bpfjit.c revision 1.16 1 1.16 alnsn /* $NetBSD: bpfjit.c,v 1.16 2014/06/25 11:13:28 alnsn Exp $ */
2 1.3 rmind
3 1.1 alnsn /*-
4 1.7 alnsn * Copyright (c) 2011-2014 Alexander Nasonov.
5 1.1 alnsn * All rights reserved.
6 1.1 alnsn *
7 1.1 alnsn * Redistribution and use in source and binary forms, with or without
8 1.1 alnsn * modification, are permitted provided that the following conditions
9 1.1 alnsn * are met:
10 1.1 alnsn *
11 1.1 alnsn * 1. Redistributions of source code must retain the above copyright
12 1.1 alnsn * notice, this list of conditions and the following disclaimer.
13 1.1 alnsn * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 alnsn * notice, this list of conditions and the following disclaimer in
15 1.1 alnsn * the documentation and/or other materials provided with the
16 1.1 alnsn * distribution.
17 1.1 alnsn *
18 1.1 alnsn * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 1.1 alnsn * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 1.1 alnsn * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
21 1.1 alnsn * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
22 1.1 alnsn * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
23 1.1 alnsn * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
24 1.1 alnsn * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
25 1.1 alnsn * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
26 1.1 alnsn * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
27 1.1 alnsn * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
28 1.1 alnsn * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 1.1 alnsn * SUCH DAMAGE.
30 1.1 alnsn */
31 1.1 alnsn
32 1.2 alnsn #include <sys/cdefs.h>
33 1.2 alnsn #ifdef _KERNEL
34 1.16 alnsn __KERNEL_RCSID(0, "$NetBSD: bpfjit.c,v 1.16 2014/06/25 11:13:28 alnsn Exp $");
35 1.2 alnsn #else
36 1.16 alnsn __RCSID("$NetBSD: bpfjit.c,v 1.16 2014/06/25 11:13:28 alnsn Exp $");
37 1.2 alnsn #endif
38 1.2 alnsn
39 1.3 rmind #include <sys/types.h>
40 1.3 rmind #include <sys/queue.h>
41 1.1 alnsn
42 1.1 alnsn #ifndef _KERNEL
43 1.7 alnsn #include <assert.h>
44 1.7 alnsn #define BJ_ASSERT(c) assert(c)
45 1.7 alnsn #else
46 1.7 alnsn #define BJ_ASSERT(c) KASSERT(c)
47 1.7 alnsn #endif
48 1.7 alnsn
49 1.7 alnsn #ifndef _KERNEL
50 1.3 rmind #include <stdlib.h>
51 1.7 alnsn #define BJ_ALLOC(sz) malloc(sz)
52 1.7 alnsn #define BJ_FREE(p, sz) free(p)
53 1.1 alnsn #else
54 1.3 rmind #include <sys/kmem.h>
55 1.7 alnsn #define BJ_ALLOC(sz) kmem_alloc(sz, KM_SLEEP)
56 1.7 alnsn #define BJ_FREE(p, sz) kmem_free(p, sz)
57 1.1 alnsn #endif
58 1.1 alnsn
59 1.1 alnsn #ifndef _KERNEL
60 1.1 alnsn #include <limits.h>
61 1.1 alnsn #include <stdbool.h>
62 1.1 alnsn #include <stddef.h>
63 1.1 alnsn #include <stdint.h>
64 1.1 alnsn #else
65 1.1 alnsn #include <sys/atomic.h>
66 1.1 alnsn #include <sys/module.h>
67 1.1 alnsn #endif
68 1.1 alnsn
69 1.5 rmind #define __BPF_PRIVATE
70 1.5 rmind #include <net/bpf.h>
71 1.3 rmind #include <net/bpfjit.h>
72 1.1 alnsn #include <sljitLir.h>
73 1.1 alnsn
74 1.7 alnsn #if !defined(_KERNEL) && defined(SLJIT_VERBOSE) && SLJIT_VERBOSE
75 1.7 alnsn #include <stdio.h> /* for stderr */
76 1.7 alnsn #endif
77 1.7 alnsn
78 1.7 alnsn /*
79 1.13 alnsn * Arguments of generated bpfjit_func_t.
80 1.13 alnsn * The first argument is reassigned upon entry
81 1.13 alnsn * to a more frequently used buf argument.
82 1.13 alnsn */
83 1.13 alnsn #define BJ_CTX_ARG SLJIT_SAVED_REG1
84 1.13 alnsn #define BJ_ARGS SLJIT_SAVED_REG2
85 1.13 alnsn
86 1.13 alnsn /*
87 1.7 alnsn * Permanent register assignments.
88 1.7 alnsn */
89 1.7 alnsn #define BJ_BUF SLJIT_SAVED_REG1
90 1.13 alnsn //#define BJ_ARGS SLJIT_SAVED_REG2
91 1.7 alnsn #define BJ_BUFLEN SLJIT_SAVED_REG3
92 1.12 alnsn #define BJ_AREG SLJIT_SCRATCH_REG1
93 1.12 alnsn #define BJ_TMP1REG SLJIT_SCRATCH_REG2
94 1.12 alnsn #define BJ_TMP2REG SLJIT_SCRATCH_REG3
95 1.7 alnsn #define BJ_XREG SLJIT_TEMPORARY_EREG1
96 1.7 alnsn #define BJ_TMP3REG SLJIT_TEMPORARY_EREG2
97 1.7 alnsn
98 1.13 alnsn /*
99 1.13 alnsn * EREG registers can't be used for indirect calls, reuse BJ_BUF and
100 1.13 alnsn * BJ_BUFLEN registers. They can be easily restored from BJ_ARGS.
101 1.13 alnsn */
102 1.13 alnsn #define BJ_COPF_PTR SLJIT_SAVED_REG1
103 1.13 alnsn #define BJ_COPF_IDX SLJIT_SAVED_REG3
104 1.13 alnsn
105 1.13 alnsn #ifdef _KERNEL
106 1.13 alnsn #define MAX_MEMWORDS BPF_MAX_MEMWORDS
107 1.13 alnsn #else
108 1.13 alnsn #define MAX_MEMWORDS BPF_MEMWORDS
109 1.13 alnsn #endif
110 1.13 alnsn
111 1.13 alnsn #define BJ_INIT_NOBITS ((bpf_memword_init_t)0)
112 1.13 alnsn #define BJ_INIT_MBIT(k) BPF_MEMWORD_INIT(k)
113 1.13 alnsn #define BJ_INIT_ABIT BJ_INIT_MBIT(MAX_MEMWORDS)
114 1.13 alnsn #define BJ_INIT_XBIT BJ_INIT_MBIT(MAX_MEMWORDS + 1)
115 1.1 alnsn
116 1.9 alnsn /*
117 1.9 alnsn * Datatype for Array Bounds Check Elimination (ABC) pass.
118 1.9 alnsn */
119 1.9 alnsn typedef uint64_t bpfjit_abc_length_t;
120 1.9 alnsn #define MAX_ABC_LENGTH (UINT32_MAX + UINT64_C(4)) /* max. width is 4 */
121 1.8 alnsn
122 1.7 alnsn struct bpfjit_stack
123 1.7 alnsn {
124 1.13 alnsn bpf_ctx_t *ctx;
125 1.13 alnsn uint32_t *extmem; /* pointer to external memory store */
126 1.7 alnsn #ifdef _KERNEL
127 1.7 alnsn void *tmp;
128 1.7 alnsn #endif
129 1.13 alnsn uint32_t mem[BPF_MEMWORDS]; /* internal memory store */
130 1.7 alnsn };
131 1.7 alnsn
132 1.7 alnsn /*
133 1.7 alnsn * Data for BPF_JMP instruction.
134 1.7 alnsn * Forward declaration for struct bpfjit_jump.
135 1.1 alnsn */
136 1.7 alnsn struct bpfjit_jump_data;
137 1.1 alnsn
138 1.1 alnsn /*
139 1.7 alnsn * Node of bjumps list.
140 1.1 alnsn */
141 1.3 rmind struct bpfjit_jump {
142 1.7 alnsn struct sljit_jump *sjump;
143 1.7 alnsn SLIST_ENTRY(bpfjit_jump) entries;
144 1.7 alnsn struct bpfjit_jump_data *jdata;
145 1.1 alnsn };
146 1.1 alnsn
147 1.1 alnsn /*
148 1.1 alnsn * Data for BPF_JMP instruction.
149 1.1 alnsn */
150 1.3 rmind struct bpfjit_jump_data {
151 1.1 alnsn /*
152 1.7 alnsn * These entries make up bjumps list:
153 1.7 alnsn * jtf[0] - when coming from jt path,
154 1.7 alnsn * jtf[1] - when coming from jf path.
155 1.1 alnsn */
156 1.7 alnsn struct bpfjit_jump jtf[2];
157 1.7 alnsn /*
158 1.7 alnsn * Length calculated by Array Bounds Check Elimination (ABC) pass.
159 1.7 alnsn */
160 1.8 alnsn bpfjit_abc_length_t abc_length;
161 1.7 alnsn /*
162 1.7 alnsn * Length checked by the last out-of-bounds check.
163 1.7 alnsn */
164 1.8 alnsn bpfjit_abc_length_t checked_length;
165 1.1 alnsn };
166 1.1 alnsn
167 1.1 alnsn /*
168 1.1 alnsn * Data for "read from packet" instructions.
169 1.1 alnsn * See also read_pkt_insn() function below.
170 1.1 alnsn */
171 1.3 rmind struct bpfjit_read_pkt_data {
172 1.1 alnsn /*
173 1.7 alnsn * Length calculated by Array Bounds Check Elimination (ABC) pass.
174 1.7 alnsn */
175 1.8 alnsn bpfjit_abc_length_t abc_length;
176 1.7 alnsn /*
177 1.7 alnsn * If positive, emit "if (buflen < check_length) return 0"
178 1.7 alnsn * out-of-bounds check.
179 1.9 alnsn * Values greater than UINT32_MAX generate unconditional "return 0".
180 1.1 alnsn */
181 1.8 alnsn bpfjit_abc_length_t check_length;
182 1.1 alnsn };
183 1.1 alnsn
184 1.1 alnsn /*
185 1.1 alnsn * Additional (optimization-related) data for bpf_insn.
186 1.1 alnsn */
187 1.3 rmind struct bpfjit_insn_data {
188 1.1 alnsn /* List of jumps to this insn. */
189 1.7 alnsn SLIST_HEAD(, bpfjit_jump) bjumps;
190 1.1 alnsn
191 1.1 alnsn union {
192 1.7 alnsn struct bpfjit_jump_data jdata;
193 1.7 alnsn struct bpfjit_read_pkt_data rdata;
194 1.7 alnsn } u;
195 1.1 alnsn
196 1.13 alnsn bpf_memword_init_t invalid;
197 1.7 alnsn bool unreachable;
198 1.1 alnsn };
199 1.1 alnsn
200 1.1 alnsn #ifdef _KERNEL
201 1.1 alnsn
202 1.1 alnsn uint32_t m_xword(const struct mbuf *, uint32_t, int *);
203 1.1 alnsn uint32_t m_xhalf(const struct mbuf *, uint32_t, int *);
204 1.1 alnsn uint32_t m_xbyte(const struct mbuf *, uint32_t, int *);
205 1.1 alnsn
206 1.1 alnsn MODULE(MODULE_CLASS_MISC, bpfjit, "sljit")
207 1.1 alnsn
208 1.1 alnsn static int
209 1.1 alnsn bpfjit_modcmd(modcmd_t cmd, void *arg)
210 1.1 alnsn {
211 1.1 alnsn
212 1.1 alnsn switch (cmd) {
213 1.1 alnsn case MODULE_CMD_INIT:
214 1.1 alnsn bpfjit_module_ops.bj_free_code = &bpfjit_free_code;
215 1.1 alnsn membar_producer();
216 1.1 alnsn bpfjit_module_ops.bj_generate_code = &bpfjit_generate_code;
217 1.1 alnsn membar_producer();
218 1.1 alnsn return 0;
219 1.1 alnsn
220 1.1 alnsn case MODULE_CMD_FINI:
221 1.1 alnsn return EOPNOTSUPP;
222 1.1 alnsn
223 1.1 alnsn default:
224 1.1 alnsn return ENOTTY;
225 1.1 alnsn }
226 1.1 alnsn }
227 1.1 alnsn #endif
228 1.1 alnsn
229 1.1 alnsn static uint32_t
230 1.7 alnsn read_width(const struct bpf_insn *pc)
231 1.1 alnsn {
232 1.1 alnsn
233 1.1 alnsn switch (BPF_SIZE(pc->code)) {
234 1.1 alnsn case BPF_W:
235 1.1 alnsn return 4;
236 1.1 alnsn case BPF_H:
237 1.1 alnsn return 2;
238 1.1 alnsn case BPF_B:
239 1.1 alnsn return 1;
240 1.1 alnsn default:
241 1.7 alnsn BJ_ASSERT(false);
242 1.1 alnsn return 0;
243 1.1 alnsn }
244 1.1 alnsn }
245 1.1 alnsn
246 1.13 alnsn /*
247 1.13 alnsn * Copy buf and buflen members of bpf_args from BJ_ARGS
248 1.13 alnsn * pointer to BJ_BUF and BJ_BUFLEN registers.
249 1.13 alnsn */
250 1.13 alnsn static int
251 1.13 alnsn load_buf_buflen(struct sljit_compiler *compiler)
252 1.13 alnsn {
253 1.13 alnsn int status;
254 1.13 alnsn
255 1.13 alnsn status = sljit_emit_op1(compiler,
256 1.13 alnsn SLJIT_MOV_P,
257 1.13 alnsn BJ_BUF, 0,
258 1.13 alnsn SLJIT_MEM1(BJ_ARGS),
259 1.13 alnsn offsetof(struct bpf_args, pkt));
260 1.13 alnsn if (status != SLJIT_SUCCESS)
261 1.13 alnsn return status;
262 1.13 alnsn
263 1.13 alnsn status = sljit_emit_op1(compiler,
264 1.13 alnsn SLJIT_MOV,
265 1.13 alnsn BJ_BUFLEN, 0,
266 1.13 alnsn SLJIT_MEM1(BJ_ARGS),
267 1.13 alnsn offsetof(struct bpf_args, buflen));
268 1.13 alnsn
269 1.13 alnsn return status;
270 1.13 alnsn }
271 1.13 alnsn
272 1.7 alnsn static bool
273 1.7 alnsn grow_jumps(struct sljit_jump ***jumps, size_t *size)
274 1.7 alnsn {
275 1.7 alnsn struct sljit_jump **newptr;
276 1.7 alnsn const size_t elemsz = sizeof(struct sljit_jump *);
277 1.7 alnsn size_t old_size = *size;
278 1.7 alnsn size_t new_size = 2 * old_size;
279 1.7 alnsn
280 1.7 alnsn if (new_size < old_size || new_size > SIZE_MAX / elemsz)
281 1.7 alnsn return false;
282 1.7 alnsn
283 1.7 alnsn newptr = BJ_ALLOC(new_size * elemsz);
284 1.7 alnsn if (newptr == NULL)
285 1.7 alnsn return false;
286 1.7 alnsn
287 1.7 alnsn memcpy(newptr, *jumps, old_size * elemsz);
288 1.7 alnsn BJ_FREE(*jumps, old_size * elemsz);
289 1.7 alnsn
290 1.7 alnsn *jumps = newptr;
291 1.7 alnsn *size = new_size;
292 1.7 alnsn return true;
293 1.7 alnsn }
294 1.7 alnsn
295 1.7 alnsn static bool
296 1.7 alnsn append_jump(struct sljit_jump *jump, struct sljit_jump ***jumps,
297 1.7 alnsn size_t *size, size_t *max_size)
298 1.1 alnsn {
299 1.7 alnsn if (*size == *max_size && !grow_jumps(jumps, max_size))
300 1.7 alnsn return false;
301 1.1 alnsn
302 1.7 alnsn (*jumps)[(*size)++] = jump;
303 1.7 alnsn return true;
304 1.1 alnsn }
305 1.1 alnsn
306 1.1 alnsn /*
307 1.1 alnsn * Generate code for BPF_LD+BPF_B+BPF_ABS A <- P[k:1].
308 1.1 alnsn */
309 1.1 alnsn static int
310 1.1 alnsn emit_read8(struct sljit_compiler* compiler, uint32_t k)
311 1.1 alnsn {
312 1.1 alnsn
313 1.1 alnsn return sljit_emit_op1(compiler,
314 1.1 alnsn SLJIT_MOV_UB,
315 1.7 alnsn BJ_AREG, 0,
316 1.7 alnsn SLJIT_MEM1(BJ_BUF), k);
317 1.1 alnsn }
318 1.1 alnsn
319 1.1 alnsn /*
320 1.1 alnsn * Generate code for BPF_LD+BPF_H+BPF_ABS A <- P[k:2].
321 1.1 alnsn */
322 1.1 alnsn static int
323 1.1 alnsn emit_read16(struct sljit_compiler* compiler, uint32_t k)
324 1.1 alnsn {
325 1.1 alnsn int status;
326 1.1 alnsn
327 1.1 alnsn /* tmp1 = buf[k]; */
328 1.1 alnsn status = sljit_emit_op1(compiler,
329 1.1 alnsn SLJIT_MOV_UB,
330 1.7 alnsn BJ_TMP1REG, 0,
331 1.7 alnsn SLJIT_MEM1(BJ_BUF), k);
332 1.1 alnsn if (status != SLJIT_SUCCESS)
333 1.1 alnsn return status;
334 1.1 alnsn
335 1.1 alnsn /* A = buf[k+1]; */
336 1.1 alnsn status = sljit_emit_op1(compiler,
337 1.1 alnsn SLJIT_MOV_UB,
338 1.7 alnsn BJ_AREG, 0,
339 1.7 alnsn SLJIT_MEM1(BJ_BUF), k+1);
340 1.1 alnsn if (status != SLJIT_SUCCESS)
341 1.1 alnsn return status;
342 1.1 alnsn
343 1.1 alnsn /* tmp1 = tmp1 << 8; */
344 1.1 alnsn status = sljit_emit_op2(compiler,
345 1.1 alnsn SLJIT_SHL,
346 1.7 alnsn BJ_TMP1REG, 0,
347 1.7 alnsn BJ_TMP1REG, 0,
348 1.1 alnsn SLJIT_IMM, 8);
349 1.1 alnsn if (status != SLJIT_SUCCESS)
350 1.1 alnsn return status;
351 1.1 alnsn
352 1.1 alnsn /* A = A + tmp1; */
353 1.1 alnsn status = sljit_emit_op2(compiler,
354 1.1 alnsn SLJIT_ADD,
355 1.7 alnsn BJ_AREG, 0,
356 1.7 alnsn BJ_AREG, 0,
357 1.7 alnsn BJ_TMP1REG, 0);
358 1.1 alnsn return status;
359 1.1 alnsn }
360 1.1 alnsn
361 1.1 alnsn /*
362 1.1 alnsn * Generate code for BPF_LD+BPF_W+BPF_ABS A <- P[k:4].
363 1.1 alnsn */
364 1.1 alnsn static int
365 1.1 alnsn emit_read32(struct sljit_compiler* compiler, uint32_t k)
366 1.1 alnsn {
367 1.1 alnsn int status;
368 1.1 alnsn
369 1.1 alnsn /* tmp1 = buf[k]; */
370 1.1 alnsn status = sljit_emit_op1(compiler,
371 1.1 alnsn SLJIT_MOV_UB,
372 1.7 alnsn BJ_TMP1REG, 0,
373 1.7 alnsn SLJIT_MEM1(BJ_BUF), k);
374 1.1 alnsn if (status != SLJIT_SUCCESS)
375 1.1 alnsn return status;
376 1.1 alnsn
377 1.1 alnsn /* tmp2 = buf[k+1]; */
378 1.1 alnsn status = sljit_emit_op1(compiler,
379 1.1 alnsn SLJIT_MOV_UB,
380 1.7 alnsn BJ_TMP2REG, 0,
381 1.7 alnsn SLJIT_MEM1(BJ_BUF), k+1);
382 1.1 alnsn if (status != SLJIT_SUCCESS)
383 1.1 alnsn return status;
384 1.1 alnsn
385 1.1 alnsn /* A = buf[k+3]; */
386 1.1 alnsn status = sljit_emit_op1(compiler,
387 1.1 alnsn SLJIT_MOV_UB,
388 1.7 alnsn BJ_AREG, 0,
389 1.7 alnsn SLJIT_MEM1(BJ_BUF), k+3);
390 1.1 alnsn if (status != SLJIT_SUCCESS)
391 1.1 alnsn return status;
392 1.1 alnsn
393 1.1 alnsn /* tmp1 = tmp1 << 24; */
394 1.1 alnsn status = sljit_emit_op2(compiler,
395 1.1 alnsn SLJIT_SHL,
396 1.7 alnsn BJ_TMP1REG, 0,
397 1.7 alnsn BJ_TMP1REG, 0,
398 1.1 alnsn SLJIT_IMM, 24);
399 1.1 alnsn if (status != SLJIT_SUCCESS)
400 1.1 alnsn return status;
401 1.1 alnsn
402 1.1 alnsn /* A = A + tmp1; */
403 1.1 alnsn status = sljit_emit_op2(compiler,
404 1.1 alnsn SLJIT_ADD,
405 1.7 alnsn BJ_AREG, 0,
406 1.7 alnsn BJ_AREG, 0,
407 1.7 alnsn BJ_TMP1REG, 0);
408 1.1 alnsn if (status != SLJIT_SUCCESS)
409 1.1 alnsn return status;
410 1.1 alnsn
411 1.1 alnsn /* tmp1 = buf[k+2]; */
412 1.1 alnsn status = sljit_emit_op1(compiler,
413 1.1 alnsn SLJIT_MOV_UB,
414 1.7 alnsn BJ_TMP1REG, 0,
415 1.7 alnsn SLJIT_MEM1(BJ_BUF), k+2);
416 1.1 alnsn if (status != SLJIT_SUCCESS)
417 1.1 alnsn return status;
418 1.1 alnsn
419 1.1 alnsn /* tmp2 = tmp2 << 16; */
420 1.1 alnsn status = sljit_emit_op2(compiler,
421 1.1 alnsn SLJIT_SHL,
422 1.7 alnsn BJ_TMP2REG, 0,
423 1.7 alnsn BJ_TMP2REG, 0,
424 1.1 alnsn SLJIT_IMM, 16);
425 1.1 alnsn if (status != SLJIT_SUCCESS)
426 1.1 alnsn return status;
427 1.1 alnsn
428 1.1 alnsn /* A = A + tmp2; */
429 1.1 alnsn status = sljit_emit_op2(compiler,
430 1.1 alnsn SLJIT_ADD,
431 1.7 alnsn BJ_AREG, 0,
432 1.7 alnsn BJ_AREG, 0,
433 1.7 alnsn BJ_TMP2REG, 0);
434 1.1 alnsn if (status != SLJIT_SUCCESS)
435 1.1 alnsn return status;
436 1.1 alnsn
437 1.1 alnsn /* tmp1 = tmp1 << 8; */
438 1.1 alnsn status = sljit_emit_op2(compiler,
439 1.1 alnsn SLJIT_SHL,
440 1.7 alnsn BJ_TMP1REG, 0,
441 1.7 alnsn BJ_TMP1REG, 0,
442 1.1 alnsn SLJIT_IMM, 8);
443 1.1 alnsn if (status != SLJIT_SUCCESS)
444 1.1 alnsn return status;
445 1.1 alnsn
446 1.1 alnsn /* A = A + tmp1; */
447 1.1 alnsn status = sljit_emit_op2(compiler,
448 1.1 alnsn SLJIT_ADD,
449 1.7 alnsn BJ_AREG, 0,
450 1.7 alnsn BJ_AREG, 0,
451 1.7 alnsn BJ_TMP1REG, 0);
452 1.1 alnsn return status;
453 1.1 alnsn }
454 1.1 alnsn
455 1.1 alnsn #ifdef _KERNEL
456 1.1 alnsn /*
457 1.1 alnsn * Generate m_xword/m_xhalf/m_xbyte call.
458 1.1 alnsn *
459 1.1 alnsn * pc is one of:
460 1.1 alnsn * BPF_LD+BPF_W+BPF_ABS A <- P[k:4]
461 1.1 alnsn * BPF_LD+BPF_H+BPF_ABS A <- P[k:2]
462 1.1 alnsn * BPF_LD+BPF_B+BPF_ABS A <- P[k:1]
463 1.1 alnsn * BPF_LD+BPF_W+BPF_IND A <- P[X+k:4]
464 1.1 alnsn * BPF_LD+BPF_H+BPF_IND A <- P[X+k:2]
465 1.1 alnsn * BPF_LD+BPF_B+BPF_IND A <- P[X+k:1]
466 1.1 alnsn * BPF_LDX+BPF_B+BPF_MSH X <- 4*(P[k:1]&0xf)
467 1.1 alnsn *
468 1.7 alnsn * The dst variable should be
469 1.7 alnsn * - BJ_AREG when emitting code for BPF_LD instructions,
470 1.7 alnsn * - BJ_XREG or any of BJ_TMP[1-3]REG registers when emitting
471 1.7 alnsn * code for BPF_MSH instruction.
472 1.1 alnsn */
473 1.1 alnsn static int
474 1.7 alnsn emit_xcall(struct sljit_compiler* compiler, const struct bpf_insn *pc,
475 1.12 alnsn int dst, sljit_sw dstw, struct sljit_jump **ret0_jump,
476 1.1 alnsn uint32_t (*fn)(const struct mbuf *, uint32_t, int *))
477 1.1 alnsn {
478 1.7 alnsn #if BJ_XREG == SLJIT_RETURN_REG || \
479 1.12 alnsn BJ_XREG == SLJIT_SCRATCH_REG1 || \
480 1.12 alnsn BJ_XREG == SLJIT_SCRATCH_REG2 || \
481 1.12 alnsn BJ_XREG == SLJIT_SCRATCH_REG3
482 1.1 alnsn #error "Not supported assignment of registers."
483 1.1 alnsn #endif
484 1.1 alnsn int status;
485 1.1 alnsn
486 1.1 alnsn /*
487 1.1 alnsn * The third argument of fn is an address on stack.
488 1.1 alnsn */
489 1.7 alnsn const int arg3_offset = offsetof(struct bpfjit_stack, tmp);
490 1.1 alnsn
491 1.1 alnsn if (BPF_CLASS(pc->code) == BPF_LDX) {
492 1.1 alnsn /* save A */
493 1.1 alnsn status = sljit_emit_op1(compiler,
494 1.1 alnsn SLJIT_MOV,
495 1.7 alnsn BJ_TMP3REG, 0,
496 1.7 alnsn BJ_AREG, 0);
497 1.1 alnsn if (status != SLJIT_SUCCESS)
498 1.1 alnsn return status;
499 1.1 alnsn }
500 1.1 alnsn
501 1.1 alnsn /*
502 1.1 alnsn * Prepare registers for fn(buf, k, &err) call.
503 1.1 alnsn */
504 1.1 alnsn status = sljit_emit_op1(compiler,
505 1.1 alnsn SLJIT_MOV,
506 1.12 alnsn SLJIT_SCRATCH_REG1, 0,
507 1.7 alnsn BJ_BUF, 0);
508 1.1 alnsn if (status != SLJIT_SUCCESS)
509 1.1 alnsn return status;
510 1.1 alnsn
511 1.1 alnsn if (BPF_CLASS(pc->code) == BPF_LD && BPF_MODE(pc->code) == BPF_IND) {
512 1.1 alnsn status = sljit_emit_op2(compiler,
513 1.1 alnsn SLJIT_ADD,
514 1.12 alnsn SLJIT_SCRATCH_REG2, 0,
515 1.7 alnsn BJ_XREG, 0,
516 1.1 alnsn SLJIT_IMM, (uint32_t)pc->k);
517 1.1 alnsn } else {
518 1.1 alnsn status = sljit_emit_op1(compiler,
519 1.1 alnsn SLJIT_MOV,
520 1.12 alnsn SLJIT_SCRATCH_REG2, 0,
521 1.1 alnsn SLJIT_IMM, (uint32_t)pc->k);
522 1.1 alnsn }
523 1.1 alnsn
524 1.1 alnsn if (status != SLJIT_SUCCESS)
525 1.1 alnsn return status;
526 1.1 alnsn
527 1.1 alnsn status = sljit_get_local_base(compiler,
528 1.12 alnsn SLJIT_SCRATCH_REG3, 0, arg3_offset);
529 1.1 alnsn if (status != SLJIT_SUCCESS)
530 1.1 alnsn return status;
531 1.1 alnsn
532 1.1 alnsn /* fn(buf, k, &err); */
533 1.1 alnsn status = sljit_emit_ijump(compiler,
534 1.1 alnsn SLJIT_CALL3,
535 1.1 alnsn SLJIT_IMM, SLJIT_FUNC_OFFSET(fn));
536 1.1 alnsn
537 1.7 alnsn if (dst != SLJIT_RETURN_REG) {
538 1.1 alnsn /* move return value to dst */
539 1.1 alnsn status = sljit_emit_op1(compiler,
540 1.1 alnsn SLJIT_MOV,
541 1.1 alnsn dst, dstw,
542 1.1 alnsn SLJIT_RETURN_REG, 0);
543 1.1 alnsn if (status != SLJIT_SUCCESS)
544 1.1 alnsn return status;
545 1.7 alnsn }
546 1.1 alnsn
547 1.7 alnsn if (BPF_CLASS(pc->code) == BPF_LDX) {
548 1.1 alnsn /* restore A */
549 1.1 alnsn status = sljit_emit_op1(compiler,
550 1.1 alnsn SLJIT_MOV,
551 1.7 alnsn BJ_AREG, 0,
552 1.7 alnsn BJ_TMP3REG, 0);
553 1.1 alnsn if (status != SLJIT_SUCCESS)
554 1.1 alnsn return status;
555 1.1 alnsn }
556 1.1 alnsn
557 1.1 alnsn /* tmp3 = *err; */
558 1.1 alnsn status = sljit_emit_op1(compiler,
559 1.1 alnsn SLJIT_MOV_UI,
560 1.12 alnsn SLJIT_SCRATCH_REG3, 0,
561 1.1 alnsn SLJIT_MEM1(SLJIT_LOCALS_REG), arg3_offset);
562 1.1 alnsn if (status != SLJIT_SUCCESS)
563 1.1 alnsn return status;
564 1.1 alnsn
565 1.1 alnsn /* if (tmp3 != 0) return 0; */
566 1.1 alnsn *ret0_jump = sljit_emit_cmp(compiler,
567 1.1 alnsn SLJIT_C_NOT_EQUAL,
568 1.12 alnsn SLJIT_SCRATCH_REG3, 0,
569 1.1 alnsn SLJIT_IMM, 0);
570 1.1 alnsn if (*ret0_jump == NULL)
571 1.1 alnsn return SLJIT_ERR_ALLOC_FAILED;
572 1.1 alnsn
573 1.1 alnsn return status;
574 1.1 alnsn }
575 1.1 alnsn #endif
576 1.1 alnsn
577 1.1 alnsn /*
578 1.13 alnsn * Emit code for BPF_COP and BPF_COPX instructions.
579 1.13 alnsn */
580 1.13 alnsn static int
581 1.13 alnsn emit_cop(struct sljit_compiler* compiler, const bpf_ctx_t *bc,
582 1.13 alnsn const struct bpf_insn *pc, struct sljit_jump **ret0_jump)
583 1.13 alnsn {
584 1.13 alnsn #if BJ_XREG == SLJIT_RETURN_REG || \
585 1.13 alnsn BJ_XREG == SLJIT_SCRATCH_REG1 || \
586 1.13 alnsn BJ_XREG == SLJIT_SCRATCH_REG2 || \
587 1.13 alnsn BJ_XREG == SLJIT_SCRATCH_REG3 || \
588 1.13 alnsn BJ_COPF_PTR == BJ_ARGS || \
589 1.13 alnsn BJ_COPF_IDX == BJ_ARGS
590 1.13 alnsn #error "Not supported assignment of registers."
591 1.13 alnsn #endif
592 1.13 alnsn
593 1.13 alnsn struct sljit_jump *jump;
594 1.13 alnsn int status;
595 1.13 alnsn
596 1.13 alnsn jump = NULL;
597 1.13 alnsn
598 1.13 alnsn BJ_ASSERT(bc != NULL && bc->copfuncs != NULL);
599 1.13 alnsn
600 1.13 alnsn if (BPF_MISCOP(pc->code) == BPF_COPX) {
601 1.13 alnsn /* if (X >= bc->nfuncs) return 0; */
602 1.13 alnsn jump = sljit_emit_cmp(compiler,
603 1.13 alnsn SLJIT_C_GREATER_EQUAL,
604 1.13 alnsn BJ_XREG, 0,
605 1.13 alnsn SLJIT_IMM, bc->nfuncs);
606 1.13 alnsn if (jump == NULL)
607 1.13 alnsn return SLJIT_ERR_ALLOC_FAILED;
608 1.13 alnsn }
609 1.13 alnsn
610 1.13 alnsn if (jump != NULL)
611 1.13 alnsn *ret0_jump = jump;
612 1.13 alnsn
613 1.13 alnsn /*
614 1.13 alnsn * Copy bpf_copfunc_t arguments to registers.
615 1.13 alnsn */
616 1.13 alnsn #if BJ_AREG != SLJIT_SCRATCH_REG3
617 1.13 alnsn status = sljit_emit_op1(compiler,
618 1.13 alnsn SLJIT_MOV_UI,
619 1.13 alnsn SLJIT_SCRATCH_REG3, 0,
620 1.13 alnsn BJ_AREG, 0);
621 1.13 alnsn if (status != SLJIT_SUCCESS)
622 1.13 alnsn return status;
623 1.13 alnsn #endif
624 1.13 alnsn
625 1.13 alnsn status = sljit_emit_op1(compiler,
626 1.13 alnsn SLJIT_MOV_P,
627 1.13 alnsn SLJIT_SCRATCH_REG1, 0,
628 1.13 alnsn SLJIT_MEM1(SLJIT_LOCALS_REG),
629 1.13 alnsn offsetof(struct bpfjit_stack, ctx));
630 1.13 alnsn if (status != SLJIT_SUCCESS)
631 1.13 alnsn return status;
632 1.13 alnsn
633 1.13 alnsn status = sljit_emit_op1(compiler,
634 1.13 alnsn SLJIT_MOV_P,
635 1.13 alnsn SLJIT_SCRATCH_REG2, 0,
636 1.13 alnsn BJ_ARGS, 0);
637 1.13 alnsn if (status != SLJIT_SUCCESS)
638 1.13 alnsn return status;
639 1.13 alnsn
640 1.13 alnsn if (BPF_MISCOP(pc->code) == BPF_COP) {
641 1.13 alnsn status = sljit_emit_ijump(compiler,
642 1.13 alnsn SLJIT_CALL3,
643 1.13 alnsn SLJIT_IMM, SLJIT_FUNC_OFFSET(bc->copfuncs[pc->k]));
644 1.13 alnsn if (status != SLJIT_SUCCESS)
645 1.13 alnsn return status;
646 1.13 alnsn } else if (BPF_MISCOP(pc->code) == BPF_COPX) {
647 1.13 alnsn /* load ctx->copfuncs */
648 1.13 alnsn status = sljit_emit_op1(compiler,
649 1.13 alnsn SLJIT_MOV_P,
650 1.13 alnsn BJ_COPF_PTR, 0,
651 1.13 alnsn SLJIT_MEM1(SLJIT_SCRATCH_REG1),
652 1.13 alnsn offsetof(struct bpf_ctx, copfuncs));
653 1.13 alnsn if (status != SLJIT_SUCCESS)
654 1.13 alnsn return status;
655 1.13 alnsn
656 1.13 alnsn /*
657 1.13 alnsn * Load X to a register that can be used for
658 1.13 alnsn * memory addressing.
659 1.13 alnsn */
660 1.13 alnsn status = sljit_emit_op1(compiler,
661 1.13 alnsn SLJIT_MOV_P,
662 1.13 alnsn BJ_COPF_IDX, 0,
663 1.13 alnsn BJ_XREG, 0);
664 1.13 alnsn if (status != SLJIT_SUCCESS)
665 1.13 alnsn return status;
666 1.13 alnsn
667 1.13 alnsn status = sljit_emit_ijump(compiler,
668 1.13 alnsn SLJIT_CALL3,
669 1.13 alnsn SLJIT_MEM2(BJ_COPF_PTR, BJ_COPF_IDX),
670 1.13 alnsn SLJIT_WORD_SHIFT);
671 1.13 alnsn if (status != SLJIT_SUCCESS)
672 1.13 alnsn return status;
673 1.13 alnsn
674 1.13 alnsn status = load_buf_buflen(compiler);
675 1.13 alnsn if (status != SLJIT_SUCCESS)
676 1.13 alnsn return status;
677 1.13 alnsn }
678 1.13 alnsn
679 1.13 alnsn #if BJ_AREG != SLJIT_RETURN_REG
680 1.13 alnsn status = sljit_emit_op1(compiler,
681 1.13 alnsn SLJIT_MOV,
682 1.13 alnsn BJ_AREG, 0,
683 1.13 alnsn SLJIT_RETURN_REG, 0);
684 1.13 alnsn if (status != SLJIT_SUCCESS)
685 1.13 alnsn return status;
686 1.13 alnsn #endif
687 1.13 alnsn
688 1.13 alnsn return status;
689 1.13 alnsn }
690 1.13 alnsn
691 1.13 alnsn /*
692 1.1 alnsn * Generate code for
693 1.1 alnsn * BPF_LD+BPF_W+BPF_ABS A <- P[k:4]
694 1.1 alnsn * BPF_LD+BPF_H+BPF_ABS A <- P[k:2]
695 1.1 alnsn * BPF_LD+BPF_B+BPF_ABS A <- P[k:1]
696 1.1 alnsn * BPF_LD+BPF_W+BPF_IND A <- P[X+k:4]
697 1.1 alnsn * BPF_LD+BPF_H+BPF_IND A <- P[X+k:2]
698 1.1 alnsn * BPF_LD+BPF_B+BPF_IND A <- P[X+k:1]
699 1.1 alnsn */
700 1.1 alnsn static int
701 1.1 alnsn emit_pkt_read(struct sljit_compiler* compiler,
702 1.7 alnsn const struct bpf_insn *pc, struct sljit_jump *to_mchain_jump,
703 1.7 alnsn struct sljit_jump ***ret0, size_t *ret0_size, size_t *ret0_maxsize)
704 1.1 alnsn {
705 1.6 pooka int status = 0; /* XXX gcc 4.1 */
706 1.1 alnsn uint32_t width;
707 1.1 alnsn struct sljit_jump *jump;
708 1.1 alnsn #ifdef _KERNEL
709 1.1 alnsn struct sljit_label *label;
710 1.1 alnsn struct sljit_jump *over_mchain_jump;
711 1.1 alnsn const bool check_zero_buflen = (to_mchain_jump != NULL);
712 1.1 alnsn #endif
713 1.1 alnsn const uint32_t k = pc->k;
714 1.1 alnsn
715 1.1 alnsn #ifdef _KERNEL
716 1.1 alnsn if (to_mchain_jump == NULL) {
717 1.1 alnsn to_mchain_jump = sljit_emit_cmp(compiler,
718 1.1 alnsn SLJIT_C_EQUAL,
719 1.7 alnsn BJ_BUFLEN, 0,
720 1.1 alnsn SLJIT_IMM, 0);
721 1.1 alnsn if (to_mchain_jump == NULL)
722 1.7 alnsn return SLJIT_ERR_ALLOC_FAILED;
723 1.1 alnsn }
724 1.1 alnsn #endif
725 1.1 alnsn
726 1.1 alnsn width = read_width(pc);
727 1.1 alnsn
728 1.1 alnsn if (BPF_MODE(pc->code) == BPF_IND) {
729 1.1 alnsn /* tmp1 = buflen - (pc->k + width); */
730 1.1 alnsn status = sljit_emit_op2(compiler,
731 1.1 alnsn SLJIT_SUB,
732 1.7 alnsn BJ_TMP1REG, 0,
733 1.7 alnsn BJ_BUFLEN, 0,
734 1.1 alnsn SLJIT_IMM, k + width);
735 1.1 alnsn if (status != SLJIT_SUCCESS)
736 1.1 alnsn return status;
737 1.1 alnsn
738 1.1 alnsn /* buf += X; */
739 1.1 alnsn status = sljit_emit_op2(compiler,
740 1.1 alnsn SLJIT_ADD,
741 1.7 alnsn BJ_BUF, 0,
742 1.7 alnsn BJ_BUF, 0,
743 1.7 alnsn BJ_XREG, 0);
744 1.1 alnsn if (status != SLJIT_SUCCESS)
745 1.1 alnsn return status;
746 1.1 alnsn
747 1.1 alnsn /* if (tmp1 < X) return 0; */
748 1.1 alnsn jump = sljit_emit_cmp(compiler,
749 1.1 alnsn SLJIT_C_LESS,
750 1.7 alnsn BJ_TMP1REG, 0,
751 1.7 alnsn BJ_XREG, 0);
752 1.1 alnsn if (jump == NULL)
753 1.7 alnsn return SLJIT_ERR_ALLOC_FAILED;
754 1.7 alnsn if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
755 1.7 alnsn return SLJIT_ERR_ALLOC_FAILED;
756 1.1 alnsn }
757 1.1 alnsn
758 1.1 alnsn switch (width) {
759 1.1 alnsn case 4:
760 1.1 alnsn status = emit_read32(compiler, k);
761 1.1 alnsn break;
762 1.1 alnsn case 2:
763 1.1 alnsn status = emit_read16(compiler, k);
764 1.1 alnsn break;
765 1.1 alnsn case 1:
766 1.1 alnsn status = emit_read8(compiler, k);
767 1.1 alnsn break;
768 1.1 alnsn }
769 1.1 alnsn
770 1.1 alnsn if (status != SLJIT_SUCCESS)
771 1.1 alnsn return status;
772 1.1 alnsn
773 1.1 alnsn if (BPF_MODE(pc->code) == BPF_IND) {
774 1.1 alnsn /* buf -= X; */
775 1.1 alnsn status = sljit_emit_op2(compiler,
776 1.1 alnsn SLJIT_SUB,
777 1.7 alnsn BJ_BUF, 0,
778 1.7 alnsn BJ_BUF, 0,
779 1.7 alnsn BJ_XREG, 0);
780 1.1 alnsn if (status != SLJIT_SUCCESS)
781 1.1 alnsn return status;
782 1.1 alnsn }
783 1.1 alnsn
784 1.1 alnsn #ifdef _KERNEL
785 1.1 alnsn over_mchain_jump = sljit_emit_jump(compiler, SLJIT_JUMP);
786 1.1 alnsn if (over_mchain_jump == NULL)
787 1.7 alnsn return SLJIT_ERR_ALLOC_FAILED;
788 1.1 alnsn
789 1.1 alnsn /* entry point to mchain handler */
790 1.1 alnsn label = sljit_emit_label(compiler);
791 1.1 alnsn if (label == NULL)
792 1.7 alnsn return SLJIT_ERR_ALLOC_FAILED;
793 1.1 alnsn sljit_set_label(to_mchain_jump, label);
794 1.1 alnsn
795 1.1 alnsn if (check_zero_buflen) {
796 1.1 alnsn /* if (buflen != 0) return 0; */
797 1.1 alnsn jump = sljit_emit_cmp(compiler,
798 1.1 alnsn SLJIT_C_NOT_EQUAL,
799 1.7 alnsn BJ_BUFLEN, 0,
800 1.1 alnsn SLJIT_IMM, 0);
801 1.1 alnsn if (jump == NULL)
802 1.1 alnsn return SLJIT_ERR_ALLOC_FAILED;
803 1.7 alnsn if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
804 1.7 alnsn return SLJIT_ERR_ALLOC_FAILED;
805 1.1 alnsn }
806 1.1 alnsn
807 1.1 alnsn switch (width) {
808 1.1 alnsn case 4:
809 1.7 alnsn status = emit_xcall(compiler, pc, BJ_AREG, 0, &jump, &m_xword);
810 1.1 alnsn break;
811 1.1 alnsn case 2:
812 1.7 alnsn status = emit_xcall(compiler, pc, BJ_AREG, 0, &jump, &m_xhalf);
813 1.1 alnsn break;
814 1.1 alnsn case 1:
815 1.7 alnsn status = emit_xcall(compiler, pc, BJ_AREG, 0, &jump, &m_xbyte);
816 1.1 alnsn break;
817 1.1 alnsn }
818 1.1 alnsn
819 1.1 alnsn if (status != SLJIT_SUCCESS)
820 1.1 alnsn return status;
821 1.1 alnsn
822 1.7 alnsn if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
823 1.7 alnsn return SLJIT_ERR_ALLOC_FAILED;
824 1.1 alnsn
825 1.1 alnsn label = sljit_emit_label(compiler);
826 1.1 alnsn if (label == NULL)
827 1.1 alnsn return SLJIT_ERR_ALLOC_FAILED;
828 1.1 alnsn sljit_set_label(over_mchain_jump, label);
829 1.1 alnsn #endif
830 1.1 alnsn
831 1.1 alnsn return status;
832 1.1 alnsn }
833 1.1 alnsn
834 1.13 alnsn static int
835 1.13 alnsn emit_memload(struct sljit_compiler* compiler,
836 1.13 alnsn sljit_si dst, uint32_t k, size_t extwords)
837 1.13 alnsn {
838 1.13 alnsn int status;
839 1.13 alnsn sljit_si src;
840 1.13 alnsn sljit_sw srcw;
841 1.13 alnsn
842 1.13 alnsn srcw = k * sizeof(uint32_t);
843 1.13 alnsn
844 1.13 alnsn if (extwords == 0) {
845 1.13 alnsn src = SLJIT_MEM1(SLJIT_LOCALS_REG);
846 1.13 alnsn srcw += offsetof(struct bpfjit_stack, mem);
847 1.13 alnsn } else {
848 1.13 alnsn /* copy extmem pointer to the tmp1 register */
849 1.13 alnsn status = sljit_emit_op1(compiler,
850 1.16 alnsn SLJIT_MOV_P,
851 1.13 alnsn BJ_TMP1REG, 0,
852 1.13 alnsn SLJIT_MEM1(SLJIT_LOCALS_REG),
853 1.13 alnsn offsetof(struct bpfjit_stack, extmem));
854 1.13 alnsn if (status != SLJIT_SUCCESS)
855 1.13 alnsn return status;
856 1.13 alnsn src = SLJIT_MEM1(BJ_TMP1REG);
857 1.13 alnsn }
858 1.13 alnsn
859 1.13 alnsn return sljit_emit_op1(compiler, SLJIT_MOV_UI, dst, 0, src, srcw);
860 1.13 alnsn }
861 1.13 alnsn
862 1.13 alnsn static int
863 1.13 alnsn emit_memstore(struct sljit_compiler* compiler,
864 1.13 alnsn sljit_si src, uint32_t k, size_t extwords)
865 1.13 alnsn {
866 1.13 alnsn int status;
867 1.13 alnsn sljit_si dst;
868 1.13 alnsn sljit_sw dstw;
869 1.13 alnsn
870 1.13 alnsn dstw = k * sizeof(uint32_t);
871 1.13 alnsn
872 1.13 alnsn if (extwords == 0) {
873 1.13 alnsn dst = SLJIT_MEM1(SLJIT_LOCALS_REG);
874 1.13 alnsn dstw += offsetof(struct bpfjit_stack, mem);
875 1.13 alnsn } else {
876 1.13 alnsn /* copy extmem pointer to the tmp1 register */
877 1.13 alnsn status = sljit_emit_op1(compiler,
878 1.16 alnsn SLJIT_MOV_P,
879 1.13 alnsn BJ_TMP1REG, 0,
880 1.13 alnsn SLJIT_MEM1(SLJIT_LOCALS_REG),
881 1.13 alnsn offsetof(struct bpfjit_stack, extmem));
882 1.13 alnsn if (status != SLJIT_SUCCESS)
883 1.13 alnsn return status;
884 1.13 alnsn dst = SLJIT_MEM1(BJ_TMP1REG);
885 1.13 alnsn }
886 1.13 alnsn
887 1.13 alnsn return sljit_emit_op1(compiler, SLJIT_MOV_UI, dst, dstw, src, 0);
888 1.13 alnsn }
889 1.13 alnsn
890 1.1 alnsn /*
891 1.1 alnsn * Generate code for BPF_LDX+BPF_B+BPF_MSH X <- 4*(P[k:1]&0xf).
892 1.1 alnsn */
893 1.1 alnsn static int
894 1.1 alnsn emit_msh(struct sljit_compiler* compiler,
895 1.7 alnsn const struct bpf_insn *pc, struct sljit_jump *to_mchain_jump,
896 1.7 alnsn struct sljit_jump ***ret0, size_t *ret0_size, size_t *ret0_maxsize)
897 1.1 alnsn {
898 1.1 alnsn int status;
899 1.1 alnsn #ifdef _KERNEL
900 1.1 alnsn struct sljit_label *label;
901 1.1 alnsn struct sljit_jump *jump, *over_mchain_jump;
902 1.1 alnsn const bool check_zero_buflen = (to_mchain_jump != NULL);
903 1.1 alnsn #endif
904 1.1 alnsn const uint32_t k = pc->k;
905 1.1 alnsn
906 1.1 alnsn #ifdef _KERNEL
907 1.1 alnsn if (to_mchain_jump == NULL) {
908 1.1 alnsn to_mchain_jump = sljit_emit_cmp(compiler,
909 1.1 alnsn SLJIT_C_EQUAL,
910 1.7 alnsn BJ_BUFLEN, 0,
911 1.1 alnsn SLJIT_IMM, 0);
912 1.1 alnsn if (to_mchain_jump == NULL)
913 1.7 alnsn return SLJIT_ERR_ALLOC_FAILED;
914 1.1 alnsn }
915 1.1 alnsn #endif
916 1.1 alnsn
917 1.1 alnsn /* tmp1 = buf[k] */
918 1.1 alnsn status = sljit_emit_op1(compiler,
919 1.1 alnsn SLJIT_MOV_UB,
920 1.7 alnsn BJ_TMP1REG, 0,
921 1.7 alnsn SLJIT_MEM1(BJ_BUF), k);
922 1.1 alnsn if (status != SLJIT_SUCCESS)
923 1.1 alnsn return status;
924 1.1 alnsn
925 1.1 alnsn /* tmp1 &= 0xf */
926 1.1 alnsn status = sljit_emit_op2(compiler,
927 1.1 alnsn SLJIT_AND,
928 1.7 alnsn BJ_TMP1REG, 0,
929 1.7 alnsn BJ_TMP1REG, 0,
930 1.1 alnsn SLJIT_IMM, 0xf);
931 1.1 alnsn if (status != SLJIT_SUCCESS)
932 1.1 alnsn return status;
933 1.1 alnsn
934 1.1 alnsn /* tmp1 = tmp1 << 2 */
935 1.1 alnsn status = sljit_emit_op2(compiler,
936 1.1 alnsn SLJIT_SHL,
937 1.7 alnsn BJ_XREG, 0,
938 1.7 alnsn BJ_TMP1REG, 0,
939 1.1 alnsn SLJIT_IMM, 2);
940 1.1 alnsn if (status != SLJIT_SUCCESS)
941 1.1 alnsn return status;
942 1.1 alnsn
943 1.1 alnsn #ifdef _KERNEL
944 1.1 alnsn over_mchain_jump = sljit_emit_jump(compiler, SLJIT_JUMP);
945 1.1 alnsn if (over_mchain_jump == NULL)
946 1.1 alnsn return SLJIT_ERR_ALLOC_FAILED;
947 1.1 alnsn
948 1.1 alnsn /* entry point to mchain handler */
949 1.1 alnsn label = sljit_emit_label(compiler);
950 1.1 alnsn if (label == NULL)
951 1.1 alnsn return SLJIT_ERR_ALLOC_FAILED;
952 1.1 alnsn sljit_set_label(to_mchain_jump, label);
953 1.1 alnsn
954 1.1 alnsn if (check_zero_buflen) {
955 1.1 alnsn /* if (buflen != 0) return 0; */
956 1.1 alnsn jump = sljit_emit_cmp(compiler,
957 1.1 alnsn SLJIT_C_NOT_EQUAL,
958 1.7 alnsn BJ_BUFLEN, 0,
959 1.1 alnsn SLJIT_IMM, 0);
960 1.1 alnsn if (jump == NULL)
961 1.7 alnsn return SLJIT_ERR_ALLOC_FAILED;
962 1.7 alnsn if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
963 1.7 alnsn return SLJIT_ERR_ALLOC_FAILED;
964 1.1 alnsn }
965 1.1 alnsn
966 1.7 alnsn status = emit_xcall(compiler, pc, BJ_TMP1REG, 0, &jump, &m_xbyte);
967 1.1 alnsn if (status != SLJIT_SUCCESS)
968 1.1 alnsn return status;
969 1.7 alnsn
970 1.7 alnsn if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
971 1.7 alnsn return SLJIT_ERR_ALLOC_FAILED;
972 1.1 alnsn
973 1.1 alnsn /* tmp1 &= 0xf */
974 1.1 alnsn status = sljit_emit_op2(compiler,
975 1.1 alnsn SLJIT_AND,
976 1.7 alnsn BJ_TMP1REG, 0,
977 1.7 alnsn BJ_TMP1REG, 0,
978 1.1 alnsn SLJIT_IMM, 0xf);
979 1.1 alnsn if (status != SLJIT_SUCCESS)
980 1.1 alnsn return status;
981 1.1 alnsn
982 1.1 alnsn /* tmp1 = tmp1 << 2 */
983 1.1 alnsn status = sljit_emit_op2(compiler,
984 1.1 alnsn SLJIT_SHL,
985 1.7 alnsn BJ_XREG, 0,
986 1.7 alnsn BJ_TMP1REG, 0,
987 1.1 alnsn SLJIT_IMM, 2);
988 1.1 alnsn if (status != SLJIT_SUCCESS)
989 1.1 alnsn return status;
990 1.1 alnsn
991 1.1 alnsn
992 1.1 alnsn label = sljit_emit_label(compiler);
993 1.1 alnsn if (label == NULL)
994 1.1 alnsn return SLJIT_ERR_ALLOC_FAILED;
995 1.1 alnsn sljit_set_label(over_mchain_jump, label);
996 1.1 alnsn #endif
997 1.1 alnsn
998 1.1 alnsn return status;
999 1.1 alnsn }
1000 1.1 alnsn
1001 1.1 alnsn static int
1002 1.1 alnsn emit_pow2_division(struct sljit_compiler* compiler, uint32_t k)
1003 1.1 alnsn {
1004 1.1 alnsn int shift = 0;
1005 1.1 alnsn int status = SLJIT_SUCCESS;
1006 1.1 alnsn
1007 1.1 alnsn while (k > 1) {
1008 1.1 alnsn k >>= 1;
1009 1.1 alnsn shift++;
1010 1.1 alnsn }
1011 1.1 alnsn
1012 1.7 alnsn BJ_ASSERT(k == 1 && shift < 32);
1013 1.1 alnsn
1014 1.1 alnsn if (shift != 0) {
1015 1.1 alnsn status = sljit_emit_op2(compiler,
1016 1.1 alnsn SLJIT_LSHR|SLJIT_INT_OP,
1017 1.7 alnsn BJ_AREG, 0,
1018 1.7 alnsn BJ_AREG, 0,
1019 1.1 alnsn SLJIT_IMM, shift);
1020 1.1 alnsn }
1021 1.1 alnsn
1022 1.1 alnsn return status;
1023 1.1 alnsn }
1024 1.1 alnsn
1025 1.1 alnsn #if !defined(BPFJIT_USE_UDIV)
1026 1.1 alnsn static sljit_uw
1027 1.1 alnsn divide(sljit_uw x, sljit_uw y)
1028 1.1 alnsn {
1029 1.1 alnsn
1030 1.1 alnsn return (uint32_t)x / (uint32_t)y;
1031 1.1 alnsn }
1032 1.1 alnsn #endif
1033 1.1 alnsn
1034 1.1 alnsn /*
1035 1.1 alnsn * Generate A = A / div.
1036 1.7 alnsn * divt,divw are either SLJIT_IMM,pc->k or BJ_XREG,0.
1037 1.1 alnsn */
1038 1.1 alnsn static int
1039 1.12 alnsn emit_division(struct sljit_compiler* compiler, int divt, sljit_sw divw)
1040 1.1 alnsn {
1041 1.1 alnsn int status;
1042 1.1 alnsn
1043 1.7 alnsn #if BJ_XREG == SLJIT_RETURN_REG || \
1044 1.12 alnsn BJ_XREG == SLJIT_SCRATCH_REG1 || \
1045 1.12 alnsn BJ_XREG == SLJIT_SCRATCH_REG2 || \
1046 1.12 alnsn BJ_AREG == SLJIT_SCRATCH_REG2
1047 1.1 alnsn #error "Not supported assignment of registers."
1048 1.1 alnsn #endif
1049 1.1 alnsn
1050 1.12 alnsn #if BJ_AREG != SLJIT_SCRATCH_REG1
1051 1.1 alnsn status = sljit_emit_op1(compiler,
1052 1.1 alnsn SLJIT_MOV,
1053 1.12 alnsn SLJIT_SCRATCH_REG1, 0,
1054 1.7 alnsn BJ_AREG, 0);
1055 1.1 alnsn if (status != SLJIT_SUCCESS)
1056 1.1 alnsn return status;
1057 1.1 alnsn #endif
1058 1.1 alnsn
1059 1.1 alnsn status = sljit_emit_op1(compiler,
1060 1.1 alnsn SLJIT_MOV,
1061 1.12 alnsn SLJIT_SCRATCH_REG2, 0,
1062 1.1 alnsn divt, divw);
1063 1.1 alnsn if (status != SLJIT_SUCCESS)
1064 1.1 alnsn return status;
1065 1.1 alnsn
1066 1.1 alnsn #if defined(BPFJIT_USE_UDIV)
1067 1.1 alnsn status = sljit_emit_op0(compiler, SLJIT_UDIV|SLJIT_INT_OP);
1068 1.1 alnsn
1069 1.12 alnsn #if BJ_AREG != SLJIT_SCRATCH_REG1
1070 1.1 alnsn status = sljit_emit_op1(compiler,
1071 1.1 alnsn SLJIT_MOV,
1072 1.7 alnsn BJ_AREG, 0,
1073 1.12 alnsn SLJIT_SCRATCH_REG1, 0);
1074 1.1 alnsn if (status != SLJIT_SUCCESS)
1075 1.1 alnsn return status;
1076 1.1 alnsn #endif
1077 1.1 alnsn #else
1078 1.1 alnsn status = sljit_emit_ijump(compiler,
1079 1.1 alnsn SLJIT_CALL2,
1080 1.1 alnsn SLJIT_IMM, SLJIT_FUNC_OFFSET(divide));
1081 1.1 alnsn
1082 1.7 alnsn #if BJ_AREG != SLJIT_RETURN_REG
1083 1.1 alnsn status = sljit_emit_op1(compiler,
1084 1.1 alnsn SLJIT_MOV,
1085 1.7 alnsn BJ_AREG, 0,
1086 1.1 alnsn SLJIT_RETURN_REG, 0);
1087 1.1 alnsn if (status != SLJIT_SUCCESS)
1088 1.1 alnsn return status;
1089 1.1 alnsn #endif
1090 1.1 alnsn #endif
1091 1.1 alnsn
1092 1.1 alnsn return status;
1093 1.1 alnsn }
1094 1.1 alnsn
1095 1.1 alnsn /*
1096 1.1 alnsn * Return true if pc is a "read from packet" instruction.
1097 1.1 alnsn * If length is not NULL and return value is true, *length will
1098 1.1 alnsn * be set to a safe length required to read a packet.
1099 1.1 alnsn */
1100 1.1 alnsn static bool
1101 1.8 alnsn read_pkt_insn(const struct bpf_insn *pc, bpfjit_abc_length_t *length)
1102 1.1 alnsn {
1103 1.1 alnsn bool rv;
1104 1.8 alnsn bpfjit_abc_length_t width;
1105 1.1 alnsn
1106 1.1 alnsn switch (BPF_CLASS(pc->code)) {
1107 1.1 alnsn default:
1108 1.1 alnsn rv = false;
1109 1.1 alnsn break;
1110 1.1 alnsn
1111 1.1 alnsn case BPF_LD:
1112 1.1 alnsn rv = BPF_MODE(pc->code) == BPF_ABS ||
1113 1.1 alnsn BPF_MODE(pc->code) == BPF_IND;
1114 1.1 alnsn if (rv)
1115 1.1 alnsn width = read_width(pc);
1116 1.1 alnsn break;
1117 1.1 alnsn
1118 1.1 alnsn case BPF_LDX:
1119 1.1 alnsn rv = pc->code == (BPF_LDX|BPF_B|BPF_MSH);
1120 1.1 alnsn width = 1;
1121 1.1 alnsn break;
1122 1.1 alnsn }
1123 1.1 alnsn
1124 1.1 alnsn if (rv && length != NULL) {
1125 1.9 alnsn /*
1126 1.9 alnsn * Values greater than UINT32_MAX will generate
1127 1.9 alnsn * unconditional "return 0".
1128 1.9 alnsn */
1129 1.9 alnsn *length = (uint32_t)pc->k + width;
1130 1.1 alnsn }
1131 1.1 alnsn
1132 1.1 alnsn return rv;
1133 1.1 alnsn }
1134 1.1 alnsn
1135 1.1 alnsn static void
1136 1.7 alnsn optimize_init(struct bpfjit_insn_data *insn_dat, size_t insn_count)
1137 1.1 alnsn {
1138 1.7 alnsn size_t i;
1139 1.1 alnsn
1140 1.7 alnsn for (i = 0; i < insn_count; i++) {
1141 1.7 alnsn SLIST_INIT(&insn_dat[i].bjumps);
1142 1.7 alnsn insn_dat[i].invalid = BJ_INIT_NOBITS;
1143 1.1 alnsn }
1144 1.1 alnsn }
1145 1.1 alnsn
1146 1.1 alnsn /*
1147 1.1 alnsn * The function divides instructions into blocks. Destination of a jump
1148 1.1 alnsn * instruction starts a new block. BPF_RET and BPF_JMP instructions
1149 1.1 alnsn * terminate a block. Blocks are linear, that is, there are no jumps out
1150 1.1 alnsn * from the middle of a block and there are no jumps in to the middle of
1151 1.1 alnsn * a block.
1152 1.7 alnsn *
1153 1.7 alnsn * The function also sets bits in *initmask for memwords that
1154 1.7 alnsn * need to be initialized to zero. Note that this set should be empty
1155 1.7 alnsn * for any valid kernel filter program.
1156 1.1 alnsn */
1157 1.7 alnsn static bool
1158 1.7 alnsn optimize_pass1(const struct bpf_insn *insns,
1159 1.13 alnsn struct bpfjit_insn_data *insn_dat, size_t insn_count, size_t extwords,
1160 1.13 alnsn bpf_memword_init_t *initmask, int *nscratches, int *ncopfuncs)
1161 1.1 alnsn {
1162 1.7 alnsn struct bpfjit_jump *jtf;
1163 1.1 alnsn size_t i;
1164 1.7 alnsn uint32_t jt, jf;
1165 1.10 alnsn bpfjit_abc_length_t length;
1166 1.13 alnsn bpf_memword_init_t invalid; /* borrowed from bpf_filter() */
1167 1.1 alnsn bool unreachable;
1168 1.1 alnsn
1169 1.13 alnsn const size_t memwords = (extwords != 0) ? extwords : BPF_MEMWORDS;
1170 1.13 alnsn
1171 1.13 alnsn *ncopfuncs = 0;
1172 1.7 alnsn *nscratches = 2;
1173 1.7 alnsn *initmask = BJ_INIT_NOBITS;
1174 1.1 alnsn
1175 1.1 alnsn unreachable = false;
1176 1.7 alnsn invalid = ~BJ_INIT_NOBITS;
1177 1.1 alnsn
1178 1.1 alnsn for (i = 0; i < insn_count; i++) {
1179 1.7 alnsn if (!SLIST_EMPTY(&insn_dat[i].bjumps))
1180 1.1 alnsn unreachable = false;
1181 1.7 alnsn insn_dat[i].unreachable = unreachable;
1182 1.1 alnsn
1183 1.1 alnsn if (unreachable)
1184 1.1 alnsn continue;
1185 1.1 alnsn
1186 1.7 alnsn invalid |= insn_dat[i].invalid;
1187 1.1 alnsn
1188 1.10 alnsn if (read_pkt_insn(&insns[i], &length) && length > UINT32_MAX)
1189 1.10 alnsn unreachable = true;
1190 1.10 alnsn
1191 1.1 alnsn switch (BPF_CLASS(insns[i].code)) {
1192 1.1 alnsn case BPF_RET:
1193 1.7 alnsn if (BPF_RVAL(insns[i].code) == BPF_A)
1194 1.7 alnsn *initmask |= invalid & BJ_INIT_ABIT;
1195 1.7 alnsn
1196 1.1 alnsn unreachable = true;
1197 1.1 alnsn continue;
1198 1.1 alnsn
1199 1.7 alnsn case BPF_LD:
1200 1.7 alnsn if (BPF_MODE(insns[i].code) == BPF_IND ||
1201 1.7 alnsn BPF_MODE(insns[i].code) == BPF_ABS) {
1202 1.7 alnsn if (BPF_MODE(insns[i].code) == BPF_IND &&
1203 1.7 alnsn *nscratches < 4) {
1204 1.7 alnsn /* uses BJ_XREG */
1205 1.7 alnsn *nscratches = 4;
1206 1.7 alnsn }
1207 1.7 alnsn if (*nscratches < 3 &&
1208 1.7 alnsn read_width(&insns[i]) == 4) {
1209 1.7 alnsn /* uses BJ_TMP2REG */
1210 1.7 alnsn *nscratches = 3;
1211 1.7 alnsn }
1212 1.7 alnsn }
1213 1.7 alnsn
1214 1.7 alnsn if (BPF_MODE(insns[i].code) == BPF_IND)
1215 1.7 alnsn *initmask |= invalid & BJ_INIT_XBIT;
1216 1.7 alnsn
1217 1.7 alnsn if (BPF_MODE(insns[i].code) == BPF_MEM &&
1218 1.13 alnsn (uint32_t)insns[i].k < memwords) {
1219 1.7 alnsn *initmask |= invalid & BJ_INIT_MBIT(insns[i].k);
1220 1.7 alnsn }
1221 1.7 alnsn
1222 1.7 alnsn invalid &= ~BJ_INIT_ABIT;
1223 1.7 alnsn continue;
1224 1.7 alnsn
1225 1.7 alnsn case BPF_LDX:
1226 1.7 alnsn #if defined(_KERNEL)
1227 1.7 alnsn /* uses BJ_TMP3REG */
1228 1.7 alnsn *nscratches = 5;
1229 1.7 alnsn #endif
1230 1.7 alnsn /* uses BJ_XREG */
1231 1.7 alnsn if (*nscratches < 4)
1232 1.7 alnsn *nscratches = 4;
1233 1.7 alnsn
1234 1.7 alnsn if (BPF_MODE(insns[i].code) == BPF_MEM &&
1235 1.13 alnsn (uint32_t)insns[i].k < memwords) {
1236 1.7 alnsn *initmask |= invalid & BJ_INIT_MBIT(insns[i].k);
1237 1.7 alnsn }
1238 1.7 alnsn
1239 1.7 alnsn invalid &= ~BJ_INIT_XBIT;
1240 1.7 alnsn continue;
1241 1.7 alnsn
1242 1.7 alnsn case BPF_ST:
1243 1.7 alnsn *initmask |= invalid & BJ_INIT_ABIT;
1244 1.7 alnsn
1245 1.13 alnsn if ((uint32_t)insns[i].k < memwords)
1246 1.7 alnsn invalid &= ~BJ_INIT_MBIT(insns[i].k);
1247 1.7 alnsn
1248 1.7 alnsn continue;
1249 1.7 alnsn
1250 1.7 alnsn case BPF_STX:
1251 1.7 alnsn /* uses BJ_XREG */
1252 1.7 alnsn if (*nscratches < 4)
1253 1.7 alnsn *nscratches = 4;
1254 1.7 alnsn
1255 1.7 alnsn *initmask |= invalid & BJ_INIT_XBIT;
1256 1.7 alnsn
1257 1.13 alnsn if ((uint32_t)insns[i].k < memwords)
1258 1.7 alnsn invalid &= ~BJ_INIT_MBIT(insns[i].k);
1259 1.7 alnsn
1260 1.7 alnsn continue;
1261 1.7 alnsn
1262 1.7 alnsn case BPF_ALU:
1263 1.7 alnsn *initmask |= invalid & BJ_INIT_ABIT;
1264 1.7 alnsn
1265 1.7 alnsn if (insns[i].code != (BPF_ALU|BPF_NEG) &&
1266 1.7 alnsn BPF_SRC(insns[i].code) == BPF_X) {
1267 1.7 alnsn *initmask |= invalid & BJ_INIT_XBIT;
1268 1.7 alnsn /* uses BJ_XREG */
1269 1.7 alnsn if (*nscratches < 4)
1270 1.7 alnsn *nscratches = 4;
1271 1.7 alnsn
1272 1.7 alnsn }
1273 1.7 alnsn
1274 1.7 alnsn invalid &= ~BJ_INIT_ABIT;
1275 1.7 alnsn continue;
1276 1.7 alnsn
1277 1.7 alnsn case BPF_MISC:
1278 1.7 alnsn switch (BPF_MISCOP(insns[i].code)) {
1279 1.7 alnsn case BPF_TAX: // X <- A
1280 1.7 alnsn /* uses BJ_XREG */
1281 1.7 alnsn if (*nscratches < 4)
1282 1.7 alnsn *nscratches = 4;
1283 1.7 alnsn
1284 1.7 alnsn *initmask |= invalid & BJ_INIT_ABIT;
1285 1.7 alnsn invalid &= ~BJ_INIT_XBIT;
1286 1.7 alnsn continue;
1287 1.7 alnsn
1288 1.7 alnsn case BPF_TXA: // A <- X
1289 1.7 alnsn /* uses BJ_XREG */
1290 1.7 alnsn if (*nscratches < 4)
1291 1.7 alnsn *nscratches = 4;
1292 1.7 alnsn
1293 1.7 alnsn *initmask |= invalid & BJ_INIT_XBIT;
1294 1.7 alnsn invalid &= ~BJ_INIT_ABIT;
1295 1.7 alnsn continue;
1296 1.13 alnsn
1297 1.13 alnsn case BPF_COPX:
1298 1.13 alnsn /* uses BJ_XREG */
1299 1.13 alnsn if (*nscratches < 4)
1300 1.13 alnsn *nscratches = 4;
1301 1.13 alnsn /* FALLTHROUGH */
1302 1.13 alnsn
1303 1.13 alnsn case BPF_COP:
1304 1.13 alnsn /* calls copfunc with three arguments */
1305 1.13 alnsn if (*nscratches < 3)
1306 1.13 alnsn *nscratches = 3;
1307 1.13 alnsn
1308 1.13 alnsn (*ncopfuncs)++;
1309 1.13 alnsn *initmask |= invalid & BJ_INIT_ABIT;
1310 1.13 alnsn invalid &= ~BJ_INIT_ABIT;
1311 1.13 alnsn continue;
1312 1.7 alnsn }
1313 1.7 alnsn
1314 1.7 alnsn continue;
1315 1.7 alnsn
1316 1.1 alnsn case BPF_JMP:
1317 1.7 alnsn /* Initialize abc_length for ABC pass. */
1318 1.8 alnsn insn_dat[i].u.jdata.abc_length = MAX_ABC_LENGTH;
1319 1.7 alnsn
1320 1.7 alnsn if (BPF_OP(insns[i].code) == BPF_JA) {
1321 1.1 alnsn jt = jf = insns[i].k;
1322 1.1 alnsn } else {
1323 1.1 alnsn jt = insns[i].jt;
1324 1.1 alnsn jf = insns[i].jf;
1325 1.1 alnsn }
1326 1.1 alnsn
1327 1.1 alnsn if (jt >= insn_count - (i + 1) ||
1328 1.1 alnsn jf >= insn_count - (i + 1)) {
1329 1.7 alnsn return false;
1330 1.1 alnsn }
1331 1.1 alnsn
1332 1.1 alnsn if (jt > 0 && jf > 0)
1333 1.1 alnsn unreachable = true;
1334 1.1 alnsn
1335 1.7 alnsn jt += i + 1;
1336 1.7 alnsn jf += i + 1;
1337 1.7 alnsn
1338 1.7 alnsn jtf = insn_dat[i].u.jdata.jtf;
1339 1.1 alnsn
1340 1.7 alnsn jtf[0].sjump = NULL;
1341 1.7 alnsn jtf[0].jdata = &insn_dat[i].u.jdata;
1342 1.7 alnsn SLIST_INSERT_HEAD(&insn_dat[jt].bjumps,
1343 1.7 alnsn &jtf[0], entries);
1344 1.1 alnsn
1345 1.1 alnsn if (jf != jt) {
1346 1.7 alnsn jtf[1].sjump = NULL;
1347 1.7 alnsn jtf[1].jdata = &insn_dat[i].u.jdata;
1348 1.7 alnsn SLIST_INSERT_HEAD(&insn_dat[jf].bjumps,
1349 1.7 alnsn &jtf[1], entries);
1350 1.1 alnsn }
1351 1.1 alnsn
1352 1.7 alnsn insn_dat[jf].invalid |= invalid;
1353 1.7 alnsn insn_dat[jt].invalid |= invalid;
1354 1.7 alnsn invalid = 0;
1355 1.7 alnsn
1356 1.1 alnsn continue;
1357 1.1 alnsn }
1358 1.1 alnsn }
1359 1.1 alnsn
1360 1.7 alnsn return true;
1361 1.1 alnsn }
1362 1.1 alnsn
1363 1.1 alnsn /*
1364 1.7 alnsn * Array Bounds Check Elimination (ABC) pass.
1365 1.1 alnsn */
1366 1.7 alnsn static void
1367 1.7 alnsn optimize_pass2(const struct bpf_insn *insns,
1368 1.13 alnsn struct bpfjit_insn_data *insn_dat, size_t insn_count, size_t extwords)
1369 1.7 alnsn {
1370 1.7 alnsn struct bpfjit_jump *jmp;
1371 1.7 alnsn const struct bpf_insn *pc;
1372 1.7 alnsn struct bpfjit_insn_data *pd;
1373 1.7 alnsn size_t i;
1374 1.8 alnsn bpfjit_abc_length_t length, abc_length = 0;
1375 1.7 alnsn
1376 1.7 alnsn for (i = insn_count; i != 0; i--) {
1377 1.7 alnsn pc = &insns[i-1];
1378 1.7 alnsn pd = &insn_dat[i-1];
1379 1.7 alnsn
1380 1.7 alnsn if (pd->unreachable)
1381 1.7 alnsn continue;
1382 1.7 alnsn
1383 1.7 alnsn switch (BPF_CLASS(pc->code)) {
1384 1.7 alnsn case BPF_RET:
1385 1.11 alnsn /*
1386 1.11 alnsn * It's quite common for bpf programs to
1387 1.11 alnsn * check packet bytes in increasing order
1388 1.11 alnsn * and return zero if bytes don't match
1389 1.11 alnsn * specified critetion. Such programs disable
1390 1.11 alnsn * ABC optimization completely because for
1391 1.11 alnsn * every jump there is a branch with no read
1392 1.11 alnsn * instruction.
1393 1.13 alnsn * With no side effects, BPF_STMT(BPF_RET+BPF_K, 0)
1394 1.13 alnsn * is indistinguishable from out-of-bound load.
1395 1.11 alnsn * Therefore, abc_length can be set to
1396 1.11 alnsn * MAX_ABC_LENGTH and enable ABC for many
1397 1.11 alnsn * bpf programs.
1398 1.13 alnsn * If this optimization encounters any
1399 1.11 alnsn * instruction with a side effect, it will
1400 1.11 alnsn * reset abc_length.
1401 1.11 alnsn */
1402 1.11 alnsn if (BPF_RVAL(pc->code) == BPF_K && pc->k == 0)
1403 1.11 alnsn abc_length = MAX_ABC_LENGTH;
1404 1.11 alnsn else
1405 1.11 alnsn abc_length = 0;
1406 1.7 alnsn break;
1407 1.7 alnsn
1408 1.13 alnsn case BPF_MISC:
1409 1.13 alnsn if (BPF_MISCOP(pc->code) == BPF_COP ||
1410 1.13 alnsn BPF_MISCOP(pc->code) == BPF_COPX) {
1411 1.13 alnsn /* COP instructions can have side effects. */
1412 1.13 alnsn abc_length = 0;
1413 1.13 alnsn }
1414 1.13 alnsn break;
1415 1.13 alnsn
1416 1.13 alnsn case BPF_ST:
1417 1.13 alnsn case BPF_STX:
1418 1.13 alnsn if (extwords != 0) {
1419 1.13 alnsn /* Write to memory is visible after a call. */
1420 1.13 alnsn abc_length = 0;
1421 1.13 alnsn }
1422 1.13 alnsn break;
1423 1.13 alnsn
1424 1.7 alnsn case BPF_JMP:
1425 1.7 alnsn abc_length = pd->u.jdata.abc_length;
1426 1.7 alnsn break;
1427 1.7 alnsn
1428 1.7 alnsn default:
1429 1.7 alnsn if (read_pkt_insn(pc, &length)) {
1430 1.7 alnsn if (abc_length < length)
1431 1.7 alnsn abc_length = length;
1432 1.7 alnsn pd->u.rdata.abc_length = abc_length;
1433 1.7 alnsn }
1434 1.7 alnsn break;
1435 1.7 alnsn }
1436 1.7 alnsn
1437 1.7 alnsn SLIST_FOREACH(jmp, &pd->bjumps, entries) {
1438 1.7 alnsn if (jmp->jdata->abc_length > abc_length)
1439 1.7 alnsn jmp->jdata->abc_length = abc_length;
1440 1.7 alnsn }
1441 1.7 alnsn }
1442 1.7 alnsn }
1443 1.7 alnsn
1444 1.7 alnsn static void
1445 1.7 alnsn optimize_pass3(const struct bpf_insn *insns,
1446 1.7 alnsn struct bpfjit_insn_data *insn_dat, size_t insn_count)
1447 1.1 alnsn {
1448 1.7 alnsn struct bpfjit_jump *jmp;
1449 1.1 alnsn size_t i;
1450 1.8 alnsn bpfjit_abc_length_t checked_length = 0;
1451 1.1 alnsn
1452 1.1 alnsn for (i = 0; i < insn_count; i++) {
1453 1.7 alnsn if (insn_dat[i].unreachable)
1454 1.7 alnsn continue;
1455 1.1 alnsn
1456 1.7 alnsn SLIST_FOREACH(jmp, &insn_dat[i].bjumps, entries) {
1457 1.7 alnsn if (jmp->jdata->checked_length < checked_length)
1458 1.7 alnsn checked_length = jmp->jdata->checked_length;
1459 1.1 alnsn }
1460 1.1 alnsn
1461 1.7 alnsn if (BPF_CLASS(insns[i].code) == BPF_JMP) {
1462 1.7 alnsn insn_dat[i].u.jdata.checked_length = checked_length;
1463 1.8 alnsn } else if (read_pkt_insn(&insns[i], NULL)) {
1464 1.7 alnsn struct bpfjit_read_pkt_data *rdata =
1465 1.7 alnsn &insn_dat[i].u.rdata;
1466 1.7 alnsn rdata->check_length = 0;
1467 1.7 alnsn if (checked_length < rdata->abc_length) {
1468 1.7 alnsn checked_length = rdata->abc_length;
1469 1.7 alnsn rdata->check_length = checked_length;
1470 1.7 alnsn }
1471 1.1 alnsn }
1472 1.7 alnsn }
1473 1.7 alnsn }
1474 1.1 alnsn
1475 1.7 alnsn static bool
1476 1.7 alnsn optimize(const struct bpf_insn *insns,
1477 1.7 alnsn struct bpfjit_insn_data *insn_dat, size_t insn_count,
1478 1.13 alnsn size_t extwords,
1479 1.13 alnsn bpf_memword_init_t *initmask, int *nscratches, int *ncopfuncs)
1480 1.7 alnsn {
1481 1.1 alnsn
1482 1.7 alnsn optimize_init(insn_dat, insn_count);
1483 1.7 alnsn
1484 1.7 alnsn if (!optimize_pass1(insns, insn_dat, insn_count,
1485 1.13 alnsn extwords, initmask, nscratches, ncopfuncs)) {
1486 1.7 alnsn return false;
1487 1.1 alnsn }
1488 1.1 alnsn
1489 1.13 alnsn optimize_pass2(insns, insn_dat, insn_count, extwords);
1490 1.7 alnsn optimize_pass3(insns, insn_dat, insn_count);
1491 1.7 alnsn
1492 1.7 alnsn return true;
1493 1.1 alnsn }
1494 1.1 alnsn
1495 1.1 alnsn /*
1496 1.1 alnsn * Convert BPF_ALU operations except BPF_NEG and BPF_DIV to sljit operation.
1497 1.1 alnsn */
1498 1.1 alnsn static int
1499 1.7 alnsn bpf_alu_to_sljit_op(const struct bpf_insn *pc)
1500 1.1 alnsn {
1501 1.1 alnsn
1502 1.1 alnsn /*
1503 1.1 alnsn * Note: all supported 64bit arches have 32bit multiply
1504 1.1 alnsn * instruction so SLJIT_INT_OP doesn't have any overhead.
1505 1.1 alnsn */
1506 1.1 alnsn switch (BPF_OP(pc->code)) {
1507 1.1 alnsn case BPF_ADD: return SLJIT_ADD;
1508 1.1 alnsn case BPF_SUB: return SLJIT_SUB;
1509 1.1 alnsn case BPF_MUL: return SLJIT_MUL|SLJIT_INT_OP;
1510 1.1 alnsn case BPF_OR: return SLJIT_OR;
1511 1.1 alnsn case BPF_AND: return SLJIT_AND;
1512 1.1 alnsn case BPF_LSH: return SLJIT_SHL;
1513 1.1 alnsn case BPF_RSH: return SLJIT_LSHR|SLJIT_INT_OP;
1514 1.1 alnsn default:
1515 1.7 alnsn BJ_ASSERT(false);
1516 1.1 alnsn return 0;
1517 1.1 alnsn }
1518 1.1 alnsn }
1519 1.1 alnsn
1520 1.1 alnsn /*
1521 1.1 alnsn * Convert BPF_JMP operations except BPF_JA to sljit condition.
1522 1.1 alnsn */
1523 1.1 alnsn static int
1524 1.7 alnsn bpf_jmp_to_sljit_cond(const struct bpf_insn *pc, bool negate)
1525 1.1 alnsn {
1526 1.1 alnsn /*
1527 1.1 alnsn * Note: all supported 64bit arches have 32bit comparison
1528 1.1 alnsn * instructions so SLJIT_INT_OP doesn't have any overhead.
1529 1.1 alnsn */
1530 1.1 alnsn int rv = SLJIT_INT_OP;
1531 1.1 alnsn
1532 1.1 alnsn switch (BPF_OP(pc->code)) {
1533 1.1 alnsn case BPF_JGT:
1534 1.1 alnsn rv |= negate ? SLJIT_C_LESS_EQUAL : SLJIT_C_GREATER;
1535 1.1 alnsn break;
1536 1.1 alnsn case BPF_JGE:
1537 1.1 alnsn rv |= negate ? SLJIT_C_LESS : SLJIT_C_GREATER_EQUAL;
1538 1.1 alnsn break;
1539 1.1 alnsn case BPF_JEQ:
1540 1.1 alnsn rv |= negate ? SLJIT_C_NOT_EQUAL : SLJIT_C_EQUAL;
1541 1.1 alnsn break;
1542 1.1 alnsn case BPF_JSET:
1543 1.1 alnsn rv |= negate ? SLJIT_C_EQUAL : SLJIT_C_NOT_EQUAL;
1544 1.1 alnsn break;
1545 1.1 alnsn default:
1546 1.7 alnsn BJ_ASSERT(false);
1547 1.1 alnsn }
1548 1.1 alnsn
1549 1.1 alnsn return rv;
1550 1.1 alnsn }
1551 1.1 alnsn
1552 1.1 alnsn /*
1553 1.1 alnsn * Convert BPF_K and BPF_X to sljit register.
1554 1.1 alnsn */
1555 1.1 alnsn static int
1556 1.7 alnsn kx_to_reg(const struct bpf_insn *pc)
1557 1.1 alnsn {
1558 1.1 alnsn
1559 1.1 alnsn switch (BPF_SRC(pc->code)) {
1560 1.1 alnsn case BPF_K: return SLJIT_IMM;
1561 1.7 alnsn case BPF_X: return BJ_XREG;
1562 1.1 alnsn default:
1563 1.7 alnsn BJ_ASSERT(false);
1564 1.1 alnsn return 0;
1565 1.1 alnsn }
1566 1.1 alnsn }
1567 1.1 alnsn
1568 1.12 alnsn static sljit_sw
1569 1.7 alnsn kx_to_reg_arg(const struct bpf_insn *pc)
1570 1.1 alnsn {
1571 1.1 alnsn
1572 1.1 alnsn switch (BPF_SRC(pc->code)) {
1573 1.1 alnsn case BPF_K: return (uint32_t)pc->k; /* SLJIT_IMM, pc->k, */
1574 1.7 alnsn case BPF_X: return 0; /* BJ_XREG, 0, */
1575 1.1 alnsn default:
1576 1.7 alnsn BJ_ASSERT(false);
1577 1.1 alnsn return 0;
1578 1.1 alnsn }
1579 1.1 alnsn }
1580 1.1 alnsn
1581 1.4 rmind bpfjit_func_t
1582 1.13 alnsn bpfjit_generate_code(const bpf_ctx_t *bc,
1583 1.13 alnsn const struct bpf_insn *insns, size_t insn_count)
1584 1.1 alnsn {
1585 1.1 alnsn void *rv;
1586 1.7 alnsn struct sljit_compiler *compiler;
1587 1.7 alnsn
1588 1.1 alnsn size_t i;
1589 1.1 alnsn int status;
1590 1.1 alnsn int branching, negate;
1591 1.1 alnsn unsigned int rval, mode, src;
1592 1.7 alnsn
1593 1.7 alnsn /* optimization related */
1594 1.13 alnsn bpf_memword_init_t initmask;
1595 1.13 alnsn int nscratches, ncopfuncs;
1596 1.1 alnsn
1597 1.1 alnsn /* a list of jumps to out-of-bound return from a generated function */
1598 1.1 alnsn struct sljit_jump **ret0;
1599 1.7 alnsn size_t ret0_size, ret0_maxsize;
1600 1.1 alnsn
1601 1.7 alnsn const struct bpf_insn *pc;
1602 1.1 alnsn struct bpfjit_insn_data *insn_dat;
1603 1.1 alnsn
1604 1.1 alnsn /* for local use */
1605 1.1 alnsn struct sljit_label *label;
1606 1.1 alnsn struct sljit_jump *jump;
1607 1.1 alnsn struct bpfjit_jump *bjump, *jtf;
1608 1.1 alnsn
1609 1.1 alnsn struct sljit_jump *to_mchain_jump;
1610 1.9 alnsn bool unconditional_ret;
1611 1.1 alnsn
1612 1.1 alnsn uint32_t jt, jf;
1613 1.1 alnsn
1614 1.14 rmind const size_t extwords = bc ? bc->extwords : 0;
1615 1.14 rmind const size_t memwords = extwords ? extwords : BPF_MEMWORDS;
1616 1.14 rmind const bpf_memword_init_t preinited = extwords ? bc->preinited : 0;
1617 1.13 alnsn
1618 1.1 alnsn rv = NULL;
1619 1.13 alnsn ret0 = NULL;
1620 1.1 alnsn compiler = NULL;
1621 1.1 alnsn insn_dat = NULL;
1622 1.13 alnsn
1623 1.13 alnsn if (memwords > MAX_MEMWORDS)
1624 1.13 alnsn goto fail;
1625 1.1 alnsn
1626 1.7 alnsn if (insn_count == 0 || insn_count > SIZE_MAX / sizeof(insn_dat[0]))
1627 1.1 alnsn goto fail;
1628 1.1 alnsn
1629 1.7 alnsn insn_dat = BJ_ALLOC(insn_count * sizeof(insn_dat[0]));
1630 1.1 alnsn if (insn_dat == NULL)
1631 1.1 alnsn goto fail;
1632 1.1 alnsn
1633 1.7 alnsn if (!optimize(insns, insn_dat, insn_count,
1634 1.13 alnsn extwords, &initmask, &nscratches, &ncopfuncs)) {
1635 1.1 alnsn goto fail;
1636 1.7 alnsn }
1637 1.7 alnsn
1638 1.1 alnsn ret0_size = 0;
1639 1.7 alnsn ret0_maxsize = 64;
1640 1.7 alnsn ret0 = BJ_ALLOC(ret0_maxsize * sizeof(ret0[0]));
1641 1.7 alnsn if (ret0 == NULL)
1642 1.1 alnsn goto fail;
1643 1.1 alnsn
1644 1.1 alnsn compiler = sljit_create_compiler();
1645 1.1 alnsn if (compiler == NULL)
1646 1.1 alnsn goto fail;
1647 1.1 alnsn
1648 1.1 alnsn #if !defined(_KERNEL) && defined(SLJIT_VERBOSE) && SLJIT_VERBOSE
1649 1.1 alnsn sljit_compiler_verbose(compiler, stderr);
1650 1.1 alnsn #endif
1651 1.1 alnsn
1652 1.7 alnsn status = sljit_emit_enter(compiler,
1653 1.7 alnsn 3, nscratches, 3, sizeof(struct bpfjit_stack));
1654 1.1 alnsn if (status != SLJIT_SUCCESS)
1655 1.1 alnsn goto fail;
1656 1.1 alnsn
1657 1.13 alnsn if (ncopfuncs > 0) {
1658 1.13 alnsn /* save ctx argument */
1659 1.13 alnsn status = sljit_emit_op1(compiler,
1660 1.13 alnsn SLJIT_MOV_P,
1661 1.13 alnsn SLJIT_MEM1(SLJIT_LOCALS_REG),
1662 1.13 alnsn offsetof(struct bpfjit_stack, ctx),
1663 1.13 alnsn BJ_CTX_ARG, 0);
1664 1.13 alnsn if (status != SLJIT_SUCCESS)
1665 1.13 alnsn goto fail;
1666 1.13 alnsn }
1667 1.13 alnsn
1668 1.13 alnsn if (extwords != 0) {
1669 1.13 alnsn /* copy "mem" argument from bpf_args to bpfjit_stack */
1670 1.13 alnsn status = sljit_emit_op1(compiler,
1671 1.13 alnsn SLJIT_MOV_P,
1672 1.13 alnsn BJ_TMP1REG, 0,
1673 1.15 rmind SLJIT_MEM1(BJ_ARGS), offsetof(struct bpf_args, mem));
1674 1.13 alnsn if (status != SLJIT_SUCCESS)
1675 1.13 alnsn goto fail;
1676 1.13 alnsn
1677 1.13 alnsn status = sljit_emit_op1(compiler,
1678 1.13 alnsn SLJIT_MOV_P,
1679 1.13 alnsn SLJIT_MEM1(SLJIT_LOCALS_REG),
1680 1.13 alnsn offsetof(struct bpfjit_stack, extmem),
1681 1.13 alnsn BJ_TMP1REG, 0);
1682 1.13 alnsn if (status != SLJIT_SUCCESS)
1683 1.13 alnsn goto fail;
1684 1.13 alnsn }
1685 1.13 alnsn
1686 1.13 alnsn status = load_buf_buflen(compiler);
1687 1.13 alnsn if (status != SLJIT_SUCCESS)
1688 1.13 alnsn goto fail;
1689 1.13 alnsn
1690 1.13 alnsn /*
1691 1.13 alnsn * Exclude pre-initialised external memory words but keep
1692 1.13 alnsn * initialization statuses of A and X registers in case
1693 1.14 rmind * bc->preinited wrongly sets those two bits.
1694 1.13 alnsn */
1695 1.14 rmind initmask &= ~preinited | BJ_INIT_ABIT | BJ_INIT_XBIT;
1696 1.13 alnsn
1697 1.13 alnsn #if defined(_KERNEL)
1698 1.13 alnsn /* bpf_filter() checks initialization of memwords. */
1699 1.13 alnsn BJ_ASSERT((initmask & (BJ_INIT_MBIT(memwords) - 1)) == 0);
1700 1.13 alnsn #endif
1701 1.13 alnsn for (i = 0; i < memwords; i++) {
1702 1.7 alnsn if (initmask & BJ_INIT_MBIT(i)) {
1703 1.13 alnsn /* M[i] = 0; */
1704 1.7 alnsn status = sljit_emit_op1(compiler,
1705 1.7 alnsn SLJIT_MOV_UI,
1706 1.7 alnsn SLJIT_MEM1(SLJIT_LOCALS_REG),
1707 1.7 alnsn offsetof(struct bpfjit_stack, mem) +
1708 1.7 alnsn i * sizeof(uint32_t),
1709 1.7 alnsn SLJIT_IMM, 0);
1710 1.7 alnsn if (status != SLJIT_SUCCESS)
1711 1.7 alnsn goto fail;
1712 1.7 alnsn }
1713 1.1 alnsn }
1714 1.1 alnsn
1715 1.7 alnsn if (initmask & BJ_INIT_ABIT) {
1716 1.1 alnsn /* A = 0; */
1717 1.1 alnsn status = sljit_emit_op1(compiler,
1718 1.1 alnsn SLJIT_MOV,
1719 1.7 alnsn BJ_AREG, 0,
1720 1.1 alnsn SLJIT_IMM, 0);
1721 1.1 alnsn if (status != SLJIT_SUCCESS)
1722 1.1 alnsn goto fail;
1723 1.1 alnsn }
1724 1.1 alnsn
1725 1.7 alnsn if (initmask & BJ_INIT_XBIT) {
1726 1.1 alnsn /* X = 0; */
1727 1.1 alnsn status = sljit_emit_op1(compiler,
1728 1.1 alnsn SLJIT_MOV,
1729 1.7 alnsn BJ_XREG, 0,
1730 1.1 alnsn SLJIT_IMM, 0);
1731 1.1 alnsn if (status != SLJIT_SUCCESS)
1732 1.1 alnsn goto fail;
1733 1.1 alnsn }
1734 1.1 alnsn
1735 1.1 alnsn for (i = 0; i < insn_count; i++) {
1736 1.7 alnsn if (insn_dat[i].unreachable)
1737 1.1 alnsn continue;
1738 1.1 alnsn
1739 1.1 alnsn /*
1740 1.1 alnsn * Resolve jumps to the current insn.
1741 1.1 alnsn */
1742 1.1 alnsn label = NULL;
1743 1.7 alnsn SLIST_FOREACH(bjump, &insn_dat[i].bjumps, entries) {
1744 1.7 alnsn if (bjump->sjump != NULL) {
1745 1.1 alnsn if (label == NULL)
1746 1.1 alnsn label = sljit_emit_label(compiler);
1747 1.1 alnsn if (label == NULL)
1748 1.1 alnsn goto fail;
1749 1.7 alnsn sljit_set_label(bjump->sjump, label);
1750 1.1 alnsn }
1751 1.1 alnsn }
1752 1.1 alnsn
1753 1.9 alnsn to_mchain_jump = NULL;
1754 1.9 alnsn unconditional_ret = false;
1755 1.9 alnsn
1756 1.9 alnsn if (read_pkt_insn(&insns[i], NULL)) {
1757 1.9 alnsn if (insn_dat[i].u.rdata.check_length > UINT32_MAX) {
1758 1.9 alnsn /* Jump to "return 0" unconditionally. */
1759 1.9 alnsn unconditional_ret = true;
1760 1.9 alnsn jump = sljit_emit_jump(compiler, SLJIT_JUMP);
1761 1.9 alnsn if (jump == NULL)
1762 1.9 alnsn goto fail;
1763 1.9 alnsn if (!append_jump(jump, &ret0,
1764 1.9 alnsn &ret0_size, &ret0_maxsize))
1765 1.9 alnsn goto fail;
1766 1.9 alnsn } else if (insn_dat[i].u.rdata.check_length > 0) {
1767 1.9 alnsn /* if (buflen < check_length) return 0; */
1768 1.9 alnsn jump = sljit_emit_cmp(compiler,
1769 1.9 alnsn SLJIT_C_LESS,
1770 1.9 alnsn BJ_BUFLEN, 0,
1771 1.9 alnsn SLJIT_IMM,
1772 1.9 alnsn insn_dat[i].u.rdata.check_length);
1773 1.9 alnsn if (jump == NULL)
1774 1.9 alnsn goto fail;
1775 1.1 alnsn #ifdef _KERNEL
1776 1.9 alnsn to_mchain_jump = jump;
1777 1.1 alnsn #else
1778 1.9 alnsn if (!append_jump(jump, &ret0,
1779 1.9 alnsn &ret0_size, &ret0_maxsize))
1780 1.9 alnsn goto fail;
1781 1.1 alnsn #endif
1782 1.9 alnsn }
1783 1.1 alnsn }
1784 1.1 alnsn
1785 1.1 alnsn pc = &insns[i];
1786 1.1 alnsn switch (BPF_CLASS(pc->code)) {
1787 1.1 alnsn
1788 1.1 alnsn default:
1789 1.1 alnsn goto fail;
1790 1.1 alnsn
1791 1.1 alnsn case BPF_LD:
1792 1.1 alnsn /* BPF_LD+BPF_IMM A <- k */
1793 1.1 alnsn if (pc->code == (BPF_LD|BPF_IMM)) {
1794 1.1 alnsn status = sljit_emit_op1(compiler,
1795 1.1 alnsn SLJIT_MOV,
1796 1.7 alnsn BJ_AREG, 0,
1797 1.1 alnsn SLJIT_IMM, (uint32_t)pc->k);
1798 1.1 alnsn if (status != SLJIT_SUCCESS)
1799 1.1 alnsn goto fail;
1800 1.1 alnsn
1801 1.1 alnsn continue;
1802 1.1 alnsn }
1803 1.1 alnsn
1804 1.1 alnsn /* BPF_LD+BPF_MEM A <- M[k] */
1805 1.1 alnsn if (pc->code == (BPF_LD|BPF_MEM)) {
1806 1.13 alnsn if ((uint32_t)pc->k >= memwords)
1807 1.1 alnsn goto fail;
1808 1.13 alnsn status = emit_memload(compiler,
1809 1.13 alnsn BJ_AREG, pc->k, extwords);
1810 1.1 alnsn if (status != SLJIT_SUCCESS)
1811 1.1 alnsn goto fail;
1812 1.1 alnsn
1813 1.1 alnsn continue;
1814 1.1 alnsn }
1815 1.1 alnsn
1816 1.1 alnsn /* BPF_LD+BPF_W+BPF_LEN A <- len */
1817 1.1 alnsn if (pc->code == (BPF_LD|BPF_W|BPF_LEN)) {
1818 1.1 alnsn status = sljit_emit_op1(compiler,
1819 1.1 alnsn SLJIT_MOV,
1820 1.7 alnsn BJ_AREG, 0,
1821 1.13 alnsn SLJIT_MEM1(BJ_ARGS),
1822 1.13 alnsn offsetof(struct bpf_args, wirelen));
1823 1.1 alnsn if (status != SLJIT_SUCCESS)
1824 1.1 alnsn goto fail;
1825 1.1 alnsn
1826 1.1 alnsn continue;
1827 1.1 alnsn }
1828 1.1 alnsn
1829 1.1 alnsn mode = BPF_MODE(pc->code);
1830 1.1 alnsn if (mode != BPF_ABS && mode != BPF_IND)
1831 1.1 alnsn goto fail;
1832 1.1 alnsn
1833 1.9 alnsn if (unconditional_ret)
1834 1.9 alnsn continue;
1835 1.9 alnsn
1836 1.1 alnsn status = emit_pkt_read(compiler, pc,
1837 1.7 alnsn to_mchain_jump, &ret0, &ret0_size, &ret0_maxsize);
1838 1.1 alnsn if (status != SLJIT_SUCCESS)
1839 1.1 alnsn goto fail;
1840 1.1 alnsn
1841 1.1 alnsn continue;
1842 1.1 alnsn
1843 1.1 alnsn case BPF_LDX:
1844 1.1 alnsn mode = BPF_MODE(pc->code);
1845 1.1 alnsn
1846 1.1 alnsn /* BPF_LDX+BPF_W+BPF_IMM X <- k */
1847 1.1 alnsn if (mode == BPF_IMM) {
1848 1.1 alnsn if (BPF_SIZE(pc->code) != BPF_W)
1849 1.1 alnsn goto fail;
1850 1.1 alnsn status = sljit_emit_op1(compiler,
1851 1.1 alnsn SLJIT_MOV,
1852 1.7 alnsn BJ_XREG, 0,
1853 1.1 alnsn SLJIT_IMM, (uint32_t)pc->k);
1854 1.1 alnsn if (status != SLJIT_SUCCESS)
1855 1.1 alnsn goto fail;
1856 1.1 alnsn
1857 1.1 alnsn continue;
1858 1.1 alnsn }
1859 1.1 alnsn
1860 1.1 alnsn /* BPF_LDX+BPF_W+BPF_LEN X <- len */
1861 1.1 alnsn if (mode == BPF_LEN) {
1862 1.1 alnsn if (BPF_SIZE(pc->code) != BPF_W)
1863 1.1 alnsn goto fail;
1864 1.1 alnsn status = sljit_emit_op1(compiler,
1865 1.1 alnsn SLJIT_MOV,
1866 1.7 alnsn BJ_XREG, 0,
1867 1.13 alnsn SLJIT_MEM1(BJ_ARGS),
1868 1.13 alnsn offsetof(struct bpf_args, wirelen));
1869 1.1 alnsn if (status != SLJIT_SUCCESS)
1870 1.1 alnsn goto fail;
1871 1.1 alnsn
1872 1.1 alnsn continue;
1873 1.1 alnsn }
1874 1.1 alnsn
1875 1.1 alnsn /* BPF_LDX+BPF_W+BPF_MEM X <- M[k] */
1876 1.1 alnsn if (mode == BPF_MEM) {
1877 1.1 alnsn if (BPF_SIZE(pc->code) != BPF_W)
1878 1.1 alnsn goto fail;
1879 1.13 alnsn if ((uint32_t)pc->k >= memwords)
1880 1.1 alnsn goto fail;
1881 1.13 alnsn status = emit_memload(compiler,
1882 1.13 alnsn BJ_XREG, pc->k, extwords);
1883 1.1 alnsn if (status != SLJIT_SUCCESS)
1884 1.1 alnsn goto fail;
1885 1.1 alnsn
1886 1.1 alnsn continue;
1887 1.1 alnsn }
1888 1.1 alnsn
1889 1.1 alnsn /* BPF_LDX+BPF_B+BPF_MSH X <- 4*(P[k:1]&0xf) */
1890 1.1 alnsn if (mode != BPF_MSH || BPF_SIZE(pc->code) != BPF_B)
1891 1.1 alnsn goto fail;
1892 1.1 alnsn
1893 1.9 alnsn if (unconditional_ret)
1894 1.9 alnsn continue;
1895 1.9 alnsn
1896 1.1 alnsn status = emit_msh(compiler, pc,
1897 1.7 alnsn to_mchain_jump, &ret0, &ret0_size, &ret0_maxsize);
1898 1.1 alnsn if (status != SLJIT_SUCCESS)
1899 1.1 alnsn goto fail;
1900 1.1 alnsn
1901 1.1 alnsn continue;
1902 1.1 alnsn
1903 1.1 alnsn case BPF_ST:
1904 1.8 alnsn if (pc->code != BPF_ST ||
1905 1.13 alnsn (uint32_t)pc->k >= memwords) {
1906 1.1 alnsn goto fail;
1907 1.8 alnsn }
1908 1.1 alnsn
1909 1.13 alnsn status = emit_memstore(compiler,
1910 1.13 alnsn BJ_AREG, pc->k, extwords);
1911 1.1 alnsn if (status != SLJIT_SUCCESS)
1912 1.1 alnsn goto fail;
1913 1.1 alnsn
1914 1.1 alnsn continue;
1915 1.1 alnsn
1916 1.1 alnsn case BPF_STX:
1917 1.8 alnsn if (pc->code != BPF_STX ||
1918 1.13 alnsn (uint32_t)pc->k >= memwords) {
1919 1.1 alnsn goto fail;
1920 1.8 alnsn }
1921 1.1 alnsn
1922 1.13 alnsn status = emit_memstore(compiler,
1923 1.13 alnsn BJ_XREG, pc->k, extwords);
1924 1.1 alnsn if (status != SLJIT_SUCCESS)
1925 1.1 alnsn goto fail;
1926 1.1 alnsn
1927 1.1 alnsn continue;
1928 1.1 alnsn
1929 1.1 alnsn case BPF_ALU:
1930 1.1 alnsn if (pc->code == (BPF_ALU|BPF_NEG)) {
1931 1.1 alnsn status = sljit_emit_op1(compiler,
1932 1.1 alnsn SLJIT_NEG,
1933 1.7 alnsn BJ_AREG, 0,
1934 1.7 alnsn BJ_AREG, 0);
1935 1.1 alnsn if (status != SLJIT_SUCCESS)
1936 1.1 alnsn goto fail;
1937 1.1 alnsn
1938 1.1 alnsn continue;
1939 1.1 alnsn }
1940 1.1 alnsn
1941 1.1 alnsn if (BPF_OP(pc->code) != BPF_DIV) {
1942 1.1 alnsn status = sljit_emit_op2(compiler,
1943 1.1 alnsn bpf_alu_to_sljit_op(pc),
1944 1.7 alnsn BJ_AREG, 0,
1945 1.7 alnsn BJ_AREG, 0,
1946 1.1 alnsn kx_to_reg(pc), kx_to_reg_arg(pc));
1947 1.1 alnsn if (status != SLJIT_SUCCESS)
1948 1.1 alnsn goto fail;
1949 1.1 alnsn
1950 1.1 alnsn continue;
1951 1.1 alnsn }
1952 1.1 alnsn
1953 1.1 alnsn /* BPF_DIV */
1954 1.1 alnsn
1955 1.1 alnsn src = BPF_SRC(pc->code);
1956 1.1 alnsn if (src != BPF_X && src != BPF_K)
1957 1.1 alnsn goto fail;
1958 1.1 alnsn
1959 1.1 alnsn /* division by zero? */
1960 1.1 alnsn if (src == BPF_X) {
1961 1.1 alnsn jump = sljit_emit_cmp(compiler,
1962 1.1 alnsn SLJIT_C_EQUAL|SLJIT_INT_OP,
1963 1.8 alnsn BJ_XREG, 0,
1964 1.1 alnsn SLJIT_IMM, 0);
1965 1.1 alnsn if (jump == NULL)
1966 1.1 alnsn goto fail;
1967 1.7 alnsn if (!append_jump(jump, &ret0,
1968 1.7 alnsn &ret0_size, &ret0_maxsize))
1969 1.7 alnsn goto fail;
1970 1.1 alnsn } else if (pc->k == 0) {
1971 1.1 alnsn jump = sljit_emit_jump(compiler, SLJIT_JUMP);
1972 1.1 alnsn if (jump == NULL)
1973 1.1 alnsn goto fail;
1974 1.7 alnsn if (!append_jump(jump, &ret0,
1975 1.7 alnsn &ret0_size, &ret0_maxsize))
1976 1.7 alnsn goto fail;
1977 1.1 alnsn }
1978 1.1 alnsn
1979 1.1 alnsn if (src == BPF_X) {
1980 1.7 alnsn status = emit_division(compiler, BJ_XREG, 0);
1981 1.1 alnsn if (status != SLJIT_SUCCESS)
1982 1.1 alnsn goto fail;
1983 1.1 alnsn } else if (pc->k != 0) {
1984 1.1 alnsn if (pc->k & (pc->k - 1)) {
1985 1.1 alnsn status = emit_division(compiler,
1986 1.1 alnsn SLJIT_IMM, (uint32_t)pc->k);
1987 1.1 alnsn } else {
1988 1.7 alnsn status = emit_pow2_division(compiler,
1989 1.1 alnsn (uint32_t)pc->k);
1990 1.1 alnsn }
1991 1.1 alnsn if (status != SLJIT_SUCCESS)
1992 1.1 alnsn goto fail;
1993 1.1 alnsn }
1994 1.1 alnsn
1995 1.1 alnsn continue;
1996 1.1 alnsn
1997 1.1 alnsn case BPF_JMP:
1998 1.7 alnsn if (BPF_OP(pc->code) == BPF_JA) {
1999 1.1 alnsn jt = jf = pc->k;
2000 1.1 alnsn } else {
2001 1.1 alnsn jt = pc->jt;
2002 1.1 alnsn jf = pc->jf;
2003 1.1 alnsn }
2004 1.1 alnsn
2005 1.1 alnsn negate = (jt == 0) ? 1 : 0;
2006 1.1 alnsn branching = (jt == jf) ? 0 : 1;
2007 1.7 alnsn jtf = insn_dat[i].u.jdata.jtf;
2008 1.1 alnsn
2009 1.1 alnsn if (branching) {
2010 1.1 alnsn if (BPF_OP(pc->code) != BPF_JSET) {
2011 1.1 alnsn jump = sljit_emit_cmp(compiler,
2012 1.1 alnsn bpf_jmp_to_sljit_cond(pc, negate),
2013 1.7 alnsn BJ_AREG, 0,
2014 1.1 alnsn kx_to_reg(pc), kx_to_reg_arg(pc));
2015 1.1 alnsn } else {
2016 1.1 alnsn status = sljit_emit_op2(compiler,
2017 1.1 alnsn SLJIT_AND,
2018 1.7 alnsn BJ_TMP1REG, 0,
2019 1.7 alnsn BJ_AREG, 0,
2020 1.1 alnsn kx_to_reg(pc), kx_to_reg_arg(pc));
2021 1.1 alnsn if (status != SLJIT_SUCCESS)
2022 1.1 alnsn goto fail;
2023 1.1 alnsn
2024 1.1 alnsn jump = sljit_emit_cmp(compiler,
2025 1.1 alnsn bpf_jmp_to_sljit_cond(pc, negate),
2026 1.7 alnsn BJ_TMP1REG, 0,
2027 1.1 alnsn SLJIT_IMM, 0);
2028 1.1 alnsn }
2029 1.1 alnsn
2030 1.1 alnsn if (jump == NULL)
2031 1.1 alnsn goto fail;
2032 1.1 alnsn
2033 1.7 alnsn BJ_ASSERT(jtf[negate].sjump == NULL);
2034 1.7 alnsn jtf[negate].sjump = jump;
2035 1.1 alnsn }
2036 1.1 alnsn
2037 1.1 alnsn if (!branching || (jt != 0 && jf != 0)) {
2038 1.1 alnsn jump = sljit_emit_jump(compiler, SLJIT_JUMP);
2039 1.1 alnsn if (jump == NULL)
2040 1.1 alnsn goto fail;
2041 1.1 alnsn
2042 1.7 alnsn BJ_ASSERT(jtf[branching].sjump == NULL);
2043 1.7 alnsn jtf[branching].sjump = jump;
2044 1.1 alnsn }
2045 1.1 alnsn
2046 1.1 alnsn continue;
2047 1.1 alnsn
2048 1.1 alnsn case BPF_RET:
2049 1.1 alnsn rval = BPF_RVAL(pc->code);
2050 1.1 alnsn if (rval == BPF_X)
2051 1.1 alnsn goto fail;
2052 1.1 alnsn
2053 1.1 alnsn /* BPF_RET+BPF_K accept k bytes */
2054 1.1 alnsn if (rval == BPF_K) {
2055 1.7 alnsn status = sljit_emit_return(compiler,
2056 1.7 alnsn SLJIT_MOV_UI,
2057 1.1 alnsn SLJIT_IMM, (uint32_t)pc->k);
2058 1.1 alnsn if (status != SLJIT_SUCCESS)
2059 1.1 alnsn goto fail;
2060 1.1 alnsn }
2061 1.1 alnsn
2062 1.1 alnsn /* BPF_RET+BPF_A accept A bytes */
2063 1.1 alnsn if (rval == BPF_A) {
2064 1.7 alnsn status = sljit_emit_return(compiler,
2065 1.7 alnsn SLJIT_MOV_UI,
2066 1.7 alnsn BJ_AREG, 0);
2067 1.1 alnsn if (status != SLJIT_SUCCESS)
2068 1.1 alnsn goto fail;
2069 1.1 alnsn }
2070 1.1 alnsn
2071 1.1 alnsn continue;
2072 1.1 alnsn
2073 1.1 alnsn case BPF_MISC:
2074 1.7 alnsn switch (BPF_MISCOP(pc->code)) {
2075 1.7 alnsn case BPF_TAX:
2076 1.1 alnsn status = sljit_emit_op1(compiler,
2077 1.1 alnsn SLJIT_MOV_UI,
2078 1.7 alnsn BJ_XREG, 0,
2079 1.7 alnsn BJ_AREG, 0);
2080 1.1 alnsn if (status != SLJIT_SUCCESS)
2081 1.1 alnsn goto fail;
2082 1.1 alnsn
2083 1.1 alnsn continue;
2084 1.1 alnsn
2085 1.7 alnsn case BPF_TXA:
2086 1.1 alnsn status = sljit_emit_op1(compiler,
2087 1.1 alnsn SLJIT_MOV,
2088 1.7 alnsn BJ_AREG, 0,
2089 1.7 alnsn BJ_XREG, 0);
2090 1.1 alnsn if (status != SLJIT_SUCCESS)
2091 1.1 alnsn goto fail;
2092 1.1 alnsn
2093 1.1 alnsn continue;
2094 1.13 alnsn
2095 1.13 alnsn case BPF_COP:
2096 1.13 alnsn case BPF_COPX:
2097 1.13 alnsn if (bc == NULL || bc->copfuncs == NULL)
2098 1.13 alnsn goto fail;
2099 1.13 alnsn if (BPF_MISCOP(pc->code) == BPF_COP &&
2100 1.13 alnsn (uint32_t)pc->k >= bc->nfuncs) {
2101 1.13 alnsn goto fail;
2102 1.13 alnsn }
2103 1.13 alnsn
2104 1.13 alnsn jump = NULL;
2105 1.13 alnsn status = emit_cop(compiler, bc, pc, &jump);
2106 1.13 alnsn if (status != SLJIT_SUCCESS)
2107 1.13 alnsn goto fail;
2108 1.13 alnsn
2109 1.13 alnsn if (jump != NULL && !append_jump(jump,
2110 1.13 alnsn &ret0, &ret0_size, &ret0_maxsize))
2111 1.13 alnsn goto fail;
2112 1.13 alnsn
2113 1.13 alnsn continue;
2114 1.1 alnsn }
2115 1.1 alnsn
2116 1.1 alnsn goto fail;
2117 1.1 alnsn } /* switch */
2118 1.1 alnsn } /* main loop */
2119 1.1 alnsn
2120 1.7 alnsn BJ_ASSERT(ret0_size <= ret0_maxsize);
2121 1.1 alnsn
2122 1.7 alnsn if (ret0_size > 0) {
2123 1.1 alnsn label = sljit_emit_label(compiler);
2124 1.1 alnsn if (label == NULL)
2125 1.1 alnsn goto fail;
2126 1.7 alnsn for (i = 0; i < ret0_size; i++)
2127 1.7 alnsn sljit_set_label(ret0[i], label);
2128 1.1 alnsn }
2129 1.1 alnsn
2130 1.1 alnsn status = sljit_emit_return(compiler,
2131 1.1 alnsn SLJIT_MOV_UI,
2132 1.7 alnsn SLJIT_IMM, 0);
2133 1.1 alnsn if (status != SLJIT_SUCCESS)
2134 1.1 alnsn goto fail;
2135 1.1 alnsn
2136 1.1 alnsn rv = sljit_generate_code(compiler);
2137 1.1 alnsn
2138 1.1 alnsn fail:
2139 1.1 alnsn if (compiler != NULL)
2140 1.1 alnsn sljit_free_compiler(compiler);
2141 1.1 alnsn
2142 1.1 alnsn if (insn_dat != NULL)
2143 1.7 alnsn BJ_FREE(insn_dat, insn_count * sizeof(insn_dat[0]));
2144 1.1 alnsn
2145 1.1 alnsn if (ret0 != NULL)
2146 1.7 alnsn BJ_FREE(ret0, ret0_maxsize * sizeof(ret0[0]));
2147 1.1 alnsn
2148 1.4 rmind return (bpfjit_func_t)rv;
2149 1.1 alnsn }
2150 1.1 alnsn
2151 1.1 alnsn void
2152 1.4 rmind bpfjit_free_code(bpfjit_func_t code)
2153 1.1 alnsn {
2154 1.7 alnsn
2155 1.1 alnsn sljit_free_code((void *)code);
2156 1.1 alnsn }
2157