case BPF_K: return (uint32_t)pc->k; /* SLJIT_IMM, pc->k, */
   1574   1.7  alnsn 	case BPF_X: return 0;               /* BJ_XREG, 0,      */
   1575   1.1  alnsn 	default:
   1576   1.7  alnsn 		BJ_ASSERT(false);
   1577   1.1  alnsn 		return 0;
   1578   1.1  alnsn 	}
   1579   1.1  alnsn }
   1580   1.1  alnsn 
   1581   1.4  rmind bpfjit_func_t
   1582  1.13  alnsn bpfjit_generate_code(const bpf_ctx_t *bc,
   1583  1.13  alnsn     const struct bpf_insn *insns, size_t insn_count)
   1584   1.1  alnsn {
   1585   1.1  alnsn 	void *rv;
   1586   1.7  alnsn 	struct sljit_compiler *compiler;
   1587   1.7  alnsn 
   1588   1.1  alnsn 	size_t i;
   1589   1.1  alnsn 	int status;
   1590   1.1  alnsn 	int branching, negate;
   1591   1.1  alnsn 	unsigned int rval, mode, src;
   1592   1.7  alnsn 
   1593   1.7  alnsn 	/* optimization related */
   1594  1.13  alnsn 	bpf_memword_init_t initmask;
   1595  1.13  alnsn 	int nscratches, ncopfuncs;
   1596   1.1  alnsn 
   1597   1.1  alnsn 	/* a list of jumps to out-of-bound return from a generated function */
   1598   1.1  alnsn 	struct sljit_jump **ret0;
   1599   1.7  alnsn 	size_t ret0_size, ret0_maxsize;
   1600   1.1  alnsn 
   1601   1.7  alnsn 	const struct bpf_insn *pc;
   1602   1.1  alnsn 	struct bpfjit_insn_data *insn_dat;
   1603   1.1  alnsn 
   1604   1.1  alnsn 	/* for local use */
   1605   1.1  alnsn 	struct sljit_label *label;
   1606   1.1  alnsn 	struct sljit_jump *jump;
   1607   1.1  alnsn 	struct bpfjit_jump *bjump, *jtf;
   1608   1.1  alnsn 
   1609   1.1  alnsn 	struct sljit_jump *to_mchain_jump;
   1610   1.9  alnsn 	bool unconditional_ret;
   1611   1.1  alnsn 
   1612   1.1  alnsn 	uint32_t jt, jf;
   1613   1.1  alnsn 
   1614  1.13  alnsn 	const size_t extwords = (bc != NULL) ? bc->extwords : 0;
   1615  1.13  alnsn 	const size_t memwords = (extwords != 0) ? extwords : BPF_MEMWORDS;
   1616  1.13  alnsn 	const bpf_memword_init_t noinit = (extwords != 0) ? bc->noinit : 0;
   1617  1.13  alnsn 
   1618   1.1  alnsn 	rv = NULL;
   1619  1.13  alnsn 	ret0 = NULL;
   1620   1.1  alnsn 	compiler = NULL;
   1621   1.1  alnsn 	insn_dat = NULL;
   1622  1.13  alnsn 
   1623  1.13  alnsn 	if (memwords > MAX_MEMWORDS)
   1624  1.13  alnsn 		goto fail;
   1625   1.1  alnsn 
   1626   1.7  alnsn 	if (insn_count == 0 || insn_count > SIZE_MAX / sizeof(insn_dat[0]))
   1627   1.1  alnsn 		goto fail;
   1628   1.1  alnsn 
   1629   1.7  alnsn 	insn_dat = BJ_ALLOC(insn_count * sizeof(insn_dat[0]));
   1630   1.1  alnsn 	if (insn_dat == NULL)
   1631   1.1  alnsn 		goto fail;
   1632   1.1  alnsn 
   1633   1.7  alnsn 	if (!optimize(insns, insn_dat, insn_count,
   1634  1.13  alnsn 	    extwords, &initmask, &nscratches, &ncopfuncs)) {
   1635   1.1  alnsn 		goto fail;
   1636   1.7  alnsn 	}
   1637   1.7  alnsn 
   1638   1.1  alnsn 	ret0_size = 0;
   1639   1.7  alnsn 	ret0_maxsize = 64;
   1640   1.7  alnsn 	ret0 = BJ_ALLOC(ret0_maxsize * sizeof(ret0[0]));
   1641   1.7  alnsn 	if (ret0 == NULL)
   1642   1.1  alnsn 		goto fail;
   1643   1.1  alnsn 
   1644   1.1  alnsn 	compiler = sljit_create_compiler();
   1645   1.1  alnsn 	if (compiler == NULL)
   1646   1.1  alnsn 		goto fail;
   1647   1.1  alnsn 
   1648   1.1  alnsn #if !defined(_KERNEL) && defined(SLJIT_VERBOSE) && SLJIT_VERBOSE
   1649   1.1  alnsn 	sljit_compiler_verbose(compiler, stderr);
   1650   1.1  alnsn #endif
   1651   1.1  alnsn 
   1652   1.7  alnsn 	status = sljit_emit_enter(compiler,
   1653   1.7  alnsn 	    3, nscratches, 3, sizeof(struct bpfjit_stack));
   1654   1.1  alnsn 	if (status != SLJIT_SUCCESS)
   1655   1.1  alnsn 		goto fail;
   1656   1.1  alnsn 
   1657  1.13  alnsn 	if (ncopfuncs > 0) {
   1658  1.13  alnsn 		/* save ctx argument */
   1659  1.13  alnsn 		status = sljit_emit_op1(compiler,
   1660  1.13  alnsn 		    SLJIT_MOV_P,
   1661  1.13  alnsn 		    SLJIT_MEM1(SLJIT_LOCALS_REG),
   1662  1.13  alnsn 		    offsetof(struct bpfjit_stack, ctx),
   1663  1.13  alnsn 		    BJ_CTX_ARG, 0);
   1664  1.13  alnsn 		if (status != SLJIT_SUCCESS)
   1665  1.13  alnsn 			goto fail;
   1666  1.13  alnsn 	}
   1667  1.13  alnsn 
   1668  1.13  alnsn 	if (extwords != 0) {
   1669  1.13  alnsn 		/* copy "mem" argument from bpf_args to bpfjit_stack */
   1670  1.13  alnsn 		status = sljit_emit_op1(compiler,
   1671  1.13  alnsn 		    SLJIT_MOV_P,
   1672  1.13  alnsn 		    BJ_TMP1REG, 0,
   1673  1.13  alnsn 		    BJ_ARGS, offsetof(struct bpf_args, mem));
   1674  1.13  alnsn 		if (status != SLJIT_SUCCESS)
   1675  1.13  alnsn 			goto fail;
   1676  1.13  alnsn 
   1677  1.13  alnsn 		status = sljit_emit_op1(compiler,
   1678  1.13  alnsn 		    SLJIT_MOV_P,
   1679  1.13  alnsn 		    SLJIT_MEM1(SLJIT_LOCALS_REG),
   1680  1.13  alnsn 		    offsetof(struct bpfjit_stack, extmem),
   1681  1.13  alnsn 		    BJ_TMP1REG, 0);
   1682  1.13  alnsn 		if (status != SLJIT_SUCCESS)
   1683  1.13  alnsn 			goto fail;
   1684  1.13  alnsn 	}
   1685  1.13  alnsn 
   1686  1.13  alnsn 	status = load_buf_buflen(compiler);
   1687  1.13  alnsn 	if (status != SLJIT_SUCCESS)
   1688  1.13  alnsn 		goto fail;
   1689  1.13  alnsn 
   1690  1.13  alnsn 	/*
   1691  1.13  alnsn 	 * Exclude pre-initialised external memory words but keep
   1692  1.13  alnsn 	 * initialization statuses of A and X registers in case
   1693  1.13  alnsn 	 * bc->noinit wrongly sets those two bits.
   1694  1.13  alnsn 	 */
   1695  1.13  alnsn 	initmask &= ~noinit | BJ_INIT_ABIT | BJ_INIT_XBIT;
   1696  1.13  alnsn 
   1697  1.13  alnsn #if defined(_KERNEL)
   1698  1.13  alnsn 	/* bpf_filter() checks initialization of memwords. */
   1699  1.13  alnsn 	BJ_ASSERT((initmask & (BJ_INIT_MBIT(memwords) - 1)) == 0);
   1700  1.13  alnsn #endif
   1701  1.13  alnsn 	for (i = 0; i < memwords; i++) {
   1702   1.7  alnsn 		if (initmask & BJ_INIT_MBIT(i)) {
   1703  1.13  alnsn 			/* M[i] = 0; */
   1704   1.7  alnsn 			status = sljit_emit_op1(compiler,
   1705   1.7  alnsn 			    SLJIT_MOV_UI,
   1706   1.7  alnsn 			    SLJIT_MEM1(SLJIT_LOCALS_REG),
   1707   1.7  alnsn 			    offsetof(struct bpfjit_stack, mem) +
   1708   1.7  alnsn 			        i * sizeof(uint32_t),
   1709   1.7  alnsn 			    SLJIT_IMM, 0);
   1710   1.7  alnsn 			if (status != SLJIT_SUCCESS)
   1711   1.7  alnsn 				goto fail;
   1712   1.7  alnsn 		}
   1713   1.1  alnsn 	}
   1714   1.1  alnsn 
   1715   1.7  alnsn 	if (initmask & BJ_INIT_ABIT) {
   1716   1.1  alnsn 		/* A = 0; */
   1717   1.1  alnsn 		status = sljit_emit_op1(compiler,
   1718   1.1  alnsn 		    SLJIT_MOV,
   1719   1.7  alnsn 		    BJ_AREG, 0,
   1720   1.1  alnsn 		    SLJIT_IMM, 0);
   1721   1.1  alnsn 		if (status != SLJIT_SUCCESS)
   1722   1.1  alnsn 			goto fail;
   1723   1.1  alnsn 	}
   1724   1.1  alnsn 
   1725   1.7  alnsn 	if (initmask & BJ_INIT_XBIT) {
   1726   1.1  alnsn 		/* X = 0; */
   1727   1.1  alnsn 		status = sljit_emit_op1(compiler,
   1728   1.1  alnsn 		    SLJIT_MOV,
   1729   1.7  alnsn 		    BJ_XREG, 0,
   1730   1.1  alnsn 		    SLJIT_IMM, 0);
   1731   1.1  alnsn 		if (status != SLJIT_SUCCESS)
   1732   1.1  alnsn 			goto fail;
   1733   1.1  alnsn 	}
   1734   1.1  alnsn 
   1735   1.1  alnsn 	for (i = 0; i < insn_count; i++) {
   1736   1.7  alnsn 		if (insn_dat[i].unreachable)
   1737   1.1  alnsn 			continue;
   1738   1.1  alnsn 
   1739   1.1  alnsn 		/*
   1740   1.1  alnsn 		 * Resolve jumps to the current insn.
   1741   1.1  alnsn 		 */
   1742   1.1  alnsn 		label = NULL;
   1743   1.7  alnsn 		SLIST_FOREACH(bjump, &insn_dat[i].bjumps, entries) {
   1744   1.7  alnsn 			if (bjump->sjump != NULL) {
   1745   1.1  alnsn 				if (label == NULL)
   1746   1.1  alnsn 					label = sljit_emit_label(compiler);
   1747   1.1  alnsn 				if (label == NULL)
   1748   1.1  alnsn 					goto fail;
   1749   1.7  alnsn 				sljit_set_label(bjump->sjump, label);
   1750   1.1  alnsn 			}
   1751   1.1  alnsn 		}
   1752   1.1  alnsn 
   1753   1.9  alnsn 		to_mchain_jump = NULL;
   1754   1.9  alnsn 		unconditional_ret = false;
   1755   1.9  alnsn 
   1756   1.9  alnsn 		if (read_pkt_insn(&insns[i], NULL)) {
   1757   1.9  alnsn 			if (insn_dat[i].u.rdata.check_length > UINT32_MAX) {
   1758   1.9  alnsn 				/* Jump to "return 0" unconditionally. */
   1759   1.9  alnsn 				unconditional_ret = true;
   1760   1.9  alnsn 				jump = sljit_emit_jump(compiler, SLJIT_JUMP);
   1761   1.9  alnsn 				if (jump == NULL)
   1762   1.9  alnsn 					goto fail;
   1763   1.9  alnsn 				if (!append_jump(jump, &ret0,
   1764   1.9  alnsn 				    &ret0_size, &ret0_maxsize))
   1765   1.9  alnsn 					goto fail;
   1766   1.9  alnsn 			} else if (insn_dat[i].u.rdata.check_length > 0) {
   1767   1.9  alnsn 				/* if (buflen < check_length) return 0; */
   1768   1.9  alnsn 				jump = sljit_emit_cmp(compiler,
   1769   1.9  alnsn 				    SLJIT_C_LESS,
   1770   1.9  alnsn 				    BJ_BUFLEN, 0,
   1771   1.9  alnsn 				    SLJIT_IMM,
   1772   1.9  alnsn 				    insn_dat[i].u.rdata.check_length);
   1773   1.9  alnsn 				if (jump == NULL)
   1774   1.9  alnsn 					goto fail;
   1775   1.1  alnsn #ifdef _KERNEL
   1776   1.9  alnsn 				to_mchain_jump = jump;
   1777   1.1  alnsn #else
   1778   1.9  alnsn 				if (!append_jump(jump, &ret0,
   1779   1.9  alnsn 				    &ret0_size, &ret0_maxsize))
   1780   1.9  alnsn 					goto fail;
   1781   1.1  alnsn #endif
   1782   1.9  alnsn 			}
   1783   1.1  alnsn 		}
   1784   1.1  alnsn 
   1785   1.1  alnsn 		pc = &insns[i];
   1786   1.1  alnsn 		switch (BPF_CLASS(pc->code)) {
   1787   1.1  alnsn 
   1788   1.1  alnsn 		default:
   1789   1.1  alnsn 			goto fail;
   1790   1.1  alnsn 
   1791   1.1  alnsn 		case BPF_LD:
   1792   1.1  alnsn 			/* BPF_LD+BPF_IMM          A <- k */
   1793   1.1  alnsn 			if (pc->code == (BPF_LD|BPF_IMM)) {
   1794   1.1  alnsn 				status = sljit_emit_op1(compiler,
   1795   1.1  alnsn 				    SLJIT_MOV,
   1796   1.7  alnsn 				    BJ_AREG, 0,
   1797   1.1  alnsn 				    SLJIT_IMM, (uint32_t)pc->k);
   1798   1.1  alnsn 				if (status != SLJIT_SUCCESS)
   1799   1.1  alnsn 					goto fail;
   1800   1.1  alnsn 
   1801   1.1  alnsn 				continue;
   1802   1.1  alnsn 			}
   1803   1.1  alnsn 
   1804   1.1  alnsn 			/* BPF_LD+BPF_MEM          A <- M[k] */
   1805   1.1  alnsn 			if (pc->code == (BPF_LD|BPF_MEM)) {
   1806  1.13  alnsn 				if ((uint32_t)pc->k >= memwords)
   1807   1.1  alnsn 					goto fail;
   1808  1.13  alnsn 				status = emit_memload(compiler,
   1809  1.13  alnsn 				    BJ_AREG, pc->k, extwords);
   1810   1.1  alnsn 				if (status != SLJIT_SUCCESS)
   1811   1.1  alnsn 					goto fail;
   1812   1.1  alnsn 
   1813   1.1  alnsn 				continue;
   1814   1.1  alnsn 			}
   1815   1.1  alnsn 
   1816   1.1  alnsn 			/* BPF_LD+BPF_W+BPF_LEN    A <- len */
   1817   1.1  alnsn 			if (pc->code == (BPF_LD|BPF_W|BPF_LEN)) {
   1818   1.1  alnsn 				status = sljit_emit_op1(compiler,
   1819   1.1  alnsn 				    SLJIT_MOV,
   1820   1.7  alnsn 				    BJ_AREG, 0,
   1821  1.13  alnsn 				    SLJIT_MEM1(BJ_ARGS),
   1822  1.13  alnsn 				    offsetof(struct bpf_args, wirelen));
   1823   1.1  alnsn 				if (status != SLJIT_SUCCESS)
   1824   1.1  alnsn 					goto fail;
   1825   1.1  alnsn 
   1826   1.1  alnsn 				continue;
   1827   1.1  alnsn 			}
   1828   1.1  alnsn 
   1829   1.1  alnsn 			mode = BPF_MODE(pc->code);
   1830   1.1  alnsn 			if (mode != BPF_ABS && mode != BPF_IND)
   1831   1.1  alnsn 				goto fail;
   1832   1.1  alnsn 
   1833   1.9  alnsn 			if (unconditional_ret)
   1834   1.9  alnsn 				continue;
   1835   1.9  alnsn 
   1836   1.1  alnsn 			status = emit_pkt_read(compiler, pc,
   1837   1.7  alnsn 			    to_mchain_jump, &ret0, &ret0_size, &ret0_maxsize);
   1838   1.1  alnsn 			if (status != SLJIT_SUCCESS)
   1839   1.1  alnsn 				goto fail;
   1840   1.1  alnsn 
   1841   1.1  alnsn 			continue;
   1842   1.1  alnsn 
   1843   1.1  alnsn 		case BPF_LDX:
   1844   1.1  alnsn 			mode = BPF_MODE(pc->code);
   1845   1.1  alnsn 
   1846   1.1  alnsn 			/* BPF_LDX+BPF_W+BPF_IMM    X <- k */
   1847   1.1  alnsn 			if (mode == BPF_IMM) {
   1848   1.1  alnsn 				if (BPF_SIZE(pc->code) != BPF_W)
   1849   1.1  alnsn 					goto fail;
   1850   1.1  alnsn 				status = sljit_emit_op1(compiler,
   1851   1.1  alnsn 				    SLJIT_MOV,
   1852   1.7  alnsn 				    BJ_XREG, 0,
   1853   1.1  alnsn 				    SLJIT_IMM, (uint32_t)pc->k);
   1854   1.1  alnsn 				if (status != SLJIT_SUCCESS)
   1855   1.1  alnsn 					goto fail;
   1856   1.1  alnsn 
   1857   1.1  alnsn 				continue;
   1858   1.1  alnsn 			}
   1859   1.1  alnsn 
   1860   1.1  alnsn 			/* BPF_LDX+BPF_W+BPF_LEN    X <- len */
   1861   1.1  alnsn 			if (mode == BPF_LEN) {
   1862   1.1  alnsn 				if (BPF_SIZE(pc->code) != BPF_W)
   1863   1.1  alnsn 					goto fail;
   1864   1.1  alnsn 				status = sljit_emit_op1(compiler,
   1865   1.1  alnsn 				    SLJIT_MOV,
   1866   1.7  alnsn 				    BJ_XREG, 0,
   1867  1.13  alnsn 				    SLJIT_MEM1(BJ_ARGS),
   1868  1.13  alnsn 				    offsetof(struct bpf_args, wirelen));
   1869   1.1  alnsn 				if (status != SLJIT_SUCCESS)
   1870   1.1  alnsn 					goto fail;
   1871   1.1  alnsn 
   1872   1.1  alnsn 				continue;
   1873   1.1  alnsn 			}
   1874   1.1  alnsn 
   1875   1.1  alnsn 			/* BPF_LDX+BPF_W+BPF_MEM    X <- M[k] */
   1876   1.1  alnsn 			if (mode == BPF_MEM) {
   1877   1.1  alnsn 				if (BPF_SIZE(pc->code) != BPF_W)
   1878   1.1  alnsn 					goto fail;
   1879  1.13  alnsn 				if ((uint32_t)pc->k >= memwords)
   1880   1.1  alnsn 					goto fail;
   1881  1.13  alnsn 				status = emit_memload(compiler,
   1882  1.13  alnsn 				    BJ_XREG, pc->k, extwords);
   1883   1.1  alnsn 				if (status != SLJIT_SUCCESS)
   1884   1.1  alnsn 					goto fail;
   1885   1.1  alnsn 
   1886   1.1  alnsn 				continue;
   1887   1.1  alnsn 			}
   1888   1.1  alnsn 
   1889   1.1  alnsn 			/* BPF_LDX+BPF_B+BPF_MSH    X <- 4*(P[k:1]&0xf) */
   1890   1.1  alnsn 			if (mode != BPF_MSH || BPF_SIZE(pc->code) != BPF_B)
   1891   1.1  alnsn 				goto fail;
   1892   1.1  alnsn 
   1893   1.9  alnsn 			if (unconditional_ret)
   1894   1.9  alnsn 				continue;
   1895   1.9  alnsn 
   1896   1.1  alnsn 			status = emit_msh(compiler, pc,
   1897   1.7  alnsn 			    to_mchain_jump, &ret0, &ret0_size, &ret0_maxsize);
   1898   1.1  alnsn 			if (status != SLJIT_SUCCESS)
   1899   1.1  alnsn 				goto fail;
   1900   1.1  alnsn 
   1901   1.1  alnsn 			continue;
   1902   1.1  alnsn 
   1903   1.1  alnsn 		case BPF_ST:
   1904   1.8  alnsn 			if (pc->code != BPF_ST ||
   1905  1.13  alnsn 			    (uint32_t)pc->k >= memwords) {
   1906   1.1  alnsn 				goto fail;
   1907   1.8  alnsn 			}
   1908   1.1  alnsn 
   1909  1.13  alnsn 			status = emit_memstore(compiler,
   1910  1.13  alnsn 			    BJ_AREG, pc->k, extwords);
   1911   1.1  alnsn 			if (status != SLJIT_SUCCESS)
   1912   1.1  alnsn 				goto fail;
   1913   1.1  alnsn 
   1914   1.1  alnsn 			continue;
   1915   1.1  alnsn 
   1916   1.1  alnsn 		case BPF_STX:
   1917   1.8  alnsn 			if (pc->code != BPF_STX ||
   1918  1.13  alnsn 			    (uint32_t)pc->k >= memwords) {
   1919   1.1  alnsn 				goto fail;
   1920   1.8  alnsn 			}
   1921   1.1  alnsn 
   1922  1.13  alnsn 			status = emit_memstore(compiler,
   1923  1.13  alnsn 			    BJ_XREG, pc->k, extwords);
   1924   1.1  alnsn 			if (status != SLJIT_SUCCESS)
   1925   1.1  alnsn 				goto fail;
   1926   1.1  alnsn 
   1927   1.1  alnsn 			continue;
   1928   1.1  alnsn 
   1929   1.1  alnsn 		case BPF_ALU:
   1930   1.1  alnsn 			if (pc->code == (BPF_ALU|BPF_NEG)) {
   1931   1.1  alnsn 				status = sljit_emit_op1(compiler,
   1932   1.1  alnsn 				    SLJIT_NEG,
   1933   1.7  alnsn 				    BJ_AREG, 0,
   1934   1.7  alnsn 				    BJ_AREG, 0);
   1935   1.1  alnsn 				if (status != SLJIT_SUCCESS)
   1936   1.1  alnsn 					goto fail;
   1937   1.1  alnsn 
   1938   1.1  alnsn 				continue;
   1939   1.1  alnsn 			}
   1940   1.1  alnsn 
   1941   1.1  alnsn 			if (BPF_OP(pc->code) != BPF_DIV) {
   1942   1.1  alnsn 				status = sljit_emit_op2(compiler,
   1943   1.1  alnsn 				    bpf_alu_to_sljit_op(pc),
   1944   1.7  alnsn 				    BJ_AREG, 0,
   1945   1.7  alnsn 				    BJ_AREG, 0,
   1946   1.1  alnsn 				    kx_to_reg(pc), kx_to_reg_arg(pc));
   1947   1.1  alnsn 				if (status != SLJIT_SUCCESS)
   1948   1.1  alnsn 					goto fail;
   1949   1.1  alnsn 
   1950   1.1  alnsn 				continue;
   1951   1.1  alnsn 			}
   1952   1.1  alnsn 
   1953   1.1  alnsn 			/* BPF_DIV */
   1954   1.1  alnsn 
   1955   1.1  alnsn 			src = BPF_SRC(pc->code);
   1956   1.1  alnsn 			if (src != BPF_X && src != BPF_K)
   1957   1.1  alnsn 				goto fail;
   1958   1.1  alnsn 
   1959   1.1  alnsn 			/* division by zero? */
   1960   1.1  alnsn 			if (src == BPF_X) {
   1961   1.1  alnsn 				jump = sljit_emit_cmp(compiler,
   1962   1.1  alnsn 				    SLJIT_C_EQUAL|SLJIT_INT_OP,
   1963   1.8  alnsn 				    BJ_XREG, 0,
   1964   1.1  alnsn 				    SLJIT_IMM, 0);
   1965   1.1  alnsn 				if (jump == NULL)
   1966   1.1  alnsn 					goto fail;
   1967   1.7  alnsn 				if (!append_jump(jump, &ret0,
   1968   1.7  alnsn 				    &ret0_size, &ret0_maxsize))
   1969   1.7  alnsn 					goto fail;
   1970   1.1  alnsn 			} else if (pc->k == 0) {
   1971   1.1  alnsn 				jump = sljit_emit_jump(compiler, SLJIT_JUMP);
   1972   1.1  alnsn 				if (jump == NULL)
   1973   1.1  alnsn 					goto fail;
   1974   1.7  alnsn 				if (!append_jump(jump, &ret0,
   1975   1.7  alnsn 				    &ret0_size, &ret0_maxsize))
   1976   1.7  alnsn 					goto fail;
   1977   1.1  alnsn 			}
   1978   1.1  alnsn 
   1979   1.1  alnsn 			if (src == BPF_X) {
   1980   1.7  alnsn 				status = emit_division(compiler, BJ_XREG, 0);
   1981   1.1  alnsn 				if (status != SLJIT_SUCCESS)
   1982   1.1  alnsn 					goto fail;
   1983   1.1  alnsn 			} else if (pc->k != 0) {
   1984   1.1  alnsn 				if (pc->k & (pc->k - 1)) {
   1985   1.1  alnsn 				    status = emit_division(compiler,
   1986   1.1  alnsn 				        SLJIT_IMM, (uint32_t)pc->k);
   1987   1.1  alnsn 				} else {
   1988   1.7  alnsn 				    status = emit_pow2_division(compiler,
   1989   1.1  alnsn 				        (uint32_t)pc->k);
   1990   1.1  alnsn 				}
   1991   1.1  alnsn 				if (status != SLJIT_SUCCESS)
   1992   1.1  alnsn 					goto fail;
   1993   1.1  alnsn 			}
   1994   1.1  alnsn 
   1995   1.1  alnsn 			continue;
   1996   1.1  alnsn 
   1997   1.1  alnsn 		case BPF_JMP:
   1998   1.7  alnsn 			if (BPF_OP(pc->code) == BPF_JA) {
   1999   1.1  alnsn 				jt = jf = pc->k;
   2000   1.1  alnsn 			} else {
   2001   1.1  alnsn 				jt = pc->jt;
   2002   1.1  alnsn 				jf = pc->jf;
   2003   1.1  alnsn 			}
   2004   1.1  alnsn 
   2005   1.1  alnsn 			negate = (jt == 0) ? 1 : 0;
   2006   1.1  alnsn 			branching = (jt == jf) ? 0 : 1;
   2007   1.7  alnsn 			jtf = insn_dat[i].u.jdata.jtf;
   2008   1.1  alnsn 
   2009   1.1  alnsn 			if (branching) {
   2010   1.1  alnsn 				if (BPF_OP(pc->code) != BPF_JSET) {
   2011   1.1  alnsn 					jump = sljit_emit_cmp(compiler,
   2012   1.1  alnsn 					    bpf_jmp_to_sljit_cond(pc, negate),
   2013   1.7  alnsn 					    BJ_AREG, 0,
   2014   1.1  alnsn 					    kx_to_reg(pc), kx_to_reg_arg(pc));
   2015   1.1  alnsn 				} else {
   2016   1.1  alnsn 					status = sljit_emit_op2(compiler,
   2017   1.1  alnsn 					    SLJIT_AND,
   2018   1.7  alnsn 					    BJ_TMP1REG, 0,
   2019   1.7  alnsn 					    BJ_AREG, 0,
   2020   1.1  alnsn 					    kx_to_reg(pc), kx_to_reg_arg(pc));
   2021   1.1  alnsn 					if (status != SLJIT_SUCCESS)
   2022   1.1  alnsn 						goto fail;
   2023   1.1  alnsn 
   2024   1.1  alnsn 					jump = sljit_emit_cmp(compiler,
   2025   1.1  alnsn 					    bpf_jmp_to_sljit_cond(pc, negate),
   2026   1.7  alnsn 					    BJ_TMP1REG, 0,
   2027   1.1  alnsn 					    SLJIT_IMM, 0);
   2028   1.1  alnsn 				}
   2029   1.1  alnsn 
   2030   1.1  alnsn 				if (jump == NULL)
   2031   1.1  alnsn 					goto fail;
   2032   1.1  alnsn 
   2033   1.7  alnsn 				BJ_ASSERT(jtf[negate].sjump == NULL);
   2034   1.7  alnsn 				jtf[negate].sjump = jump;
   2035   1.1  alnsn 			}
   2036   1.1  alnsn 
   2037   1.1  alnsn 			if (!branching || (jt != 0 && jf != 0)) {
   2038   1.1  alnsn 				jump = sljit_emit_jump(compiler, SLJIT_JUMP);
   2039   1.1  alnsn 				if (jump == NULL)
   2040   1.1  alnsn 					goto fail;
   2041   1.1  alnsn 
   2042   1.7  alnsn 				BJ_ASSERT(jtf[branching].sjump == NULL);
   2043   1.7  alnsn 				jtf[branching].sjump = jump;
   2044   1.1  alnsn 			}
   2045   1.1  alnsn 
   2046   1.1  alnsn 			continue;
   2047   1.1  alnsn 
   2048   1.1  alnsn 		case BPF_RET:
   2049   1.1  alnsn 			rval = BPF_RVAL(pc->code);
   2050   1.1  alnsn 			if (rval == BPF_X)
   2051   1.1  alnsn 				goto fail;
   2052   1.1  alnsn 
   2053   1.1  alnsn 			/* BPF_RET+BPF_K    accept k bytes */
   2054   1.1  alnsn 			if (rval == BPF_K) {
   2055   1.7  alnsn 				status = sljit_emit_return(compiler,
   2056   1.7  alnsn 				    SLJIT_MOV_UI,
   2057   1.1  alnsn 				    SLJIT_IMM, (uint32_t)pc->k);
   2058   1.1  alnsn 				if (status != SLJIT_SUCCESS)
   2059   1.1  alnsn 					goto fail;
   2060   1.1  alnsn 			}
   2061   1.1  alnsn 
   2062   1.1  alnsn 			/* BPF_RET+BPF_A    accept A bytes */
   2063   1.1  alnsn 			if (rval == BPF_A) {
   2064   1.7  alnsn 				status = sljit_emit_return(compiler,
   2065   1.7  alnsn 				    SLJIT_MOV_UI,
   2066   1.7  alnsn 				    BJ_AREG, 0);
   2067   1.1  alnsn 				if (status != SLJIT_SUCCESS)
   2068   1.1  alnsn 					goto fail;
   2069   1.1  alnsn 			}
   2070   1.1  alnsn 
   2071   1.1  alnsn 			continue;
   2072   1.1  alnsn 
   2073   1.1  alnsn 		case BPF_MISC:
   2074   1.7  alnsn 			switch (BPF_MISCOP(pc->code)) {
   2075   1.7  alnsn 			case BPF_TAX:
   2076   1.1  alnsn 				status = sljit_emit_op1(compiler,
   2077   1.1  alnsn 				    SLJIT_MOV_UI,
   2078   1.7  alnsn 				    BJ_XREG, 0,
   2079   1.7  alnsn 				    BJ_AREG, 0);
   2080   1.1  alnsn 				if (status != SLJIT_SUCCESS)
   2081   1.1  alnsn 					goto fail;
   2082   1.1  alnsn 
   2083   1.1  alnsn 				continue;
   2084   1.1  alnsn 
   2085   1.7  alnsn 			case BPF_TXA:
   2086   1.1  alnsn 				status = sljit_emit_op1(compiler,
   2087   1.1  alnsn 				    SLJIT_MOV,
   2088   1.7  alnsn 				    BJ_AREG, 0,
   2089   1.7  alnsn 				    BJ_XREG, 0);
   2090   1.1  alnsn 				if (status != SLJIT_SUCCESS)
   2091   1.1  alnsn 					goto fail;
   2092   1.1  alnsn 
   2093   1.1  alnsn 				continue;
   2094  1.13  alnsn 
   2095  1.13  alnsn 			case BPF_COP:
   2096  1.13  alnsn 			case BPF_COPX:
   2097  1.13  alnsn 				if (bc == NULL || bc->copfuncs == NULL)
   2098  1.13  alnsn 					goto fail;
   2099  1.13  alnsn 				if (BPF_MISCOP(pc->code) == BPF_COP &&
   2100  1.13  alnsn 				    (uint32_t)pc->k >= bc->nfuncs) {
   2101  1.13  alnsn 					goto fail;
   2102  1.13  alnsn 				}
   2103  1.13  alnsn 
   2104  1.13  alnsn 				jump = NULL;
   2105  1.13  alnsn 				status = emit_cop(compiler, bc, pc, &jump);
   2106  1.13  alnsn 				if (status != SLJIT_SUCCESS)
   2107  1.13  alnsn 					goto fail;
   2108  1.13  alnsn 
   2109  1.13  alnsn 				if (jump != NULL && !append_jump(jump,
   2110  1.13  alnsn 				    &ret0, &ret0_size, &ret0_maxsize))
   2111  1.13  alnsn 					goto fail;
   2112  1.13  alnsn 
   2113  1.13  alnsn 				continue;
   2114   1.1  alnsn 			}
   2115   1.1  alnsn 
   2116   1.1  alnsn 			goto fail;
   2117   1.1  alnsn 		} /* switch */
   2118   1.1  alnsn 	} /* main loop */
   2119   1.1  alnsn 
   2120   1.7  alnsn 	BJ_ASSERT(ret0_size <= ret0_maxsize);
   2121   1.1  alnsn 
   2122   1.7  alnsn 	if (ret0_size > 0) {
   2123   1.1  alnsn 		label = sljit_emit_label(compiler);
   2124   1.1  alnsn 		if (label == NULL)
   2125   1.1  alnsn 			goto fail;
   2126   1.7  alnsn 		for (i = 0; i < ret0_size; i++)
   2127   1.7  alnsn 			sljit_set_label(ret0[i], label);
   2128   1.1  alnsn 	}
   2129   1.1  alnsn 
   2130   1.1  alnsn 	status = sljit_emit_return(compiler,
   2131   1.1  alnsn 	    SLJIT_MOV_UI,
   2132   1.7  alnsn 	    SLJIT_IMM, 0);
   2133   1.1  alnsn 	if (status != SLJIT_SUCCESS)
   2134   1.1  alnsn 		goto fail;
   2135   1.1  alnsn 
   2136   1.1  alnsn 	rv = sljit_generate_code(compiler);
   2137   1.1  alnsn 
   2138   1.1  alnsn fail:
   2139   1.1  alnsn 	if (compiler != NULL)
   2140   1.1  alnsn 		sljit_free_compiler(compiler);
   2141   1.1  alnsn 
   2142   1.1  alnsn 	if (insn_dat != NULL)
   2143   1.7  alnsn 		BJ_FREE(insn_dat, insn_count * sizeof(insn_dat[0]));
   2144   1.1  alnsn 
   2145   1.1  alnsn 	if (ret0 != NULL)
   2146   1.7  alnsn 		BJ_FREE(ret0, ret0_maxsize * sizeof(ret0[0]));
   2147   1.1  alnsn 
   2148   1.4  rmind 	return (bpfjit_func_t)rv;
   2149   1.1  alnsn }
   2150   1.1  alnsn 
   2151   1.1  alnsn void
   2152   1.4  rmind bpfjit_free_code(bpfjit_func_t code)
   2153   1.1  alnsn {
   2154   1.7  alnsn 
   2155   1.1  alnsn 	sljit_free_code((void *)code);
   2156   1.1  alnsn }
   2157