bpfjit.c revision 1.2.2.4 1 1.2.2.3 tls /* $NetBSD: bpfjit.c,v 1.2.2.4 2017/12/03 11:39:02 jdolecek Exp $ */
2 1.2.2.3 tls
3 1.2.2.2 tls /*-
4 1.2.2.4 jdolecek * Copyright (c) 2011-2015 Alexander Nasonov.
5 1.2.2.2 tls * All rights reserved.
6 1.2.2.2 tls *
7 1.2.2.2 tls * Redistribution and use in source and binary forms, with or without
8 1.2.2.2 tls * modification, are permitted provided that the following conditions
9 1.2.2.2 tls * are met:
10 1.2.2.2 tls *
11 1.2.2.2 tls * 1. Redistributions of source code must retain the above copyright
12 1.2.2.2 tls * notice, this list of conditions and the following disclaimer.
13 1.2.2.2 tls * 2. Redistributions in binary form must reproduce the above copyright
14 1.2.2.2 tls * notice, this list of conditions and the following disclaimer in
15 1.2.2.2 tls * the documentation and/or other materials provided with the
16 1.2.2.2 tls * distribution.
17 1.2.2.2 tls *
18 1.2.2.2 tls * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 1.2.2.2 tls * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 1.2.2.2 tls * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
21 1.2.2.2 tls * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
22 1.2.2.2 tls * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
23 1.2.2.2 tls * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
24 1.2.2.2 tls * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
25 1.2.2.2 tls * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
26 1.2.2.2 tls * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
27 1.2.2.2 tls * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
28 1.2.2.2 tls * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 1.2.2.2 tls * SUCH DAMAGE.
30 1.2.2.2 tls */
31 1.2.2.2 tls
32 1.2.2.2 tls #include <sys/cdefs.h>
33 1.2.2.2 tls #ifdef _KERNEL
34 1.2.2.3 tls __KERNEL_RCSID(0, "$NetBSD: bpfjit.c,v 1.2.2.4 2017/12/03 11:39:02 jdolecek Exp $");
35 1.2.2.2 tls #else
36 1.2.2.3 tls __RCSID("$NetBSD: bpfjit.c,v 1.2.2.4 2017/12/03 11:39:02 jdolecek Exp $");
37 1.2.2.2 tls #endif
38 1.2.2.2 tls
39 1.2.2.3 tls #include <sys/types.h>
40 1.2.2.3 tls #include <sys/queue.h>
41 1.2.2.2 tls
42 1.2.2.2 tls #ifndef _KERNEL
43 1.2.2.2 tls #include <assert.h>
44 1.2.2.3 tls #define BJ_ASSERT(c) assert(c)
45 1.2.2.2 tls #else
46 1.2.2.3 tls #define BJ_ASSERT(c) KASSERT(c)
47 1.2.2.2 tls #endif
48 1.2.2.2 tls
49 1.2.2.2 tls #ifndef _KERNEL
50 1.2.2.2 tls #include <stdlib.h>
51 1.2.2.3 tls #define BJ_ALLOC(sz) malloc(sz)
52 1.2.2.3 tls #define BJ_FREE(p, sz) free(p)
53 1.2.2.2 tls #else
54 1.2.2.3 tls #include <sys/kmem.h>
55 1.2.2.3 tls #define BJ_ALLOC(sz) kmem_alloc(sz, KM_SLEEP)
56 1.2.2.3 tls #define BJ_FREE(p, sz) kmem_free(p, sz)
57 1.2.2.2 tls #endif
58 1.2.2.2 tls
59 1.2.2.2 tls #ifndef _KERNEL
60 1.2.2.2 tls #include <limits.h>
61 1.2.2.2 tls #include <stdbool.h>
62 1.2.2.2 tls #include <stddef.h>
63 1.2.2.2 tls #include <stdint.h>
64 1.2.2.2 tls #else
65 1.2.2.2 tls #include <sys/atomic.h>
66 1.2.2.2 tls #include <sys/module.h>
67 1.2.2.2 tls #endif
68 1.2.2.2 tls
69 1.2.2.3 tls #define __BPF_PRIVATE
70 1.2.2.3 tls #include <net/bpf.h>
71 1.2.2.3 tls #include <net/bpfjit.h>
72 1.2.2.2 tls #include <sljitLir.h>
73 1.2.2.2 tls
74 1.2.2.2 tls #if !defined(_KERNEL) && defined(SLJIT_VERBOSE) && SLJIT_VERBOSE
75 1.2.2.2 tls #include <stdio.h> /* for stderr */
76 1.2.2.2 tls #endif
77 1.2.2.2 tls
78 1.2.2.3 tls /*
79 1.2.2.4 jdolecek * Number of saved registers to pass to sljit_emit_enter() function.
80 1.2.2.4 jdolecek */
81 1.2.2.4 jdolecek #define NSAVEDS 3
82 1.2.2.4 jdolecek
83 1.2.2.4 jdolecek /*
84 1.2.2.3 tls * Arguments of generated bpfjit_func_t.
85 1.2.2.3 tls * The first argument is reassigned upon entry
86 1.2.2.3 tls * to a more frequently used buf argument.
87 1.2.2.3 tls */
88 1.2.2.4 jdolecek #define BJ_CTX_ARG SLJIT_S0
89 1.2.2.4 jdolecek #define BJ_ARGS SLJIT_S1
90 1.2.2.3 tls
91 1.2.2.3 tls /*
92 1.2.2.3 tls * Permanent register assignments.
93 1.2.2.3 tls */
94 1.2.2.4 jdolecek #define BJ_BUF SLJIT_S0
95 1.2.2.4 jdolecek //#define BJ_ARGS SLJIT_S1
96 1.2.2.4 jdolecek #define BJ_BUFLEN SLJIT_S2
97 1.2.2.4 jdolecek #define BJ_AREG SLJIT_R0
98 1.2.2.4 jdolecek #define BJ_TMP1REG SLJIT_R1
99 1.2.2.4 jdolecek #define BJ_TMP2REG SLJIT_R2
100 1.2.2.4 jdolecek #define BJ_XREG SLJIT_R3
101 1.2.2.4 jdolecek #define BJ_TMP3REG SLJIT_R4
102 1.2.2.3 tls
103 1.2.2.3 tls #ifdef _KERNEL
104 1.2.2.3 tls #define MAX_MEMWORDS BPF_MAX_MEMWORDS
105 1.2.2.3 tls #else
106 1.2.2.3 tls #define MAX_MEMWORDS BPF_MEMWORDS
107 1.2.2.3 tls #endif
108 1.2.2.2 tls
109 1.2.2.3 tls #define BJ_INIT_NOBITS ((bpf_memword_init_t)0)
110 1.2.2.3 tls #define BJ_INIT_MBIT(k) BPF_MEMWORD_INIT(k)
111 1.2.2.3 tls #define BJ_INIT_ABIT BJ_INIT_MBIT(MAX_MEMWORDS)
112 1.2.2.3 tls #define BJ_INIT_XBIT BJ_INIT_MBIT(MAX_MEMWORDS + 1)
113 1.2.2.2 tls
114 1.2.2.3 tls /*
115 1.2.2.3 tls * Get a number of memwords and external memwords from a bpf_ctx object.
116 1.2.2.2 tls */
117 1.2.2.3 tls #define GET_EXTWORDS(bc) ((bc) ? (bc)->extwords : 0)
118 1.2.2.3 tls #define GET_MEMWORDS(bc) (GET_EXTWORDS(bc) ? GET_EXTWORDS(bc) : BPF_MEMWORDS)
119 1.2.2.2 tls
120 1.2.2.3 tls /*
121 1.2.2.3 tls * Optimization hints.
122 1.2.2.3 tls */
123 1.2.2.3 tls typedef unsigned int bpfjit_hint_t;
124 1.2.2.3 tls #define BJ_HINT_ABS 0x01 /* packet read at absolute offset */
125 1.2.2.3 tls #define BJ_HINT_IND 0x02 /* packet read at variable offset */
126 1.2.2.3 tls #define BJ_HINT_MSH 0x04 /* BPF_MSH instruction */
127 1.2.2.3 tls #define BJ_HINT_COP 0x08 /* BPF_COP or BPF_COPX instruction */
128 1.2.2.3 tls #define BJ_HINT_COPX 0x10 /* BPF_COPX instruction */
129 1.2.2.3 tls #define BJ_HINT_XREG 0x20 /* BJ_XREG is needed */
130 1.2.2.3 tls #define BJ_HINT_LDX 0x40 /* BPF_LDX instruction */
131 1.2.2.3 tls #define BJ_HINT_PKT (BJ_HINT_ABS|BJ_HINT_IND|BJ_HINT_MSH)
132 1.2.2.2 tls
133 1.2.2.2 tls /*
134 1.2.2.3 tls * Datatype for Array Bounds Check Elimination (ABC) pass.
135 1.2.2.2 tls */
136 1.2.2.3 tls typedef uint64_t bpfjit_abc_length_t;
137 1.2.2.3 tls #define MAX_ABC_LENGTH (UINT32_MAX + UINT64_C(4)) /* max. width is 4 */
138 1.2.2.3 tls
139 1.2.2.3 tls struct bpfjit_stack
140 1.2.2.2 tls {
141 1.2.2.3 tls bpf_ctx_t *ctx;
142 1.2.2.3 tls uint32_t *extmem; /* pointer to external memory store */
143 1.2.2.3 tls uint32_t reg; /* saved A or X register */
144 1.2.2.3 tls #ifdef _KERNEL
145 1.2.2.3 tls int err; /* 3rd argument for m_xword/m_xhalf/m_xbyte function call */
146 1.2.2.3 tls #endif
147 1.2.2.3 tls uint32_t mem[BPF_MEMWORDS]; /* internal memory store */
148 1.2.2.2 tls };
149 1.2.2.2 tls
150 1.2.2.2 tls /*
151 1.2.2.2 tls * Data for BPF_JMP instruction.
152 1.2.2.3 tls * Forward declaration for struct bpfjit_jump.
153 1.2.2.2 tls */
154 1.2.2.3 tls struct bpfjit_jump_data;
155 1.2.2.3 tls
156 1.2.2.3 tls /*
157 1.2.2.3 tls * Node of bjumps list.
158 1.2.2.3 tls */
159 1.2.2.3 tls struct bpfjit_jump {
160 1.2.2.3 tls struct sljit_jump *sjump;
161 1.2.2.3 tls SLIST_ENTRY(bpfjit_jump) entries;
162 1.2.2.3 tls struct bpfjit_jump_data *jdata;
163 1.2.2.3 tls };
164 1.2.2.3 tls
165 1.2.2.3 tls /*
166 1.2.2.3 tls * Data for BPF_JMP instruction.
167 1.2.2.3 tls */
168 1.2.2.3 tls struct bpfjit_jump_data {
169 1.2.2.3 tls /*
170 1.2.2.3 tls * These entries make up bjumps list:
171 1.2.2.3 tls * jtf[0] - when coming from jt path,
172 1.2.2.3 tls * jtf[1] - when coming from jf path.
173 1.2.2.3 tls */
174 1.2.2.3 tls struct bpfjit_jump jtf[2];
175 1.2.2.3 tls /*
176 1.2.2.3 tls * Length calculated by Array Bounds Check Elimination (ABC) pass.
177 1.2.2.3 tls */
178 1.2.2.3 tls bpfjit_abc_length_t abc_length;
179 1.2.2.2 tls /*
180 1.2.2.3 tls * Length checked by the last out-of-bounds check.
181 1.2.2.2 tls */
182 1.2.2.3 tls bpfjit_abc_length_t checked_length;
183 1.2.2.2 tls };
184 1.2.2.2 tls
185 1.2.2.2 tls /*
186 1.2.2.2 tls * Data for "read from packet" instructions.
187 1.2.2.2 tls * See also read_pkt_insn() function below.
188 1.2.2.2 tls */
189 1.2.2.3 tls struct bpfjit_read_pkt_data {
190 1.2.2.3 tls /*
191 1.2.2.3 tls * Length calculated by Array Bounds Check Elimination (ABC) pass.
192 1.2.2.3 tls */
193 1.2.2.3 tls bpfjit_abc_length_t abc_length;
194 1.2.2.2 tls /*
195 1.2.2.3 tls * If positive, emit "if (buflen < check_length) return 0"
196 1.2.2.3 tls * out-of-bounds check.
197 1.2.2.3 tls * Values greater than UINT32_MAX generate unconditional "return 0".
198 1.2.2.2 tls */
199 1.2.2.3 tls bpfjit_abc_length_t check_length;
200 1.2.2.2 tls };
201 1.2.2.2 tls
202 1.2.2.2 tls /*
203 1.2.2.2 tls * Additional (optimization-related) data for bpf_insn.
204 1.2.2.2 tls */
205 1.2.2.3 tls struct bpfjit_insn_data {
206 1.2.2.2 tls /* List of jumps to this insn. */
207 1.2.2.3 tls SLIST_HEAD(, bpfjit_jump) bjumps;
208 1.2.2.2 tls
209 1.2.2.2 tls union {
210 1.2.2.3 tls struct bpfjit_jump_data jdata;
211 1.2.2.3 tls struct bpfjit_read_pkt_data rdata;
212 1.2.2.3 tls } u;
213 1.2.2.2 tls
214 1.2.2.3 tls bpf_memword_init_t invalid;
215 1.2.2.3 tls bool unreachable;
216 1.2.2.2 tls };
217 1.2.2.2 tls
218 1.2.2.2 tls #ifdef _KERNEL
219 1.2.2.2 tls
220 1.2.2.2 tls uint32_t m_xword(const struct mbuf *, uint32_t, int *);
221 1.2.2.2 tls uint32_t m_xhalf(const struct mbuf *, uint32_t, int *);
222 1.2.2.2 tls uint32_t m_xbyte(const struct mbuf *, uint32_t, int *);
223 1.2.2.2 tls
224 1.2.2.2 tls MODULE(MODULE_CLASS_MISC, bpfjit, "sljit")
225 1.2.2.2 tls
226 1.2.2.2 tls static int
227 1.2.2.2 tls bpfjit_modcmd(modcmd_t cmd, void *arg)
228 1.2.2.2 tls {
229 1.2.2.2 tls
230 1.2.2.2 tls switch (cmd) {
231 1.2.2.2 tls case MODULE_CMD_INIT:
232 1.2.2.2 tls bpfjit_module_ops.bj_free_code = &bpfjit_free_code;
233 1.2.2.2 tls membar_producer();
234 1.2.2.2 tls bpfjit_module_ops.bj_generate_code = &bpfjit_generate_code;
235 1.2.2.2 tls membar_producer();
236 1.2.2.2 tls return 0;
237 1.2.2.2 tls
238 1.2.2.2 tls case MODULE_CMD_FINI:
239 1.2.2.2 tls return EOPNOTSUPP;
240 1.2.2.2 tls
241 1.2.2.2 tls default:
242 1.2.2.2 tls return ENOTTY;
243 1.2.2.2 tls }
244 1.2.2.2 tls }
245 1.2.2.2 tls #endif
246 1.2.2.2 tls
247 1.2.2.3 tls /*
248 1.2.2.3 tls * Return a number of scratch registers to pass
249 1.2.2.3 tls * to sljit_emit_enter() function.
250 1.2.2.3 tls */
251 1.2.2.4 jdolecek static sljit_s32
252 1.2.2.3 tls nscratches(bpfjit_hint_t hints)
253 1.2.2.3 tls {
254 1.2.2.4 jdolecek sljit_s32 rv = 2;
255 1.2.2.3 tls
256 1.2.2.3 tls #ifdef _KERNEL
257 1.2.2.3 tls if (hints & BJ_HINT_PKT)
258 1.2.2.3 tls rv = 3; /* xcall with three arguments */
259 1.2.2.3 tls #endif
260 1.2.2.3 tls
261 1.2.2.3 tls if (hints & BJ_HINT_IND)
262 1.2.2.3 tls rv = 3; /* uses BJ_TMP2REG */
263 1.2.2.3 tls
264 1.2.2.3 tls if (hints & BJ_HINT_COP)
265 1.2.2.3 tls rv = 3; /* calls copfunc with three arguments */
266 1.2.2.3 tls
267 1.2.2.3 tls if (hints & BJ_HINT_XREG)
268 1.2.2.3 tls rv = 4; /* uses BJ_XREG */
269 1.2.2.3 tls
270 1.2.2.3 tls #ifdef _KERNEL
271 1.2.2.3 tls if (hints & BJ_HINT_LDX)
272 1.2.2.3 tls rv = 5; /* uses BJ_TMP3REG */
273 1.2.2.3 tls #endif
274 1.2.2.3 tls
275 1.2.2.3 tls if (hints & BJ_HINT_COPX)
276 1.2.2.3 tls rv = 5; /* uses BJ_TMP3REG */
277 1.2.2.3 tls
278 1.2.2.3 tls return rv;
279 1.2.2.3 tls }
280 1.2.2.3 tls
281 1.2.2.2 tls static uint32_t
282 1.2.2.3 tls read_width(const struct bpf_insn *pc)
283 1.2.2.2 tls {
284 1.2.2.2 tls
285 1.2.2.2 tls switch (BPF_SIZE(pc->code)) {
286 1.2.2.4 jdolecek case BPF_W: return 4;
287 1.2.2.4 jdolecek case BPF_H: return 2;
288 1.2.2.4 jdolecek case BPF_B: return 1;
289 1.2.2.4 jdolecek default: return 0;
290 1.2.2.2 tls }
291 1.2.2.2 tls }
292 1.2.2.2 tls
293 1.2.2.2 tls /*
294 1.2.2.3 tls * Copy buf and buflen members of bpf_args from BJ_ARGS
295 1.2.2.3 tls * pointer to BJ_BUF and BJ_BUFLEN registers.
296 1.2.2.2 tls */
297 1.2.2.3 tls static int
298 1.2.2.3 tls load_buf_buflen(struct sljit_compiler *compiler)
299 1.2.2.2 tls {
300 1.2.2.3 tls int status;
301 1.2.2.2 tls
302 1.2.2.3 tls status = sljit_emit_op1(compiler,
303 1.2.2.3 tls SLJIT_MOV_P,
304 1.2.2.3 tls BJ_BUF, 0,
305 1.2.2.3 tls SLJIT_MEM1(BJ_ARGS),
306 1.2.2.3 tls offsetof(struct bpf_args, pkt));
307 1.2.2.3 tls if (status != SLJIT_SUCCESS)
308 1.2.2.3 tls return status;
309 1.2.2.3 tls
310 1.2.2.3 tls status = sljit_emit_op1(compiler,
311 1.2.2.3 tls SLJIT_MOV, /* size_t source */
312 1.2.2.3 tls BJ_BUFLEN, 0,
313 1.2.2.3 tls SLJIT_MEM1(BJ_ARGS),
314 1.2.2.3 tls offsetof(struct bpf_args, buflen));
315 1.2.2.3 tls
316 1.2.2.3 tls return status;
317 1.2.2.3 tls }
318 1.2.2.3 tls
319 1.2.2.3 tls static bool
320 1.2.2.3 tls grow_jumps(struct sljit_jump ***jumps, size_t *size)
321 1.2.2.3 tls {
322 1.2.2.3 tls struct sljit_jump **newptr;
323 1.2.2.3 tls const size_t elemsz = sizeof(struct sljit_jump *);
324 1.2.2.3 tls size_t old_size = *size;
325 1.2.2.3 tls size_t new_size = 2 * old_size;
326 1.2.2.3 tls
327 1.2.2.3 tls if (new_size < old_size || new_size > SIZE_MAX / elemsz)
328 1.2.2.3 tls return false;
329 1.2.2.3 tls
330 1.2.2.3 tls newptr = BJ_ALLOC(new_size * elemsz);
331 1.2.2.3 tls if (newptr == NULL)
332 1.2.2.3 tls return false;
333 1.2.2.3 tls
334 1.2.2.3 tls memcpy(newptr, *jumps, old_size * elemsz);
335 1.2.2.3 tls BJ_FREE(*jumps, old_size * elemsz);
336 1.2.2.3 tls
337 1.2.2.3 tls *jumps = newptr;
338 1.2.2.3 tls *size = new_size;
339 1.2.2.3 tls return true;
340 1.2.2.3 tls }
341 1.2.2.3 tls
342 1.2.2.3 tls static bool
343 1.2.2.3 tls append_jump(struct sljit_jump *jump, struct sljit_jump ***jumps,
344 1.2.2.3 tls size_t *size, size_t *max_size)
345 1.2.2.3 tls {
346 1.2.2.3 tls if (*size == *max_size && !grow_jumps(jumps, max_size))
347 1.2.2.3 tls return false;
348 1.2.2.3 tls
349 1.2.2.3 tls (*jumps)[(*size)++] = jump;
350 1.2.2.3 tls return true;
351 1.2.2.2 tls }
352 1.2.2.2 tls
353 1.2.2.2 tls /*
354 1.2.2.3 tls * Emit code for BPF_LD+BPF_B+BPF_ABS A <- P[k:1].
355 1.2.2.2 tls */
356 1.2.2.2 tls static int
357 1.2.2.4 jdolecek emit_read8(struct sljit_compiler *compiler, sljit_s32 src, uint32_t k)
358 1.2.2.2 tls {
359 1.2.2.2 tls
360 1.2.2.2 tls return sljit_emit_op1(compiler,
361 1.2.2.4 jdolecek SLJIT_MOV_U8,
362 1.2.2.3 tls BJ_AREG, 0,
363 1.2.2.3 tls SLJIT_MEM1(src), k);
364 1.2.2.2 tls }
365 1.2.2.2 tls
366 1.2.2.2 tls /*
367 1.2.2.3 tls * Emit code for BPF_LD+BPF_H+BPF_ABS A <- P[k:2].
368 1.2.2.2 tls */
369 1.2.2.2 tls static int
370 1.2.2.4 jdolecek emit_read16(struct sljit_compiler *compiler, sljit_s32 src, uint32_t k)
371 1.2.2.2 tls {
372 1.2.2.2 tls int status;
373 1.2.2.2 tls
374 1.2.2.3 tls BJ_ASSERT(k <= UINT32_MAX - 1);
375 1.2.2.3 tls
376 1.2.2.3 tls /* A = buf[k]; */
377 1.2.2.2 tls status = sljit_emit_op1(compiler,
378 1.2.2.4 jdolecek SLJIT_MOV_U8,
379 1.2.2.3 tls BJ_AREG, 0,
380 1.2.2.3 tls SLJIT_MEM1(src), k);
381 1.2.2.2 tls if (status != SLJIT_SUCCESS)
382 1.2.2.2 tls return status;
383 1.2.2.2 tls
384 1.2.2.3 tls /* tmp1 = buf[k+1]; */
385 1.2.2.2 tls status = sljit_emit_op1(compiler,
386 1.2.2.4 jdolecek SLJIT_MOV_U8,
387 1.2.2.3 tls BJ_TMP1REG, 0,
388 1.2.2.3 tls SLJIT_MEM1(src), k+1);
389 1.2.2.2 tls if (status != SLJIT_SUCCESS)
390 1.2.2.2 tls return status;
391 1.2.2.2 tls
392 1.2.2.3 tls /* A = A << 8; */
393 1.2.2.2 tls status = sljit_emit_op2(compiler,
394 1.2.2.2 tls SLJIT_SHL,
395 1.2.2.3 tls BJ_AREG, 0,
396 1.2.2.3 tls BJ_AREG, 0,
397 1.2.2.2 tls SLJIT_IMM, 8);
398 1.2.2.2 tls if (status != SLJIT_SUCCESS)
399 1.2.2.2 tls return status;
400 1.2.2.2 tls
401 1.2.2.2 tls /* A = A + tmp1; */
402 1.2.2.2 tls status = sljit_emit_op2(compiler,
403 1.2.2.2 tls SLJIT_ADD,
404 1.2.2.3 tls BJ_AREG, 0,
405 1.2.2.3 tls BJ_AREG, 0,
406 1.2.2.3 tls BJ_TMP1REG, 0);
407 1.2.2.2 tls return status;
408 1.2.2.2 tls }
409 1.2.2.2 tls
410 1.2.2.2 tls /*
411 1.2.2.3 tls * Emit code for BPF_LD+BPF_W+BPF_ABS A <- P[k:4].
412 1.2.2.2 tls */
413 1.2.2.2 tls static int
414 1.2.2.4 jdolecek emit_read32(struct sljit_compiler *compiler, sljit_s32 src, uint32_t k)
415 1.2.2.2 tls {
416 1.2.2.2 tls int status;
417 1.2.2.2 tls
418 1.2.2.3 tls BJ_ASSERT(k <= UINT32_MAX - 3);
419 1.2.2.2 tls
420 1.2.2.3 tls /* A = buf[k]; */
421 1.2.2.2 tls status = sljit_emit_op1(compiler,
422 1.2.2.4 jdolecek SLJIT_MOV_U8,
423 1.2.2.3 tls BJ_AREG, 0,
424 1.2.2.3 tls SLJIT_MEM1(src), k);
425 1.2.2.2 tls if (status != SLJIT_SUCCESS)
426 1.2.2.2 tls return status;
427 1.2.2.2 tls
428 1.2.2.3 tls /* tmp1 = buf[k+1]; */
429 1.2.2.2 tls status = sljit_emit_op1(compiler,
430 1.2.2.4 jdolecek SLJIT_MOV_U8,
431 1.2.2.3 tls BJ_TMP1REG, 0,
432 1.2.2.3 tls SLJIT_MEM1(src), k+1);
433 1.2.2.2 tls if (status != SLJIT_SUCCESS)
434 1.2.2.2 tls return status;
435 1.2.2.2 tls
436 1.2.2.3 tls /* A = A << 8; */
437 1.2.2.2 tls status = sljit_emit_op2(compiler,
438 1.2.2.2 tls SLJIT_SHL,
439 1.2.2.3 tls BJ_AREG, 0,
440 1.2.2.3 tls BJ_AREG, 0,
441 1.2.2.3 tls SLJIT_IMM, 8);
442 1.2.2.2 tls if (status != SLJIT_SUCCESS)
443 1.2.2.2 tls return status;
444 1.2.2.2 tls
445 1.2.2.2 tls /* A = A + tmp1; */
446 1.2.2.2 tls status = sljit_emit_op2(compiler,
447 1.2.2.2 tls SLJIT_ADD,
448 1.2.2.3 tls BJ_AREG, 0,
449 1.2.2.3 tls BJ_AREG, 0,
450 1.2.2.3 tls BJ_TMP1REG, 0);
451 1.2.2.2 tls if (status != SLJIT_SUCCESS)
452 1.2.2.2 tls return status;
453 1.2.2.2 tls
454 1.2.2.2 tls /* tmp1 = buf[k+2]; */
455 1.2.2.2 tls status = sljit_emit_op1(compiler,
456 1.2.2.4 jdolecek SLJIT_MOV_U8,
457 1.2.2.3 tls BJ_TMP1REG, 0,
458 1.2.2.3 tls SLJIT_MEM1(src), k+2);
459 1.2.2.2 tls if (status != SLJIT_SUCCESS)
460 1.2.2.2 tls return status;
461 1.2.2.2 tls
462 1.2.2.3 tls /* A = A << 8; */
463 1.2.2.2 tls status = sljit_emit_op2(compiler,
464 1.2.2.2 tls SLJIT_SHL,
465 1.2.2.3 tls BJ_AREG, 0,
466 1.2.2.3 tls BJ_AREG, 0,
467 1.2.2.3 tls SLJIT_IMM, 8);
468 1.2.2.2 tls if (status != SLJIT_SUCCESS)
469 1.2.2.2 tls return status;
470 1.2.2.2 tls
471 1.2.2.3 tls /* A = A + tmp1; */
472 1.2.2.2 tls status = sljit_emit_op2(compiler,
473 1.2.2.2 tls SLJIT_ADD,
474 1.2.2.3 tls BJ_AREG, 0,
475 1.2.2.3 tls BJ_AREG, 0,
476 1.2.2.3 tls BJ_TMP1REG, 0);
477 1.2.2.3 tls if (status != SLJIT_SUCCESS)
478 1.2.2.3 tls return status;
479 1.2.2.3 tls
480 1.2.2.3 tls /* tmp1 = buf[k+3]; */
481 1.2.2.3 tls status = sljit_emit_op1(compiler,
482 1.2.2.4 jdolecek SLJIT_MOV_U8,
483 1.2.2.3 tls BJ_TMP1REG, 0,
484 1.2.2.3 tls SLJIT_MEM1(src), k+3);
485 1.2.2.2 tls if (status != SLJIT_SUCCESS)
486 1.2.2.2 tls return status;
487 1.2.2.2 tls
488 1.2.2.3 tls /* A = A << 8; */
489 1.2.2.2 tls status = sljit_emit_op2(compiler,
490 1.2.2.2 tls SLJIT_SHL,
491 1.2.2.3 tls BJ_AREG, 0,
492 1.2.2.3 tls BJ_AREG, 0,
493 1.2.2.2 tls SLJIT_IMM, 8);
494 1.2.2.2 tls if (status != SLJIT_SUCCESS)
495 1.2.2.2 tls return status;
496 1.2.2.2 tls
497 1.2.2.2 tls /* A = A + tmp1; */
498 1.2.2.2 tls status = sljit_emit_op2(compiler,
499 1.2.2.2 tls SLJIT_ADD,
500 1.2.2.3 tls BJ_AREG, 0,
501 1.2.2.3 tls BJ_AREG, 0,
502 1.2.2.3 tls BJ_TMP1REG, 0);
503 1.2.2.2 tls return status;
504 1.2.2.2 tls }
505 1.2.2.2 tls
506 1.2.2.2 tls #ifdef _KERNEL
507 1.2.2.2 tls /*
508 1.2.2.3 tls * Emit code for m_xword/m_xhalf/m_xbyte call.
509 1.2.2.2 tls *
510 1.2.2.3 tls * @pc BPF_LD+BPF_W+BPF_ABS A <- P[k:4]
511 1.2.2.3 tls * BPF_LD+BPF_H+BPF_ABS A <- P[k:2]
512 1.2.2.3 tls * BPF_LD+BPF_B+BPF_ABS A <- P[k:1]
513 1.2.2.3 tls * BPF_LD+BPF_W+BPF_IND A <- P[X+k:4]
514 1.2.2.3 tls * BPF_LD+BPF_H+BPF_IND A <- P[X+k:2]
515 1.2.2.3 tls * BPF_LD+BPF_B+BPF_IND A <- P[X+k:1]
516 1.2.2.3 tls * BPF_LDX+BPF_B+BPF_MSH X <- 4*(P[k:1]&0xf)
517 1.2.2.2 tls */
518 1.2.2.2 tls static int
519 1.2.2.3 tls emit_xcall(struct sljit_compiler *compiler, bpfjit_hint_t hints,
520 1.2.2.3 tls const struct bpf_insn *pc, int dst, struct sljit_jump ***ret0,
521 1.2.2.3 tls size_t *ret0_size, size_t *ret0_maxsize,
522 1.2.2.2 tls uint32_t (*fn)(const struct mbuf *, uint32_t, int *))
523 1.2.2.2 tls {
524 1.2.2.3 tls #if BJ_XREG == SLJIT_RETURN_REG || \
525 1.2.2.4 jdolecek BJ_XREG == SLJIT_R0 || \
526 1.2.2.4 jdolecek BJ_XREG == SLJIT_R1 || \
527 1.2.2.4 jdolecek BJ_XREG == SLJIT_R2
528 1.2.2.2 tls #error "Not supported assignment of registers."
529 1.2.2.2 tls #endif
530 1.2.2.3 tls struct sljit_jump *jump;
531 1.2.2.4 jdolecek sljit_s32 save_reg;
532 1.2.2.2 tls int status;
533 1.2.2.2 tls
534 1.2.2.3 tls save_reg = (BPF_CLASS(pc->code) == BPF_LDX) ? BJ_AREG : BJ_XREG;
535 1.2.2.2 tls
536 1.2.2.3 tls if (save_reg == BJ_AREG || (hints & BJ_HINT_XREG)) {
537 1.2.2.3 tls /* save A or X */
538 1.2.2.2 tls status = sljit_emit_op1(compiler,
539 1.2.2.4 jdolecek SLJIT_MOV_U32,
540 1.2.2.4 jdolecek SLJIT_MEM1(SLJIT_SP),
541 1.2.2.3 tls offsetof(struct bpfjit_stack, reg),
542 1.2.2.3 tls save_reg, 0);
543 1.2.2.2 tls if (status != SLJIT_SUCCESS)
544 1.2.2.2 tls return status;
545 1.2.2.2 tls }
546 1.2.2.2 tls
547 1.2.2.2 tls /*
548 1.2.2.3 tls * Prepare registers for fn(mbuf, k, &err) call.
549 1.2.2.2 tls */
550 1.2.2.2 tls status = sljit_emit_op1(compiler,
551 1.2.2.2 tls SLJIT_MOV,
552 1.2.2.4 jdolecek SLJIT_R0, 0,
553 1.2.2.3 tls BJ_BUF, 0);
554 1.2.2.2 tls if (status != SLJIT_SUCCESS)
555 1.2.2.2 tls return status;
556 1.2.2.2 tls
557 1.2.2.2 tls if (BPF_CLASS(pc->code) == BPF_LD && BPF_MODE(pc->code) == BPF_IND) {
558 1.2.2.3 tls if (pc->k == 0) {
559 1.2.2.3 tls /* k = X; */
560 1.2.2.3 tls status = sljit_emit_op1(compiler,
561 1.2.2.3 tls SLJIT_MOV,
562 1.2.2.4 jdolecek SLJIT_R1, 0,
563 1.2.2.3 tls BJ_XREG, 0);
564 1.2.2.3 tls if (status != SLJIT_SUCCESS)
565 1.2.2.3 tls return status;
566 1.2.2.3 tls } else {
567 1.2.2.3 tls /* if (X > UINT32_MAX - pc->k) return 0; */
568 1.2.2.3 tls jump = sljit_emit_cmp(compiler,
569 1.2.2.4 jdolecek SLJIT_GREATER,
570 1.2.2.3 tls BJ_XREG, 0,
571 1.2.2.3 tls SLJIT_IMM, UINT32_MAX - pc->k);
572 1.2.2.3 tls if (jump == NULL)
573 1.2.2.3 tls return SLJIT_ERR_ALLOC_FAILED;
574 1.2.2.3 tls if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
575 1.2.2.3 tls return SLJIT_ERR_ALLOC_FAILED;
576 1.2.2.3 tls
577 1.2.2.3 tls /* k = X + pc->k; */
578 1.2.2.3 tls status = sljit_emit_op2(compiler,
579 1.2.2.3 tls SLJIT_ADD,
580 1.2.2.4 jdolecek SLJIT_R1, 0,
581 1.2.2.3 tls BJ_XREG, 0,
582 1.2.2.3 tls SLJIT_IMM, (uint32_t)pc->k);
583 1.2.2.3 tls if (status != SLJIT_SUCCESS)
584 1.2.2.3 tls return status;
585 1.2.2.3 tls }
586 1.2.2.2 tls } else {
587 1.2.2.3 tls /* k = pc->k */
588 1.2.2.2 tls status = sljit_emit_op1(compiler,
589 1.2.2.2 tls SLJIT_MOV,
590 1.2.2.4 jdolecek SLJIT_R1, 0,
591 1.2.2.2 tls SLJIT_IMM, (uint32_t)pc->k);
592 1.2.2.3 tls if (status != SLJIT_SUCCESS)
593 1.2.2.3 tls return status;
594 1.2.2.2 tls }
595 1.2.2.2 tls
596 1.2.2.3 tls /*
597 1.2.2.3 tls * The third argument of fn is an address on stack.
598 1.2.2.3 tls */
599 1.2.2.2 tls status = sljit_get_local_base(compiler,
600 1.2.2.4 jdolecek SLJIT_R2, 0,
601 1.2.2.3 tls offsetof(struct bpfjit_stack, err));
602 1.2.2.2 tls if (status != SLJIT_SUCCESS)
603 1.2.2.2 tls return status;
604 1.2.2.2 tls
605 1.2.2.2 tls /* fn(buf, k, &err); */
606 1.2.2.2 tls status = sljit_emit_ijump(compiler,
607 1.2.2.2 tls SLJIT_CALL3,
608 1.2.2.2 tls SLJIT_IMM, SLJIT_FUNC_OFFSET(fn));
609 1.2.2.3 tls if (status != SLJIT_SUCCESS)
610 1.2.2.3 tls return status;
611 1.2.2.2 tls
612 1.2.2.3 tls if (dst != SLJIT_RETURN_REG) {
613 1.2.2.2 tls /* move return value to dst */
614 1.2.2.2 tls status = sljit_emit_op1(compiler,
615 1.2.2.2 tls SLJIT_MOV,
616 1.2.2.3 tls dst, 0,
617 1.2.2.2 tls SLJIT_RETURN_REG, 0);
618 1.2.2.2 tls if (status != SLJIT_SUCCESS)
619 1.2.2.2 tls return status;
620 1.2.2.3 tls }
621 1.2.2.3 tls
622 1.2.2.3 tls /* if (*err != 0) return 0; */
623 1.2.2.3 tls jump = sljit_emit_cmp(compiler,
624 1.2.2.4 jdolecek SLJIT_NOT_EQUAL|SLJIT_I32_OP,
625 1.2.2.4 jdolecek SLJIT_MEM1(SLJIT_SP),
626 1.2.2.3 tls offsetof(struct bpfjit_stack, err),
627 1.2.2.3 tls SLJIT_IMM, 0);
628 1.2.2.3 tls if (jump == NULL)
629 1.2.2.3 tls return SLJIT_ERR_ALLOC_FAILED;
630 1.2.2.3 tls
631 1.2.2.3 tls if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
632 1.2.2.3 tls return SLJIT_ERR_ALLOC_FAILED;
633 1.2.2.2 tls
634 1.2.2.3 tls if (save_reg == BJ_AREG || (hints & BJ_HINT_XREG)) {
635 1.2.2.3 tls /* restore A or X */
636 1.2.2.2 tls status = sljit_emit_op1(compiler,
637 1.2.2.4 jdolecek SLJIT_MOV_U32,
638 1.2.2.3 tls save_reg, 0,
639 1.2.2.4 jdolecek SLJIT_MEM1(SLJIT_SP),
640 1.2.2.3 tls offsetof(struct bpfjit_stack, reg));
641 1.2.2.3 tls if (status != SLJIT_SUCCESS)
642 1.2.2.3 tls return status;
643 1.2.2.3 tls }
644 1.2.2.3 tls
645 1.2.2.3 tls return SLJIT_SUCCESS;
646 1.2.2.3 tls }
647 1.2.2.3 tls #endif
648 1.2.2.3 tls
649 1.2.2.3 tls /*
650 1.2.2.3 tls * Emit code for BPF_COP and BPF_COPX instructions.
651 1.2.2.3 tls */
652 1.2.2.3 tls static int
653 1.2.2.3 tls emit_cop(struct sljit_compiler *compiler, bpfjit_hint_t hints,
654 1.2.2.3 tls const bpf_ctx_t *bc, const struct bpf_insn *pc,
655 1.2.2.3 tls struct sljit_jump ***ret0, size_t *ret0_size, size_t *ret0_maxsize)
656 1.2.2.3 tls {
657 1.2.2.3 tls #if BJ_XREG == SLJIT_RETURN_REG || \
658 1.2.2.4 jdolecek BJ_XREG == SLJIT_R0 || \
659 1.2.2.4 jdolecek BJ_XREG == SLJIT_R1 || \
660 1.2.2.4 jdolecek BJ_XREG == SLJIT_R2 || \
661 1.2.2.4 jdolecek BJ_TMP3REG == SLJIT_R0 || \
662 1.2.2.4 jdolecek BJ_TMP3REG == SLJIT_R1 || \
663 1.2.2.4 jdolecek BJ_TMP3REG == SLJIT_R2
664 1.2.2.3 tls #error "Not supported assignment of registers."
665 1.2.2.3 tls #endif
666 1.2.2.3 tls
667 1.2.2.3 tls struct sljit_jump *jump;
668 1.2.2.4 jdolecek sljit_s32 call_reg;
669 1.2.2.3 tls sljit_sw call_off;
670 1.2.2.3 tls int status;
671 1.2.2.3 tls
672 1.2.2.3 tls BJ_ASSERT(bc != NULL && bc->copfuncs != NULL);
673 1.2.2.3 tls
674 1.2.2.3 tls if (hints & BJ_HINT_LDX) {
675 1.2.2.3 tls /* save X */
676 1.2.2.3 tls status = sljit_emit_op1(compiler,
677 1.2.2.4 jdolecek SLJIT_MOV_U32,
678 1.2.2.4 jdolecek SLJIT_MEM1(SLJIT_SP),
679 1.2.2.3 tls offsetof(struct bpfjit_stack, reg),
680 1.2.2.3 tls BJ_XREG, 0);
681 1.2.2.3 tls if (status != SLJIT_SUCCESS)
682 1.2.2.3 tls return status;
683 1.2.2.3 tls }
684 1.2.2.3 tls
685 1.2.2.3 tls if (BPF_MISCOP(pc->code) == BPF_COP) {
686 1.2.2.3 tls call_reg = SLJIT_IMM;
687 1.2.2.3 tls call_off = SLJIT_FUNC_OFFSET(bc->copfuncs[pc->k]);
688 1.2.2.3 tls } else {
689 1.2.2.3 tls /* if (X >= bc->nfuncs) return 0; */
690 1.2.2.3 tls jump = sljit_emit_cmp(compiler,
691 1.2.2.4 jdolecek SLJIT_GREATER_EQUAL,
692 1.2.2.3 tls BJ_XREG, 0,
693 1.2.2.3 tls SLJIT_IMM, bc->nfuncs);
694 1.2.2.3 tls if (jump == NULL)
695 1.2.2.3 tls return SLJIT_ERR_ALLOC_FAILED;
696 1.2.2.3 tls if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
697 1.2.2.3 tls return SLJIT_ERR_ALLOC_FAILED;
698 1.2.2.3 tls
699 1.2.2.3 tls /* tmp1 = ctx; */
700 1.2.2.3 tls status = sljit_emit_op1(compiler,
701 1.2.2.3 tls SLJIT_MOV_P,
702 1.2.2.3 tls BJ_TMP1REG, 0,
703 1.2.2.4 jdolecek SLJIT_MEM1(SLJIT_SP),
704 1.2.2.3 tls offsetof(struct bpfjit_stack, ctx));
705 1.2.2.3 tls if (status != SLJIT_SUCCESS)
706 1.2.2.3 tls return status;
707 1.2.2.3 tls
708 1.2.2.3 tls /* tmp1 = ctx->copfuncs; */
709 1.2.2.3 tls status = sljit_emit_op1(compiler,
710 1.2.2.3 tls SLJIT_MOV_P,
711 1.2.2.3 tls BJ_TMP1REG, 0,
712 1.2.2.3 tls SLJIT_MEM1(BJ_TMP1REG),
713 1.2.2.3 tls offsetof(struct bpf_ctx, copfuncs));
714 1.2.2.2 tls if (status != SLJIT_SUCCESS)
715 1.2.2.2 tls return status;
716 1.2.2.2 tls
717 1.2.2.3 tls /* tmp2 = X; */
718 1.2.2.2 tls status = sljit_emit_op1(compiler,
719 1.2.2.2 tls SLJIT_MOV,
720 1.2.2.3 tls BJ_TMP2REG, 0,
721 1.2.2.3 tls BJ_XREG, 0);
722 1.2.2.3 tls if (status != SLJIT_SUCCESS)
723 1.2.2.3 tls return status;
724 1.2.2.3 tls
725 1.2.2.3 tls /* tmp3 = ctx->copfuncs[tmp2]; */
726 1.2.2.3 tls call_reg = BJ_TMP3REG;
727 1.2.2.3 tls call_off = 0;
728 1.2.2.3 tls status = sljit_emit_op1(compiler,
729 1.2.2.3 tls SLJIT_MOV_P,
730 1.2.2.3 tls call_reg, call_off,
731 1.2.2.3 tls SLJIT_MEM2(BJ_TMP1REG, BJ_TMP2REG),
732 1.2.2.3 tls SLJIT_WORD_SHIFT);
733 1.2.2.2 tls if (status != SLJIT_SUCCESS)
734 1.2.2.2 tls return status;
735 1.2.2.2 tls }
736 1.2.2.2 tls
737 1.2.2.3 tls /*
738 1.2.2.3 tls * Copy bpf_copfunc_t arguments to registers.
739 1.2.2.3 tls */
740 1.2.2.4 jdolecek #if BJ_AREG != SLJIT_R2
741 1.2.2.2 tls status = sljit_emit_op1(compiler,
742 1.2.2.4 jdolecek SLJIT_MOV_U32,
743 1.2.2.4 jdolecek SLJIT_R2, 0,
744 1.2.2.3 tls BJ_AREG, 0);
745 1.2.2.2 tls if (status != SLJIT_SUCCESS)
746 1.2.2.2 tls return status;
747 1.2.2.3 tls #endif
748 1.2.2.2 tls
749 1.2.2.3 tls status = sljit_emit_op1(compiler,
750 1.2.2.3 tls SLJIT_MOV_P,
751 1.2.2.4 jdolecek SLJIT_R0, 0,
752 1.2.2.4 jdolecek SLJIT_MEM1(SLJIT_SP),
753 1.2.2.3 tls offsetof(struct bpfjit_stack, ctx));
754 1.2.2.3 tls if (status != SLJIT_SUCCESS)
755 1.2.2.3 tls return status;
756 1.2.2.2 tls
757 1.2.2.3 tls status = sljit_emit_op1(compiler,
758 1.2.2.3 tls SLJIT_MOV_P,
759 1.2.2.4 jdolecek SLJIT_R1, 0,
760 1.2.2.3 tls BJ_ARGS, 0);
761 1.2.2.3 tls if (status != SLJIT_SUCCESS)
762 1.2.2.3 tls return status;
763 1.2.2.3 tls
764 1.2.2.3 tls status = sljit_emit_ijump(compiler,
765 1.2.2.3 tls SLJIT_CALL3, call_reg, call_off);
766 1.2.2.3 tls if (status != SLJIT_SUCCESS)
767 1.2.2.3 tls return status;
768 1.2.2.3 tls
769 1.2.2.3 tls #if BJ_AREG != SLJIT_RETURN_REG
770 1.2.2.3 tls status = sljit_emit_op1(compiler,
771 1.2.2.3 tls SLJIT_MOV,
772 1.2.2.3 tls BJ_AREG, 0,
773 1.2.2.3 tls SLJIT_RETURN_REG, 0);
774 1.2.2.3 tls if (status != SLJIT_SUCCESS)
775 1.2.2.3 tls return status;
776 1.2.2.2 tls #endif
777 1.2.2.2 tls
778 1.2.2.3 tls if (hints & BJ_HINT_LDX) {
779 1.2.2.3 tls /* restore X */
780 1.2.2.3 tls status = sljit_emit_op1(compiler,
781 1.2.2.4 jdolecek SLJIT_MOV_U32,
782 1.2.2.3 tls BJ_XREG, 0,
783 1.2.2.4 jdolecek SLJIT_MEM1(SLJIT_SP),
784 1.2.2.3 tls offsetof(struct bpfjit_stack, reg));
785 1.2.2.3 tls if (status != SLJIT_SUCCESS)
786 1.2.2.3 tls return status;
787 1.2.2.3 tls }
788 1.2.2.3 tls
789 1.2.2.3 tls return SLJIT_SUCCESS;
790 1.2.2.3 tls }
791 1.2.2.3 tls
792 1.2.2.2 tls /*
793 1.2.2.2 tls * Generate code for
794 1.2.2.2 tls * BPF_LD+BPF_W+BPF_ABS A <- P[k:4]
795 1.2.2.2 tls * BPF_LD+BPF_H+BPF_ABS A <- P[k:2]
796 1.2.2.2 tls * BPF_LD+BPF_B+BPF_ABS A <- P[k:1]
797 1.2.2.2 tls * BPF_LD+BPF_W+BPF_IND A <- P[X+k:4]
798 1.2.2.2 tls * BPF_LD+BPF_H+BPF_IND A <- P[X+k:2]
799 1.2.2.2 tls * BPF_LD+BPF_B+BPF_IND A <- P[X+k:1]
800 1.2.2.2 tls */
801 1.2.2.2 tls static int
802 1.2.2.3 tls emit_pkt_read(struct sljit_compiler *compiler, bpfjit_hint_t hints,
803 1.2.2.3 tls const struct bpf_insn *pc, struct sljit_jump *to_mchain_jump,
804 1.2.2.3 tls struct sljit_jump ***ret0, size_t *ret0_size, size_t *ret0_maxsize)
805 1.2.2.2 tls {
806 1.2.2.3 tls int status = SLJIT_ERR_ALLOC_FAILED;
807 1.2.2.2 tls uint32_t width;
808 1.2.2.4 jdolecek sljit_s32 ld_reg;
809 1.2.2.2 tls struct sljit_jump *jump;
810 1.2.2.2 tls #ifdef _KERNEL
811 1.2.2.2 tls struct sljit_label *label;
812 1.2.2.2 tls struct sljit_jump *over_mchain_jump;
813 1.2.2.2 tls const bool check_zero_buflen = (to_mchain_jump != NULL);
814 1.2.2.2 tls #endif
815 1.2.2.2 tls const uint32_t k = pc->k;
816 1.2.2.2 tls
817 1.2.2.2 tls #ifdef _KERNEL
818 1.2.2.2 tls if (to_mchain_jump == NULL) {
819 1.2.2.2 tls to_mchain_jump = sljit_emit_cmp(compiler,
820 1.2.2.4 jdolecek SLJIT_EQUAL,
821 1.2.2.3 tls BJ_BUFLEN, 0,
822 1.2.2.2 tls SLJIT_IMM, 0);
823 1.2.2.2 tls if (to_mchain_jump == NULL)
824 1.2.2.3 tls return SLJIT_ERR_ALLOC_FAILED;
825 1.2.2.2 tls }
826 1.2.2.2 tls #endif
827 1.2.2.2 tls
828 1.2.2.3 tls ld_reg = BJ_BUF;
829 1.2.2.2 tls width = read_width(pc);
830 1.2.2.4 jdolecek if (width == 0)
831 1.2.2.4 jdolecek return SLJIT_ERR_ALLOC_FAILED;
832 1.2.2.2 tls
833 1.2.2.2 tls if (BPF_MODE(pc->code) == BPF_IND) {
834 1.2.2.2 tls /* tmp1 = buflen - (pc->k + width); */
835 1.2.2.2 tls status = sljit_emit_op2(compiler,
836 1.2.2.2 tls SLJIT_SUB,
837 1.2.2.3 tls BJ_TMP1REG, 0,
838 1.2.2.3 tls BJ_BUFLEN, 0,
839 1.2.2.2 tls SLJIT_IMM, k + width);
840 1.2.2.2 tls if (status != SLJIT_SUCCESS)
841 1.2.2.2 tls return status;
842 1.2.2.2 tls
843 1.2.2.3 tls /* ld_reg = buf + X; */
844 1.2.2.3 tls ld_reg = BJ_TMP2REG;
845 1.2.2.2 tls status = sljit_emit_op2(compiler,
846 1.2.2.2 tls SLJIT_ADD,
847 1.2.2.3 tls ld_reg, 0,
848 1.2.2.3 tls BJ_BUF, 0,
849 1.2.2.3 tls BJ_XREG, 0);
850 1.2.2.2 tls if (status != SLJIT_SUCCESS)
851 1.2.2.2 tls return status;
852 1.2.2.2 tls
853 1.2.2.2 tls /* if (tmp1 < X) return 0; */
854 1.2.2.2 tls jump = sljit_emit_cmp(compiler,
855 1.2.2.4 jdolecek SLJIT_LESS,
856 1.2.2.3 tls BJ_TMP1REG, 0,
857 1.2.2.3 tls BJ_XREG, 0);
858 1.2.2.2 tls if (jump == NULL)
859 1.2.2.3 tls return SLJIT_ERR_ALLOC_FAILED;
860 1.2.2.3 tls if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
861 1.2.2.3 tls return SLJIT_ERR_ALLOC_FAILED;
862 1.2.2.2 tls }
863 1.2.2.2 tls
864 1.2.2.4 jdolecek /*
865 1.2.2.4 jdolecek * Don't emit wrapped-around reads. They're dead code but
866 1.2.2.4 jdolecek * dead code elimination logic isn't smart enough to figure
867 1.2.2.4 jdolecek * it out.
868 1.2.2.4 jdolecek */
869 1.2.2.4 jdolecek if (k <= UINT32_MAX - width + 1) {
870 1.2.2.4 jdolecek switch (width) {
871 1.2.2.4 jdolecek case 4:
872 1.2.2.4 jdolecek status = emit_read32(compiler, ld_reg, k);
873 1.2.2.4 jdolecek break;
874 1.2.2.4 jdolecek case 2:
875 1.2.2.4 jdolecek status = emit_read16(compiler, ld_reg, k);
876 1.2.2.4 jdolecek break;
877 1.2.2.4 jdolecek case 1:
878 1.2.2.4 jdolecek status = emit_read8(compiler, ld_reg, k);
879 1.2.2.4 jdolecek break;
880 1.2.2.4 jdolecek }
881 1.2.2.2 tls
882 1.2.2.4 jdolecek if (status != SLJIT_SUCCESS)
883 1.2.2.4 jdolecek return status;
884 1.2.2.4 jdolecek }
885 1.2.2.2 tls
886 1.2.2.2 tls #ifdef _KERNEL
887 1.2.2.2 tls over_mchain_jump = sljit_emit_jump(compiler, SLJIT_JUMP);
888 1.2.2.2 tls if (over_mchain_jump == NULL)
889 1.2.2.3 tls return SLJIT_ERR_ALLOC_FAILED;
890 1.2.2.2 tls
891 1.2.2.2 tls /* entry point to mchain handler */
892 1.2.2.2 tls label = sljit_emit_label(compiler);
893 1.2.2.2 tls if (label == NULL)
894 1.2.2.3 tls return SLJIT_ERR_ALLOC_FAILED;
895 1.2.2.2 tls sljit_set_label(to_mchain_jump, label);
896 1.2.2.2 tls
897 1.2.2.2 tls if (check_zero_buflen) {
898 1.2.2.2 tls /* if (buflen != 0) return 0; */
899 1.2.2.2 tls jump = sljit_emit_cmp(compiler,
900 1.2.2.4 jdolecek SLJIT_NOT_EQUAL,
901 1.2.2.3 tls BJ_BUFLEN, 0,
902 1.2.2.2 tls SLJIT_IMM, 0);
903 1.2.2.2 tls if (jump == NULL)
904 1.2.2.2 tls return SLJIT_ERR_ALLOC_FAILED;
905 1.2.2.3 tls if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
906 1.2.2.3 tls return SLJIT_ERR_ALLOC_FAILED;
907 1.2.2.2 tls }
908 1.2.2.2 tls
909 1.2.2.2 tls switch (width) {
910 1.2.2.2 tls case 4:
911 1.2.2.3 tls status = emit_xcall(compiler, hints, pc, BJ_AREG,
912 1.2.2.3 tls ret0, ret0_size, ret0_maxsize, &m_xword);
913 1.2.2.2 tls break;
914 1.2.2.2 tls case 2:
915 1.2.2.3 tls status = emit_xcall(compiler, hints, pc, BJ_AREG,
916 1.2.2.3 tls ret0, ret0_size, ret0_maxsize, &m_xhalf);
917 1.2.2.2 tls break;
918 1.2.2.2 tls case 1:
919 1.2.2.3 tls status = emit_xcall(compiler, hints, pc, BJ_AREG,
920 1.2.2.3 tls ret0, ret0_size, ret0_maxsize, &m_xbyte);
921 1.2.2.2 tls break;
922 1.2.2.2 tls }
923 1.2.2.2 tls
924 1.2.2.2 tls if (status != SLJIT_SUCCESS)
925 1.2.2.2 tls return status;
926 1.2.2.2 tls
927 1.2.2.2 tls label = sljit_emit_label(compiler);
928 1.2.2.2 tls if (label == NULL)
929 1.2.2.2 tls return SLJIT_ERR_ALLOC_FAILED;
930 1.2.2.2 tls sljit_set_label(over_mchain_jump, label);
931 1.2.2.2 tls #endif
932 1.2.2.2 tls
933 1.2.2.3 tls return SLJIT_SUCCESS;
934 1.2.2.3 tls }
935 1.2.2.3 tls
936 1.2.2.3 tls static int
937 1.2.2.3 tls emit_memload(struct sljit_compiler *compiler,
938 1.2.2.4 jdolecek sljit_s32 dst, uint32_t k, size_t extwords)
939 1.2.2.3 tls {
940 1.2.2.3 tls int status;
941 1.2.2.4 jdolecek sljit_s32 src;
942 1.2.2.3 tls sljit_sw srcw;
943 1.2.2.3 tls
944 1.2.2.3 tls srcw = k * sizeof(uint32_t);
945 1.2.2.3 tls
946 1.2.2.3 tls if (extwords == 0) {
947 1.2.2.4 jdolecek src = SLJIT_MEM1(SLJIT_SP);
948 1.2.2.3 tls srcw += offsetof(struct bpfjit_stack, mem);
949 1.2.2.3 tls } else {
950 1.2.2.3 tls /* copy extmem pointer to the tmp1 register */
951 1.2.2.3 tls status = sljit_emit_op1(compiler,
952 1.2.2.3 tls SLJIT_MOV_P,
953 1.2.2.3 tls BJ_TMP1REG, 0,
954 1.2.2.4 jdolecek SLJIT_MEM1(SLJIT_SP),
955 1.2.2.3 tls offsetof(struct bpfjit_stack, extmem));
956 1.2.2.3 tls if (status != SLJIT_SUCCESS)
957 1.2.2.3 tls return status;
958 1.2.2.3 tls src = SLJIT_MEM1(BJ_TMP1REG);
959 1.2.2.3 tls }
960 1.2.2.3 tls
961 1.2.2.4 jdolecek return sljit_emit_op1(compiler, SLJIT_MOV_U32, dst, 0, src, srcw);
962 1.2.2.3 tls }
963 1.2.2.3 tls
964 1.2.2.3 tls static int
965 1.2.2.3 tls emit_memstore(struct sljit_compiler *compiler,
966 1.2.2.4 jdolecek sljit_s32 src, uint32_t k, size_t extwords)
967 1.2.2.3 tls {
968 1.2.2.3 tls int status;
969 1.2.2.4 jdolecek sljit_s32 dst;
970 1.2.2.3 tls sljit_sw dstw;
971 1.2.2.3 tls
972 1.2.2.3 tls dstw = k * sizeof(uint32_t);
973 1.2.2.3 tls
974 1.2.2.3 tls if (extwords == 0) {
975 1.2.2.4 jdolecek dst = SLJIT_MEM1(SLJIT_SP);
976 1.2.2.3 tls dstw += offsetof(struct bpfjit_stack, mem);
977 1.2.2.3 tls } else {
978 1.2.2.3 tls /* copy extmem pointer to the tmp1 register */
979 1.2.2.3 tls status = sljit_emit_op1(compiler,
980 1.2.2.3 tls SLJIT_MOV_P,
981 1.2.2.3 tls BJ_TMP1REG, 0,
982 1.2.2.4 jdolecek SLJIT_MEM1(SLJIT_SP),
983 1.2.2.3 tls offsetof(struct bpfjit_stack, extmem));
984 1.2.2.3 tls if (status != SLJIT_SUCCESS)
985 1.2.2.3 tls return status;
986 1.2.2.3 tls dst = SLJIT_MEM1(BJ_TMP1REG);
987 1.2.2.3 tls }
988 1.2.2.3 tls
989 1.2.2.4 jdolecek return sljit_emit_op1(compiler, SLJIT_MOV_U32, dst, dstw, src, 0);
990 1.2.2.2 tls }
991 1.2.2.2 tls
992 1.2.2.2 tls /*
993 1.2.2.3 tls * Emit code for BPF_LDX+BPF_B+BPF_MSH X <- 4*(P[k:1]&0xf).
994 1.2.2.2 tls */
995 1.2.2.2 tls static int
996 1.2.2.3 tls emit_msh(struct sljit_compiler *compiler, bpfjit_hint_t hints,
997 1.2.2.3 tls const struct bpf_insn *pc, struct sljit_jump *to_mchain_jump,
998 1.2.2.3 tls struct sljit_jump ***ret0, size_t *ret0_size, size_t *ret0_maxsize)
999 1.2.2.2 tls {
1000 1.2.2.2 tls int status;
1001 1.2.2.2 tls #ifdef _KERNEL
1002 1.2.2.2 tls struct sljit_label *label;
1003 1.2.2.2 tls struct sljit_jump *jump, *over_mchain_jump;
1004 1.2.2.2 tls const bool check_zero_buflen = (to_mchain_jump != NULL);
1005 1.2.2.2 tls #endif
1006 1.2.2.2 tls const uint32_t k = pc->k;
1007 1.2.2.2 tls
1008 1.2.2.2 tls #ifdef _KERNEL
1009 1.2.2.2 tls if (to_mchain_jump == NULL) {
1010 1.2.2.2 tls to_mchain_jump = sljit_emit_cmp(compiler,
1011 1.2.2.4 jdolecek SLJIT_EQUAL,
1012 1.2.2.3 tls BJ_BUFLEN, 0,
1013 1.2.2.2 tls SLJIT_IMM, 0);
1014 1.2.2.2 tls if (to_mchain_jump == NULL)
1015 1.2.2.3 tls return SLJIT_ERR_ALLOC_FAILED;
1016 1.2.2.2 tls }
1017 1.2.2.2 tls #endif
1018 1.2.2.2 tls
1019 1.2.2.2 tls /* tmp1 = buf[k] */
1020 1.2.2.2 tls status = sljit_emit_op1(compiler,
1021 1.2.2.4 jdolecek SLJIT_MOV_U8,
1022 1.2.2.3 tls BJ_TMP1REG, 0,
1023 1.2.2.3 tls SLJIT_MEM1(BJ_BUF), k);
1024 1.2.2.2 tls if (status != SLJIT_SUCCESS)
1025 1.2.2.2 tls return status;
1026 1.2.2.2 tls
1027 1.2.2.2 tls #ifdef _KERNEL
1028 1.2.2.2 tls over_mchain_jump = sljit_emit_jump(compiler, SLJIT_JUMP);
1029 1.2.2.2 tls if (over_mchain_jump == NULL)
1030 1.2.2.2 tls return SLJIT_ERR_ALLOC_FAILED;
1031 1.2.2.2 tls
1032 1.2.2.2 tls /* entry point to mchain handler */
1033 1.2.2.2 tls label = sljit_emit_label(compiler);
1034 1.2.2.2 tls if (label == NULL)
1035 1.2.2.2 tls return SLJIT_ERR_ALLOC_FAILED;
1036 1.2.2.2 tls sljit_set_label(to_mchain_jump, label);
1037 1.2.2.2 tls
1038 1.2.2.2 tls if (check_zero_buflen) {
1039 1.2.2.2 tls /* if (buflen != 0) return 0; */
1040 1.2.2.2 tls jump = sljit_emit_cmp(compiler,
1041 1.2.2.4 jdolecek SLJIT_NOT_EQUAL,
1042 1.2.2.3 tls BJ_BUFLEN, 0,
1043 1.2.2.2 tls SLJIT_IMM, 0);
1044 1.2.2.2 tls if (jump == NULL)
1045 1.2.2.3 tls return SLJIT_ERR_ALLOC_FAILED;
1046 1.2.2.3 tls if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
1047 1.2.2.3 tls return SLJIT_ERR_ALLOC_FAILED;
1048 1.2.2.2 tls }
1049 1.2.2.2 tls
1050 1.2.2.3 tls status = emit_xcall(compiler, hints, pc, BJ_TMP1REG,
1051 1.2.2.3 tls ret0, ret0_size, ret0_maxsize, &m_xbyte);
1052 1.2.2.2 tls if (status != SLJIT_SUCCESS)
1053 1.2.2.2 tls return status;
1054 1.2.2.3 tls
1055 1.2.2.3 tls label = sljit_emit_label(compiler);
1056 1.2.2.3 tls if (label == NULL)
1057 1.2.2.3 tls return SLJIT_ERR_ALLOC_FAILED;
1058 1.2.2.3 tls sljit_set_label(over_mchain_jump, label);
1059 1.2.2.3 tls #endif
1060 1.2.2.2 tls
1061 1.2.2.2 tls /* tmp1 &= 0xf */
1062 1.2.2.2 tls status = sljit_emit_op2(compiler,
1063 1.2.2.2 tls SLJIT_AND,
1064 1.2.2.3 tls BJ_TMP1REG, 0,
1065 1.2.2.3 tls BJ_TMP1REG, 0,
1066 1.2.2.2 tls SLJIT_IMM, 0xf);
1067 1.2.2.2 tls if (status != SLJIT_SUCCESS)
1068 1.2.2.2 tls return status;
1069 1.2.2.2 tls
1070 1.2.2.3 tls /* X = tmp1 << 2 */
1071 1.2.2.2 tls status = sljit_emit_op2(compiler,
1072 1.2.2.2 tls SLJIT_SHL,
1073 1.2.2.3 tls BJ_XREG, 0,
1074 1.2.2.3 tls BJ_TMP1REG, 0,
1075 1.2.2.2 tls SLJIT_IMM, 2);
1076 1.2.2.2 tls if (status != SLJIT_SUCCESS)
1077 1.2.2.2 tls return status;
1078 1.2.2.2 tls
1079 1.2.2.3 tls return SLJIT_SUCCESS;
1080 1.2.2.2 tls }
1081 1.2.2.2 tls
1082 1.2.2.4 jdolecek /*
1083 1.2.2.4 jdolecek * Emit code for A = A / k or A = A % k when k is a power of 2.
1084 1.2.2.4 jdolecek * @pc BPF_DIV or BPF_MOD instruction.
1085 1.2.2.4 jdolecek */
1086 1.2.2.2 tls static int
1087 1.2.2.4 jdolecek emit_pow2_moddiv(struct sljit_compiler *compiler, const struct bpf_insn *pc)
1088 1.2.2.2 tls {
1089 1.2.2.4 jdolecek uint32_t k = pc->k;
1090 1.2.2.2 tls int status = SLJIT_SUCCESS;
1091 1.2.2.2 tls
1092 1.2.2.4 jdolecek BJ_ASSERT(k != 0 && (k & (k - 1)) == 0);
1093 1.2.2.2 tls
1094 1.2.2.4 jdolecek if (BPF_OP(pc->code) == BPF_MOD) {
1095 1.2.2.2 tls status = sljit_emit_op2(compiler,
1096 1.2.2.4 jdolecek SLJIT_AND,
1097 1.2.2.3 tls BJ_AREG, 0,
1098 1.2.2.3 tls BJ_AREG, 0,
1099 1.2.2.4 jdolecek SLJIT_IMM, k - 1);
1100 1.2.2.4 jdolecek } else {
1101 1.2.2.4 jdolecek int shift = 0;
1102 1.2.2.4 jdolecek
1103 1.2.2.4 jdolecek /*
1104 1.2.2.4 jdolecek * Do shift = __builtin_ctz(k).
1105 1.2.2.4 jdolecek * The loop is slower, but that's ok.
1106 1.2.2.4 jdolecek */
1107 1.2.2.4 jdolecek while (k > 1) {
1108 1.2.2.4 jdolecek k >>= 1;
1109 1.2.2.4 jdolecek shift++;
1110 1.2.2.4 jdolecek }
1111 1.2.2.4 jdolecek
1112 1.2.2.4 jdolecek if (shift != 0) {
1113 1.2.2.4 jdolecek status = sljit_emit_op2(compiler,
1114 1.2.2.4 jdolecek SLJIT_LSHR|SLJIT_I32_OP,
1115 1.2.2.4 jdolecek BJ_AREG, 0,
1116 1.2.2.4 jdolecek BJ_AREG, 0,
1117 1.2.2.4 jdolecek SLJIT_IMM, shift);
1118 1.2.2.4 jdolecek }
1119 1.2.2.2 tls }
1120 1.2.2.2 tls
1121 1.2.2.2 tls return status;
1122 1.2.2.2 tls }
1123 1.2.2.2 tls
1124 1.2.2.2 tls #if !defined(BPFJIT_USE_UDIV)
1125 1.2.2.2 tls static sljit_uw
1126 1.2.2.2 tls divide(sljit_uw x, sljit_uw y)
1127 1.2.2.2 tls {
1128 1.2.2.2 tls
1129 1.2.2.2 tls return (uint32_t)x / (uint32_t)y;
1130 1.2.2.2 tls }
1131 1.2.2.4 jdolecek
1132 1.2.2.4 jdolecek static sljit_uw
1133 1.2.2.4 jdolecek modulus(sljit_uw x, sljit_uw y)
1134 1.2.2.4 jdolecek {
1135 1.2.2.4 jdolecek
1136 1.2.2.4 jdolecek return (uint32_t)x % (uint32_t)y;
1137 1.2.2.4 jdolecek }
1138 1.2.2.2 tls #endif
1139 1.2.2.2 tls
1140 1.2.2.2 tls /*
1141 1.2.2.4 jdolecek * Emit code for A = A / div or A = A % div.
1142 1.2.2.4 jdolecek * @pc BPF_DIV or BPF_MOD instruction.
1143 1.2.2.2 tls */
1144 1.2.2.2 tls static int
1145 1.2.2.4 jdolecek emit_moddiv(struct sljit_compiler *compiler, const struct bpf_insn *pc)
1146 1.2.2.2 tls {
1147 1.2.2.2 tls int status;
1148 1.2.2.4 jdolecek const bool xdiv = BPF_OP(pc->code) == BPF_DIV;
1149 1.2.2.4 jdolecek const bool xreg = BPF_SRC(pc->code) == BPF_X;
1150 1.2.2.2 tls
1151 1.2.2.3 tls #if BJ_XREG == SLJIT_RETURN_REG || \
1152 1.2.2.4 jdolecek BJ_XREG == SLJIT_R0 || \
1153 1.2.2.4 jdolecek BJ_XREG == SLJIT_R1 || \
1154 1.2.2.4 jdolecek BJ_AREG == SLJIT_R1
1155 1.2.2.2 tls #error "Not supported assignment of registers."
1156 1.2.2.2 tls #endif
1157 1.2.2.2 tls
1158 1.2.2.4 jdolecek #if BJ_AREG != SLJIT_R0
1159 1.2.2.2 tls status = sljit_emit_op1(compiler,
1160 1.2.2.2 tls SLJIT_MOV,
1161 1.2.2.4 jdolecek SLJIT_R0, 0,
1162 1.2.2.3 tls BJ_AREG, 0);
1163 1.2.2.2 tls if (status != SLJIT_SUCCESS)
1164 1.2.2.2 tls return status;
1165 1.2.2.2 tls #endif
1166 1.2.2.2 tls
1167 1.2.2.2 tls status = sljit_emit_op1(compiler,
1168 1.2.2.2 tls SLJIT_MOV,
1169 1.2.2.4 jdolecek SLJIT_R1, 0,
1170 1.2.2.4 jdolecek xreg ? BJ_XREG : SLJIT_IMM,
1171 1.2.2.4 jdolecek xreg ? 0 : (uint32_t)pc->k);
1172 1.2.2.2 tls if (status != SLJIT_SUCCESS)
1173 1.2.2.2 tls return status;
1174 1.2.2.2 tls
1175 1.2.2.2 tls #if defined(BPFJIT_USE_UDIV)
1176 1.2.2.4 jdolecek status = sljit_emit_op0(compiler, SLJIT_UDIV|SLJIT_I32_OP);
1177 1.2.2.4 jdolecek
1178 1.2.2.4 jdolecek if (BPF_OP(pc->code) == BPF_DIV) {
1179 1.2.2.4 jdolecek #if BJ_AREG != SLJIT_R0
1180 1.2.2.4 jdolecek status = sljit_emit_op1(compiler,
1181 1.2.2.4 jdolecek SLJIT_MOV,
1182 1.2.2.4 jdolecek BJ_AREG, 0,
1183 1.2.2.4 jdolecek SLJIT_R0, 0);
1184 1.2.2.4 jdolecek #endif
1185 1.2.2.4 jdolecek } else {
1186 1.2.2.4 jdolecek #if BJ_AREG != SLJIT_R1
1187 1.2.2.4 jdolecek /* Remainder is in SLJIT_R1. */
1188 1.2.2.4 jdolecek status = sljit_emit_op1(compiler,
1189 1.2.2.4 jdolecek SLJIT_MOV,
1190 1.2.2.4 jdolecek BJ_AREG, 0,
1191 1.2.2.4 jdolecek SLJIT_R1, 0);
1192 1.2.2.4 jdolecek #endif
1193 1.2.2.4 jdolecek }
1194 1.2.2.2 tls
1195 1.2.2.2 tls if (status != SLJIT_SUCCESS)
1196 1.2.2.2 tls return status;
1197 1.2.2.2 tls #else
1198 1.2.2.2 tls status = sljit_emit_ijump(compiler,
1199 1.2.2.2 tls SLJIT_CALL2,
1200 1.2.2.4 jdolecek SLJIT_IMM, xdiv ? SLJIT_FUNC_OFFSET(divide) :
1201 1.2.2.4 jdolecek SLJIT_FUNC_OFFSET(modulus));
1202 1.2.2.2 tls
1203 1.2.2.3 tls #if BJ_AREG != SLJIT_RETURN_REG
1204 1.2.2.2 tls status = sljit_emit_op1(compiler,
1205 1.2.2.2 tls SLJIT_MOV,
1206 1.2.2.3 tls BJ_AREG, 0,
1207 1.2.2.2 tls SLJIT_RETURN_REG, 0);
1208 1.2.2.2 tls if (status != SLJIT_SUCCESS)
1209 1.2.2.2 tls return status;
1210 1.2.2.2 tls #endif
1211 1.2.2.2 tls #endif
1212 1.2.2.2 tls
1213 1.2.2.2 tls return status;
1214 1.2.2.2 tls }
1215 1.2.2.2 tls
1216 1.2.2.2 tls /*
1217 1.2.2.2 tls * Return true if pc is a "read from packet" instruction.
1218 1.2.2.2 tls * If length is not NULL and return value is true, *length will
1219 1.2.2.2 tls * be set to a safe length required to read a packet.
1220 1.2.2.2 tls */
1221 1.2.2.2 tls static bool
1222 1.2.2.3 tls read_pkt_insn(const struct bpf_insn *pc, bpfjit_abc_length_t *length)
1223 1.2.2.2 tls {
1224 1.2.2.2 tls bool rv;
1225 1.2.2.4 jdolecek bpfjit_abc_length_t width = 0; /* XXXuninit */
1226 1.2.2.2 tls
1227 1.2.2.2 tls switch (BPF_CLASS(pc->code)) {
1228 1.2.2.2 tls default:
1229 1.2.2.2 tls rv = false;
1230 1.2.2.2 tls break;
1231 1.2.2.2 tls
1232 1.2.2.2 tls case BPF_LD:
1233 1.2.2.2 tls rv = BPF_MODE(pc->code) == BPF_ABS ||
1234 1.2.2.2 tls BPF_MODE(pc->code) == BPF_IND;
1235 1.2.2.4 jdolecek if (rv) {
1236 1.2.2.2 tls width = read_width(pc);
1237 1.2.2.4 jdolecek rv = (width != 0);
1238 1.2.2.4 jdolecek }
1239 1.2.2.2 tls break;
1240 1.2.2.2 tls
1241 1.2.2.2 tls case BPF_LDX:
1242 1.2.2.4 jdolecek rv = BPF_MODE(pc->code) == BPF_MSH &&
1243 1.2.2.4 jdolecek BPF_SIZE(pc->code) == BPF_B;
1244 1.2.2.2 tls width = 1;
1245 1.2.2.2 tls break;
1246 1.2.2.2 tls }
1247 1.2.2.2 tls
1248 1.2.2.2 tls if (rv && length != NULL) {
1249 1.2.2.3 tls /*
1250 1.2.2.3 tls * Values greater than UINT32_MAX will generate
1251 1.2.2.3 tls * unconditional "return 0".
1252 1.2.2.3 tls */
1253 1.2.2.3 tls *length = (uint32_t)pc->k + width;
1254 1.2.2.2 tls }
1255 1.2.2.2 tls
1256 1.2.2.2 tls return rv;
1257 1.2.2.2 tls }
1258 1.2.2.2 tls
1259 1.2.2.2 tls static void
1260 1.2.2.3 tls optimize_init(struct bpfjit_insn_data *insn_dat, size_t insn_count)
1261 1.2.2.2 tls {
1262 1.2.2.3 tls size_t i;
1263 1.2.2.2 tls
1264 1.2.2.3 tls for (i = 0; i < insn_count; i++) {
1265 1.2.2.3 tls SLIST_INIT(&insn_dat[i].bjumps);
1266 1.2.2.3 tls insn_dat[i].invalid = BJ_INIT_NOBITS;
1267 1.2.2.2 tls }
1268 1.2.2.2 tls }
1269 1.2.2.2 tls
1270 1.2.2.2 tls /*
1271 1.2.2.2 tls * The function divides instructions into blocks. Destination of a jump
1272 1.2.2.2 tls * instruction starts a new block. BPF_RET and BPF_JMP instructions
1273 1.2.2.2 tls * terminate a block. Blocks are linear, that is, there are no jumps out
1274 1.2.2.2 tls * from the middle of a block and there are no jumps in to the middle of
1275 1.2.2.2 tls * a block.
1276 1.2.2.3 tls *
1277 1.2.2.3 tls * The function also sets bits in *initmask for memwords that
1278 1.2.2.3 tls * need to be initialized to zero. Note that this set should be empty
1279 1.2.2.3 tls * for any valid kernel filter program.
1280 1.2.2.2 tls */
1281 1.2.2.3 tls static bool
1282 1.2.2.3 tls optimize_pass1(const bpf_ctx_t *bc, const struct bpf_insn *insns,
1283 1.2.2.3 tls struct bpfjit_insn_data *insn_dat, size_t insn_count,
1284 1.2.2.3 tls bpf_memword_init_t *initmask, bpfjit_hint_t *hints)
1285 1.2.2.2 tls {
1286 1.2.2.3 tls struct bpfjit_jump *jtf;
1287 1.2.2.2 tls size_t i;
1288 1.2.2.2 tls uint32_t jt, jf;
1289 1.2.2.3 tls bpfjit_abc_length_t length;
1290 1.2.2.3 tls bpf_memword_init_t invalid; /* borrowed from bpf_filter() */
1291 1.2.2.3 tls bool unreachable;
1292 1.2.2.3 tls
1293 1.2.2.3 tls const size_t memwords = GET_MEMWORDS(bc);
1294 1.2.2.2 tls
1295 1.2.2.3 tls *hints = 0;
1296 1.2.2.3 tls *initmask = BJ_INIT_NOBITS;
1297 1.2.2.2 tls
1298 1.2.2.2 tls unreachable = false;
1299 1.2.2.3 tls invalid = ~BJ_INIT_NOBITS;
1300 1.2.2.2 tls
1301 1.2.2.2 tls for (i = 0; i < insn_count; i++) {
1302 1.2.2.3 tls if (!SLIST_EMPTY(&insn_dat[i].bjumps))
1303 1.2.2.2 tls unreachable = false;
1304 1.2.2.3 tls insn_dat[i].unreachable = unreachable;
1305 1.2.2.2 tls
1306 1.2.2.2 tls if (unreachable)
1307 1.2.2.2 tls continue;
1308 1.2.2.2 tls
1309 1.2.2.3 tls invalid |= insn_dat[i].invalid;
1310 1.2.2.3 tls
1311 1.2.2.3 tls if (read_pkt_insn(&insns[i], &length) && length > UINT32_MAX)
1312 1.2.2.3 tls unreachable = true;
1313 1.2.2.2 tls
1314 1.2.2.2 tls switch (BPF_CLASS(insns[i].code)) {
1315 1.2.2.2 tls case BPF_RET:
1316 1.2.2.3 tls if (BPF_RVAL(insns[i].code) == BPF_A)
1317 1.2.2.3 tls *initmask |= invalid & BJ_INIT_ABIT;
1318 1.2.2.3 tls
1319 1.2.2.2 tls unreachable = true;
1320 1.2.2.2 tls continue;
1321 1.2.2.2 tls
1322 1.2.2.3 tls case BPF_LD:
1323 1.2.2.3 tls if (BPF_MODE(insns[i].code) == BPF_ABS)
1324 1.2.2.3 tls *hints |= BJ_HINT_ABS;
1325 1.2.2.3 tls
1326 1.2.2.3 tls if (BPF_MODE(insns[i].code) == BPF_IND) {
1327 1.2.2.3 tls *hints |= BJ_HINT_IND | BJ_HINT_XREG;
1328 1.2.2.3 tls *initmask |= invalid & BJ_INIT_XBIT;
1329 1.2.2.3 tls }
1330 1.2.2.3 tls
1331 1.2.2.3 tls if (BPF_MODE(insns[i].code) == BPF_MEM &&
1332 1.2.2.3 tls (uint32_t)insns[i].k < memwords) {
1333 1.2.2.3 tls *initmask |= invalid & BJ_INIT_MBIT(insns[i].k);
1334 1.2.2.3 tls }
1335 1.2.2.3 tls
1336 1.2.2.3 tls invalid &= ~BJ_INIT_ABIT;
1337 1.2.2.3 tls continue;
1338 1.2.2.3 tls
1339 1.2.2.3 tls case BPF_LDX:
1340 1.2.2.3 tls *hints |= BJ_HINT_XREG | BJ_HINT_LDX;
1341 1.2.2.3 tls
1342 1.2.2.3 tls if (BPF_MODE(insns[i].code) == BPF_MEM &&
1343 1.2.2.3 tls (uint32_t)insns[i].k < memwords) {
1344 1.2.2.3 tls *initmask |= invalid & BJ_INIT_MBIT(insns[i].k);
1345 1.2.2.3 tls }
1346 1.2.2.3 tls
1347 1.2.2.3 tls if (BPF_MODE(insns[i].code) == BPF_MSH &&
1348 1.2.2.3 tls BPF_SIZE(insns[i].code) == BPF_B) {
1349 1.2.2.3 tls *hints |= BJ_HINT_MSH;
1350 1.2.2.3 tls }
1351 1.2.2.3 tls
1352 1.2.2.3 tls invalid &= ~BJ_INIT_XBIT;
1353 1.2.2.3 tls continue;
1354 1.2.2.3 tls
1355 1.2.2.3 tls case BPF_ST:
1356 1.2.2.3 tls *initmask |= invalid & BJ_INIT_ABIT;
1357 1.2.2.3 tls
1358 1.2.2.3 tls if ((uint32_t)insns[i].k < memwords)
1359 1.2.2.3 tls invalid &= ~BJ_INIT_MBIT(insns[i].k);
1360 1.2.2.3 tls
1361 1.2.2.3 tls continue;
1362 1.2.2.3 tls
1363 1.2.2.3 tls case BPF_STX:
1364 1.2.2.3 tls *hints |= BJ_HINT_XREG;
1365 1.2.2.3 tls *initmask |= invalid & BJ_INIT_XBIT;
1366 1.2.2.3 tls
1367 1.2.2.3 tls if ((uint32_t)insns[i].k < memwords)
1368 1.2.2.3 tls invalid &= ~BJ_INIT_MBIT(insns[i].k);
1369 1.2.2.3 tls
1370 1.2.2.3 tls continue;
1371 1.2.2.3 tls
1372 1.2.2.3 tls case BPF_ALU:
1373 1.2.2.3 tls *initmask |= invalid & BJ_INIT_ABIT;
1374 1.2.2.3 tls
1375 1.2.2.3 tls if (insns[i].code != (BPF_ALU|BPF_NEG) &&
1376 1.2.2.3 tls BPF_SRC(insns[i].code) == BPF_X) {
1377 1.2.2.3 tls *hints |= BJ_HINT_XREG;
1378 1.2.2.3 tls *initmask |= invalid & BJ_INIT_XBIT;
1379 1.2.2.3 tls }
1380 1.2.2.3 tls
1381 1.2.2.3 tls invalid &= ~BJ_INIT_ABIT;
1382 1.2.2.3 tls continue;
1383 1.2.2.3 tls
1384 1.2.2.3 tls case BPF_MISC:
1385 1.2.2.3 tls switch (BPF_MISCOP(insns[i].code)) {
1386 1.2.2.3 tls case BPF_TAX: // X <- A
1387 1.2.2.3 tls *hints |= BJ_HINT_XREG;
1388 1.2.2.3 tls *initmask |= invalid & BJ_INIT_ABIT;
1389 1.2.2.3 tls invalid &= ~BJ_INIT_XBIT;
1390 1.2.2.3 tls continue;
1391 1.2.2.3 tls
1392 1.2.2.3 tls case BPF_TXA: // A <- X
1393 1.2.2.3 tls *hints |= BJ_HINT_XREG;
1394 1.2.2.3 tls *initmask |= invalid & BJ_INIT_XBIT;
1395 1.2.2.3 tls invalid &= ~BJ_INIT_ABIT;
1396 1.2.2.3 tls continue;
1397 1.2.2.3 tls
1398 1.2.2.3 tls case BPF_COPX:
1399 1.2.2.3 tls *hints |= BJ_HINT_XREG | BJ_HINT_COPX;
1400 1.2.2.3 tls /* FALLTHROUGH */
1401 1.2.2.3 tls
1402 1.2.2.3 tls case BPF_COP:
1403 1.2.2.3 tls *hints |= BJ_HINT_COP;
1404 1.2.2.3 tls *initmask |= invalid & BJ_INIT_ABIT;
1405 1.2.2.3 tls invalid &= ~BJ_INIT_ABIT;
1406 1.2.2.3 tls continue;
1407 1.2.2.3 tls }
1408 1.2.2.3 tls
1409 1.2.2.3 tls continue;
1410 1.2.2.3 tls
1411 1.2.2.2 tls case BPF_JMP:
1412 1.2.2.3 tls /* Initialize abc_length for ABC pass. */
1413 1.2.2.3 tls insn_dat[i].u.jdata.abc_length = MAX_ABC_LENGTH;
1414 1.2.2.3 tls
1415 1.2.2.4 jdolecek *initmask |= invalid & BJ_INIT_ABIT;
1416 1.2.2.4 jdolecek
1417 1.2.2.4 jdolecek if (BPF_SRC(insns[i].code) == BPF_X) {
1418 1.2.2.4 jdolecek *hints |= BJ_HINT_XREG;
1419 1.2.2.4 jdolecek *initmask |= invalid & BJ_INIT_XBIT;
1420 1.2.2.4 jdolecek }
1421 1.2.2.4 jdolecek
1422 1.2.2.3 tls if (BPF_OP(insns[i].code) == BPF_JA) {
1423 1.2.2.2 tls jt = jf = insns[i].k;
1424 1.2.2.2 tls } else {
1425 1.2.2.2 tls jt = insns[i].jt;
1426 1.2.2.2 tls jf = insns[i].jf;
1427 1.2.2.2 tls }
1428 1.2.2.2 tls
1429 1.2.2.2 tls if (jt >= insn_count - (i + 1) ||
1430 1.2.2.2 tls jf >= insn_count - (i + 1)) {
1431 1.2.2.3 tls return false;
1432 1.2.2.2 tls }
1433 1.2.2.2 tls
1434 1.2.2.2 tls if (jt > 0 && jf > 0)
1435 1.2.2.2 tls unreachable = true;
1436 1.2.2.2 tls
1437 1.2.2.3 tls jt += i + 1;
1438 1.2.2.3 tls jf += i + 1;
1439 1.2.2.3 tls
1440 1.2.2.3 tls jtf = insn_dat[i].u.jdata.jtf;
1441 1.2.2.2 tls
1442 1.2.2.3 tls jtf[0].jdata = &insn_dat[i].u.jdata;
1443 1.2.2.3 tls SLIST_INSERT_HEAD(&insn_dat[jt].bjumps,
1444 1.2.2.3 tls &jtf[0], entries);
1445 1.2.2.2 tls
1446 1.2.2.2 tls if (jf != jt) {
1447 1.2.2.3 tls jtf[1].jdata = &insn_dat[i].u.jdata;
1448 1.2.2.3 tls SLIST_INSERT_HEAD(&insn_dat[jf].bjumps,
1449 1.2.2.3 tls &jtf[1], entries);
1450 1.2.2.2 tls }
1451 1.2.2.2 tls
1452 1.2.2.3 tls insn_dat[jf].invalid |= invalid;
1453 1.2.2.3 tls insn_dat[jt].invalid |= invalid;
1454 1.2.2.3 tls invalid = 0;
1455 1.2.2.3 tls
1456 1.2.2.2 tls continue;
1457 1.2.2.2 tls }
1458 1.2.2.2 tls }
1459 1.2.2.2 tls
1460 1.2.2.3 tls return true;
1461 1.2.2.2 tls }
1462 1.2.2.2 tls
1463 1.2.2.2 tls /*
1464 1.2.2.3 tls * Array Bounds Check Elimination (ABC) pass.
1465 1.2.2.2 tls */
1466 1.2.2.3 tls static void
1467 1.2.2.3 tls optimize_pass2(const bpf_ctx_t *bc, const struct bpf_insn *insns,
1468 1.2.2.3 tls struct bpfjit_insn_data *insn_dat, size_t insn_count)
1469 1.2.2.2 tls {
1470 1.2.2.3 tls struct bpfjit_jump *jmp;
1471 1.2.2.3 tls const struct bpf_insn *pc;
1472 1.2.2.3 tls struct bpfjit_insn_data *pd;
1473 1.2.2.2 tls size_t i;
1474 1.2.2.3 tls bpfjit_abc_length_t length, abc_length = 0;
1475 1.2.2.2 tls
1476 1.2.2.3 tls const size_t extwords = GET_EXTWORDS(bc);
1477 1.2.2.2 tls
1478 1.2.2.3 tls for (i = insn_count; i != 0; i--) {
1479 1.2.2.3 tls pc = &insns[i-1];
1480 1.2.2.3 tls pd = &insn_dat[i-1];
1481 1.2.2.3 tls
1482 1.2.2.3 tls if (pd->unreachable)
1483 1.2.2.3 tls continue;
1484 1.2.2.3 tls
1485 1.2.2.3 tls switch (BPF_CLASS(pc->code)) {
1486 1.2.2.3 tls case BPF_RET:
1487 1.2.2.3 tls /*
1488 1.2.2.3 tls * It's quite common for bpf programs to
1489 1.2.2.3 tls * check packet bytes in increasing order
1490 1.2.2.3 tls * and return zero if bytes don't match
1491 1.2.2.3 tls * specified critetion. Such programs disable
1492 1.2.2.3 tls * ABC optimization completely because for
1493 1.2.2.3 tls * every jump there is a branch with no read
1494 1.2.2.3 tls * instruction.
1495 1.2.2.3 tls * With no side effects, BPF_STMT(BPF_RET+BPF_K, 0)
1496 1.2.2.3 tls * is indistinguishable from out-of-bound load.
1497 1.2.2.3 tls * Therefore, abc_length can be set to
1498 1.2.2.3 tls * MAX_ABC_LENGTH and enable ABC for many
1499 1.2.2.3 tls * bpf programs.
1500 1.2.2.3 tls * If this optimization encounters any
1501 1.2.2.3 tls * instruction with a side effect, it will
1502 1.2.2.3 tls * reset abc_length.
1503 1.2.2.3 tls */
1504 1.2.2.3 tls if (BPF_RVAL(pc->code) == BPF_K && pc->k == 0)
1505 1.2.2.3 tls abc_length = MAX_ABC_LENGTH;
1506 1.2.2.3 tls else
1507 1.2.2.3 tls abc_length = 0;
1508 1.2.2.3 tls break;
1509 1.2.2.3 tls
1510 1.2.2.3 tls case BPF_MISC:
1511 1.2.2.3 tls if (BPF_MISCOP(pc->code) == BPF_COP ||
1512 1.2.2.3 tls BPF_MISCOP(pc->code) == BPF_COPX) {
1513 1.2.2.3 tls /* COP instructions can have side effects. */
1514 1.2.2.3 tls abc_length = 0;
1515 1.2.2.3 tls }
1516 1.2.2.3 tls break;
1517 1.2.2.3 tls
1518 1.2.2.3 tls case BPF_ST:
1519 1.2.2.3 tls case BPF_STX:
1520 1.2.2.3 tls if (extwords != 0) {
1521 1.2.2.3 tls /* Write to memory is visible after a call. */
1522 1.2.2.3 tls abc_length = 0;
1523 1.2.2.3 tls }
1524 1.2.2.3 tls break;
1525 1.2.2.3 tls
1526 1.2.2.3 tls case BPF_JMP:
1527 1.2.2.3 tls abc_length = pd->u.jdata.abc_length;
1528 1.2.2.3 tls break;
1529 1.2.2.3 tls
1530 1.2.2.3 tls default:
1531 1.2.2.3 tls if (read_pkt_insn(pc, &length)) {
1532 1.2.2.3 tls if (abc_length < length)
1533 1.2.2.3 tls abc_length = length;
1534 1.2.2.3 tls pd->u.rdata.abc_length = abc_length;
1535 1.2.2.3 tls }
1536 1.2.2.3 tls break;
1537 1.2.2.2 tls }
1538 1.2.2.2 tls
1539 1.2.2.3 tls SLIST_FOREACH(jmp, &pd->bjumps, entries) {
1540 1.2.2.3 tls if (jmp->jdata->abc_length > abc_length)
1541 1.2.2.3 tls jmp->jdata->abc_length = abc_length;
1542 1.2.2.2 tls }
1543 1.2.2.3 tls }
1544 1.2.2.3 tls }
1545 1.2.2.2 tls
1546 1.2.2.3 tls static void
1547 1.2.2.3 tls optimize_pass3(const struct bpf_insn *insns,
1548 1.2.2.3 tls struct bpfjit_insn_data *insn_dat, size_t insn_count)
1549 1.2.2.3 tls {
1550 1.2.2.3 tls struct bpfjit_jump *jmp;
1551 1.2.2.3 tls size_t i;
1552 1.2.2.3 tls bpfjit_abc_length_t checked_length = 0;
1553 1.2.2.3 tls
1554 1.2.2.3 tls for (i = 0; i < insn_count; i++) {
1555 1.2.2.3 tls if (insn_dat[i].unreachable)
1556 1.2.2.3 tls continue;
1557 1.2.2.2 tls
1558 1.2.2.3 tls SLIST_FOREACH(jmp, &insn_dat[i].bjumps, entries) {
1559 1.2.2.3 tls if (jmp->jdata->checked_length < checked_length)
1560 1.2.2.3 tls checked_length = jmp->jdata->checked_length;
1561 1.2.2.3 tls }
1562 1.2.2.3 tls
1563 1.2.2.3 tls if (BPF_CLASS(insns[i].code) == BPF_JMP) {
1564 1.2.2.3 tls insn_dat[i].u.jdata.checked_length = checked_length;
1565 1.2.2.3 tls } else if (read_pkt_insn(&insns[i], NULL)) {
1566 1.2.2.3 tls struct bpfjit_read_pkt_data *rdata =
1567 1.2.2.3 tls &insn_dat[i].u.rdata;
1568 1.2.2.3 tls rdata->check_length = 0;
1569 1.2.2.3 tls if (checked_length < rdata->abc_length) {
1570 1.2.2.3 tls checked_length = rdata->abc_length;
1571 1.2.2.3 tls rdata->check_length = checked_length;
1572 1.2.2.3 tls }
1573 1.2.2.2 tls }
1574 1.2.2.2 tls }
1575 1.2.2.3 tls }
1576 1.2.2.2 tls
1577 1.2.2.3 tls static bool
1578 1.2.2.3 tls optimize(const bpf_ctx_t *bc, const struct bpf_insn *insns,
1579 1.2.2.3 tls struct bpfjit_insn_data *insn_dat, size_t insn_count,
1580 1.2.2.3 tls bpf_memword_init_t *initmask, bpfjit_hint_t *hints)
1581 1.2.2.3 tls {
1582 1.2.2.3 tls
1583 1.2.2.3 tls optimize_init(insn_dat, insn_count);
1584 1.2.2.3 tls
1585 1.2.2.3 tls if (!optimize_pass1(bc, insns, insn_dat, insn_count, initmask, hints))
1586 1.2.2.3 tls return false;
1587 1.2.2.3 tls
1588 1.2.2.3 tls optimize_pass2(bc, insns, insn_dat, insn_count);
1589 1.2.2.3 tls optimize_pass3(insns, insn_dat, insn_count);
1590 1.2.2.3 tls
1591 1.2.2.3 tls return true;
1592 1.2.2.2 tls }
1593 1.2.2.2 tls
1594 1.2.2.2 tls /*
1595 1.2.2.2 tls * Convert BPF_ALU operations except BPF_NEG and BPF_DIV to sljit operation.
1596 1.2.2.2 tls */
1597 1.2.2.4 jdolecek static bool
1598 1.2.2.4 jdolecek alu_to_op(const struct bpf_insn *pc, int *res)
1599 1.2.2.2 tls {
1600 1.2.2.4 jdolecek const uint32_t k = pc->k;
1601 1.2.2.2 tls
1602 1.2.2.2 tls /*
1603 1.2.2.2 tls * Note: all supported 64bit arches have 32bit multiply
1604 1.2.2.4 jdolecek * instruction so SLJIT_I32_OP doesn't have any overhead.
1605 1.2.2.2 tls */
1606 1.2.2.2 tls switch (BPF_OP(pc->code)) {
1607 1.2.2.4 jdolecek case BPF_ADD:
1608 1.2.2.4 jdolecek *res = SLJIT_ADD;
1609 1.2.2.4 jdolecek return true;
1610 1.2.2.4 jdolecek case BPF_SUB:
1611 1.2.2.4 jdolecek *res = SLJIT_SUB;
1612 1.2.2.4 jdolecek return true;
1613 1.2.2.4 jdolecek case BPF_MUL:
1614 1.2.2.4 jdolecek *res = SLJIT_MUL|SLJIT_I32_OP;
1615 1.2.2.4 jdolecek return true;
1616 1.2.2.4 jdolecek case BPF_OR:
1617 1.2.2.4 jdolecek *res = SLJIT_OR;
1618 1.2.2.4 jdolecek return true;
1619 1.2.2.4 jdolecek case BPF_XOR:
1620 1.2.2.4 jdolecek *res = SLJIT_XOR;
1621 1.2.2.4 jdolecek return true;
1622 1.2.2.4 jdolecek case BPF_AND:
1623 1.2.2.4 jdolecek *res = SLJIT_AND;
1624 1.2.2.4 jdolecek return true;
1625 1.2.2.4 jdolecek case BPF_LSH:
1626 1.2.2.4 jdolecek *res = SLJIT_SHL;
1627 1.2.2.4 jdolecek return k < 32;
1628 1.2.2.4 jdolecek case BPF_RSH:
1629 1.2.2.4 jdolecek *res = SLJIT_LSHR|SLJIT_I32_OP;
1630 1.2.2.4 jdolecek return k < 32;
1631 1.2.2.2 tls default:
1632 1.2.2.4 jdolecek return false;
1633 1.2.2.2 tls }
1634 1.2.2.2 tls }
1635 1.2.2.2 tls
1636 1.2.2.2 tls /*
1637 1.2.2.2 tls * Convert BPF_JMP operations except BPF_JA to sljit condition.
1638 1.2.2.2 tls */
1639 1.2.2.4 jdolecek static bool
1640 1.2.2.4 jdolecek jmp_to_cond(const struct bpf_insn *pc, bool negate, int *res)
1641 1.2.2.2 tls {
1642 1.2.2.4 jdolecek
1643 1.2.2.2 tls /*
1644 1.2.2.2 tls * Note: all supported 64bit arches have 32bit comparison
1645 1.2.2.4 jdolecek * instructions so SLJIT_I32_OP doesn't have any overhead.
1646 1.2.2.2 tls */
1647 1.2.2.4 jdolecek *res = SLJIT_I32_OP;
1648 1.2.2.2 tls
1649 1.2.2.2 tls switch (BPF_OP(pc->code)) {
1650 1.2.2.2 tls case BPF_JGT:
1651 1.2.2.4 jdolecek *res |= negate ? SLJIT_LESS_EQUAL : SLJIT_GREATER;
1652 1.2.2.4 jdolecek return true;
1653 1.2.2.2 tls case BPF_JGE:
1654 1.2.2.4 jdolecek *res |= negate ? SLJIT_LESS : SLJIT_GREATER_EQUAL;
1655 1.2.2.4 jdolecek return true;
1656 1.2.2.2 tls case BPF_JEQ:
1657 1.2.2.4 jdolecek *res |= negate ? SLJIT_NOT_EQUAL : SLJIT_EQUAL;
1658 1.2.2.4 jdolecek return true;
1659 1.2.2.2 tls case BPF_JSET:
1660 1.2.2.4 jdolecek *res |= negate ? SLJIT_EQUAL : SLJIT_NOT_EQUAL;
1661 1.2.2.4 jdolecek return true;
1662 1.2.2.2 tls default:
1663 1.2.2.4 jdolecek return false;
1664 1.2.2.2 tls }
1665 1.2.2.2 tls }
1666 1.2.2.2 tls
1667 1.2.2.2 tls /*
1668 1.2.2.2 tls * Convert BPF_K and BPF_X to sljit register.
1669 1.2.2.2 tls */
1670 1.2.2.2 tls static int
1671 1.2.2.3 tls kx_to_reg(const struct bpf_insn *pc)
1672 1.2.2.2 tls {
1673 1.2.2.2 tls
1674 1.2.2.2 tls switch (BPF_SRC(pc->code)) {
1675 1.2.2.2 tls case BPF_K: return SLJIT_IMM;
1676 1.2.2.3 tls case BPF_X: return BJ_XREG;
1677 1.2.2.2 tls default:
1678 1.2.2.3 tls BJ_ASSERT(false);
1679 1.2.2.2 tls return 0;
1680 1.2.2.2 tls }
1681 1.2.2.2 tls }
1682 1.2.2.2 tls
1683 1.2.2.3 tls static sljit_sw
1684 1.2.2.3 tls kx_to_reg_arg(const struct bpf_insn *pc)
1685 1.2.2.2 tls {
1686 1.2.2.2 tls
1687 1.2.2.2 tls switch (BPF_SRC(pc->code)) {
1688 1.2.2.2 tls case BPF_K: return (uint32_t)pc->k; /* SLJIT_IMM, pc->k, */
1689 1.2.2.3 tls case BPF_X: return 0; /* BJ_XREG, 0, */
1690 1.2.2.2 tls default:
1691 1.2.2.3 tls BJ_ASSERT(false);
1692 1.2.2.2 tls return 0;
1693 1.2.2.2 tls }
1694 1.2.2.2 tls }
1695 1.2.2.2 tls
1696 1.2.2.3 tls static bool
1697 1.2.2.3 tls generate_insn_code(struct sljit_compiler *compiler, bpfjit_hint_t hints,
1698 1.2.2.3 tls const bpf_ctx_t *bc, const struct bpf_insn *insns,
1699 1.2.2.3 tls struct bpfjit_insn_data *insn_dat, size_t insn_count)
1700 1.2.2.2 tls {
1701 1.2.2.2 tls /* a list of jumps to out-of-bound return from a generated function */
1702 1.2.2.2 tls struct sljit_jump **ret0;
1703 1.2.2.2 tls size_t ret0_size, ret0_maxsize;
1704 1.2.2.2 tls
1705 1.2.2.2 tls struct sljit_jump *jump;
1706 1.2.2.3 tls struct sljit_label *label;
1707 1.2.2.3 tls const struct bpf_insn *pc;
1708 1.2.2.2 tls struct bpfjit_jump *bjump, *jtf;
1709 1.2.2.2 tls struct sljit_jump *to_mchain_jump;
1710 1.2.2.2 tls
1711 1.2.2.3 tls size_t i;
1712 1.2.2.4 jdolecek unsigned int rval, mode, src, op;
1713 1.2.2.3 tls int branching, negate;
1714 1.2.2.4 jdolecek int status, cond, op2;
1715 1.2.2.2 tls uint32_t jt, jf;
1716 1.2.2.2 tls
1717 1.2.2.3 tls bool unconditional_ret;
1718 1.2.2.3 tls bool rv;
1719 1.2.2.2 tls
1720 1.2.2.3 tls const size_t extwords = GET_EXTWORDS(bc);
1721 1.2.2.3 tls const size_t memwords = GET_MEMWORDS(bc);
1722 1.2.2.2 tls
1723 1.2.2.3 tls ret0 = NULL;
1724 1.2.2.3 tls rv = false;
1725 1.2.2.2 tls
1726 1.2.2.2 tls ret0_size = 0;
1727 1.2.2.3 tls ret0_maxsize = 64;
1728 1.2.2.3 tls ret0 = BJ_ALLOC(ret0_maxsize * sizeof(ret0[0]));
1729 1.2.2.3 tls if (ret0 == NULL)
1730 1.2.2.2 tls goto fail;
1731 1.2.2.2 tls
1732 1.2.2.3 tls /* reset sjump members of jdata */
1733 1.2.2.3 tls for (i = 0; i < insn_count; i++) {
1734 1.2.2.3 tls if (insn_dat[i].unreachable ||
1735 1.2.2.3 tls BPF_CLASS(insns[i].code) != BPF_JMP) {
1736 1.2.2.3 tls continue;
1737 1.2.2.3 tls }
1738 1.2.2.2 tls
1739 1.2.2.3 tls jtf = insn_dat[i].u.jdata.jtf;
1740 1.2.2.3 tls jtf[0].sjump = jtf[1].sjump = NULL;
1741 1.2.2.2 tls }
1742 1.2.2.2 tls
1743 1.2.2.3 tls /* main loop */
1744 1.2.2.2 tls for (i = 0; i < insn_count; i++) {
1745 1.2.2.3 tls if (insn_dat[i].unreachable)
1746 1.2.2.2 tls continue;
1747 1.2.2.2 tls
1748 1.2.2.2 tls /*
1749 1.2.2.2 tls * Resolve jumps to the current insn.
1750 1.2.2.2 tls */
1751 1.2.2.2 tls label = NULL;
1752 1.2.2.3 tls SLIST_FOREACH(bjump, &insn_dat[i].bjumps, entries) {
1753 1.2.2.3 tls if (bjump->sjump != NULL) {
1754 1.2.2.2 tls if (label == NULL)
1755 1.2.2.2 tls label = sljit_emit_label(compiler);
1756 1.2.2.2 tls if (label == NULL)
1757 1.2.2.2 tls goto fail;
1758 1.2.2.3 tls sljit_set_label(bjump->sjump, label);
1759 1.2.2.2 tls }
1760 1.2.2.2 tls }
1761 1.2.2.2 tls
1762 1.2.2.3 tls to_mchain_jump = NULL;
1763 1.2.2.3 tls unconditional_ret = false;
1764 1.2.2.3 tls
1765 1.2.2.3 tls if (read_pkt_insn(&insns[i], NULL)) {
1766 1.2.2.3 tls if (insn_dat[i].u.rdata.check_length > UINT32_MAX) {
1767 1.2.2.3 tls /* Jump to "return 0" unconditionally. */
1768 1.2.2.3 tls unconditional_ret = true;
1769 1.2.2.3 tls jump = sljit_emit_jump(compiler, SLJIT_JUMP);
1770 1.2.2.3 tls if (jump == NULL)
1771 1.2.2.3 tls goto fail;
1772 1.2.2.3 tls if (!append_jump(jump, &ret0,
1773 1.2.2.3 tls &ret0_size, &ret0_maxsize))
1774 1.2.2.3 tls goto fail;
1775 1.2.2.3 tls } else if (insn_dat[i].u.rdata.check_length > 0) {
1776 1.2.2.3 tls /* if (buflen < check_length) return 0; */
1777 1.2.2.3 tls jump = sljit_emit_cmp(compiler,
1778 1.2.2.4 jdolecek SLJIT_LESS,
1779 1.2.2.3 tls BJ_BUFLEN, 0,
1780 1.2.2.3 tls SLJIT_IMM,
1781 1.2.2.3 tls insn_dat[i].u.rdata.check_length);
1782 1.2.2.3 tls if (jump == NULL)
1783 1.2.2.3 tls goto fail;
1784 1.2.2.2 tls #ifdef _KERNEL
1785 1.2.2.3 tls to_mchain_jump = jump;
1786 1.2.2.2 tls #else
1787 1.2.2.3 tls if (!append_jump(jump, &ret0,
1788 1.2.2.3 tls &ret0_size, &ret0_maxsize))
1789 1.2.2.3 tls goto fail;
1790 1.2.2.2 tls #endif
1791 1.2.2.3 tls }
1792 1.2.2.2 tls }
1793 1.2.2.2 tls
1794 1.2.2.2 tls pc = &insns[i];
1795 1.2.2.2 tls switch (BPF_CLASS(pc->code)) {
1796 1.2.2.2 tls
1797 1.2.2.2 tls default:
1798 1.2.2.2 tls goto fail;
1799 1.2.2.2 tls
1800 1.2.2.2 tls case BPF_LD:
1801 1.2.2.2 tls /* BPF_LD+BPF_IMM A <- k */
1802 1.2.2.2 tls if (pc->code == (BPF_LD|BPF_IMM)) {
1803 1.2.2.2 tls status = sljit_emit_op1(compiler,
1804 1.2.2.2 tls SLJIT_MOV,
1805 1.2.2.3 tls BJ_AREG, 0,
1806 1.2.2.2 tls SLJIT_IMM, (uint32_t)pc->k);
1807 1.2.2.2 tls if (status != SLJIT_SUCCESS)
1808 1.2.2.2 tls goto fail;
1809 1.2.2.2 tls
1810 1.2.2.2 tls continue;
1811 1.2.2.2 tls }
1812 1.2.2.2 tls
1813 1.2.2.2 tls /* BPF_LD+BPF_MEM A <- M[k] */
1814 1.2.2.2 tls if (pc->code == (BPF_LD|BPF_MEM)) {
1815 1.2.2.3 tls if ((uint32_t)pc->k >= memwords)
1816 1.2.2.2 tls goto fail;
1817 1.2.2.3 tls status = emit_memload(compiler,
1818 1.2.2.3 tls BJ_AREG, pc->k, extwords);
1819 1.2.2.2 tls if (status != SLJIT_SUCCESS)
1820 1.2.2.2 tls goto fail;
1821 1.2.2.2 tls
1822 1.2.2.2 tls continue;
1823 1.2.2.2 tls }
1824 1.2.2.2 tls
1825 1.2.2.2 tls /* BPF_LD+BPF_W+BPF_LEN A <- len */
1826 1.2.2.2 tls if (pc->code == (BPF_LD|BPF_W|BPF_LEN)) {
1827 1.2.2.2 tls status = sljit_emit_op1(compiler,
1828 1.2.2.3 tls SLJIT_MOV, /* size_t source */
1829 1.2.2.3 tls BJ_AREG, 0,
1830 1.2.2.3 tls SLJIT_MEM1(BJ_ARGS),
1831 1.2.2.3 tls offsetof(struct bpf_args, wirelen));
1832 1.2.2.2 tls if (status != SLJIT_SUCCESS)
1833 1.2.2.2 tls goto fail;
1834 1.2.2.2 tls
1835 1.2.2.2 tls continue;
1836 1.2.2.2 tls }
1837 1.2.2.2 tls
1838 1.2.2.2 tls mode = BPF_MODE(pc->code);
1839 1.2.2.2 tls if (mode != BPF_ABS && mode != BPF_IND)
1840 1.2.2.2 tls goto fail;
1841 1.2.2.2 tls
1842 1.2.2.3 tls if (unconditional_ret)
1843 1.2.2.3 tls continue;
1844 1.2.2.3 tls
1845 1.2.2.3 tls status = emit_pkt_read(compiler, hints, pc,
1846 1.2.2.3 tls to_mchain_jump, &ret0, &ret0_size, &ret0_maxsize);
1847 1.2.2.2 tls if (status != SLJIT_SUCCESS)
1848 1.2.2.2 tls goto fail;
1849 1.2.2.2 tls
1850 1.2.2.2 tls continue;
1851 1.2.2.2 tls
1852 1.2.2.2 tls case BPF_LDX:
1853 1.2.2.2 tls mode = BPF_MODE(pc->code);
1854 1.2.2.2 tls
1855 1.2.2.2 tls /* BPF_LDX+BPF_W+BPF_IMM X <- k */
1856 1.2.2.2 tls if (mode == BPF_IMM) {
1857 1.2.2.2 tls if (BPF_SIZE(pc->code) != BPF_W)
1858 1.2.2.2 tls goto fail;
1859 1.2.2.2 tls status = sljit_emit_op1(compiler,
1860 1.2.2.2 tls SLJIT_MOV,
1861 1.2.2.3 tls BJ_XREG, 0,
1862 1.2.2.2 tls SLJIT_IMM, (uint32_t)pc->k);
1863 1.2.2.2 tls if (status != SLJIT_SUCCESS)
1864 1.2.2.2 tls goto fail;
1865 1.2.2.2 tls
1866 1.2.2.2 tls continue;
1867 1.2.2.2 tls }
1868 1.2.2.2 tls
1869 1.2.2.2 tls /* BPF_LDX+BPF_W+BPF_LEN X <- len */
1870 1.2.2.2 tls if (mode == BPF_LEN) {
1871 1.2.2.2 tls if (BPF_SIZE(pc->code) != BPF_W)
1872 1.2.2.2 tls goto fail;
1873 1.2.2.2 tls status = sljit_emit_op1(compiler,
1874 1.2.2.3 tls SLJIT_MOV, /* size_t source */
1875 1.2.2.3 tls BJ_XREG, 0,
1876 1.2.2.3 tls SLJIT_MEM1(BJ_ARGS),
1877 1.2.2.3 tls offsetof(struct bpf_args, wirelen));
1878 1.2.2.2 tls if (status != SLJIT_SUCCESS)
1879 1.2.2.2 tls goto fail;
1880 1.2.2.2 tls
1881 1.2.2.2 tls continue;
1882 1.2.2.2 tls }
1883 1.2.2.2 tls
1884 1.2.2.2 tls /* BPF_LDX+BPF_W+BPF_MEM X <- M[k] */
1885 1.2.2.2 tls if (mode == BPF_MEM) {
1886 1.2.2.2 tls if (BPF_SIZE(pc->code) != BPF_W)
1887 1.2.2.2 tls goto fail;
1888 1.2.2.3 tls if ((uint32_t)pc->k >= memwords)
1889 1.2.2.2 tls goto fail;
1890 1.2.2.3 tls status = emit_memload(compiler,
1891 1.2.2.3 tls BJ_XREG, pc->k, extwords);
1892 1.2.2.2 tls if (status != SLJIT_SUCCESS)
1893 1.2.2.2 tls goto fail;
1894 1.2.2.2 tls
1895 1.2.2.2 tls continue;
1896 1.2.2.2 tls }
1897 1.2.2.2 tls
1898 1.2.2.2 tls /* BPF_LDX+BPF_B+BPF_MSH X <- 4*(P[k:1]&0xf) */
1899 1.2.2.2 tls if (mode != BPF_MSH || BPF_SIZE(pc->code) != BPF_B)
1900 1.2.2.2 tls goto fail;
1901 1.2.2.2 tls
1902 1.2.2.3 tls if (unconditional_ret)
1903 1.2.2.3 tls continue;
1904 1.2.2.3 tls
1905 1.2.2.3 tls status = emit_msh(compiler, hints, pc,
1906 1.2.2.3 tls to_mchain_jump, &ret0, &ret0_size, &ret0_maxsize);
1907 1.2.2.2 tls if (status != SLJIT_SUCCESS)
1908 1.2.2.2 tls goto fail;
1909 1.2.2.2 tls
1910 1.2.2.2 tls continue;
1911 1.2.2.2 tls
1912 1.2.2.2 tls case BPF_ST:
1913 1.2.2.3 tls if (pc->code != BPF_ST ||
1914 1.2.2.3 tls (uint32_t)pc->k >= memwords) {
1915 1.2.2.2 tls goto fail;
1916 1.2.2.3 tls }
1917 1.2.2.2 tls
1918 1.2.2.3 tls status = emit_memstore(compiler,
1919 1.2.2.3 tls BJ_AREG, pc->k, extwords);
1920 1.2.2.2 tls if (status != SLJIT_SUCCESS)
1921 1.2.2.2 tls goto fail;
1922 1.2.2.2 tls
1923 1.2.2.2 tls continue;
1924 1.2.2.2 tls
1925 1.2.2.2 tls case BPF_STX:
1926 1.2.2.3 tls if (pc->code != BPF_STX ||
1927 1.2.2.3 tls (uint32_t)pc->k >= memwords) {
1928 1.2.2.2 tls goto fail;
1929 1.2.2.3 tls }
1930 1.2.2.2 tls
1931 1.2.2.3 tls status = emit_memstore(compiler,
1932 1.2.2.3 tls BJ_XREG, pc->k, extwords);
1933 1.2.2.2 tls if (status != SLJIT_SUCCESS)
1934 1.2.2.2 tls goto fail;
1935 1.2.2.2 tls
1936 1.2.2.2 tls continue;
1937 1.2.2.2 tls
1938 1.2.2.2 tls case BPF_ALU:
1939 1.2.2.2 tls if (pc->code == (BPF_ALU|BPF_NEG)) {
1940 1.2.2.2 tls status = sljit_emit_op1(compiler,
1941 1.2.2.2 tls SLJIT_NEG,
1942 1.2.2.3 tls BJ_AREG, 0,
1943 1.2.2.3 tls BJ_AREG, 0);
1944 1.2.2.2 tls if (status != SLJIT_SUCCESS)
1945 1.2.2.2 tls goto fail;
1946 1.2.2.2 tls
1947 1.2.2.2 tls continue;
1948 1.2.2.2 tls }
1949 1.2.2.2 tls
1950 1.2.2.4 jdolecek op = BPF_OP(pc->code);
1951 1.2.2.4 jdolecek if (op != BPF_DIV && op != BPF_MOD) {
1952 1.2.2.4 jdolecek if (!alu_to_op(pc, &op2))
1953 1.2.2.4 jdolecek goto fail;
1954 1.2.2.4 jdolecek
1955 1.2.2.2 tls status = sljit_emit_op2(compiler,
1956 1.2.2.4 jdolecek op2, BJ_AREG, 0, BJ_AREG, 0,
1957 1.2.2.2 tls kx_to_reg(pc), kx_to_reg_arg(pc));
1958 1.2.2.2 tls if (status != SLJIT_SUCCESS)
1959 1.2.2.2 tls goto fail;
1960 1.2.2.2 tls
1961 1.2.2.2 tls continue;
1962 1.2.2.2 tls }
1963 1.2.2.2 tls
1964 1.2.2.4 jdolecek /* BPF_DIV/BPF_MOD */
1965 1.2.2.2 tls
1966 1.2.2.2 tls src = BPF_SRC(pc->code);
1967 1.2.2.2 tls if (src != BPF_X && src != BPF_K)
1968 1.2.2.2 tls goto fail;
1969 1.2.2.2 tls
1970 1.2.2.2 tls /* division by zero? */
1971 1.2.2.2 tls if (src == BPF_X) {
1972 1.2.2.2 tls jump = sljit_emit_cmp(compiler,
1973 1.2.2.4 jdolecek SLJIT_EQUAL|SLJIT_I32_OP,
1974 1.2.2.3 tls BJ_XREG, 0,
1975 1.2.2.2 tls SLJIT_IMM, 0);
1976 1.2.2.2 tls if (jump == NULL)
1977 1.2.2.2 tls goto fail;
1978 1.2.2.3 tls if (!append_jump(jump, &ret0,
1979 1.2.2.3 tls &ret0_size, &ret0_maxsize))
1980 1.2.2.3 tls goto fail;
1981 1.2.2.2 tls } else if (pc->k == 0) {
1982 1.2.2.2 tls jump = sljit_emit_jump(compiler, SLJIT_JUMP);
1983 1.2.2.2 tls if (jump == NULL)
1984 1.2.2.2 tls goto fail;
1985 1.2.2.3 tls if (!append_jump(jump, &ret0,
1986 1.2.2.3 tls &ret0_size, &ret0_maxsize))
1987 1.2.2.3 tls goto fail;
1988 1.2.2.2 tls }
1989 1.2.2.2 tls
1990 1.2.2.2 tls if (src == BPF_X) {
1991 1.2.2.4 jdolecek status = emit_moddiv(compiler, pc);
1992 1.2.2.2 tls if (status != SLJIT_SUCCESS)
1993 1.2.2.2 tls goto fail;
1994 1.2.2.2 tls } else if (pc->k != 0) {
1995 1.2.2.2 tls if (pc->k & (pc->k - 1)) {
1996 1.2.2.4 jdolecek status = emit_moddiv(compiler, pc);
1997 1.2.2.2 tls } else {
1998 1.2.2.4 jdolecek status = emit_pow2_moddiv(compiler, pc);
1999 1.2.2.2 tls }
2000 1.2.2.2 tls if (status != SLJIT_SUCCESS)
2001 1.2.2.2 tls goto fail;
2002 1.2.2.2 tls }
2003 1.2.2.2 tls
2004 1.2.2.2 tls continue;
2005 1.2.2.2 tls
2006 1.2.2.2 tls case BPF_JMP:
2007 1.2.2.4 jdolecek op = BPF_OP(pc->code);
2008 1.2.2.4 jdolecek if (op == BPF_JA) {
2009 1.2.2.2 tls jt = jf = pc->k;
2010 1.2.2.2 tls } else {
2011 1.2.2.2 tls jt = pc->jt;
2012 1.2.2.2 tls jf = pc->jf;
2013 1.2.2.2 tls }
2014 1.2.2.2 tls
2015 1.2.2.2 tls negate = (jt == 0) ? 1 : 0;
2016 1.2.2.2 tls branching = (jt == jf) ? 0 : 1;
2017 1.2.2.3 tls jtf = insn_dat[i].u.jdata.jtf;
2018 1.2.2.2 tls
2019 1.2.2.2 tls if (branching) {
2020 1.2.2.4 jdolecek if (op != BPF_JSET) {
2021 1.2.2.4 jdolecek if (!jmp_to_cond(pc, negate, &cond))
2022 1.2.2.4 jdolecek goto fail;
2023 1.2.2.2 tls jump = sljit_emit_cmp(compiler,
2024 1.2.2.4 jdolecek cond, BJ_AREG, 0,
2025 1.2.2.2 tls kx_to_reg(pc), kx_to_reg_arg(pc));
2026 1.2.2.2 tls } else {
2027 1.2.2.2 tls status = sljit_emit_op2(compiler,
2028 1.2.2.2 tls SLJIT_AND,
2029 1.2.2.3 tls BJ_TMP1REG, 0,
2030 1.2.2.3 tls BJ_AREG, 0,
2031 1.2.2.2 tls kx_to_reg(pc), kx_to_reg_arg(pc));
2032 1.2.2.2 tls if (status != SLJIT_SUCCESS)
2033 1.2.2.2 tls goto fail;
2034 1.2.2.2 tls
2035 1.2.2.4 jdolecek if (!jmp_to_cond(pc, negate, &cond))
2036 1.2.2.4 jdolecek goto fail;
2037 1.2.2.2 tls jump = sljit_emit_cmp(compiler,
2038 1.2.2.4 jdolecek cond, BJ_TMP1REG, 0, SLJIT_IMM, 0);
2039 1.2.2.2 tls }
2040 1.2.2.2 tls
2041 1.2.2.2 tls if (jump == NULL)
2042 1.2.2.2 tls goto fail;
2043 1.2.2.2 tls
2044 1.2.2.3 tls BJ_ASSERT(jtf[negate].sjump == NULL);
2045 1.2.2.3 tls jtf[negate].sjump = jump;
2046 1.2.2.2 tls }
2047 1.2.2.2 tls
2048 1.2.2.2 tls if (!branching || (jt != 0 && jf != 0)) {
2049 1.2.2.2 tls jump = sljit_emit_jump(compiler, SLJIT_JUMP);
2050 1.2.2.2 tls if (jump == NULL)
2051 1.2.2.2 tls goto fail;
2052 1.2.2.2 tls
2053 1.2.2.3 tls BJ_ASSERT(jtf[branching].sjump == NULL);
2054 1.2.2.3 tls jtf[branching].sjump = jump;
2055 1.2.2.2 tls }
2056 1.2.2.2 tls
2057 1.2.2.2 tls continue;
2058 1.2.2.2 tls
2059 1.2.2.2 tls case BPF_RET:
2060 1.2.2.2 tls rval = BPF_RVAL(pc->code);
2061 1.2.2.2 tls if (rval == BPF_X)
2062 1.2.2.2 tls goto fail;
2063 1.2.2.2 tls
2064 1.2.2.2 tls /* BPF_RET+BPF_K accept k bytes */
2065 1.2.2.2 tls if (rval == BPF_K) {
2066 1.2.2.3 tls status = sljit_emit_return(compiler,
2067 1.2.2.4 jdolecek SLJIT_MOV_U32,
2068 1.2.2.2 tls SLJIT_IMM, (uint32_t)pc->k);
2069 1.2.2.2 tls if (status != SLJIT_SUCCESS)
2070 1.2.2.2 tls goto fail;
2071 1.2.2.2 tls }
2072 1.2.2.2 tls
2073 1.2.2.2 tls /* BPF_RET+BPF_A accept A bytes */
2074 1.2.2.2 tls if (rval == BPF_A) {
2075 1.2.2.3 tls status = sljit_emit_return(compiler,
2076 1.2.2.4 jdolecek SLJIT_MOV_U32,
2077 1.2.2.3 tls BJ_AREG, 0);
2078 1.2.2.2 tls if (status != SLJIT_SUCCESS)
2079 1.2.2.2 tls goto fail;
2080 1.2.2.2 tls }
2081 1.2.2.2 tls
2082 1.2.2.2 tls continue;
2083 1.2.2.2 tls
2084 1.2.2.2 tls case BPF_MISC:
2085 1.2.2.3 tls switch (BPF_MISCOP(pc->code)) {
2086 1.2.2.3 tls case BPF_TAX:
2087 1.2.2.2 tls status = sljit_emit_op1(compiler,
2088 1.2.2.4 jdolecek SLJIT_MOV_U32,
2089 1.2.2.3 tls BJ_XREG, 0,
2090 1.2.2.3 tls BJ_AREG, 0);
2091 1.2.2.2 tls if (status != SLJIT_SUCCESS)
2092 1.2.2.2 tls goto fail;
2093 1.2.2.2 tls
2094 1.2.2.2 tls continue;
2095 1.2.2.2 tls
2096 1.2.2.3 tls case BPF_TXA:
2097 1.2.2.2 tls status = sljit_emit_op1(compiler,
2098 1.2.2.2 tls SLJIT_MOV,
2099 1.2.2.3 tls BJ_AREG, 0,
2100 1.2.2.3 tls BJ_XREG, 0);
2101 1.2.2.3 tls if (status != SLJIT_SUCCESS)
2102 1.2.2.3 tls goto fail;
2103 1.2.2.3 tls
2104 1.2.2.3 tls continue;
2105 1.2.2.3 tls
2106 1.2.2.3 tls case BPF_COP:
2107 1.2.2.3 tls case BPF_COPX:
2108 1.2.2.3 tls if (bc == NULL || bc->copfuncs == NULL)
2109 1.2.2.3 tls goto fail;
2110 1.2.2.3 tls if (BPF_MISCOP(pc->code) == BPF_COP &&
2111 1.2.2.3 tls (uint32_t)pc->k >= bc->nfuncs) {
2112 1.2.2.3 tls goto fail;
2113 1.2.2.3 tls }
2114 1.2.2.3 tls
2115 1.2.2.3 tls status = emit_cop(compiler, hints, bc, pc,
2116 1.2.2.3 tls &ret0, &ret0_size, &ret0_maxsize);
2117 1.2.2.2 tls if (status != SLJIT_SUCCESS)
2118 1.2.2.2 tls goto fail;
2119 1.2.2.2 tls
2120 1.2.2.2 tls continue;
2121 1.2.2.2 tls }
2122 1.2.2.2 tls
2123 1.2.2.2 tls goto fail;
2124 1.2.2.2 tls } /* switch */
2125 1.2.2.2 tls } /* main loop */
2126 1.2.2.2 tls
2127 1.2.2.3 tls BJ_ASSERT(ret0_size <= ret0_maxsize);
2128 1.2.2.2 tls
2129 1.2.2.3 tls if (ret0_size > 0) {
2130 1.2.2.2 tls label = sljit_emit_label(compiler);
2131 1.2.2.2 tls if (label == NULL)
2132 1.2.2.2 tls goto fail;
2133 1.2.2.3 tls for (i = 0; i < ret0_size; i++)
2134 1.2.2.3 tls sljit_set_label(ret0[i], label);
2135 1.2.2.2 tls }
2136 1.2.2.2 tls
2137 1.2.2.2 tls status = sljit_emit_return(compiler,
2138 1.2.2.4 jdolecek SLJIT_MOV_U32,
2139 1.2.2.3 tls SLJIT_IMM, 0);
2140 1.2.2.2 tls if (status != SLJIT_SUCCESS)
2141 1.2.2.2 tls goto fail;
2142 1.2.2.2 tls
2143 1.2.2.3 tls rv = true;
2144 1.2.2.3 tls
2145 1.2.2.3 tls fail:
2146 1.2.2.3 tls if (ret0 != NULL)
2147 1.2.2.3 tls BJ_FREE(ret0, ret0_maxsize * sizeof(ret0[0]));
2148 1.2.2.3 tls
2149 1.2.2.3 tls return rv;
2150 1.2.2.3 tls }
2151 1.2.2.3 tls
2152 1.2.2.3 tls bpfjit_func_t
2153 1.2.2.3 tls bpfjit_generate_code(const bpf_ctx_t *bc,
2154 1.2.2.3 tls const struct bpf_insn *insns, size_t insn_count)
2155 1.2.2.3 tls {
2156 1.2.2.3 tls void *rv;
2157 1.2.2.3 tls struct sljit_compiler *compiler;
2158 1.2.2.3 tls
2159 1.2.2.3 tls size_t i;
2160 1.2.2.3 tls int status;
2161 1.2.2.3 tls
2162 1.2.2.3 tls /* optimization related */
2163 1.2.2.3 tls bpf_memword_init_t initmask;
2164 1.2.2.3 tls bpfjit_hint_t hints;
2165 1.2.2.3 tls
2166 1.2.2.3 tls /* memory store location for initial zero initialization */
2167 1.2.2.4 jdolecek sljit_s32 mem_reg;
2168 1.2.2.3 tls sljit_sw mem_off;
2169 1.2.2.3 tls
2170 1.2.2.3 tls struct bpfjit_insn_data *insn_dat;
2171 1.2.2.3 tls
2172 1.2.2.3 tls const size_t extwords = GET_EXTWORDS(bc);
2173 1.2.2.3 tls const size_t memwords = GET_MEMWORDS(bc);
2174 1.2.2.3 tls const bpf_memword_init_t preinited = extwords ? bc->preinited : 0;
2175 1.2.2.3 tls
2176 1.2.2.3 tls rv = NULL;
2177 1.2.2.3 tls compiler = NULL;
2178 1.2.2.3 tls insn_dat = NULL;
2179 1.2.2.3 tls
2180 1.2.2.3 tls if (memwords > MAX_MEMWORDS)
2181 1.2.2.3 tls goto fail;
2182 1.2.2.3 tls
2183 1.2.2.3 tls if (insn_count == 0 || insn_count > SIZE_MAX / sizeof(insn_dat[0]))
2184 1.2.2.3 tls goto fail;
2185 1.2.2.3 tls
2186 1.2.2.3 tls insn_dat = BJ_ALLOC(insn_count * sizeof(insn_dat[0]));
2187 1.2.2.3 tls if (insn_dat == NULL)
2188 1.2.2.3 tls goto fail;
2189 1.2.2.3 tls
2190 1.2.2.3 tls if (!optimize(bc, insns, insn_dat, insn_count, &initmask, &hints))
2191 1.2.2.3 tls goto fail;
2192 1.2.2.3 tls
2193 1.2.2.4 jdolecek compiler = sljit_create_compiler(NULL);
2194 1.2.2.3 tls if (compiler == NULL)
2195 1.2.2.3 tls goto fail;
2196 1.2.2.3 tls
2197 1.2.2.3 tls #if !defined(_KERNEL) && defined(SLJIT_VERBOSE) && SLJIT_VERBOSE
2198 1.2.2.3 tls sljit_compiler_verbose(compiler, stderr);
2199 1.2.2.3 tls #endif
2200 1.2.2.3 tls
2201 1.2.2.4 jdolecek status = sljit_emit_enter(compiler, 0, 2, nscratches(hints),
2202 1.2.2.4 jdolecek NSAVEDS, 0, 0, sizeof(struct bpfjit_stack));
2203 1.2.2.3 tls if (status != SLJIT_SUCCESS)
2204 1.2.2.3 tls goto fail;
2205 1.2.2.3 tls
2206 1.2.2.3 tls if (hints & BJ_HINT_COP) {
2207 1.2.2.3 tls /* save ctx argument */
2208 1.2.2.3 tls status = sljit_emit_op1(compiler,
2209 1.2.2.3 tls SLJIT_MOV_P,
2210 1.2.2.4 jdolecek SLJIT_MEM1(SLJIT_SP),
2211 1.2.2.3 tls offsetof(struct bpfjit_stack, ctx),
2212 1.2.2.3 tls BJ_CTX_ARG, 0);
2213 1.2.2.3 tls if (status != SLJIT_SUCCESS)
2214 1.2.2.2 tls goto fail;
2215 1.2.2.3 tls }
2216 1.2.2.2 tls
2217 1.2.2.3 tls if (extwords == 0) {
2218 1.2.2.4 jdolecek mem_reg = SLJIT_MEM1(SLJIT_SP);
2219 1.2.2.3 tls mem_off = offsetof(struct bpfjit_stack, mem);
2220 1.2.2.3 tls } else {
2221 1.2.2.3 tls /* copy "mem" argument from bpf_args to bpfjit_stack */
2222 1.2.2.3 tls status = sljit_emit_op1(compiler,
2223 1.2.2.3 tls SLJIT_MOV_P,
2224 1.2.2.3 tls BJ_TMP1REG, 0,
2225 1.2.2.3 tls SLJIT_MEM1(BJ_ARGS), offsetof(struct bpf_args, mem));
2226 1.2.2.3 tls if (status != SLJIT_SUCCESS)
2227 1.2.2.3 tls goto fail;
2228 1.2.2.3 tls
2229 1.2.2.3 tls status = sljit_emit_op1(compiler,
2230 1.2.2.3 tls SLJIT_MOV_P,
2231 1.2.2.4 jdolecek SLJIT_MEM1(SLJIT_SP),
2232 1.2.2.3 tls offsetof(struct bpfjit_stack, extmem),
2233 1.2.2.3 tls BJ_TMP1REG, 0);
2234 1.2.2.3 tls if (status != SLJIT_SUCCESS)
2235 1.2.2.3 tls goto fail;
2236 1.2.2.3 tls
2237 1.2.2.3 tls mem_reg = SLJIT_MEM1(BJ_TMP1REG);
2238 1.2.2.3 tls mem_off = 0;
2239 1.2.2.3 tls }
2240 1.2.2.3 tls
2241 1.2.2.3 tls /*
2242 1.2.2.3 tls * Exclude pre-initialised external memory words but keep
2243 1.2.2.3 tls * initialization statuses of A and X registers in case
2244 1.2.2.3 tls * bc->preinited wrongly sets those two bits.
2245 1.2.2.3 tls */
2246 1.2.2.3 tls initmask &= ~preinited | BJ_INIT_ABIT | BJ_INIT_XBIT;
2247 1.2.2.2 tls
2248 1.2.2.3 tls #if defined(_KERNEL)
2249 1.2.2.3 tls /* bpf_filter() checks initialization of memwords. */
2250 1.2.2.3 tls BJ_ASSERT((initmask & (BJ_INIT_MBIT(memwords) - 1)) == 0);
2251 1.2.2.3 tls #endif
2252 1.2.2.3 tls for (i = 0; i < memwords; i++) {
2253 1.2.2.3 tls if (initmask & BJ_INIT_MBIT(i)) {
2254 1.2.2.3 tls /* M[i] = 0; */
2255 1.2.2.3 tls status = sljit_emit_op1(compiler,
2256 1.2.2.4 jdolecek SLJIT_MOV_U32,
2257 1.2.2.3 tls mem_reg, mem_off + i * sizeof(uint32_t),
2258 1.2.2.3 tls SLJIT_IMM, 0);
2259 1.2.2.3 tls if (status != SLJIT_SUCCESS)
2260 1.2.2.3 tls goto fail;
2261 1.2.2.3 tls }
2262 1.2.2.3 tls }
2263 1.2.2.3 tls
2264 1.2.2.3 tls if (initmask & BJ_INIT_ABIT) {
2265 1.2.2.3 tls /* A = 0; */
2266 1.2.2.2 tls status = sljit_emit_op1(compiler,
2267 1.2.2.2 tls SLJIT_MOV,
2268 1.2.2.3 tls BJ_AREG, 0,
2269 1.2.2.2 tls SLJIT_IMM, 0);
2270 1.2.2.2 tls if (status != SLJIT_SUCCESS)
2271 1.2.2.2 tls goto fail;
2272 1.2.2.3 tls }
2273 1.2.2.2 tls
2274 1.2.2.3 tls if (initmask & BJ_INIT_XBIT) {
2275 1.2.2.3 tls /* X = 0; */
2276 1.2.2.3 tls status = sljit_emit_op1(compiler,
2277 1.2.2.3 tls SLJIT_MOV,
2278 1.2.2.3 tls BJ_XREG, 0,
2279 1.2.2.3 tls SLJIT_IMM, 0);
2280 1.2.2.2 tls if (status != SLJIT_SUCCESS)
2281 1.2.2.2 tls goto fail;
2282 1.2.2.2 tls }
2283 1.2.2.2 tls
2284 1.2.2.3 tls status = load_buf_buflen(compiler);
2285 1.2.2.3 tls if (status != SLJIT_SUCCESS)
2286 1.2.2.3 tls goto fail;
2287 1.2.2.3 tls
2288 1.2.2.3 tls if (!generate_insn_code(compiler, hints,
2289 1.2.2.3 tls bc, insns, insn_dat, insn_count)) {
2290 1.2.2.3 tls goto fail;
2291 1.2.2.3 tls }
2292 1.2.2.3 tls
2293 1.2.2.2 tls rv = sljit_generate_code(compiler);
2294 1.2.2.2 tls
2295 1.2.2.2 tls fail:
2296 1.2.2.2 tls if (compiler != NULL)
2297 1.2.2.2 tls sljit_free_compiler(compiler);
2298 1.2.2.2 tls
2299 1.2.2.2 tls if (insn_dat != NULL)
2300 1.2.2.3 tls BJ_FREE(insn_dat, insn_count * sizeof(insn_dat[0]));
2301 1.2.2.2 tls
2302 1.2.2.3 tls return (bpfjit_func_t)rv;
2303 1.2.2.2 tls }
2304 1.2.2.2 tls
2305 1.2.2.2 tls void
2306 1.2.2.3 tls bpfjit_free_code(bpfjit_func_t code)
2307 1.2.2.2 tls {
2308 1.2.2.2 tls
2309 1.2.2.2 tls sljit_free_code((void *)code);
2310 1.2.2.2 tls }
2311