bpfjit.c revision 1.2.2.3 1 1.2.2.3 tls /* $NetBSD: bpfjit.c,v 1.2.2.3 2014/08/20 00:04:34 tls Exp $ */
2 1.2.2.3 tls
3 1.2.2.2 tls /*-
4 1.2.2.3 tls * Copyright (c) 2011-2014 Alexander Nasonov.
5 1.2.2.2 tls * All rights reserved.
6 1.2.2.2 tls *
7 1.2.2.2 tls * Redistribution and use in source and binary forms, with or without
8 1.2.2.2 tls * modification, are permitted provided that the following conditions
9 1.2.2.2 tls * are met:
10 1.2.2.2 tls *
11 1.2.2.2 tls * 1. Redistributions of source code must retain the above copyright
12 1.2.2.2 tls * notice, this list of conditions and the following disclaimer.
13 1.2.2.2 tls * 2. Redistributions in binary form must reproduce the above copyright
14 1.2.2.2 tls * notice, this list of conditions and the following disclaimer in
15 1.2.2.2 tls * the documentation and/or other materials provided with the
16 1.2.2.2 tls * distribution.
17 1.2.2.2 tls *
18 1.2.2.2 tls * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 1.2.2.2 tls * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 1.2.2.2 tls * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
21 1.2.2.2 tls * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
22 1.2.2.2 tls * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
23 1.2.2.2 tls * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
24 1.2.2.2 tls * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
25 1.2.2.2 tls * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
26 1.2.2.2 tls * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
27 1.2.2.2 tls * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
28 1.2.2.2 tls * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 1.2.2.2 tls * SUCH DAMAGE.
30 1.2.2.2 tls */
31 1.2.2.2 tls
32 1.2.2.2 tls #include <sys/cdefs.h>
33 1.2.2.2 tls #ifdef _KERNEL
34 1.2.2.3 tls __KERNEL_RCSID(0, "$NetBSD: bpfjit.c,v 1.2.2.3 2014/08/20 00:04:34 tls Exp $");
35 1.2.2.2 tls #else
36 1.2.2.3 tls __RCSID("$NetBSD: bpfjit.c,v 1.2.2.3 2014/08/20 00:04:34 tls Exp $");
37 1.2.2.2 tls #endif
38 1.2.2.2 tls
39 1.2.2.3 tls #include <sys/types.h>
40 1.2.2.3 tls #include <sys/queue.h>
41 1.2.2.2 tls
42 1.2.2.2 tls #ifndef _KERNEL
43 1.2.2.2 tls #include <assert.h>
44 1.2.2.3 tls #define BJ_ASSERT(c) assert(c)
45 1.2.2.2 tls #else
46 1.2.2.3 tls #define BJ_ASSERT(c) KASSERT(c)
47 1.2.2.2 tls #endif
48 1.2.2.2 tls
49 1.2.2.2 tls #ifndef _KERNEL
50 1.2.2.2 tls #include <stdlib.h>
51 1.2.2.3 tls #define BJ_ALLOC(sz) malloc(sz)
52 1.2.2.3 tls #define BJ_FREE(p, sz) free(p)
53 1.2.2.2 tls #else
54 1.2.2.3 tls #include <sys/kmem.h>
55 1.2.2.3 tls #define BJ_ALLOC(sz) kmem_alloc(sz, KM_SLEEP)
56 1.2.2.3 tls #define BJ_FREE(p, sz) kmem_free(p, sz)
57 1.2.2.2 tls #endif
58 1.2.2.2 tls
59 1.2.2.2 tls #ifndef _KERNEL
60 1.2.2.2 tls #include <limits.h>
61 1.2.2.2 tls #include <stdbool.h>
62 1.2.2.2 tls #include <stddef.h>
63 1.2.2.2 tls #include <stdint.h>
64 1.2.2.2 tls #else
65 1.2.2.2 tls #include <sys/atomic.h>
66 1.2.2.2 tls #include <sys/module.h>
67 1.2.2.2 tls #endif
68 1.2.2.2 tls
69 1.2.2.3 tls #define __BPF_PRIVATE
70 1.2.2.3 tls #include <net/bpf.h>
71 1.2.2.3 tls #include <net/bpfjit.h>
72 1.2.2.2 tls #include <sljitLir.h>
73 1.2.2.2 tls
74 1.2.2.2 tls #if !defined(_KERNEL) && defined(SLJIT_VERBOSE) && SLJIT_VERBOSE
75 1.2.2.2 tls #include <stdio.h> /* for stderr */
76 1.2.2.2 tls #endif
77 1.2.2.2 tls
78 1.2.2.3 tls /*
79 1.2.2.3 tls * Arguments of generated bpfjit_func_t.
80 1.2.2.3 tls * The first argument is reassigned upon entry
81 1.2.2.3 tls * to a more frequently used buf argument.
82 1.2.2.3 tls */
83 1.2.2.3 tls #define BJ_CTX_ARG SLJIT_SAVED_REG1
84 1.2.2.3 tls #define BJ_ARGS SLJIT_SAVED_REG2
85 1.2.2.3 tls
86 1.2.2.3 tls /*
87 1.2.2.3 tls * Permanent register assignments.
88 1.2.2.3 tls */
89 1.2.2.3 tls #define BJ_BUF SLJIT_SAVED_REG1
90 1.2.2.3 tls //#define BJ_ARGS SLJIT_SAVED_REG2
91 1.2.2.3 tls #define BJ_BUFLEN SLJIT_SAVED_REG3
92 1.2.2.3 tls #define BJ_AREG SLJIT_SCRATCH_REG1
93 1.2.2.3 tls #define BJ_TMP1REG SLJIT_SCRATCH_REG2
94 1.2.2.3 tls #define BJ_TMP2REG SLJIT_SCRATCH_REG3
95 1.2.2.3 tls #define BJ_XREG SLJIT_TEMPORARY_EREG1
96 1.2.2.3 tls #define BJ_TMP3REG SLJIT_TEMPORARY_EREG2
97 1.2.2.3 tls
98 1.2.2.3 tls #ifdef _KERNEL
99 1.2.2.3 tls #define MAX_MEMWORDS BPF_MAX_MEMWORDS
100 1.2.2.3 tls #else
101 1.2.2.3 tls #define MAX_MEMWORDS BPF_MEMWORDS
102 1.2.2.3 tls #endif
103 1.2.2.2 tls
104 1.2.2.3 tls #define BJ_INIT_NOBITS ((bpf_memword_init_t)0)
105 1.2.2.3 tls #define BJ_INIT_MBIT(k) BPF_MEMWORD_INIT(k)
106 1.2.2.3 tls #define BJ_INIT_ABIT BJ_INIT_MBIT(MAX_MEMWORDS)
107 1.2.2.3 tls #define BJ_INIT_XBIT BJ_INIT_MBIT(MAX_MEMWORDS + 1)
108 1.2.2.2 tls
109 1.2.2.3 tls /*
110 1.2.2.3 tls * Get a number of memwords and external memwords from a bpf_ctx object.
111 1.2.2.2 tls */
112 1.2.2.3 tls #define GET_EXTWORDS(bc) ((bc) ? (bc)->extwords : 0)
113 1.2.2.3 tls #define GET_MEMWORDS(bc) (GET_EXTWORDS(bc) ? GET_EXTWORDS(bc) : BPF_MEMWORDS)
114 1.2.2.2 tls
115 1.2.2.3 tls /*
116 1.2.2.3 tls * Optimization hints.
117 1.2.2.3 tls */
118 1.2.2.3 tls typedef unsigned int bpfjit_hint_t;
119 1.2.2.3 tls #define BJ_HINT_ABS 0x01 /* packet read at absolute offset */
120 1.2.2.3 tls #define BJ_HINT_IND 0x02 /* packet read at variable offset */
121 1.2.2.3 tls #define BJ_HINT_MSH 0x04 /* BPF_MSH instruction */
122 1.2.2.3 tls #define BJ_HINT_COP 0x08 /* BPF_COP or BPF_COPX instruction */
123 1.2.2.3 tls #define BJ_HINT_COPX 0x10 /* BPF_COPX instruction */
124 1.2.2.3 tls #define BJ_HINT_XREG 0x20 /* BJ_XREG is needed */
125 1.2.2.3 tls #define BJ_HINT_LDX 0x40 /* BPF_LDX instruction */
126 1.2.2.3 tls #define BJ_HINT_PKT (BJ_HINT_ABS|BJ_HINT_IND|BJ_HINT_MSH)
127 1.2.2.2 tls
128 1.2.2.2 tls /*
129 1.2.2.3 tls * Datatype for Array Bounds Check Elimination (ABC) pass.
130 1.2.2.2 tls */
131 1.2.2.3 tls typedef uint64_t bpfjit_abc_length_t;
132 1.2.2.3 tls #define MAX_ABC_LENGTH (UINT32_MAX + UINT64_C(4)) /* max. width is 4 */
133 1.2.2.3 tls
134 1.2.2.3 tls struct bpfjit_stack
135 1.2.2.2 tls {
136 1.2.2.3 tls bpf_ctx_t *ctx;
137 1.2.2.3 tls uint32_t *extmem; /* pointer to external memory store */
138 1.2.2.3 tls uint32_t reg; /* saved A or X register */
139 1.2.2.3 tls #ifdef _KERNEL
140 1.2.2.3 tls int err; /* 3rd argument for m_xword/m_xhalf/m_xbyte function call */
141 1.2.2.3 tls #endif
142 1.2.2.3 tls uint32_t mem[BPF_MEMWORDS]; /* internal memory store */
143 1.2.2.2 tls };
144 1.2.2.2 tls
145 1.2.2.2 tls /*
146 1.2.2.2 tls * Data for BPF_JMP instruction.
147 1.2.2.3 tls * Forward declaration for struct bpfjit_jump.
148 1.2.2.2 tls */
149 1.2.2.3 tls struct bpfjit_jump_data;
150 1.2.2.3 tls
151 1.2.2.3 tls /*
152 1.2.2.3 tls * Node of bjumps list.
153 1.2.2.3 tls */
154 1.2.2.3 tls struct bpfjit_jump {
155 1.2.2.3 tls struct sljit_jump *sjump;
156 1.2.2.3 tls SLIST_ENTRY(bpfjit_jump) entries;
157 1.2.2.3 tls struct bpfjit_jump_data *jdata;
158 1.2.2.3 tls };
159 1.2.2.3 tls
160 1.2.2.3 tls /*
161 1.2.2.3 tls * Data for BPF_JMP instruction.
162 1.2.2.3 tls */
163 1.2.2.3 tls struct bpfjit_jump_data {
164 1.2.2.3 tls /*
165 1.2.2.3 tls * These entries make up bjumps list:
166 1.2.2.3 tls * jtf[0] - when coming from jt path,
167 1.2.2.3 tls * jtf[1] - when coming from jf path.
168 1.2.2.3 tls */
169 1.2.2.3 tls struct bpfjit_jump jtf[2];
170 1.2.2.3 tls /*
171 1.2.2.3 tls * Length calculated by Array Bounds Check Elimination (ABC) pass.
172 1.2.2.3 tls */
173 1.2.2.3 tls bpfjit_abc_length_t abc_length;
174 1.2.2.2 tls /*
175 1.2.2.3 tls * Length checked by the last out-of-bounds check.
176 1.2.2.2 tls */
177 1.2.2.3 tls bpfjit_abc_length_t checked_length;
178 1.2.2.2 tls };
179 1.2.2.2 tls
180 1.2.2.2 tls /*
181 1.2.2.2 tls * Data for "read from packet" instructions.
182 1.2.2.2 tls * See also read_pkt_insn() function below.
183 1.2.2.2 tls */
184 1.2.2.3 tls struct bpfjit_read_pkt_data {
185 1.2.2.3 tls /*
186 1.2.2.3 tls * Length calculated by Array Bounds Check Elimination (ABC) pass.
187 1.2.2.3 tls */
188 1.2.2.3 tls bpfjit_abc_length_t abc_length;
189 1.2.2.2 tls /*
190 1.2.2.3 tls * If positive, emit "if (buflen < check_length) return 0"
191 1.2.2.3 tls * out-of-bounds check.
192 1.2.2.3 tls * Values greater than UINT32_MAX generate unconditional "return 0".
193 1.2.2.2 tls */
194 1.2.2.3 tls bpfjit_abc_length_t check_length;
195 1.2.2.2 tls };
196 1.2.2.2 tls
197 1.2.2.2 tls /*
198 1.2.2.2 tls * Additional (optimization-related) data for bpf_insn.
199 1.2.2.2 tls */
200 1.2.2.3 tls struct bpfjit_insn_data {
201 1.2.2.2 tls /* List of jumps to this insn. */
202 1.2.2.3 tls SLIST_HEAD(, bpfjit_jump) bjumps;
203 1.2.2.2 tls
204 1.2.2.2 tls union {
205 1.2.2.3 tls struct bpfjit_jump_data jdata;
206 1.2.2.3 tls struct bpfjit_read_pkt_data rdata;
207 1.2.2.3 tls } u;
208 1.2.2.2 tls
209 1.2.2.3 tls bpf_memword_init_t invalid;
210 1.2.2.3 tls bool unreachable;
211 1.2.2.2 tls };
212 1.2.2.2 tls
213 1.2.2.2 tls #ifdef _KERNEL
214 1.2.2.2 tls
215 1.2.2.2 tls uint32_t m_xword(const struct mbuf *, uint32_t, int *);
216 1.2.2.2 tls uint32_t m_xhalf(const struct mbuf *, uint32_t, int *);
217 1.2.2.2 tls uint32_t m_xbyte(const struct mbuf *, uint32_t, int *);
218 1.2.2.2 tls
219 1.2.2.2 tls MODULE(MODULE_CLASS_MISC, bpfjit, "sljit")
220 1.2.2.2 tls
221 1.2.2.2 tls static int
222 1.2.2.2 tls bpfjit_modcmd(modcmd_t cmd, void *arg)
223 1.2.2.2 tls {
224 1.2.2.2 tls
225 1.2.2.2 tls switch (cmd) {
226 1.2.2.2 tls case MODULE_CMD_INIT:
227 1.2.2.2 tls bpfjit_module_ops.bj_free_code = &bpfjit_free_code;
228 1.2.2.2 tls membar_producer();
229 1.2.2.2 tls bpfjit_module_ops.bj_generate_code = &bpfjit_generate_code;
230 1.2.2.2 tls membar_producer();
231 1.2.2.2 tls return 0;
232 1.2.2.2 tls
233 1.2.2.2 tls case MODULE_CMD_FINI:
234 1.2.2.2 tls return EOPNOTSUPP;
235 1.2.2.2 tls
236 1.2.2.2 tls default:
237 1.2.2.2 tls return ENOTTY;
238 1.2.2.2 tls }
239 1.2.2.2 tls }
240 1.2.2.2 tls #endif
241 1.2.2.2 tls
242 1.2.2.3 tls /*
243 1.2.2.3 tls * Return a number of scratch registers to pass
244 1.2.2.3 tls * to sljit_emit_enter() function.
245 1.2.2.3 tls */
246 1.2.2.3 tls static sljit_si
247 1.2.2.3 tls nscratches(bpfjit_hint_t hints)
248 1.2.2.3 tls {
249 1.2.2.3 tls sljit_si rv = 2;
250 1.2.2.3 tls
251 1.2.2.3 tls #ifdef _KERNEL
252 1.2.2.3 tls if (hints & BJ_HINT_PKT)
253 1.2.2.3 tls rv = 3; /* xcall with three arguments */
254 1.2.2.3 tls #endif
255 1.2.2.3 tls
256 1.2.2.3 tls if (hints & BJ_HINT_IND)
257 1.2.2.3 tls rv = 3; /* uses BJ_TMP2REG */
258 1.2.2.3 tls
259 1.2.2.3 tls if (hints & BJ_HINT_COP)
260 1.2.2.3 tls rv = 3; /* calls copfunc with three arguments */
261 1.2.2.3 tls
262 1.2.2.3 tls if (hints & BJ_HINT_XREG)
263 1.2.2.3 tls rv = 4; /* uses BJ_XREG */
264 1.2.2.3 tls
265 1.2.2.3 tls #ifdef _KERNEL
266 1.2.2.3 tls if (hints & BJ_HINT_LDX)
267 1.2.2.3 tls rv = 5; /* uses BJ_TMP3REG */
268 1.2.2.3 tls #endif
269 1.2.2.3 tls
270 1.2.2.3 tls if (hints & BJ_HINT_COPX)
271 1.2.2.3 tls rv = 5; /* uses BJ_TMP3REG */
272 1.2.2.3 tls
273 1.2.2.3 tls return rv;
274 1.2.2.3 tls }
275 1.2.2.3 tls
276 1.2.2.3 tls /*
277 1.2.2.3 tls * Return a number of saved registers to pass
278 1.2.2.3 tls * to sljit_emit_enter() function.
279 1.2.2.3 tls */
280 1.2.2.3 tls static sljit_si
281 1.2.2.3 tls nsaveds(bpfjit_hint_t hints)
282 1.2.2.3 tls {
283 1.2.2.3 tls sljit_si rv = 3;
284 1.2.2.3 tls
285 1.2.2.3 tls return rv;
286 1.2.2.3 tls }
287 1.2.2.3 tls
288 1.2.2.2 tls static uint32_t
289 1.2.2.3 tls read_width(const struct bpf_insn *pc)
290 1.2.2.2 tls {
291 1.2.2.2 tls
292 1.2.2.2 tls switch (BPF_SIZE(pc->code)) {
293 1.2.2.2 tls case BPF_W:
294 1.2.2.2 tls return 4;
295 1.2.2.2 tls case BPF_H:
296 1.2.2.2 tls return 2;
297 1.2.2.2 tls case BPF_B:
298 1.2.2.2 tls return 1;
299 1.2.2.2 tls default:
300 1.2.2.3 tls BJ_ASSERT(false);
301 1.2.2.2 tls return 0;
302 1.2.2.2 tls }
303 1.2.2.2 tls }
304 1.2.2.2 tls
305 1.2.2.2 tls /*
306 1.2.2.3 tls * Copy buf and buflen members of bpf_args from BJ_ARGS
307 1.2.2.3 tls * pointer to BJ_BUF and BJ_BUFLEN registers.
308 1.2.2.2 tls */
309 1.2.2.3 tls static int
310 1.2.2.3 tls load_buf_buflen(struct sljit_compiler *compiler)
311 1.2.2.2 tls {
312 1.2.2.3 tls int status;
313 1.2.2.2 tls
314 1.2.2.3 tls status = sljit_emit_op1(compiler,
315 1.2.2.3 tls SLJIT_MOV_P,
316 1.2.2.3 tls BJ_BUF, 0,
317 1.2.2.3 tls SLJIT_MEM1(BJ_ARGS),
318 1.2.2.3 tls offsetof(struct bpf_args, pkt));
319 1.2.2.3 tls if (status != SLJIT_SUCCESS)
320 1.2.2.3 tls return status;
321 1.2.2.3 tls
322 1.2.2.3 tls status = sljit_emit_op1(compiler,
323 1.2.2.3 tls SLJIT_MOV, /* size_t source */
324 1.2.2.3 tls BJ_BUFLEN, 0,
325 1.2.2.3 tls SLJIT_MEM1(BJ_ARGS),
326 1.2.2.3 tls offsetof(struct bpf_args, buflen));
327 1.2.2.3 tls
328 1.2.2.3 tls return status;
329 1.2.2.3 tls }
330 1.2.2.3 tls
331 1.2.2.3 tls static bool
332 1.2.2.3 tls grow_jumps(struct sljit_jump ***jumps, size_t *size)
333 1.2.2.3 tls {
334 1.2.2.3 tls struct sljit_jump **newptr;
335 1.2.2.3 tls const size_t elemsz = sizeof(struct sljit_jump *);
336 1.2.2.3 tls size_t old_size = *size;
337 1.2.2.3 tls size_t new_size = 2 * old_size;
338 1.2.2.3 tls
339 1.2.2.3 tls if (new_size < old_size || new_size > SIZE_MAX / elemsz)
340 1.2.2.3 tls return false;
341 1.2.2.3 tls
342 1.2.2.3 tls newptr = BJ_ALLOC(new_size * elemsz);
343 1.2.2.3 tls if (newptr == NULL)
344 1.2.2.3 tls return false;
345 1.2.2.3 tls
346 1.2.2.3 tls memcpy(newptr, *jumps, old_size * elemsz);
347 1.2.2.3 tls BJ_FREE(*jumps, old_size * elemsz);
348 1.2.2.3 tls
349 1.2.2.3 tls *jumps = newptr;
350 1.2.2.3 tls *size = new_size;
351 1.2.2.3 tls return true;
352 1.2.2.3 tls }
353 1.2.2.3 tls
354 1.2.2.3 tls static bool
355 1.2.2.3 tls append_jump(struct sljit_jump *jump, struct sljit_jump ***jumps,
356 1.2.2.3 tls size_t *size, size_t *max_size)
357 1.2.2.3 tls {
358 1.2.2.3 tls if (*size == *max_size && !grow_jumps(jumps, max_size))
359 1.2.2.3 tls return false;
360 1.2.2.3 tls
361 1.2.2.3 tls (*jumps)[(*size)++] = jump;
362 1.2.2.3 tls return true;
363 1.2.2.2 tls }
364 1.2.2.2 tls
365 1.2.2.2 tls /*
366 1.2.2.3 tls * Emit code for BPF_LD+BPF_B+BPF_ABS A <- P[k:1].
367 1.2.2.2 tls */
368 1.2.2.2 tls static int
369 1.2.2.3 tls emit_read8(struct sljit_compiler *compiler, sljit_si src, uint32_t k)
370 1.2.2.2 tls {
371 1.2.2.2 tls
372 1.2.2.2 tls return sljit_emit_op1(compiler,
373 1.2.2.2 tls SLJIT_MOV_UB,
374 1.2.2.3 tls BJ_AREG, 0,
375 1.2.2.3 tls SLJIT_MEM1(src), k);
376 1.2.2.2 tls }
377 1.2.2.2 tls
378 1.2.2.2 tls /*
379 1.2.2.3 tls * Emit code for BPF_LD+BPF_H+BPF_ABS A <- P[k:2].
380 1.2.2.2 tls */
381 1.2.2.2 tls static int
382 1.2.2.3 tls emit_read16(struct sljit_compiler *compiler, sljit_si src, uint32_t k)
383 1.2.2.2 tls {
384 1.2.2.2 tls int status;
385 1.2.2.2 tls
386 1.2.2.3 tls BJ_ASSERT(k <= UINT32_MAX - 1);
387 1.2.2.3 tls
388 1.2.2.3 tls /* A = buf[k]; */
389 1.2.2.2 tls status = sljit_emit_op1(compiler,
390 1.2.2.2 tls SLJIT_MOV_UB,
391 1.2.2.3 tls BJ_AREG, 0,
392 1.2.2.3 tls SLJIT_MEM1(src), k);
393 1.2.2.2 tls if (status != SLJIT_SUCCESS)
394 1.2.2.2 tls return status;
395 1.2.2.2 tls
396 1.2.2.3 tls /* tmp1 = buf[k+1]; */
397 1.2.2.2 tls status = sljit_emit_op1(compiler,
398 1.2.2.2 tls SLJIT_MOV_UB,
399 1.2.2.3 tls BJ_TMP1REG, 0,
400 1.2.2.3 tls SLJIT_MEM1(src), k+1);
401 1.2.2.2 tls if (status != SLJIT_SUCCESS)
402 1.2.2.2 tls return status;
403 1.2.2.2 tls
404 1.2.2.3 tls /* A = A << 8; */
405 1.2.2.2 tls status = sljit_emit_op2(compiler,
406 1.2.2.2 tls SLJIT_SHL,
407 1.2.2.3 tls BJ_AREG, 0,
408 1.2.2.3 tls BJ_AREG, 0,
409 1.2.2.2 tls SLJIT_IMM, 8);
410 1.2.2.2 tls if (status != SLJIT_SUCCESS)
411 1.2.2.2 tls return status;
412 1.2.2.2 tls
413 1.2.2.2 tls /* A = A + tmp1; */
414 1.2.2.2 tls status = sljit_emit_op2(compiler,
415 1.2.2.2 tls SLJIT_ADD,
416 1.2.2.3 tls BJ_AREG, 0,
417 1.2.2.3 tls BJ_AREG, 0,
418 1.2.2.3 tls BJ_TMP1REG, 0);
419 1.2.2.2 tls return status;
420 1.2.2.2 tls }
421 1.2.2.2 tls
422 1.2.2.2 tls /*
423 1.2.2.3 tls * Emit code for BPF_LD+BPF_W+BPF_ABS A <- P[k:4].
424 1.2.2.2 tls */
425 1.2.2.2 tls static int
426 1.2.2.3 tls emit_read32(struct sljit_compiler *compiler, sljit_si src, uint32_t k)
427 1.2.2.2 tls {
428 1.2.2.2 tls int status;
429 1.2.2.2 tls
430 1.2.2.3 tls BJ_ASSERT(k <= UINT32_MAX - 3);
431 1.2.2.2 tls
432 1.2.2.3 tls /* A = buf[k]; */
433 1.2.2.2 tls status = sljit_emit_op1(compiler,
434 1.2.2.2 tls SLJIT_MOV_UB,
435 1.2.2.3 tls BJ_AREG, 0,
436 1.2.2.3 tls SLJIT_MEM1(src), k);
437 1.2.2.2 tls if (status != SLJIT_SUCCESS)
438 1.2.2.2 tls return status;
439 1.2.2.2 tls
440 1.2.2.3 tls /* tmp1 = buf[k+1]; */
441 1.2.2.2 tls status = sljit_emit_op1(compiler,
442 1.2.2.2 tls SLJIT_MOV_UB,
443 1.2.2.3 tls BJ_TMP1REG, 0,
444 1.2.2.3 tls SLJIT_MEM1(src), k+1);
445 1.2.2.2 tls if (status != SLJIT_SUCCESS)
446 1.2.2.2 tls return status;
447 1.2.2.2 tls
448 1.2.2.3 tls /* A = A << 8; */
449 1.2.2.2 tls status = sljit_emit_op2(compiler,
450 1.2.2.2 tls SLJIT_SHL,
451 1.2.2.3 tls BJ_AREG, 0,
452 1.2.2.3 tls BJ_AREG, 0,
453 1.2.2.3 tls SLJIT_IMM, 8);
454 1.2.2.2 tls if (status != SLJIT_SUCCESS)
455 1.2.2.2 tls return status;
456 1.2.2.2 tls
457 1.2.2.2 tls /* A = A + tmp1; */
458 1.2.2.2 tls status = sljit_emit_op2(compiler,
459 1.2.2.2 tls SLJIT_ADD,
460 1.2.2.3 tls BJ_AREG, 0,
461 1.2.2.3 tls BJ_AREG, 0,
462 1.2.2.3 tls BJ_TMP1REG, 0);
463 1.2.2.2 tls if (status != SLJIT_SUCCESS)
464 1.2.2.2 tls return status;
465 1.2.2.2 tls
466 1.2.2.2 tls /* tmp1 = buf[k+2]; */
467 1.2.2.2 tls status = sljit_emit_op1(compiler,
468 1.2.2.2 tls SLJIT_MOV_UB,
469 1.2.2.3 tls BJ_TMP1REG, 0,
470 1.2.2.3 tls SLJIT_MEM1(src), k+2);
471 1.2.2.2 tls if (status != SLJIT_SUCCESS)
472 1.2.2.2 tls return status;
473 1.2.2.2 tls
474 1.2.2.3 tls /* A = A << 8; */
475 1.2.2.2 tls status = sljit_emit_op2(compiler,
476 1.2.2.2 tls SLJIT_SHL,
477 1.2.2.3 tls BJ_AREG, 0,
478 1.2.2.3 tls BJ_AREG, 0,
479 1.2.2.3 tls SLJIT_IMM, 8);
480 1.2.2.2 tls if (status != SLJIT_SUCCESS)
481 1.2.2.2 tls return status;
482 1.2.2.2 tls
483 1.2.2.3 tls /* A = A + tmp1; */
484 1.2.2.2 tls status = sljit_emit_op2(compiler,
485 1.2.2.2 tls SLJIT_ADD,
486 1.2.2.3 tls BJ_AREG, 0,
487 1.2.2.3 tls BJ_AREG, 0,
488 1.2.2.3 tls BJ_TMP1REG, 0);
489 1.2.2.3 tls if (status != SLJIT_SUCCESS)
490 1.2.2.3 tls return status;
491 1.2.2.3 tls
492 1.2.2.3 tls /* tmp1 = buf[k+3]; */
493 1.2.2.3 tls status = sljit_emit_op1(compiler,
494 1.2.2.3 tls SLJIT_MOV_UB,
495 1.2.2.3 tls BJ_TMP1REG, 0,
496 1.2.2.3 tls SLJIT_MEM1(src), k+3);
497 1.2.2.2 tls if (status != SLJIT_SUCCESS)
498 1.2.2.2 tls return status;
499 1.2.2.2 tls
500 1.2.2.3 tls /* A = A << 8; */
501 1.2.2.2 tls status = sljit_emit_op2(compiler,
502 1.2.2.2 tls SLJIT_SHL,
503 1.2.2.3 tls BJ_AREG, 0,
504 1.2.2.3 tls BJ_AREG, 0,
505 1.2.2.2 tls SLJIT_IMM, 8);
506 1.2.2.2 tls if (status != SLJIT_SUCCESS)
507 1.2.2.2 tls return status;
508 1.2.2.2 tls
509 1.2.2.2 tls /* A = A + tmp1; */
510 1.2.2.2 tls status = sljit_emit_op2(compiler,
511 1.2.2.2 tls SLJIT_ADD,
512 1.2.2.3 tls BJ_AREG, 0,
513 1.2.2.3 tls BJ_AREG, 0,
514 1.2.2.3 tls BJ_TMP1REG, 0);
515 1.2.2.2 tls return status;
516 1.2.2.2 tls }
517 1.2.2.2 tls
518 1.2.2.2 tls #ifdef _KERNEL
519 1.2.2.2 tls /*
520 1.2.2.3 tls * Emit code for m_xword/m_xhalf/m_xbyte call.
521 1.2.2.2 tls *
522 1.2.2.3 tls * @pc BPF_LD+BPF_W+BPF_ABS A <- P[k:4]
523 1.2.2.3 tls * BPF_LD+BPF_H+BPF_ABS A <- P[k:2]
524 1.2.2.3 tls * BPF_LD+BPF_B+BPF_ABS A <- P[k:1]
525 1.2.2.3 tls * BPF_LD+BPF_W+BPF_IND A <- P[X+k:4]
526 1.2.2.3 tls * BPF_LD+BPF_H+BPF_IND A <- P[X+k:2]
527 1.2.2.3 tls * BPF_LD+BPF_B+BPF_IND A <- P[X+k:1]
528 1.2.2.3 tls * BPF_LDX+BPF_B+BPF_MSH X <- 4*(P[k:1]&0xf)
529 1.2.2.2 tls */
530 1.2.2.2 tls static int
531 1.2.2.3 tls emit_xcall(struct sljit_compiler *compiler, bpfjit_hint_t hints,
532 1.2.2.3 tls const struct bpf_insn *pc, int dst, struct sljit_jump ***ret0,
533 1.2.2.3 tls size_t *ret0_size, size_t *ret0_maxsize,
534 1.2.2.2 tls uint32_t (*fn)(const struct mbuf *, uint32_t, int *))
535 1.2.2.2 tls {
536 1.2.2.3 tls #if BJ_XREG == SLJIT_RETURN_REG || \
537 1.2.2.3 tls BJ_XREG == SLJIT_SCRATCH_REG1 || \
538 1.2.2.3 tls BJ_XREG == SLJIT_SCRATCH_REG2 || \
539 1.2.2.3 tls BJ_XREG == SLJIT_SCRATCH_REG3
540 1.2.2.2 tls #error "Not supported assignment of registers."
541 1.2.2.2 tls #endif
542 1.2.2.3 tls struct sljit_jump *jump;
543 1.2.2.3 tls sljit_si save_reg;
544 1.2.2.2 tls int status;
545 1.2.2.2 tls
546 1.2.2.3 tls save_reg = (BPF_CLASS(pc->code) == BPF_LDX) ? BJ_AREG : BJ_XREG;
547 1.2.2.2 tls
548 1.2.2.3 tls if (save_reg == BJ_AREG || (hints & BJ_HINT_XREG)) {
549 1.2.2.3 tls /* save A or X */
550 1.2.2.2 tls status = sljit_emit_op1(compiler,
551 1.2.2.3 tls SLJIT_MOV_UI, /* uint32_t destination */
552 1.2.2.3 tls SLJIT_MEM1(SLJIT_LOCALS_REG),
553 1.2.2.3 tls offsetof(struct bpfjit_stack, reg),
554 1.2.2.3 tls save_reg, 0);
555 1.2.2.2 tls if (status != SLJIT_SUCCESS)
556 1.2.2.2 tls return status;
557 1.2.2.2 tls }
558 1.2.2.2 tls
559 1.2.2.2 tls /*
560 1.2.2.3 tls * Prepare registers for fn(mbuf, k, &err) call.
561 1.2.2.2 tls */
562 1.2.2.2 tls status = sljit_emit_op1(compiler,
563 1.2.2.2 tls SLJIT_MOV,
564 1.2.2.3 tls SLJIT_SCRATCH_REG1, 0,
565 1.2.2.3 tls BJ_BUF, 0);
566 1.2.2.2 tls if (status != SLJIT_SUCCESS)
567 1.2.2.2 tls return status;
568 1.2.2.2 tls
569 1.2.2.2 tls if (BPF_CLASS(pc->code) == BPF_LD && BPF_MODE(pc->code) == BPF_IND) {
570 1.2.2.3 tls if (pc->k == 0) {
571 1.2.2.3 tls /* k = X; */
572 1.2.2.3 tls status = sljit_emit_op1(compiler,
573 1.2.2.3 tls SLJIT_MOV,
574 1.2.2.3 tls SLJIT_SCRATCH_REG2, 0,
575 1.2.2.3 tls BJ_XREG, 0);
576 1.2.2.3 tls if (status != SLJIT_SUCCESS)
577 1.2.2.3 tls return status;
578 1.2.2.3 tls } else {
579 1.2.2.3 tls /* if (X > UINT32_MAX - pc->k) return 0; */
580 1.2.2.3 tls jump = sljit_emit_cmp(compiler,
581 1.2.2.3 tls SLJIT_C_GREATER,
582 1.2.2.3 tls BJ_XREG, 0,
583 1.2.2.3 tls SLJIT_IMM, UINT32_MAX - pc->k);
584 1.2.2.3 tls if (jump == NULL)
585 1.2.2.3 tls return SLJIT_ERR_ALLOC_FAILED;
586 1.2.2.3 tls if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
587 1.2.2.3 tls return SLJIT_ERR_ALLOC_FAILED;
588 1.2.2.3 tls
589 1.2.2.3 tls /* k = X + pc->k; */
590 1.2.2.3 tls status = sljit_emit_op2(compiler,
591 1.2.2.3 tls SLJIT_ADD,
592 1.2.2.3 tls SLJIT_SCRATCH_REG2, 0,
593 1.2.2.3 tls BJ_XREG, 0,
594 1.2.2.3 tls SLJIT_IMM, (uint32_t)pc->k);
595 1.2.2.3 tls if (status != SLJIT_SUCCESS)
596 1.2.2.3 tls return status;
597 1.2.2.3 tls }
598 1.2.2.2 tls } else {
599 1.2.2.3 tls /* k = pc->k */
600 1.2.2.2 tls status = sljit_emit_op1(compiler,
601 1.2.2.2 tls SLJIT_MOV,
602 1.2.2.3 tls SLJIT_SCRATCH_REG2, 0,
603 1.2.2.2 tls SLJIT_IMM, (uint32_t)pc->k);
604 1.2.2.3 tls if (status != SLJIT_SUCCESS)
605 1.2.2.3 tls return status;
606 1.2.2.2 tls }
607 1.2.2.2 tls
608 1.2.2.3 tls /*
609 1.2.2.3 tls * The third argument of fn is an address on stack.
610 1.2.2.3 tls */
611 1.2.2.2 tls status = sljit_get_local_base(compiler,
612 1.2.2.3 tls SLJIT_SCRATCH_REG3, 0,
613 1.2.2.3 tls offsetof(struct bpfjit_stack, err));
614 1.2.2.2 tls if (status != SLJIT_SUCCESS)
615 1.2.2.2 tls return status;
616 1.2.2.2 tls
617 1.2.2.2 tls /* fn(buf, k, &err); */
618 1.2.2.2 tls status = sljit_emit_ijump(compiler,
619 1.2.2.2 tls SLJIT_CALL3,
620 1.2.2.2 tls SLJIT_IMM, SLJIT_FUNC_OFFSET(fn));
621 1.2.2.3 tls if (status != SLJIT_SUCCESS)
622 1.2.2.3 tls return status;
623 1.2.2.2 tls
624 1.2.2.3 tls if (dst != SLJIT_RETURN_REG) {
625 1.2.2.2 tls /* move return value to dst */
626 1.2.2.2 tls status = sljit_emit_op1(compiler,
627 1.2.2.2 tls SLJIT_MOV,
628 1.2.2.3 tls dst, 0,
629 1.2.2.2 tls SLJIT_RETURN_REG, 0);
630 1.2.2.2 tls if (status != SLJIT_SUCCESS)
631 1.2.2.2 tls return status;
632 1.2.2.3 tls }
633 1.2.2.3 tls
634 1.2.2.3 tls /* if (*err != 0) return 0; */
635 1.2.2.3 tls jump = sljit_emit_cmp(compiler,
636 1.2.2.3 tls SLJIT_C_NOT_EQUAL|SLJIT_INT_OP,
637 1.2.2.3 tls SLJIT_MEM1(SLJIT_LOCALS_REG),
638 1.2.2.3 tls offsetof(struct bpfjit_stack, err),
639 1.2.2.3 tls SLJIT_IMM, 0);
640 1.2.2.3 tls if (jump == NULL)
641 1.2.2.3 tls return SLJIT_ERR_ALLOC_FAILED;
642 1.2.2.3 tls
643 1.2.2.3 tls if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
644 1.2.2.3 tls return SLJIT_ERR_ALLOC_FAILED;
645 1.2.2.2 tls
646 1.2.2.3 tls if (save_reg == BJ_AREG || (hints & BJ_HINT_XREG)) {
647 1.2.2.3 tls /* restore A or X */
648 1.2.2.2 tls status = sljit_emit_op1(compiler,
649 1.2.2.3 tls SLJIT_MOV_UI, /* uint32_t source */
650 1.2.2.3 tls save_reg, 0,
651 1.2.2.3 tls SLJIT_MEM1(SLJIT_LOCALS_REG),
652 1.2.2.3 tls offsetof(struct bpfjit_stack, reg));
653 1.2.2.3 tls if (status != SLJIT_SUCCESS)
654 1.2.2.3 tls return status;
655 1.2.2.3 tls }
656 1.2.2.3 tls
657 1.2.2.3 tls return SLJIT_SUCCESS;
658 1.2.2.3 tls }
659 1.2.2.3 tls #endif
660 1.2.2.3 tls
661 1.2.2.3 tls /*
662 1.2.2.3 tls * Emit code for BPF_COP and BPF_COPX instructions.
663 1.2.2.3 tls */
664 1.2.2.3 tls static int
665 1.2.2.3 tls emit_cop(struct sljit_compiler *compiler, bpfjit_hint_t hints,
666 1.2.2.3 tls const bpf_ctx_t *bc, const struct bpf_insn *pc,
667 1.2.2.3 tls struct sljit_jump ***ret0, size_t *ret0_size, size_t *ret0_maxsize)
668 1.2.2.3 tls {
669 1.2.2.3 tls #if BJ_XREG == SLJIT_RETURN_REG || \
670 1.2.2.3 tls BJ_XREG == SLJIT_SCRATCH_REG1 || \
671 1.2.2.3 tls BJ_XREG == SLJIT_SCRATCH_REG2 || \
672 1.2.2.3 tls BJ_XREG == SLJIT_SCRATCH_REG3 || \
673 1.2.2.3 tls BJ_TMP3REG == SLJIT_SCRATCH_REG1 || \
674 1.2.2.3 tls BJ_TMP3REG == SLJIT_SCRATCH_REG2 || \
675 1.2.2.3 tls BJ_TMP3REG == SLJIT_SCRATCH_REG3
676 1.2.2.3 tls #error "Not supported assignment of registers."
677 1.2.2.3 tls #endif
678 1.2.2.3 tls
679 1.2.2.3 tls struct sljit_jump *jump;
680 1.2.2.3 tls sljit_si call_reg;
681 1.2.2.3 tls sljit_sw call_off;
682 1.2.2.3 tls int status;
683 1.2.2.3 tls
684 1.2.2.3 tls BJ_ASSERT(bc != NULL && bc->copfuncs != NULL);
685 1.2.2.3 tls
686 1.2.2.3 tls if (hints & BJ_HINT_LDX) {
687 1.2.2.3 tls /* save X */
688 1.2.2.3 tls status = sljit_emit_op1(compiler,
689 1.2.2.3 tls SLJIT_MOV_UI, /* uint32_t destination */
690 1.2.2.3 tls SLJIT_MEM1(SLJIT_LOCALS_REG),
691 1.2.2.3 tls offsetof(struct bpfjit_stack, reg),
692 1.2.2.3 tls BJ_XREG, 0);
693 1.2.2.3 tls if (status != SLJIT_SUCCESS)
694 1.2.2.3 tls return status;
695 1.2.2.3 tls }
696 1.2.2.3 tls
697 1.2.2.3 tls if (BPF_MISCOP(pc->code) == BPF_COP) {
698 1.2.2.3 tls call_reg = SLJIT_IMM;
699 1.2.2.3 tls call_off = SLJIT_FUNC_OFFSET(bc->copfuncs[pc->k]);
700 1.2.2.3 tls } else {
701 1.2.2.3 tls /* if (X >= bc->nfuncs) return 0; */
702 1.2.2.3 tls jump = sljit_emit_cmp(compiler,
703 1.2.2.3 tls SLJIT_C_GREATER_EQUAL,
704 1.2.2.3 tls BJ_XREG, 0,
705 1.2.2.3 tls SLJIT_IMM, bc->nfuncs);
706 1.2.2.3 tls if (jump == NULL)
707 1.2.2.3 tls return SLJIT_ERR_ALLOC_FAILED;
708 1.2.2.3 tls if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
709 1.2.2.3 tls return SLJIT_ERR_ALLOC_FAILED;
710 1.2.2.3 tls
711 1.2.2.3 tls /* tmp1 = ctx; */
712 1.2.2.3 tls status = sljit_emit_op1(compiler,
713 1.2.2.3 tls SLJIT_MOV_P,
714 1.2.2.3 tls BJ_TMP1REG, 0,
715 1.2.2.3 tls SLJIT_MEM1(SLJIT_LOCALS_REG),
716 1.2.2.3 tls offsetof(struct bpfjit_stack, ctx));
717 1.2.2.3 tls if (status != SLJIT_SUCCESS)
718 1.2.2.3 tls return status;
719 1.2.2.3 tls
720 1.2.2.3 tls /* tmp1 = ctx->copfuncs; */
721 1.2.2.3 tls status = sljit_emit_op1(compiler,
722 1.2.2.3 tls SLJIT_MOV_P,
723 1.2.2.3 tls BJ_TMP1REG, 0,
724 1.2.2.3 tls SLJIT_MEM1(BJ_TMP1REG),
725 1.2.2.3 tls offsetof(struct bpf_ctx, copfuncs));
726 1.2.2.2 tls if (status != SLJIT_SUCCESS)
727 1.2.2.2 tls return status;
728 1.2.2.2 tls
729 1.2.2.3 tls /* tmp2 = X; */
730 1.2.2.2 tls status = sljit_emit_op1(compiler,
731 1.2.2.2 tls SLJIT_MOV,
732 1.2.2.3 tls BJ_TMP2REG, 0,
733 1.2.2.3 tls BJ_XREG, 0);
734 1.2.2.3 tls if (status != SLJIT_SUCCESS)
735 1.2.2.3 tls return status;
736 1.2.2.3 tls
737 1.2.2.3 tls /* tmp3 = ctx->copfuncs[tmp2]; */
738 1.2.2.3 tls call_reg = BJ_TMP3REG;
739 1.2.2.3 tls call_off = 0;
740 1.2.2.3 tls status = sljit_emit_op1(compiler,
741 1.2.2.3 tls SLJIT_MOV_P,
742 1.2.2.3 tls call_reg, call_off,
743 1.2.2.3 tls SLJIT_MEM2(BJ_TMP1REG, BJ_TMP2REG),
744 1.2.2.3 tls SLJIT_WORD_SHIFT);
745 1.2.2.2 tls if (status != SLJIT_SUCCESS)
746 1.2.2.2 tls return status;
747 1.2.2.2 tls }
748 1.2.2.2 tls
749 1.2.2.3 tls /*
750 1.2.2.3 tls * Copy bpf_copfunc_t arguments to registers.
751 1.2.2.3 tls */
752 1.2.2.3 tls #if BJ_AREG != SLJIT_SCRATCH_REG3
753 1.2.2.2 tls status = sljit_emit_op1(compiler,
754 1.2.2.2 tls SLJIT_MOV_UI,
755 1.2.2.3 tls SLJIT_SCRATCH_REG3, 0,
756 1.2.2.3 tls BJ_AREG, 0);
757 1.2.2.2 tls if (status != SLJIT_SUCCESS)
758 1.2.2.2 tls return status;
759 1.2.2.3 tls #endif
760 1.2.2.2 tls
761 1.2.2.3 tls status = sljit_emit_op1(compiler,
762 1.2.2.3 tls SLJIT_MOV_P,
763 1.2.2.3 tls SLJIT_SCRATCH_REG1, 0,
764 1.2.2.3 tls SLJIT_MEM1(SLJIT_LOCALS_REG),
765 1.2.2.3 tls offsetof(struct bpfjit_stack, ctx));
766 1.2.2.3 tls if (status != SLJIT_SUCCESS)
767 1.2.2.3 tls return status;
768 1.2.2.2 tls
769 1.2.2.3 tls status = sljit_emit_op1(compiler,
770 1.2.2.3 tls SLJIT_MOV_P,
771 1.2.2.3 tls SLJIT_SCRATCH_REG2, 0,
772 1.2.2.3 tls BJ_ARGS, 0);
773 1.2.2.3 tls if (status != SLJIT_SUCCESS)
774 1.2.2.3 tls return status;
775 1.2.2.3 tls
776 1.2.2.3 tls status = sljit_emit_ijump(compiler,
777 1.2.2.3 tls SLJIT_CALL3, call_reg, call_off);
778 1.2.2.3 tls if (status != SLJIT_SUCCESS)
779 1.2.2.3 tls return status;
780 1.2.2.3 tls
781 1.2.2.3 tls #if BJ_AREG != SLJIT_RETURN_REG
782 1.2.2.3 tls status = sljit_emit_op1(compiler,
783 1.2.2.3 tls SLJIT_MOV,
784 1.2.2.3 tls BJ_AREG, 0,
785 1.2.2.3 tls SLJIT_RETURN_REG, 0);
786 1.2.2.3 tls if (status != SLJIT_SUCCESS)
787 1.2.2.3 tls return status;
788 1.2.2.2 tls #endif
789 1.2.2.2 tls
790 1.2.2.3 tls if (hints & BJ_HINT_LDX) {
791 1.2.2.3 tls /* restore X */
792 1.2.2.3 tls status = sljit_emit_op1(compiler,
793 1.2.2.3 tls SLJIT_MOV_UI, /* uint32_t source */
794 1.2.2.3 tls BJ_XREG, 0,
795 1.2.2.3 tls SLJIT_MEM1(SLJIT_LOCALS_REG),
796 1.2.2.3 tls offsetof(struct bpfjit_stack, reg));
797 1.2.2.3 tls if (status != SLJIT_SUCCESS)
798 1.2.2.3 tls return status;
799 1.2.2.3 tls }
800 1.2.2.3 tls
801 1.2.2.3 tls return SLJIT_SUCCESS;
802 1.2.2.3 tls }
803 1.2.2.3 tls
804 1.2.2.2 tls /*
805 1.2.2.2 tls * Generate code for
806 1.2.2.2 tls * BPF_LD+BPF_W+BPF_ABS A <- P[k:4]
807 1.2.2.2 tls * BPF_LD+BPF_H+BPF_ABS A <- P[k:2]
808 1.2.2.2 tls * BPF_LD+BPF_B+BPF_ABS A <- P[k:1]
809 1.2.2.2 tls * BPF_LD+BPF_W+BPF_IND A <- P[X+k:4]
810 1.2.2.2 tls * BPF_LD+BPF_H+BPF_IND A <- P[X+k:2]
811 1.2.2.2 tls * BPF_LD+BPF_B+BPF_IND A <- P[X+k:1]
812 1.2.2.2 tls */
813 1.2.2.2 tls static int
814 1.2.2.3 tls emit_pkt_read(struct sljit_compiler *compiler, bpfjit_hint_t hints,
815 1.2.2.3 tls const struct bpf_insn *pc, struct sljit_jump *to_mchain_jump,
816 1.2.2.3 tls struct sljit_jump ***ret0, size_t *ret0_size, size_t *ret0_maxsize)
817 1.2.2.2 tls {
818 1.2.2.3 tls int status = SLJIT_ERR_ALLOC_FAILED;
819 1.2.2.2 tls uint32_t width;
820 1.2.2.3 tls sljit_si ld_reg;
821 1.2.2.2 tls struct sljit_jump *jump;
822 1.2.2.2 tls #ifdef _KERNEL
823 1.2.2.2 tls struct sljit_label *label;
824 1.2.2.2 tls struct sljit_jump *over_mchain_jump;
825 1.2.2.2 tls const bool check_zero_buflen = (to_mchain_jump != NULL);
826 1.2.2.2 tls #endif
827 1.2.2.2 tls const uint32_t k = pc->k;
828 1.2.2.2 tls
829 1.2.2.2 tls #ifdef _KERNEL
830 1.2.2.2 tls if (to_mchain_jump == NULL) {
831 1.2.2.2 tls to_mchain_jump = sljit_emit_cmp(compiler,
832 1.2.2.2 tls SLJIT_C_EQUAL,
833 1.2.2.3 tls BJ_BUFLEN, 0,
834 1.2.2.2 tls SLJIT_IMM, 0);
835 1.2.2.2 tls if (to_mchain_jump == NULL)
836 1.2.2.3 tls return SLJIT_ERR_ALLOC_FAILED;
837 1.2.2.2 tls }
838 1.2.2.2 tls #endif
839 1.2.2.2 tls
840 1.2.2.3 tls ld_reg = BJ_BUF;
841 1.2.2.2 tls width = read_width(pc);
842 1.2.2.2 tls
843 1.2.2.2 tls if (BPF_MODE(pc->code) == BPF_IND) {
844 1.2.2.2 tls /* tmp1 = buflen - (pc->k + width); */
845 1.2.2.2 tls status = sljit_emit_op2(compiler,
846 1.2.2.2 tls SLJIT_SUB,
847 1.2.2.3 tls BJ_TMP1REG, 0,
848 1.2.2.3 tls BJ_BUFLEN, 0,
849 1.2.2.2 tls SLJIT_IMM, k + width);
850 1.2.2.2 tls if (status != SLJIT_SUCCESS)
851 1.2.2.2 tls return status;
852 1.2.2.2 tls
853 1.2.2.3 tls /* ld_reg = buf + X; */
854 1.2.2.3 tls ld_reg = BJ_TMP2REG;
855 1.2.2.2 tls status = sljit_emit_op2(compiler,
856 1.2.2.2 tls SLJIT_ADD,
857 1.2.2.3 tls ld_reg, 0,
858 1.2.2.3 tls BJ_BUF, 0,
859 1.2.2.3 tls BJ_XREG, 0);
860 1.2.2.2 tls if (status != SLJIT_SUCCESS)
861 1.2.2.2 tls return status;
862 1.2.2.2 tls
863 1.2.2.2 tls /* if (tmp1 < X) return 0; */
864 1.2.2.2 tls jump = sljit_emit_cmp(compiler,
865 1.2.2.2 tls SLJIT_C_LESS,
866 1.2.2.3 tls BJ_TMP1REG, 0,
867 1.2.2.3 tls BJ_XREG, 0);
868 1.2.2.2 tls if (jump == NULL)
869 1.2.2.3 tls return SLJIT_ERR_ALLOC_FAILED;
870 1.2.2.3 tls if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
871 1.2.2.3 tls return SLJIT_ERR_ALLOC_FAILED;
872 1.2.2.2 tls }
873 1.2.2.2 tls
874 1.2.2.2 tls switch (width) {
875 1.2.2.2 tls case 4:
876 1.2.2.3 tls status = emit_read32(compiler, ld_reg, k);
877 1.2.2.2 tls break;
878 1.2.2.2 tls case 2:
879 1.2.2.3 tls status = emit_read16(compiler, ld_reg, k);
880 1.2.2.2 tls break;
881 1.2.2.2 tls case 1:
882 1.2.2.3 tls status = emit_read8(compiler, ld_reg, k);
883 1.2.2.2 tls break;
884 1.2.2.2 tls }
885 1.2.2.2 tls
886 1.2.2.2 tls if (status != SLJIT_SUCCESS)
887 1.2.2.2 tls return status;
888 1.2.2.2 tls
889 1.2.2.2 tls #ifdef _KERNEL
890 1.2.2.2 tls over_mchain_jump = sljit_emit_jump(compiler, SLJIT_JUMP);
891 1.2.2.2 tls if (over_mchain_jump == NULL)
892 1.2.2.3 tls return SLJIT_ERR_ALLOC_FAILED;
893 1.2.2.2 tls
894 1.2.2.2 tls /* entry point to mchain handler */
895 1.2.2.2 tls label = sljit_emit_label(compiler);
896 1.2.2.2 tls if (label == NULL)
897 1.2.2.3 tls return SLJIT_ERR_ALLOC_FAILED;
898 1.2.2.2 tls sljit_set_label(to_mchain_jump, label);
899 1.2.2.2 tls
900 1.2.2.2 tls if (check_zero_buflen) {
901 1.2.2.2 tls /* if (buflen != 0) return 0; */
902 1.2.2.2 tls jump = sljit_emit_cmp(compiler,
903 1.2.2.2 tls SLJIT_C_NOT_EQUAL,
904 1.2.2.3 tls BJ_BUFLEN, 0,
905 1.2.2.2 tls SLJIT_IMM, 0);
906 1.2.2.2 tls if (jump == NULL)
907 1.2.2.2 tls return SLJIT_ERR_ALLOC_FAILED;
908 1.2.2.3 tls if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
909 1.2.2.3 tls return SLJIT_ERR_ALLOC_FAILED;
910 1.2.2.2 tls }
911 1.2.2.2 tls
912 1.2.2.2 tls switch (width) {
913 1.2.2.2 tls case 4:
914 1.2.2.3 tls status = emit_xcall(compiler, hints, pc, BJ_AREG,
915 1.2.2.3 tls ret0, ret0_size, ret0_maxsize, &m_xword);
916 1.2.2.2 tls break;
917 1.2.2.2 tls case 2:
918 1.2.2.3 tls status = emit_xcall(compiler, hints, pc, BJ_AREG,
919 1.2.2.3 tls ret0, ret0_size, ret0_maxsize, &m_xhalf);
920 1.2.2.2 tls break;
921 1.2.2.2 tls case 1:
922 1.2.2.3 tls status = emit_xcall(compiler, hints, pc, BJ_AREG,
923 1.2.2.3 tls ret0, ret0_size, ret0_maxsize, &m_xbyte);
924 1.2.2.2 tls break;
925 1.2.2.2 tls }
926 1.2.2.2 tls
927 1.2.2.2 tls if (status != SLJIT_SUCCESS)
928 1.2.2.2 tls return status;
929 1.2.2.2 tls
930 1.2.2.2 tls label = sljit_emit_label(compiler);
931 1.2.2.2 tls if (label == NULL)
932 1.2.2.2 tls return SLJIT_ERR_ALLOC_FAILED;
933 1.2.2.2 tls sljit_set_label(over_mchain_jump, label);
934 1.2.2.2 tls #endif
935 1.2.2.2 tls
936 1.2.2.3 tls return SLJIT_SUCCESS;
937 1.2.2.3 tls }
938 1.2.2.3 tls
939 1.2.2.3 tls static int
940 1.2.2.3 tls emit_memload(struct sljit_compiler *compiler,
941 1.2.2.3 tls sljit_si dst, uint32_t k, size_t extwords)
942 1.2.2.3 tls {
943 1.2.2.3 tls int status;
944 1.2.2.3 tls sljit_si src;
945 1.2.2.3 tls sljit_sw srcw;
946 1.2.2.3 tls
947 1.2.2.3 tls srcw = k * sizeof(uint32_t);
948 1.2.2.3 tls
949 1.2.2.3 tls if (extwords == 0) {
950 1.2.2.3 tls src = SLJIT_MEM1(SLJIT_LOCALS_REG);
951 1.2.2.3 tls srcw += offsetof(struct bpfjit_stack, mem);
952 1.2.2.3 tls } else {
953 1.2.2.3 tls /* copy extmem pointer to the tmp1 register */
954 1.2.2.3 tls status = sljit_emit_op1(compiler,
955 1.2.2.3 tls SLJIT_MOV_P,
956 1.2.2.3 tls BJ_TMP1REG, 0,
957 1.2.2.3 tls SLJIT_MEM1(SLJIT_LOCALS_REG),
958 1.2.2.3 tls offsetof(struct bpfjit_stack, extmem));
959 1.2.2.3 tls if (status != SLJIT_SUCCESS)
960 1.2.2.3 tls return status;
961 1.2.2.3 tls src = SLJIT_MEM1(BJ_TMP1REG);
962 1.2.2.3 tls }
963 1.2.2.3 tls
964 1.2.2.3 tls return sljit_emit_op1(compiler, SLJIT_MOV_UI, dst, 0, src, srcw);
965 1.2.2.3 tls }
966 1.2.2.3 tls
967 1.2.2.3 tls static int
968 1.2.2.3 tls emit_memstore(struct sljit_compiler *compiler,
969 1.2.2.3 tls sljit_si src, uint32_t k, size_t extwords)
970 1.2.2.3 tls {
971 1.2.2.3 tls int status;
972 1.2.2.3 tls sljit_si dst;
973 1.2.2.3 tls sljit_sw dstw;
974 1.2.2.3 tls
975 1.2.2.3 tls dstw = k * sizeof(uint32_t);
976 1.2.2.3 tls
977 1.2.2.3 tls if (extwords == 0) {
978 1.2.2.3 tls dst = SLJIT_MEM1(SLJIT_LOCALS_REG);
979 1.2.2.3 tls dstw += offsetof(struct bpfjit_stack, mem);
980 1.2.2.3 tls } else {
981 1.2.2.3 tls /* copy extmem pointer to the tmp1 register */
982 1.2.2.3 tls status = sljit_emit_op1(compiler,
983 1.2.2.3 tls SLJIT_MOV_P,
984 1.2.2.3 tls BJ_TMP1REG, 0,
985 1.2.2.3 tls SLJIT_MEM1(SLJIT_LOCALS_REG),
986 1.2.2.3 tls offsetof(struct bpfjit_stack, extmem));
987 1.2.2.3 tls if (status != SLJIT_SUCCESS)
988 1.2.2.3 tls return status;
989 1.2.2.3 tls dst = SLJIT_MEM1(BJ_TMP1REG);
990 1.2.2.3 tls }
991 1.2.2.3 tls
992 1.2.2.3 tls return sljit_emit_op1(compiler, SLJIT_MOV_UI, dst, dstw, src, 0);
993 1.2.2.2 tls }
994 1.2.2.2 tls
995 1.2.2.2 tls /*
996 1.2.2.3 tls * Emit code for BPF_LDX+BPF_B+BPF_MSH X <- 4*(P[k:1]&0xf).
997 1.2.2.2 tls */
998 1.2.2.2 tls static int
999 1.2.2.3 tls emit_msh(struct sljit_compiler *compiler, bpfjit_hint_t hints,
1000 1.2.2.3 tls const struct bpf_insn *pc, struct sljit_jump *to_mchain_jump,
1001 1.2.2.3 tls struct sljit_jump ***ret0, size_t *ret0_size, size_t *ret0_maxsize)
1002 1.2.2.2 tls {
1003 1.2.2.2 tls int status;
1004 1.2.2.2 tls #ifdef _KERNEL
1005 1.2.2.2 tls struct sljit_label *label;
1006 1.2.2.2 tls struct sljit_jump *jump, *over_mchain_jump;
1007 1.2.2.2 tls const bool check_zero_buflen = (to_mchain_jump != NULL);
1008 1.2.2.2 tls #endif
1009 1.2.2.2 tls const uint32_t k = pc->k;
1010 1.2.2.2 tls
1011 1.2.2.2 tls #ifdef _KERNEL
1012 1.2.2.2 tls if (to_mchain_jump == NULL) {
1013 1.2.2.2 tls to_mchain_jump = sljit_emit_cmp(compiler,
1014 1.2.2.2 tls SLJIT_C_EQUAL,
1015 1.2.2.3 tls BJ_BUFLEN, 0,
1016 1.2.2.2 tls SLJIT_IMM, 0);
1017 1.2.2.2 tls if (to_mchain_jump == NULL)
1018 1.2.2.3 tls return SLJIT_ERR_ALLOC_FAILED;
1019 1.2.2.2 tls }
1020 1.2.2.2 tls #endif
1021 1.2.2.2 tls
1022 1.2.2.2 tls /* tmp1 = buf[k] */
1023 1.2.2.2 tls status = sljit_emit_op1(compiler,
1024 1.2.2.2 tls SLJIT_MOV_UB,
1025 1.2.2.3 tls BJ_TMP1REG, 0,
1026 1.2.2.3 tls SLJIT_MEM1(BJ_BUF), k);
1027 1.2.2.2 tls if (status != SLJIT_SUCCESS)
1028 1.2.2.2 tls return status;
1029 1.2.2.2 tls
1030 1.2.2.2 tls #ifdef _KERNEL
1031 1.2.2.2 tls over_mchain_jump = sljit_emit_jump(compiler, SLJIT_JUMP);
1032 1.2.2.2 tls if (over_mchain_jump == NULL)
1033 1.2.2.2 tls return SLJIT_ERR_ALLOC_FAILED;
1034 1.2.2.2 tls
1035 1.2.2.2 tls /* entry point to mchain handler */
1036 1.2.2.2 tls label = sljit_emit_label(compiler);
1037 1.2.2.2 tls if (label == NULL)
1038 1.2.2.2 tls return SLJIT_ERR_ALLOC_FAILED;
1039 1.2.2.2 tls sljit_set_label(to_mchain_jump, label);
1040 1.2.2.2 tls
1041 1.2.2.2 tls if (check_zero_buflen) {
1042 1.2.2.2 tls /* if (buflen != 0) return 0; */
1043 1.2.2.2 tls jump = sljit_emit_cmp(compiler,
1044 1.2.2.2 tls SLJIT_C_NOT_EQUAL,
1045 1.2.2.3 tls BJ_BUFLEN, 0,
1046 1.2.2.2 tls SLJIT_IMM, 0);
1047 1.2.2.2 tls if (jump == NULL)
1048 1.2.2.3 tls return SLJIT_ERR_ALLOC_FAILED;
1049 1.2.2.3 tls if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
1050 1.2.2.3 tls return SLJIT_ERR_ALLOC_FAILED;
1051 1.2.2.2 tls }
1052 1.2.2.2 tls
1053 1.2.2.3 tls status = emit_xcall(compiler, hints, pc, BJ_TMP1REG,
1054 1.2.2.3 tls ret0, ret0_size, ret0_maxsize, &m_xbyte);
1055 1.2.2.2 tls if (status != SLJIT_SUCCESS)
1056 1.2.2.2 tls return status;
1057 1.2.2.3 tls
1058 1.2.2.3 tls label = sljit_emit_label(compiler);
1059 1.2.2.3 tls if (label == NULL)
1060 1.2.2.3 tls return SLJIT_ERR_ALLOC_FAILED;
1061 1.2.2.3 tls sljit_set_label(over_mchain_jump, label);
1062 1.2.2.3 tls #endif
1063 1.2.2.2 tls
1064 1.2.2.2 tls /* tmp1 &= 0xf */
1065 1.2.2.2 tls status = sljit_emit_op2(compiler,
1066 1.2.2.2 tls SLJIT_AND,
1067 1.2.2.3 tls BJ_TMP1REG, 0,
1068 1.2.2.3 tls BJ_TMP1REG, 0,
1069 1.2.2.2 tls SLJIT_IMM, 0xf);
1070 1.2.2.2 tls if (status != SLJIT_SUCCESS)
1071 1.2.2.2 tls return status;
1072 1.2.2.2 tls
1073 1.2.2.3 tls /* X = tmp1 << 2 */
1074 1.2.2.2 tls status = sljit_emit_op2(compiler,
1075 1.2.2.2 tls SLJIT_SHL,
1076 1.2.2.3 tls BJ_XREG, 0,
1077 1.2.2.3 tls BJ_TMP1REG, 0,
1078 1.2.2.2 tls SLJIT_IMM, 2);
1079 1.2.2.2 tls if (status != SLJIT_SUCCESS)
1080 1.2.2.2 tls return status;
1081 1.2.2.2 tls
1082 1.2.2.3 tls return SLJIT_SUCCESS;
1083 1.2.2.2 tls }
1084 1.2.2.2 tls
1085 1.2.2.2 tls static int
1086 1.2.2.3 tls emit_pow2_division(struct sljit_compiler *compiler, uint32_t k)
1087 1.2.2.2 tls {
1088 1.2.2.2 tls int shift = 0;
1089 1.2.2.2 tls int status = SLJIT_SUCCESS;
1090 1.2.2.2 tls
1091 1.2.2.2 tls while (k > 1) {
1092 1.2.2.2 tls k >>= 1;
1093 1.2.2.2 tls shift++;
1094 1.2.2.2 tls }
1095 1.2.2.2 tls
1096 1.2.2.3 tls BJ_ASSERT(k == 1 && shift < 32);
1097 1.2.2.2 tls
1098 1.2.2.2 tls if (shift != 0) {
1099 1.2.2.2 tls status = sljit_emit_op2(compiler,
1100 1.2.2.2 tls SLJIT_LSHR|SLJIT_INT_OP,
1101 1.2.2.3 tls BJ_AREG, 0,
1102 1.2.2.3 tls BJ_AREG, 0,
1103 1.2.2.2 tls SLJIT_IMM, shift);
1104 1.2.2.2 tls }
1105 1.2.2.2 tls
1106 1.2.2.2 tls return status;
1107 1.2.2.2 tls }
1108 1.2.2.2 tls
1109 1.2.2.2 tls #if !defined(BPFJIT_USE_UDIV)
1110 1.2.2.2 tls static sljit_uw
1111 1.2.2.2 tls divide(sljit_uw x, sljit_uw y)
1112 1.2.2.2 tls {
1113 1.2.2.2 tls
1114 1.2.2.2 tls return (uint32_t)x / (uint32_t)y;
1115 1.2.2.2 tls }
1116 1.2.2.2 tls #endif
1117 1.2.2.2 tls
1118 1.2.2.2 tls /*
1119 1.2.2.3 tls * Emit code for A = A / div.
1120 1.2.2.3 tls * divt,divw are either SLJIT_IMM,pc->k or BJ_XREG,0.
1121 1.2.2.2 tls */
1122 1.2.2.2 tls static int
1123 1.2.2.3 tls emit_division(struct sljit_compiler *compiler, int divt, sljit_sw divw)
1124 1.2.2.2 tls {
1125 1.2.2.2 tls int status;
1126 1.2.2.2 tls
1127 1.2.2.3 tls #if BJ_XREG == SLJIT_RETURN_REG || \
1128 1.2.2.3 tls BJ_XREG == SLJIT_SCRATCH_REG1 || \
1129 1.2.2.3 tls BJ_XREG == SLJIT_SCRATCH_REG2 || \
1130 1.2.2.3 tls BJ_AREG == SLJIT_SCRATCH_REG2
1131 1.2.2.2 tls #error "Not supported assignment of registers."
1132 1.2.2.2 tls #endif
1133 1.2.2.2 tls
1134 1.2.2.3 tls #if BJ_AREG != SLJIT_SCRATCH_REG1
1135 1.2.2.2 tls status = sljit_emit_op1(compiler,
1136 1.2.2.2 tls SLJIT_MOV,
1137 1.2.2.3 tls SLJIT_SCRATCH_REG1, 0,
1138 1.2.2.3 tls BJ_AREG, 0);
1139 1.2.2.2 tls if (status != SLJIT_SUCCESS)
1140 1.2.2.2 tls return status;
1141 1.2.2.2 tls #endif
1142 1.2.2.2 tls
1143 1.2.2.2 tls status = sljit_emit_op1(compiler,
1144 1.2.2.2 tls SLJIT_MOV,
1145 1.2.2.3 tls SLJIT_SCRATCH_REG2, 0,
1146 1.2.2.2 tls divt, divw);
1147 1.2.2.2 tls if (status != SLJIT_SUCCESS)
1148 1.2.2.2 tls return status;
1149 1.2.2.2 tls
1150 1.2.2.2 tls #if defined(BPFJIT_USE_UDIV)
1151 1.2.2.2 tls status = sljit_emit_op0(compiler, SLJIT_UDIV|SLJIT_INT_OP);
1152 1.2.2.2 tls
1153 1.2.2.3 tls #if BJ_AREG != SLJIT_SCRATCH_REG1
1154 1.2.2.2 tls status = sljit_emit_op1(compiler,
1155 1.2.2.2 tls SLJIT_MOV,
1156 1.2.2.3 tls BJ_AREG, 0,
1157 1.2.2.3 tls SLJIT_SCRATCH_REG1, 0);
1158 1.2.2.2 tls if (status != SLJIT_SUCCESS)
1159 1.2.2.2 tls return status;
1160 1.2.2.2 tls #endif
1161 1.2.2.2 tls #else
1162 1.2.2.2 tls status = sljit_emit_ijump(compiler,
1163 1.2.2.2 tls SLJIT_CALL2,
1164 1.2.2.2 tls SLJIT_IMM, SLJIT_FUNC_OFFSET(divide));
1165 1.2.2.2 tls
1166 1.2.2.3 tls #if BJ_AREG != SLJIT_RETURN_REG
1167 1.2.2.2 tls status = sljit_emit_op1(compiler,
1168 1.2.2.2 tls SLJIT_MOV,
1169 1.2.2.3 tls BJ_AREG, 0,
1170 1.2.2.2 tls SLJIT_RETURN_REG, 0);
1171 1.2.2.2 tls if (status != SLJIT_SUCCESS)
1172 1.2.2.2 tls return status;
1173 1.2.2.2 tls #endif
1174 1.2.2.2 tls #endif
1175 1.2.2.2 tls
1176 1.2.2.2 tls return status;
1177 1.2.2.2 tls }
1178 1.2.2.2 tls
1179 1.2.2.2 tls /*
1180 1.2.2.2 tls * Return true if pc is a "read from packet" instruction.
1181 1.2.2.2 tls * If length is not NULL and return value is true, *length will
1182 1.2.2.2 tls * be set to a safe length required to read a packet.
1183 1.2.2.2 tls */
1184 1.2.2.2 tls static bool
1185 1.2.2.3 tls read_pkt_insn(const struct bpf_insn *pc, bpfjit_abc_length_t *length)
1186 1.2.2.2 tls {
1187 1.2.2.2 tls bool rv;
1188 1.2.2.3 tls bpfjit_abc_length_t width;
1189 1.2.2.2 tls
1190 1.2.2.2 tls switch (BPF_CLASS(pc->code)) {
1191 1.2.2.2 tls default:
1192 1.2.2.2 tls rv = false;
1193 1.2.2.2 tls break;
1194 1.2.2.2 tls
1195 1.2.2.2 tls case BPF_LD:
1196 1.2.2.2 tls rv = BPF_MODE(pc->code) == BPF_ABS ||
1197 1.2.2.2 tls BPF_MODE(pc->code) == BPF_IND;
1198 1.2.2.2 tls if (rv)
1199 1.2.2.2 tls width = read_width(pc);
1200 1.2.2.2 tls break;
1201 1.2.2.2 tls
1202 1.2.2.2 tls case BPF_LDX:
1203 1.2.2.2 tls rv = pc->code == (BPF_LDX|BPF_B|BPF_MSH);
1204 1.2.2.2 tls width = 1;
1205 1.2.2.2 tls break;
1206 1.2.2.2 tls }
1207 1.2.2.2 tls
1208 1.2.2.2 tls if (rv && length != NULL) {
1209 1.2.2.3 tls /*
1210 1.2.2.3 tls * Values greater than UINT32_MAX will generate
1211 1.2.2.3 tls * unconditional "return 0".
1212 1.2.2.3 tls */
1213 1.2.2.3 tls *length = (uint32_t)pc->k + width;
1214 1.2.2.2 tls }
1215 1.2.2.2 tls
1216 1.2.2.2 tls return rv;
1217 1.2.2.2 tls }
1218 1.2.2.2 tls
1219 1.2.2.2 tls static void
1220 1.2.2.3 tls optimize_init(struct bpfjit_insn_data *insn_dat, size_t insn_count)
1221 1.2.2.2 tls {
1222 1.2.2.3 tls size_t i;
1223 1.2.2.2 tls
1224 1.2.2.3 tls for (i = 0; i < insn_count; i++) {
1225 1.2.2.3 tls SLIST_INIT(&insn_dat[i].bjumps);
1226 1.2.2.3 tls insn_dat[i].invalid = BJ_INIT_NOBITS;
1227 1.2.2.2 tls }
1228 1.2.2.2 tls }
1229 1.2.2.2 tls
1230 1.2.2.2 tls /*
1231 1.2.2.2 tls * The function divides instructions into blocks. Destination of a jump
1232 1.2.2.2 tls * instruction starts a new block. BPF_RET and BPF_JMP instructions
1233 1.2.2.2 tls * terminate a block. Blocks are linear, that is, there are no jumps out
1234 1.2.2.2 tls * from the middle of a block and there are no jumps in to the middle of
1235 1.2.2.2 tls * a block.
1236 1.2.2.3 tls *
1237 1.2.2.3 tls * The function also sets bits in *initmask for memwords that
1238 1.2.2.3 tls * need to be initialized to zero. Note that this set should be empty
1239 1.2.2.3 tls * for any valid kernel filter program.
1240 1.2.2.2 tls */
1241 1.2.2.3 tls static bool
1242 1.2.2.3 tls optimize_pass1(const bpf_ctx_t *bc, const struct bpf_insn *insns,
1243 1.2.2.3 tls struct bpfjit_insn_data *insn_dat, size_t insn_count,
1244 1.2.2.3 tls bpf_memword_init_t *initmask, bpfjit_hint_t *hints)
1245 1.2.2.2 tls {
1246 1.2.2.3 tls struct bpfjit_jump *jtf;
1247 1.2.2.2 tls size_t i;
1248 1.2.2.2 tls uint32_t jt, jf;
1249 1.2.2.3 tls bpfjit_abc_length_t length;
1250 1.2.2.3 tls bpf_memword_init_t invalid; /* borrowed from bpf_filter() */
1251 1.2.2.3 tls bool unreachable;
1252 1.2.2.3 tls
1253 1.2.2.3 tls const size_t memwords = GET_MEMWORDS(bc);
1254 1.2.2.2 tls
1255 1.2.2.3 tls *hints = 0;
1256 1.2.2.3 tls *initmask = BJ_INIT_NOBITS;
1257 1.2.2.2 tls
1258 1.2.2.2 tls unreachable = false;
1259 1.2.2.3 tls invalid = ~BJ_INIT_NOBITS;
1260 1.2.2.2 tls
1261 1.2.2.2 tls for (i = 0; i < insn_count; i++) {
1262 1.2.2.3 tls if (!SLIST_EMPTY(&insn_dat[i].bjumps))
1263 1.2.2.2 tls unreachable = false;
1264 1.2.2.3 tls insn_dat[i].unreachable = unreachable;
1265 1.2.2.2 tls
1266 1.2.2.2 tls if (unreachable)
1267 1.2.2.2 tls continue;
1268 1.2.2.2 tls
1269 1.2.2.3 tls invalid |= insn_dat[i].invalid;
1270 1.2.2.3 tls
1271 1.2.2.3 tls if (read_pkt_insn(&insns[i], &length) && length > UINT32_MAX)
1272 1.2.2.3 tls unreachable = true;
1273 1.2.2.2 tls
1274 1.2.2.2 tls switch (BPF_CLASS(insns[i].code)) {
1275 1.2.2.2 tls case BPF_RET:
1276 1.2.2.3 tls if (BPF_RVAL(insns[i].code) == BPF_A)
1277 1.2.2.3 tls *initmask |= invalid & BJ_INIT_ABIT;
1278 1.2.2.3 tls
1279 1.2.2.2 tls unreachable = true;
1280 1.2.2.2 tls continue;
1281 1.2.2.2 tls
1282 1.2.2.3 tls case BPF_LD:
1283 1.2.2.3 tls if (BPF_MODE(insns[i].code) == BPF_ABS)
1284 1.2.2.3 tls *hints |= BJ_HINT_ABS;
1285 1.2.2.3 tls
1286 1.2.2.3 tls if (BPF_MODE(insns[i].code) == BPF_IND) {
1287 1.2.2.3 tls *hints |= BJ_HINT_IND | BJ_HINT_XREG;
1288 1.2.2.3 tls *initmask |= invalid & BJ_INIT_XBIT;
1289 1.2.2.3 tls }
1290 1.2.2.3 tls
1291 1.2.2.3 tls if (BPF_MODE(insns[i].code) == BPF_MEM &&
1292 1.2.2.3 tls (uint32_t)insns[i].k < memwords) {
1293 1.2.2.3 tls *initmask |= invalid & BJ_INIT_MBIT(insns[i].k);
1294 1.2.2.3 tls }
1295 1.2.2.3 tls
1296 1.2.2.3 tls invalid &= ~BJ_INIT_ABIT;
1297 1.2.2.3 tls continue;
1298 1.2.2.3 tls
1299 1.2.2.3 tls case BPF_LDX:
1300 1.2.2.3 tls *hints |= BJ_HINT_XREG | BJ_HINT_LDX;
1301 1.2.2.3 tls
1302 1.2.2.3 tls if (BPF_MODE(insns[i].code) == BPF_MEM &&
1303 1.2.2.3 tls (uint32_t)insns[i].k < memwords) {
1304 1.2.2.3 tls *initmask |= invalid & BJ_INIT_MBIT(insns[i].k);
1305 1.2.2.3 tls }
1306 1.2.2.3 tls
1307 1.2.2.3 tls if (BPF_MODE(insns[i].code) == BPF_MSH &&
1308 1.2.2.3 tls BPF_SIZE(insns[i].code) == BPF_B) {
1309 1.2.2.3 tls *hints |= BJ_HINT_MSH;
1310 1.2.2.3 tls }
1311 1.2.2.3 tls
1312 1.2.2.3 tls invalid &= ~BJ_INIT_XBIT;
1313 1.2.2.3 tls continue;
1314 1.2.2.3 tls
1315 1.2.2.3 tls case BPF_ST:
1316 1.2.2.3 tls *initmask |= invalid & BJ_INIT_ABIT;
1317 1.2.2.3 tls
1318 1.2.2.3 tls if ((uint32_t)insns[i].k < memwords)
1319 1.2.2.3 tls invalid &= ~BJ_INIT_MBIT(insns[i].k);
1320 1.2.2.3 tls
1321 1.2.2.3 tls continue;
1322 1.2.2.3 tls
1323 1.2.2.3 tls case BPF_STX:
1324 1.2.2.3 tls *hints |= BJ_HINT_XREG;
1325 1.2.2.3 tls *initmask |= invalid & BJ_INIT_XBIT;
1326 1.2.2.3 tls
1327 1.2.2.3 tls if ((uint32_t)insns[i].k < memwords)
1328 1.2.2.3 tls invalid &= ~BJ_INIT_MBIT(insns[i].k);
1329 1.2.2.3 tls
1330 1.2.2.3 tls continue;
1331 1.2.2.3 tls
1332 1.2.2.3 tls case BPF_ALU:
1333 1.2.2.3 tls *initmask |= invalid & BJ_INIT_ABIT;
1334 1.2.2.3 tls
1335 1.2.2.3 tls if (insns[i].code != (BPF_ALU|BPF_NEG) &&
1336 1.2.2.3 tls BPF_SRC(insns[i].code) == BPF_X) {
1337 1.2.2.3 tls *hints |= BJ_HINT_XREG;
1338 1.2.2.3 tls *initmask |= invalid & BJ_INIT_XBIT;
1339 1.2.2.3 tls }
1340 1.2.2.3 tls
1341 1.2.2.3 tls invalid &= ~BJ_INIT_ABIT;
1342 1.2.2.3 tls continue;
1343 1.2.2.3 tls
1344 1.2.2.3 tls case BPF_MISC:
1345 1.2.2.3 tls switch (BPF_MISCOP(insns[i].code)) {
1346 1.2.2.3 tls case BPF_TAX: // X <- A
1347 1.2.2.3 tls *hints |= BJ_HINT_XREG;
1348 1.2.2.3 tls *initmask |= invalid & BJ_INIT_ABIT;
1349 1.2.2.3 tls invalid &= ~BJ_INIT_XBIT;
1350 1.2.2.3 tls continue;
1351 1.2.2.3 tls
1352 1.2.2.3 tls case BPF_TXA: // A <- X
1353 1.2.2.3 tls *hints |= BJ_HINT_XREG;
1354 1.2.2.3 tls *initmask |= invalid & BJ_INIT_XBIT;
1355 1.2.2.3 tls invalid &= ~BJ_INIT_ABIT;
1356 1.2.2.3 tls continue;
1357 1.2.2.3 tls
1358 1.2.2.3 tls case BPF_COPX:
1359 1.2.2.3 tls *hints |= BJ_HINT_XREG | BJ_HINT_COPX;
1360 1.2.2.3 tls /* FALLTHROUGH */
1361 1.2.2.3 tls
1362 1.2.2.3 tls case BPF_COP:
1363 1.2.2.3 tls *hints |= BJ_HINT_COP;
1364 1.2.2.3 tls *initmask |= invalid & BJ_INIT_ABIT;
1365 1.2.2.3 tls invalid &= ~BJ_INIT_ABIT;
1366 1.2.2.3 tls continue;
1367 1.2.2.3 tls }
1368 1.2.2.3 tls
1369 1.2.2.3 tls continue;
1370 1.2.2.3 tls
1371 1.2.2.2 tls case BPF_JMP:
1372 1.2.2.3 tls /* Initialize abc_length for ABC pass. */
1373 1.2.2.3 tls insn_dat[i].u.jdata.abc_length = MAX_ABC_LENGTH;
1374 1.2.2.3 tls
1375 1.2.2.3 tls if (BPF_OP(insns[i].code) == BPF_JA) {
1376 1.2.2.2 tls jt = jf = insns[i].k;
1377 1.2.2.2 tls } else {
1378 1.2.2.2 tls jt = insns[i].jt;
1379 1.2.2.2 tls jf = insns[i].jf;
1380 1.2.2.2 tls }
1381 1.2.2.2 tls
1382 1.2.2.2 tls if (jt >= insn_count - (i + 1) ||
1383 1.2.2.2 tls jf >= insn_count - (i + 1)) {
1384 1.2.2.3 tls return false;
1385 1.2.2.2 tls }
1386 1.2.2.2 tls
1387 1.2.2.2 tls if (jt > 0 && jf > 0)
1388 1.2.2.2 tls unreachable = true;
1389 1.2.2.2 tls
1390 1.2.2.3 tls jt += i + 1;
1391 1.2.2.3 tls jf += i + 1;
1392 1.2.2.3 tls
1393 1.2.2.3 tls jtf = insn_dat[i].u.jdata.jtf;
1394 1.2.2.2 tls
1395 1.2.2.3 tls jtf[0].jdata = &insn_dat[i].u.jdata;
1396 1.2.2.3 tls SLIST_INSERT_HEAD(&insn_dat[jt].bjumps,
1397 1.2.2.3 tls &jtf[0], entries);
1398 1.2.2.2 tls
1399 1.2.2.2 tls if (jf != jt) {
1400 1.2.2.3 tls jtf[1].jdata = &insn_dat[i].u.jdata;
1401 1.2.2.3 tls SLIST_INSERT_HEAD(&insn_dat[jf].bjumps,
1402 1.2.2.3 tls &jtf[1], entries);
1403 1.2.2.2 tls }
1404 1.2.2.2 tls
1405 1.2.2.3 tls insn_dat[jf].invalid |= invalid;
1406 1.2.2.3 tls insn_dat[jt].invalid |= invalid;
1407 1.2.2.3 tls invalid = 0;
1408 1.2.2.3 tls
1409 1.2.2.2 tls continue;
1410 1.2.2.2 tls }
1411 1.2.2.2 tls }
1412 1.2.2.2 tls
1413 1.2.2.3 tls return true;
1414 1.2.2.2 tls }
1415 1.2.2.2 tls
1416 1.2.2.2 tls /*
1417 1.2.2.3 tls * Array Bounds Check Elimination (ABC) pass.
1418 1.2.2.2 tls */
1419 1.2.2.3 tls static void
1420 1.2.2.3 tls optimize_pass2(const bpf_ctx_t *bc, const struct bpf_insn *insns,
1421 1.2.2.3 tls struct bpfjit_insn_data *insn_dat, size_t insn_count)
1422 1.2.2.2 tls {
1423 1.2.2.3 tls struct bpfjit_jump *jmp;
1424 1.2.2.3 tls const struct bpf_insn *pc;
1425 1.2.2.3 tls struct bpfjit_insn_data *pd;
1426 1.2.2.2 tls size_t i;
1427 1.2.2.3 tls bpfjit_abc_length_t length, abc_length = 0;
1428 1.2.2.2 tls
1429 1.2.2.3 tls const size_t extwords = GET_EXTWORDS(bc);
1430 1.2.2.2 tls
1431 1.2.2.3 tls for (i = insn_count; i != 0; i--) {
1432 1.2.2.3 tls pc = &insns[i-1];
1433 1.2.2.3 tls pd = &insn_dat[i-1];
1434 1.2.2.3 tls
1435 1.2.2.3 tls if (pd->unreachable)
1436 1.2.2.3 tls continue;
1437 1.2.2.3 tls
1438 1.2.2.3 tls switch (BPF_CLASS(pc->code)) {
1439 1.2.2.3 tls case BPF_RET:
1440 1.2.2.3 tls /*
1441 1.2.2.3 tls * It's quite common for bpf programs to
1442 1.2.2.3 tls * check packet bytes in increasing order
1443 1.2.2.3 tls * and return zero if bytes don't match
1444 1.2.2.3 tls * specified critetion. Such programs disable
1445 1.2.2.3 tls * ABC optimization completely because for
1446 1.2.2.3 tls * every jump there is a branch with no read
1447 1.2.2.3 tls * instruction.
1448 1.2.2.3 tls * With no side effects, BPF_STMT(BPF_RET+BPF_K, 0)
1449 1.2.2.3 tls * is indistinguishable from out-of-bound load.
1450 1.2.2.3 tls * Therefore, abc_length can be set to
1451 1.2.2.3 tls * MAX_ABC_LENGTH and enable ABC for many
1452 1.2.2.3 tls * bpf programs.
1453 1.2.2.3 tls * If this optimization encounters any
1454 1.2.2.3 tls * instruction with a side effect, it will
1455 1.2.2.3 tls * reset abc_length.
1456 1.2.2.3 tls */
1457 1.2.2.3 tls if (BPF_RVAL(pc->code) == BPF_K && pc->k == 0)
1458 1.2.2.3 tls abc_length = MAX_ABC_LENGTH;
1459 1.2.2.3 tls else
1460 1.2.2.3 tls abc_length = 0;
1461 1.2.2.3 tls break;
1462 1.2.2.3 tls
1463 1.2.2.3 tls case BPF_MISC:
1464 1.2.2.3 tls if (BPF_MISCOP(pc->code) == BPF_COP ||
1465 1.2.2.3 tls BPF_MISCOP(pc->code) == BPF_COPX) {
1466 1.2.2.3 tls /* COP instructions can have side effects. */
1467 1.2.2.3 tls abc_length = 0;
1468 1.2.2.3 tls }
1469 1.2.2.3 tls break;
1470 1.2.2.3 tls
1471 1.2.2.3 tls case BPF_ST:
1472 1.2.2.3 tls case BPF_STX:
1473 1.2.2.3 tls if (extwords != 0) {
1474 1.2.2.3 tls /* Write to memory is visible after a call. */
1475 1.2.2.3 tls abc_length = 0;
1476 1.2.2.3 tls }
1477 1.2.2.3 tls break;
1478 1.2.2.3 tls
1479 1.2.2.3 tls case BPF_JMP:
1480 1.2.2.3 tls abc_length = pd->u.jdata.abc_length;
1481 1.2.2.3 tls break;
1482 1.2.2.3 tls
1483 1.2.2.3 tls default:
1484 1.2.2.3 tls if (read_pkt_insn(pc, &length)) {
1485 1.2.2.3 tls if (abc_length < length)
1486 1.2.2.3 tls abc_length = length;
1487 1.2.2.3 tls pd->u.rdata.abc_length = abc_length;
1488 1.2.2.3 tls }
1489 1.2.2.3 tls break;
1490 1.2.2.2 tls }
1491 1.2.2.2 tls
1492 1.2.2.3 tls SLIST_FOREACH(jmp, &pd->bjumps, entries) {
1493 1.2.2.3 tls if (jmp->jdata->abc_length > abc_length)
1494 1.2.2.3 tls jmp->jdata->abc_length = abc_length;
1495 1.2.2.2 tls }
1496 1.2.2.3 tls }
1497 1.2.2.3 tls }
1498 1.2.2.2 tls
1499 1.2.2.3 tls static void
1500 1.2.2.3 tls optimize_pass3(const struct bpf_insn *insns,
1501 1.2.2.3 tls struct bpfjit_insn_data *insn_dat, size_t insn_count)
1502 1.2.2.3 tls {
1503 1.2.2.3 tls struct bpfjit_jump *jmp;
1504 1.2.2.3 tls size_t i;
1505 1.2.2.3 tls bpfjit_abc_length_t checked_length = 0;
1506 1.2.2.3 tls
1507 1.2.2.3 tls for (i = 0; i < insn_count; i++) {
1508 1.2.2.3 tls if (insn_dat[i].unreachable)
1509 1.2.2.3 tls continue;
1510 1.2.2.2 tls
1511 1.2.2.3 tls SLIST_FOREACH(jmp, &insn_dat[i].bjumps, entries) {
1512 1.2.2.3 tls if (jmp->jdata->checked_length < checked_length)
1513 1.2.2.3 tls checked_length = jmp->jdata->checked_length;
1514 1.2.2.3 tls }
1515 1.2.2.3 tls
1516 1.2.2.3 tls if (BPF_CLASS(insns[i].code) == BPF_JMP) {
1517 1.2.2.3 tls insn_dat[i].u.jdata.checked_length = checked_length;
1518 1.2.2.3 tls } else if (read_pkt_insn(&insns[i], NULL)) {
1519 1.2.2.3 tls struct bpfjit_read_pkt_data *rdata =
1520 1.2.2.3 tls &insn_dat[i].u.rdata;
1521 1.2.2.3 tls rdata->check_length = 0;
1522 1.2.2.3 tls if (checked_length < rdata->abc_length) {
1523 1.2.2.3 tls checked_length = rdata->abc_length;
1524 1.2.2.3 tls rdata->check_length = checked_length;
1525 1.2.2.3 tls }
1526 1.2.2.2 tls }
1527 1.2.2.2 tls }
1528 1.2.2.3 tls }
1529 1.2.2.2 tls
1530 1.2.2.3 tls static bool
1531 1.2.2.3 tls optimize(const bpf_ctx_t *bc, const struct bpf_insn *insns,
1532 1.2.2.3 tls struct bpfjit_insn_data *insn_dat, size_t insn_count,
1533 1.2.2.3 tls bpf_memword_init_t *initmask, bpfjit_hint_t *hints)
1534 1.2.2.3 tls {
1535 1.2.2.3 tls
1536 1.2.2.3 tls optimize_init(insn_dat, insn_count);
1537 1.2.2.3 tls
1538 1.2.2.3 tls if (!optimize_pass1(bc, insns, insn_dat, insn_count, initmask, hints))
1539 1.2.2.3 tls return false;
1540 1.2.2.3 tls
1541 1.2.2.3 tls optimize_pass2(bc, insns, insn_dat, insn_count);
1542 1.2.2.3 tls optimize_pass3(insns, insn_dat, insn_count);
1543 1.2.2.3 tls
1544 1.2.2.3 tls return true;
1545 1.2.2.2 tls }
1546 1.2.2.2 tls
1547 1.2.2.2 tls /*
1548 1.2.2.2 tls * Convert BPF_ALU operations except BPF_NEG and BPF_DIV to sljit operation.
1549 1.2.2.2 tls */
1550 1.2.2.2 tls static int
1551 1.2.2.3 tls bpf_alu_to_sljit_op(const struct bpf_insn *pc)
1552 1.2.2.2 tls {
1553 1.2.2.2 tls
1554 1.2.2.2 tls /*
1555 1.2.2.2 tls * Note: all supported 64bit arches have 32bit multiply
1556 1.2.2.2 tls * instruction so SLJIT_INT_OP doesn't have any overhead.
1557 1.2.2.2 tls */
1558 1.2.2.2 tls switch (BPF_OP(pc->code)) {
1559 1.2.2.2 tls case BPF_ADD: return SLJIT_ADD;
1560 1.2.2.2 tls case BPF_SUB: return SLJIT_SUB;
1561 1.2.2.2 tls case BPF_MUL: return SLJIT_MUL|SLJIT_INT_OP;
1562 1.2.2.2 tls case BPF_OR: return SLJIT_OR;
1563 1.2.2.2 tls case BPF_AND: return SLJIT_AND;
1564 1.2.2.2 tls case BPF_LSH: return SLJIT_SHL;
1565 1.2.2.2 tls case BPF_RSH: return SLJIT_LSHR|SLJIT_INT_OP;
1566 1.2.2.2 tls default:
1567 1.2.2.3 tls BJ_ASSERT(false);
1568 1.2.2.2 tls return 0;
1569 1.2.2.2 tls }
1570 1.2.2.2 tls }
1571 1.2.2.2 tls
1572 1.2.2.2 tls /*
1573 1.2.2.2 tls * Convert BPF_JMP operations except BPF_JA to sljit condition.
1574 1.2.2.2 tls */
1575 1.2.2.2 tls static int
1576 1.2.2.3 tls bpf_jmp_to_sljit_cond(const struct bpf_insn *pc, bool negate)
1577 1.2.2.2 tls {
1578 1.2.2.2 tls /*
1579 1.2.2.2 tls * Note: all supported 64bit arches have 32bit comparison
1580 1.2.2.2 tls * instructions so SLJIT_INT_OP doesn't have any overhead.
1581 1.2.2.2 tls */
1582 1.2.2.2 tls int rv = SLJIT_INT_OP;
1583 1.2.2.2 tls
1584 1.2.2.2 tls switch (BPF_OP(pc->code)) {
1585 1.2.2.2 tls case BPF_JGT:
1586 1.2.2.2 tls rv |= negate ? SLJIT_C_LESS_EQUAL : SLJIT_C_GREATER;
1587 1.2.2.2 tls break;
1588 1.2.2.2 tls case BPF_JGE:
1589 1.2.2.2 tls rv |= negate ? SLJIT_C_LESS : SLJIT_C_GREATER_EQUAL;
1590 1.2.2.2 tls break;
1591 1.2.2.2 tls case BPF_JEQ:
1592 1.2.2.2 tls rv |= negate ? SLJIT_C_NOT_EQUAL : SLJIT_C_EQUAL;
1593 1.2.2.2 tls break;
1594 1.2.2.2 tls case BPF_JSET:
1595 1.2.2.2 tls rv |= negate ? SLJIT_C_EQUAL : SLJIT_C_NOT_EQUAL;
1596 1.2.2.2 tls break;
1597 1.2.2.2 tls default:
1598 1.2.2.3 tls BJ_ASSERT(false);
1599 1.2.2.2 tls }
1600 1.2.2.2 tls
1601 1.2.2.2 tls return rv;
1602 1.2.2.2 tls }
1603 1.2.2.2 tls
1604 1.2.2.2 tls /*
1605 1.2.2.2 tls * Convert BPF_K and BPF_X to sljit register.
1606 1.2.2.2 tls */
1607 1.2.2.2 tls static int
1608 1.2.2.3 tls kx_to_reg(const struct bpf_insn *pc)
1609 1.2.2.2 tls {
1610 1.2.2.2 tls
1611 1.2.2.2 tls switch (BPF_SRC(pc->code)) {
1612 1.2.2.2 tls case BPF_K: return SLJIT_IMM;
1613 1.2.2.3 tls case BPF_X: return BJ_XREG;
1614 1.2.2.2 tls default:
1615 1.2.2.3 tls BJ_ASSERT(false);
1616 1.2.2.2 tls return 0;
1617 1.2.2.2 tls }
1618 1.2.2.2 tls }
1619 1.2.2.2 tls
1620 1.2.2.3 tls static sljit_sw
1621 1.2.2.3 tls kx_to_reg_arg(const struct bpf_insn *pc)
1622 1.2.2.2 tls {
1623 1.2.2.2 tls
1624 1.2.2.2 tls switch (BPF_SRC(pc->code)) {
1625 1.2.2.2 tls case BPF_K: return (uint32_t)pc->k; /* SLJIT_IMM, pc->k, */
1626 1.2.2.3 tls case BPF_X: return 0; /* BJ_XREG, 0, */
1627 1.2.2.2 tls default:
1628 1.2.2.3 tls BJ_ASSERT(false);
1629 1.2.2.2 tls return 0;
1630 1.2.2.2 tls }
1631 1.2.2.2 tls }
1632 1.2.2.2 tls
1633 1.2.2.3 tls static bool
1634 1.2.2.3 tls generate_insn_code(struct sljit_compiler *compiler, bpfjit_hint_t hints,
1635 1.2.2.3 tls const bpf_ctx_t *bc, const struct bpf_insn *insns,
1636 1.2.2.3 tls struct bpfjit_insn_data *insn_dat, size_t insn_count)
1637 1.2.2.2 tls {
1638 1.2.2.2 tls /* a list of jumps to out-of-bound return from a generated function */
1639 1.2.2.2 tls struct sljit_jump **ret0;
1640 1.2.2.2 tls size_t ret0_size, ret0_maxsize;
1641 1.2.2.2 tls
1642 1.2.2.2 tls struct sljit_jump *jump;
1643 1.2.2.3 tls struct sljit_label *label;
1644 1.2.2.3 tls const struct bpf_insn *pc;
1645 1.2.2.2 tls struct bpfjit_jump *bjump, *jtf;
1646 1.2.2.2 tls struct sljit_jump *to_mchain_jump;
1647 1.2.2.2 tls
1648 1.2.2.3 tls size_t i;
1649 1.2.2.3 tls int status;
1650 1.2.2.3 tls int branching, negate;
1651 1.2.2.3 tls unsigned int rval, mode, src;
1652 1.2.2.2 tls uint32_t jt, jf;
1653 1.2.2.2 tls
1654 1.2.2.3 tls bool unconditional_ret;
1655 1.2.2.3 tls bool rv;
1656 1.2.2.2 tls
1657 1.2.2.3 tls const size_t extwords = GET_EXTWORDS(bc);
1658 1.2.2.3 tls const size_t memwords = GET_MEMWORDS(bc);
1659 1.2.2.2 tls
1660 1.2.2.3 tls ret0 = NULL;
1661 1.2.2.3 tls rv = false;
1662 1.2.2.2 tls
1663 1.2.2.2 tls ret0_size = 0;
1664 1.2.2.3 tls ret0_maxsize = 64;
1665 1.2.2.3 tls ret0 = BJ_ALLOC(ret0_maxsize * sizeof(ret0[0]));
1666 1.2.2.3 tls if (ret0 == NULL)
1667 1.2.2.2 tls goto fail;
1668 1.2.2.2 tls
1669 1.2.2.3 tls /* reset sjump members of jdata */
1670 1.2.2.3 tls for (i = 0; i < insn_count; i++) {
1671 1.2.2.3 tls if (insn_dat[i].unreachable ||
1672 1.2.2.3 tls BPF_CLASS(insns[i].code) != BPF_JMP) {
1673 1.2.2.3 tls continue;
1674 1.2.2.3 tls }
1675 1.2.2.2 tls
1676 1.2.2.3 tls jtf = insn_dat[i].u.jdata.jtf;
1677 1.2.2.3 tls jtf[0].sjump = jtf[1].sjump = NULL;
1678 1.2.2.2 tls }
1679 1.2.2.2 tls
1680 1.2.2.3 tls /* main loop */
1681 1.2.2.2 tls for (i = 0; i < insn_count; i++) {
1682 1.2.2.3 tls if (insn_dat[i].unreachable)
1683 1.2.2.2 tls continue;
1684 1.2.2.2 tls
1685 1.2.2.2 tls /*
1686 1.2.2.2 tls * Resolve jumps to the current insn.
1687 1.2.2.2 tls */
1688 1.2.2.2 tls label = NULL;
1689 1.2.2.3 tls SLIST_FOREACH(bjump, &insn_dat[i].bjumps, entries) {
1690 1.2.2.3 tls if (bjump->sjump != NULL) {
1691 1.2.2.2 tls if (label == NULL)
1692 1.2.2.2 tls label = sljit_emit_label(compiler);
1693 1.2.2.2 tls if (label == NULL)
1694 1.2.2.2 tls goto fail;
1695 1.2.2.3 tls sljit_set_label(bjump->sjump, label);
1696 1.2.2.2 tls }
1697 1.2.2.2 tls }
1698 1.2.2.2 tls
1699 1.2.2.3 tls to_mchain_jump = NULL;
1700 1.2.2.3 tls unconditional_ret = false;
1701 1.2.2.3 tls
1702 1.2.2.3 tls if (read_pkt_insn(&insns[i], NULL)) {
1703 1.2.2.3 tls if (insn_dat[i].u.rdata.check_length > UINT32_MAX) {
1704 1.2.2.3 tls /* Jump to "return 0" unconditionally. */
1705 1.2.2.3 tls unconditional_ret = true;
1706 1.2.2.3 tls jump = sljit_emit_jump(compiler, SLJIT_JUMP);
1707 1.2.2.3 tls if (jump == NULL)
1708 1.2.2.3 tls goto fail;
1709 1.2.2.3 tls if (!append_jump(jump, &ret0,
1710 1.2.2.3 tls &ret0_size, &ret0_maxsize))
1711 1.2.2.3 tls goto fail;
1712 1.2.2.3 tls } else if (insn_dat[i].u.rdata.check_length > 0) {
1713 1.2.2.3 tls /* if (buflen < check_length) return 0; */
1714 1.2.2.3 tls jump = sljit_emit_cmp(compiler,
1715 1.2.2.3 tls SLJIT_C_LESS,
1716 1.2.2.3 tls BJ_BUFLEN, 0,
1717 1.2.2.3 tls SLJIT_IMM,
1718 1.2.2.3 tls insn_dat[i].u.rdata.check_length);
1719 1.2.2.3 tls if (jump == NULL)
1720 1.2.2.3 tls goto fail;
1721 1.2.2.2 tls #ifdef _KERNEL
1722 1.2.2.3 tls to_mchain_jump = jump;
1723 1.2.2.2 tls #else
1724 1.2.2.3 tls if (!append_jump(jump, &ret0,
1725 1.2.2.3 tls &ret0_size, &ret0_maxsize))
1726 1.2.2.3 tls goto fail;
1727 1.2.2.2 tls #endif
1728 1.2.2.3 tls }
1729 1.2.2.2 tls }
1730 1.2.2.2 tls
1731 1.2.2.2 tls pc = &insns[i];
1732 1.2.2.2 tls switch (BPF_CLASS(pc->code)) {
1733 1.2.2.2 tls
1734 1.2.2.2 tls default:
1735 1.2.2.2 tls goto fail;
1736 1.2.2.2 tls
1737 1.2.2.2 tls case BPF_LD:
1738 1.2.2.2 tls /* BPF_LD+BPF_IMM A <- k */
1739 1.2.2.2 tls if (pc->code == (BPF_LD|BPF_IMM)) {
1740 1.2.2.2 tls status = sljit_emit_op1(compiler,
1741 1.2.2.2 tls SLJIT_MOV,
1742 1.2.2.3 tls BJ_AREG, 0,
1743 1.2.2.2 tls SLJIT_IMM, (uint32_t)pc->k);
1744 1.2.2.2 tls if (status != SLJIT_SUCCESS)
1745 1.2.2.2 tls goto fail;
1746 1.2.2.2 tls
1747 1.2.2.2 tls continue;
1748 1.2.2.2 tls }
1749 1.2.2.2 tls
1750 1.2.2.2 tls /* BPF_LD+BPF_MEM A <- M[k] */
1751 1.2.2.2 tls if (pc->code == (BPF_LD|BPF_MEM)) {
1752 1.2.2.3 tls if ((uint32_t)pc->k >= memwords)
1753 1.2.2.2 tls goto fail;
1754 1.2.2.3 tls status = emit_memload(compiler,
1755 1.2.2.3 tls BJ_AREG, pc->k, extwords);
1756 1.2.2.2 tls if (status != SLJIT_SUCCESS)
1757 1.2.2.2 tls goto fail;
1758 1.2.2.2 tls
1759 1.2.2.2 tls continue;
1760 1.2.2.2 tls }
1761 1.2.2.2 tls
1762 1.2.2.2 tls /* BPF_LD+BPF_W+BPF_LEN A <- len */
1763 1.2.2.2 tls if (pc->code == (BPF_LD|BPF_W|BPF_LEN)) {
1764 1.2.2.2 tls status = sljit_emit_op1(compiler,
1765 1.2.2.3 tls SLJIT_MOV, /* size_t source */
1766 1.2.2.3 tls BJ_AREG, 0,
1767 1.2.2.3 tls SLJIT_MEM1(BJ_ARGS),
1768 1.2.2.3 tls offsetof(struct bpf_args, wirelen));
1769 1.2.2.2 tls if (status != SLJIT_SUCCESS)
1770 1.2.2.2 tls goto fail;
1771 1.2.2.2 tls
1772 1.2.2.2 tls continue;
1773 1.2.2.2 tls }
1774 1.2.2.2 tls
1775 1.2.2.2 tls mode = BPF_MODE(pc->code);
1776 1.2.2.2 tls if (mode != BPF_ABS && mode != BPF_IND)
1777 1.2.2.2 tls goto fail;
1778 1.2.2.2 tls
1779 1.2.2.3 tls if (unconditional_ret)
1780 1.2.2.3 tls continue;
1781 1.2.2.3 tls
1782 1.2.2.3 tls status = emit_pkt_read(compiler, hints, pc,
1783 1.2.2.3 tls to_mchain_jump, &ret0, &ret0_size, &ret0_maxsize);
1784 1.2.2.2 tls if (status != SLJIT_SUCCESS)
1785 1.2.2.2 tls goto fail;
1786 1.2.2.2 tls
1787 1.2.2.2 tls continue;
1788 1.2.2.2 tls
1789 1.2.2.2 tls case BPF_LDX:
1790 1.2.2.2 tls mode = BPF_MODE(pc->code);
1791 1.2.2.2 tls
1792 1.2.2.2 tls /* BPF_LDX+BPF_W+BPF_IMM X <- k */
1793 1.2.2.2 tls if (mode == BPF_IMM) {
1794 1.2.2.2 tls if (BPF_SIZE(pc->code) != BPF_W)
1795 1.2.2.2 tls goto fail;
1796 1.2.2.2 tls status = sljit_emit_op1(compiler,
1797 1.2.2.2 tls SLJIT_MOV,
1798 1.2.2.3 tls BJ_XREG, 0,
1799 1.2.2.2 tls SLJIT_IMM, (uint32_t)pc->k);
1800 1.2.2.2 tls if (status != SLJIT_SUCCESS)
1801 1.2.2.2 tls goto fail;
1802 1.2.2.2 tls
1803 1.2.2.2 tls continue;
1804 1.2.2.2 tls }
1805 1.2.2.2 tls
1806 1.2.2.2 tls /* BPF_LDX+BPF_W+BPF_LEN X <- len */
1807 1.2.2.2 tls if (mode == BPF_LEN) {
1808 1.2.2.2 tls if (BPF_SIZE(pc->code) != BPF_W)
1809 1.2.2.2 tls goto fail;
1810 1.2.2.2 tls status = sljit_emit_op1(compiler,
1811 1.2.2.3 tls SLJIT_MOV, /* size_t source */
1812 1.2.2.3 tls BJ_XREG, 0,
1813 1.2.2.3 tls SLJIT_MEM1(BJ_ARGS),
1814 1.2.2.3 tls offsetof(struct bpf_args, wirelen));
1815 1.2.2.2 tls if (status != SLJIT_SUCCESS)
1816 1.2.2.2 tls goto fail;
1817 1.2.2.2 tls
1818 1.2.2.2 tls continue;
1819 1.2.2.2 tls }
1820 1.2.2.2 tls
1821 1.2.2.2 tls /* BPF_LDX+BPF_W+BPF_MEM X <- M[k] */
1822 1.2.2.2 tls if (mode == BPF_MEM) {
1823 1.2.2.2 tls if (BPF_SIZE(pc->code) != BPF_W)
1824 1.2.2.2 tls goto fail;
1825 1.2.2.3 tls if ((uint32_t)pc->k >= memwords)
1826 1.2.2.2 tls goto fail;
1827 1.2.2.3 tls status = emit_memload(compiler,
1828 1.2.2.3 tls BJ_XREG, pc->k, extwords);
1829 1.2.2.2 tls if (status != SLJIT_SUCCESS)
1830 1.2.2.2 tls goto fail;
1831 1.2.2.2 tls
1832 1.2.2.2 tls continue;
1833 1.2.2.2 tls }
1834 1.2.2.2 tls
1835 1.2.2.2 tls /* BPF_LDX+BPF_B+BPF_MSH X <- 4*(P[k:1]&0xf) */
1836 1.2.2.2 tls if (mode != BPF_MSH || BPF_SIZE(pc->code) != BPF_B)
1837 1.2.2.2 tls goto fail;
1838 1.2.2.2 tls
1839 1.2.2.3 tls if (unconditional_ret)
1840 1.2.2.3 tls continue;
1841 1.2.2.3 tls
1842 1.2.2.3 tls status = emit_msh(compiler, hints, pc,
1843 1.2.2.3 tls to_mchain_jump, &ret0, &ret0_size, &ret0_maxsize);
1844 1.2.2.2 tls if (status != SLJIT_SUCCESS)
1845 1.2.2.2 tls goto fail;
1846 1.2.2.2 tls
1847 1.2.2.2 tls continue;
1848 1.2.2.2 tls
1849 1.2.2.2 tls case BPF_ST:
1850 1.2.2.3 tls if (pc->code != BPF_ST ||
1851 1.2.2.3 tls (uint32_t)pc->k >= memwords) {
1852 1.2.2.2 tls goto fail;
1853 1.2.2.3 tls }
1854 1.2.2.2 tls
1855 1.2.2.3 tls status = emit_memstore(compiler,
1856 1.2.2.3 tls BJ_AREG, pc->k, extwords);
1857 1.2.2.2 tls if (status != SLJIT_SUCCESS)
1858 1.2.2.2 tls goto fail;
1859 1.2.2.2 tls
1860 1.2.2.2 tls continue;
1861 1.2.2.2 tls
1862 1.2.2.2 tls case BPF_STX:
1863 1.2.2.3 tls if (pc->code != BPF_STX ||
1864 1.2.2.3 tls (uint32_t)pc->k >= memwords) {
1865 1.2.2.2 tls goto fail;
1866 1.2.2.3 tls }
1867 1.2.2.2 tls
1868 1.2.2.3 tls status = emit_memstore(compiler,
1869 1.2.2.3 tls BJ_XREG, pc->k, extwords);
1870 1.2.2.2 tls if (status != SLJIT_SUCCESS)
1871 1.2.2.2 tls goto fail;
1872 1.2.2.2 tls
1873 1.2.2.2 tls continue;
1874 1.2.2.2 tls
1875 1.2.2.2 tls case BPF_ALU:
1876 1.2.2.2 tls if (pc->code == (BPF_ALU|BPF_NEG)) {
1877 1.2.2.2 tls status = sljit_emit_op1(compiler,
1878 1.2.2.2 tls SLJIT_NEG,
1879 1.2.2.3 tls BJ_AREG, 0,
1880 1.2.2.3 tls BJ_AREG, 0);
1881 1.2.2.2 tls if (status != SLJIT_SUCCESS)
1882 1.2.2.2 tls goto fail;
1883 1.2.2.2 tls
1884 1.2.2.2 tls continue;
1885 1.2.2.2 tls }
1886 1.2.2.2 tls
1887 1.2.2.2 tls if (BPF_OP(pc->code) != BPF_DIV) {
1888 1.2.2.2 tls status = sljit_emit_op2(compiler,
1889 1.2.2.2 tls bpf_alu_to_sljit_op(pc),
1890 1.2.2.3 tls BJ_AREG, 0,
1891 1.2.2.3 tls BJ_AREG, 0,
1892 1.2.2.2 tls kx_to_reg(pc), kx_to_reg_arg(pc));
1893 1.2.2.2 tls if (status != SLJIT_SUCCESS)
1894 1.2.2.2 tls goto fail;
1895 1.2.2.2 tls
1896 1.2.2.2 tls continue;
1897 1.2.2.2 tls }
1898 1.2.2.2 tls
1899 1.2.2.2 tls /* BPF_DIV */
1900 1.2.2.2 tls
1901 1.2.2.2 tls src = BPF_SRC(pc->code);
1902 1.2.2.2 tls if (src != BPF_X && src != BPF_K)
1903 1.2.2.2 tls goto fail;
1904 1.2.2.2 tls
1905 1.2.2.2 tls /* division by zero? */
1906 1.2.2.2 tls if (src == BPF_X) {
1907 1.2.2.2 tls jump = sljit_emit_cmp(compiler,
1908 1.2.2.2 tls SLJIT_C_EQUAL|SLJIT_INT_OP,
1909 1.2.2.3 tls BJ_XREG, 0,
1910 1.2.2.2 tls SLJIT_IMM, 0);
1911 1.2.2.2 tls if (jump == NULL)
1912 1.2.2.2 tls goto fail;
1913 1.2.2.3 tls if (!append_jump(jump, &ret0,
1914 1.2.2.3 tls &ret0_size, &ret0_maxsize))
1915 1.2.2.3 tls goto fail;
1916 1.2.2.2 tls } else if (pc->k == 0) {
1917 1.2.2.2 tls jump = sljit_emit_jump(compiler, SLJIT_JUMP);
1918 1.2.2.2 tls if (jump == NULL)
1919 1.2.2.2 tls goto fail;
1920 1.2.2.3 tls if (!append_jump(jump, &ret0,
1921 1.2.2.3 tls &ret0_size, &ret0_maxsize))
1922 1.2.2.3 tls goto fail;
1923 1.2.2.2 tls }
1924 1.2.2.2 tls
1925 1.2.2.2 tls if (src == BPF_X) {
1926 1.2.2.3 tls status = emit_division(compiler, BJ_XREG, 0);
1927 1.2.2.2 tls if (status != SLJIT_SUCCESS)
1928 1.2.2.2 tls goto fail;
1929 1.2.2.2 tls } else if (pc->k != 0) {
1930 1.2.2.2 tls if (pc->k & (pc->k - 1)) {
1931 1.2.2.2 tls status = emit_division(compiler,
1932 1.2.2.2 tls SLJIT_IMM, (uint32_t)pc->k);
1933 1.2.2.2 tls } else {
1934 1.2.2.3 tls status = emit_pow2_division(compiler,
1935 1.2.2.2 tls (uint32_t)pc->k);
1936 1.2.2.2 tls }
1937 1.2.2.2 tls if (status != SLJIT_SUCCESS)
1938 1.2.2.2 tls goto fail;
1939 1.2.2.2 tls }
1940 1.2.2.2 tls
1941 1.2.2.2 tls continue;
1942 1.2.2.2 tls
1943 1.2.2.2 tls case BPF_JMP:
1944 1.2.2.3 tls if (BPF_OP(pc->code) == BPF_JA) {
1945 1.2.2.2 tls jt = jf = pc->k;
1946 1.2.2.2 tls } else {
1947 1.2.2.2 tls jt = pc->jt;
1948 1.2.2.2 tls jf = pc->jf;
1949 1.2.2.2 tls }
1950 1.2.2.2 tls
1951 1.2.2.2 tls negate = (jt == 0) ? 1 : 0;
1952 1.2.2.2 tls branching = (jt == jf) ? 0 : 1;
1953 1.2.2.3 tls jtf = insn_dat[i].u.jdata.jtf;
1954 1.2.2.2 tls
1955 1.2.2.2 tls if (branching) {
1956 1.2.2.2 tls if (BPF_OP(pc->code) != BPF_JSET) {
1957 1.2.2.2 tls jump = sljit_emit_cmp(compiler,
1958 1.2.2.2 tls bpf_jmp_to_sljit_cond(pc, negate),
1959 1.2.2.3 tls BJ_AREG, 0,
1960 1.2.2.2 tls kx_to_reg(pc), kx_to_reg_arg(pc));
1961 1.2.2.2 tls } else {
1962 1.2.2.2 tls status = sljit_emit_op2(compiler,
1963 1.2.2.2 tls SLJIT_AND,
1964 1.2.2.3 tls BJ_TMP1REG, 0,
1965 1.2.2.3 tls BJ_AREG, 0,
1966 1.2.2.2 tls kx_to_reg(pc), kx_to_reg_arg(pc));
1967 1.2.2.2 tls if (status != SLJIT_SUCCESS)
1968 1.2.2.2 tls goto fail;
1969 1.2.2.2 tls
1970 1.2.2.2 tls jump = sljit_emit_cmp(compiler,
1971 1.2.2.2 tls bpf_jmp_to_sljit_cond(pc, negate),
1972 1.2.2.3 tls BJ_TMP1REG, 0,
1973 1.2.2.2 tls SLJIT_IMM, 0);
1974 1.2.2.2 tls }
1975 1.2.2.2 tls
1976 1.2.2.2 tls if (jump == NULL)
1977 1.2.2.2 tls goto fail;
1978 1.2.2.2 tls
1979 1.2.2.3 tls BJ_ASSERT(jtf[negate].sjump == NULL);
1980 1.2.2.3 tls jtf[negate].sjump = jump;
1981 1.2.2.2 tls }
1982 1.2.2.2 tls
1983 1.2.2.2 tls if (!branching || (jt != 0 && jf != 0)) {
1984 1.2.2.2 tls jump = sljit_emit_jump(compiler, SLJIT_JUMP);
1985 1.2.2.2 tls if (jump == NULL)
1986 1.2.2.2 tls goto fail;
1987 1.2.2.2 tls
1988 1.2.2.3 tls BJ_ASSERT(jtf[branching].sjump == NULL);
1989 1.2.2.3 tls jtf[branching].sjump = jump;
1990 1.2.2.2 tls }
1991 1.2.2.2 tls
1992 1.2.2.2 tls continue;
1993 1.2.2.2 tls
1994 1.2.2.2 tls case BPF_RET:
1995 1.2.2.2 tls rval = BPF_RVAL(pc->code);
1996 1.2.2.2 tls if (rval == BPF_X)
1997 1.2.2.2 tls goto fail;
1998 1.2.2.2 tls
1999 1.2.2.2 tls /* BPF_RET+BPF_K accept k bytes */
2000 1.2.2.2 tls if (rval == BPF_K) {
2001 1.2.2.3 tls status = sljit_emit_return(compiler,
2002 1.2.2.3 tls SLJIT_MOV_UI,
2003 1.2.2.2 tls SLJIT_IMM, (uint32_t)pc->k);
2004 1.2.2.2 tls if (status != SLJIT_SUCCESS)
2005 1.2.2.2 tls goto fail;
2006 1.2.2.2 tls }
2007 1.2.2.2 tls
2008 1.2.2.2 tls /* BPF_RET+BPF_A accept A bytes */
2009 1.2.2.2 tls if (rval == BPF_A) {
2010 1.2.2.3 tls status = sljit_emit_return(compiler,
2011 1.2.2.3 tls SLJIT_MOV_UI,
2012 1.2.2.3 tls BJ_AREG, 0);
2013 1.2.2.2 tls if (status != SLJIT_SUCCESS)
2014 1.2.2.2 tls goto fail;
2015 1.2.2.2 tls }
2016 1.2.2.2 tls
2017 1.2.2.2 tls continue;
2018 1.2.2.2 tls
2019 1.2.2.2 tls case BPF_MISC:
2020 1.2.2.3 tls switch (BPF_MISCOP(pc->code)) {
2021 1.2.2.3 tls case BPF_TAX:
2022 1.2.2.2 tls status = sljit_emit_op1(compiler,
2023 1.2.2.2 tls SLJIT_MOV_UI,
2024 1.2.2.3 tls BJ_XREG, 0,
2025 1.2.2.3 tls BJ_AREG, 0);
2026 1.2.2.2 tls if (status != SLJIT_SUCCESS)
2027 1.2.2.2 tls goto fail;
2028 1.2.2.2 tls
2029 1.2.2.2 tls continue;
2030 1.2.2.2 tls
2031 1.2.2.3 tls case BPF_TXA:
2032 1.2.2.2 tls status = sljit_emit_op1(compiler,
2033 1.2.2.2 tls SLJIT_MOV,
2034 1.2.2.3 tls BJ_AREG, 0,
2035 1.2.2.3 tls BJ_XREG, 0);
2036 1.2.2.3 tls if (status != SLJIT_SUCCESS)
2037 1.2.2.3 tls goto fail;
2038 1.2.2.3 tls
2039 1.2.2.3 tls continue;
2040 1.2.2.3 tls
2041 1.2.2.3 tls case BPF_COP:
2042 1.2.2.3 tls case BPF_COPX:
2043 1.2.2.3 tls if (bc == NULL || bc->copfuncs == NULL)
2044 1.2.2.3 tls goto fail;
2045 1.2.2.3 tls if (BPF_MISCOP(pc->code) == BPF_COP &&
2046 1.2.2.3 tls (uint32_t)pc->k >= bc->nfuncs) {
2047 1.2.2.3 tls goto fail;
2048 1.2.2.3 tls }
2049 1.2.2.3 tls
2050 1.2.2.3 tls status = emit_cop(compiler, hints, bc, pc,
2051 1.2.2.3 tls &ret0, &ret0_size, &ret0_maxsize);
2052 1.2.2.2 tls if (status != SLJIT_SUCCESS)
2053 1.2.2.2 tls goto fail;
2054 1.2.2.2 tls
2055 1.2.2.2 tls continue;
2056 1.2.2.2 tls }
2057 1.2.2.2 tls
2058 1.2.2.2 tls goto fail;
2059 1.2.2.2 tls } /* switch */
2060 1.2.2.2 tls } /* main loop */
2061 1.2.2.2 tls
2062 1.2.2.3 tls BJ_ASSERT(ret0_size <= ret0_maxsize);
2063 1.2.2.2 tls
2064 1.2.2.3 tls if (ret0_size > 0) {
2065 1.2.2.2 tls label = sljit_emit_label(compiler);
2066 1.2.2.2 tls if (label == NULL)
2067 1.2.2.2 tls goto fail;
2068 1.2.2.3 tls for (i = 0; i < ret0_size; i++)
2069 1.2.2.3 tls sljit_set_label(ret0[i], label);
2070 1.2.2.2 tls }
2071 1.2.2.2 tls
2072 1.2.2.2 tls status = sljit_emit_return(compiler,
2073 1.2.2.2 tls SLJIT_MOV_UI,
2074 1.2.2.3 tls SLJIT_IMM, 0);
2075 1.2.2.2 tls if (status != SLJIT_SUCCESS)
2076 1.2.2.2 tls goto fail;
2077 1.2.2.2 tls
2078 1.2.2.3 tls rv = true;
2079 1.2.2.3 tls
2080 1.2.2.3 tls fail:
2081 1.2.2.3 tls if (ret0 != NULL)
2082 1.2.2.3 tls BJ_FREE(ret0, ret0_maxsize * sizeof(ret0[0]));
2083 1.2.2.3 tls
2084 1.2.2.3 tls return rv;
2085 1.2.2.3 tls }
2086 1.2.2.3 tls
2087 1.2.2.3 tls bpfjit_func_t
2088 1.2.2.3 tls bpfjit_generate_code(const bpf_ctx_t *bc,
2089 1.2.2.3 tls const struct bpf_insn *insns, size_t insn_count)
2090 1.2.2.3 tls {
2091 1.2.2.3 tls void *rv;
2092 1.2.2.3 tls struct sljit_compiler *compiler;
2093 1.2.2.3 tls
2094 1.2.2.3 tls size_t i;
2095 1.2.2.3 tls int status;
2096 1.2.2.3 tls
2097 1.2.2.3 tls /* optimization related */
2098 1.2.2.3 tls bpf_memword_init_t initmask;
2099 1.2.2.3 tls bpfjit_hint_t hints;
2100 1.2.2.3 tls
2101 1.2.2.3 tls /* memory store location for initial zero initialization */
2102 1.2.2.3 tls sljit_si mem_reg;
2103 1.2.2.3 tls sljit_sw mem_off;
2104 1.2.2.3 tls
2105 1.2.2.3 tls struct bpfjit_insn_data *insn_dat;
2106 1.2.2.3 tls
2107 1.2.2.3 tls const size_t extwords = GET_EXTWORDS(bc);
2108 1.2.2.3 tls const size_t memwords = GET_MEMWORDS(bc);
2109 1.2.2.3 tls const bpf_memword_init_t preinited = extwords ? bc->preinited : 0;
2110 1.2.2.3 tls
2111 1.2.2.3 tls rv = NULL;
2112 1.2.2.3 tls compiler = NULL;
2113 1.2.2.3 tls insn_dat = NULL;
2114 1.2.2.3 tls
2115 1.2.2.3 tls if (memwords > MAX_MEMWORDS)
2116 1.2.2.3 tls goto fail;
2117 1.2.2.3 tls
2118 1.2.2.3 tls if (insn_count == 0 || insn_count > SIZE_MAX / sizeof(insn_dat[0]))
2119 1.2.2.3 tls goto fail;
2120 1.2.2.3 tls
2121 1.2.2.3 tls insn_dat = BJ_ALLOC(insn_count * sizeof(insn_dat[0]));
2122 1.2.2.3 tls if (insn_dat == NULL)
2123 1.2.2.3 tls goto fail;
2124 1.2.2.3 tls
2125 1.2.2.3 tls if (!optimize(bc, insns, insn_dat, insn_count, &initmask, &hints))
2126 1.2.2.3 tls goto fail;
2127 1.2.2.3 tls
2128 1.2.2.3 tls compiler = sljit_create_compiler();
2129 1.2.2.3 tls if (compiler == NULL)
2130 1.2.2.3 tls goto fail;
2131 1.2.2.3 tls
2132 1.2.2.3 tls #if !defined(_KERNEL) && defined(SLJIT_VERBOSE) && SLJIT_VERBOSE
2133 1.2.2.3 tls sljit_compiler_verbose(compiler, stderr);
2134 1.2.2.3 tls #endif
2135 1.2.2.3 tls
2136 1.2.2.3 tls status = sljit_emit_enter(compiler,
2137 1.2.2.3 tls 2, nscratches(hints), nsaveds(hints), sizeof(struct bpfjit_stack));
2138 1.2.2.3 tls if (status != SLJIT_SUCCESS)
2139 1.2.2.3 tls goto fail;
2140 1.2.2.3 tls
2141 1.2.2.3 tls if (hints & BJ_HINT_COP) {
2142 1.2.2.3 tls /* save ctx argument */
2143 1.2.2.3 tls status = sljit_emit_op1(compiler,
2144 1.2.2.3 tls SLJIT_MOV_P,
2145 1.2.2.3 tls SLJIT_MEM1(SLJIT_LOCALS_REG),
2146 1.2.2.3 tls offsetof(struct bpfjit_stack, ctx),
2147 1.2.2.3 tls BJ_CTX_ARG, 0);
2148 1.2.2.3 tls if (status != SLJIT_SUCCESS)
2149 1.2.2.2 tls goto fail;
2150 1.2.2.3 tls }
2151 1.2.2.2 tls
2152 1.2.2.3 tls if (extwords == 0) {
2153 1.2.2.3 tls mem_reg = SLJIT_MEM1(SLJIT_LOCALS_REG);
2154 1.2.2.3 tls mem_off = offsetof(struct bpfjit_stack, mem);
2155 1.2.2.3 tls } else {
2156 1.2.2.3 tls /* copy "mem" argument from bpf_args to bpfjit_stack */
2157 1.2.2.3 tls status = sljit_emit_op1(compiler,
2158 1.2.2.3 tls SLJIT_MOV_P,
2159 1.2.2.3 tls BJ_TMP1REG, 0,
2160 1.2.2.3 tls SLJIT_MEM1(BJ_ARGS), offsetof(struct bpf_args, mem));
2161 1.2.2.3 tls if (status != SLJIT_SUCCESS)
2162 1.2.2.3 tls goto fail;
2163 1.2.2.3 tls
2164 1.2.2.3 tls status = sljit_emit_op1(compiler,
2165 1.2.2.3 tls SLJIT_MOV_P,
2166 1.2.2.3 tls SLJIT_MEM1(SLJIT_LOCALS_REG),
2167 1.2.2.3 tls offsetof(struct bpfjit_stack, extmem),
2168 1.2.2.3 tls BJ_TMP1REG, 0);
2169 1.2.2.3 tls if (status != SLJIT_SUCCESS)
2170 1.2.2.3 tls goto fail;
2171 1.2.2.3 tls
2172 1.2.2.3 tls mem_reg = SLJIT_MEM1(BJ_TMP1REG);
2173 1.2.2.3 tls mem_off = 0;
2174 1.2.2.3 tls }
2175 1.2.2.3 tls
2176 1.2.2.3 tls /*
2177 1.2.2.3 tls * Exclude pre-initialised external memory words but keep
2178 1.2.2.3 tls * initialization statuses of A and X registers in case
2179 1.2.2.3 tls * bc->preinited wrongly sets those two bits.
2180 1.2.2.3 tls */
2181 1.2.2.3 tls initmask &= ~preinited | BJ_INIT_ABIT | BJ_INIT_XBIT;
2182 1.2.2.2 tls
2183 1.2.2.3 tls #if defined(_KERNEL)
2184 1.2.2.3 tls /* bpf_filter() checks initialization of memwords. */
2185 1.2.2.3 tls BJ_ASSERT((initmask & (BJ_INIT_MBIT(memwords) - 1)) == 0);
2186 1.2.2.3 tls #endif
2187 1.2.2.3 tls for (i = 0; i < memwords; i++) {
2188 1.2.2.3 tls if (initmask & BJ_INIT_MBIT(i)) {
2189 1.2.2.3 tls /* M[i] = 0; */
2190 1.2.2.3 tls status = sljit_emit_op1(compiler,
2191 1.2.2.3 tls SLJIT_MOV_UI,
2192 1.2.2.3 tls mem_reg, mem_off + i * sizeof(uint32_t),
2193 1.2.2.3 tls SLJIT_IMM, 0);
2194 1.2.2.3 tls if (status != SLJIT_SUCCESS)
2195 1.2.2.3 tls goto fail;
2196 1.2.2.3 tls }
2197 1.2.2.3 tls }
2198 1.2.2.3 tls
2199 1.2.2.3 tls if (initmask & BJ_INIT_ABIT) {
2200 1.2.2.3 tls /* A = 0; */
2201 1.2.2.2 tls status = sljit_emit_op1(compiler,
2202 1.2.2.2 tls SLJIT_MOV,
2203 1.2.2.3 tls BJ_AREG, 0,
2204 1.2.2.2 tls SLJIT_IMM, 0);
2205 1.2.2.2 tls if (status != SLJIT_SUCCESS)
2206 1.2.2.2 tls goto fail;
2207 1.2.2.3 tls }
2208 1.2.2.2 tls
2209 1.2.2.3 tls if (initmask & BJ_INIT_XBIT) {
2210 1.2.2.3 tls /* X = 0; */
2211 1.2.2.3 tls status = sljit_emit_op1(compiler,
2212 1.2.2.3 tls SLJIT_MOV,
2213 1.2.2.3 tls BJ_XREG, 0,
2214 1.2.2.3 tls SLJIT_IMM, 0);
2215 1.2.2.2 tls if (status != SLJIT_SUCCESS)
2216 1.2.2.2 tls goto fail;
2217 1.2.2.2 tls }
2218 1.2.2.2 tls
2219 1.2.2.3 tls status = load_buf_buflen(compiler);
2220 1.2.2.3 tls if (status != SLJIT_SUCCESS)
2221 1.2.2.3 tls goto fail;
2222 1.2.2.3 tls
2223 1.2.2.3 tls if (!generate_insn_code(compiler, hints,
2224 1.2.2.3 tls bc, insns, insn_dat, insn_count)) {
2225 1.2.2.3 tls goto fail;
2226 1.2.2.3 tls }
2227 1.2.2.3 tls
2228 1.2.2.2 tls rv = sljit_generate_code(compiler);
2229 1.2.2.2 tls
2230 1.2.2.2 tls fail:
2231 1.2.2.2 tls if (compiler != NULL)
2232 1.2.2.2 tls sljit_free_compiler(compiler);
2233 1.2.2.2 tls
2234 1.2.2.2 tls if (insn_dat != NULL)
2235 1.2.2.3 tls BJ_FREE(insn_dat, insn_count * sizeof(insn_dat[0]));
2236 1.2.2.2 tls
2237 1.2.2.3 tls return (bpfjit_func_t)rv;
2238 1.2.2.2 tls }
2239 1.2.2.2 tls
2240 1.2.2.2 tls void
2241 1.2.2.3 tls bpfjit_free_code(bpfjit_func_t code)
2242 1.2.2.2 tls {
2243 1.2.2.2 tls
2244 1.2.2.2 tls sljit_free_code((void *)code);
2245 1.2.2.2 tls }
2246