Home | History | Annotate | Line # | Download | only in net
bpfjit.c revision 1.2.4.1
      1  1.2.4.1  rmind /*	$NetBSD: bpfjit.c,v 1.2.4.1 2014/05/18 17:46:12 rmind Exp $	*/
      2  1.2.4.1  rmind 
      3      1.1  alnsn /*-
      4  1.2.4.1  rmind  * Copyright (c) 2011-2014 Alexander Nasonov.
      5      1.1  alnsn  * All rights reserved.
      6      1.1  alnsn  *
      7      1.1  alnsn  * Redistribution and use in source and binary forms, with or without
      8      1.1  alnsn  * modification, are permitted provided that the following conditions
      9      1.1  alnsn  * are met:
     10      1.1  alnsn  *
     11      1.1  alnsn  * 1. Redistributions of source code must retain the above copyright
     12      1.1  alnsn  *    notice, this list of conditions and the following disclaimer.
     13      1.1  alnsn  * 2. Redistributions in binary form must reproduce the above copyright
     14      1.1  alnsn  *    notice, this list of conditions and the following disclaimer in
     15      1.1  alnsn  *    the documentation and/or other materials provided with the
     16      1.1  alnsn  *    distribution.
     17      1.1  alnsn  *
     18      1.1  alnsn  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     19      1.1  alnsn  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     20      1.1  alnsn  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
     21      1.1  alnsn  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
     22      1.1  alnsn  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
     23      1.1  alnsn  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
     24      1.1  alnsn  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     25      1.1  alnsn  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     26      1.1  alnsn  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     27      1.1  alnsn  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
     28      1.1  alnsn  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29      1.1  alnsn  * SUCH DAMAGE.
     30      1.1  alnsn  */
     31      1.1  alnsn 
     32      1.2  alnsn #include <sys/cdefs.h>
     33      1.2  alnsn #ifdef _KERNEL
     34  1.2.4.1  rmind __KERNEL_RCSID(0, "$NetBSD: bpfjit.c,v 1.2.4.1 2014/05/18 17:46:12 rmind Exp $");
     35      1.2  alnsn #else
     36  1.2.4.1  rmind __RCSID("$NetBSD: bpfjit.c,v 1.2.4.1 2014/05/18 17:46:12 rmind Exp $");
     37      1.2  alnsn #endif
     38      1.2  alnsn 
     39  1.2.4.1  rmind #include <sys/types.h>
     40  1.2.4.1  rmind #include <sys/queue.h>
     41      1.1  alnsn 
     42      1.1  alnsn #ifndef _KERNEL
     43      1.1  alnsn #include <assert.h>
     44  1.2.4.1  rmind #define BJ_ASSERT(c) assert(c)
     45      1.1  alnsn #else
     46  1.2.4.1  rmind #define BJ_ASSERT(c) KASSERT(c)
     47      1.1  alnsn #endif
     48      1.1  alnsn 
     49      1.1  alnsn #ifndef _KERNEL
     50      1.1  alnsn #include <stdlib.h>
     51  1.2.4.1  rmind #define BJ_ALLOC(sz) malloc(sz)
     52  1.2.4.1  rmind #define BJ_FREE(p, sz) free(p)
     53      1.1  alnsn #else
     54  1.2.4.1  rmind #include <sys/kmem.h>
     55  1.2.4.1  rmind #define BJ_ALLOC(sz) kmem_alloc(sz, KM_SLEEP)
     56  1.2.4.1  rmind #define BJ_FREE(p, sz) kmem_free(p, sz)
     57      1.1  alnsn #endif
     58      1.1  alnsn 
     59      1.1  alnsn #ifndef _KERNEL
     60      1.1  alnsn #include <limits.h>
     61      1.1  alnsn #include <stdbool.h>
     62      1.1  alnsn #include <stddef.h>
     63      1.1  alnsn #include <stdint.h>
     64      1.1  alnsn #else
     65      1.1  alnsn #include <sys/atomic.h>
     66      1.1  alnsn #include <sys/module.h>
     67      1.1  alnsn #endif
     68      1.1  alnsn 
     69  1.2.4.1  rmind #define	__BPF_PRIVATE
     70  1.2.4.1  rmind #include <net/bpf.h>
     71  1.2.4.1  rmind #include <net/bpfjit.h>
     72      1.1  alnsn #include <sljitLir.h>
     73      1.1  alnsn 
     74      1.1  alnsn #if !defined(_KERNEL) && defined(SLJIT_VERBOSE) && SLJIT_VERBOSE
     75      1.1  alnsn #include <stdio.h> /* for stderr */
     76      1.1  alnsn #endif
     77      1.1  alnsn 
     78  1.2.4.1  rmind /*
     79  1.2.4.1  rmind  * Permanent register assignments.
     80  1.2.4.1  rmind  */
     81  1.2.4.1  rmind #define BJ_BUF		SLJIT_SAVED_REG1
     82  1.2.4.1  rmind #define BJ_WIRELEN	SLJIT_SAVED_REG2
     83  1.2.4.1  rmind #define BJ_BUFLEN	SLJIT_SAVED_REG3
     84  1.2.4.1  rmind #define BJ_AREG		SLJIT_TEMPORARY_REG1
     85  1.2.4.1  rmind #define BJ_TMP1REG	SLJIT_TEMPORARY_REG2
     86  1.2.4.1  rmind #define BJ_TMP2REG	SLJIT_TEMPORARY_REG3
     87  1.2.4.1  rmind #define BJ_XREG		SLJIT_TEMPORARY_EREG1
     88  1.2.4.1  rmind #define BJ_TMP3REG	SLJIT_TEMPORARY_EREG2
     89  1.2.4.1  rmind 
     90  1.2.4.1  rmind typedef unsigned int bpfjit_init_mask_t;
     91  1.2.4.1  rmind #define BJ_INIT_NOBITS  0u
     92  1.2.4.1  rmind #define BJ_INIT_MBIT(k) (1u << (k))
     93  1.2.4.1  rmind #define BJ_INIT_MMASK   (BJ_INIT_MBIT(BPF_MEMWORDS) - 1u)
     94  1.2.4.1  rmind #define BJ_INIT_ABIT    BJ_INIT_MBIT(BPF_MEMWORDS)
     95  1.2.4.1  rmind #define BJ_INIT_XBIT    BJ_INIT_MBIT(BPF_MEMWORDS + 1)
     96      1.1  alnsn 
     97  1.2.4.1  rmind struct bpfjit_stack
     98  1.2.4.1  rmind {
     99  1.2.4.1  rmind 	uint32_t mem[BPF_MEMWORDS];
    100  1.2.4.1  rmind #ifdef _KERNEL
    101  1.2.4.1  rmind 	void *tmp;
    102  1.2.4.1  rmind #endif
    103  1.2.4.1  rmind };
    104      1.1  alnsn 
    105  1.2.4.1  rmind /*
    106  1.2.4.1  rmind  * Data for BPF_JMP instruction.
    107  1.2.4.1  rmind  * Forward declaration for struct bpfjit_jump.
    108      1.1  alnsn  */
    109  1.2.4.1  rmind struct bpfjit_jump_data;
    110      1.1  alnsn 
    111      1.1  alnsn /*
    112  1.2.4.1  rmind  * Node of bjumps list.
    113      1.1  alnsn  */
    114  1.2.4.1  rmind struct bpfjit_jump {
    115  1.2.4.1  rmind 	struct sljit_jump *sjump;
    116  1.2.4.1  rmind 	SLIST_ENTRY(bpfjit_jump) entries;
    117  1.2.4.1  rmind 	struct bpfjit_jump_data *jdata;
    118      1.1  alnsn };
    119      1.1  alnsn 
    120      1.1  alnsn /*
    121      1.1  alnsn  * Data for BPF_JMP instruction.
    122      1.1  alnsn  */
    123  1.2.4.1  rmind struct bpfjit_jump_data {
    124      1.1  alnsn 	/*
    125  1.2.4.1  rmind 	 * These entries make up bjumps list:
    126  1.2.4.1  rmind 	 * jtf[0] - when coming from jt path,
    127  1.2.4.1  rmind 	 * jtf[1] - when coming from jf path.
    128      1.1  alnsn 	 */
    129  1.2.4.1  rmind 	struct bpfjit_jump jtf[2];
    130  1.2.4.1  rmind 	/*
    131  1.2.4.1  rmind 	 * Length calculated by Array Bounds Check Elimination (ABC) pass.
    132  1.2.4.1  rmind 	 */
    133  1.2.4.1  rmind 	uint32_t abc_length;
    134  1.2.4.1  rmind 	/*
    135  1.2.4.1  rmind 	 * Length checked by the last out-of-bounds check.
    136  1.2.4.1  rmind 	 */
    137  1.2.4.1  rmind 	uint32_t checked_length;
    138      1.1  alnsn };
    139      1.1  alnsn 
    140      1.1  alnsn /*
    141      1.1  alnsn  * Data for "read from packet" instructions.
    142      1.1  alnsn  * See also read_pkt_insn() function below.
    143      1.1  alnsn  */
    144  1.2.4.1  rmind struct bpfjit_read_pkt_data {
    145  1.2.4.1  rmind 	/*
    146  1.2.4.1  rmind 	 * Length calculated by Array Bounds Check Elimination (ABC) pass.
    147  1.2.4.1  rmind 	 */
    148  1.2.4.1  rmind 	uint32_t abc_length;
    149      1.1  alnsn 	/*
    150  1.2.4.1  rmind 	 * If positive, emit "if (buflen < check_length) return 0"
    151  1.2.4.1  rmind 	 * out-of-bounds check.
    152      1.1  alnsn 	 * We assume that buflen is never equal to UINT32_MAX (otherwise,
    153  1.2.4.1  rmind 	 * we'd need a special bool variable to emit unconditional "return 0").
    154      1.1  alnsn 	 */
    155  1.2.4.1  rmind 	uint32_t check_length;
    156      1.1  alnsn };
    157      1.1  alnsn 
    158      1.1  alnsn /*
    159      1.1  alnsn  * Additional (optimization-related) data for bpf_insn.
    160      1.1  alnsn  */
    161  1.2.4.1  rmind struct bpfjit_insn_data {
    162      1.1  alnsn 	/* List of jumps to this insn. */
    163  1.2.4.1  rmind 	SLIST_HEAD(, bpfjit_jump) bjumps;
    164      1.1  alnsn 
    165      1.1  alnsn 	union {
    166  1.2.4.1  rmind 		struct bpfjit_jump_data     jdata;
    167  1.2.4.1  rmind 		struct bpfjit_read_pkt_data rdata;
    168  1.2.4.1  rmind 	} u;
    169      1.1  alnsn 
    170  1.2.4.1  rmind 	bpfjit_init_mask_t invalid;
    171  1.2.4.1  rmind 	bool unreachable;
    172      1.1  alnsn };
    173      1.1  alnsn 
    174      1.1  alnsn #ifdef _KERNEL
    175      1.1  alnsn 
    176      1.1  alnsn uint32_t m_xword(const struct mbuf *, uint32_t, int *);
    177      1.1  alnsn uint32_t m_xhalf(const struct mbuf *, uint32_t, int *);
    178      1.1  alnsn uint32_t m_xbyte(const struct mbuf *, uint32_t, int *);
    179      1.1  alnsn 
    180      1.1  alnsn MODULE(MODULE_CLASS_MISC, bpfjit, "sljit")
    181      1.1  alnsn 
    182      1.1  alnsn static int
    183      1.1  alnsn bpfjit_modcmd(modcmd_t cmd, void *arg)
    184      1.1  alnsn {
    185      1.1  alnsn 
    186      1.1  alnsn 	switch (cmd) {
    187      1.1  alnsn 	case MODULE_CMD_INIT:
    188      1.1  alnsn 		bpfjit_module_ops.bj_free_code = &bpfjit_free_code;
    189      1.1  alnsn 		membar_producer();
    190      1.1  alnsn 		bpfjit_module_ops.bj_generate_code = &bpfjit_generate_code;
    191      1.1  alnsn 		membar_producer();
    192      1.1  alnsn 		return 0;
    193      1.1  alnsn 
    194      1.1  alnsn 	case MODULE_CMD_FINI:
    195      1.1  alnsn 		return EOPNOTSUPP;
    196      1.1  alnsn 
    197      1.1  alnsn 	default:
    198      1.1  alnsn 		return ENOTTY;
    199      1.1  alnsn 	}
    200      1.1  alnsn }
    201      1.1  alnsn #endif
    202      1.1  alnsn 
    203      1.1  alnsn static uint32_t
    204  1.2.4.1  rmind read_width(const struct bpf_insn *pc)
    205      1.1  alnsn {
    206      1.1  alnsn 
    207      1.1  alnsn 	switch (BPF_SIZE(pc->code)) {
    208      1.1  alnsn 	case BPF_W:
    209      1.1  alnsn 		return 4;
    210      1.1  alnsn 	case BPF_H:
    211      1.1  alnsn 		return 2;
    212      1.1  alnsn 	case BPF_B:
    213      1.1  alnsn 		return 1;
    214      1.1  alnsn 	default:
    215  1.2.4.1  rmind 		BJ_ASSERT(false);
    216      1.1  alnsn 		return 0;
    217      1.1  alnsn 	}
    218      1.1  alnsn }
    219      1.1  alnsn 
    220  1.2.4.1  rmind static bool
    221  1.2.4.1  rmind grow_jumps(struct sljit_jump ***jumps, size_t *size)
    222      1.1  alnsn {
    223  1.2.4.1  rmind 	struct sljit_jump **newptr;
    224  1.2.4.1  rmind 	const size_t elemsz = sizeof(struct sljit_jump *);
    225  1.2.4.1  rmind 	size_t old_size = *size;
    226  1.2.4.1  rmind 	size_t new_size = 2 * old_size;
    227  1.2.4.1  rmind 
    228  1.2.4.1  rmind 	if (new_size < old_size || new_size > SIZE_MAX / elemsz)
    229  1.2.4.1  rmind 		return false;
    230  1.2.4.1  rmind 
    231  1.2.4.1  rmind 	newptr = BJ_ALLOC(new_size * elemsz);
    232  1.2.4.1  rmind 	if (newptr == NULL)
    233  1.2.4.1  rmind 		return false;
    234  1.2.4.1  rmind 
    235  1.2.4.1  rmind 	memcpy(newptr, *jumps, old_size * elemsz);
    236  1.2.4.1  rmind 	BJ_FREE(*jumps, old_size * elemsz);
    237  1.2.4.1  rmind 
    238  1.2.4.1  rmind 	*jumps = newptr;
    239  1.2.4.1  rmind 	*size = new_size;
    240  1.2.4.1  rmind 	return true;
    241  1.2.4.1  rmind }
    242      1.1  alnsn 
    243  1.2.4.1  rmind static bool
    244  1.2.4.1  rmind append_jump(struct sljit_jump *jump, struct sljit_jump ***jumps,
    245  1.2.4.1  rmind     size_t *size, size_t *max_size)
    246  1.2.4.1  rmind {
    247  1.2.4.1  rmind 	if (*size == *max_size && !grow_jumps(jumps, max_size))
    248  1.2.4.1  rmind 		return false;
    249  1.2.4.1  rmind 
    250  1.2.4.1  rmind 	(*jumps)[(*size)++] = jump;
    251  1.2.4.1  rmind 	return true;
    252      1.1  alnsn }
    253      1.1  alnsn 
    254      1.1  alnsn /*
    255      1.1  alnsn  * Generate code for BPF_LD+BPF_B+BPF_ABS    A <- P[k:1].
    256      1.1  alnsn  */
    257      1.1  alnsn static int
    258      1.1  alnsn emit_read8(struct sljit_compiler* compiler, uint32_t k)
    259      1.1  alnsn {
    260      1.1  alnsn 
    261      1.1  alnsn 	return sljit_emit_op1(compiler,
    262      1.1  alnsn 	    SLJIT_MOV_UB,
    263  1.2.4.1  rmind 	    BJ_AREG, 0,
    264  1.2.4.1  rmind 	    SLJIT_MEM1(BJ_BUF), k);
    265      1.1  alnsn }
    266      1.1  alnsn 
    267      1.1  alnsn /*
    268      1.1  alnsn  * Generate code for BPF_LD+BPF_H+BPF_ABS    A <- P[k:2].
    269      1.1  alnsn  */
    270      1.1  alnsn static int
    271      1.1  alnsn emit_read16(struct sljit_compiler* compiler, uint32_t k)
    272      1.1  alnsn {
    273      1.1  alnsn 	int status;
    274      1.1  alnsn 
    275      1.1  alnsn 	/* tmp1 = buf[k]; */
    276      1.1  alnsn 	status = sljit_emit_op1(compiler,
    277      1.1  alnsn 	    SLJIT_MOV_UB,
    278  1.2.4.1  rmind 	    BJ_TMP1REG, 0,
    279  1.2.4.1  rmind 	    SLJIT_MEM1(BJ_BUF), k);
    280      1.1  alnsn 	if (status != SLJIT_SUCCESS)
    281      1.1  alnsn 		return status;
    282      1.1  alnsn 
    283      1.1  alnsn 	/* A = buf[k+1]; */
    284      1.1  alnsn 	status = sljit_emit_op1(compiler,
    285      1.1  alnsn 	    SLJIT_MOV_UB,
    286  1.2.4.1  rmind 	    BJ_AREG, 0,
    287  1.2.4.1  rmind 	    SLJIT_MEM1(BJ_BUF), k+1);
    288      1.1  alnsn 	if (status != SLJIT_SUCCESS)
    289      1.1  alnsn 		return status;
    290      1.1  alnsn 
    291      1.1  alnsn 	/* tmp1 = tmp1 << 8; */
    292      1.1  alnsn 	status = sljit_emit_op2(compiler,
    293      1.1  alnsn 	    SLJIT_SHL,
    294  1.2.4.1  rmind 	    BJ_TMP1REG, 0,
    295  1.2.4.1  rmind 	    BJ_TMP1REG, 0,
    296      1.1  alnsn 	    SLJIT_IMM, 8);
    297      1.1  alnsn 	if (status != SLJIT_SUCCESS)
    298      1.1  alnsn 		return status;
    299      1.1  alnsn 
    300      1.1  alnsn 	/* A = A + tmp1; */
    301      1.1  alnsn 	status = sljit_emit_op2(compiler,
    302      1.1  alnsn 	    SLJIT_ADD,
    303  1.2.4.1  rmind 	    BJ_AREG, 0,
    304  1.2.4.1  rmind 	    BJ_AREG, 0,
    305  1.2.4.1  rmind 	    BJ_TMP1REG, 0);
    306      1.1  alnsn 	return status;
    307      1.1  alnsn }
    308      1.1  alnsn 
    309      1.1  alnsn /*
    310      1.1  alnsn  * Generate code for BPF_LD+BPF_W+BPF_ABS    A <- P[k:4].
    311      1.1  alnsn  */
    312      1.1  alnsn static int
    313      1.1  alnsn emit_read32(struct sljit_compiler* compiler, uint32_t k)
    314      1.1  alnsn {
    315      1.1  alnsn 	int status;
    316      1.1  alnsn 
    317      1.1  alnsn 	/* tmp1 = buf[k]; */
    318      1.1  alnsn 	status = sljit_emit_op1(compiler,
    319      1.1  alnsn 	    SLJIT_MOV_UB,
    320  1.2.4.1  rmind 	    BJ_TMP1REG, 0,
    321  1.2.4.1  rmind 	    SLJIT_MEM1(BJ_BUF), k);
    322      1.1  alnsn 	if (status != SLJIT_SUCCESS)
    323      1.1  alnsn 		return status;
    324      1.1  alnsn 
    325      1.1  alnsn 	/* tmp2 = buf[k+1]; */
    326      1.1  alnsn 	status = sljit_emit_op1(compiler,
    327      1.1  alnsn 	    SLJIT_MOV_UB,
    328  1.2.4.1  rmind 	    BJ_TMP2REG, 0,
    329  1.2.4.1  rmind 	    SLJIT_MEM1(BJ_BUF), k+1);
    330      1.1  alnsn 	if (status != SLJIT_SUCCESS)
    331      1.1  alnsn 		return status;
    332      1.1  alnsn 
    333      1.1  alnsn 	/* A = buf[k+3]; */
    334      1.1  alnsn 	status = sljit_emit_op1(compiler,
    335      1.1  alnsn 	    SLJIT_MOV_UB,
    336  1.2.4.1  rmind 	    BJ_AREG, 0,
    337  1.2.4.1  rmind 	    SLJIT_MEM1(BJ_BUF), k+3);
    338      1.1  alnsn 	if (status != SLJIT_SUCCESS)
    339      1.1  alnsn 		return status;
    340      1.1  alnsn 
    341      1.1  alnsn 	/* tmp1 = tmp1 << 24; */
    342      1.1  alnsn 	status = sljit_emit_op2(compiler,
    343      1.1  alnsn 	    SLJIT_SHL,
    344  1.2.4.1  rmind 	    BJ_TMP1REG, 0,
    345  1.2.4.1  rmind 	    BJ_TMP1REG, 0,
    346      1.1  alnsn 	    SLJIT_IMM, 24);
    347      1.1  alnsn 	if (status != SLJIT_SUCCESS)
    348      1.1  alnsn 		return status;
    349      1.1  alnsn 
    350      1.1  alnsn 	/* A = A + tmp1; */
    351      1.1  alnsn 	status = sljit_emit_op2(compiler,
    352      1.1  alnsn 	    SLJIT_ADD,
    353  1.2.4.1  rmind 	    BJ_AREG, 0,
    354  1.2.4.1  rmind 	    BJ_AREG, 0,
    355  1.2.4.1  rmind 	    BJ_TMP1REG, 0);
    356      1.1  alnsn 	if (status != SLJIT_SUCCESS)
    357      1.1  alnsn 		return status;
    358      1.1  alnsn 
    359      1.1  alnsn 	/* tmp1 = buf[k+2]; */
    360      1.1  alnsn 	status = sljit_emit_op1(compiler,
    361      1.1  alnsn 	    SLJIT_MOV_UB,
    362  1.2.4.1  rmind 	    BJ_TMP1REG, 0,
    363  1.2.4.1  rmind 	    SLJIT_MEM1(BJ_BUF), k+2);
    364      1.1  alnsn 	if (status != SLJIT_SUCCESS)
    365      1.1  alnsn 		return status;
    366      1.1  alnsn 
    367      1.1  alnsn 	/* tmp2 = tmp2 << 16; */
    368      1.1  alnsn 	status = sljit_emit_op2(compiler,
    369      1.1  alnsn 	    SLJIT_SHL,
    370  1.2.4.1  rmind 	    BJ_TMP2REG, 0,
    371  1.2.4.1  rmind 	    BJ_TMP2REG, 0,
    372      1.1  alnsn 	    SLJIT_IMM, 16);
    373      1.1  alnsn 	if (status != SLJIT_SUCCESS)
    374      1.1  alnsn 		return status;
    375      1.1  alnsn 
    376      1.1  alnsn 	/* A = A + tmp2; */
    377      1.1  alnsn 	status = sljit_emit_op2(compiler,
    378      1.1  alnsn 	    SLJIT_ADD,
    379  1.2.4.1  rmind 	    BJ_AREG, 0,
    380  1.2.4.1  rmind 	    BJ_AREG, 0,
    381  1.2.4.1  rmind 	    BJ_TMP2REG, 0);
    382      1.1  alnsn 	if (status != SLJIT_SUCCESS)
    383      1.1  alnsn 		return status;
    384      1.1  alnsn 
    385      1.1  alnsn 	/* tmp1 = tmp1 << 8; */
    386      1.1  alnsn 	status = sljit_emit_op2(compiler,
    387      1.1  alnsn 	    SLJIT_SHL,
    388  1.2.4.1  rmind 	    BJ_TMP1REG, 0,
    389  1.2.4.1  rmind 	    BJ_TMP1REG, 0,
    390      1.1  alnsn 	    SLJIT_IMM, 8);
    391      1.1  alnsn 	if (status != SLJIT_SUCCESS)
    392      1.1  alnsn 		return status;
    393      1.1  alnsn 
    394      1.1  alnsn 	/* A = A + tmp1; */
    395      1.1  alnsn 	status = sljit_emit_op2(compiler,
    396      1.1  alnsn 	    SLJIT_ADD,
    397  1.2.4.1  rmind 	    BJ_AREG, 0,
    398  1.2.4.1  rmind 	    BJ_AREG, 0,
    399  1.2.4.1  rmind 	    BJ_TMP1REG, 0);
    400      1.1  alnsn 	return status;
    401      1.1  alnsn }
    402      1.1  alnsn 
    403      1.1  alnsn #ifdef _KERNEL
    404      1.1  alnsn /*
    405      1.1  alnsn  * Generate m_xword/m_xhalf/m_xbyte call.
    406      1.1  alnsn  *
    407      1.1  alnsn  * pc is one of:
    408      1.1  alnsn  * BPF_LD+BPF_W+BPF_ABS    A <- P[k:4]
    409      1.1  alnsn  * BPF_LD+BPF_H+BPF_ABS    A <- P[k:2]
    410      1.1  alnsn  * BPF_LD+BPF_B+BPF_ABS    A <- P[k:1]
    411      1.1  alnsn  * BPF_LD+BPF_W+BPF_IND    A <- P[X+k:4]
    412      1.1  alnsn  * BPF_LD+BPF_H+BPF_IND    A <- P[X+k:2]
    413      1.1  alnsn  * BPF_LD+BPF_B+BPF_IND    A <- P[X+k:1]
    414      1.1  alnsn  * BPF_LDX+BPF_B+BPF_MSH   X <- 4*(P[k:1]&0xf)
    415      1.1  alnsn  *
    416  1.2.4.1  rmind  * The dst variable should be
    417  1.2.4.1  rmind  *  - BJ_AREG when emitting code for BPF_LD instructions,
    418  1.2.4.1  rmind  *  - BJ_XREG or any of BJ_TMP[1-3]REG registers when emitting
    419  1.2.4.1  rmind  *    code for BPF_MSH instruction.
    420      1.1  alnsn  */
    421      1.1  alnsn static int
    422  1.2.4.1  rmind emit_xcall(struct sljit_compiler* compiler, const struct bpf_insn *pc,
    423      1.1  alnsn     int dst, sljit_w dstw, struct sljit_jump **ret0_jump,
    424      1.1  alnsn     uint32_t (*fn)(const struct mbuf *, uint32_t, int *))
    425      1.1  alnsn {
    426  1.2.4.1  rmind #if BJ_XREG == SLJIT_RETURN_REG   || \
    427  1.2.4.1  rmind     BJ_XREG == SLJIT_TEMPORARY_REG1 || \
    428  1.2.4.1  rmind     BJ_XREG == SLJIT_TEMPORARY_REG2 || \
    429  1.2.4.1  rmind     BJ_XREG == SLJIT_TEMPORARY_REG3
    430      1.1  alnsn #error "Not supported assignment of registers."
    431      1.1  alnsn #endif
    432      1.1  alnsn 	int status;
    433      1.1  alnsn 
    434      1.1  alnsn 	/*
    435      1.1  alnsn 	 * The third argument of fn is an address on stack.
    436      1.1  alnsn 	 */
    437  1.2.4.1  rmind 	const int arg3_offset = offsetof(struct bpfjit_stack, tmp);
    438      1.1  alnsn 
    439      1.1  alnsn 	if (BPF_CLASS(pc->code) == BPF_LDX) {
    440      1.1  alnsn 		/* save A */
    441      1.1  alnsn 		status = sljit_emit_op1(compiler,
    442      1.1  alnsn 		    SLJIT_MOV,
    443  1.2.4.1  rmind 		    BJ_TMP3REG, 0,
    444  1.2.4.1  rmind 		    BJ_AREG, 0);
    445      1.1  alnsn 		if (status != SLJIT_SUCCESS)
    446      1.1  alnsn 			return status;
    447      1.1  alnsn 	}
    448      1.1  alnsn 
    449      1.1  alnsn 	/*
    450      1.1  alnsn 	 * Prepare registers for fn(buf, k, &err) call.
    451      1.1  alnsn 	 */
    452      1.1  alnsn 	status = sljit_emit_op1(compiler,
    453      1.1  alnsn 	    SLJIT_MOV,
    454      1.1  alnsn 	    SLJIT_TEMPORARY_REG1, 0,
    455  1.2.4.1  rmind 	    BJ_BUF, 0);
    456      1.1  alnsn 	if (status != SLJIT_SUCCESS)
    457      1.1  alnsn 		return status;
    458      1.1  alnsn 
    459      1.1  alnsn 	if (BPF_CLASS(pc->code) == BPF_LD && BPF_MODE(pc->code) == BPF_IND) {
    460      1.1  alnsn 		status = sljit_emit_op2(compiler,
    461      1.1  alnsn 		    SLJIT_ADD,
    462      1.1  alnsn 		    SLJIT_TEMPORARY_REG2, 0,
    463  1.2.4.1  rmind 		    BJ_XREG, 0,
    464      1.1  alnsn 		    SLJIT_IMM, (uint32_t)pc->k);
    465      1.1  alnsn 	} else {
    466      1.1  alnsn 		status = sljit_emit_op1(compiler,
    467      1.1  alnsn 		    SLJIT_MOV,
    468      1.1  alnsn 		    SLJIT_TEMPORARY_REG2, 0,
    469      1.1  alnsn 		    SLJIT_IMM, (uint32_t)pc->k);
    470      1.1  alnsn 	}
    471      1.1  alnsn 
    472      1.1  alnsn 	if (status != SLJIT_SUCCESS)
    473      1.1  alnsn 		return status;
    474      1.1  alnsn 
    475      1.1  alnsn 	status = sljit_get_local_base(compiler,
    476      1.1  alnsn 	    SLJIT_TEMPORARY_REG3, 0, arg3_offset);
    477      1.1  alnsn 	if (status != SLJIT_SUCCESS)
    478      1.1  alnsn 		return status;
    479      1.1  alnsn 
    480      1.1  alnsn 	/* fn(buf, k, &err); */
    481      1.1  alnsn 	status = sljit_emit_ijump(compiler,
    482      1.1  alnsn 	    SLJIT_CALL3,
    483      1.1  alnsn 	    SLJIT_IMM, SLJIT_FUNC_OFFSET(fn));
    484      1.1  alnsn 
    485  1.2.4.1  rmind 	if (dst != SLJIT_RETURN_REG) {
    486      1.1  alnsn 		/* move return value to dst */
    487      1.1  alnsn 		status = sljit_emit_op1(compiler,
    488      1.1  alnsn 		    SLJIT_MOV,
    489      1.1  alnsn 		    dst, dstw,
    490      1.1  alnsn 		    SLJIT_RETURN_REG, 0);
    491      1.1  alnsn 		if (status != SLJIT_SUCCESS)
    492      1.1  alnsn 			return status;
    493  1.2.4.1  rmind 	}
    494      1.1  alnsn 
    495  1.2.4.1  rmind 	if (BPF_CLASS(pc->code) == BPF_LDX) {
    496      1.1  alnsn 		/* restore A */
    497      1.1  alnsn 		status = sljit_emit_op1(compiler,
    498      1.1  alnsn 		    SLJIT_MOV,
    499  1.2.4.1  rmind 		    BJ_AREG, 0,
    500  1.2.4.1  rmind 		    BJ_TMP3REG, 0);
    501      1.1  alnsn 		if (status != SLJIT_SUCCESS)
    502      1.1  alnsn 			return status;
    503      1.1  alnsn 	}
    504      1.1  alnsn 
    505      1.1  alnsn 	/* tmp3 = *err; */
    506      1.1  alnsn 	status = sljit_emit_op1(compiler,
    507      1.1  alnsn 	    SLJIT_MOV_UI,
    508      1.1  alnsn 	    SLJIT_TEMPORARY_REG3, 0,
    509      1.1  alnsn 	    SLJIT_MEM1(SLJIT_LOCALS_REG), arg3_offset);
    510      1.1  alnsn 	if (status != SLJIT_SUCCESS)
    511      1.1  alnsn 		return status;
    512      1.1  alnsn 
    513      1.1  alnsn 	/* if (tmp3 != 0) return 0; */
    514      1.1  alnsn 	*ret0_jump = sljit_emit_cmp(compiler,
    515      1.1  alnsn 	    SLJIT_C_NOT_EQUAL,
    516      1.1  alnsn 	    SLJIT_TEMPORARY_REG3, 0,
    517      1.1  alnsn 	    SLJIT_IMM, 0);
    518      1.1  alnsn 	if (*ret0_jump == NULL)
    519      1.1  alnsn 		return SLJIT_ERR_ALLOC_FAILED;
    520      1.1  alnsn 
    521      1.1  alnsn 	return status;
    522      1.1  alnsn }
    523      1.1  alnsn #endif
    524      1.1  alnsn 
    525      1.1  alnsn /*
    526      1.1  alnsn  * Generate code for
    527      1.1  alnsn  * BPF_LD+BPF_W+BPF_ABS    A <- P[k:4]
    528      1.1  alnsn  * BPF_LD+BPF_H+BPF_ABS    A <- P[k:2]
    529      1.1  alnsn  * BPF_LD+BPF_B+BPF_ABS    A <- P[k:1]
    530      1.1  alnsn  * BPF_LD+BPF_W+BPF_IND    A <- P[X+k:4]
    531      1.1  alnsn  * BPF_LD+BPF_H+BPF_IND    A <- P[X+k:2]
    532      1.1  alnsn  * BPF_LD+BPF_B+BPF_IND    A <- P[X+k:1]
    533      1.1  alnsn  */
    534      1.1  alnsn static int
    535      1.1  alnsn emit_pkt_read(struct sljit_compiler* compiler,
    536  1.2.4.1  rmind     const struct bpf_insn *pc, struct sljit_jump *to_mchain_jump,
    537  1.2.4.1  rmind     struct sljit_jump ***ret0, size_t *ret0_size, size_t *ret0_maxsize)
    538      1.1  alnsn {
    539  1.2.4.1  rmind 	int status = 0; /* XXX gcc 4.1 */
    540      1.1  alnsn 	uint32_t width;
    541      1.1  alnsn 	struct sljit_jump *jump;
    542      1.1  alnsn #ifdef _KERNEL
    543      1.1  alnsn 	struct sljit_label *label;
    544      1.1  alnsn 	struct sljit_jump *over_mchain_jump;
    545      1.1  alnsn 	const bool check_zero_buflen = (to_mchain_jump != NULL);
    546      1.1  alnsn #endif
    547      1.1  alnsn 	const uint32_t k = pc->k;
    548      1.1  alnsn 
    549      1.1  alnsn #ifdef _KERNEL
    550      1.1  alnsn 	if (to_mchain_jump == NULL) {
    551      1.1  alnsn 		to_mchain_jump = sljit_emit_cmp(compiler,
    552      1.1  alnsn 		    SLJIT_C_EQUAL,
    553  1.2.4.1  rmind 		    BJ_BUFLEN, 0,
    554      1.1  alnsn 		    SLJIT_IMM, 0);
    555      1.1  alnsn 		if (to_mchain_jump == NULL)
    556  1.2.4.1  rmind 			return SLJIT_ERR_ALLOC_FAILED;
    557      1.1  alnsn 	}
    558      1.1  alnsn #endif
    559      1.1  alnsn 
    560      1.1  alnsn 	width = read_width(pc);
    561      1.1  alnsn 
    562      1.1  alnsn 	if (BPF_MODE(pc->code) == BPF_IND) {
    563      1.1  alnsn 		/* tmp1 = buflen - (pc->k + width); */
    564      1.1  alnsn 		status = sljit_emit_op2(compiler,
    565      1.1  alnsn 		    SLJIT_SUB,
    566  1.2.4.1  rmind 		    BJ_TMP1REG, 0,
    567  1.2.4.1  rmind 		    BJ_BUFLEN, 0,
    568      1.1  alnsn 		    SLJIT_IMM, k + width);
    569      1.1  alnsn 		if (status != SLJIT_SUCCESS)
    570      1.1  alnsn 			return status;
    571      1.1  alnsn 
    572      1.1  alnsn 		/* buf += X; */
    573      1.1  alnsn 		status = sljit_emit_op2(compiler,
    574      1.1  alnsn 		    SLJIT_ADD,
    575  1.2.4.1  rmind 		    BJ_BUF, 0,
    576  1.2.4.1  rmind 		    BJ_BUF, 0,
    577  1.2.4.1  rmind 		    BJ_XREG, 0);
    578      1.1  alnsn 		if (status != SLJIT_SUCCESS)
    579      1.1  alnsn 			return status;
    580      1.1  alnsn 
    581      1.1  alnsn 		/* if (tmp1 < X) return 0; */
    582      1.1  alnsn 		jump = sljit_emit_cmp(compiler,
    583      1.1  alnsn 		    SLJIT_C_LESS,
    584  1.2.4.1  rmind 		    BJ_TMP1REG, 0,
    585  1.2.4.1  rmind 		    BJ_XREG, 0);
    586      1.1  alnsn 		if (jump == NULL)
    587  1.2.4.1  rmind 			return SLJIT_ERR_ALLOC_FAILED;
    588  1.2.4.1  rmind 		if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
    589  1.2.4.1  rmind 			return SLJIT_ERR_ALLOC_FAILED;
    590      1.1  alnsn 	}
    591      1.1  alnsn 
    592      1.1  alnsn 	switch (width) {
    593      1.1  alnsn 	case 4:
    594      1.1  alnsn 		status = emit_read32(compiler, k);
    595      1.1  alnsn 		break;
    596      1.1  alnsn 	case 2:
    597      1.1  alnsn 		status = emit_read16(compiler, k);
    598      1.1  alnsn 		break;
    599      1.1  alnsn 	case 1:
    600      1.1  alnsn 		status = emit_read8(compiler, k);
    601      1.1  alnsn 		break;
    602      1.1  alnsn 	}
    603      1.1  alnsn 
    604      1.1  alnsn 	if (status != SLJIT_SUCCESS)
    605      1.1  alnsn 		return status;
    606      1.1  alnsn 
    607      1.1  alnsn 	if (BPF_MODE(pc->code) == BPF_IND) {
    608      1.1  alnsn 		/* buf -= X; */
    609      1.1  alnsn 		status = sljit_emit_op2(compiler,
    610      1.1  alnsn 		    SLJIT_SUB,
    611  1.2.4.1  rmind 		    BJ_BUF, 0,
    612  1.2.4.1  rmind 		    BJ_BUF, 0,
    613  1.2.4.1  rmind 		    BJ_XREG, 0);
    614      1.1  alnsn 		if (status != SLJIT_SUCCESS)
    615      1.1  alnsn 			return status;
    616      1.1  alnsn 	}
    617      1.1  alnsn 
    618      1.1  alnsn #ifdef _KERNEL
    619      1.1  alnsn 	over_mchain_jump = sljit_emit_jump(compiler, SLJIT_JUMP);
    620      1.1  alnsn 	if (over_mchain_jump == NULL)
    621  1.2.4.1  rmind 		return SLJIT_ERR_ALLOC_FAILED;
    622      1.1  alnsn 
    623      1.1  alnsn 	/* entry point to mchain handler */
    624      1.1  alnsn 	label = sljit_emit_label(compiler);
    625      1.1  alnsn 	if (label == NULL)
    626  1.2.4.1  rmind 		return SLJIT_ERR_ALLOC_FAILED;
    627      1.1  alnsn 	sljit_set_label(to_mchain_jump, label);
    628      1.1  alnsn 
    629      1.1  alnsn 	if (check_zero_buflen) {
    630      1.1  alnsn 		/* if (buflen != 0) return 0; */
    631      1.1  alnsn 		jump = sljit_emit_cmp(compiler,
    632      1.1  alnsn 		    SLJIT_C_NOT_EQUAL,
    633  1.2.4.1  rmind 		    BJ_BUFLEN, 0,
    634      1.1  alnsn 		    SLJIT_IMM, 0);
    635      1.1  alnsn 		if (jump == NULL)
    636      1.1  alnsn 			return SLJIT_ERR_ALLOC_FAILED;
    637  1.2.4.1  rmind 		if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
    638  1.2.4.1  rmind 			return SLJIT_ERR_ALLOC_FAILED;
    639      1.1  alnsn 	}
    640      1.1  alnsn 
    641      1.1  alnsn 	switch (width) {
    642      1.1  alnsn 	case 4:
    643  1.2.4.1  rmind 		status = emit_xcall(compiler, pc, BJ_AREG, 0, &jump, &m_xword);
    644      1.1  alnsn 		break;
    645      1.1  alnsn 	case 2:
    646  1.2.4.1  rmind 		status = emit_xcall(compiler, pc, BJ_AREG, 0, &jump, &m_xhalf);
    647      1.1  alnsn 		break;
    648      1.1  alnsn 	case 1:
    649  1.2.4.1  rmind 		status = emit_xcall(compiler, pc, BJ_AREG, 0, &jump, &m_xbyte);
    650      1.1  alnsn 		break;
    651      1.1  alnsn 	}
    652      1.1  alnsn 
    653      1.1  alnsn 	if (status != SLJIT_SUCCESS)
    654      1.1  alnsn 		return status;
    655      1.1  alnsn 
    656  1.2.4.1  rmind 	if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
    657  1.2.4.1  rmind 		return SLJIT_ERR_ALLOC_FAILED;
    658      1.1  alnsn 
    659      1.1  alnsn 	label = sljit_emit_label(compiler);
    660      1.1  alnsn 	if (label == NULL)
    661      1.1  alnsn 		return SLJIT_ERR_ALLOC_FAILED;
    662      1.1  alnsn 	sljit_set_label(over_mchain_jump, label);
    663      1.1  alnsn #endif
    664      1.1  alnsn 
    665      1.1  alnsn 	return status;
    666      1.1  alnsn }
    667      1.1  alnsn 
    668      1.1  alnsn /*
    669      1.1  alnsn  * Generate code for BPF_LDX+BPF_B+BPF_MSH    X <- 4*(P[k:1]&0xf).
    670      1.1  alnsn  */
    671      1.1  alnsn static int
    672      1.1  alnsn emit_msh(struct sljit_compiler* compiler,
    673  1.2.4.1  rmind     const struct bpf_insn *pc, struct sljit_jump *to_mchain_jump,
    674  1.2.4.1  rmind     struct sljit_jump ***ret0, size_t *ret0_size, size_t *ret0_maxsize)
    675      1.1  alnsn {
    676      1.1  alnsn 	int status;
    677      1.1  alnsn #ifdef _KERNEL
    678      1.1  alnsn 	struct sljit_label *label;
    679      1.1  alnsn 	struct sljit_jump *jump, *over_mchain_jump;
    680      1.1  alnsn 	const bool check_zero_buflen = (to_mchain_jump != NULL);
    681      1.1  alnsn #endif
    682      1.1  alnsn 	const uint32_t k = pc->k;
    683      1.1  alnsn 
    684      1.1  alnsn #ifdef _KERNEL
    685      1.1  alnsn 	if (to_mchain_jump == NULL) {
    686      1.1  alnsn 		to_mchain_jump = sljit_emit_cmp(compiler,
    687      1.1  alnsn 		    SLJIT_C_EQUAL,
    688  1.2.4.1  rmind 		    BJ_BUFLEN, 0,
    689      1.1  alnsn 		    SLJIT_IMM, 0);
    690      1.1  alnsn 		if (to_mchain_jump == NULL)
    691  1.2.4.1  rmind 			return SLJIT_ERR_ALLOC_FAILED;
    692      1.1  alnsn 	}
    693      1.1  alnsn #endif
    694      1.1  alnsn 
    695      1.1  alnsn 	/* tmp1 = buf[k] */
    696      1.1  alnsn 	status = sljit_emit_op1(compiler,
    697      1.1  alnsn 	    SLJIT_MOV_UB,
    698  1.2.4.1  rmind 	    BJ_TMP1REG, 0,
    699  1.2.4.1  rmind 	    SLJIT_MEM1(BJ_BUF), k);
    700      1.1  alnsn 	if (status != SLJIT_SUCCESS)
    701      1.1  alnsn 		return status;
    702      1.1  alnsn 
    703      1.1  alnsn 	/* tmp1 &= 0xf */
    704      1.1  alnsn 	status = sljit_emit_op2(compiler,
    705      1.1  alnsn 	    SLJIT_AND,
    706  1.2.4.1  rmind 	    BJ_TMP1REG, 0,
    707  1.2.4.1  rmind 	    BJ_TMP1REG, 0,
    708      1.1  alnsn 	    SLJIT_IMM, 0xf);
    709      1.1  alnsn 	if (status != SLJIT_SUCCESS)
    710      1.1  alnsn 		return status;
    711      1.1  alnsn 
    712      1.1  alnsn 	/* tmp1 = tmp1 << 2 */
    713      1.1  alnsn 	status = sljit_emit_op2(compiler,
    714      1.1  alnsn 	    SLJIT_SHL,
    715  1.2.4.1  rmind 	    BJ_XREG, 0,
    716  1.2.4.1  rmind 	    BJ_TMP1REG, 0,
    717      1.1  alnsn 	    SLJIT_IMM, 2);
    718      1.1  alnsn 	if (status != SLJIT_SUCCESS)
    719      1.1  alnsn 		return status;
    720      1.1  alnsn 
    721      1.1  alnsn #ifdef _KERNEL
    722      1.1  alnsn 	over_mchain_jump = sljit_emit_jump(compiler, SLJIT_JUMP);
    723      1.1  alnsn 	if (over_mchain_jump == NULL)
    724      1.1  alnsn 		return SLJIT_ERR_ALLOC_FAILED;
    725      1.1  alnsn 
    726      1.1  alnsn 	/* entry point to mchain handler */
    727      1.1  alnsn 	label = sljit_emit_label(compiler);
    728      1.1  alnsn 	if (label == NULL)
    729      1.1  alnsn 		return SLJIT_ERR_ALLOC_FAILED;
    730      1.1  alnsn 	sljit_set_label(to_mchain_jump, label);
    731      1.1  alnsn 
    732      1.1  alnsn 	if (check_zero_buflen) {
    733      1.1  alnsn 		/* if (buflen != 0) return 0; */
    734      1.1  alnsn 		jump = sljit_emit_cmp(compiler,
    735      1.1  alnsn 		    SLJIT_C_NOT_EQUAL,
    736  1.2.4.1  rmind 		    BJ_BUFLEN, 0,
    737      1.1  alnsn 		    SLJIT_IMM, 0);
    738      1.1  alnsn 		if (jump == NULL)
    739  1.2.4.1  rmind 			return SLJIT_ERR_ALLOC_FAILED;
    740  1.2.4.1  rmind 		if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
    741  1.2.4.1  rmind 			return SLJIT_ERR_ALLOC_FAILED;
    742      1.1  alnsn 	}
    743      1.1  alnsn 
    744  1.2.4.1  rmind 	status = emit_xcall(compiler, pc, BJ_TMP1REG, 0, &jump, &m_xbyte);
    745      1.1  alnsn 	if (status != SLJIT_SUCCESS)
    746      1.1  alnsn 		return status;
    747  1.2.4.1  rmind 
    748  1.2.4.1  rmind 	if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
    749  1.2.4.1  rmind 		return SLJIT_ERR_ALLOC_FAILED;
    750      1.1  alnsn 
    751      1.1  alnsn 	/* tmp1 &= 0xf */
    752      1.1  alnsn 	status = sljit_emit_op2(compiler,
    753      1.1  alnsn 	    SLJIT_AND,
    754  1.2.4.1  rmind 	    BJ_TMP1REG, 0,
    755  1.2.4.1  rmind 	    BJ_TMP1REG, 0,
    756      1.1  alnsn 	    SLJIT_IMM, 0xf);
    757      1.1  alnsn 	if (status != SLJIT_SUCCESS)
    758      1.1  alnsn 		return status;
    759      1.1  alnsn 
    760      1.1  alnsn 	/* tmp1 = tmp1 << 2 */
    761      1.1  alnsn 	status = sljit_emit_op2(compiler,
    762      1.1  alnsn 	    SLJIT_SHL,
    763  1.2.4.1  rmind 	    BJ_XREG, 0,
    764  1.2.4.1  rmind 	    BJ_TMP1REG, 0,
    765      1.1  alnsn 	    SLJIT_IMM, 2);
    766      1.1  alnsn 	if (status != SLJIT_SUCCESS)
    767      1.1  alnsn 		return status;
    768      1.1  alnsn 
    769      1.1  alnsn 
    770      1.1  alnsn 	label = sljit_emit_label(compiler);
    771      1.1  alnsn 	if (label == NULL)
    772      1.1  alnsn 		return SLJIT_ERR_ALLOC_FAILED;
    773      1.1  alnsn 	sljit_set_label(over_mchain_jump, label);
    774      1.1  alnsn #endif
    775      1.1  alnsn 
    776      1.1  alnsn 	return status;
    777      1.1  alnsn }
    778      1.1  alnsn 
    779      1.1  alnsn static int
    780      1.1  alnsn emit_pow2_division(struct sljit_compiler* compiler, uint32_t k)
    781      1.1  alnsn {
    782      1.1  alnsn 	int shift = 0;
    783      1.1  alnsn 	int status = SLJIT_SUCCESS;
    784      1.1  alnsn 
    785      1.1  alnsn 	while (k > 1) {
    786      1.1  alnsn 		k >>= 1;
    787      1.1  alnsn 		shift++;
    788      1.1  alnsn 	}
    789      1.1  alnsn 
    790  1.2.4.1  rmind 	BJ_ASSERT(k == 1 && shift < 32);
    791      1.1  alnsn 
    792      1.1  alnsn 	if (shift != 0) {
    793      1.1  alnsn 		status = sljit_emit_op2(compiler,
    794      1.1  alnsn 		    SLJIT_LSHR|SLJIT_INT_OP,
    795  1.2.4.1  rmind 		    BJ_AREG, 0,
    796  1.2.4.1  rmind 		    BJ_AREG, 0,
    797      1.1  alnsn 		    SLJIT_IMM, shift);
    798      1.1  alnsn 	}
    799      1.1  alnsn 
    800      1.1  alnsn 	return status;
    801      1.1  alnsn }
    802      1.1  alnsn 
    803      1.1  alnsn #if !defined(BPFJIT_USE_UDIV)
    804      1.1  alnsn static sljit_uw
    805      1.1  alnsn divide(sljit_uw x, sljit_uw y)
    806      1.1  alnsn {
    807      1.1  alnsn 
    808      1.1  alnsn 	return (uint32_t)x / (uint32_t)y;
    809      1.1  alnsn }
    810      1.1  alnsn #endif
    811      1.1  alnsn 
    812      1.1  alnsn /*
    813      1.1  alnsn  * Generate A = A / div.
    814  1.2.4.1  rmind  * divt,divw are either SLJIT_IMM,pc->k or BJ_XREG,0.
    815      1.1  alnsn  */
    816      1.1  alnsn static int
    817      1.1  alnsn emit_division(struct sljit_compiler* compiler, int divt, sljit_w divw)
    818      1.1  alnsn {
    819      1.1  alnsn 	int status;
    820      1.1  alnsn 
    821  1.2.4.1  rmind #if BJ_XREG == SLJIT_RETURN_REG   || \
    822  1.2.4.1  rmind     BJ_XREG == SLJIT_TEMPORARY_REG1 || \
    823  1.2.4.1  rmind     BJ_XREG == SLJIT_TEMPORARY_REG2 || \
    824  1.2.4.1  rmind     BJ_AREG == SLJIT_TEMPORARY_REG2
    825      1.1  alnsn #error "Not supported assignment of registers."
    826      1.1  alnsn #endif
    827      1.1  alnsn 
    828  1.2.4.1  rmind #if BJ_AREG != SLJIT_TEMPORARY_REG1
    829      1.1  alnsn 	status = sljit_emit_op1(compiler,
    830      1.1  alnsn 	    SLJIT_MOV,
    831      1.1  alnsn 	    SLJIT_TEMPORARY_REG1, 0,
    832  1.2.4.1  rmind 	    BJ_AREG, 0);
    833      1.1  alnsn 	if (status != SLJIT_SUCCESS)
    834      1.1  alnsn 		return status;
    835      1.1  alnsn #endif
    836      1.1  alnsn 
    837      1.1  alnsn 	status = sljit_emit_op1(compiler,
    838      1.1  alnsn 	    SLJIT_MOV,
    839      1.1  alnsn 	    SLJIT_TEMPORARY_REG2, 0,
    840      1.1  alnsn 	    divt, divw);
    841      1.1  alnsn 	if (status != SLJIT_SUCCESS)
    842      1.1  alnsn 		return status;
    843      1.1  alnsn 
    844      1.1  alnsn #if defined(BPFJIT_USE_UDIV)
    845      1.1  alnsn 	status = sljit_emit_op0(compiler, SLJIT_UDIV|SLJIT_INT_OP);
    846      1.1  alnsn 
    847  1.2.4.1  rmind #if BJ_AREG != SLJIT_TEMPORARY_REG1
    848      1.1  alnsn 	status = sljit_emit_op1(compiler,
    849      1.1  alnsn 	    SLJIT_MOV,
    850  1.2.4.1  rmind 	    BJ_AREG, 0,
    851      1.1  alnsn 	    SLJIT_TEMPORARY_REG1, 0);
    852      1.1  alnsn 	if (status != SLJIT_SUCCESS)
    853      1.1  alnsn 		return status;
    854      1.1  alnsn #endif
    855      1.1  alnsn #else
    856      1.1  alnsn 	status = sljit_emit_ijump(compiler,
    857      1.1  alnsn 	    SLJIT_CALL2,
    858      1.1  alnsn 	    SLJIT_IMM, SLJIT_FUNC_OFFSET(divide));
    859      1.1  alnsn 
    860  1.2.4.1  rmind #if BJ_AREG != SLJIT_RETURN_REG
    861      1.1  alnsn 	status = sljit_emit_op1(compiler,
    862      1.1  alnsn 	    SLJIT_MOV,
    863  1.2.4.1  rmind 	    BJ_AREG, 0,
    864      1.1  alnsn 	    SLJIT_RETURN_REG, 0);
    865      1.1  alnsn 	if (status != SLJIT_SUCCESS)
    866      1.1  alnsn 		return status;
    867      1.1  alnsn #endif
    868      1.1  alnsn #endif
    869      1.1  alnsn 
    870      1.1  alnsn 	return status;
    871      1.1  alnsn }
    872      1.1  alnsn 
    873      1.1  alnsn /*
    874      1.1  alnsn  * Return true if pc is a "read from packet" instruction.
    875      1.1  alnsn  * If length is not NULL and return value is true, *length will
    876      1.1  alnsn  * be set to a safe length required to read a packet.
    877      1.1  alnsn  */
    878      1.1  alnsn static bool
    879  1.2.4.1  rmind read_pkt_insn(const struct bpf_insn *pc, uint32_t *length)
    880      1.1  alnsn {
    881      1.1  alnsn 	bool rv;
    882      1.1  alnsn 	uint32_t width;
    883      1.1  alnsn 
    884      1.1  alnsn 	switch (BPF_CLASS(pc->code)) {
    885      1.1  alnsn 	default:
    886      1.1  alnsn 		rv = false;
    887      1.1  alnsn 		break;
    888      1.1  alnsn 
    889      1.1  alnsn 	case BPF_LD:
    890      1.1  alnsn 		rv = BPF_MODE(pc->code) == BPF_ABS ||
    891      1.1  alnsn 		     BPF_MODE(pc->code) == BPF_IND;
    892      1.1  alnsn 		if (rv)
    893      1.1  alnsn 			width = read_width(pc);
    894      1.1  alnsn 		break;
    895      1.1  alnsn 
    896      1.1  alnsn 	case BPF_LDX:
    897      1.1  alnsn 		rv = pc->code == (BPF_LDX|BPF_B|BPF_MSH);
    898      1.1  alnsn 		width = 1;
    899      1.1  alnsn 		break;
    900      1.1  alnsn 	}
    901      1.1  alnsn 
    902      1.1  alnsn 	if (rv && length != NULL) {
    903      1.1  alnsn 		*length = (pc->k > UINT32_MAX - width) ?
    904      1.1  alnsn 		    UINT32_MAX : pc->k + width;
    905      1.1  alnsn 	}
    906      1.1  alnsn 
    907      1.1  alnsn 	return rv;
    908      1.1  alnsn }
    909      1.1  alnsn 
    910      1.1  alnsn static void
    911  1.2.4.1  rmind optimize_init(struct bpfjit_insn_data *insn_dat, size_t insn_count)
    912      1.1  alnsn {
    913  1.2.4.1  rmind 	size_t i;
    914      1.1  alnsn 
    915  1.2.4.1  rmind 	for (i = 0; i < insn_count; i++) {
    916  1.2.4.1  rmind 		SLIST_INIT(&insn_dat[i].bjumps);
    917  1.2.4.1  rmind 		insn_dat[i].invalid = BJ_INIT_NOBITS;
    918      1.1  alnsn 	}
    919      1.1  alnsn }
    920      1.1  alnsn 
    921      1.1  alnsn /*
    922      1.1  alnsn  * The function divides instructions into blocks. Destination of a jump
    923      1.1  alnsn  * instruction starts a new block. BPF_RET and BPF_JMP instructions
    924      1.1  alnsn  * terminate a block. Blocks are linear, that is, there are no jumps out
    925      1.1  alnsn  * from the middle of a block and there are no jumps in to the middle of
    926      1.1  alnsn  * a block.
    927  1.2.4.1  rmind  *
    928  1.2.4.1  rmind  * The function also sets bits in *initmask for memwords that
    929  1.2.4.1  rmind  * need to be initialized to zero. Note that this set should be empty
    930  1.2.4.1  rmind  * for any valid kernel filter program.
    931      1.1  alnsn  */
    932  1.2.4.1  rmind static bool
    933  1.2.4.1  rmind optimize_pass1(const struct bpf_insn *insns,
    934  1.2.4.1  rmind     struct bpfjit_insn_data *insn_dat, size_t insn_count,
    935  1.2.4.1  rmind     bpfjit_init_mask_t *initmask, int *nscratches)
    936      1.1  alnsn {
    937  1.2.4.1  rmind 	struct bpfjit_jump *jtf;
    938      1.1  alnsn 	size_t i;
    939      1.1  alnsn 	uint32_t jt, jf;
    940  1.2.4.1  rmind 	bpfjit_init_mask_t invalid; /* borrowed from bpf_filter() */
    941  1.2.4.1  rmind 	bool unreachable;
    942      1.1  alnsn 
    943  1.2.4.1  rmind 	*nscratches = 2;
    944  1.2.4.1  rmind 	*initmask = BJ_INIT_NOBITS;
    945      1.1  alnsn 
    946      1.1  alnsn 	unreachable = false;
    947  1.2.4.1  rmind 	invalid = ~BJ_INIT_NOBITS;
    948      1.1  alnsn 
    949      1.1  alnsn 	for (i = 0; i < insn_count; i++) {
    950  1.2.4.1  rmind 		if (!SLIST_EMPTY(&insn_dat[i].bjumps))
    951      1.1  alnsn 			unreachable = false;
    952  1.2.4.1  rmind 		insn_dat[i].unreachable = unreachable;
    953      1.1  alnsn 
    954      1.1  alnsn 		if (unreachable)
    955      1.1  alnsn 			continue;
    956      1.1  alnsn 
    957  1.2.4.1  rmind 		invalid |= insn_dat[i].invalid;
    958      1.1  alnsn 
    959      1.1  alnsn 		switch (BPF_CLASS(insns[i].code)) {
    960      1.1  alnsn 		case BPF_RET:
    961  1.2.4.1  rmind 			if (BPF_RVAL(insns[i].code) == BPF_A)
    962  1.2.4.1  rmind 				*initmask |= invalid & BJ_INIT_ABIT;
    963  1.2.4.1  rmind 
    964      1.1  alnsn 			unreachable = true;
    965      1.1  alnsn 			continue;
    966      1.1  alnsn 
    967  1.2.4.1  rmind 		case BPF_LD:
    968  1.2.4.1  rmind 			if (BPF_MODE(insns[i].code) == BPF_IND ||
    969  1.2.4.1  rmind 			    BPF_MODE(insns[i].code) == BPF_ABS) {
    970  1.2.4.1  rmind 				if (BPF_MODE(insns[i].code) == BPF_IND &&
    971  1.2.4.1  rmind 				    *nscratches < 4) {
    972  1.2.4.1  rmind 					/* uses BJ_XREG */
    973  1.2.4.1  rmind 					*nscratches = 4;
    974  1.2.4.1  rmind 				}
    975  1.2.4.1  rmind 				if (*nscratches < 3 &&
    976  1.2.4.1  rmind 				    read_width(&insns[i]) == 4) {
    977  1.2.4.1  rmind 					/* uses BJ_TMP2REG */
    978  1.2.4.1  rmind 					*nscratches = 3;
    979  1.2.4.1  rmind 				}
    980  1.2.4.1  rmind 			}
    981  1.2.4.1  rmind 
    982  1.2.4.1  rmind 			if (BPF_MODE(insns[i].code) == BPF_IND)
    983  1.2.4.1  rmind 				*initmask |= invalid & BJ_INIT_XBIT;
    984  1.2.4.1  rmind 
    985  1.2.4.1  rmind 			if (BPF_MODE(insns[i].code) == BPF_MEM &&
    986  1.2.4.1  rmind 			    (uint32_t)insns[i].k < BPF_MEMWORDS) {
    987  1.2.4.1  rmind 				*initmask |= invalid & BJ_INIT_MBIT(insns[i].k);
    988  1.2.4.1  rmind 			}
    989  1.2.4.1  rmind 
    990  1.2.4.1  rmind 			invalid &= ~BJ_INIT_ABIT;
    991  1.2.4.1  rmind 			continue;
    992  1.2.4.1  rmind 
    993  1.2.4.1  rmind 		case BPF_LDX:
    994  1.2.4.1  rmind #if defined(_KERNEL)
    995  1.2.4.1  rmind 			/* uses BJ_TMP3REG */
    996  1.2.4.1  rmind 			*nscratches = 5;
    997  1.2.4.1  rmind #endif
    998  1.2.4.1  rmind 			/* uses BJ_XREG */
    999  1.2.4.1  rmind 			if (*nscratches < 4)
   1000  1.2.4.1  rmind 				*nscratches = 4;
   1001  1.2.4.1  rmind 
   1002  1.2.4.1  rmind 			if (BPF_MODE(insns[i].code) == BPF_MEM &&
   1003  1.2.4.1  rmind 			    (uint32_t)insns[i].k < BPF_MEMWORDS) {
   1004  1.2.4.1  rmind 				*initmask |= invalid & BJ_INIT_MBIT(insns[i].k);
   1005  1.2.4.1  rmind 			}
   1006  1.2.4.1  rmind 
   1007  1.2.4.1  rmind 			invalid &= ~BJ_INIT_XBIT;
   1008  1.2.4.1  rmind 			continue;
   1009  1.2.4.1  rmind 
   1010  1.2.4.1  rmind 		case BPF_ST:
   1011  1.2.4.1  rmind 			*initmask |= invalid & BJ_INIT_ABIT;
   1012  1.2.4.1  rmind 
   1013  1.2.4.1  rmind 			if ((uint32_t)insns[i].k < BPF_MEMWORDS)
   1014  1.2.4.1  rmind 				invalid &= ~BJ_INIT_MBIT(insns[i].k);
   1015  1.2.4.1  rmind 
   1016  1.2.4.1  rmind 			continue;
   1017  1.2.4.1  rmind 
   1018  1.2.4.1  rmind 		case BPF_STX:
   1019  1.2.4.1  rmind 			/* uses BJ_XREG */
   1020  1.2.4.1  rmind 			if (*nscratches < 4)
   1021  1.2.4.1  rmind 				*nscratches = 4;
   1022  1.2.4.1  rmind 
   1023  1.2.4.1  rmind 			*initmask |= invalid & BJ_INIT_XBIT;
   1024  1.2.4.1  rmind 
   1025  1.2.4.1  rmind 			if ((uint32_t)insns[i].k < BPF_MEMWORDS)
   1026  1.2.4.1  rmind 				invalid &= ~BJ_INIT_MBIT(insns[i].k);
   1027  1.2.4.1  rmind 
   1028  1.2.4.1  rmind 			continue;
   1029  1.2.4.1  rmind 
   1030  1.2.4.1  rmind 		case BPF_ALU:
   1031  1.2.4.1  rmind 			*initmask |= invalid & BJ_INIT_ABIT;
   1032  1.2.4.1  rmind 
   1033  1.2.4.1  rmind 			if (insns[i].code != (BPF_ALU|BPF_NEG) &&
   1034  1.2.4.1  rmind 			    BPF_SRC(insns[i].code) == BPF_X) {
   1035  1.2.4.1  rmind 				*initmask |= invalid & BJ_INIT_XBIT;
   1036  1.2.4.1  rmind 				/* uses BJ_XREG */
   1037  1.2.4.1  rmind 				if (*nscratches < 4)
   1038  1.2.4.1  rmind 					*nscratches = 4;
   1039  1.2.4.1  rmind 
   1040  1.2.4.1  rmind 			}
   1041  1.2.4.1  rmind 
   1042  1.2.4.1  rmind 			invalid &= ~BJ_INIT_ABIT;
   1043  1.2.4.1  rmind 			continue;
   1044  1.2.4.1  rmind 
   1045  1.2.4.1  rmind 		case BPF_MISC:
   1046  1.2.4.1  rmind 			switch (BPF_MISCOP(insns[i].code)) {
   1047  1.2.4.1  rmind 			case BPF_TAX: // X <- A
   1048  1.2.4.1  rmind 				/* uses BJ_XREG */
   1049  1.2.4.1  rmind 				if (*nscratches < 4)
   1050  1.2.4.1  rmind 					*nscratches = 4;
   1051  1.2.4.1  rmind 
   1052  1.2.4.1  rmind 				*initmask |= invalid & BJ_INIT_ABIT;
   1053  1.2.4.1  rmind 				invalid &= ~BJ_INIT_XBIT;
   1054  1.2.4.1  rmind 				continue;
   1055  1.2.4.1  rmind 
   1056  1.2.4.1  rmind 			case BPF_TXA: // A <- X
   1057  1.2.4.1  rmind 				/* uses BJ_XREG */
   1058  1.2.4.1  rmind 				if (*nscratches < 4)
   1059  1.2.4.1  rmind 					*nscratches = 4;
   1060  1.2.4.1  rmind 
   1061  1.2.4.1  rmind 				*initmask |= invalid & BJ_INIT_XBIT;
   1062  1.2.4.1  rmind 				invalid &= ~BJ_INIT_ABIT;
   1063  1.2.4.1  rmind 				continue;
   1064  1.2.4.1  rmind 			}
   1065  1.2.4.1  rmind 
   1066  1.2.4.1  rmind 			continue;
   1067  1.2.4.1  rmind 
   1068      1.1  alnsn 		case BPF_JMP:
   1069  1.2.4.1  rmind 			/* Initialize abc_length for ABC pass. */
   1070  1.2.4.1  rmind 			insn_dat[i].u.jdata.abc_length = UINT32_MAX;
   1071  1.2.4.1  rmind 
   1072  1.2.4.1  rmind 			if (BPF_OP(insns[i].code) == BPF_JA) {
   1073      1.1  alnsn 				jt = jf = insns[i].k;
   1074      1.1  alnsn 			} else {
   1075      1.1  alnsn 				jt = insns[i].jt;
   1076      1.1  alnsn 				jf = insns[i].jf;
   1077      1.1  alnsn 			}
   1078      1.1  alnsn 
   1079      1.1  alnsn 			if (jt >= insn_count - (i + 1) ||
   1080      1.1  alnsn 			    jf >= insn_count - (i + 1)) {
   1081  1.2.4.1  rmind 				return false;
   1082      1.1  alnsn 			}
   1083      1.1  alnsn 
   1084      1.1  alnsn 			if (jt > 0 && jf > 0)
   1085      1.1  alnsn 				unreachable = true;
   1086      1.1  alnsn 
   1087  1.2.4.1  rmind 			jt += i + 1;
   1088  1.2.4.1  rmind 			jf += i + 1;
   1089      1.1  alnsn 
   1090  1.2.4.1  rmind 			jtf = insn_dat[i].u.jdata.jtf;
   1091  1.2.4.1  rmind 
   1092  1.2.4.1  rmind 			jtf[0].sjump = NULL;
   1093  1.2.4.1  rmind 			jtf[0].jdata = &insn_dat[i].u.jdata;
   1094  1.2.4.1  rmind 			SLIST_INSERT_HEAD(&insn_dat[jt].bjumps,
   1095  1.2.4.1  rmind 			    &jtf[0], entries);
   1096      1.1  alnsn 
   1097      1.1  alnsn 			if (jf != jt) {
   1098  1.2.4.1  rmind 				jtf[1].sjump = NULL;
   1099  1.2.4.1  rmind 				jtf[1].jdata = &insn_dat[i].u.jdata;
   1100  1.2.4.1  rmind 				SLIST_INSERT_HEAD(&insn_dat[jf].bjumps,
   1101  1.2.4.1  rmind 				    &jtf[1], entries);
   1102      1.1  alnsn 			}
   1103      1.1  alnsn 
   1104  1.2.4.1  rmind 			insn_dat[jf].invalid |= invalid;
   1105  1.2.4.1  rmind 			insn_dat[jt].invalid |= invalid;
   1106  1.2.4.1  rmind 			invalid = 0;
   1107  1.2.4.1  rmind 
   1108      1.1  alnsn 			continue;
   1109      1.1  alnsn 		}
   1110      1.1  alnsn 	}
   1111      1.1  alnsn 
   1112  1.2.4.1  rmind 	return true;
   1113      1.1  alnsn }
   1114      1.1  alnsn 
   1115      1.1  alnsn /*
   1116  1.2.4.1  rmind  * Array Bounds Check Elimination (ABC) pass.
   1117      1.1  alnsn  */
   1118  1.2.4.1  rmind static void
   1119  1.2.4.1  rmind optimize_pass2(const struct bpf_insn *insns,
   1120  1.2.4.1  rmind     struct bpfjit_insn_data *insn_dat, size_t insn_count)
   1121      1.1  alnsn {
   1122  1.2.4.1  rmind 	struct bpfjit_jump *jmp;
   1123  1.2.4.1  rmind 	const struct bpf_insn *pc;
   1124  1.2.4.1  rmind 	struct bpfjit_insn_data *pd;
   1125      1.1  alnsn 	size_t i;
   1126  1.2.4.1  rmind 	uint32_t length, abc_length = 0;
   1127      1.1  alnsn 
   1128  1.2.4.1  rmind 	for (i = insn_count; i != 0; i--) {
   1129  1.2.4.1  rmind 		pc = &insns[i-1];
   1130  1.2.4.1  rmind 		pd = &insn_dat[i-1];
   1131      1.1  alnsn 
   1132  1.2.4.1  rmind 		if (pd->unreachable)
   1133  1.2.4.1  rmind 			continue;
   1134  1.2.4.1  rmind 
   1135  1.2.4.1  rmind 		switch (BPF_CLASS(pc->code)) {
   1136  1.2.4.1  rmind 		case BPF_RET:
   1137  1.2.4.1  rmind 			abc_length = 0;
   1138  1.2.4.1  rmind 			break;
   1139  1.2.4.1  rmind 
   1140  1.2.4.1  rmind 		case BPF_JMP:
   1141  1.2.4.1  rmind 			abc_length = pd->u.jdata.abc_length;
   1142  1.2.4.1  rmind 			break;
   1143  1.2.4.1  rmind 
   1144  1.2.4.1  rmind 		default:
   1145  1.2.4.1  rmind 			if (read_pkt_insn(pc, &length)) {
   1146  1.2.4.1  rmind 				if (abc_length < length)
   1147  1.2.4.1  rmind 					abc_length = length;
   1148  1.2.4.1  rmind 				pd->u.rdata.abc_length = abc_length;
   1149  1.2.4.1  rmind 			}
   1150  1.2.4.1  rmind 			break;
   1151      1.1  alnsn 		}
   1152      1.1  alnsn 
   1153  1.2.4.1  rmind 		SLIST_FOREACH(jmp, &pd->bjumps, entries) {
   1154  1.2.4.1  rmind 			if (jmp->jdata->abc_length > abc_length)
   1155  1.2.4.1  rmind 				jmp->jdata->abc_length = abc_length;
   1156      1.1  alnsn 		}
   1157  1.2.4.1  rmind 	}
   1158  1.2.4.1  rmind }
   1159      1.1  alnsn 
   1160  1.2.4.1  rmind static void
   1161  1.2.4.1  rmind optimize_pass3(const struct bpf_insn *insns,
   1162  1.2.4.1  rmind     struct bpfjit_insn_data *insn_dat, size_t insn_count)
   1163  1.2.4.1  rmind {
   1164  1.2.4.1  rmind 	struct bpfjit_jump *jmp;
   1165  1.2.4.1  rmind 	size_t i;
   1166  1.2.4.1  rmind 	uint32_t length, checked_length = 0;
   1167  1.2.4.1  rmind 
   1168  1.2.4.1  rmind 	for (i = 0; i < insn_count; i++) {
   1169  1.2.4.1  rmind 		if (insn_dat[i].unreachable)
   1170  1.2.4.1  rmind 			continue;
   1171      1.1  alnsn 
   1172  1.2.4.1  rmind 		SLIST_FOREACH(jmp, &insn_dat[i].bjumps, entries) {
   1173  1.2.4.1  rmind 			if (jmp->jdata->checked_length < checked_length)
   1174  1.2.4.1  rmind 				checked_length = jmp->jdata->checked_length;
   1175  1.2.4.1  rmind 		}
   1176  1.2.4.1  rmind 
   1177  1.2.4.1  rmind 		if (BPF_CLASS(insns[i].code) == BPF_JMP) {
   1178  1.2.4.1  rmind 			insn_dat[i].u.jdata.checked_length = checked_length;
   1179  1.2.4.1  rmind 		} else if (read_pkt_insn(&insns[i], &length)) {
   1180  1.2.4.1  rmind 			struct bpfjit_read_pkt_data *rdata =
   1181  1.2.4.1  rmind 			    &insn_dat[i].u.rdata;
   1182  1.2.4.1  rmind 			rdata->check_length = 0;
   1183  1.2.4.1  rmind 			if (checked_length < rdata->abc_length) {
   1184  1.2.4.1  rmind 				checked_length = rdata->abc_length;
   1185  1.2.4.1  rmind 				rdata->check_length = checked_length;
   1186  1.2.4.1  rmind 			}
   1187      1.1  alnsn 		}
   1188      1.1  alnsn 	}
   1189  1.2.4.1  rmind }
   1190      1.1  alnsn 
   1191  1.2.4.1  rmind static bool
   1192  1.2.4.1  rmind optimize(const struct bpf_insn *insns,
   1193  1.2.4.1  rmind     struct bpfjit_insn_data *insn_dat, size_t insn_count,
   1194  1.2.4.1  rmind     bpfjit_init_mask_t *initmask, int *nscratches)
   1195  1.2.4.1  rmind {
   1196  1.2.4.1  rmind 
   1197  1.2.4.1  rmind 	optimize_init(insn_dat, insn_count);
   1198  1.2.4.1  rmind 
   1199  1.2.4.1  rmind 	if (!optimize_pass1(insns, insn_dat, insn_count,
   1200  1.2.4.1  rmind 	    initmask, nscratches)) {
   1201  1.2.4.1  rmind 		return false;
   1202  1.2.4.1  rmind 	}
   1203  1.2.4.1  rmind 
   1204  1.2.4.1  rmind 	optimize_pass2(insns, insn_dat, insn_count);
   1205  1.2.4.1  rmind 	optimize_pass3(insns, insn_dat, insn_count);
   1206  1.2.4.1  rmind 
   1207  1.2.4.1  rmind 	return true;
   1208      1.1  alnsn }
   1209      1.1  alnsn 
   1210      1.1  alnsn /*
   1211      1.1  alnsn  * Convert BPF_ALU operations except BPF_NEG and BPF_DIV to sljit operation.
   1212      1.1  alnsn  */
   1213      1.1  alnsn static int
   1214  1.2.4.1  rmind bpf_alu_to_sljit_op(const struct bpf_insn *pc)
   1215      1.1  alnsn {
   1216      1.1  alnsn 
   1217      1.1  alnsn 	/*
   1218      1.1  alnsn 	 * Note: all supported 64bit arches have 32bit multiply
   1219      1.1  alnsn 	 * instruction so SLJIT_INT_OP doesn't have any overhead.
   1220      1.1  alnsn 	 */
   1221      1.1  alnsn 	switch (BPF_OP(pc->code)) {
   1222      1.1  alnsn 	case BPF_ADD: return SLJIT_ADD;
   1223      1.1  alnsn 	case BPF_SUB: return SLJIT_SUB;
   1224      1.1  alnsn 	case BPF_MUL: return SLJIT_MUL|SLJIT_INT_OP;
   1225      1.1  alnsn 	case BPF_OR:  return SLJIT_OR;
   1226      1.1  alnsn 	case BPF_AND: return SLJIT_AND;
   1227      1.1  alnsn 	case BPF_LSH: return SLJIT_SHL;
   1228      1.1  alnsn 	case BPF_RSH: return SLJIT_LSHR|SLJIT_INT_OP;
   1229      1.1  alnsn 	default:
   1230  1.2.4.1  rmind 		BJ_ASSERT(false);
   1231      1.1  alnsn 		return 0;
   1232      1.1  alnsn 	}
   1233      1.1  alnsn }
   1234      1.1  alnsn 
   1235      1.1  alnsn /*
   1236      1.1  alnsn  * Convert BPF_JMP operations except BPF_JA to sljit condition.
   1237      1.1  alnsn  */
   1238      1.1  alnsn static int
   1239  1.2.4.1  rmind bpf_jmp_to_sljit_cond(const struct bpf_insn *pc, bool negate)
   1240      1.1  alnsn {
   1241      1.1  alnsn 	/*
   1242      1.1  alnsn 	 * Note: all supported 64bit arches have 32bit comparison
   1243      1.1  alnsn 	 * instructions so SLJIT_INT_OP doesn't have any overhead.
   1244      1.1  alnsn 	 */
   1245      1.1  alnsn 	int rv = SLJIT_INT_OP;
   1246      1.1  alnsn 
   1247      1.1  alnsn 	switch (BPF_OP(pc->code)) {
   1248      1.1  alnsn 	case BPF_JGT:
   1249      1.1  alnsn 		rv |= negate ? SLJIT_C_LESS_EQUAL : SLJIT_C_GREATER;
   1250      1.1  alnsn 		break;
   1251      1.1  alnsn 	case BPF_JGE:
   1252      1.1  alnsn 		rv |= negate ? SLJIT_C_LESS : SLJIT_C_GREATER_EQUAL;
   1253      1.1  alnsn 		break;
   1254      1.1  alnsn 	case BPF_JEQ:
   1255      1.1  alnsn 		rv |= negate ? SLJIT_C_NOT_EQUAL : SLJIT_C_EQUAL;
   1256      1.1  alnsn 		break;
   1257      1.1  alnsn 	case BPF_JSET:
   1258      1.1  alnsn 		rv |= negate ? SLJIT_C_EQUAL : SLJIT_C_NOT_EQUAL;
   1259      1.1  alnsn 		break;
   1260      1.1  alnsn 	default:
   1261  1.2.4.1  rmind 		BJ_ASSERT(false);
   1262      1.1  alnsn 	}
   1263      1.1  alnsn 
   1264      1.1  alnsn 	return rv;
   1265      1.1  alnsn }
   1266      1.1  alnsn 
   1267      1.1  alnsn /*
   1268      1.1  alnsn  * Convert BPF_K and BPF_X to sljit register.
   1269      1.1  alnsn  */
   1270      1.1  alnsn static int
   1271  1.2.4.1  rmind kx_to_reg(const struct bpf_insn *pc)
   1272      1.1  alnsn {
   1273      1.1  alnsn 
   1274      1.1  alnsn 	switch (BPF_SRC(pc->code)) {
   1275      1.1  alnsn 	case BPF_K: return SLJIT_IMM;
   1276  1.2.4.1  rmind 	case BPF_X: return BJ_XREG;
   1277      1.1  alnsn 	default:
   1278  1.2.4.1  rmind 		BJ_ASSERT(false);
   1279      1.1  alnsn 		return 0;
   1280      1.1  alnsn 	}
   1281      1.1  alnsn }
   1282      1.1  alnsn 
   1283      1.1  alnsn static sljit_w
   1284  1.2.4.1  rmind kx_to_reg_arg(const struct bpf_insn *pc)
   1285      1.1  alnsn {
   1286      1.1  alnsn 
   1287      1.1  alnsn 	switch (BPF_SRC(pc->code)) {
   1288      1.1  alnsn 	case BPF_K: return (uint32_t)pc->k; /* SLJIT_IMM, pc->k, */
   1289  1.2.4.1  rmind 	case BPF_X: return 0;               /* BJ_XREG, 0,      */
   1290      1.1  alnsn 	default:
   1291  1.2.4.1  rmind 		BJ_ASSERT(false);
   1292      1.1  alnsn 		return 0;
   1293      1.1  alnsn 	}
   1294      1.1  alnsn }
   1295      1.1  alnsn 
   1296  1.2.4.1  rmind bpfjit_func_t
   1297  1.2.4.1  rmind bpfjit_generate_code(bpf_ctx_t *bc, struct bpf_insn *insns, size_t insn_count)
   1298      1.1  alnsn {
   1299      1.1  alnsn 	void *rv;
   1300  1.2.4.1  rmind 	struct sljit_compiler *compiler;
   1301  1.2.4.1  rmind 
   1302      1.1  alnsn 	size_t i;
   1303      1.1  alnsn 	int status;
   1304      1.1  alnsn 	int branching, negate;
   1305      1.1  alnsn 	unsigned int rval, mode, src;
   1306  1.2.4.1  rmind 
   1307  1.2.4.1  rmind 	/* optimization related */
   1308  1.2.4.1  rmind 	bpfjit_init_mask_t initmask;
   1309  1.2.4.1  rmind 	int nscratches;
   1310      1.1  alnsn 
   1311      1.1  alnsn 	/* a list of jumps to out-of-bound return from a generated function */
   1312      1.1  alnsn 	struct sljit_jump **ret0;
   1313      1.1  alnsn 	size_t ret0_size, ret0_maxsize;
   1314      1.1  alnsn 
   1315  1.2.4.1  rmind 	const struct bpf_insn *pc;
   1316      1.1  alnsn 	struct bpfjit_insn_data *insn_dat;
   1317      1.1  alnsn 
   1318      1.1  alnsn 	/* for local use */
   1319      1.1  alnsn 	struct sljit_label *label;
   1320      1.1  alnsn 	struct sljit_jump *jump;
   1321      1.1  alnsn 	struct bpfjit_jump *bjump, *jtf;
   1322      1.1  alnsn 
   1323      1.1  alnsn 	struct sljit_jump *to_mchain_jump;
   1324      1.1  alnsn 
   1325      1.1  alnsn 	uint32_t jt, jf;
   1326      1.1  alnsn 
   1327      1.1  alnsn 	rv = NULL;
   1328      1.1  alnsn 	compiler = NULL;
   1329      1.1  alnsn 	insn_dat = NULL;
   1330      1.1  alnsn 	ret0 = NULL;
   1331      1.1  alnsn 
   1332  1.2.4.1  rmind 	if (insn_count == 0 || insn_count > SIZE_MAX / sizeof(insn_dat[0]))
   1333      1.1  alnsn 		goto fail;
   1334      1.1  alnsn 
   1335  1.2.4.1  rmind 	insn_dat = BJ_ALLOC(insn_count * sizeof(insn_dat[0]));
   1336      1.1  alnsn 	if (insn_dat == NULL)
   1337      1.1  alnsn 		goto fail;
   1338      1.1  alnsn 
   1339  1.2.4.1  rmind 	if (!optimize(insns, insn_dat, insn_count,
   1340  1.2.4.1  rmind 	    &initmask, &nscratches)) {
   1341      1.1  alnsn 		goto fail;
   1342      1.1  alnsn 	}
   1343      1.1  alnsn 
   1344  1.2.4.1  rmind #if defined(_KERNEL)
   1345  1.2.4.1  rmind 	/* bpf_filter() checks initialization of memwords. */
   1346  1.2.4.1  rmind 	BJ_ASSERT((initmask & BJ_INIT_MMASK) == 0);
   1347  1.2.4.1  rmind #endif
   1348  1.2.4.1  rmind 
   1349  1.2.4.1  rmind 	ret0_size = 0;
   1350  1.2.4.1  rmind 	ret0_maxsize = 64;
   1351  1.2.4.1  rmind 	ret0 = BJ_ALLOC(ret0_maxsize * sizeof(ret0[0]));
   1352  1.2.4.1  rmind 	if (ret0 == NULL)
   1353      1.1  alnsn 		goto fail;
   1354      1.1  alnsn 
   1355      1.1  alnsn 	compiler = sljit_create_compiler();
   1356      1.1  alnsn 	if (compiler == NULL)
   1357      1.1  alnsn 		goto fail;
   1358      1.1  alnsn 
   1359      1.1  alnsn #if !defined(_KERNEL) && defined(SLJIT_VERBOSE) && SLJIT_VERBOSE
   1360      1.1  alnsn 	sljit_compiler_verbose(compiler, stderr);
   1361      1.1  alnsn #endif
   1362      1.1  alnsn 
   1363  1.2.4.1  rmind 	status = sljit_emit_enter(compiler,
   1364  1.2.4.1  rmind 	    3, nscratches, 3, sizeof(struct bpfjit_stack));
   1365      1.1  alnsn 	if (status != SLJIT_SUCCESS)
   1366      1.1  alnsn 		goto fail;
   1367      1.1  alnsn 
   1368  1.2.4.1  rmind 	for (i = 0; i < BPF_MEMWORDS; i++) {
   1369  1.2.4.1  rmind 		if (initmask & BJ_INIT_MBIT(i)) {
   1370  1.2.4.1  rmind 			status = sljit_emit_op1(compiler,
   1371  1.2.4.1  rmind 			    SLJIT_MOV_UI,
   1372  1.2.4.1  rmind 			    SLJIT_MEM1(SLJIT_LOCALS_REG),
   1373  1.2.4.1  rmind 			    offsetof(struct bpfjit_stack, mem) +
   1374  1.2.4.1  rmind 			        i * sizeof(uint32_t),
   1375  1.2.4.1  rmind 			    SLJIT_IMM, 0);
   1376  1.2.4.1  rmind 			if (status != SLJIT_SUCCESS)
   1377  1.2.4.1  rmind 				goto fail;
   1378  1.2.4.1  rmind 		}
   1379      1.1  alnsn 	}
   1380      1.1  alnsn 
   1381  1.2.4.1  rmind 	if (initmask & BJ_INIT_ABIT) {
   1382      1.1  alnsn 		/* A = 0; */
   1383      1.1  alnsn 		status = sljit_emit_op1(compiler,
   1384      1.1  alnsn 		    SLJIT_MOV,
   1385  1.2.4.1  rmind 		    BJ_AREG, 0,
   1386      1.1  alnsn 		    SLJIT_IMM, 0);
   1387      1.1  alnsn 		if (status != SLJIT_SUCCESS)
   1388      1.1  alnsn 			goto fail;
   1389      1.1  alnsn 	}
   1390      1.1  alnsn 
   1391  1.2.4.1  rmind 	if (initmask & BJ_INIT_XBIT) {
   1392      1.1  alnsn 		/* X = 0; */
   1393      1.1  alnsn 		status = sljit_emit_op1(compiler,
   1394      1.1  alnsn 		    SLJIT_MOV,
   1395  1.2.4.1  rmind 		    BJ_XREG, 0,
   1396      1.1  alnsn 		    SLJIT_IMM, 0);
   1397      1.1  alnsn 		if (status != SLJIT_SUCCESS)
   1398      1.1  alnsn 			goto fail;
   1399      1.1  alnsn 	}
   1400      1.1  alnsn 
   1401      1.1  alnsn 	for (i = 0; i < insn_count; i++) {
   1402  1.2.4.1  rmind 		if (insn_dat[i].unreachable)
   1403      1.1  alnsn 			continue;
   1404      1.1  alnsn 
   1405      1.1  alnsn 		to_mchain_jump = NULL;
   1406      1.1  alnsn 
   1407      1.1  alnsn 		/*
   1408      1.1  alnsn 		 * Resolve jumps to the current insn.
   1409      1.1  alnsn 		 */
   1410      1.1  alnsn 		label = NULL;
   1411  1.2.4.1  rmind 		SLIST_FOREACH(bjump, &insn_dat[i].bjumps, entries) {
   1412  1.2.4.1  rmind 			if (bjump->sjump != NULL) {
   1413      1.1  alnsn 				if (label == NULL)
   1414      1.1  alnsn 					label = sljit_emit_label(compiler);
   1415      1.1  alnsn 				if (label == NULL)
   1416      1.1  alnsn 					goto fail;
   1417  1.2.4.1  rmind 				sljit_set_label(bjump->sjump, label);
   1418      1.1  alnsn 			}
   1419      1.1  alnsn 		}
   1420      1.1  alnsn 
   1421      1.1  alnsn 		if (read_pkt_insn(&insns[i], NULL) &&
   1422  1.2.4.1  rmind 		    insn_dat[i].u.rdata.check_length > 0) {
   1423  1.2.4.1  rmind 			/* if (buflen < check_length) return 0; */
   1424      1.1  alnsn 			jump = sljit_emit_cmp(compiler,
   1425      1.1  alnsn 			    SLJIT_C_LESS,
   1426  1.2.4.1  rmind 			    BJ_BUFLEN, 0,
   1427      1.1  alnsn 			    SLJIT_IMM,
   1428  1.2.4.1  rmind 			    insn_dat[i].u.rdata.check_length);
   1429      1.1  alnsn 			if (jump == NULL)
   1430      1.1  alnsn 		  		goto fail;
   1431      1.1  alnsn #ifdef _KERNEL
   1432      1.1  alnsn 			to_mchain_jump = jump;
   1433      1.1  alnsn #else
   1434  1.2.4.1  rmind 			if (!append_jump(jump, &ret0,
   1435  1.2.4.1  rmind 			    &ret0_size, &ret0_maxsize))
   1436  1.2.4.1  rmind 				goto fail;
   1437      1.1  alnsn #endif
   1438      1.1  alnsn 		}
   1439      1.1  alnsn 
   1440      1.1  alnsn 		pc = &insns[i];
   1441      1.1  alnsn 		switch (BPF_CLASS(pc->code)) {
   1442      1.1  alnsn 
   1443      1.1  alnsn 		default:
   1444      1.1  alnsn 			goto fail;
   1445      1.1  alnsn 
   1446      1.1  alnsn 		case BPF_LD:
   1447      1.1  alnsn 			/* BPF_LD+BPF_IMM          A <- k */
   1448      1.1  alnsn 			if (pc->code == (BPF_LD|BPF_IMM)) {
   1449      1.1  alnsn 				status = sljit_emit_op1(compiler,
   1450      1.1  alnsn 				    SLJIT_MOV,
   1451  1.2.4.1  rmind 				    BJ_AREG, 0,
   1452      1.1  alnsn 				    SLJIT_IMM, (uint32_t)pc->k);
   1453      1.1  alnsn 				if (status != SLJIT_SUCCESS)
   1454      1.1  alnsn 					goto fail;
   1455      1.1  alnsn 
   1456      1.1  alnsn 				continue;
   1457      1.1  alnsn 			}
   1458      1.1  alnsn 
   1459      1.1  alnsn 			/* BPF_LD+BPF_MEM          A <- M[k] */
   1460      1.1  alnsn 			if (pc->code == (BPF_LD|BPF_MEM)) {
   1461  1.2.4.1  rmind 				if (pc->k >= BPF_MEMWORDS)
   1462      1.1  alnsn 					goto fail;
   1463      1.1  alnsn 				status = sljit_emit_op1(compiler,
   1464      1.1  alnsn 				    SLJIT_MOV_UI,
   1465  1.2.4.1  rmind 				    BJ_AREG, 0,
   1466      1.1  alnsn 				    SLJIT_MEM1(SLJIT_LOCALS_REG),
   1467  1.2.4.1  rmind 				    offsetof(struct bpfjit_stack, mem) +
   1468  1.2.4.1  rmind 				        pc->k * sizeof(uint32_t));
   1469      1.1  alnsn 				if (status != SLJIT_SUCCESS)
   1470      1.1  alnsn 					goto fail;
   1471      1.1  alnsn 
   1472      1.1  alnsn 				continue;
   1473      1.1  alnsn 			}
   1474      1.1  alnsn 
   1475      1.1  alnsn 			/* BPF_LD+BPF_W+BPF_LEN    A <- len */
   1476      1.1  alnsn 			if (pc->code == (BPF_LD|BPF_W|BPF_LEN)) {
   1477      1.1  alnsn 				status = sljit_emit_op1(compiler,
   1478      1.1  alnsn 				    SLJIT_MOV,
   1479  1.2.4.1  rmind 				    BJ_AREG, 0,
   1480  1.2.4.1  rmind 				    BJ_WIRELEN, 0);
   1481      1.1  alnsn 				if (status != SLJIT_SUCCESS)
   1482      1.1  alnsn 					goto fail;
   1483      1.1  alnsn 
   1484      1.1  alnsn 				continue;
   1485      1.1  alnsn 			}
   1486      1.1  alnsn 
   1487      1.1  alnsn 			mode = BPF_MODE(pc->code);
   1488      1.1  alnsn 			if (mode != BPF_ABS && mode != BPF_IND)
   1489      1.1  alnsn 				goto fail;
   1490      1.1  alnsn 
   1491      1.1  alnsn 			status = emit_pkt_read(compiler, pc,
   1492  1.2.4.1  rmind 			    to_mchain_jump, &ret0, &ret0_size, &ret0_maxsize);
   1493      1.1  alnsn 			if (status != SLJIT_SUCCESS)
   1494      1.1  alnsn 				goto fail;
   1495      1.1  alnsn 
   1496      1.1  alnsn 			continue;
   1497      1.1  alnsn 
   1498      1.1  alnsn 		case BPF_LDX:
   1499      1.1  alnsn 			mode = BPF_MODE(pc->code);
   1500      1.1  alnsn 
   1501      1.1  alnsn 			/* BPF_LDX+BPF_W+BPF_IMM    X <- k */
   1502      1.1  alnsn 			if (mode == BPF_IMM) {
   1503      1.1  alnsn 				if (BPF_SIZE(pc->code) != BPF_W)
   1504      1.1  alnsn 					goto fail;
   1505      1.1  alnsn 				status = sljit_emit_op1(compiler,
   1506      1.1  alnsn 				    SLJIT_MOV,
   1507  1.2.4.1  rmind 				    BJ_XREG, 0,
   1508      1.1  alnsn 				    SLJIT_IMM, (uint32_t)pc->k);
   1509      1.1  alnsn 				if (status != SLJIT_SUCCESS)
   1510      1.1  alnsn 					goto fail;
   1511      1.1  alnsn 
   1512      1.1  alnsn 				continue;
   1513      1.1  alnsn 			}
   1514      1.1  alnsn 
   1515      1.1  alnsn 			/* BPF_LDX+BPF_W+BPF_LEN    X <- len */
   1516      1.1  alnsn 			if (mode == BPF_LEN) {
   1517      1.1  alnsn 				if (BPF_SIZE(pc->code) != BPF_W)
   1518      1.1  alnsn 					goto fail;
   1519      1.1  alnsn 				status = sljit_emit_op1(compiler,
   1520      1.1  alnsn 				    SLJIT_MOV,
   1521  1.2.4.1  rmind 				    BJ_XREG, 0,
   1522  1.2.4.1  rmind 				    BJ_WIRELEN, 0);
   1523      1.1  alnsn 				if (status != SLJIT_SUCCESS)
   1524      1.1  alnsn 					goto fail;
   1525      1.1  alnsn 
   1526      1.1  alnsn 				continue;
   1527      1.1  alnsn 			}
   1528      1.1  alnsn 
   1529      1.1  alnsn 			/* BPF_LDX+BPF_W+BPF_MEM    X <- M[k] */
   1530      1.1  alnsn 			if (mode == BPF_MEM) {
   1531      1.1  alnsn 				if (BPF_SIZE(pc->code) != BPF_W)
   1532      1.1  alnsn 					goto fail;
   1533  1.2.4.1  rmind 				if (pc->k >= BPF_MEMWORDS)
   1534      1.1  alnsn 					goto fail;
   1535      1.1  alnsn 				status = sljit_emit_op1(compiler,
   1536      1.1  alnsn 				    SLJIT_MOV_UI,
   1537  1.2.4.1  rmind 				    BJ_XREG, 0,
   1538      1.1  alnsn 				    SLJIT_MEM1(SLJIT_LOCALS_REG),
   1539  1.2.4.1  rmind 				    offsetof(struct bpfjit_stack, mem) +
   1540  1.2.4.1  rmind 				        pc->k * sizeof(uint32_t));
   1541      1.1  alnsn 				if (status != SLJIT_SUCCESS)
   1542      1.1  alnsn 					goto fail;
   1543      1.1  alnsn 
   1544      1.1  alnsn 				continue;
   1545      1.1  alnsn 			}
   1546      1.1  alnsn 
   1547      1.1  alnsn 			/* BPF_LDX+BPF_B+BPF_MSH    X <- 4*(P[k:1]&0xf) */
   1548      1.1  alnsn 			if (mode != BPF_MSH || BPF_SIZE(pc->code) != BPF_B)
   1549      1.1  alnsn 				goto fail;
   1550      1.1  alnsn 
   1551      1.1  alnsn 			status = emit_msh(compiler, pc,
   1552  1.2.4.1  rmind 			    to_mchain_jump, &ret0, &ret0_size, &ret0_maxsize);
   1553      1.1  alnsn 			if (status != SLJIT_SUCCESS)
   1554      1.1  alnsn 				goto fail;
   1555      1.1  alnsn 
   1556      1.1  alnsn 			continue;
   1557      1.1  alnsn 
   1558      1.1  alnsn 		case BPF_ST:
   1559  1.2.4.1  rmind 			if (pc->code != BPF_ST || pc->k >= BPF_MEMWORDS)
   1560      1.1  alnsn 				goto fail;
   1561      1.1  alnsn 
   1562      1.1  alnsn 			status = sljit_emit_op1(compiler,
   1563      1.1  alnsn 			    SLJIT_MOV_UI,
   1564      1.1  alnsn 			    SLJIT_MEM1(SLJIT_LOCALS_REG),
   1565  1.2.4.1  rmind 			    offsetof(struct bpfjit_stack, mem) +
   1566  1.2.4.1  rmind 			        pc->k * sizeof(uint32_t),
   1567  1.2.4.1  rmind 			    BJ_AREG, 0);
   1568      1.1  alnsn 			if (status != SLJIT_SUCCESS)
   1569      1.1  alnsn 				goto fail;
   1570      1.1  alnsn 
   1571      1.1  alnsn 			continue;
   1572      1.1  alnsn 
   1573      1.1  alnsn 		case BPF_STX:
   1574  1.2.4.1  rmind 			if (pc->code != BPF_STX || pc->k >= BPF_MEMWORDS)
   1575      1.1  alnsn 				goto fail;
   1576      1.1  alnsn 
   1577      1.1  alnsn 			status = sljit_emit_op1(compiler,
   1578      1.1  alnsn 			    SLJIT_MOV_UI,
   1579      1.1  alnsn 			    SLJIT_MEM1(SLJIT_LOCALS_REG),
   1580  1.2.4.1  rmind 			    offsetof(struct bpfjit_stack, mem) +
   1581  1.2.4.1  rmind 			        pc->k * sizeof(uint32_t),
   1582  1.2.4.1  rmind 			    BJ_XREG, 0);
   1583      1.1  alnsn 			if (status != SLJIT_SUCCESS)
   1584      1.1  alnsn 				goto fail;
   1585      1.1  alnsn 
   1586      1.1  alnsn 			continue;
   1587      1.1  alnsn 
   1588      1.1  alnsn 		case BPF_ALU:
   1589      1.1  alnsn 			if (pc->code == (BPF_ALU|BPF_NEG)) {
   1590      1.1  alnsn 				status = sljit_emit_op1(compiler,
   1591      1.1  alnsn 				    SLJIT_NEG,
   1592  1.2.4.1  rmind 				    BJ_AREG, 0,
   1593  1.2.4.1  rmind 				    BJ_AREG, 0);
   1594      1.1  alnsn 				if (status != SLJIT_SUCCESS)
   1595      1.1  alnsn 					goto fail;
   1596      1.1  alnsn 
   1597      1.1  alnsn 				continue;
   1598      1.1  alnsn 			}
   1599      1.1  alnsn 
   1600      1.1  alnsn 			if (BPF_OP(pc->code) != BPF_DIV) {
   1601      1.1  alnsn 				status = sljit_emit_op2(compiler,
   1602      1.1  alnsn 				    bpf_alu_to_sljit_op(pc),
   1603  1.2.4.1  rmind 				    BJ_AREG, 0,
   1604  1.2.4.1  rmind 				    BJ_AREG, 0,
   1605      1.1  alnsn 				    kx_to_reg(pc), kx_to_reg_arg(pc));
   1606      1.1  alnsn 				if (status != SLJIT_SUCCESS)
   1607      1.1  alnsn 					goto fail;
   1608      1.1  alnsn 
   1609      1.1  alnsn 				continue;
   1610      1.1  alnsn 			}
   1611      1.1  alnsn 
   1612      1.1  alnsn 			/* BPF_DIV */
   1613      1.1  alnsn 
   1614      1.1  alnsn 			src = BPF_SRC(pc->code);
   1615      1.1  alnsn 			if (src != BPF_X && src != BPF_K)
   1616      1.1  alnsn 				goto fail;
   1617      1.1  alnsn 
   1618      1.1  alnsn 			/* division by zero? */
   1619      1.1  alnsn 			if (src == BPF_X) {
   1620      1.1  alnsn 				jump = sljit_emit_cmp(compiler,
   1621      1.1  alnsn 				    SLJIT_C_EQUAL|SLJIT_INT_OP,
   1622  1.2.4.1  rmind 				    BJ_XREG, 0,
   1623      1.1  alnsn 				    SLJIT_IMM, 0);
   1624      1.1  alnsn 				if (jump == NULL)
   1625      1.1  alnsn 					goto fail;
   1626  1.2.4.1  rmind 				if (!append_jump(jump, &ret0,
   1627  1.2.4.1  rmind 				    &ret0_size, &ret0_maxsize))
   1628  1.2.4.1  rmind 					goto fail;
   1629      1.1  alnsn 			} else if (pc->k == 0) {
   1630      1.1  alnsn 				jump = sljit_emit_jump(compiler, SLJIT_JUMP);
   1631      1.1  alnsn 				if (jump == NULL)
   1632      1.1  alnsn 					goto fail;
   1633  1.2.4.1  rmind 				if (!append_jump(jump, &ret0,
   1634  1.2.4.1  rmind 				    &ret0_size, &ret0_maxsize))
   1635  1.2.4.1  rmind 					goto fail;
   1636      1.1  alnsn 			}
   1637      1.1  alnsn 
   1638      1.1  alnsn 			if (src == BPF_X) {
   1639  1.2.4.1  rmind 				status = emit_division(compiler, BJ_XREG, 0);
   1640      1.1  alnsn 				if (status != SLJIT_SUCCESS)
   1641      1.1  alnsn 					goto fail;
   1642      1.1  alnsn 			} else if (pc->k != 0) {
   1643      1.1  alnsn 				if (pc->k & (pc->k - 1)) {
   1644      1.1  alnsn 				    status = emit_division(compiler,
   1645      1.1  alnsn 				        SLJIT_IMM, (uint32_t)pc->k);
   1646      1.1  alnsn 				} else {
   1647  1.2.4.1  rmind 				    status = emit_pow2_division(compiler,
   1648      1.1  alnsn 				        (uint32_t)pc->k);
   1649      1.1  alnsn 				}
   1650      1.1  alnsn 				if (status != SLJIT_SUCCESS)
   1651      1.1  alnsn 					goto fail;
   1652      1.1  alnsn 			}
   1653      1.1  alnsn 
   1654      1.1  alnsn 			continue;
   1655      1.1  alnsn 
   1656      1.1  alnsn 		case BPF_JMP:
   1657  1.2.4.1  rmind 			if (BPF_OP(pc->code) == BPF_JA) {
   1658      1.1  alnsn 				jt = jf = pc->k;
   1659      1.1  alnsn 			} else {
   1660      1.1  alnsn 				jt = pc->jt;
   1661      1.1  alnsn 				jf = pc->jf;
   1662      1.1  alnsn 			}
   1663      1.1  alnsn 
   1664      1.1  alnsn 			negate = (jt == 0) ? 1 : 0;
   1665      1.1  alnsn 			branching = (jt == jf) ? 0 : 1;
   1666  1.2.4.1  rmind 			jtf = insn_dat[i].u.jdata.jtf;
   1667      1.1  alnsn 
   1668      1.1  alnsn 			if (branching) {
   1669      1.1  alnsn 				if (BPF_OP(pc->code) != BPF_JSET) {
   1670      1.1  alnsn 					jump = sljit_emit_cmp(compiler,
   1671      1.1  alnsn 					    bpf_jmp_to_sljit_cond(pc, negate),
   1672  1.2.4.1  rmind 					    BJ_AREG, 0,
   1673      1.1  alnsn 					    kx_to_reg(pc), kx_to_reg_arg(pc));
   1674      1.1  alnsn 				} else {
   1675      1.1  alnsn 					status = sljit_emit_op2(compiler,
   1676      1.1  alnsn 					    SLJIT_AND,
   1677  1.2.4.1  rmind 					    BJ_TMP1REG, 0,
   1678  1.2.4.1  rmind 					    BJ_AREG, 0,
   1679      1.1  alnsn 					    kx_to_reg(pc), kx_to_reg_arg(pc));
   1680      1.1  alnsn 					if (status != SLJIT_SUCCESS)
   1681      1.1  alnsn 						goto fail;
   1682      1.1  alnsn 
   1683      1.1  alnsn 					jump = sljit_emit_cmp(compiler,
   1684      1.1  alnsn 					    bpf_jmp_to_sljit_cond(pc, negate),
   1685  1.2.4.1  rmind 					    BJ_TMP1REG, 0,
   1686      1.1  alnsn 					    SLJIT_IMM, 0);
   1687      1.1  alnsn 				}
   1688      1.1  alnsn 
   1689      1.1  alnsn 				if (jump == NULL)
   1690      1.1  alnsn 					goto fail;
   1691      1.1  alnsn 
   1692  1.2.4.1  rmind 				BJ_ASSERT(jtf[negate].sjump == NULL);
   1693  1.2.4.1  rmind 				jtf[negate].sjump = jump;
   1694      1.1  alnsn 			}
   1695      1.1  alnsn 
   1696      1.1  alnsn 			if (!branching || (jt != 0 && jf != 0)) {
   1697      1.1  alnsn 				jump = sljit_emit_jump(compiler, SLJIT_JUMP);
   1698      1.1  alnsn 				if (jump == NULL)
   1699      1.1  alnsn 					goto fail;
   1700      1.1  alnsn 
   1701  1.2.4.1  rmind 				BJ_ASSERT(jtf[branching].sjump == NULL);
   1702  1.2.4.1  rmind 				jtf[branching].sjump = jump;
   1703      1.1  alnsn 			}
   1704      1.1  alnsn 
   1705      1.1  alnsn 			continue;
   1706      1.1  alnsn 
   1707      1.1  alnsn 		case BPF_RET:
   1708      1.1  alnsn 			rval = BPF_RVAL(pc->code);
   1709      1.1  alnsn 			if (rval == BPF_X)
   1710      1.1  alnsn 				goto fail;
   1711      1.1  alnsn 
   1712      1.1  alnsn 			/* BPF_RET+BPF_K    accept k bytes */
   1713      1.1  alnsn 			if (rval == BPF_K) {
   1714  1.2.4.1  rmind 				status = sljit_emit_return(compiler,
   1715  1.2.4.1  rmind 				    SLJIT_MOV_UI,
   1716      1.1  alnsn 				    SLJIT_IMM, (uint32_t)pc->k);
   1717      1.1  alnsn 				if (status != SLJIT_SUCCESS)
   1718      1.1  alnsn 					goto fail;
   1719      1.1  alnsn 			}
   1720      1.1  alnsn 
   1721      1.1  alnsn 			/* BPF_RET+BPF_A    accept A bytes */
   1722      1.1  alnsn 			if (rval == BPF_A) {
   1723  1.2.4.1  rmind 				status = sljit_emit_return(compiler,
   1724  1.2.4.1  rmind 				    SLJIT_MOV_UI,
   1725  1.2.4.1  rmind 				    BJ_AREG, 0);
   1726      1.1  alnsn 				if (status != SLJIT_SUCCESS)
   1727      1.1  alnsn 					goto fail;
   1728      1.1  alnsn 			}
   1729      1.1  alnsn 
   1730      1.1  alnsn 			continue;
   1731      1.1  alnsn 
   1732      1.1  alnsn 		case BPF_MISC:
   1733  1.2.4.1  rmind 			switch (BPF_MISCOP(pc->code)) {
   1734  1.2.4.1  rmind 			case BPF_TAX:
   1735      1.1  alnsn 				status = sljit_emit_op1(compiler,
   1736      1.1  alnsn 				    SLJIT_MOV_UI,
   1737  1.2.4.1  rmind 				    BJ_XREG, 0,
   1738  1.2.4.1  rmind 				    BJ_AREG, 0);
   1739      1.1  alnsn 				if (status != SLJIT_SUCCESS)
   1740      1.1  alnsn 					goto fail;
   1741      1.1  alnsn 
   1742      1.1  alnsn 				continue;
   1743      1.1  alnsn 
   1744  1.2.4.1  rmind 			case BPF_TXA:
   1745      1.1  alnsn 				status = sljit_emit_op1(compiler,
   1746      1.1  alnsn 				    SLJIT_MOV,
   1747  1.2.4.1  rmind 				    BJ_AREG, 0,
   1748  1.2.4.1  rmind 				    BJ_XREG, 0);
   1749      1.1  alnsn 				if (status != SLJIT_SUCCESS)
   1750      1.1  alnsn 					goto fail;
   1751      1.1  alnsn 
   1752      1.1  alnsn 				continue;
   1753      1.1  alnsn 			}
   1754      1.1  alnsn 
   1755      1.1  alnsn 			goto fail;
   1756      1.1  alnsn 		} /* switch */
   1757      1.1  alnsn 	} /* main loop */
   1758      1.1  alnsn 
   1759  1.2.4.1  rmind 	BJ_ASSERT(ret0_size <= ret0_maxsize);
   1760      1.1  alnsn 
   1761  1.2.4.1  rmind 	if (ret0_size > 0) {
   1762      1.1  alnsn 		label = sljit_emit_label(compiler);
   1763      1.1  alnsn 		if (label == NULL)
   1764      1.1  alnsn 			goto fail;
   1765  1.2.4.1  rmind 		for (i = 0; i < ret0_size; i++)
   1766  1.2.4.1  rmind 			sljit_set_label(ret0[i], label);
   1767      1.1  alnsn 	}
   1768      1.1  alnsn 
   1769      1.1  alnsn 	status = sljit_emit_return(compiler,
   1770      1.1  alnsn 	    SLJIT_MOV_UI,
   1771  1.2.4.1  rmind 	    SLJIT_IMM, 0);
   1772      1.1  alnsn 	if (status != SLJIT_SUCCESS)
   1773      1.1  alnsn 		goto fail;
   1774      1.1  alnsn 
   1775      1.1  alnsn 	rv = sljit_generate_code(compiler);
   1776      1.1  alnsn 
   1777      1.1  alnsn fail:
   1778      1.1  alnsn 	if (compiler != NULL)
   1779      1.1  alnsn 		sljit_free_compiler(compiler);
   1780      1.1  alnsn 
   1781      1.1  alnsn 	if (insn_dat != NULL)
   1782  1.2.4.1  rmind 		BJ_FREE(insn_dat, insn_count * sizeof(insn_dat[0]));
   1783      1.1  alnsn 
   1784      1.1  alnsn 	if (ret0 != NULL)
   1785  1.2.4.1  rmind 		BJ_FREE(ret0, ret0_maxsize * sizeof(ret0[0]));
   1786      1.1  alnsn 
   1787  1.2.4.1  rmind 	return (bpfjit_func_t)rv;
   1788      1.1  alnsn }
   1789      1.1  alnsn 
   1790      1.1  alnsn void
   1791  1.2.4.1  rmind bpfjit_free_code(bpfjit_func_t code)
   1792      1.1  alnsn {
   1793      1.1  alnsn 
   1794      1.1  alnsn 	sljit_free_code((void *)code);
   1795      1.1  alnsn }
   1796