bpfjit.c revision 1.20 1 1.20 alnsn /* $NetBSD: bpfjit.c,v 1.20 2014/07/04 21:32:08 alnsn Exp $ */
2 1.3 rmind
3 1.1 alnsn /*-
4 1.7 alnsn * Copyright (c) 2011-2014 Alexander Nasonov.
5 1.1 alnsn * All rights reserved.
6 1.1 alnsn *
7 1.1 alnsn * Redistribution and use in source and binary forms, with or without
8 1.1 alnsn * modification, are permitted provided that the following conditions
9 1.1 alnsn * are met:
10 1.1 alnsn *
11 1.1 alnsn * 1. Redistributions of source code must retain the above copyright
12 1.1 alnsn * notice, this list of conditions and the following disclaimer.
13 1.1 alnsn * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 alnsn * notice, this list of conditions and the following disclaimer in
15 1.1 alnsn * the documentation and/or other materials provided with the
16 1.1 alnsn * distribution.
17 1.1 alnsn *
18 1.1 alnsn * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 1.1 alnsn * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 1.1 alnsn * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
21 1.1 alnsn * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
22 1.1 alnsn * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
23 1.1 alnsn * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
24 1.1 alnsn * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
25 1.1 alnsn * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
26 1.1 alnsn * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
27 1.1 alnsn * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
28 1.1 alnsn * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 1.1 alnsn * SUCH DAMAGE.
30 1.1 alnsn */
31 1.1 alnsn
32 1.2 alnsn #include <sys/cdefs.h>
33 1.2 alnsn #ifdef _KERNEL
34 1.20 alnsn __KERNEL_RCSID(0, "$NetBSD: bpfjit.c,v 1.20 2014/07/04 21:32:08 alnsn Exp $");
35 1.2 alnsn #else
36 1.20 alnsn __RCSID("$NetBSD: bpfjit.c,v 1.20 2014/07/04 21:32:08 alnsn Exp $");
37 1.2 alnsn #endif
38 1.2 alnsn
39 1.3 rmind #include <sys/types.h>
40 1.3 rmind #include <sys/queue.h>
41 1.1 alnsn
42 1.1 alnsn #ifndef _KERNEL
43 1.7 alnsn #include <assert.h>
44 1.7 alnsn #define BJ_ASSERT(c) assert(c)
45 1.7 alnsn #else
46 1.7 alnsn #define BJ_ASSERT(c) KASSERT(c)
47 1.7 alnsn #endif
48 1.7 alnsn
49 1.7 alnsn #ifndef _KERNEL
50 1.3 rmind #include <stdlib.h>
51 1.7 alnsn #define BJ_ALLOC(sz) malloc(sz)
52 1.7 alnsn #define BJ_FREE(p, sz) free(p)
53 1.1 alnsn #else
54 1.3 rmind #include <sys/kmem.h>
55 1.7 alnsn #define BJ_ALLOC(sz) kmem_alloc(sz, KM_SLEEP)
56 1.7 alnsn #define BJ_FREE(p, sz) kmem_free(p, sz)
57 1.1 alnsn #endif
58 1.1 alnsn
59 1.1 alnsn #ifndef _KERNEL
60 1.1 alnsn #include <limits.h>
61 1.1 alnsn #include <stdbool.h>
62 1.1 alnsn #include <stddef.h>
63 1.1 alnsn #include <stdint.h>
64 1.1 alnsn #else
65 1.1 alnsn #include <sys/atomic.h>
66 1.1 alnsn #include <sys/module.h>
67 1.1 alnsn #endif
68 1.1 alnsn
69 1.5 rmind #define __BPF_PRIVATE
70 1.5 rmind #include <net/bpf.h>
71 1.3 rmind #include <net/bpfjit.h>
72 1.1 alnsn #include <sljitLir.h>
73 1.1 alnsn
74 1.7 alnsn #if !defined(_KERNEL) && defined(SLJIT_VERBOSE) && SLJIT_VERBOSE
75 1.7 alnsn #include <stdio.h> /* for stderr */
76 1.7 alnsn #endif
77 1.7 alnsn
78 1.7 alnsn /*
79 1.13 alnsn * Arguments of generated bpfjit_func_t.
80 1.13 alnsn * The first argument is reassigned upon entry
81 1.13 alnsn * to a more frequently used buf argument.
82 1.13 alnsn */
83 1.13 alnsn #define BJ_CTX_ARG SLJIT_SAVED_REG1
84 1.13 alnsn #define BJ_ARGS SLJIT_SAVED_REG2
85 1.13 alnsn
86 1.13 alnsn /*
87 1.7 alnsn * Permanent register assignments.
88 1.7 alnsn */
89 1.7 alnsn #define BJ_BUF SLJIT_SAVED_REG1
90 1.13 alnsn //#define BJ_ARGS SLJIT_SAVED_REG2
91 1.7 alnsn #define BJ_BUFLEN SLJIT_SAVED_REG3
92 1.12 alnsn #define BJ_AREG SLJIT_SCRATCH_REG1
93 1.12 alnsn #define BJ_TMP1REG SLJIT_SCRATCH_REG2
94 1.12 alnsn #define BJ_TMP2REG SLJIT_SCRATCH_REG3
95 1.7 alnsn #define BJ_XREG SLJIT_TEMPORARY_EREG1
96 1.7 alnsn #define BJ_TMP3REG SLJIT_TEMPORARY_EREG2
97 1.7 alnsn
98 1.13 alnsn /*
99 1.13 alnsn * EREG registers can't be used for indirect calls, reuse BJ_BUF and
100 1.13 alnsn * BJ_BUFLEN registers. They can be easily restored from BJ_ARGS.
101 1.13 alnsn */
102 1.13 alnsn #define BJ_COPF_PTR SLJIT_SAVED_REG1
103 1.13 alnsn #define BJ_COPF_IDX SLJIT_SAVED_REG3
104 1.13 alnsn
105 1.13 alnsn #ifdef _KERNEL
106 1.13 alnsn #define MAX_MEMWORDS BPF_MAX_MEMWORDS
107 1.13 alnsn #else
108 1.13 alnsn #define MAX_MEMWORDS BPF_MEMWORDS
109 1.13 alnsn #endif
110 1.13 alnsn
111 1.13 alnsn #define BJ_INIT_NOBITS ((bpf_memword_init_t)0)
112 1.13 alnsn #define BJ_INIT_MBIT(k) BPF_MEMWORD_INIT(k)
113 1.13 alnsn #define BJ_INIT_ABIT BJ_INIT_MBIT(MAX_MEMWORDS)
114 1.13 alnsn #define BJ_INIT_XBIT BJ_INIT_MBIT(MAX_MEMWORDS + 1)
115 1.1 alnsn
116 1.9 alnsn /*
117 1.19 alnsn * Get a number of memwords and external memwords from a bpf_ctx object.
118 1.19 alnsn */
119 1.19 alnsn #define GET_EXTWORDS(bc) ((bc) ? (bc)->extwords : 0)
120 1.19 alnsn #define GET_MEMWORDS(bc) (GET_EXTWORDS(bc) ? GET_EXTWORDS(bc) : BPF_MEMWORDS)
121 1.19 alnsn
122 1.19 alnsn /*
123 1.20 alnsn * Optimization hints.
124 1.20 alnsn */
125 1.20 alnsn typedef unsigned int bpfjit_hint_t;
126 1.20 alnsn #define BJ_HINT_LDW 0x01 /* 32-bit packet read */
127 1.20 alnsn #define BJ_HINT_IND 0x02 /* packet read at a variable offset */
128 1.20 alnsn #define BJ_HINT_COP 0x04 /* BPF_COP or BPF_COPX instruction */
129 1.20 alnsn #define BJ_HINT_XREG 0x08 /* BJ_XREG is needed */
130 1.20 alnsn #define BJ_HINT_LDX 0x10 /* BPF_LDX instruction */
131 1.20 alnsn
132 1.20 alnsn /*
133 1.9 alnsn * Datatype for Array Bounds Check Elimination (ABC) pass.
134 1.9 alnsn */
135 1.9 alnsn typedef uint64_t bpfjit_abc_length_t;
136 1.9 alnsn #define MAX_ABC_LENGTH (UINT32_MAX + UINT64_C(4)) /* max. width is 4 */
137 1.8 alnsn
138 1.7 alnsn struct bpfjit_stack
139 1.7 alnsn {
140 1.13 alnsn bpf_ctx_t *ctx;
141 1.13 alnsn uint32_t *extmem; /* pointer to external memory store */
142 1.7 alnsn #ifdef _KERNEL
143 1.7 alnsn void *tmp;
144 1.7 alnsn #endif
145 1.13 alnsn uint32_t mem[BPF_MEMWORDS]; /* internal memory store */
146 1.7 alnsn };
147 1.7 alnsn
148 1.7 alnsn /*
149 1.7 alnsn * Data for BPF_JMP instruction.
150 1.7 alnsn * Forward declaration for struct bpfjit_jump.
151 1.1 alnsn */
152 1.7 alnsn struct bpfjit_jump_data;
153 1.1 alnsn
154 1.1 alnsn /*
155 1.7 alnsn * Node of bjumps list.
156 1.1 alnsn */
157 1.3 rmind struct bpfjit_jump {
158 1.7 alnsn struct sljit_jump *sjump;
159 1.7 alnsn SLIST_ENTRY(bpfjit_jump) entries;
160 1.7 alnsn struct bpfjit_jump_data *jdata;
161 1.1 alnsn };
162 1.1 alnsn
163 1.1 alnsn /*
164 1.1 alnsn * Data for BPF_JMP instruction.
165 1.1 alnsn */
166 1.3 rmind struct bpfjit_jump_data {
167 1.1 alnsn /*
168 1.7 alnsn * These entries make up bjumps list:
169 1.7 alnsn * jtf[0] - when coming from jt path,
170 1.7 alnsn * jtf[1] - when coming from jf path.
171 1.1 alnsn */
172 1.7 alnsn struct bpfjit_jump jtf[2];
173 1.7 alnsn /*
174 1.7 alnsn * Length calculated by Array Bounds Check Elimination (ABC) pass.
175 1.7 alnsn */
176 1.8 alnsn bpfjit_abc_length_t abc_length;
177 1.7 alnsn /*
178 1.7 alnsn * Length checked by the last out-of-bounds check.
179 1.7 alnsn */
180 1.8 alnsn bpfjit_abc_length_t checked_length;
181 1.1 alnsn };
182 1.1 alnsn
183 1.1 alnsn /*
184 1.1 alnsn * Data for "read from packet" instructions.
185 1.1 alnsn * See also read_pkt_insn() function below.
186 1.1 alnsn */
187 1.3 rmind struct bpfjit_read_pkt_data {
188 1.1 alnsn /*
189 1.7 alnsn * Length calculated by Array Bounds Check Elimination (ABC) pass.
190 1.7 alnsn */
191 1.8 alnsn bpfjit_abc_length_t abc_length;
192 1.7 alnsn /*
193 1.7 alnsn * If positive, emit "if (buflen < check_length) return 0"
194 1.7 alnsn * out-of-bounds check.
195 1.9 alnsn * Values greater than UINT32_MAX generate unconditional "return 0".
196 1.1 alnsn */
197 1.8 alnsn bpfjit_abc_length_t check_length;
198 1.1 alnsn };
199 1.1 alnsn
200 1.1 alnsn /*
201 1.1 alnsn * Additional (optimization-related) data for bpf_insn.
202 1.1 alnsn */
203 1.3 rmind struct bpfjit_insn_data {
204 1.1 alnsn /* List of jumps to this insn. */
205 1.7 alnsn SLIST_HEAD(, bpfjit_jump) bjumps;
206 1.1 alnsn
207 1.1 alnsn union {
208 1.7 alnsn struct bpfjit_jump_data jdata;
209 1.7 alnsn struct bpfjit_read_pkt_data rdata;
210 1.7 alnsn } u;
211 1.1 alnsn
212 1.13 alnsn bpf_memword_init_t invalid;
213 1.7 alnsn bool unreachable;
214 1.1 alnsn };
215 1.1 alnsn
216 1.1 alnsn #ifdef _KERNEL
217 1.1 alnsn
218 1.1 alnsn uint32_t m_xword(const struct mbuf *, uint32_t, int *);
219 1.1 alnsn uint32_t m_xhalf(const struct mbuf *, uint32_t, int *);
220 1.1 alnsn uint32_t m_xbyte(const struct mbuf *, uint32_t, int *);
221 1.1 alnsn
222 1.1 alnsn MODULE(MODULE_CLASS_MISC, bpfjit, "sljit")
223 1.1 alnsn
224 1.1 alnsn static int
225 1.1 alnsn bpfjit_modcmd(modcmd_t cmd, void *arg)
226 1.1 alnsn {
227 1.1 alnsn
228 1.1 alnsn switch (cmd) {
229 1.1 alnsn case MODULE_CMD_INIT:
230 1.1 alnsn bpfjit_module_ops.bj_free_code = &bpfjit_free_code;
231 1.1 alnsn membar_producer();
232 1.1 alnsn bpfjit_module_ops.bj_generate_code = &bpfjit_generate_code;
233 1.1 alnsn membar_producer();
234 1.1 alnsn return 0;
235 1.1 alnsn
236 1.1 alnsn case MODULE_CMD_FINI:
237 1.1 alnsn return EOPNOTSUPP;
238 1.1 alnsn
239 1.1 alnsn default:
240 1.1 alnsn return ENOTTY;
241 1.1 alnsn }
242 1.1 alnsn }
243 1.1 alnsn #endif
244 1.1 alnsn
245 1.20 alnsn /*
246 1.20 alnsn * Return a number of scratch regiters to pass
247 1.20 alnsn * to sljit_emit_enter() function.
248 1.20 alnsn */
249 1.20 alnsn static sljit_si
250 1.20 alnsn nscratches(bpfjit_hint_t hints)
251 1.20 alnsn {
252 1.20 alnsn sljit_si rv = 2;
253 1.20 alnsn
254 1.20 alnsn if (hints & BJ_HINT_LDW)
255 1.20 alnsn rv = 3; /* uses BJ_TMP2REG */
256 1.20 alnsn
257 1.20 alnsn if (hints & BJ_HINT_COP)
258 1.20 alnsn rv = 3; /* calls copfunc with three arguments */
259 1.20 alnsn
260 1.20 alnsn if (hints & BJ_HINT_XREG)
261 1.20 alnsn rv = 4; /* uses BJ_XREG */
262 1.20 alnsn
263 1.20 alnsn #ifdef _KERNEL
264 1.20 alnsn if (hints & BJ_HINT_LDX)
265 1.20 alnsn rv = 5; /* uses BJ_TMP3REG */
266 1.20 alnsn #endif
267 1.20 alnsn
268 1.20 alnsn return rv;
269 1.20 alnsn }
270 1.20 alnsn
271 1.1 alnsn static uint32_t
272 1.7 alnsn read_width(const struct bpf_insn *pc)
273 1.1 alnsn {
274 1.1 alnsn
275 1.1 alnsn switch (BPF_SIZE(pc->code)) {
276 1.1 alnsn case BPF_W:
277 1.1 alnsn return 4;
278 1.1 alnsn case BPF_H:
279 1.1 alnsn return 2;
280 1.1 alnsn case BPF_B:
281 1.1 alnsn return 1;
282 1.1 alnsn default:
283 1.7 alnsn BJ_ASSERT(false);
284 1.1 alnsn return 0;
285 1.1 alnsn }
286 1.1 alnsn }
287 1.1 alnsn
288 1.13 alnsn /*
289 1.13 alnsn * Copy buf and buflen members of bpf_args from BJ_ARGS
290 1.13 alnsn * pointer to BJ_BUF and BJ_BUFLEN registers.
291 1.13 alnsn */
292 1.13 alnsn static int
293 1.13 alnsn load_buf_buflen(struct sljit_compiler *compiler)
294 1.13 alnsn {
295 1.13 alnsn int status;
296 1.13 alnsn
297 1.13 alnsn status = sljit_emit_op1(compiler,
298 1.13 alnsn SLJIT_MOV_P,
299 1.13 alnsn BJ_BUF, 0,
300 1.13 alnsn SLJIT_MEM1(BJ_ARGS),
301 1.13 alnsn offsetof(struct bpf_args, pkt));
302 1.13 alnsn if (status != SLJIT_SUCCESS)
303 1.13 alnsn return status;
304 1.13 alnsn
305 1.13 alnsn status = sljit_emit_op1(compiler,
306 1.13 alnsn SLJIT_MOV,
307 1.13 alnsn BJ_BUFLEN, 0,
308 1.13 alnsn SLJIT_MEM1(BJ_ARGS),
309 1.13 alnsn offsetof(struct bpf_args, buflen));
310 1.13 alnsn
311 1.13 alnsn return status;
312 1.13 alnsn }
313 1.13 alnsn
314 1.7 alnsn static bool
315 1.7 alnsn grow_jumps(struct sljit_jump ***jumps, size_t *size)
316 1.7 alnsn {
317 1.7 alnsn struct sljit_jump **newptr;
318 1.7 alnsn const size_t elemsz = sizeof(struct sljit_jump *);
319 1.7 alnsn size_t old_size = *size;
320 1.7 alnsn size_t new_size = 2 * old_size;
321 1.7 alnsn
322 1.7 alnsn if (new_size < old_size || new_size > SIZE_MAX / elemsz)
323 1.7 alnsn return false;
324 1.7 alnsn
325 1.7 alnsn newptr = BJ_ALLOC(new_size * elemsz);
326 1.7 alnsn if (newptr == NULL)
327 1.7 alnsn return false;
328 1.7 alnsn
329 1.7 alnsn memcpy(newptr, *jumps, old_size * elemsz);
330 1.7 alnsn BJ_FREE(*jumps, old_size * elemsz);
331 1.7 alnsn
332 1.7 alnsn *jumps = newptr;
333 1.7 alnsn *size = new_size;
334 1.7 alnsn return true;
335 1.7 alnsn }
336 1.7 alnsn
337 1.7 alnsn static bool
338 1.7 alnsn append_jump(struct sljit_jump *jump, struct sljit_jump ***jumps,
339 1.7 alnsn size_t *size, size_t *max_size)
340 1.1 alnsn {
341 1.7 alnsn if (*size == *max_size && !grow_jumps(jumps, max_size))
342 1.7 alnsn return false;
343 1.1 alnsn
344 1.7 alnsn (*jumps)[(*size)++] = jump;
345 1.7 alnsn return true;
346 1.1 alnsn }
347 1.1 alnsn
348 1.1 alnsn /*
349 1.1 alnsn * Generate code for BPF_LD+BPF_B+BPF_ABS A <- P[k:1].
350 1.1 alnsn */
351 1.1 alnsn static int
352 1.19 alnsn emit_read8(struct sljit_compiler *compiler, uint32_t k)
353 1.1 alnsn {
354 1.1 alnsn
355 1.1 alnsn return sljit_emit_op1(compiler,
356 1.1 alnsn SLJIT_MOV_UB,
357 1.7 alnsn BJ_AREG, 0,
358 1.7 alnsn SLJIT_MEM1(BJ_BUF), k);
359 1.1 alnsn }
360 1.1 alnsn
361 1.1 alnsn /*
362 1.1 alnsn * Generate code for BPF_LD+BPF_H+BPF_ABS A <- P[k:2].
363 1.1 alnsn */
364 1.1 alnsn static int
365 1.19 alnsn emit_read16(struct sljit_compiler *compiler, uint32_t k)
366 1.1 alnsn {
367 1.1 alnsn int status;
368 1.1 alnsn
369 1.1 alnsn /* tmp1 = buf[k]; */
370 1.1 alnsn status = sljit_emit_op1(compiler,
371 1.1 alnsn SLJIT_MOV_UB,
372 1.7 alnsn BJ_TMP1REG, 0,
373 1.7 alnsn SLJIT_MEM1(BJ_BUF), k);
374 1.1 alnsn if (status != SLJIT_SUCCESS)
375 1.1 alnsn return status;
376 1.1 alnsn
377 1.1 alnsn /* A = buf[k+1]; */
378 1.1 alnsn status = sljit_emit_op1(compiler,
379 1.1 alnsn SLJIT_MOV_UB,
380 1.7 alnsn BJ_AREG, 0,
381 1.7 alnsn SLJIT_MEM1(BJ_BUF), k+1);
382 1.1 alnsn if (status != SLJIT_SUCCESS)
383 1.1 alnsn return status;
384 1.1 alnsn
385 1.1 alnsn /* tmp1 = tmp1 << 8; */
386 1.1 alnsn status = sljit_emit_op2(compiler,
387 1.1 alnsn SLJIT_SHL,
388 1.7 alnsn BJ_TMP1REG, 0,
389 1.7 alnsn BJ_TMP1REG, 0,
390 1.1 alnsn SLJIT_IMM, 8);
391 1.1 alnsn if (status != SLJIT_SUCCESS)
392 1.1 alnsn return status;
393 1.1 alnsn
394 1.1 alnsn /* A = A + tmp1; */
395 1.1 alnsn status = sljit_emit_op2(compiler,
396 1.1 alnsn SLJIT_ADD,
397 1.7 alnsn BJ_AREG, 0,
398 1.7 alnsn BJ_AREG, 0,
399 1.7 alnsn BJ_TMP1REG, 0);
400 1.1 alnsn return status;
401 1.1 alnsn }
402 1.1 alnsn
403 1.1 alnsn /*
404 1.1 alnsn * Generate code for BPF_LD+BPF_W+BPF_ABS A <- P[k:4].
405 1.1 alnsn */
406 1.1 alnsn static int
407 1.19 alnsn emit_read32(struct sljit_compiler *compiler, uint32_t k)
408 1.1 alnsn {
409 1.1 alnsn int status;
410 1.1 alnsn
411 1.1 alnsn /* tmp1 = buf[k]; */
412 1.1 alnsn status = sljit_emit_op1(compiler,
413 1.1 alnsn SLJIT_MOV_UB,
414 1.7 alnsn BJ_TMP1REG, 0,
415 1.7 alnsn SLJIT_MEM1(BJ_BUF), k);
416 1.1 alnsn if (status != SLJIT_SUCCESS)
417 1.1 alnsn return status;
418 1.1 alnsn
419 1.1 alnsn /* tmp2 = buf[k+1]; */
420 1.1 alnsn status = sljit_emit_op1(compiler,
421 1.1 alnsn SLJIT_MOV_UB,
422 1.7 alnsn BJ_TMP2REG, 0,
423 1.7 alnsn SLJIT_MEM1(BJ_BUF), k+1);
424 1.1 alnsn if (status != SLJIT_SUCCESS)
425 1.1 alnsn return status;
426 1.1 alnsn
427 1.1 alnsn /* A = buf[k+3]; */
428 1.1 alnsn status = sljit_emit_op1(compiler,
429 1.1 alnsn SLJIT_MOV_UB,
430 1.7 alnsn BJ_AREG, 0,
431 1.7 alnsn SLJIT_MEM1(BJ_BUF), k+3);
432 1.1 alnsn if (status != SLJIT_SUCCESS)
433 1.1 alnsn return status;
434 1.1 alnsn
435 1.1 alnsn /* tmp1 = tmp1 << 24; */
436 1.1 alnsn status = sljit_emit_op2(compiler,
437 1.1 alnsn SLJIT_SHL,
438 1.7 alnsn BJ_TMP1REG, 0,
439 1.7 alnsn BJ_TMP1REG, 0,
440 1.1 alnsn SLJIT_IMM, 24);
441 1.1 alnsn if (status != SLJIT_SUCCESS)
442 1.1 alnsn return status;
443 1.1 alnsn
444 1.1 alnsn /* A = A + tmp1; */
445 1.1 alnsn status = sljit_emit_op2(compiler,
446 1.1 alnsn SLJIT_ADD,
447 1.7 alnsn BJ_AREG, 0,
448 1.7 alnsn BJ_AREG, 0,
449 1.7 alnsn BJ_TMP1REG, 0);
450 1.1 alnsn if (status != SLJIT_SUCCESS)
451 1.1 alnsn return status;
452 1.1 alnsn
453 1.1 alnsn /* tmp1 = buf[k+2]; */
454 1.1 alnsn status = sljit_emit_op1(compiler,
455 1.1 alnsn SLJIT_MOV_UB,
456 1.7 alnsn BJ_TMP1REG, 0,
457 1.7 alnsn SLJIT_MEM1(BJ_BUF), k+2);
458 1.1 alnsn if (status != SLJIT_SUCCESS)
459 1.1 alnsn return status;
460 1.1 alnsn
461 1.1 alnsn /* tmp2 = tmp2 << 16; */
462 1.1 alnsn status = sljit_emit_op2(compiler,
463 1.1 alnsn SLJIT_SHL,
464 1.7 alnsn BJ_TMP2REG, 0,
465 1.7 alnsn BJ_TMP2REG, 0,
466 1.1 alnsn SLJIT_IMM, 16);
467 1.1 alnsn if (status != SLJIT_SUCCESS)
468 1.1 alnsn return status;
469 1.1 alnsn
470 1.1 alnsn /* A = A + tmp2; */
471 1.1 alnsn status = sljit_emit_op2(compiler,
472 1.1 alnsn SLJIT_ADD,
473 1.7 alnsn BJ_AREG, 0,
474 1.7 alnsn BJ_AREG, 0,
475 1.7 alnsn BJ_TMP2REG, 0);
476 1.1 alnsn if (status != SLJIT_SUCCESS)
477 1.1 alnsn return status;
478 1.1 alnsn
479 1.1 alnsn /* tmp1 = tmp1 << 8; */
480 1.1 alnsn status = sljit_emit_op2(compiler,
481 1.1 alnsn SLJIT_SHL,
482 1.7 alnsn BJ_TMP1REG, 0,
483 1.7 alnsn BJ_TMP1REG, 0,
484 1.1 alnsn SLJIT_IMM, 8);
485 1.1 alnsn if (status != SLJIT_SUCCESS)
486 1.1 alnsn return status;
487 1.1 alnsn
488 1.1 alnsn /* A = A + tmp1; */
489 1.1 alnsn status = sljit_emit_op2(compiler,
490 1.1 alnsn SLJIT_ADD,
491 1.7 alnsn BJ_AREG, 0,
492 1.7 alnsn BJ_AREG, 0,
493 1.7 alnsn BJ_TMP1REG, 0);
494 1.1 alnsn return status;
495 1.1 alnsn }
496 1.1 alnsn
497 1.1 alnsn #ifdef _KERNEL
498 1.1 alnsn /*
499 1.1 alnsn * Generate m_xword/m_xhalf/m_xbyte call.
500 1.1 alnsn *
501 1.1 alnsn * pc is one of:
502 1.1 alnsn * BPF_LD+BPF_W+BPF_ABS A <- P[k:4]
503 1.1 alnsn * BPF_LD+BPF_H+BPF_ABS A <- P[k:2]
504 1.1 alnsn * BPF_LD+BPF_B+BPF_ABS A <- P[k:1]
505 1.1 alnsn * BPF_LD+BPF_W+BPF_IND A <- P[X+k:4]
506 1.1 alnsn * BPF_LD+BPF_H+BPF_IND A <- P[X+k:2]
507 1.1 alnsn * BPF_LD+BPF_B+BPF_IND A <- P[X+k:1]
508 1.1 alnsn * BPF_LDX+BPF_B+BPF_MSH X <- 4*(P[k:1]&0xf)
509 1.1 alnsn *
510 1.7 alnsn * The dst variable should be
511 1.7 alnsn * - BJ_AREG when emitting code for BPF_LD instructions,
512 1.7 alnsn * - BJ_XREG or any of BJ_TMP[1-3]REG registers when emitting
513 1.7 alnsn * code for BPF_MSH instruction.
514 1.1 alnsn */
515 1.1 alnsn static int
516 1.19 alnsn emit_xcall(struct sljit_compiler *compiler, const struct bpf_insn *pc,
517 1.12 alnsn int dst, sljit_sw dstw, struct sljit_jump **ret0_jump,
518 1.1 alnsn uint32_t (*fn)(const struct mbuf *, uint32_t, int *))
519 1.1 alnsn {
520 1.7 alnsn #if BJ_XREG == SLJIT_RETURN_REG || \
521 1.12 alnsn BJ_XREG == SLJIT_SCRATCH_REG1 || \
522 1.12 alnsn BJ_XREG == SLJIT_SCRATCH_REG2 || \
523 1.12 alnsn BJ_XREG == SLJIT_SCRATCH_REG3
524 1.1 alnsn #error "Not supported assignment of registers."
525 1.1 alnsn #endif
526 1.1 alnsn int status;
527 1.1 alnsn
528 1.1 alnsn /*
529 1.1 alnsn * The third argument of fn is an address on stack.
530 1.1 alnsn */
531 1.7 alnsn const int arg3_offset = offsetof(struct bpfjit_stack, tmp);
532 1.1 alnsn
533 1.1 alnsn if (BPF_CLASS(pc->code) == BPF_LDX) {
534 1.1 alnsn /* save A */
535 1.1 alnsn status = sljit_emit_op1(compiler,
536 1.1 alnsn SLJIT_MOV,
537 1.7 alnsn BJ_TMP3REG, 0,
538 1.7 alnsn BJ_AREG, 0);
539 1.1 alnsn if (status != SLJIT_SUCCESS)
540 1.1 alnsn return status;
541 1.1 alnsn }
542 1.1 alnsn
543 1.1 alnsn /*
544 1.1 alnsn * Prepare registers for fn(buf, k, &err) call.
545 1.1 alnsn */
546 1.1 alnsn status = sljit_emit_op1(compiler,
547 1.1 alnsn SLJIT_MOV,
548 1.12 alnsn SLJIT_SCRATCH_REG1, 0,
549 1.7 alnsn BJ_BUF, 0);
550 1.1 alnsn if (status != SLJIT_SUCCESS)
551 1.1 alnsn return status;
552 1.1 alnsn
553 1.1 alnsn if (BPF_CLASS(pc->code) == BPF_LD && BPF_MODE(pc->code) == BPF_IND) {
554 1.1 alnsn status = sljit_emit_op2(compiler,
555 1.1 alnsn SLJIT_ADD,
556 1.12 alnsn SLJIT_SCRATCH_REG2, 0,
557 1.7 alnsn BJ_XREG, 0,
558 1.1 alnsn SLJIT_IMM, (uint32_t)pc->k);
559 1.1 alnsn } else {
560 1.1 alnsn status = sljit_emit_op1(compiler,
561 1.1 alnsn SLJIT_MOV,
562 1.12 alnsn SLJIT_SCRATCH_REG2, 0,
563 1.1 alnsn SLJIT_IMM, (uint32_t)pc->k);
564 1.1 alnsn }
565 1.1 alnsn
566 1.1 alnsn if (status != SLJIT_SUCCESS)
567 1.1 alnsn return status;
568 1.1 alnsn
569 1.1 alnsn status = sljit_get_local_base(compiler,
570 1.12 alnsn SLJIT_SCRATCH_REG3, 0, arg3_offset);
571 1.1 alnsn if (status != SLJIT_SUCCESS)
572 1.1 alnsn return status;
573 1.1 alnsn
574 1.1 alnsn /* fn(buf, k, &err); */
575 1.1 alnsn status = sljit_emit_ijump(compiler,
576 1.1 alnsn SLJIT_CALL3,
577 1.1 alnsn SLJIT_IMM, SLJIT_FUNC_OFFSET(fn));
578 1.1 alnsn
579 1.7 alnsn if (dst != SLJIT_RETURN_REG) {
580 1.1 alnsn /* move return value to dst */
581 1.1 alnsn status = sljit_emit_op1(compiler,
582 1.1 alnsn SLJIT_MOV,
583 1.1 alnsn dst, dstw,
584 1.1 alnsn SLJIT_RETURN_REG, 0);
585 1.1 alnsn if (status != SLJIT_SUCCESS)
586 1.1 alnsn return status;
587 1.7 alnsn }
588 1.1 alnsn
589 1.7 alnsn if (BPF_CLASS(pc->code) == BPF_LDX) {
590 1.1 alnsn /* restore A */
591 1.1 alnsn status = sljit_emit_op1(compiler,
592 1.1 alnsn SLJIT_MOV,
593 1.7 alnsn BJ_AREG, 0,
594 1.7 alnsn BJ_TMP3REG, 0);
595 1.1 alnsn if (status != SLJIT_SUCCESS)
596 1.1 alnsn return status;
597 1.1 alnsn }
598 1.1 alnsn
599 1.1 alnsn /* tmp3 = *err; */
600 1.1 alnsn status = sljit_emit_op1(compiler,
601 1.1 alnsn SLJIT_MOV_UI,
602 1.12 alnsn SLJIT_SCRATCH_REG3, 0,
603 1.1 alnsn SLJIT_MEM1(SLJIT_LOCALS_REG), arg3_offset);
604 1.1 alnsn if (status != SLJIT_SUCCESS)
605 1.1 alnsn return status;
606 1.1 alnsn
607 1.1 alnsn /* if (tmp3 != 0) return 0; */
608 1.1 alnsn *ret0_jump = sljit_emit_cmp(compiler,
609 1.1 alnsn SLJIT_C_NOT_EQUAL,
610 1.12 alnsn SLJIT_SCRATCH_REG3, 0,
611 1.1 alnsn SLJIT_IMM, 0);
612 1.1 alnsn if (*ret0_jump == NULL)
613 1.1 alnsn return SLJIT_ERR_ALLOC_FAILED;
614 1.1 alnsn
615 1.1 alnsn return status;
616 1.1 alnsn }
617 1.1 alnsn #endif
618 1.1 alnsn
619 1.1 alnsn /*
620 1.13 alnsn * Emit code for BPF_COP and BPF_COPX instructions.
621 1.13 alnsn */
622 1.13 alnsn static int
623 1.19 alnsn emit_cop(struct sljit_compiler *compiler, const bpf_ctx_t *bc,
624 1.13 alnsn const struct bpf_insn *pc, struct sljit_jump **ret0_jump)
625 1.13 alnsn {
626 1.13 alnsn #if BJ_XREG == SLJIT_RETURN_REG || \
627 1.13 alnsn BJ_XREG == SLJIT_SCRATCH_REG1 || \
628 1.13 alnsn BJ_XREG == SLJIT_SCRATCH_REG2 || \
629 1.13 alnsn BJ_XREG == SLJIT_SCRATCH_REG3 || \
630 1.13 alnsn BJ_COPF_PTR == BJ_ARGS || \
631 1.13 alnsn BJ_COPF_IDX == BJ_ARGS
632 1.13 alnsn #error "Not supported assignment of registers."
633 1.13 alnsn #endif
634 1.13 alnsn
635 1.13 alnsn struct sljit_jump *jump;
636 1.13 alnsn int status;
637 1.13 alnsn
638 1.13 alnsn jump = NULL;
639 1.13 alnsn
640 1.13 alnsn BJ_ASSERT(bc != NULL && bc->copfuncs != NULL);
641 1.13 alnsn
642 1.13 alnsn if (BPF_MISCOP(pc->code) == BPF_COPX) {
643 1.13 alnsn /* if (X >= bc->nfuncs) return 0; */
644 1.13 alnsn jump = sljit_emit_cmp(compiler,
645 1.13 alnsn SLJIT_C_GREATER_EQUAL,
646 1.13 alnsn BJ_XREG, 0,
647 1.13 alnsn SLJIT_IMM, bc->nfuncs);
648 1.13 alnsn if (jump == NULL)
649 1.13 alnsn return SLJIT_ERR_ALLOC_FAILED;
650 1.13 alnsn }
651 1.13 alnsn
652 1.13 alnsn if (jump != NULL)
653 1.13 alnsn *ret0_jump = jump;
654 1.13 alnsn
655 1.13 alnsn /*
656 1.13 alnsn * Copy bpf_copfunc_t arguments to registers.
657 1.13 alnsn */
658 1.13 alnsn #if BJ_AREG != SLJIT_SCRATCH_REG3
659 1.13 alnsn status = sljit_emit_op1(compiler,
660 1.13 alnsn SLJIT_MOV_UI,
661 1.13 alnsn SLJIT_SCRATCH_REG3, 0,
662 1.13 alnsn BJ_AREG, 0);
663 1.13 alnsn if (status != SLJIT_SUCCESS)
664 1.13 alnsn return status;
665 1.13 alnsn #endif
666 1.13 alnsn
667 1.13 alnsn status = sljit_emit_op1(compiler,
668 1.13 alnsn SLJIT_MOV_P,
669 1.13 alnsn SLJIT_SCRATCH_REG1, 0,
670 1.13 alnsn SLJIT_MEM1(SLJIT_LOCALS_REG),
671 1.13 alnsn offsetof(struct bpfjit_stack, ctx));
672 1.13 alnsn if (status != SLJIT_SUCCESS)
673 1.13 alnsn return status;
674 1.13 alnsn
675 1.13 alnsn status = sljit_emit_op1(compiler,
676 1.13 alnsn SLJIT_MOV_P,
677 1.13 alnsn SLJIT_SCRATCH_REG2, 0,
678 1.13 alnsn BJ_ARGS, 0);
679 1.13 alnsn if (status != SLJIT_SUCCESS)
680 1.13 alnsn return status;
681 1.13 alnsn
682 1.13 alnsn if (BPF_MISCOP(pc->code) == BPF_COP) {
683 1.13 alnsn status = sljit_emit_ijump(compiler,
684 1.13 alnsn SLJIT_CALL3,
685 1.13 alnsn SLJIT_IMM, SLJIT_FUNC_OFFSET(bc->copfuncs[pc->k]));
686 1.13 alnsn if (status != SLJIT_SUCCESS)
687 1.13 alnsn return status;
688 1.13 alnsn } else if (BPF_MISCOP(pc->code) == BPF_COPX) {
689 1.13 alnsn /* load ctx->copfuncs */
690 1.13 alnsn status = sljit_emit_op1(compiler,
691 1.13 alnsn SLJIT_MOV_P,
692 1.13 alnsn BJ_COPF_PTR, 0,
693 1.13 alnsn SLJIT_MEM1(SLJIT_SCRATCH_REG1),
694 1.13 alnsn offsetof(struct bpf_ctx, copfuncs));
695 1.13 alnsn if (status != SLJIT_SUCCESS)
696 1.13 alnsn return status;
697 1.13 alnsn
698 1.13 alnsn /*
699 1.13 alnsn * Load X to a register that can be used for
700 1.13 alnsn * memory addressing.
701 1.13 alnsn */
702 1.13 alnsn status = sljit_emit_op1(compiler,
703 1.13 alnsn SLJIT_MOV_P,
704 1.13 alnsn BJ_COPF_IDX, 0,
705 1.13 alnsn BJ_XREG, 0);
706 1.13 alnsn if (status != SLJIT_SUCCESS)
707 1.13 alnsn return status;
708 1.13 alnsn
709 1.13 alnsn status = sljit_emit_ijump(compiler,
710 1.13 alnsn SLJIT_CALL3,
711 1.13 alnsn SLJIT_MEM2(BJ_COPF_PTR, BJ_COPF_IDX),
712 1.13 alnsn SLJIT_WORD_SHIFT);
713 1.13 alnsn if (status != SLJIT_SUCCESS)
714 1.13 alnsn return status;
715 1.13 alnsn
716 1.13 alnsn status = load_buf_buflen(compiler);
717 1.13 alnsn if (status != SLJIT_SUCCESS)
718 1.13 alnsn return status;
719 1.13 alnsn }
720 1.13 alnsn
721 1.13 alnsn #if BJ_AREG != SLJIT_RETURN_REG
722 1.13 alnsn status = sljit_emit_op1(compiler,
723 1.13 alnsn SLJIT_MOV,
724 1.13 alnsn BJ_AREG, 0,
725 1.13 alnsn SLJIT_RETURN_REG, 0);
726 1.13 alnsn if (status != SLJIT_SUCCESS)
727 1.13 alnsn return status;
728 1.13 alnsn #endif
729 1.13 alnsn
730 1.13 alnsn return status;
731 1.13 alnsn }
732 1.13 alnsn
733 1.13 alnsn /*
734 1.1 alnsn * Generate code for
735 1.1 alnsn * BPF_LD+BPF_W+BPF_ABS A <- P[k:4]
736 1.1 alnsn * BPF_LD+BPF_H+BPF_ABS A <- P[k:2]
737 1.1 alnsn * BPF_LD+BPF_B+BPF_ABS A <- P[k:1]
738 1.1 alnsn * BPF_LD+BPF_W+BPF_IND A <- P[X+k:4]
739 1.1 alnsn * BPF_LD+BPF_H+BPF_IND A <- P[X+k:2]
740 1.1 alnsn * BPF_LD+BPF_B+BPF_IND A <- P[X+k:1]
741 1.1 alnsn */
742 1.1 alnsn static int
743 1.19 alnsn emit_pkt_read(struct sljit_compiler *compiler,
744 1.7 alnsn const struct bpf_insn *pc, struct sljit_jump *to_mchain_jump,
745 1.7 alnsn struct sljit_jump ***ret0, size_t *ret0_size, size_t *ret0_maxsize)
746 1.1 alnsn {
747 1.6 pooka int status = 0; /* XXX gcc 4.1 */
748 1.1 alnsn uint32_t width;
749 1.1 alnsn struct sljit_jump *jump;
750 1.1 alnsn #ifdef _KERNEL
751 1.1 alnsn struct sljit_label *label;
752 1.1 alnsn struct sljit_jump *over_mchain_jump;
753 1.1 alnsn const bool check_zero_buflen = (to_mchain_jump != NULL);
754 1.1 alnsn #endif
755 1.1 alnsn const uint32_t k = pc->k;
756 1.1 alnsn
757 1.1 alnsn #ifdef _KERNEL
758 1.1 alnsn if (to_mchain_jump == NULL) {
759 1.1 alnsn to_mchain_jump = sljit_emit_cmp(compiler,
760 1.1 alnsn SLJIT_C_EQUAL,
761 1.7 alnsn BJ_BUFLEN, 0,
762 1.1 alnsn SLJIT_IMM, 0);
763 1.1 alnsn if (to_mchain_jump == NULL)
764 1.7 alnsn return SLJIT_ERR_ALLOC_FAILED;
765 1.1 alnsn }
766 1.1 alnsn #endif
767 1.1 alnsn
768 1.1 alnsn width = read_width(pc);
769 1.1 alnsn
770 1.1 alnsn if (BPF_MODE(pc->code) == BPF_IND) {
771 1.1 alnsn /* tmp1 = buflen - (pc->k + width); */
772 1.1 alnsn status = sljit_emit_op2(compiler,
773 1.1 alnsn SLJIT_SUB,
774 1.7 alnsn BJ_TMP1REG, 0,
775 1.7 alnsn BJ_BUFLEN, 0,
776 1.1 alnsn SLJIT_IMM, k + width);
777 1.1 alnsn if (status != SLJIT_SUCCESS)
778 1.1 alnsn return status;
779 1.1 alnsn
780 1.1 alnsn /* buf += X; */
781 1.1 alnsn status = sljit_emit_op2(compiler,
782 1.1 alnsn SLJIT_ADD,
783 1.7 alnsn BJ_BUF, 0,
784 1.7 alnsn BJ_BUF, 0,
785 1.7 alnsn BJ_XREG, 0);
786 1.1 alnsn if (status != SLJIT_SUCCESS)
787 1.1 alnsn return status;
788 1.1 alnsn
789 1.1 alnsn /* if (tmp1 < X) return 0; */
790 1.1 alnsn jump = sljit_emit_cmp(compiler,
791 1.1 alnsn SLJIT_C_LESS,
792 1.7 alnsn BJ_TMP1REG, 0,
793 1.7 alnsn BJ_XREG, 0);
794 1.1 alnsn if (jump == NULL)
795 1.7 alnsn return SLJIT_ERR_ALLOC_FAILED;
796 1.7 alnsn if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
797 1.7 alnsn return SLJIT_ERR_ALLOC_FAILED;
798 1.1 alnsn }
799 1.1 alnsn
800 1.1 alnsn switch (width) {
801 1.1 alnsn case 4:
802 1.1 alnsn status = emit_read32(compiler, k);
803 1.1 alnsn break;
804 1.1 alnsn case 2:
805 1.1 alnsn status = emit_read16(compiler, k);
806 1.1 alnsn break;
807 1.1 alnsn case 1:
808 1.1 alnsn status = emit_read8(compiler, k);
809 1.1 alnsn break;
810 1.1 alnsn }
811 1.1 alnsn
812 1.1 alnsn if (status != SLJIT_SUCCESS)
813 1.1 alnsn return status;
814 1.1 alnsn
815 1.1 alnsn if (BPF_MODE(pc->code) == BPF_IND) {
816 1.1 alnsn /* buf -= X; */
817 1.1 alnsn status = sljit_emit_op2(compiler,
818 1.1 alnsn SLJIT_SUB,
819 1.7 alnsn BJ_BUF, 0,
820 1.7 alnsn BJ_BUF, 0,
821 1.7 alnsn BJ_XREG, 0);
822 1.1 alnsn if (status != SLJIT_SUCCESS)
823 1.1 alnsn return status;
824 1.1 alnsn }
825 1.1 alnsn
826 1.1 alnsn #ifdef _KERNEL
827 1.1 alnsn over_mchain_jump = sljit_emit_jump(compiler, SLJIT_JUMP);
828 1.1 alnsn if (over_mchain_jump == NULL)
829 1.7 alnsn return SLJIT_ERR_ALLOC_FAILED;
830 1.1 alnsn
831 1.1 alnsn /* entry point to mchain handler */
832 1.1 alnsn label = sljit_emit_label(compiler);
833 1.1 alnsn if (label == NULL)
834 1.7 alnsn return SLJIT_ERR_ALLOC_FAILED;
835 1.1 alnsn sljit_set_label(to_mchain_jump, label);
836 1.1 alnsn
837 1.1 alnsn if (check_zero_buflen) {
838 1.1 alnsn /* if (buflen != 0) return 0; */
839 1.1 alnsn jump = sljit_emit_cmp(compiler,
840 1.1 alnsn SLJIT_C_NOT_EQUAL,
841 1.7 alnsn BJ_BUFLEN, 0,
842 1.1 alnsn SLJIT_IMM, 0);
843 1.1 alnsn if (jump == NULL)
844 1.1 alnsn return SLJIT_ERR_ALLOC_FAILED;
845 1.7 alnsn if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
846 1.7 alnsn return SLJIT_ERR_ALLOC_FAILED;
847 1.1 alnsn }
848 1.1 alnsn
849 1.1 alnsn switch (width) {
850 1.1 alnsn case 4:
851 1.7 alnsn status = emit_xcall(compiler, pc, BJ_AREG, 0, &jump, &m_xword);
852 1.1 alnsn break;
853 1.1 alnsn case 2:
854 1.7 alnsn status = emit_xcall(compiler, pc, BJ_AREG, 0, &jump, &m_xhalf);
855 1.1 alnsn break;
856 1.1 alnsn case 1:
857 1.7 alnsn status = emit_xcall(compiler, pc, BJ_AREG, 0, &jump, &m_xbyte);
858 1.1 alnsn break;
859 1.1 alnsn }
860 1.1 alnsn
861 1.1 alnsn if (status != SLJIT_SUCCESS)
862 1.1 alnsn return status;
863 1.1 alnsn
864 1.7 alnsn if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
865 1.7 alnsn return SLJIT_ERR_ALLOC_FAILED;
866 1.1 alnsn
867 1.1 alnsn label = sljit_emit_label(compiler);
868 1.1 alnsn if (label == NULL)
869 1.1 alnsn return SLJIT_ERR_ALLOC_FAILED;
870 1.1 alnsn sljit_set_label(over_mchain_jump, label);
871 1.1 alnsn #endif
872 1.1 alnsn
873 1.1 alnsn return status;
874 1.1 alnsn }
875 1.1 alnsn
876 1.13 alnsn static int
877 1.19 alnsn emit_memload(struct sljit_compiler *compiler,
878 1.13 alnsn sljit_si dst, uint32_t k, size_t extwords)
879 1.13 alnsn {
880 1.13 alnsn int status;
881 1.13 alnsn sljit_si src;
882 1.13 alnsn sljit_sw srcw;
883 1.13 alnsn
884 1.13 alnsn srcw = k * sizeof(uint32_t);
885 1.13 alnsn
886 1.13 alnsn if (extwords == 0) {
887 1.13 alnsn src = SLJIT_MEM1(SLJIT_LOCALS_REG);
888 1.13 alnsn srcw += offsetof(struct bpfjit_stack, mem);
889 1.13 alnsn } else {
890 1.13 alnsn /* copy extmem pointer to the tmp1 register */
891 1.13 alnsn status = sljit_emit_op1(compiler,
892 1.16 alnsn SLJIT_MOV_P,
893 1.13 alnsn BJ_TMP1REG, 0,
894 1.13 alnsn SLJIT_MEM1(SLJIT_LOCALS_REG),
895 1.13 alnsn offsetof(struct bpfjit_stack, extmem));
896 1.13 alnsn if (status != SLJIT_SUCCESS)
897 1.13 alnsn return status;
898 1.13 alnsn src = SLJIT_MEM1(BJ_TMP1REG);
899 1.13 alnsn }
900 1.13 alnsn
901 1.13 alnsn return sljit_emit_op1(compiler, SLJIT_MOV_UI, dst, 0, src, srcw);
902 1.13 alnsn }
903 1.13 alnsn
904 1.13 alnsn static int
905 1.19 alnsn emit_memstore(struct sljit_compiler *compiler,
906 1.13 alnsn sljit_si src, uint32_t k, size_t extwords)
907 1.13 alnsn {
908 1.13 alnsn int status;
909 1.13 alnsn sljit_si dst;
910 1.13 alnsn sljit_sw dstw;
911 1.13 alnsn
912 1.13 alnsn dstw = k * sizeof(uint32_t);
913 1.13 alnsn
914 1.13 alnsn if (extwords == 0) {
915 1.13 alnsn dst = SLJIT_MEM1(SLJIT_LOCALS_REG);
916 1.13 alnsn dstw += offsetof(struct bpfjit_stack, mem);
917 1.13 alnsn } else {
918 1.13 alnsn /* copy extmem pointer to the tmp1 register */
919 1.13 alnsn status = sljit_emit_op1(compiler,
920 1.16 alnsn SLJIT_MOV_P,
921 1.13 alnsn BJ_TMP1REG, 0,
922 1.13 alnsn SLJIT_MEM1(SLJIT_LOCALS_REG),
923 1.13 alnsn offsetof(struct bpfjit_stack, extmem));
924 1.13 alnsn if (status != SLJIT_SUCCESS)
925 1.13 alnsn return status;
926 1.13 alnsn dst = SLJIT_MEM1(BJ_TMP1REG);
927 1.13 alnsn }
928 1.13 alnsn
929 1.13 alnsn return sljit_emit_op1(compiler, SLJIT_MOV_UI, dst, dstw, src, 0);
930 1.13 alnsn }
931 1.13 alnsn
932 1.1 alnsn /*
933 1.1 alnsn * Generate code for BPF_LDX+BPF_B+BPF_MSH X <- 4*(P[k:1]&0xf).
934 1.1 alnsn */
935 1.1 alnsn static int
936 1.19 alnsn emit_msh(struct sljit_compiler *compiler,
937 1.7 alnsn const struct bpf_insn *pc, struct sljit_jump *to_mchain_jump,
938 1.7 alnsn struct sljit_jump ***ret0, size_t *ret0_size, size_t *ret0_maxsize)
939 1.1 alnsn {
940 1.1 alnsn int status;
941 1.1 alnsn #ifdef _KERNEL
942 1.1 alnsn struct sljit_label *label;
943 1.1 alnsn struct sljit_jump *jump, *over_mchain_jump;
944 1.1 alnsn const bool check_zero_buflen = (to_mchain_jump != NULL);
945 1.1 alnsn #endif
946 1.1 alnsn const uint32_t k = pc->k;
947 1.1 alnsn
948 1.1 alnsn #ifdef _KERNEL
949 1.1 alnsn if (to_mchain_jump == NULL) {
950 1.1 alnsn to_mchain_jump = sljit_emit_cmp(compiler,
951 1.1 alnsn SLJIT_C_EQUAL,
952 1.7 alnsn BJ_BUFLEN, 0,
953 1.1 alnsn SLJIT_IMM, 0);
954 1.1 alnsn if (to_mchain_jump == NULL)
955 1.7 alnsn return SLJIT_ERR_ALLOC_FAILED;
956 1.1 alnsn }
957 1.1 alnsn #endif
958 1.1 alnsn
959 1.1 alnsn /* tmp1 = buf[k] */
960 1.1 alnsn status = sljit_emit_op1(compiler,
961 1.1 alnsn SLJIT_MOV_UB,
962 1.7 alnsn BJ_TMP1REG, 0,
963 1.7 alnsn SLJIT_MEM1(BJ_BUF), k);
964 1.1 alnsn if (status != SLJIT_SUCCESS)
965 1.1 alnsn return status;
966 1.1 alnsn
967 1.1 alnsn /* tmp1 &= 0xf */
968 1.1 alnsn status = sljit_emit_op2(compiler,
969 1.1 alnsn SLJIT_AND,
970 1.7 alnsn BJ_TMP1REG, 0,
971 1.7 alnsn BJ_TMP1REG, 0,
972 1.1 alnsn SLJIT_IMM, 0xf);
973 1.1 alnsn if (status != SLJIT_SUCCESS)
974 1.1 alnsn return status;
975 1.1 alnsn
976 1.1 alnsn /* tmp1 = tmp1 << 2 */
977 1.1 alnsn status = sljit_emit_op2(compiler,
978 1.1 alnsn SLJIT_SHL,
979 1.7 alnsn BJ_XREG, 0,
980 1.7 alnsn BJ_TMP1REG, 0,
981 1.1 alnsn SLJIT_IMM, 2);
982 1.1 alnsn if (status != SLJIT_SUCCESS)
983 1.1 alnsn return status;
984 1.1 alnsn
985 1.1 alnsn #ifdef _KERNEL
986 1.1 alnsn over_mchain_jump = sljit_emit_jump(compiler, SLJIT_JUMP);
987 1.1 alnsn if (over_mchain_jump == NULL)
988 1.1 alnsn return SLJIT_ERR_ALLOC_FAILED;
989 1.1 alnsn
990 1.1 alnsn /* entry point to mchain handler */
991 1.1 alnsn label = sljit_emit_label(compiler);
992 1.1 alnsn if (label == NULL)
993 1.1 alnsn return SLJIT_ERR_ALLOC_FAILED;
994 1.1 alnsn sljit_set_label(to_mchain_jump, label);
995 1.1 alnsn
996 1.1 alnsn if (check_zero_buflen) {
997 1.1 alnsn /* if (buflen != 0) return 0; */
998 1.1 alnsn jump = sljit_emit_cmp(compiler,
999 1.1 alnsn SLJIT_C_NOT_EQUAL,
1000 1.7 alnsn BJ_BUFLEN, 0,
1001 1.1 alnsn SLJIT_IMM, 0);
1002 1.1 alnsn if (jump == NULL)
1003 1.7 alnsn return SLJIT_ERR_ALLOC_FAILED;
1004 1.7 alnsn if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
1005 1.7 alnsn return SLJIT_ERR_ALLOC_FAILED;
1006 1.1 alnsn }
1007 1.1 alnsn
1008 1.7 alnsn status = emit_xcall(compiler, pc, BJ_TMP1REG, 0, &jump, &m_xbyte);
1009 1.1 alnsn if (status != SLJIT_SUCCESS)
1010 1.1 alnsn return status;
1011 1.7 alnsn
1012 1.7 alnsn if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
1013 1.7 alnsn return SLJIT_ERR_ALLOC_FAILED;
1014 1.1 alnsn
1015 1.1 alnsn /* tmp1 &= 0xf */
1016 1.1 alnsn status = sljit_emit_op2(compiler,
1017 1.1 alnsn SLJIT_AND,
1018 1.7 alnsn BJ_TMP1REG, 0,
1019 1.7 alnsn BJ_TMP1REG, 0,
1020 1.1 alnsn SLJIT_IMM, 0xf);
1021 1.1 alnsn if (status != SLJIT_SUCCESS)
1022 1.1 alnsn return status;
1023 1.1 alnsn
1024 1.1 alnsn /* tmp1 = tmp1 << 2 */
1025 1.1 alnsn status = sljit_emit_op2(compiler,
1026 1.1 alnsn SLJIT_SHL,
1027 1.7 alnsn BJ_XREG, 0,
1028 1.7 alnsn BJ_TMP1REG, 0,
1029 1.1 alnsn SLJIT_IMM, 2);
1030 1.1 alnsn if (status != SLJIT_SUCCESS)
1031 1.1 alnsn return status;
1032 1.1 alnsn
1033 1.1 alnsn
1034 1.1 alnsn label = sljit_emit_label(compiler);
1035 1.1 alnsn if (label == NULL)
1036 1.1 alnsn return SLJIT_ERR_ALLOC_FAILED;
1037 1.1 alnsn sljit_set_label(over_mchain_jump, label);
1038 1.1 alnsn #endif
1039 1.1 alnsn
1040 1.1 alnsn return status;
1041 1.1 alnsn }
1042 1.1 alnsn
1043 1.1 alnsn static int
1044 1.19 alnsn emit_pow2_division(struct sljit_compiler *compiler, uint32_t k)
1045 1.1 alnsn {
1046 1.1 alnsn int shift = 0;
1047 1.1 alnsn int status = SLJIT_SUCCESS;
1048 1.1 alnsn
1049 1.1 alnsn while (k > 1) {
1050 1.1 alnsn k >>= 1;
1051 1.1 alnsn shift++;
1052 1.1 alnsn }
1053 1.1 alnsn
1054 1.7 alnsn BJ_ASSERT(k == 1 && shift < 32);
1055 1.1 alnsn
1056 1.1 alnsn if (shift != 0) {
1057 1.1 alnsn status = sljit_emit_op2(compiler,
1058 1.1 alnsn SLJIT_LSHR|SLJIT_INT_OP,
1059 1.7 alnsn BJ_AREG, 0,
1060 1.7 alnsn BJ_AREG, 0,
1061 1.1 alnsn SLJIT_IMM, shift);
1062 1.1 alnsn }
1063 1.1 alnsn
1064 1.1 alnsn return status;
1065 1.1 alnsn }
1066 1.1 alnsn
1067 1.1 alnsn #if !defined(BPFJIT_USE_UDIV)
1068 1.1 alnsn static sljit_uw
1069 1.1 alnsn divide(sljit_uw x, sljit_uw y)
1070 1.1 alnsn {
1071 1.1 alnsn
1072 1.1 alnsn return (uint32_t)x / (uint32_t)y;
1073 1.1 alnsn }
1074 1.1 alnsn #endif
1075 1.1 alnsn
1076 1.1 alnsn /*
1077 1.1 alnsn * Generate A = A / div.
1078 1.7 alnsn * divt,divw are either SLJIT_IMM,pc->k or BJ_XREG,0.
1079 1.1 alnsn */
1080 1.1 alnsn static int
1081 1.19 alnsn emit_division(struct sljit_compiler *compiler, int divt, sljit_sw divw)
1082 1.1 alnsn {
1083 1.1 alnsn int status;
1084 1.1 alnsn
1085 1.7 alnsn #if BJ_XREG == SLJIT_RETURN_REG || \
1086 1.12 alnsn BJ_XREG == SLJIT_SCRATCH_REG1 || \
1087 1.12 alnsn BJ_XREG == SLJIT_SCRATCH_REG2 || \
1088 1.12 alnsn BJ_AREG == SLJIT_SCRATCH_REG2
1089 1.1 alnsn #error "Not supported assignment of registers."
1090 1.1 alnsn #endif
1091 1.1 alnsn
1092 1.12 alnsn #if BJ_AREG != SLJIT_SCRATCH_REG1
1093 1.1 alnsn status = sljit_emit_op1(compiler,
1094 1.1 alnsn SLJIT_MOV,
1095 1.12 alnsn SLJIT_SCRATCH_REG1, 0,
1096 1.7 alnsn BJ_AREG, 0);
1097 1.1 alnsn if (status != SLJIT_SUCCESS)
1098 1.1 alnsn return status;
1099 1.1 alnsn #endif
1100 1.1 alnsn
1101 1.1 alnsn status = sljit_emit_op1(compiler,
1102 1.1 alnsn SLJIT_MOV,
1103 1.12 alnsn SLJIT_SCRATCH_REG2, 0,
1104 1.1 alnsn divt, divw);
1105 1.1 alnsn if (status != SLJIT_SUCCESS)
1106 1.1 alnsn return status;
1107 1.1 alnsn
1108 1.1 alnsn #if defined(BPFJIT_USE_UDIV)
1109 1.1 alnsn status = sljit_emit_op0(compiler, SLJIT_UDIV|SLJIT_INT_OP);
1110 1.1 alnsn
1111 1.12 alnsn #if BJ_AREG != SLJIT_SCRATCH_REG1
1112 1.1 alnsn status = sljit_emit_op1(compiler,
1113 1.1 alnsn SLJIT_MOV,
1114 1.7 alnsn BJ_AREG, 0,
1115 1.12 alnsn SLJIT_SCRATCH_REG1, 0);
1116 1.1 alnsn if (status != SLJIT_SUCCESS)
1117 1.1 alnsn return status;
1118 1.1 alnsn #endif
1119 1.1 alnsn #else
1120 1.1 alnsn status = sljit_emit_ijump(compiler,
1121 1.1 alnsn SLJIT_CALL2,
1122 1.1 alnsn SLJIT_IMM, SLJIT_FUNC_OFFSET(divide));
1123 1.1 alnsn
1124 1.7 alnsn #if BJ_AREG != SLJIT_RETURN_REG
1125 1.1 alnsn status = sljit_emit_op1(compiler,
1126 1.1 alnsn SLJIT_MOV,
1127 1.7 alnsn BJ_AREG, 0,
1128 1.1 alnsn SLJIT_RETURN_REG, 0);
1129 1.1 alnsn if (status != SLJIT_SUCCESS)
1130 1.1 alnsn return status;
1131 1.1 alnsn #endif
1132 1.1 alnsn #endif
1133 1.1 alnsn
1134 1.1 alnsn return status;
1135 1.1 alnsn }
1136 1.1 alnsn
1137 1.1 alnsn /*
1138 1.1 alnsn * Return true if pc is a "read from packet" instruction.
1139 1.1 alnsn * If length is not NULL and return value is true, *length will
1140 1.1 alnsn * be set to a safe length required to read a packet.
1141 1.1 alnsn */
1142 1.1 alnsn static bool
1143 1.8 alnsn read_pkt_insn(const struct bpf_insn *pc, bpfjit_abc_length_t *length)
1144 1.1 alnsn {
1145 1.1 alnsn bool rv;
1146 1.8 alnsn bpfjit_abc_length_t width;
1147 1.1 alnsn
1148 1.1 alnsn switch (BPF_CLASS(pc->code)) {
1149 1.1 alnsn default:
1150 1.1 alnsn rv = false;
1151 1.1 alnsn break;
1152 1.1 alnsn
1153 1.1 alnsn case BPF_LD:
1154 1.1 alnsn rv = BPF_MODE(pc->code) == BPF_ABS ||
1155 1.1 alnsn BPF_MODE(pc->code) == BPF_IND;
1156 1.1 alnsn if (rv)
1157 1.1 alnsn width = read_width(pc);
1158 1.1 alnsn break;
1159 1.1 alnsn
1160 1.1 alnsn case BPF_LDX:
1161 1.1 alnsn rv = pc->code == (BPF_LDX|BPF_B|BPF_MSH);
1162 1.1 alnsn width = 1;
1163 1.1 alnsn break;
1164 1.1 alnsn }
1165 1.1 alnsn
1166 1.1 alnsn if (rv && length != NULL) {
1167 1.9 alnsn /*
1168 1.9 alnsn * Values greater than UINT32_MAX will generate
1169 1.9 alnsn * unconditional "return 0".
1170 1.9 alnsn */
1171 1.9 alnsn *length = (uint32_t)pc->k + width;
1172 1.1 alnsn }
1173 1.1 alnsn
1174 1.1 alnsn return rv;
1175 1.1 alnsn }
1176 1.1 alnsn
1177 1.1 alnsn static void
1178 1.7 alnsn optimize_init(struct bpfjit_insn_data *insn_dat, size_t insn_count)
1179 1.1 alnsn {
1180 1.7 alnsn size_t i;
1181 1.1 alnsn
1182 1.7 alnsn for (i = 0; i < insn_count; i++) {
1183 1.7 alnsn SLIST_INIT(&insn_dat[i].bjumps);
1184 1.7 alnsn insn_dat[i].invalid = BJ_INIT_NOBITS;
1185 1.1 alnsn }
1186 1.1 alnsn }
1187 1.1 alnsn
1188 1.1 alnsn /*
1189 1.1 alnsn * The function divides instructions into blocks. Destination of a jump
1190 1.1 alnsn * instruction starts a new block. BPF_RET and BPF_JMP instructions
1191 1.1 alnsn * terminate a block. Blocks are linear, that is, there are no jumps out
1192 1.1 alnsn * from the middle of a block and there are no jumps in to the middle of
1193 1.1 alnsn * a block.
1194 1.7 alnsn *
1195 1.7 alnsn * The function also sets bits in *initmask for memwords that
1196 1.7 alnsn * need to be initialized to zero. Note that this set should be empty
1197 1.7 alnsn * for any valid kernel filter program.
1198 1.1 alnsn */
1199 1.7 alnsn static bool
1200 1.19 alnsn optimize_pass1(const bpf_ctx_t *bc, const struct bpf_insn *insns,
1201 1.19 alnsn struct bpfjit_insn_data *insn_dat, size_t insn_count,
1202 1.20 alnsn bpf_memword_init_t *initmask, bpfjit_hint_t *hints)
1203 1.1 alnsn {
1204 1.7 alnsn struct bpfjit_jump *jtf;
1205 1.1 alnsn size_t i;
1206 1.7 alnsn uint32_t jt, jf;
1207 1.10 alnsn bpfjit_abc_length_t length;
1208 1.13 alnsn bpf_memword_init_t invalid; /* borrowed from bpf_filter() */
1209 1.1 alnsn bool unreachable;
1210 1.1 alnsn
1211 1.19 alnsn const size_t memwords = GET_MEMWORDS(bc);
1212 1.13 alnsn
1213 1.20 alnsn *hints = 0;
1214 1.7 alnsn *initmask = BJ_INIT_NOBITS;
1215 1.1 alnsn
1216 1.1 alnsn unreachable = false;
1217 1.7 alnsn invalid = ~BJ_INIT_NOBITS;
1218 1.1 alnsn
1219 1.1 alnsn for (i = 0; i < insn_count; i++) {
1220 1.7 alnsn if (!SLIST_EMPTY(&insn_dat[i].bjumps))
1221 1.1 alnsn unreachable = false;
1222 1.7 alnsn insn_dat[i].unreachable = unreachable;
1223 1.1 alnsn
1224 1.1 alnsn if (unreachable)
1225 1.1 alnsn continue;
1226 1.1 alnsn
1227 1.7 alnsn invalid |= insn_dat[i].invalid;
1228 1.1 alnsn
1229 1.10 alnsn if (read_pkt_insn(&insns[i], &length) && length > UINT32_MAX)
1230 1.10 alnsn unreachable = true;
1231 1.10 alnsn
1232 1.1 alnsn switch (BPF_CLASS(insns[i].code)) {
1233 1.1 alnsn case BPF_RET:
1234 1.7 alnsn if (BPF_RVAL(insns[i].code) == BPF_A)
1235 1.7 alnsn *initmask |= invalid & BJ_INIT_ABIT;
1236 1.7 alnsn
1237 1.1 alnsn unreachable = true;
1238 1.1 alnsn continue;
1239 1.1 alnsn
1240 1.7 alnsn case BPF_LD:
1241 1.20 alnsn if ((BPF_MODE(insns[i].code) == BPF_IND ||
1242 1.20 alnsn BPF_MODE(insns[i].code) == BPF_ABS) &&
1243 1.20 alnsn read_width(&insns[i]) == 4) {
1244 1.20 alnsn *hints |= BJ_HINT_LDW;
1245 1.7 alnsn }
1246 1.7 alnsn
1247 1.20 alnsn if (BPF_MODE(insns[i].code) == BPF_IND) {
1248 1.20 alnsn *hints |= BJ_HINT_XREG | BJ_HINT_IND;
1249 1.7 alnsn *initmask |= invalid & BJ_INIT_XBIT;
1250 1.20 alnsn }
1251 1.7 alnsn
1252 1.7 alnsn if (BPF_MODE(insns[i].code) == BPF_MEM &&
1253 1.13 alnsn (uint32_t)insns[i].k < memwords) {
1254 1.7 alnsn *initmask |= invalid & BJ_INIT_MBIT(insns[i].k);
1255 1.7 alnsn }
1256 1.7 alnsn
1257 1.7 alnsn invalid &= ~BJ_INIT_ABIT;
1258 1.7 alnsn continue;
1259 1.7 alnsn
1260 1.7 alnsn case BPF_LDX:
1261 1.20 alnsn *hints |= BJ_HINT_XREG | BJ_HINT_LDX;
1262 1.7 alnsn
1263 1.7 alnsn if (BPF_MODE(insns[i].code) == BPF_MEM &&
1264 1.13 alnsn (uint32_t)insns[i].k < memwords) {
1265 1.7 alnsn *initmask |= invalid & BJ_INIT_MBIT(insns[i].k);
1266 1.7 alnsn }
1267 1.7 alnsn
1268 1.7 alnsn invalid &= ~BJ_INIT_XBIT;
1269 1.7 alnsn continue;
1270 1.7 alnsn
1271 1.7 alnsn case BPF_ST:
1272 1.7 alnsn *initmask |= invalid & BJ_INIT_ABIT;
1273 1.7 alnsn
1274 1.13 alnsn if ((uint32_t)insns[i].k < memwords)
1275 1.7 alnsn invalid &= ~BJ_INIT_MBIT(insns[i].k);
1276 1.7 alnsn
1277 1.7 alnsn continue;
1278 1.7 alnsn
1279 1.7 alnsn case BPF_STX:
1280 1.20 alnsn *hints |= BJ_HINT_XREG;
1281 1.7 alnsn *initmask |= invalid & BJ_INIT_XBIT;
1282 1.7 alnsn
1283 1.13 alnsn if ((uint32_t)insns[i].k < memwords)
1284 1.7 alnsn invalid &= ~BJ_INIT_MBIT(insns[i].k);
1285 1.7 alnsn
1286 1.7 alnsn continue;
1287 1.7 alnsn
1288 1.7 alnsn case BPF_ALU:
1289 1.7 alnsn *initmask |= invalid & BJ_INIT_ABIT;
1290 1.7 alnsn
1291 1.7 alnsn if (insns[i].code != (BPF_ALU|BPF_NEG) &&
1292 1.7 alnsn BPF_SRC(insns[i].code) == BPF_X) {
1293 1.20 alnsn *hints |= BJ_HINT_XREG;
1294 1.7 alnsn *initmask |= invalid & BJ_INIT_XBIT;
1295 1.7 alnsn }
1296 1.7 alnsn
1297 1.7 alnsn invalid &= ~BJ_INIT_ABIT;
1298 1.7 alnsn continue;
1299 1.7 alnsn
1300 1.7 alnsn case BPF_MISC:
1301 1.7 alnsn switch (BPF_MISCOP(insns[i].code)) {
1302 1.7 alnsn case BPF_TAX: // X <- A
1303 1.20 alnsn *hints |= BJ_HINT_XREG;
1304 1.7 alnsn *initmask |= invalid & BJ_INIT_ABIT;
1305 1.7 alnsn invalid &= ~BJ_INIT_XBIT;
1306 1.7 alnsn continue;
1307 1.7 alnsn
1308 1.7 alnsn case BPF_TXA: // A <- X
1309 1.20 alnsn *hints |= BJ_HINT_XREG;
1310 1.7 alnsn *initmask |= invalid & BJ_INIT_XBIT;
1311 1.7 alnsn invalid &= ~BJ_INIT_ABIT;
1312 1.7 alnsn continue;
1313 1.13 alnsn
1314 1.13 alnsn case BPF_COPX:
1315 1.20 alnsn *hints |= BJ_HINT_XREG;
1316 1.13 alnsn /* FALLTHROUGH */
1317 1.13 alnsn
1318 1.13 alnsn case BPF_COP:
1319 1.20 alnsn *hints |= BJ_HINT_COP;
1320 1.13 alnsn *initmask |= invalid & BJ_INIT_ABIT;
1321 1.13 alnsn invalid &= ~BJ_INIT_ABIT;
1322 1.13 alnsn continue;
1323 1.7 alnsn }
1324 1.7 alnsn
1325 1.7 alnsn continue;
1326 1.7 alnsn
1327 1.1 alnsn case BPF_JMP:
1328 1.7 alnsn /* Initialize abc_length for ABC pass. */
1329 1.8 alnsn insn_dat[i].u.jdata.abc_length = MAX_ABC_LENGTH;
1330 1.7 alnsn
1331 1.7 alnsn if (BPF_OP(insns[i].code) == BPF_JA) {
1332 1.1 alnsn jt = jf = insns[i].k;
1333 1.1 alnsn } else {
1334 1.1 alnsn jt = insns[i].jt;
1335 1.1 alnsn jf = insns[i].jf;
1336 1.1 alnsn }
1337 1.1 alnsn
1338 1.1 alnsn if (jt >= insn_count - (i + 1) ||
1339 1.1 alnsn jf >= insn_count - (i + 1)) {
1340 1.7 alnsn return false;
1341 1.1 alnsn }
1342 1.1 alnsn
1343 1.1 alnsn if (jt > 0 && jf > 0)
1344 1.1 alnsn unreachable = true;
1345 1.1 alnsn
1346 1.7 alnsn jt += i + 1;
1347 1.7 alnsn jf += i + 1;
1348 1.7 alnsn
1349 1.7 alnsn jtf = insn_dat[i].u.jdata.jtf;
1350 1.1 alnsn
1351 1.7 alnsn jtf[0].sjump = NULL;
1352 1.7 alnsn jtf[0].jdata = &insn_dat[i].u.jdata;
1353 1.7 alnsn SLIST_INSERT_HEAD(&insn_dat[jt].bjumps,
1354 1.7 alnsn &jtf[0], entries);
1355 1.1 alnsn
1356 1.1 alnsn if (jf != jt) {
1357 1.7 alnsn jtf[1].sjump = NULL;
1358 1.7 alnsn jtf[1].jdata = &insn_dat[i].u.jdata;
1359 1.7 alnsn SLIST_INSERT_HEAD(&insn_dat[jf].bjumps,
1360 1.7 alnsn &jtf[1], entries);
1361 1.1 alnsn }
1362 1.1 alnsn
1363 1.7 alnsn insn_dat[jf].invalid |= invalid;
1364 1.7 alnsn insn_dat[jt].invalid |= invalid;
1365 1.7 alnsn invalid = 0;
1366 1.7 alnsn
1367 1.1 alnsn continue;
1368 1.1 alnsn }
1369 1.1 alnsn }
1370 1.1 alnsn
1371 1.7 alnsn return true;
1372 1.1 alnsn }
1373 1.1 alnsn
1374 1.1 alnsn /*
1375 1.7 alnsn * Array Bounds Check Elimination (ABC) pass.
1376 1.1 alnsn */
1377 1.7 alnsn static void
1378 1.19 alnsn optimize_pass2(const bpf_ctx_t *bc, const struct bpf_insn *insns,
1379 1.19 alnsn struct bpfjit_insn_data *insn_dat, size_t insn_count)
1380 1.7 alnsn {
1381 1.7 alnsn struct bpfjit_jump *jmp;
1382 1.7 alnsn const struct bpf_insn *pc;
1383 1.7 alnsn struct bpfjit_insn_data *pd;
1384 1.7 alnsn size_t i;
1385 1.8 alnsn bpfjit_abc_length_t length, abc_length = 0;
1386 1.7 alnsn
1387 1.19 alnsn const size_t extwords = GET_EXTWORDS(bc);
1388 1.19 alnsn
1389 1.7 alnsn for (i = insn_count; i != 0; i--) {
1390 1.7 alnsn pc = &insns[i-1];
1391 1.7 alnsn pd = &insn_dat[i-1];
1392 1.7 alnsn
1393 1.7 alnsn if (pd->unreachable)
1394 1.7 alnsn continue;
1395 1.7 alnsn
1396 1.7 alnsn switch (BPF_CLASS(pc->code)) {
1397 1.7 alnsn case BPF_RET:
1398 1.11 alnsn /*
1399 1.11 alnsn * It's quite common for bpf programs to
1400 1.11 alnsn * check packet bytes in increasing order
1401 1.11 alnsn * and return zero if bytes don't match
1402 1.11 alnsn * specified critetion. Such programs disable
1403 1.11 alnsn * ABC optimization completely because for
1404 1.11 alnsn * every jump there is a branch with no read
1405 1.11 alnsn * instruction.
1406 1.13 alnsn * With no side effects, BPF_STMT(BPF_RET+BPF_K, 0)
1407 1.13 alnsn * is indistinguishable from out-of-bound load.
1408 1.11 alnsn * Therefore, abc_length can be set to
1409 1.11 alnsn * MAX_ABC_LENGTH and enable ABC for many
1410 1.11 alnsn * bpf programs.
1411 1.13 alnsn * If this optimization encounters any
1412 1.11 alnsn * instruction with a side effect, it will
1413 1.11 alnsn * reset abc_length.
1414 1.11 alnsn */
1415 1.11 alnsn if (BPF_RVAL(pc->code) == BPF_K && pc->k == 0)
1416 1.11 alnsn abc_length = MAX_ABC_LENGTH;
1417 1.11 alnsn else
1418 1.11 alnsn abc_length = 0;
1419 1.7 alnsn break;
1420 1.7 alnsn
1421 1.13 alnsn case BPF_MISC:
1422 1.13 alnsn if (BPF_MISCOP(pc->code) == BPF_COP ||
1423 1.13 alnsn BPF_MISCOP(pc->code) == BPF_COPX) {
1424 1.13 alnsn /* COP instructions can have side effects. */
1425 1.13 alnsn abc_length = 0;
1426 1.13 alnsn }
1427 1.13 alnsn break;
1428 1.13 alnsn
1429 1.13 alnsn case BPF_ST:
1430 1.13 alnsn case BPF_STX:
1431 1.13 alnsn if (extwords != 0) {
1432 1.13 alnsn /* Write to memory is visible after a call. */
1433 1.13 alnsn abc_length = 0;
1434 1.13 alnsn }
1435 1.13 alnsn break;
1436 1.13 alnsn
1437 1.7 alnsn case BPF_JMP:
1438 1.7 alnsn abc_length = pd->u.jdata.abc_length;
1439 1.7 alnsn break;
1440 1.7 alnsn
1441 1.7 alnsn default:
1442 1.7 alnsn if (read_pkt_insn(pc, &length)) {
1443 1.7 alnsn if (abc_length < length)
1444 1.7 alnsn abc_length = length;
1445 1.7 alnsn pd->u.rdata.abc_length = abc_length;
1446 1.7 alnsn }
1447 1.7 alnsn break;
1448 1.7 alnsn }
1449 1.7 alnsn
1450 1.7 alnsn SLIST_FOREACH(jmp, &pd->bjumps, entries) {
1451 1.7 alnsn if (jmp->jdata->abc_length > abc_length)
1452 1.7 alnsn jmp->jdata->abc_length = abc_length;
1453 1.7 alnsn }
1454 1.7 alnsn }
1455 1.7 alnsn }
1456 1.7 alnsn
1457 1.7 alnsn static void
1458 1.7 alnsn optimize_pass3(const struct bpf_insn *insns,
1459 1.7 alnsn struct bpfjit_insn_data *insn_dat, size_t insn_count)
1460 1.1 alnsn {
1461 1.7 alnsn struct bpfjit_jump *jmp;
1462 1.1 alnsn size_t i;
1463 1.8 alnsn bpfjit_abc_length_t checked_length = 0;
1464 1.1 alnsn
1465 1.1 alnsn for (i = 0; i < insn_count; i++) {
1466 1.7 alnsn if (insn_dat[i].unreachable)
1467 1.7 alnsn continue;
1468 1.1 alnsn
1469 1.7 alnsn SLIST_FOREACH(jmp, &insn_dat[i].bjumps, entries) {
1470 1.7 alnsn if (jmp->jdata->checked_length < checked_length)
1471 1.7 alnsn checked_length = jmp->jdata->checked_length;
1472 1.1 alnsn }
1473 1.1 alnsn
1474 1.7 alnsn if (BPF_CLASS(insns[i].code) == BPF_JMP) {
1475 1.7 alnsn insn_dat[i].u.jdata.checked_length = checked_length;
1476 1.8 alnsn } else if (read_pkt_insn(&insns[i], NULL)) {
1477 1.7 alnsn struct bpfjit_read_pkt_data *rdata =
1478 1.7 alnsn &insn_dat[i].u.rdata;
1479 1.7 alnsn rdata->check_length = 0;
1480 1.7 alnsn if (checked_length < rdata->abc_length) {
1481 1.7 alnsn checked_length = rdata->abc_length;
1482 1.7 alnsn rdata->check_length = checked_length;
1483 1.7 alnsn }
1484 1.1 alnsn }
1485 1.7 alnsn }
1486 1.7 alnsn }
1487 1.1 alnsn
1488 1.7 alnsn static bool
1489 1.19 alnsn optimize(const bpf_ctx_t *bc, const struct bpf_insn *insns,
1490 1.7 alnsn struct bpfjit_insn_data *insn_dat, size_t insn_count,
1491 1.20 alnsn bpf_memword_init_t *initmask, bpfjit_hint_t *hints)
1492 1.7 alnsn {
1493 1.1 alnsn
1494 1.7 alnsn optimize_init(insn_dat, insn_count);
1495 1.7 alnsn
1496 1.20 alnsn if (!optimize_pass1(bc, insns, insn_dat, insn_count, initmask, hints))
1497 1.7 alnsn return false;
1498 1.1 alnsn
1499 1.19 alnsn optimize_pass2(bc, insns, insn_dat, insn_count);
1500 1.7 alnsn optimize_pass3(insns, insn_dat, insn_count);
1501 1.7 alnsn
1502 1.7 alnsn return true;
1503 1.1 alnsn }
1504 1.1 alnsn
1505 1.1 alnsn /*
1506 1.1 alnsn * Convert BPF_ALU operations except BPF_NEG and BPF_DIV to sljit operation.
1507 1.1 alnsn */
1508 1.1 alnsn static int
1509 1.7 alnsn bpf_alu_to_sljit_op(const struct bpf_insn *pc)
1510 1.1 alnsn {
1511 1.1 alnsn
1512 1.1 alnsn /*
1513 1.1 alnsn * Note: all supported 64bit arches have 32bit multiply
1514 1.1 alnsn * instruction so SLJIT_INT_OP doesn't have any overhead.
1515 1.1 alnsn */
1516 1.1 alnsn switch (BPF_OP(pc->code)) {
1517 1.1 alnsn case BPF_ADD: return SLJIT_ADD;
1518 1.1 alnsn case BPF_SUB: return SLJIT_SUB;
1519 1.1 alnsn case BPF_MUL: return SLJIT_MUL|SLJIT_INT_OP;
1520 1.1 alnsn case BPF_OR: return SLJIT_OR;
1521 1.1 alnsn case BPF_AND: return SLJIT_AND;
1522 1.1 alnsn case BPF_LSH: return SLJIT_SHL;
1523 1.1 alnsn case BPF_RSH: return SLJIT_LSHR|SLJIT_INT_OP;
1524 1.1 alnsn default:
1525 1.7 alnsn BJ_ASSERT(false);
1526 1.1 alnsn return 0;
1527 1.1 alnsn }
1528 1.1 alnsn }
1529 1.1 alnsn
1530 1.1 alnsn /*
1531 1.1 alnsn * Convert BPF_JMP operations except BPF_JA to sljit condition.
1532 1.1 alnsn */
1533 1.1 alnsn static int
1534 1.7 alnsn bpf_jmp_to_sljit_cond(const struct bpf_insn *pc, bool negate)
1535 1.1 alnsn {
1536 1.1 alnsn /*
1537 1.1 alnsn * Note: all supported 64bit arches have 32bit comparison
1538 1.1 alnsn * instructions so SLJIT_INT_OP doesn't have any overhead.
1539 1.1 alnsn */
1540 1.1 alnsn int rv = SLJIT_INT_OP;
1541 1.1 alnsn
1542 1.1 alnsn switch (BPF_OP(pc->code)) {
1543 1.1 alnsn case BPF_JGT:
1544 1.1 alnsn rv |= negate ? SLJIT_C_LESS_EQUAL : SLJIT_C_GREATER;
1545 1.1 alnsn break;
1546 1.1 alnsn case BPF_JGE:
1547 1.1 alnsn rv |= negate ? SLJIT_C_LESS : SLJIT_C_GREATER_EQUAL;
1548 1.1 alnsn break;
1549 1.1 alnsn case BPF_JEQ:
1550 1.1 alnsn rv |= negate ? SLJIT_C_NOT_EQUAL : SLJIT_C_EQUAL;
1551 1.1 alnsn break;
1552 1.1 alnsn case BPF_JSET:
1553 1.1 alnsn rv |= negate ? SLJIT_C_EQUAL : SLJIT_C_NOT_EQUAL;
1554 1.1 alnsn break;
1555 1.1 alnsn default:
1556 1.7 alnsn BJ_ASSERT(false);
1557 1.1 alnsn }
1558 1.1 alnsn
1559 1.1 alnsn return rv;
1560 1.1 alnsn }
1561 1.1 alnsn
1562 1.1 alnsn /*
1563 1.1 alnsn * Convert BPF_K and BPF_X to sljit register.
1564 1.1 alnsn */
1565 1.1 alnsn static int
1566 1.7 alnsn kx_to_reg(const struct bpf_insn *pc)
1567 1.1 alnsn {
1568 1.1 alnsn
1569 1.1 alnsn switch (BPF_SRC(pc->code)) {
1570 1.1 alnsn case BPF_K: return SLJIT_IMM;
1571 1.7 alnsn case BPF_X: return BJ_XREG;
1572 1.1 alnsn default:
1573 1.7 alnsn BJ_ASSERT(false);
1574 1.1 alnsn return 0;
1575 1.1 alnsn }
1576 1.1 alnsn }
1577 1.1 alnsn
1578 1.12 alnsn static sljit_sw
1579 1.7 alnsn kx_to_reg_arg(const struct bpf_insn *pc)
1580 1.1 alnsn {
1581 1.1 alnsn
1582 1.1 alnsn switch (BPF_SRC(pc->code)) {
1583 1.1 alnsn case BPF_K: return (uint32_t)pc->k; /* SLJIT_IMM, pc->k, */
1584 1.7 alnsn case BPF_X: return 0; /* BJ_XREG, 0, */
1585 1.1 alnsn default:
1586 1.7 alnsn BJ_ASSERT(false);
1587 1.1 alnsn return 0;
1588 1.1 alnsn }
1589 1.1 alnsn }
1590 1.1 alnsn
1591 1.19 alnsn static bool
1592 1.19 alnsn generate_insn_code(struct sljit_compiler *compiler, const bpf_ctx_t *bc,
1593 1.19 alnsn const struct bpf_insn *insns, struct bpfjit_insn_data *insn_dat,
1594 1.19 alnsn size_t insn_count)
1595 1.1 alnsn {
1596 1.1 alnsn /* a list of jumps to out-of-bound return from a generated function */
1597 1.1 alnsn struct sljit_jump **ret0;
1598 1.7 alnsn size_t ret0_size, ret0_maxsize;
1599 1.1 alnsn
1600 1.19 alnsn struct sljit_jump *jump;
1601 1.19 alnsn struct sljit_label *label;
1602 1.7 alnsn const struct bpf_insn *pc;
1603 1.1 alnsn struct bpfjit_jump *bjump, *jtf;
1604 1.1 alnsn struct sljit_jump *to_mchain_jump;
1605 1.1 alnsn
1606 1.19 alnsn size_t i;
1607 1.19 alnsn int status;
1608 1.19 alnsn int branching, negate;
1609 1.19 alnsn unsigned int rval, mode, src;
1610 1.1 alnsn uint32_t jt, jf;
1611 1.1 alnsn
1612 1.19 alnsn bool unconditional_ret;
1613 1.19 alnsn bool rv;
1614 1.19 alnsn
1615 1.19 alnsn const size_t extwords = GET_EXTWORDS(bc);
1616 1.19 alnsn const size_t memwords = GET_MEMWORDS(bc);
1617 1.13 alnsn
1618 1.13 alnsn ret0 = NULL;
1619 1.19 alnsn rv = false;
1620 1.7 alnsn
1621 1.1 alnsn ret0_size = 0;
1622 1.7 alnsn ret0_maxsize = 64;
1623 1.7 alnsn ret0 = BJ_ALLOC(ret0_maxsize * sizeof(ret0[0]));
1624 1.7 alnsn if (ret0 == NULL)
1625 1.1 alnsn goto fail;
1626 1.1 alnsn
1627 1.1 alnsn for (i = 0; i < insn_count; i++) {
1628 1.7 alnsn if (insn_dat[i].unreachable)
1629 1.1 alnsn continue;
1630 1.1 alnsn
1631 1.1 alnsn /*
1632 1.1 alnsn * Resolve jumps to the current insn.
1633 1.1 alnsn */
1634 1.1 alnsn label = NULL;
1635 1.7 alnsn SLIST_FOREACH(bjump, &insn_dat[i].bjumps, entries) {
1636 1.7 alnsn if (bjump->sjump != NULL) {
1637 1.1 alnsn if (label == NULL)
1638 1.1 alnsn label = sljit_emit_label(compiler);
1639 1.1 alnsn if (label == NULL)
1640 1.1 alnsn goto fail;
1641 1.7 alnsn sljit_set_label(bjump->sjump, label);
1642 1.1 alnsn }
1643 1.1 alnsn }
1644 1.1 alnsn
1645 1.9 alnsn to_mchain_jump = NULL;
1646 1.9 alnsn unconditional_ret = false;
1647 1.9 alnsn
1648 1.9 alnsn if (read_pkt_insn(&insns[i], NULL)) {
1649 1.9 alnsn if (insn_dat[i].u.rdata.check_length > UINT32_MAX) {
1650 1.9 alnsn /* Jump to "return 0" unconditionally. */
1651 1.9 alnsn unconditional_ret = true;
1652 1.9 alnsn jump = sljit_emit_jump(compiler, SLJIT_JUMP);
1653 1.9 alnsn if (jump == NULL)
1654 1.9 alnsn goto fail;
1655 1.9 alnsn if (!append_jump(jump, &ret0,
1656 1.9 alnsn &ret0_size, &ret0_maxsize))
1657 1.9 alnsn goto fail;
1658 1.9 alnsn } else if (insn_dat[i].u.rdata.check_length > 0) {
1659 1.9 alnsn /* if (buflen < check_length) return 0; */
1660 1.9 alnsn jump = sljit_emit_cmp(compiler,
1661 1.9 alnsn SLJIT_C_LESS,
1662 1.9 alnsn BJ_BUFLEN, 0,
1663 1.9 alnsn SLJIT_IMM,
1664 1.9 alnsn insn_dat[i].u.rdata.check_length);
1665 1.9 alnsn if (jump == NULL)
1666 1.9 alnsn goto fail;
1667 1.1 alnsn #ifdef _KERNEL
1668 1.9 alnsn to_mchain_jump = jump;
1669 1.1 alnsn #else
1670 1.9 alnsn if (!append_jump(jump, &ret0,
1671 1.9 alnsn &ret0_size, &ret0_maxsize))
1672 1.9 alnsn goto fail;
1673 1.1 alnsn #endif
1674 1.9 alnsn }
1675 1.1 alnsn }
1676 1.1 alnsn
1677 1.1 alnsn pc = &insns[i];
1678 1.1 alnsn switch (BPF_CLASS(pc->code)) {
1679 1.1 alnsn
1680 1.1 alnsn default:
1681 1.1 alnsn goto fail;
1682 1.1 alnsn
1683 1.1 alnsn case BPF_LD:
1684 1.1 alnsn /* BPF_LD+BPF_IMM A <- k */
1685 1.1 alnsn if (pc->code == (BPF_LD|BPF_IMM)) {
1686 1.1 alnsn status = sljit_emit_op1(compiler,
1687 1.1 alnsn SLJIT_MOV,
1688 1.7 alnsn BJ_AREG, 0,
1689 1.1 alnsn SLJIT_IMM, (uint32_t)pc->k);
1690 1.1 alnsn if (status != SLJIT_SUCCESS)
1691 1.1 alnsn goto fail;
1692 1.1 alnsn
1693 1.1 alnsn continue;
1694 1.1 alnsn }
1695 1.1 alnsn
1696 1.1 alnsn /* BPF_LD+BPF_MEM A <- M[k] */
1697 1.1 alnsn if (pc->code == (BPF_LD|BPF_MEM)) {
1698 1.13 alnsn if ((uint32_t)pc->k >= memwords)
1699 1.1 alnsn goto fail;
1700 1.13 alnsn status = emit_memload(compiler,
1701 1.13 alnsn BJ_AREG, pc->k, extwords);
1702 1.1 alnsn if (status != SLJIT_SUCCESS)
1703 1.1 alnsn goto fail;
1704 1.1 alnsn
1705 1.1 alnsn continue;
1706 1.1 alnsn }
1707 1.1 alnsn
1708 1.1 alnsn /* BPF_LD+BPF_W+BPF_LEN A <- len */
1709 1.1 alnsn if (pc->code == (BPF_LD|BPF_W|BPF_LEN)) {
1710 1.1 alnsn status = sljit_emit_op1(compiler,
1711 1.1 alnsn SLJIT_MOV,
1712 1.7 alnsn BJ_AREG, 0,
1713 1.13 alnsn SLJIT_MEM1(BJ_ARGS),
1714 1.13 alnsn offsetof(struct bpf_args, wirelen));
1715 1.1 alnsn if (status != SLJIT_SUCCESS)
1716 1.1 alnsn goto fail;
1717 1.1 alnsn
1718 1.1 alnsn continue;
1719 1.1 alnsn }
1720 1.1 alnsn
1721 1.1 alnsn mode = BPF_MODE(pc->code);
1722 1.1 alnsn if (mode != BPF_ABS && mode != BPF_IND)
1723 1.1 alnsn goto fail;
1724 1.1 alnsn
1725 1.9 alnsn if (unconditional_ret)
1726 1.9 alnsn continue;
1727 1.9 alnsn
1728 1.1 alnsn status = emit_pkt_read(compiler, pc,
1729 1.7 alnsn to_mchain_jump, &ret0, &ret0_size, &ret0_maxsize);
1730 1.1 alnsn if (status != SLJIT_SUCCESS)
1731 1.1 alnsn goto fail;
1732 1.1 alnsn
1733 1.1 alnsn continue;
1734 1.1 alnsn
1735 1.1 alnsn case BPF_LDX:
1736 1.1 alnsn mode = BPF_MODE(pc->code);
1737 1.1 alnsn
1738 1.1 alnsn /* BPF_LDX+BPF_W+BPF_IMM X <- k */
1739 1.1 alnsn if (mode == BPF_IMM) {
1740 1.1 alnsn if (BPF_SIZE(pc->code) != BPF_W)
1741 1.1 alnsn goto fail;
1742 1.1 alnsn status = sljit_emit_op1(compiler,
1743 1.1 alnsn SLJIT_MOV,
1744 1.7 alnsn BJ_XREG, 0,
1745 1.1 alnsn SLJIT_IMM, (uint32_t)pc->k);
1746 1.1 alnsn if (status != SLJIT_SUCCESS)
1747 1.1 alnsn goto fail;
1748 1.1 alnsn
1749 1.1 alnsn continue;
1750 1.1 alnsn }
1751 1.1 alnsn
1752 1.1 alnsn /* BPF_LDX+BPF_W+BPF_LEN X <- len */
1753 1.1 alnsn if (mode == BPF_LEN) {
1754 1.1 alnsn if (BPF_SIZE(pc->code) != BPF_W)
1755 1.1 alnsn goto fail;
1756 1.1 alnsn status = sljit_emit_op1(compiler,
1757 1.1 alnsn SLJIT_MOV,
1758 1.7 alnsn BJ_XREG, 0,
1759 1.13 alnsn SLJIT_MEM1(BJ_ARGS),
1760 1.13 alnsn offsetof(struct bpf_args, wirelen));
1761 1.1 alnsn if (status != SLJIT_SUCCESS)
1762 1.1 alnsn goto fail;
1763 1.1 alnsn
1764 1.1 alnsn continue;
1765 1.1 alnsn }
1766 1.1 alnsn
1767 1.1 alnsn /* BPF_LDX+BPF_W+BPF_MEM X <- M[k] */
1768 1.1 alnsn if (mode == BPF_MEM) {
1769 1.1 alnsn if (BPF_SIZE(pc->code) != BPF_W)
1770 1.1 alnsn goto fail;
1771 1.13 alnsn if ((uint32_t)pc->k >= memwords)
1772 1.1 alnsn goto fail;
1773 1.13 alnsn status = emit_memload(compiler,
1774 1.13 alnsn BJ_XREG, pc->k, extwords);
1775 1.1 alnsn if (status != SLJIT_SUCCESS)
1776 1.1 alnsn goto fail;
1777 1.1 alnsn
1778 1.1 alnsn continue;
1779 1.1 alnsn }
1780 1.1 alnsn
1781 1.1 alnsn /* BPF_LDX+BPF_B+BPF_MSH X <- 4*(P[k:1]&0xf) */
1782 1.1 alnsn if (mode != BPF_MSH || BPF_SIZE(pc->code) != BPF_B)
1783 1.1 alnsn goto fail;
1784 1.1 alnsn
1785 1.9 alnsn if (unconditional_ret)
1786 1.9 alnsn continue;
1787 1.9 alnsn
1788 1.1 alnsn status = emit_msh(compiler, pc,
1789 1.7 alnsn to_mchain_jump, &ret0, &ret0_size, &ret0_maxsize);
1790 1.1 alnsn if (status != SLJIT_SUCCESS)
1791 1.1 alnsn goto fail;
1792 1.1 alnsn
1793 1.1 alnsn continue;
1794 1.1 alnsn
1795 1.1 alnsn case BPF_ST:
1796 1.8 alnsn if (pc->code != BPF_ST ||
1797 1.13 alnsn (uint32_t)pc->k >= memwords) {
1798 1.1 alnsn goto fail;
1799 1.8 alnsn }
1800 1.1 alnsn
1801 1.13 alnsn status = emit_memstore(compiler,
1802 1.13 alnsn BJ_AREG, pc->k, extwords);
1803 1.1 alnsn if (status != SLJIT_SUCCESS)
1804 1.1 alnsn goto fail;
1805 1.1 alnsn
1806 1.1 alnsn continue;
1807 1.1 alnsn
1808 1.1 alnsn case BPF_STX:
1809 1.8 alnsn if (pc->code != BPF_STX ||
1810 1.13 alnsn (uint32_t)pc->k >= memwords) {
1811 1.1 alnsn goto fail;
1812 1.8 alnsn }
1813 1.1 alnsn
1814 1.13 alnsn status = emit_memstore(compiler,
1815 1.13 alnsn BJ_XREG, pc->k, extwords);
1816 1.1 alnsn if (status != SLJIT_SUCCESS)
1817 1.1 alnsn goto fail;
1818 1.1 alnsn
1819 1.1 alnsn continue;
1820 1.1 alnsn
1821 1.1 alnsn case BPF_ALU:
1822 1.1 alnsn if (pc->code == (BPF_ALU|BPF_NEG)) {
1823 1.1 alnsn status = sljit_emit_op1(compiler,
1824 1.1 alnsn SLJIT_NEG,
1825 1.7 alnsn BJ_AREG, 0,
1826 1.7 alnsn BJ_AREG, 0);
1827 1.1 alnsn if (status != SLJIT_SUCCESS)
1828 1.1 alnsn goto fail;
1829 1.1 alnsn
1830 1.1 alnsn continue;
1831 1.1 alnsn }
1832 1.1 alnsn
1833 1.1 alnsn if (BPF_OP(pc->code) != BPF_DIV) {
1834 1.1 alnsn status = sljit_emit_op2(compiler,
1835 1.1 alnsn bpf_alu_to_sljit_op(pc),
1836 1.7 alnsn BJ_AREG, 0,
1837 1.7 alnsn BJ_AREG, 0,
1838 1.1 alnsn kx_to_reg(pc), kx_to_reg_arg(pc));
1839 1.1 alnsn if (status != SLJIT_SUCCESS)
1840 1.1 alnsn goto fail;
1841 1.1 alnsn
1842 1.1 alnsn continue;
1843 1.1 alnsn }
1844 1.1 alnsn
1845 1.1 alnsn /* BPF_DIV */
1846 1.1 alnsn
1847 1.1 alnsn src = BPF_SRC(pc->code);
1848 1.1 alnsn if (src != BPF_X && src != BPF_K)
1849 1.1 alnsn goto fail;
1850 1.1 alnsn
1851 1.1 alnsn /* division by zero? */
1852 1.1 alnsn if (src == BPF_X) {
1853 1.1 alnsn jump = sljit_emit_cmp(compiler,
1854 1.1 alnsn SLJIT_C_EQUAL|SLJIT_INT_OP,
1855 1.8 alnsn BJ_XREG, 0,
1856 1.1 alnsn SLJIT_IMM, 0);
1857 1.1 alnsn if (jump == NULL)
1858 1.1 alnsn goto fail;
1859 1.7 alnsn if (!append_jump(jump, &ret0,
1860 1.7 alnsn &ret0_size, &ret0_maxsize))
1861 1.7 alnsn goto fail;
1862 1.1 alnsn } else if (pc->k == 0) {
1863 1.1 alnsn jump = sljit_emit_jump(compiler, SLJIT_JUMP);
1864 1.1 alnsn if (jump == NULL)
1865 1.1 alnsn goto fail;
1866 1.7 alnsn if (!append_jump(jump, &ret0,
1867 1.7 alnsn &ret0_size, &ret0_maxsize))
1868 1.7 alnsn goto fail;
1869 1.1 alnsn }
1870 1.1 alnsn
1871 1.1 alnsn if (src == BPF_X) {
1872 1.7 alnsn status = emit_division(compiler, BJ_XREG, 0);
1873 1.1 alnsn if (status != SLJIT_SUCCESS)
1874 1.1 alnsn goto fail;
1875 1.1 alnsn } else if (pc->k != 0) {
1876 1.1 alnsn if (pc->k & (pc->k - 1)) {
1877 1.1 alnsn status = emit_division(compiler,
1878 1.1 alnsn SLJIT_IMM, (uint32_t)pc->k);
1879 1.1 alnsn } else {
1880 1.7 alnsn status = emit_pow2_division(compiler,
1881 1.1 alnsn (uint32_t)pc->k);
1882 1.1 alnsn }
1883 1.1 alnsn if (status != SLJIT_SUCCESS)
1884 1.1 alnsn goto fail;
1885 1.1 alnsn }
1886 1.1 alnsn
1887 1.1 alnsn continue;
1888 1.1 alnsn
1889 1.1 alnsn case BPF_JMP:
1890 1.7 alnsn if (BPF_OP(pc->code) == BPF_JA) {
1891 1.1 alnsn jt = jf = pc->k;
1892 1.1 alnsn } else {
1893 1.1 alnsn jt = pc->jt;
1894 1.1 alnsn jf = pc->jf;
1895 1.1 alnsn }
1896 1.1 alnsn
1897 1.1 alnsn negate = (jt == 0) ? 1 : 0;
1898 1.1 alnsn branching = (jt == jf) ? 0 : 1;
1899 1.7 alnsn jtf = insn_dat[i].u.jdata.jtf;
1900 1.1 alnsn
1901 1.1 alnsn if (branching) {
1902 1.1 alnsn if (BPF_OP(pc->code) != BPF_JSET) {
1903 1.1 alnsn jump = sljit_emit_cmp(compiler,
1904 1.1 alnsn bpf_jmp_to_sljit_cond(pc, negate),
1905 1.7 alnsn BJ_AREG, 0,
1906 1.1 alnsn kx_to_reg(pc), kx_to_reg_arg(pc));
1907 1.1 alnsn } else {
1908 1.1 alnsn status = sljit_emit_op2(compiler,
1909 1.1 alnsn SLJIT_AND,
1910 1.7 alnsn BJ_TMP1REG, 0,
1911 1.7 alnsn BJ_AREG, 0,
1912 1.1 alnsn kx_to_reg(pc), kx_to_reg_arg(pc));
1913 1.1 alnsn if (status != SLJIT_SUCCESS)
1914 1.1 alnsn goto fail;
1915 1.1 alnsn
1916 1.1 alnsn jump = sljit_emit_cmp(compiler,
1917 1.1 alnsn bpf_jmp_to_sljit_cond(pc, negate),
1918 1.7 alnsn BJ_TMP1REG, 0,
1919 1.1 alnsn SLJIT_IMM, 0);
1920 1.1 alnsn }
1921 1.1 alnsn
1922 1.1 alnsn if (jump == NULL)
1923 1.1 alnsn goto fail;
1924 1.1 alnsn
1925 1.7 alnsn BJ_ASSERT(jtf[negate].sjump == NULL);
1926 1.7 alnsn jtf[negate].sjump = jump;
1927 1.1 alnsn }
1928 1.1 alnsn
1929 1.1 alnsn if (!branching || (jt != 0 && jf != 0)) {
1930 1.1 alnsn jump = sljit_emit_jump(compiler, SLJIT_JUMP);
1931 1.1 alnsn if (jump == NULL)
1932 1.1 alnsn goto fail;
1933 1.1 alnsn
1934 1.7 alnsn BJ_ASSERT(jtf[branching].sjump == NULL);
1935 1.7 alnsn jtf[branching].sjump = jump;
1936 1.1 alnsn }
1937 1.1 alnsn
1938 1.1 alnsn continue;
1939 1.1 alnsn
1940 1.1 alnsn case BPF_RET:
1941 1.1 alnsn rval = BPF_RVAL(pc->code);
1942 1.1 alnsn if (rval == BPF_X)
1943 1.1 alnsn goto fail;
1944 1.1 alnsn
1945 1.1 alnsn /* BPF_RET+BPF_K accept k bytes */
1946 1.1 alnsn if (rval == BPF_K) {
1947 1.7 alnsn status = sljit_emit_return(compiler,
1948 1.7 alnsn SLJIT_MOV_UI,
1949 1.1 alnsn SLJIT_IMM, (uint32_t)pc->k);
1950 1.1 alnsn if (status != SLJIT_SUCCESS)
1951 1.1 alnsn goto fail;
1952 1.1 alnsn }
1953 1.1 alnsn
1954 1.1 alnsn /* BPF_RET+BPF_A accept A bytes */
1955 1.1 alnsn if (rval == BPF_A) {
1956 1.7 alnsn status = sljit_emit_return(compiler,
1957 1.7 alnsn SLJIT_MOV_UI,
1958 1.7 alnsn BJ_AREG, 0);
1959 1.1 alnsn if (status != SLJIT_SUCCESS)
1960 1.1 alnsn goto fail;
1961 1.1 alnsn }
1962 1.1 alnsn
1963 1.1 alnsn continue;
1964 1.1 alnsn
1965 1.1 alnsn case BPF_MISC:
1966 1.7 alnsn switch (BPF_MISCOP(pc->code)) {
1967 1.7 alnsn case BPF_TAX:
1968 1.1 alnsn status = sljit_emit_op1(compiler,
1969 1.1 alnsn SLJIT_MOV_UI,
1970 1.7 alnsn BJ_XREG, 0,
1971 1.7 alnsn BJ_AREG, 0);
1972 1.1 alnsn if (status != SLJIT_SUCCESS)
1973 1.1 alnsn goto fail;
1974 1.1 alnsn
1975 1.1 alnsn continue;
1976 1.1 alnsn
1977 1.7 alnsn case BPF_TXA:
1978 1.1 alnsn status = sljit_emit_op1(compiler,
1979 1.1 alnsn SLJIT_MOV,
1980 1.7 alnsn BJ_AREG, 0,
1981 1.7 alnsn BJ_XREG, 0);
1982 1.1 alnsn if (status != SLJIT_SUCCESS)
1983 1.1 alnsn goto fail;
1984 1.1 alnsn
1985 1.1 alnsn continue;
1986 1.13 alnsn
1987 1.13 alnsn case BPF_COP:
1988 1.13 alnsn case BPF_COPX:
1989 1.13 alnsn if (bc == NULL || bc->copfuncs == NULL)
1990 1.13 alnsn goto fail;
1991 1.13 alnsn if (BPF_MISCOP(pc->code) == BPF_COP &&
1992 1.13 alnsn (uint32_t)pc->k >= bc->nfuncs) {
1993 1.13 alnsn goto fail;
1994 1.13 alnsn }
1995 1.13 alnsn
1996 1.13 alnsn jump = NULL;
1997 1.13 alnsn status = emit_cop(compiler, bc, pc, &jump);
1998 1.13 alnsn if (status != SLJIT_SUCCESS)
1999 1.13 alnsn goto fail;
2000 1.13 alnsn
2001 1.13 alnsn if (jump != NULL && !append_jump(jump,
2002 1.13 alnsn &ret0, &ret0_size, &ret0_maxsize))
2003 1.13 alnsn goto fail;
2004 1.13 alnsn
2005 1.13 alnsn continue;
2006 1.1 alnsn }
2007 1.1 alnsn
2008 1.1 alnsn goto fail;
2009 1.1 alnsn } /* switch */
2010 1.1 alnsn } /* main loop */
2011 1.1 alnsn
2012 1.7 alnsn BJ_ASSERT(ret0_size <= ret0_maxsize);
2013 1.1 alnsn
2014 1.7 alnsn if (ret0_size > 0) {
2015 1.1 alnsn label = sljit_emit_label(compiler);
2016 1.1 alnsn if (label == NULL)
2017 1.1 alnsn goto fail;
2018 1.7 alnsn for (i = 0; i < ret0_size; i++)
2019 1.7 alnsn sljit_set_label(ret0[i], label);
2020 1.1 alnsn }
2021 1.1 alnsn
2022 1.19 alnsn rv = true;
2023 1.19 alnsn
2024 1.19 alnsn fail:
2025 1.19 alnsn if (ret0 != NULL)
2026 1.19 alnsn BJ_FREE(ret0, ret0_maxsize * sizeof(ret0[0]));
2027 1.19 alnsn
2028 1.19 alnsn return rv;
2029 1.19 alnsn }
2030 1.19 alnsn
2031 1.19 alnsn bpfjit_func_t
2032 1.19 alnsn bpfjit_generate_code(const bpf_ctx_t *bc,
2033 1.19 alnsn const struct bpf_insn *insns, size_t insn_count)
2034 1.19 alnsn {
2035 1.19 alnsn void *rv;
2036 1.19 alnsn struct sljit_compiler *compiler;
2037 1.19 alnsn
2038 1.19 alnsn size_t i;
2039 1.19 alnsn int status;
2040 1.19 alnsn
2041 1.19 alnsn /* optimization related */
2042 1.19 alnsn bpf_memword_init_t initmask;
2043 1.20 alnsn bpfjit_hint_t hints;
2044 1.19 alnsn
2045 1.19 alnsn /* memory store location for initial zero initialization */
2046 1.19 alnsn sljit_si mem_reg;
2047 1.19 alnsn sljit_sw mem_off;
2048 1.19 alnsn
2049 1.19 alnsn struct bpfjit_insn_data *insn_dat;
2050 1.19 alnsn
2051 1.19 alnsn const size_t extwords = GET_EXTWORDS(bc);
2052 1.19 alnsn const size_t memwords = GET_MEMWORDS(bc);
2053 1.19 alnsn const bpf_memword_init_t preinited = extwords ? bc->preinited : 0;
2054 1.19 alnsn
2055 1.19 alnsn rv = NULL;
2056 1.19 alnsn compiler = NULL;
2057 1.19 alnsn insn_dat = NULL;
2058 1.19 alnsn
2059 1.19 alnsn if (memwords > MAX_MEMWORDS)
2060 1.19 alnsn goto fail;
2061 1.19 alnsn
2062 1.19 alnsn if (insn_count == 0 || insn_count > SIZE_MAX / sizeof(insn_dat[0]))
2063 1.19 alnsn goto fail;
2064 1.19 alnsn
2065 1.19 alnsn insn_dat = BJ_ALLOC(insn_count * sizeof(insn_dat[0]));
2066 1.19 alnsn if (insn_dat == NULL)
2067 1.19 alnsn goto fail;
2068 1.19 alnsn
2069 1.20 alnsn if (!optimize(bc, insns, insn_dat, insn_count, &initmask, &hints))
2070 1.19 alnsn goto fail;
2071 1.19 alnsn
2072 1.19 alnsn compiler = sljit_create_compiler();
2073 1.19 alnsn if (compiler == NULL)
2074 1.19 alnsn goto fail;
2075 1.19 alnsn
2076 1.19 alnsn #if !defined(_KERNEL) && defined(SLJIT_VERBOSE) && SLJIT_VERBOSE
2077 1.19 alnsn sljit_compiler_verbose(compiler, stderr);
2078 1.19 alnsn #endif
2079 1.19 alnsn
2080 1.19 alnsn status = sljit_emit_enter(compiler,
2081 1.20 alnsn 2, nscratches(hints), 3, sizeof(struct bpfjit_stack));
2082 1.19 alnsn if (status != SLJIT_SUCCESS)
2083 1.19 alnsn goto fail;
2084 1.19 alnsn
2085 1.20 alnsn if (hints & BJ_HINT_COP) {
2086 1.19 alnsn /* save ctx argument */
2087 1.19 alnsn status = sljit_emit_op1(compiler,
2088 1.19 alnsn SLJIT_MOV_P,
2089 1.19 alnsn SLJIT_MEM1(SLJIT_LOCALS_REG),
2090 1.19 alnsn offsetof(struct bpfjit_stack, ctx),
2091 1.19 alnsn BJ_CTX_ARG, 0);
2092 1.19 alnsn if (status != SLJIT_SUCCESS)
2093 1.19 alnsn goto fail;
2094 1.19 alnsn }
2095 1.19 alnsn
2096 1.19 alnsn if (extwords == 0) {
2097 1.19 alnsn mem_reg = SLJIT_MEM1(SLJIT_LOCALS_REG);
2098 1.19 alnsn mem_off = offsetof(struct bpfjit_stack, mem);
2099 1.19 alnsn } else {
2100 1.19 alnsn /* copy "mem" argument from bpf_args to bpfjit_stack */
2101 1.19 alnsn status = sljit_emit_op1(compiler,
2102 1.19 alnsn SLJIT_MOV_P,
2103 1.19 alnsn BJ_TMP1REG, 0,
2104 1.19 alnsn SLJIT_MEM1(BJ_ARGS), offsetof(struct bpf_args, mem));
2105 1.19 alnsn if (status != SLJIT_SUCCESS)
2106 1.19 alnsn goto fail;
2107 1.19 alnsn
2108 1.19 alnsn status = sljit_emit_op1(compiler,
2109 1.19 alnsn SLJIT_MOV_P,
2110 1.19 alnsn SLJIT_MEM1(SLJIT_LOCALS_REG),
2111 1.19 alnsn offsetof(struct bpfjit_stack, extmem),
2112 1.19 alnsn BJ_TMP1REG, 0);
2113 1.19 alnsn if (status != SLJIT_SUCCESS)
2114 1.19 alnsn goto fail;
2115 1.19 alnsn
2116 1.19 alnsn mem_reg = SLJIT_MEM1(BJ_TMP1REG);
2117 1.19 alnsn mem_off = 0;
2118 1.19 alnsn }
2119 1.19 alnsn
2120 1.19 alnsn /*
2121 1.19 alnsn * Exclude pre-initialised external memory words but keep
2122 1.19 alnsn * initialization statuses of A and X registers in case
2123 1.19 alnsn * bc->preinited wrongly sets those two bits.
2124 1.19 alnsn */
2125 1.19 alnsn initmask &= ~preinited | BJ_INIT_ABIT | BJ_INIT_XBIT;
2126 1.19 alnsn
2127 1.19 alnsn #if defined(_KERNEL)
2128 1.19 alnsn /* bpf_filter() checks initialization of memwords. */
2129 1.19 alnsn BJ_ASSERT((initmask & (BJ_INIT_MBIT(memwords) - 1)) == 0);
2130 1.19 alnsn #endif
2131 1.19 alnsn for (i = 0; i < memwords; i++) {
2132 1.19 alnsn if (initmask & BJ_INIT_MBIT(i)) {
2133 1.19 alnsn /* M[i] = 0; */
2134 1.19 alnsn status = sljit_emit_op1(compiler,
2135 1.19 alnsn SLJIT_MOV_UI,
2136 1.19 alnsn mem_reg, mem_off + i * sizeof(uint32_t),
2137 1.19 alnsn SLJIT_IMM, 0);
2138 1.19 alnsn if (status != SLJIT_SUCCESS)
2139 1.19 alnsn goto fail;
2140 1.19 alnsn }
2141 1.19 alnsn }
2142 1.19 alnsn
2143 1.19 alnsn if (initmask & BJ_INIT_ABIT) {
2144 1.19 alnsn /* A = 0; */
2145 1.19 alnsn status = sljit_emit_op1(compiler,
2146 1.19 alnsn SLJIT_MOV,
2147 1.19 alnsn BJ_AREG, 0,
2148 1.19 alnsn SLJIT_IMM, 0);
2149 1.19 alnsn if (status != SLJIT_SUCCESS)
2150 1.19 alnsn goto fail;
2151 1.19 alnsn }
2152 1.19 alnsn
2153 1.19 alnsn if (initmask & BJ_INIT_XBIT) {
2154 1.19 alnsn /* X = 0; */
2155 1.19 alnsn status = sljit_emit_op1(compiler,
2156 1.19 alnsn SLJIT_MOV,
2157 1.19 alnsn BJ_XREG, 0,
2158 1.19 alnsn SLJIT_IMM, 0);
2159 1.19 alnsn if (status != SLJIT_SUCCESS)
2160 1.19 alnsn goto fail;
2161 1.19 alnsn }
2162 1.19 alnsn
2163 1.19 alnsn status = load_buf_buflen(compiler);
2164 1.19 alnsn if (status != SLJIT_SUCCESS)
2165 1.19 alnsn goto fail;
2166 1.19 alnsn
2167 1.19 alnsn if (!generate_insn_code(compiler, bc, insns, insn_dat, insn_count))
2168 1.19 alnsn goto fail;
2169 1.19 alnsn
2170 1.1 alnsn status = sljit_emit_return(compiler,
2171 1.1 alnsn SLJIT_MOV_UI,
2172 1.7 alnsn SLJIT_IMM, 0);
2173 1.1 alnsn if (status != SLJIT_SUCCESS)
2174 1.1 alnsn goto fail;
2175 1.1 alnsn
2176 1.1 alnsn rv = sljit_generate_code(compiler);
2177 1.1 alnsn
2178 1.1 alnsn fail:
2179 1.1 alnsn if (compiler != NULL)
2180 1.1 alnsn sljit_free_compiler(compiler);
2181 1.1 alnsn
2182 1.1 alnsn if (insn_dat != NULL)
2183 1.7 alnsn BJ_FREE(insn_dat, insn_count * sizeof(insn_dat[0]));
2184 1.1 alnsn
2185 1.4 rmind return (bpfjit_func_t)rv;
2186 1.1 alnsn }
2187 1.1 alnsn
2188 1.1 alnsn void
2189 1.4 rmind bpfjit_free_code(bpfjit_func_t code)
2190 1.1 alnsn {
2191 1.7 alnsn
2192 1.1 alnsn sljit_free_code((void *)code);
2193 1.1 alnsn }
2194