Home | History | Annotate | Line # | Download | only in net
bpfjit.c revision 1.20
      1  1.20  alnsn /*	$NetBSD: bpfjit.c,v 1.20 2014/07/04 21:32:08 alnsn Exp $	*/
      2   1.3  rmind 
      3   1.1  alnsn /*-
      4   1.7  alnsn  * Copyright (c) 2011-2014 Alexander Nasonov.
      5   1.1  alnsn  * All rights reserved.
      6   1.1  alnsn  *
      7   1.1  alnsn  * Redistribution and use in source and binary forms, with or without
      8   1.1  alnsn  * modification, are permitted provided that the following conditions
      9   1.1  alnsn  * are met:
     10   1.1  alnsn  *
     11   1.1  alnsn  * 1. Redistributions of source code must retain the above copyright
     12   1.1  alnsn  *    notice, this list of conditions and the following disclaimer.
     13   1.1  alnsn  * 2. Redistributions in binary form must reproduce the above copyright
     14   1.1  alnsn  *    notice, this list of conditions and the following disclaimer in
     15   1.1  alnsn  *    the documentation and/or other materials provided with the
     16   1.1  alnsn  *    distribution.
     17   1.1  alnsn  *
     18   1.1  alnsn  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     19   1.1  alnsn  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     20   1.1  alnsn  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
     21   1.1  alnsn  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
     22   1.1  alnsn  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
     23   1.1  alnsn  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
     24   1.1  alnsn  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     25   1.1  alnsn  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     26   1.1  alnsn  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     27   1.1  alnsn  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
     28   1.1  alnsn  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29   1.1  alnsn  * SUCH DAMAGE.
     30   1.1  alnsn  */
     31   1.1  alnsn 
     32   1.2  alnsn #include <sys/cdefs.h>
     33   1.2  alnsn #ifdef _KERNEL
     34  1.20  alnsn __KERNEL_RCSID(0, "$NetBSD: bpfjit.c,v 1.20 2014/07/04 21:32:08 alnsn Exp $");
     35   1.2  alnsn #else
     36  1.20  alnsn __RCSID("$NetBSD: bpfjit.c,v 1.20 2014/07/04 21:32:08 alnsn Exp $");
     37   1.2  alnsn #endif
     38   1.2  alnsn 
     39   1.3  rmind #include <sys/types.h>
     40   1.3  rmind #include <sys/queue.h>
     41   1.1  alnsn 
     42   1.1  alnsn #ifndef _KERNEL
     43   1.7  alnsn #include <assert.h>
     44   1.7  alnsn #define BJ_ASSERT(c) assert(c)
     45   1.7  alnsn #else
     46   1.7  alnsn #define BJ_ASSERT(c) KASSERT(c)
     47   1.7  alnsn #endif
     48   1.7  alnsn 
     49   1.7  alnsn #ifndef _KERNEL
     50   1.3  rmind #include <stdlib.h>
     51   1.7  alnsn #define BJ_ALLOC(sz) malloc(sz)
     52   1.7  alnsn #define BJ_FREE(p, sz) free(p)
     53   1.1  alnsn #else
     54   1.3  rmind #include <sys/kmem.h>
     55   1.7  alnsn #define BJ_ALLOC(sz) kmem_alloc(sz, KM_SLEEP)
     56   1.7  alnsn #define BJ_FREE(p, sz) kmem_free(p, sz)
     57   1.1  alnsn #endif
     58   1.1  alnsn 
     59   1.1  alnsn #ifndef _KERNEL
     60   1.1  alnsn #include <limits.h>
     61   1.1  alnsn #include <stdbool.h>
     62   1.1  alnsn #include <stddef.h>
     63   1.1  alnsn #include <stdint.h>
     64   1.1  alnsn #else
     65   1.1  alnsn #include <sys/atomic.h>
     66   1.1  alnsn #include <sys/module.h>
     67   1.1  alnsn #endif
     68   1.1  alnsn 
     69   1.5  rmind #define	__BPF_PRIVATE
     70   1.5  rmind #include <net/bpf.h>
     71   1.3  rmind #include <net/bpfjit.h>
     72   1.1  alnsn #include <sljitLir.h>
     73   1.1  alnsn 
     74   1.7  alnsn #if !defined(_KERNEL) && defined(SLJIT_VERBOSE) && SLJIT_VERBOSE
     75   1.7  alnsn #include <stdio.h> /* for stderr */
     76   1.7  alnsn #endif
     77   1.7  alnsn 
     78   1.7  alnsn /*
     79  1.13  alnsn  * Arguments of generated bpfjit_func_t.
     80  1.13  alnsn  * The first argument is reassigned upon entry
     81  1.13  alnsn  * to a more frequently used buf argument.
     82  1.13  alnsn  */
     83  1.13  alnsn #define BJ_CTX_ARG	SLJIT_SAVED_REG1
     84  1.13  alnsn #define BJ_ARGS		SLJIT_SAVED_REG2
     85  1.13  alnsn 
     86  1.13  alnsn /*
     87   1.7  alnsn  * Permanent register assignments.
     88   1.7  alnsn  */
     89   1.7  alnsn #define BJ_BUF		SLJIT_SAVED_REG1
     90  1.13  alnsn //#define BJ_ARGS	SLJIT_SAVED_REG2
     91   1.7  alnsn #define BJ_BUFLEN	SLJIT_SAVED_REG3
     92  1.12  alnsn #define BJ_AREG		SLJIT_SCRATCH_REG1
     93  1.12  alnsn #define BJ_TMP1REG	SLJIT_SCRATCH_REG2
     94  1.12  alnsn #define BJ_TMP2REG	SLJIT_SCRATCH_REG3
     95   1.7  alnsn #define BJ_XREG		SLJIT_TEMPORARY_EREG1
     96   1.7  alnsn #define BJ_TMP3REG	SLJIT_TEMPORARY_EREG2
     97   1.7  alnsn 
     98  1.13  alnsn /*
     99  1.13  alnsn  * EREG registers can't be used for indirect calls, reuse BJ_BUF and
    100  1.13  alnsn  * BJ_BUFLEN registers. They can be easily restored from BJ_ARGS.
    101  1.13  alnsn  */
    102  1.13  alnsn #define BJ_COPF_PTR	SLJIT_SAVED_REG1
    103  1.13  alnsn #define BJ_COPF_IDX	SLJIT_SAVED_REG3
    104  1.13  alnsn 
    105  1.13  alnsn #ifdef _KERNEL
    106  1.13  alnsn #define MAX_MEMWORDS BPF_MAX_MEMWORDS
    107  1.13  alnsn #else
    108  1.13  alnsn #define MAX_MEMWORDS BPF_MEMWORDS
    109  1.13  alnsn #endif
    110  1.13  alnsn 
    111  1.13  alnsn #define BJ_INIT_NOBITS  ((bpf_memword_init_t)0)
    112  1.13  alnsn #define BJ_INIT_MBIT(k) BPF_MEMWORD_INIT(k)
    113  1.13  alnsn #define BJ_INIT_ABIT    BJ_INIT_MBIT(MAX_MEMWORDS)
    114  1.13  alnsn #define BJ_INIT_XBIT    BJ_INIT_MBIT(MAX_MEMWORDS + 1)
    115   1.1  alnsn 
    116   1.9  alnsn /*
    117  1.19  alnsn  * Get a number of memwords and external memwords from a bpf_ctx object.
    118  1.19  alnsn  */
    119  1.19  alnsn #define GET_EXTWORDS(bc) ((bc) ? (bc)->extwords : 0)
    120  1.19  alnsn #define GET_MEMWORDS(bc) (GET_EXTWORDS(bc) ? GET_EXTWORDS(bc) : BPF_MEMWORDS)
    121  1.19  alnsn 
    122  1.19  alnsn /*
    123  1.20  alnsn  * Optimization hints.
    124  1.20  alnsn  */
    125  1.20  alnsn typedef unsigned int bpfjit_hint_t;
    126  1.20  alnsn #define BJ_HINT_LDW  0x01 /* 32-bit packet read  */
    127  1.20  alnsn #define BJ_HINT_IND  0x02 /* packet read at a variable offset */
    128  1.20  alnsn #define BJ_HINT_COP  0x04 /* BPF_COP or BPF_COPX instruction  */
    129  1.20  alnsn #define BJ_HINT_XREG 0x08 /* BJ_XREG is needed   */
    130  1.20  alnsn #define BJ_HINT_LDX  0x10 /* BPF_LDX instruction */
    131  1.20  alnsn 
    132  1.20  alnsn /*
    133   1.9  alnsn  * Datatype for Array Bounds Check Elimination (ABC) pass.
    134   1.9  alnsn  */
    135   1.9  alnsn typedef uint64_t bpfjit_abc_length_t;
    136   1.9  alnsn #define MAX_ABC_LENGTH (UINT32_MAX + UINT64_C(4)) /* max. width is 4 */
    137   1.8  alnsn 
    138   1.7  alnsn struct bpfjit_stack
    139   1.7  alnsn {
    140  1.13  alnsn 	bpf_ctx_t *ctx;
    141  1.13  alnsn 	uint32_t *extmem; /* pointer to external memory store */
    142   1.7  alnsn #ifdef _KERNEL
    143   1.7  alnsn 	void *tmp;
    144   1.7  alnsn #endif
    145  1.13  alnsn 	uint32_t mem[BPF_MEMWORDS]; /* internal memory store */
    146   1.7  alnsn };
    147   1.7  alnsn 
    148   1.7  alnsn /*
    149   1.7  alnsn  * Data for BPF_JMP instruction.
    150   1.7  alnsn  * Forward declaration for struct bpfjit_jump.
    151   1.1  alnsn  */
    152   1.7  alnsn struct bpfjit_jump_data;
    153   1.1  alnsn 
    154   1.1  alnsn /*
    155   1.7  alnsn  * Node of bjumps list.
    156   1.1  alnsn  */
    157   1.3  rmind struct bpfjit_jump {
    158   1.7  alnsn 	struct sljit_jump *sjump;
    159   1.7  alnsn 	SLIST_ENTRY(bpfjit_jump) entries;
    160   1.7  alnsn 	struct bpfjit_jump_data *jdata;
    161   1.1  alnsn };
    162   1.1  alnsn 
    163   1.1  alnsn /*
    164   1.1  alnsn  * Data for BPF_JMP instruction.
    165   1.1  alnsn  */
    166   1.3  rmind struct bpfjit_jump_data {
    167   1.1  alnsn 	/*
    168   1.7  alnsn 	 * These entries make up bjumps list:
    169   1.7  alnsn 	 * jtf[0] - when coming from jt path,
    170   1.7  alnsn 	 * jtf[1] - when coming from jf path.
    171   1.1  alnsn 	 */
    172   1.7  alnsn 	struct bpfjit_jump jtf[2];
    173   1.7  alnsn 	/*
    174   1.7  alnsn 	 * Length calculated by Array Bounds Check Elimination (ABC) pass.
    175   1.7  alnsn 	 */
    176   1.8  alnsn 	bpfjit_abc_length_t abc_length;
    177   1.7  alnsn 	/*
    178   1.7  alnsn 	 * Length checked by the last out-of-bounds check.
    179   1.7  alnsn 	 */
    180   1.8  alnsn 	bpfjit_abc_length_t checked_length;
    181   1.1  alnsn };
    182   1.1  alnsn 
    183   1.1  alnsn /*
    184   1.1  alnsn  * Data for "read from packet" instructions.
    185   1.1  alnsn  * See also read_pkt_insn() function below.
    186   1.1  alnsn  */
    187   1.3  rmind struct bpfjit_read_pkt_data {
    188   1.1  alnsn 	/*
    189   1.7  alnsn 	 * Length calculated by Array Bounds Check Elimination (ABC) pass.
    190   1.7  alnsn 	 */
    191   1.8  alnsn 	bpfjit_abc_length_t abc_length;
    192   1.7  alnsn 	/*
    193   1.7  alnsn 	 * If positive, emit "if (buflen < check_length) return 0"
    194   1.7  alnsn 	 * out-of-bounds check.
    195   1.9  alnsn 	 * Values greater than UINT32_MAX generate unconditional "return 0".
    196   1.1  alnsn 	 */
    197   1.8  alnsn 	bpfjit_abc_length_t check_length;
    198   1.1  alnsn };
    199   1.1  alnsn 
    200   1.1  alnsn /*
    201   1.1  alnsn  * Additional (optimization-related) data for bpf_insn.
    202   1.1  alnsn  */
    203   1.3  rmind struct bpfjit_insn_data {
    204   1.1  alnsn 	/* List of jumps to this insn. */
    205   1.7  alnsn 	SLIST_HEAD(, bpfjit_jump) bjumps;
    206   1.1  alnsn 
    207   1.1  alnsn 	union {
    208   1.7  alnsn 		struct bpfjit_jump_data     jdata;
    209   1.7  alnsn 		struct bpfjit_read_pkt_data rdata;
    210   1.7  alnsn 	} u;
    211   1.1  alnsn 
    212  1.13  alnsn 	bpf_memword_init_t invalid;
    213   1.7  alnsn 	bool unreachable;
    214   1.1  alnsn };
    215   1.1  alnsn 
    216   1.1  alnsn #ifdef _KERNEL
    217   1.1  alnsn 
    218   1.1  alnsn uint32_t m_xword(const struct mbuf *, uint32_t, int *);
    219   1.1  alnsn uint32_t m_xhalf(const struct mbuf *, uint32_t, int *);
    220   1.1  alnsn uint32_t m_xbyte(const struct mbuf *, uint32_t, int *);
    221   1.1  alnsn 
    222   1.1  alnsn MODULE(MODULE_CLASS_MISC, bpfjit, "sljit")
    223   1.1  alnsn 
    224   1.1  alnsn static int
    225   1.1  alnsn bpfjit_modcmd(modcmd_t cmd, void *arg)
    226   1.1  alnsn {
    227   1.1  alnsn 
    228   1.1  alnsn 	switch (cmd) {
    229   1.1  alnsn 	case MODULE_CMD_INIT:
    230   1.1  alnsn 		bpfjit_module_ops.bj_free_code = &bpfjit_free_code;
    231   1.1  alnsn 		membar_producer();
    232   1.1  alnsn 		bpfjit_module_ops.bj_generate_code = &bpfjit_generate_code;
    233   1.1  alnsn 		membar_producer();
    234   1.1  alnsn 		return 0;
    235   1.1  alnsn 
    236   1.1  alnsn 	case MODULE_CMD_FINI:
    237   1.1  alnsn 		return EOPNOTSUPP;
    238   1.1  alnsn 
    239   1.1  alnsn 	default:
    240   1.1  alnsn 		return ENOTTY;
    241   1.1  alnsn 	}
    242   1.1  alnsn }
    243   1.1  alnsn #endif
    244   1.1  alnsn 
    245  1.20  alnsn /*
    246  1.20  alnsn  * Return a number of scratch regiters to pass
    247  1.20  alnsn  * to sljit_emit_enter() function.
    248  1.20  alnsn  */
    249  1.20  alnsn static sljit_si
    250  1.20  alnsn nscratches(bpfjit_hint_t hints)
    251  1.20  alnsn {
    252  1.20  alnsn 	sljit_si rv = 2;
    253  1.20  alnsn 
    254  1.20  alnsn 	if (hints & BJ_HINT_LDW)
    255  1.20  alnsn 		rv = 3; /* uses BJ_TMP2REG */
    256  1.20  alnsn 
    257  1.20  alnsn 	if (hints & BJ_HINT_COP)
    258  1.20  alnsn 		rv = 3; /* calls copfunc with three arguments */
    259  1.20  alnsn 
    260  1.20  alnsn 	if (hints & BJ_HINT_XREG)
    261  1.20  alnsn 		rv = 4; /* uses BJ_XREG */
    262  1.20  alnsn 
    263  1.20  alnsn #ifdef _KERNEL
    264  1.20  alnsn 	if (hints & BJ_HINT_LDX)
    265  1.20  alnsn 		rv = 5; /* uses BJ_TMP3REG */
    266  1.20  alnsn #endif
    267  1.20  alnsn 
    268  1.20  alnsn 	return rv;
    269  1.20  alnsn }
    270  1.20  alnsn 
    271   1.1  alnsn static uint32_t
    272   1.7  alnsn read_width(const struct bpf_insn *pc)
    273   1.1  alnsn {
    274   1.1  alnsn 
    275   1.1  alnsn 	switch (BPF_SIZE(pc->code)) {
    276   1.1  alnsn 	case BPF_W:
    277   1.1  alnsn 		return 4;
    278   1.1  alnsn 	case BPF_H:
    279   1.1  alnsn 		return 2;
    280   1.1  alnsn 	case BPF_B:
    281   1.1  alnsn 		return 1;
    282   1.1  alnsn 	default:
    283   1.7  alnsn 		BJ_ASSERT(false);
    284   1.1  alnsn 		return 0;
    285   1.1  alnsn 	}
    286   1.1  alnsn }
    287   1.1  alnsn 
    288  1.13  alnsn /*
    289  1.13  alnsn  * Copy buf and buflen members of bpf_args from BJ_ARGS
    290  1.13  alnsn  * pointer to BJ_BUF and BJ_BUFLEN registers.
    291  1.13  alnsn  */
    292  1.13  alnsn static int
    293  1.13  alnsn load_buf_buflen(struct sljit_compiler *compiler)
    294  1.13  alnsn {
    295  1.13  alnsn 	int status;
    296  1.13  alnsn 
    297  1.13  alnsn 	status = sljit_emit_op1(compiler,
    298  1.13  alnsn 	    SLJIT_MOV_P,
    299  1.13  alnsn 	    BJ_BUF, 0,
    300  1.13  alnsn 	    SLJIT_MEM1(BJ_ARGS),
    301  1.13  alnsn 	    offsetof(struct bpf_args, pkt));
    302  1.13  alnsn 	if (status != SLJIT_SUCCESS)
    303  1.13  alnsn 		return status;
    304  1.13  alnsn 
    305  1.13  alnsn 	status = sljit_emit_op1(compiler,
    306  1.13  alnsn 	    SLJIT_MOV,
    307  1.13  alnsn 	    BJ_BUFLEN, 0,
    308  1.13  alnsn 	    SLJIT_MEM1(BJ_ARGS),
    309  1.13  alnsn 	    offsetof(struct bpf_args, buflen));
    310  1.13  alnsn 
    311  1.13  alnsn 	return status;
    312  1.13  alnsn }
    313  1.13  alnsn 
    314   1.7  alnsn static bool
    315   1.7  alnsn grow_jumps(struct sljit_jump ***jumps, size_t *size)
    316   1.7  alnsn {
    317   1.7  alnsn 	struct sljit_jump **newptr;
    318   1.7  alnsn 	const size_t elemsz = sizeof(struct sljit_jump *);
    319   1.7  alnsn 	size_t old_size = *size;
    320   1.7  alnsn 	size_t new_size = 2 * old_size;
    321   1.7  alnsn 
    322   1.7  alnsn 	if (new_size < old_size || new_size > SIZE_MAX / elemsz)
    323   1.7  alnsn 		return false;
    324   1.7  alnsn 
    325   1.7  alnsn 	newptr = BJ_ALLOC(new_size * elemsz);
    326   1.7  alnsn 	if (newptr == NULL)
    327   1.7  alnsn 		return false;
    328   1.7  alnsn 
    329   1.7  alnsn 	memcpy(newptr, *jumps, old_size * elemsz);
    330   1.7  alnsn 	BJ_FREE(*jumps, old_size * elemsz);
    331   1.7  alnsn 
    332   1.7  alnsn 	*jumps = newptr;
    333   1.7  alnsn 	*size = new_size;
    334   1.7  alnsn 	return true;
    335   1.7  alnsn }
    336   1.7  alnsn 
    337   1.7  alnsn static bool
    338   1.7  alnsn append_jump(struct sljit_jump *jump, struct sljit_jump ***jumps,
    339   1.7  alnsn     size_t *size, size_t *max_size)
    340   1.1  alnsn {
    341   1.7  alnsn 	if (*size == *max_size && !grow_jumps(jumps, max_size))
    342   1.7  alnsn 		return false;
    343   1.1  alnsn 
    344   1.7  alnsn 	(*jumps)[(*size)++] = jump;
    345   1.7  alnsn 	return true;
    346   1.1  alnsn }
    347   1.1  alnsn 
    348   1.1  alnsn /*
    349   1.1  alnsn  * Generate code for BPF_LD+BPF_B+BPF_ABS    A <- P[k:1].
    350   1.1  alnsn  */
    351   1.1  alnsn static int
    352  1.19  alnsn emit_read8(struct sljit_compiler *compiler, uint32_t k)
    353   1.1  alnsn {
    354   1.1  alnsn 
    355   1.1  alnsn 	return sljit_emit_op1(compiler,
    356   1.1  alnsn 	    SLJIT_MOV_UB,
    357   1.7  alnsn 	    BJ_AREG, 0,
    358   1.7  alnsn 	    SLJIT_MEM1(BJ_BUF), k);
    359   1.1  alnsn }
    360   1.1  alnsn 
    361   1.1  alnsn /*
    362   1.1  alnsn  * Generate code for BPF_LD+BPF_H+BPF_ABS    A <- P[k:2].
    363   1.1  alnsn  */
    364   1.1  alnsn static int
    365  1.19  alnsn emit_read16(struct sljit_compiler *compiler, uint32_t k)
    366   1.1  alnsn {
    367   1.1  alnsn 	int status;
    368   1.1  alnsn 
    369   1.1  alnsn 	/* tmp1 = buf[k]; */
    370   1.1  alnsn 	status = sljit_emit_op1(compiler,
    371   1.1  alnsn 	    SLJIT_MOV_UB,
    372   1.7  alnsn 	    BJ_TMP1REG, 0,
    373   1.7  alnsn 	    SLJIT_MEM1(BJ_BUF), k);
    374   1.1  alnsn 	if (status != SLJIT_SUCCESS)
    375   1.1  alnsn 		return status;
    376   1.1  alnsn 
    377   1.1  alnsn 	/* A = buf[k+1]; */
    378   1.1  alnsn 	status = sljit_emit_op1(compiler,
    379   1.1  alnsn 	    SLJIT_MOV_UB,
    380   1.7  alnsn 	    BJ_AREG, 0,
    381   1.7  alnsn 	    SLJIT_MEM1(BJ_BUF), k+1);
    382   1.1  alnsn 	if (status != SLJIT_SUCCESS)
    383   1.1  alnsn 		return status;
    384   1.1  alnsn 
    385   1.1  alnsn 	/* tmp1 = tmp1 << 8; */
    386   1.1  alnsn 	status = sljit_emit_op2(compiler,
    387   1.1  alnsn 	    SLJIT_SHL,
    388   1.7  alnsn 	    BJ_TMP1REG, 0,
    389   1.7  alnsn 	    BJ_TMP1REG, 0,
    390   1.1  alnsn 	    SLJIT_IMM, 8);
    391   1.1  alnsn 	if (status != SLJIT_SUCCESS)
    392   1.1  alnsn 		return status;
    393   1.1  alnsn 
    394   1.1  alnsn 	/* A = A + tmp1; */
    395   1.1  alnsn 	status = sljit_emit_op2(compiler,
    396   1.1  alnsn 	    SLJIT_ADD,
    397   1.7  alnsn 	    BJ_AREG, 0,
    398   1.7  alnsn 	    BJ_AREG, 0,
    399   1.7  alnsn 	    BJ_TMP1REG, 0);
    400   1.1  alnsn 	return status;
    401   1.1  alnsn }
    402   1.1  alnsn 
    403   1.1  alnsn /*
    404   1.1  alnsn  * Generate code for BPF_LD+BPF_W+BPF_ABS    A <- P[k:4].
    405   1.1  alnsn  */
    406   1.1  alnsn static int
    407  1.19  alnsn emit_read32(struct sljit_compiler *compiler, uint32_t k)
    408   1.1  alnsn {
    409   1.1  alnsn 	int status;
    410   1.1  alnsn 
    411   1.1  alnsn 	/* tmp1 = buf[k]; */
    412   1.1  alnsn 	status = sljit_emit_op1(compiler,
    413   1.1  alnsn 	    SLJIT_MOV_UB,
    414   1.7  alnsn 	    BJ_TMP1REG, 0,
    415   1.7  alnsn 	    SLJIT_MEM1(BJ_BUF), k);
    416   1.1  alnsn 	if (status != SLJIT_SUCCESS)
    417   1.1  alnsn 		return status;
    418   1.1  alnsn 
    419   1.1  alnsn 	/* tmp2 = buf[k+1]; */
    420   1.1  alnsn 	status = sljit_emit_op1(compiler,
    421   1.1  alnsn 	    SLJIT_MOV_UB,
    422   1.7  alnsn 	    BJ_TMP2REG, 0,
    423   1.7  alnsn 	    SLJIT_MEM1(BJ_BUF), k+1);
    424   1.1  alnsn 	if (status != SLJIT_SUCCESS)
    425   1.1  alnsn 		return status;
    426   1.1  alnsn 
    427   1.1  alnsn 	/* A = buf[k+3]; */
    428   1.1  alnsn 	status = sljit_emit_op1(compiler,
    429   1.1  alnsn 	    SLJIT_MOV_UB,
    430   1.7  alnsn 	    BJ_AREG, 0,
    431   1.7  alnsn 	    SLJIT_MEM1(BJ_BUF), k+3);
    432   1.1  alnsn 	if (status != SLJIT_SUCCESS)
    433   1.1  alnsn 		return status;
    434   1.1  alnsn 
    435   1.1  alnsn 	/* tmp1 = tmp1 << 24; */
    436   1.1  alnsn 	status = sljit_emit_op2(compiler,
    437   1.1  alnsn 	    SLJIT_SHL,
    438   1.7  alnsn 	    BJ_TMP1REG, 0,
    439   1.7  alnsn 	    BJ_TMP1REG, 0,
    440   1.1  alnsn 	    SLJIT_IMM, 24);
    441   1.1  alnsn 	if (status != SLJIT_SUCCESS)
    442   1.1  alnsn 		return status;
    443   1.1  alnsn 
    444   1.1  alnsn 	/* A = A + tmp1; */
    445   1.1  alnsn 	status = sljit_emit_op2(compiler,
    446   1.1  alnsn 	    SLJIT_ADD,
    447   1.7  alnsn 	    BJ_AREG, 0,
    448   1.7  alnsn 	    BJ_AREG, 0,
    449   1.7  alnsn 	    BJ_TMP1REG, 0);
    450   1.1  alnsn 	if (status != SLJIT_SUCCESS)
    451   1.1  alnsn 		return status;
    452   1.1  alnsn 
    453   1.1  alnsn 	/* tmp1 = buf[k+2]; */
    454   1.1  alnsn 	status = sljit_emit_op1(compiler,
    455   1.1  alnsn 	    SLJIT_MOV_UB,
    456   1.7  alnsn 	    BJ_TMP1REG, 0,
    457   1.7  alnsn 	    SLJIT_MEM1(BJ_BUF), k+2);
    458   1.1  alnsn 	if (status != SLJIT_SUCCESS)
    459   1.1  alnsn 		return status;
    460   1.1  alnsn 
    461   1.1  alnsn 	/* tmp2 = tmp2 << 16; */
    462   1.1  alnsn 	status = sljit_emit_op2(compiler,
    463   1.1  alnsn 	    SLJIT_SHL,
    464   1.7  alnsn 	    BJ_TMP2REG, 0,
    465   1.7  alnsn 	    BJ_TMP2REG, 0,
    466   1.1  alnsn 	    SLJIT_IMM, 16);
    467   1.1  alnsn 	if (status != SLJIT_SUCCESS)
    468   1.1  alnsn 		return status;
    469   1.1  alnsn 
    470   1.1  alnsn 	/* A = A + tmp2; */
    471   1.1  alnsn 	status = sljit_emit_op2(compiler,
    472   1.1  alnsn 	    SLJIT_ADD,
    473   1.7  alnsn 	    BJ_AREG, 0,
    474   1.7  alnsn 	    BJ_AREG, 0,
    475   1.7  alnsn 	    BJ_TMP2REG, 0);
    476   1.1  alnsn 	if (status != SLJIT_SUCCESS)
    477   1.1  alnsn 		return status;
    478   1.1  alnsn 
    479   1.1  alnsn 	/* tmp1 = tmp1 << 8; */
    480   1.1  alnsn 	status = sljit_emit_op2(compiler,
    481   1.1  alnsn 	    SLJIT_SHL,
    482   1.7  alnsn 	    BJ_TMP1REG, 0,
    483   1.7  alnsn 	    BJ_TMP1REG, 0,
    484   1.1  alnsn 	    SLJIT_IMM, 8);
    485   1.1  alnsn 	if (status != SLJIT_SUCCESS)
    486   1.1  alnsn 		return status;
    487   1.1  alnsn 
    488   1.1  alnsn 	/* A = A + tmp1; */
    489   1.1  alnsn 	status = sljit_emit_op2(compiler,
    490   1.1  alnsn 	    SLJIT_ADD,
    491   1.7  alnsn 	    BJ_AREG, 0,
    492   1.7  alnsn 	    BJ_AREG, 0,
    493   1.7  alnsn 	    BJ_TMP1REG, 0);
    494   1.1  alnsn 	return status;
    495   1.1  alnsn }
    496   1.1  alnsn 
    497   1.1  alnsn #ifdef _KERNEL
    498   1.1  alnsn /*
    499   1.1  alnsn  * Generate m_xword/m_xhalf/m_xbyte call.
    500   1.1  alnsn  *
    501   1.1  alnsn  * pc is one of:
    502   1.1  alnsn  * BPF_LD+BPF_W+BPF_ABS    A <- P[k:4]
    503   1.1  alnsn  * BPF_LD+BPF_H+BPF_ABS    A <- P[k:2]
    504   1.1  alnsn  * BPF_LD+BPF_B+BPF_ABS    A <- P[k:1]
    505   1.1  alnsn  * BPF_LD+BPF_W+BPF_IND    A <- P[X+k:4]
    506   1.1  alnsn  * BPF_LD+BPF_H+BPF_IND    A <- P[X+k:2]
    507   1.1  alnsn  * BPF_LD+BPF_B+BPF_IND    A <- P[X+k:1]
    508   1.1  alnsn  * BPF_LDX+BPF_B+BPF_MSH   X <- 4*(P[k:1]&0xf)
    509   1.1  alnsn  *
    510   1.7  alnsn  * The dst variable should be
    511   1.7  alnsn  *  - BJ_AREG when emitting code for BPF_LD instructions,
    512   1.7  alnsn  *  - BJ_XREG or any of BJ_TMP[1-3]REG registers when emitting
    513   1.7  alnsn  *    code for BPF_MSH instruction.
    514   1.1  alnsn  */
    515   1.1  alnsn static int
    516  1.19  alnsn emit_xcall(struct sljit_compiler *compiler, const struct bpf_insn *pc,
    517  1.12  alnsn     int dst, sljit_sw dstw, struct sljit_jump **ret0_jump,
    518   1.1  alnsn     uint32_t (*fn)(const struct mbuf *, uint32_t, int *))
    519   1.1  alnsn {
    520   1.7  alnsn #if BJ_XREG == SLJIT_RETURN_REG   || \
    521  1.12  alnsn     BJ_XREG == SLJIT_SCRATCH_REG1 || \
    522  1.12  alnsn     BJ_XREG == SLJIT_SCRATCH_REG2 || \
    523  1.12  alnsn     BJ_XREG == SLJIT_SCRATCH_REG3
    524   1.1  alnsn #error "Not supported assignment of registers."
    525   1.1  alnsn #endif
    526   1.1  alnsn 	int status;
    527   1.1  alnsn 
    528   1.1  alnsn 	/*
    529   1.1  alnsn 	 * The third argument of fn is an address on stack.
    530   1.1  alnsn 	 */
    531   1.7  alnsn 	const int arg3_offset = offsetof(struct bpfjit_stack, tmp);
    532   1.1  alnsn 
    533   1.1  alnsn 	if (BPF_CLASS(pc->code) == BPF_LDX) {
    534   1.1  alnsn 		/* save A */
    535   1.1  alnsn 		status = sljit_emit_op1(compiler,
    536   1.1  alnsn 		    SLJIT_MOV,
    537   1.7  alnsn 		    BJ_TMP3REG, 0,
    538   1.7  alnsn 		    BJ_AREG, 0);
    539   1.1  alnsn 		if (status != SLJIT_SUCCESS)
    540   1.1  alnsn 			return status;
    541   1.1  alnsn 	}
    542   1.1  alnsn 
    543   1.1  alnsn 	/*
    544   1.1  alnsn 	 * Prepare registers for fn(buf, k, &err) call.
    545   1.1  alnsn 	 */
    546   1.1  alnsn 	status = sljit_emit_op1(compiler,
    547   1.1  alnsn 	    SLJIT_MOV,
    548  1.12  alnsn 	    SLJIT_SCRATCH_REG1, 0,
    549   1.7  alnsn 	    BJ_BUF, 0);
    550   1.1  alnsn 	if (status != SLJIT_SUCCESS)
    551   1.1  alnsn 		return status;
    552   1.1  alnsn 
    553   1.1  alnsn 	if (BPF_CLASS(pc->code) == BPF_LD && BPF_MODE(pc->code) == BPF_IND) {
    554   1.1  alnsn 		status = sljit_emit_op2(compiler,
    555   1.1  alnsn 		    SLJIT_ADD,
    556  1.12  alnsn 		    SLJIT_SCRATCH_REG2, 0,
    557   1.7  alnsn 		    BJ_XREG, 0,
    558   1.1  alnsn 		    SLJIT_IMM, (uint32_t)pc->k);
    559   1.1  alnsn 	} else {
    560   1.1  alnsn 		status = sljit_emit_op1(compiler,
    561   1.1  alnsn 		    SLJIT_MOV,
    562  1.12  alnsn 		    SLJIT_SCRATCH_REG2, 0,
    563   1.1  alnsn 		    SLJIT_IMM, (uint32_t)pc->k);
    564   1.1  alnsn 	}
    565   1.1  alnsn 
    566   1.1  alnsn 	if (status != SLJIT_SUCCESS)
    567   1.1  alnsn 		return status;
    568   1.1  alnsn 
    569   1.1  alnsn 	status = sljit_get_local_base(compiler,
    570  1.12  alnsn 	    SLJIT_SCRATCH_REG3, 0, arg3_offset);
    571   1.1  alnsn 	if (status != SLJIT_SUCCESS)
    572   1.1  alnsn 		return status;
    573   1.1  alnsn 
    574   1.1  alnsn 	/* fn(buf, k, &err); */
    575   1.1  alnsn 	status = sljit_emit_ijump(compiler,
    576   1.1  alnsn 	    SLJIT_CALL3,
    577   1.1  alnsn 	    SLJIT_IMM, SLJIT_FUNC_OFFSET(fn));
    578   1.1  alnsn 
    579   1.7  alnsn 	if (dst != SLJIT_RETURN_REG) {
    580   1.1  alnsn 		/* move return value to dst */
    581   1.1  alnsn 		status = sljit_emit_op1(compiler,
    582   1.1  alnsn 		    SLJIT_MOV,
    583   1.1  alnsn 		    dst, dstw,
    584   1.1  alnsn 		    SLJIT_RETURN_REG, 0);
    585   1.1  alnsn 		if (status != SLJIT_SUCCESS)
    586   1.1  alnsn 			return status;
    587   1.7  alnsn 	}
    588   1.1  alnsn 
    589   1.7  alnsn 	if (BPF_CLASS(pc->code) == BPF_LDX) {
    590   1.1  alnsn 		/* restore A */
    591   1.1  alnsn 		status = sljit_emit_op1(compiler,
    592   1.1  alnsn 		    SLJIT_MOV,
    593   1.7  alnsn 		    BJ_AREG, 0,
    594   1.7  alnsn 		    BJ_TMP3REG, 0);
    595   1.1  alnsn 		if (status != SLJIT_SUCCESS)
    596   1.1  alnsn 			return status;
    597   1.1  alnsn 	}
    598   1.1  alnsn 
    599   1.1  alnsn 	/* tmp3 = *err; */
    600   1.1  alnsn 	status = sljit_emit_op1(compiler,
    601   1.1  alnsn 	    SLJIT_MOV_UI,
    602  1.12  alnsn 	    SLJIT_SCRATCH_REG3, 0,
    603   1.1  alnsn 	    SLJIT_MEM1(SLJIT_LOCALS_REG), arg3_offset);
    604   1.1  alnsn 	if (status != SLJIT_SUCCESS)
    605   1.1  alnsn 		return status;
    606   1.1  alnsn 
    607   1.1  alnsn 	/* if (tmp3 != 0) return 0; */
    608   1.1  alnsn 	*ret0_jump = sljit_emit_cmp(compiler,
    609   1.1  alnsn 	    SLJIT_C_NOT_EQUAL,
    610  1.12  alnsn 	    SLJIT_SCRATCH_REG3, 0,
    611   1.1  alnsn 	    SLJIT_IMM, 0);
    612   1.1  alnsn 	if (*ret0_jump == NULL)
    613   1.1  alnsn 		return SLJIT_ERR_ALLOC_FAILED;
    614   1.1  alnsn 
    615   1.1  alnsn 	return status;
    616   1.1  alnsn }
    617   1.1  alnsn #endif
    618   1.1  alnsn 
    619   1.1  alnsn /*
    620  1.13  alnsn  * Emit code for BPF_COP and BPF_COPX instructions.
    621  1.13  alnsn  */
    622  1.13  alnsn static int
    623  1.19  alnsn emit_cop(struct sljit_compiler *compiler, const bpf_ctx_t *bc,
    624  1.13  alnsn     const struct bpf_insn *pc, struct sljit_jump **ret0_jump)
    625  1.13  alnsn {
    626  1.13  alnsn #if BJ_XREG == SLJIT_RETURN_REG   || \
    627  1.13  alnsn     BJ_XREG == SLJIT_SCRATCH_REG1 || \
    628  1.13  alnsn     BJ_XREG == SLJIT_SCRATCH_REG2 || \
    629  1.13  alnsn     BJ_XREG == SLJIT_SCRATCH_REG3 || \
    630  1.13  alnsn     BJ_COPF_PTR == BJ_ARGS        || \
    631  1.13  alnsn     BJ_COPF_IDX	== BJ_ARGS
    632  1.13  alnsn #error "Not supported assignment of registers."
    633  1.13  alnsn #endif
    634  1.13  alnsn 
    635  1.13  alnsn 	struct sljit_jump *jump;
    636  1.13  alnsn 	int status;
    637  1.13  alnsn 
    638  1.13  alnsn 	jump = NULL;
    639  1.13  alnsn 
    640  1.13  alnsn 	BJ_ASSERT(bc != NULL && bc->copfuncs != NULL);
    641  1.13  alnsn 
    642  1.13  alnsn 	if (BPF_MISCOP(pc->code) == BPF_COPX) {
    643  1.13  alnsn 		/* if (X >= bc->nfuncs) return 0; */
    644  1.13  alnsn 		jump = sljit_emit_cmp(compiler,
    645  1.13  alnsn 		    SLJIT_C_GREATER_EQUAL,
    646  1.13  alnsn 		    BJ_XREG, 0,
    647  1.13  alnsn 		    SLJIT_IMM, bc->nfuncs);
    648  1.13  alnsn 		if (jump == NULL)
    649  1.13  alnsn 			return SLJIT_ERR_ALLOC_FAILED;
    650  1.13  alnsn 	}
    651  1.13  alnsn 
    652  1.13  alnsn 	if (jump != NULL)
    653  1.13  alnsn 		*ret0_jump = jump;
    654  1.13  alnsn 
    655  1.13  alnsn 	/*
    656  1.13  alnsn 	 * Copy bpf_copfunc_t arguments to registers.
    657  1.13  alnsn 	 */
    658  1.13  alnsn #if BJ_AREG != SLJIT_SCRATCH_REG3
    659  1.13  alnsn 	status = sljit_emit_op1(compiler,
    660  1.13  alnsn 	    SLJIT_MOV_UI,
    661  1.13  alnsn 	    SLJIT_SCRATCH_REG3, 0,
    662  1.13  alnsn 	    BJ_AREG, 0);
    663  1.13  alnsn 	if (status != SLJIT_SUCCESS)
    664  1.13  alnsn 		return status;
    665  1.13  alnsn #endif
    666  1.13  alnsn 
    667  1.13  alnsn 	status = sljit_emit_op1(compiler,
    668  1.13  alnsn 	    SLJIT_MOV_P,
    669  1.13  alnsn 	    SLJIT_SCRATCH_REG1, 0,
    670  1.13  alnsn 	    SLJIT_MEM1(SLJIT_LOCALS_REG),
    671  1.13  alnsn 	    offsetof(struct bpfjit_stack, ctx));
    672  1.13  alnsn 	if (status != SLJIT_SUCCESS)
    673  1.13  alnsn 		return status;
    674  1.13  alnsn 
    675  1.13  alnsn 	status = sljit_emit_op1(compiler,
    676  1.13  alnsn 	    SLJIT_MOV_P,
    677  1.13  alnsn 	    SLJIT_SCRATCH_REG2, 0,
    678  1.13  alnsn 	    BJ_ARGS, 0);
    679  1.13  alnsn 	if (status != SLJIT_SUCCESS)
    680  1.13  alnsn 		return status;
    681  1.13  alnsn 
    682  1.13  alnsn 	if (BPF_MISCOP(pc->code) == BPF_COP) {
    683  1.13  alnsn 		status = sljit_emit_ijump(compiler,
    684  1.13  alnsn 		    SLJIT_CALL3,
    685  1.13  alnsn 		    SLJIT_IMM, SLJIT_FUNC_OFFSET(bc->copfuncs[pc->k]));
    686  1.13  alnsn 		if (status != SLJIT_SUCCESS)
    687  1.13  alnsn 			return status;
    688  1.13  alnsn 	} else if (BPF_MISCOP(pc->code) == BPF_COPX) {
    689  1.13  alnsn 		/* load ctx->copfuncs */
    690  1.13  alnsn 		status = sljit_emit_op1(compiler,
    691  1.13  alnsn 		    SLJIT_MOV_P,
    692  1.13  alnsn 		    BJ_COPF_PTR, 0,
    693  1.13  alnsn 		    SLJIT_MEM1(SLJIT_SCRATCH_REG1),
    694  1.13  alnsn 		    offsetof(struct bpf_ctx, copfuncs));
    695  1.13  alnsn 		if (status != SLJIT_SUCCESS)
    696  1.13  alnsn 			return status;
    697  1.13  alnsn 
    698  1.13  alnsn 		/*
    699  1.13  alnsn 		 * Load X to a register that can be used for
    700  1.13  alnsn 		 * memory addressing.
    701  1.13  alnsn 		 */
    702  1.13  alnsn 		status = sljit_emit_op1(compiler,
    703  1.13  alnsn 		    SLJIT_MOV_P,
    704  1.13  alnsn 		    BJ_COPF_IDX, 0,
    705  1.13  alnsn 		    BJ_XREG, 0);
    706  1.13  alnsn 		if (status != SLJIT_SUCCESS)
    707  1.13  alnsn 			return status;
    708  1.13  alnsn 
    709  1.13  alnsn 		status = sljit_emit_ijump(compiler,
    710  1.13  alnsn 		    SLJIT_CALL3,
    711  1.13  alnsn 		    SLJIT_MEM2(BJ_COPF_PTR, BJ_COPF_IDX),
    712  1.13  alnsn 		    SLJIT_WORD_SHIFT);
    713  1.13  alnsn 		if (status != SLJIT_SUCCESS)
    714  1.13  alnsn 			return status;
    715  1.13  alnsn 
    716  1.13  alnsn 		status = load_buf_buflen(compiler);
    717  1.13  alnsn 		if (status != SLJIT_SUCCESS)
    718  1.13  alnsn 			return status;
    719  1.13  alnsn 	}
    720  1.13  alnsn 
    721  1.13  alnsn #if BJ_AREG != SLJIT_RETURN_REG
    722  1.13  alnsn 	status = sljit_emit_op1(compiler,
    723  1.13  alnsn 	    SLJIT_MOV,
    724  1.13  alnsn 	    BJ_AREG, 0,
    725  1.13  alnsn 	    SLJIT_RETURN_REG, 0);
    726  1.13  alnsn 	if (status != SLJIT_SUCCESS)
    727  1.13  alnsn 		return status;
    728  1.13  alnsn #endif
    729  1.13  alnsn 
    730  1.13  alnsn 	return status;
    731  1.13  alnsn }
    732  1.13  alnsn 
    733  1.13  alnsn /*
    734   1.1  alnsn  * Generate code for
    735   1.1  alnsn  * BPF_LD+BPF_W+BPF_ABS    A <- P[k:4]
    736   1.1  alnsn  * BPF_LD+BPF_H+BPF_ABS    A <- P[k:2]
    737   1.1  alnsn  * BPF_LD+BPF_B+BPF_ABS    A <- P[k:1]
    738   1.1  alnsn  * BPF_LD+BPF_W+BPF_IND    A <- P[X+k:4]
    739   1.1  alnsn  * BPF_LD+BPF_H+BPF_IND    A <- P[X+k:2]
    740   1.1  alnsn  * BPF_LD+BPF_B+BPF_IND    A <- P[X+k:1]
    741   1.1  alnsn  */
    742   1.1  alnsn static int
    743  1.19  alnsn emit_pkt_read(struct sljit_compiler *compiler,
    744   1.7  alnsn     const struct bpf_insn *pc, struct sljit_jump *to_mchain_jump,
    745   1.7  alnsn     struct sljit_jump ***ret0, size_t *ret0_size, size_t *ret0_maxsize)
    746   1.1  alnsn {
    747   1.6  pooka 	int status = 0; /* XXX gcc 4.1 */
    748   1.1  alnsn 	uint32_t width;
    749   1.1  alnsn 	struct sljit_jump *jump;
    750   1.1  alnsn #ifdef _KERNEL
    751   1.1  alnsn 	struct sljit_label *label;
    752   1.1  alnsn 	struct sljit_jump *over_mchain_jump;
    753   1.1  alnsn 	const bool check_zero_buflen = (to_mchain_jump != NULL);
    754   1.1  alnsn #endif
    755   1.1  alnsn 	const uint32_t k = pc->k;
    756   1.1  alnsn 
    757   1.1  alnsn #ifdef _KERNEL
    758   1.1  alnsn 	if (to_mchain_jump == NULL) {
    759   1.1  alnsn 		to_mchain_jump = sljit_emit_cmp(compiler,
    760   1.1  alnsn 		    SLJIT_C_EQUAL,
    761   1.7  alnsn 		    BJ_BUFLEN, 0,
    762   1.1  alnsn 		    SLJIT_IMM, 0);
    763   1.1  alnsn 		if (to_mchain_jump == NULL)
    764   1.7  alnsn 			return SLJIT_ERR_ALLOC_FAILED;
    765   1.1  alnsn 	}
    766   1.1  alnsn #endif
    767   1.1  alnsn 
    768   1.1  alnsn 	width = read_width(pc);
    769   1.1  alnsn 
    770   1.1  alnsn 	if (BPF_MODE(pc->code) == BPF_IND) {
    771   1.1  alnsn 		/* tmp1 = buflen - (pc->k + width); */
    772   1.1  alnsn 		status = sljit_emit_op2(compiler,
    773   1.1  alnsn 		    SLJIT_SUB,
    774   1.7  alnsn 		    BJ_TMP1REG, 0,
    775   1.7  alnsn 		    BJ_BUFLEN, 0,
    776   1.1  alnsn 		    SLJIT_IMM, k + width);
    777   1.1  alnsn 		if (status != SLJIT_SUCCESS)
    778   1.1  alnsn 			return status;
    779   1.1  alnsn 
    780   1.1  alnsn 		/* buf += X; */
    781   1.1  alnsn 		status = sljit_emit_op2(compiler,
    782   1.1  alnsn 		    SLJIT_ADD,
    783   1.7  alnsn 		    BJ_BUF, 0,
    784   1.7  alnsn 		    BJ_BUF, 0,
    785   1.7  alnsn 		    BJ_XREG, 0);
    786   1.1  alnsn 		if (status != SLJIT_SUCCESS)
    787   1.1  alnsn 			return status;
    788   1.1  alnsn 
    789   1.1  alnsn 		/* if (tmp1 < X) return 0; */
    790   1.1  alnsn 		jump = sljit_emit_cmp(compiler,
    791   1.1  alnsn 		    SLJIT_C_LESS,
    792   1.7  alnsn 		    BJ_TMP1REG, 0,
    793   1.7  alnsn 		    BJ_XREG, 0);
    794   1.1  alnsn 		if (jump == NULL)
    795   1.7  alnsn 			return SLJIT_ERR_ALLOC_FAILED;
    796   1.7  alnsn 		if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
    797   1.7  alnsn 			return SLJIT_ERR_ALLOC_FAILED;
    798   1.1  alnsn 	}
    799   1.1  alnsn 
    800   1.1  alnsn 	switch (width) {
    801   1.1  alnsn 	case 4:
    802   1.1  alnsn 		status = emit_read32(compiler, k);
    803   1.1  alnsn 		break;
    804   1.1  alnsn 	case 2:
    805   1.1  alnsn 		status = emit_read16(compiler, k);
    806   1.1  alnsn 		break;
    807   1.1  alnsn 	case 1:
    808   1.1  alnsn 		status = emit_read8(compiler, k);
    809   1.1  alnsn 		break;
    810   1.1  alnsn 	}
    811   1.1  alnsn 
    812   1.1  alnsn 	if (status != SLJIT_SUCCESS)
    813   1.1  alnsn 		return status;
    814   1.1  alnsn 
    815   1.1  alnsn 	if (BPF_MODE(pc->code) == BPF_IND) {
    816   1.1  alnsn 		/* buf -= X; */
    817   1.1  alnsn 		status = sljit_emit_op2(compiler,
    818   1.1  alnsn 		    SLJIT_SUB,
    819   1.7  alnsn 		    BJ_BUF, 0,
    820   1.7  alnsn 		    BJ_BUF, 0,
    821   1.7  alnsn 		    BJ_XREG, 0);
    822   1.1  alnsn 		if (status != SLJIT_SUCCESS)
    823   1.1  alnsn 			return status;
    824   1.1  alnsn 	}
    825   1.1  alnsn 
    826   1.1  alnsn #ifdef _KERNEL
    827   1.1  alnsn 	over_mchain_jump = sljit_emit_jump(compiler, SLJIT_JUMP);
    828   1.1  alnsn 	if (over_mchain_jump == NULL)
    829   1.7  alnsn 		return SLJIT_ERR_ALLOC_FAILED;
    830   1.1  alnsn 
    831   1.1  alnsn 	/* entry point to mchain handler */
    832   1.1  alnsn 	label = sljit_emit_label(compiler);
    833   1.1  alnsn 	if (label == NULL)
    834   1.7  alnsn 		return SLJIT_ERR_ALLOC_FAILED;
    835   1.1  alnsn 	sljit_set_label(to_mchain_jump, label);
    836   1.1  alnsn 
    837   1.1  alnsn 	if (check_zero_buflen) {
    838   1.1  alnsn 		/* if (buflen != 0) return 0; */
    839   1.1  alnsn 		jump = sljit_emit_cmp(compiler,
    840   1.1  alnsn 		    SLJIT_C_NOT_EQUAL,
    841   1.7  alnsn 		    BJ_BUFLEN, 0,
    842   1.1  alnsn 		    SLJIT_IMM, 0);
    843   1.1  alnsn 		if (jump == NULL)
    844   1.1  alnsn 			return SLJIT_ERR_ALLOC_FAILED;
    845   1.7  alnsn 		if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
    846   1.7  alnsn 			return SLJIT_ERR_ALLOC_FAILED;
    847   1.1  alnsn 	}
    848   1.1  alnsn 
    849   1.1  alnsn 	switch (width) {
    850   1.1  alnsn 	case 4:
    851   1.7  alnsn 		status = emit_xcall(compiler, pc, BJ_AREG, 0, &jump, &m_xword);
    852   1.1  alnsn 		break;
    853   1.1  alnsn 	case 2:
    854   1.7  alnsn 		status = emit_xcall(compiler, pc, BJ_AREG, 0, &jump, &m_xhalf);
    855   1.1  alnsn 		break;
    856   1.1  alnsn 	case 1:
    857   1.7  alnsn 		status = emit_xcall(compiler, pc, BJ_AREG, 0, &jump, &m_xbyte);
    858   1.1  alnsn 		break;
    859   1.1  alnsn 	}
    860   1.1  alnsn 
    861   1.1  alnsn 	if (status != SLJIT_SUCCESS)
    862   1.1  alnsn 		return status;
    863   1.1  alnsn 
    864   1.7  alnsn 	if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
    865   1.7  alnsn 		return SLJIT_ERR_ALLOC_FAILED;
    866   1.1  alnsn 
    867   1.1  alnsn 	label = sljit_emit_label(compiler);
    868   1.1  alnsn 	if (label == NULL)
    869   1.1  alnsn 		return SLJIT_ERR_ALLOC_FAILED;
    870   1.1  alnsn 	sljit_set_label(over_mchain_jump, label);
    871   1.1  alnsn #endif
    872   1.1  alnsn 
    873   1.1  alnsn 	return status;
    874   1.1  alnsn }
    875   1.1  alnsn 
    876  1.13  alnsn static int
    877  1.19  alnsn emit_memload(struct sljit_compiler *compiler,
    878  1.13  alnsn     sljit_si dst, uint32_t k, size_t extwords)
    879  1.13  alnsn {
    880  1.13  alnsn 	int status;
    881  1.13  alnsn 	sljit_si src;
    882  1.13  alnsn 	sljit_sw srcw;
    883  1.13  alnsn 
    884  1.13  alnsn 	srcw = k * sizeof(uint32_t);
    885  1.13  alnsn 
    886  1.13  alnsn 	if (extwords == 0) {
    887  1.13  alnsn 		src = SLJIT_MEM1(SLJIT_LOCALS_REG);
    888  1.13  alnsn 		srcw += offsetof(struct bpfjit_stack, mem);
    889  1.13  alnsn 	} else {
    890  1.13  alnsn 		/* copy extmem pointer to the tmp1 register */
    891  1.13  alnsn 		status = sljit_emit_op1(compiler,
    892  1.16  alnsn 		    SLJIT_MOV_P,
    893  1.13  alnsn 		    BJ_TMP1REG, 0,
    894  1.13  alnsn 		    SLJIT_MEM1(SLJIT_LOCALS_REG),
    895  1.13  alnsn 		    offsetof(struct bpfjit_stack, extmem));
    896  1.13  alnsn 		if (status != SLJIT_SUCCESS)
    897  1.13  alnsn 			return status;
    898  1.13  alnsn 		src = SLJIT_MEM1(BJ_TMP1REG);
    899  1.13  alnsn 	}
    900  1.13  alnsn 
    901  1.13  alnsn 	return sljit_emit_op1(compiler, SLJIT_MOV_UI, dst, 0, src, srcw);
    902  1.13  alnsn }
    903  1.13  alnsn 
    904  1.13  alnsn static int
    905  1.19  alnsn emit_memstore(struct sljit_compiler *compiler,
    906  1.13  alnsn     sljit_si src, uint32_t k, size_t extwords)
    907  1.13  alnsn {
    908  1.13  alnsn 	int status;
    909  1.13  alnsn 	sljit_si dst;
    910  1.13  alnsn 	sljit_sw dstw;
    911  1.13  alnsn 
    912  1.13  alnsn 	dstw = k * sizeof(uint32_t);
    913  1.13  alnsn 
    914  1.13  alnsn 	if (extwords == 0) {
    915  1.13  alnsn 		dst = SLJIT_MEM1(SLJIT_LOCALS_REG);
    916  1.13  alnsn 		dstw += offsetof(struct bpfjit_stack, mem);
    917  1.13  alnsn 	} else {
    918  1.13  alnsn 		/* copy extmem pointer to the tmp1 register */
    919  1.13  alnsn 		status = sljit_emit_op1(compiler,
    920  1.16  alnsn 		    SLJIT_MOV_P,
    921  1.13  alnsn 		    BJ_TMP1REG, 0,
    922  1.13  alnsn 		    SLJIT_MEM1(SLJIT_LOCALS_REG),
    923  1.13  alnsn 		    offsetof(struct bpfjit_stack, extmem));
    924  1.13  alnsn 		if (status != SLJIT_SUCCESS)
    925  1.13  alnsn 			return status;
    926  1.13  alnsn 		dst = SLJIT_MEM1(BJ_TMP1REG);
    927  1.13  alnsn 	}
    928  1.13  alnsn 
    929  1.13  alnsn 	return sljit_emit_op1(compiler, SLJIT_MOV_UI, dst, dstw, src, 0);
    930  1.13  alnsn }
    931  1.13  alnsn 
    932   1.1  alnsn /*
    933   1.1  alnsn  * Generate code for BPF_LDX+BPF_B+BPF_MSH    X <- 4*(P[k:1]&0xf).
    934   1.1  alnsn  */
    935   1.1  alnsn static int
    936  1.19  alnsn emit_msh(struct sljit_compiler *compiler,
    937   1.7  alnsn     const struct bpf_insn *pc, struct sljit_jump *to_mchain_jump,
    938   1.7  alnsn     struct sljit_jump ***ret0, size_t *ret0_size, size_t *ret0_maxsize)
    939   1.1  alnsn {
    940   1.1  alnsn 	int status;
    941   1.1  alnsn #ifdef _KERNEL
    942   1.1  alnsn 	struct sljit_label *label;
    943   1.1  alnsn 	struct sljit_jump *jump, *over_mchain_jump;
    944   1.1  alnsn 	const bool check_zero_buflen = (to_mchain_jump != NULL);
    945   1.1  alnsn #endif
    946   1.1  alnsn 	const uint32_t k = pc->k;
    947   1.1  alnsn 
    948   1.1  alnsn #ifdef _KERNEL
    949   1.1  alnsn 	if (to_mchain_jump == NULL) {
    950   1.1  alnsn 		to_mchain_jump = sljit_emit_cmp(compiler,
    951   1.1  alnsn 		    SLJIT_C_EQUAL,
    952   1.7  alnsn 		    BJ_BUFLEN, 0,
    953   1.1  alnsn 		    SLJIT_IMM, 0);
    954   1.1  alnsn 		if (to_mchain_jump == NULL)
    955   1.7  alnsn 			return SLJIT_ERR_ALLOC_FAILED;
    956   1.1  alnsn 	}
    957   1.1  alnsn #endif
    958   1.1  alnsn 
    959   1.1  alnsn 	/* tmp1 = buf[k] */
    960   1.1  alnsn 	status = sljit_emit_op1(compiler,
    961   1.1  alnsn 	    SLJIT_MOV_UB,
    962   1.7  alnsn 	    BJ_TMP1REG, 0,
    963   1.7  alnsn 	    SLJIT_MEM1(BJ_BUF), k);
    964   1.1  alnsn 	if (status != SLJIT_SUCCESS)
    965   1.1  alnsn 		return status;
    966   1.1  alnsn 
    967   1.1  alnsn 	/* tmp1 &= 0xf */
    968   1.1  alnsn 	status = sljit_emit_op2(compiler,
    969   1.1  alnsn 	    SLJIT_AND,
    970   1.7  alnsn 	    BJ_TMP1REG, 0,
    971   1.7  alnsn 	    BJ_TMP1REG, 0,
    972   1.1  alnsn 	    SLJIT_IMM, 0xf);
    973   1.1  alnsn 	if (status != SLJIT_SUCCESS)
    974   1.1  alnsn 		return status;
    975   1.1  alnsn 
    976   1.1  alnsn 	/* tmp1 = tmp1 << 2 */
    977   1.1  alnsn 	status = sljit_emit_op2(compiler,
    978   1.1  alnsn 	    SLJIT_SHL,
    979   1.7  alnsn 	    BJ_XREG, 0,
    980   1.7  alnsn 	    BJ_TMP1REG, 0,
    981   1.1  alnsn 	    SLJIT_IMM, 2);
    982   1.1  alnsn 	if (status != SLJIT_SUCCESS)
    983   1.1  alnsn 		return status;
    984   1.1  alnsn 
    985   1.1  alnsn #ifdef _KERNEL
    986   1.1  alnsn 	over_mchain_jump = sljit_emit_jump(compiler, SLJIT_JUMP);
    987   1.1  alnsn 	if (over_mchain_jump == NULL)
    988   1.1  alnsn 		return SLJIT_ERR_ALLOC_FAILED;
    989   1.1  alnsn 
    990   1.1  alnsn 	/* entry point to mchain handler */
    991   1.1  alnsn 	label = sljit_emit_label(compiler);
    992   1.1  alnsn 	if (label == NULL)
    993   1.1  alnsn 		return SLJIT_ERR_ALLOC_FAILED;
    994   1.1  alnsn 	sljit_set_label(to_mchain_jump, label);
    995   1.1  alnsn 
    996   1.1  alnsn 	if (check_zero_buflen) {
    997   1.1  alnsn 		/* if (buflen != 0) return 0; */
    998   1.1  alnsn 		jump = sljit_emit_cmp(compiler,
    999   1.1  alnsn 		    SLJIT_C_NOT_EQUAL,
   1000   1.7  alnsn 		    BJ_BUFLEN, 0,
   1001   1.1  alnsn 		    SLJIT_IMM, 0);
   1002   1.1  alnsn 		if (jump == NULL)
   1003   1.7  alnsn 			return SLJIT_ERR_ALLOC_FAILED;
   1004   1.7  alnsn 		if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
   1005   1.7  alnsn 			return SLJIT_ERR_ALLOC_FAILED;
   1006   1.1  alnsn 	}
   1007   1.1  alnsn 
   1008   1.7  alnsn 	status = emit_xcall(compiler, pc, BJ_TMP1REG, 0, &jump, &m_xbyte);
   1009   1.1  alnsn 	if (status != SLJIT_SUCCESS)
   1010   1.1  alnsn 		return status;
   1011   1.7  alnsn 
   1012   1.7  alnsn 	if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
   1013   1.7  alnsn 		return SLJIT_ERR_ALLOC_FAILED;
   1014   1.1  alnsn 
   1015   1.1  alnsn 	/* tmp1 &= 0xf */
   1016   1.1  alnsn 	status = sljit_emit_op2(compiler,
   1017   1.1  alnsn 	    SLJIT_AND,
   1018   1.7  alnsn 	    BJ_TMP1REG, 0,
   1019   1.7  alnsn 	    BJ_TMP1REG, 0,
   1020   1.1  alnsn 	    SLJIT_IMM, 0xf);
   1021   1.1  alnsn 	if (status != SLJIT_SUCCESS)
   1022   1.1  alnsn 		return status;
   1023   1.1  alnsn 
   1024   1.1  alnsn 	/* tmp1 = tmp1 << 2 */
   1025   1.1  alnsn 	status = sljit_emit_op2(compiler,
   1026   1.1  alnsn 	    SLJIT_SHL,
   1027   1.7  alnsn 	    BJ_XREG, 0,
   1028   1.7  alnsn 	    BJ_TMP1REG, 0,
   1029   1.1  alnsn 	    SLJIT_IMM, 2);
   1030   1.1  alnsn 	if (status != SLJIT_SUCCESS)
   1031   1.1  alnsn 		return status;
   1032   1.1  alnsn 
   1033   1.1  alnsn 
   1034   1.1  alnsn 	label = sljit_emit_label(compiler);
   1035   1.1  alnsn 	if (label == NULL)
   1036   1.1  alnsn 		return SLJIT_ERR_ALLOC_FAILED;
   1037   1.1  alnsn 	sljit_set_label(over_mchain_jump, label);
   1038   1.1  alnsn #endif
   1039   1.1  alnsn 
   1040   1.1  alnsn 	return status;
   1041   1.1  alnsn }
   1042   1.1  alnsn 
   1043   1.1  alnsn static int
   1044  1.19  alnsn emit_pow2_division(struct sljit_compiler *compiler, uint32_t k)
   1045   1.1  alnsn {
   1046   1.1  alnsn 	int shift = 0;
   1047   1.1  alnsn 	int status = SLJIT_SUCCESS;
   1048   1.1  alnsn 
   1049   1.1  alnsn 	while (k > 1) {
   1050   1.1  alnsn 		k >>= 1;
   1051   1.1  alnsn 		shift++;
   1052   1.1  alnsn 	}
   1053   1.1  alnsn 
   1054   1.7  alnsn 	BJ_ASSERT(k == 1 && shift < 32);
   1055   1.1  alnsn 
   1056   1.1  alnsn 	if (shift != 0) {
   1057   1.1  alnsn 		status = sljit_emit_op2(compiler,
   1058   1.1  alnsn 		    SLJIT_LSHR|SLJIT_INT_OP,
   1059   1.7  alnsn 		    BJ_AREG, 0,
   1060   1.7  alnsn 		    BJ_AREG, 0,
   1061   1.1  alnsn 		    SLJIT_IMM, shift);
   1062   1.1  alnsn 	}
   1063   1.1  alnsn 
   1064   1.1  alnsn 	return status;
   1065   1.1  alnsn }
   1066   1.1  alnsn 
   1067   1.1  alnsn #if !defined(BPFJIT_USE_UDIV)
   1068   1.1  alnsn static sljit_uw
   1069   1.1  alnsn divide(sljit_uw x, sljit_uw y)
   1070   1.1  alnsn {
   1071   1.1  alnsn 
   1072   1.1  alnsn 	return (uint32_t)x / (uint32_t)y;
   1073   1.1  alnsn }
   1074   1.1  alnsn #endif
   1075   1.1  alnsn 
   1076   1.1  alnsn /*
   1077   1.1  alnsn  * Generate A = A / div.
   1078   1.7  alnsn  * divt,divw are either SLJIT_IMM,pc->k or BJ_XREG,0.
   1079   1.1  alnsn  */
   1080   1.1  alnsn static int
   1081  1.19  alnsn emit_division(struct sljit_compiler *compiler, int divt, sljit_sw divw)
   1082   1.1  alnsn {
   1083   1.1  alnsn 	int status;
   1084   1.1  alnsn 
   1085   1.7  alnsn #if BJ_XREG == SLJIT_RETURN_REG   || \
   1086  1.12  alnsn     BJ_XREG == SLJIT_SCRATCH_REG1 || \
   1087  1.12  alnsn     BJ_XREG == SLJIT_SCRATCH_REG2 || \
   1088  1.12  alnsn     BJ_AREG == SLJIT_SCRATCH_REG2
   1089   1.1  alnsn #error "Not supported assignment of registers."
   1090   1.1  alnsn #endif
   1091   1.1  alnsn 
   1092  1.12  alnsn #if BJ_AREG != SLJIT_SCRATCH_REG1
   1093   1.1  alnsn 	status = sljit_emit_op1(compiler,
   1094   1.1  alnsn 	    SLJIT_MOV,
   1095  1.12  alnsn 	    SLJIT_SCRATCH_REG1, 0,
   1096   1.7  alnsn 	    BJ_AREG, 0);
   1097   1.1  alnsn 	if (status != SLJIT_SUCCESS)
   1098   1.1  alnsn 		return status;
   1099   1.1  alnsn #endif
   1100   1.1  alnsn 
   1101   1.1  alnsn 	status = sljit_emit_op1(compiler,
   1102   1.1  alnsn 	    SLJIT_MOV,
   1103  1.12  alnsn 	    SLJIT_SCRATCH_REG2, 0,
   1104   1.1  alnsn 	    divt, divw);
   1105   1.1  alnsn 	if (status != SLJIT_SUCCESS)
   1106   1.1  alnsn 		return status;
   1107   1.1  alnsn 
   1108   1.1  alnsn #if defined(BPFJIT_USE_UDIV)
   1109   1.1  alnsn 	status = sljit_emit_op0(compiler, SLJIT_UDIV|SLJIT_INT_OP);
   1110   1.1  alnsn 
   1111  1.12  alnsn #if BJ_AREG != SLJIT_SCRATCH_REG1
   1112   1.1  alnsn 	status = sljit_emit_op1(compiler,
   1113   1.1  alnsn 	    SLJIT_MOV,
   1114   1.7  alnsn 	    BJ_AREG, 0,
   1115  1.12  alnsn 	    SLJIT_SCRATCH_REG1, 0);
   1116   1.1  alnsn 	if (status != SLJIT_SUCCESS)
   1117   1.1  alnsn 		return status;
   1118   1.1  alnsn #endif
   1119   1.1  alnsn #else
   1120   1.1  alnsn 	status = sljit_emit_ijump(compiler,
   1121   1.1  alnsn 	    SLJIT_CALL2,
   1122   1.1  alnsn 	    SLJIT_IMM, SLJIT_FUNC_OFFSET(divide));
   1123   1.1  alnsn 
   1124   1.7  alnsn #if BJ_AREG != SLJIT_RETURN_REG
   1125   1.1  alnsn 	status = sljit_emit_op1(compiler,
   1126   1.1  alnsn 	    SLJIT_MOV,
   1127   1.7  alnsn 	    BJ_AREG, 0,
   1128   1.1  alnsn 	    SLJIT_RETURN_REG, 0);
   1129   1.1  alnsn 	if (status != SLJIT_SUCCESS)
   1130   1.1  alnsn 		return status;
   1131   1.1  alnsn #endif
   1132   1.1  alnsn #endif
   1133   1.1  alnsn 
   1134   1.1  alnsn 	return status;
   1135   1.1  alnsn }
   1136   1.1  alnsn 
   1137   1.1  alnsn /*
   1138   1.1  alnsn  * Return true if pc is a "read from packet" instruction.
   1139   1.1  alnsn  * If length is not NULL and return value is true, *length will
   1140   1.1  alnsn  * be set to a safe length required to read a packet.
   1141   1.1  alnsn  */
   1142   1.1  alnsn static bool
   1143   1.8  alnsn read_pkt_insn(const struct bpf_insn *pc, bpfjit_abc_length_t *length)
   1144   1.1  alnsn {
   1145   1.1  alnsn 	bool rv;
   1146   1.8  alnsn 	bpfjit_abc_length_t width;
   1147   1.1  alnsn 
   1148   1.1  alnsn 	switch (BPF_CLASS(pc->code)) {
   1149   1.1  alnsn 	default:
   1150   1.1  alnsn 		rv = false;
   1151   1.1  alnsn 		break;
   1152   1.1  alnsn 
   1153   1.1  alnsn 	case BPF_LD:
   1154   1.1  alnsn 		rv = BPF_MODE(pc->code) == BPF_ABS ||
   1155   1.1  alnsn 		     BPF_MODE(pc->code) == BPF_IND;
   1156   1.1  alnsn 		if (rv)
   1157   1.1  alnsn 			width = read_width(pc);
   1158   1.1  alnsn 		break;
   1159   1.1  alnsn 
   1160   1.1  alnsn 	case BPF_LDX:
   1161   1.1  alnsn 		rv = pc->code == (BPF_LDX|BPF_B|BPF_MSH);
   1162   1.1  alnsn 		width = 1;
   1163   1.1  alnsn 		break;
   1164   1.1  alnsn 	}
   1165   1.1  alnsn 
   1166   1.1  alnsn 	if (rv && length != NULL) {
   1167   1.9  alnsn 		/*
   1168   1.9  alnsn 		 * Values greater than UINT32_MAX will generate
   1169   1.9  alnsn 		 * unconditional "return 0".
   1170   1.9  alnsn 		 */
   1171   1.9  alnsn 		*length = (uint32_t)pc->k + width;
   1172   1.1  alnsn 	}
   1173   1.1  alnsn 
   1174   1.1  alnsn 	return rv;
   1175   1.1  alnsn }
   1176   1.1  alnsn 
   1177   1.1  alnsn static void
   1178   1.7  alnsn optimize_init(struct bpfjit_insn_data *insn_dat, size_t insn_count)
   1179   1.1  alnsn {
   1180   1.7  alnsn 	size_t i;
   1181   1.1  alnsn 
   1182   1.7  alnsn 	for (i = 0; i < insn_count; i++) {
   1183   1.7  alnsn 		SLIST_INIT(&insn_dat[i].bjumps);
   1184   1.7  alnsn 		insn_dat[i].invalid = BJ_INIT_NOBITS;
   1185   1.1  alnsn 	}
   1186   1.1  alnsn }
   1187   1.1  alnsn 
   1188   1.1  alnsn /*
   1189   1.1  alnsn  * The function divides instructions into blocks. Destination of a jump
   1190   1.1  alnsn  * instruction starts a new block. BPF_RET and BPF_JMP instructions
   1191   1.1  alnsn  * terminate a block. Blocks are linear, that is, there are no jumps out
   1192   1.1  alnsn  * from the middle of a block and there are no jumps in to the middle of
   1193   1.1  alnsn  * a block.
   1194   1.7  alnsn  *
   1195   1.7  alnsn  * The function also sets bits in *initmask for memwords that
   1196   1.7  alnsn  * need to be initialized to zero. Note that this set should be empty
   1197   1.7  alnsn  * for any valid kernel filter program.
   1198   1.1  alnsn  */
   1199   1.7  alnsn static bool
   1200  1.19  alnsn optimize_pass1(const bpf_ctx_t *bc, const struct bpf_insn *insns,
   1201  1.19  alnsn     struct bpfjit_insn_data *insn_dat, size_t insn_count,
   1202  1.20  alnsn     bpf_memword_init_t *initmask, bpfjit_hint_t *hints)
   1203   1.1  alnsn {
   1204   1.7  alnsn 	struct bpfjit_jump *jtf;
   1205   1.1  alnsn 	size_t i;
   1206   1.7  alnsn 	uint32_t jt, jf;
   1207  1.10  alnsn 	bpfjit_abc_length_t length;
   1208  1.13  alnsn 	bpf_memword_init_t invalid; /* borrowed from bpf_filter() */
   1209   1.1  alnsn 	bool unreachable;
   1210   1.1  alnsn 
   1211  1.19  alnsn 	const size_t memwords = GET_MEMWORDS(bc);
   1212  1.13  alnsn 
   1213  1.20  alnsn 	*hints = 0;
   1214   1.7  alnsn 	*initmask = BJ_INIT_NOBITS;
   1215   1.1  alnsn 
   1216   1.1  alnsn 	unreachable = false;
   1217   1.7  alnsn 	invalid = ~BJ_INIT_NOBITS;
   1218   1.1  alnsn 
   1219   1.1  alnsn 	for (i = 0; i < insn_count; i++) {
   1220   1.7  alnsn 		if (!SLIST_EMPTY(&insn_dat[i].bjumps))
   1221   1.1  alnsn 			unreachable = false;
   1222   1.7  alnsn 		insn_dat[i].unreachable = unreachable;
   1223   1.1  alnsn 
   1224   1.1  alnsn 		if (unreachable)
   1225   1.1  alnsn 			continue;
   1226   1.1  alnsn 
   1227   1.7  alnsn 		invalid |= insn_dat[i].invalid;
   1228   1.1  alnsn 
   1229  1.10  alnsn 		if (read_pkt_insn(&insns[i], &length) && length > UINT32_MAX)
   1230  1.10  alnsn 			unreachable = true;
   1231  1.10  alnsn 
   1232   1.1  alnsn 		switch (BPF_CLASS(insns[i].code)) {
   1233   1.1  alnsn 		case BPF_RET:
   1234   1.7  alnsn 			if (BPF_RVAL(insns[i].code) == BPF_A)
   1235   1.7  alnsn 				*initmask |= invalid & BJ_INIT_ABIT;
   1236   1.7  alnsn 
   1237   1.1  alnsn 			unreachable = true;
   1238   1.1  alnsn 			continue;
   1239   1.1  alnsn 
   1240   1.7  alnsn 		case BPF_LD:
   1241  1.20  alnsn 			if ((BPF_MODE(insns[i].code) == BPF_IND ||
   1242  1.20  alnsn 			    BPF_MODE(insns[i].code) == BPF_ABS) &&
   1243  1.20  alnsn 			    read_width(&insns[i]) == 4) {
   1244  1.20  alnsn 				*hints |= BJ_HINT_LDW;
   1245   1.7  alnsn 			}
   1246   1.7  alnsn 
   1247  1.20  alnsn 			if (BPF_MODE(insns[i].code) == BPF_IND) {
   1248  1.20  alnsn 				*hints |= BJ_HINT_XREG | BJ_HINT_IND;
   1249   1.7  alnsn 				*initmask |= invalid & BJ_INIT_XBIT;
   1250  1.20  alnsn 			}
   1251   1.7  alnsn 
   1252   1.7  alnsn 			if (BPF_MODE(insns[i].code) == BPF_MEM &&
   1253  1.13  alnsn 			    (uint32_t)insns[i].k < memwords) {
   1254   1.7  alnsn 				*initmask |= invalid & BJ_INIT_MBIT(insns[i].k);
   1255   1.7  alnsn 			}
   1256   1.7  alnsn 
   1257   1.7  alnsn 			invalid &= ~BJ_INIT_ABIT;
   1258   1.7  alnsn 			continue;
   1259   1.7  alnsn 
   1260   1.7  alnsn 		case BPF_LDX:
   1261  1.20  alnsn 			*hints |= BJ_HINT_XREG | BJ_HINT_LDX;
   1262   1.7  alnsn 
   1263   1.7  alnsn 			if (BPF_MODE(insns[i].code) == BPF_MEM &&
   1264  1.13  alnsn 			    (uint32_t)insns[i].k < memwords) {
   1265   1.7  alnsn 				*initmask |= invalid & BJ_INIT_MBIT(insns[i].k);
   1266   1.7  alnsn 			}
   1267   1.7  alnsn 
   1268   1.7  alnsn 			invalid &= ~BJ_INIT_XBIT;
   1269   1.7  alnsn 			continue;
   1270   1.7  alnsn 
   1271   1.7  alnsn 		case BPF_ST:
   1272   1.7  alnsn 			*initmask |= invalid & BJ_INIT_ABIT;
   1273   1.7  alnsn 
   1274  1.13  alnsn 			if ((uint32_t)insns[i].k < memwords)
   1275   1.7  alnsn 				invalid &= ~BJ_INIT_MBIT(insns[i].k);
   1276   1.7  alnsn 
   1277   1.7  alnsn 			continue;
   1278   1.7  alnsn 
   1279   1.7  alnsn 		case BPF_STX:
   1280  1.20  alnsn 			*hints |= BJ_HINT_XREG;
   1281   1.7  alnsn 			*initmask |= invalid & BJ_INIT_XBIT;
   1282   1.7  alnsn 
   1283  1.13  alnsn 			if ((uint32_t)insns[i].k < memwords)
   1284   1.7  alnsn 				invalid &= ~BJ_INIT_MBIT(insns[i].k);
   1285   1.7  alnsn 
   1286   1.7  alnsn 			continue;
   1287   1.7  alnsn 
   1288   1.7  alnsn 		case BPF_ALU:
   1289   1.7  alnsn 			*initmask |= invalid & BJ_INIT_ABIT;
   1290   1.7  alnsn 
   1291   1.7  alnsn 			if (insns[i].code != (BPF_ALU|BPF_NEG) &&
   1292   1.7  alnsn 			    BPF_SRC(insns[i].code) == BPF_X) {
   1293  1.20  alnsn 				*hints |= BJ_HINT_XREG;
   1294   1.7  alnsn 				*initmask |= invalid & BJ_INIT_XBIT;
   1295   1.7  alnsn 			}
   1296   1.7  alnsn 
   1297   1.7  alnsn 			invalid &= ~BJ_INIT_ABIT;
   1298   1.7  alnsn 			continue;
   1299   1.7  alnsn 
   1300   1.7  alnsn 		case BPF_MISC:
   1301   1.7  alnsn 			switch (BPF_MISCOP(insns[i].code)) {
   1302   1.7  alnsn 			case BPF_TAX: // X <- A
   1303  1.20  alnsn 				*hints |= BJ_HINT_XREG;
   1304   1.7  alnsn 				*initmask |= invalid & BJ_INIT_ABIT;
   1305   1.7  alnsn 				invalid &= ~BJ_INIT_XBIT;
   1306   1.7  alnsn 				continue;
   1307   1.7  alnsn 
   1308   1.7  alnsn 			case BPF_TXA: // A <- X
   1309  1.20  alnsn 				*hints |= BJ_HINT_XREG;
   1310   1.7  alnsn 				*initmask |= invalid & BJ_INIT_XBIT;
   1311   1.7  alnsn 				invalid &= ~BJ_INIT_ABIT;
   1312   1.7  alnsn 				continue;
   1313  1.13  alnsn 
   1314  1.13  alnsn 			case BPF_COPX:
   1315  1.20  alnsn 				*hints |= BJ_HINT_XREG;
   1316  1.13  alnsn 				/* FALLTHROUGH */
   1317  1.13  alnsn 
   1318  1.13  alnsn 			case BPF_COP:
   1319  1.20  alnsn 				*hints |= BJ_HINT_COP;
   1320  1.13  alnsn 				*initmask |= invalid & BJ_INIT_ABIT;
   1321  1.13  alnsn 				invalid &= ~BJ_INIT_ABIT;
   1322  1.13  alnsn 				continue;
   1323   1.7  alnsn 			}
   1324   1.7  alnsn 
   1325   1.7  alnsn 			continue;
   1326   1.7  alnsn 
   1327   1.1  alnsn 		case BPF_JMP:
   1328   1.7  alnsn 			/* Initialize abc_length for ABC pass. */
   1329   1.8  alnsn 			insn_dat[i].u.jdata.abc_length = MAX_ABC_LENGTH;
   1330   1.7  alnsn 
   1331   1.7  alnsn 			if (BPF_OP(insns[i].code) == BPF_JA) {
   1332   1.1  alnsn 				jt = jf = insns[i].k;
   1333   1.1  alnsn 			} else {
   1334   1.1  alnsn 				jt = insns[i].jt;
   1335   1.1  alnsn 				jf = insns[i].jf;
   1336   1.1  alnsn 			}
   1337   1.1  alnsn 
   1338   1.1  alnsn 			if (jt >= insn_count - (i + 1) ||
   1339   1.1  alnsn 			    jf >= insn_count - (i + 1)) {
   1340   1.7  alnsn 				return false;
   1341   1.1  alnsn 			}
   1342   1.1  alnsn 
   1343   1.1  alnsn 			if (jt > 0 && jf > 0)
   1344   1.1  alnsn 				unreachable = true;
   1345   1.1  alnsn 
   1346   1.7  alnsn 			jt += i + 1;
   1347   1.7  alnsn 			jf += i + 1;
   1348   1.7  alnsn 
   1349   1.7  alnsn 			jtf = insn_dat[i].u.jdata.jtf;
   1350   1.1  alnsn 
   1351   1.7  alnsn 			jtf[0].sjump = NULL;
   1352   1.7  alnsn 			jtf[0].jdata = &insn_dat[i].u.jdata;
   1353   1.7  alnsn 			SLIST_INSERT_HEAD(&insn_dat[jt].bjumps,
   1354   1.7  alnsn 			    &jtf[0], entries);
   1355   1.1  alnsn 
   1356   1.1  alnsn 			if (jf != jt) {
   1357   1.7  alnsn 				jtf[1].sjump = NULL;
   1358   1.7  alnsn 				jtf[1].jdata = &insn_dat[i].u.jdata;
   1359   1.7  alnsn 				SLIST_INSERT_HEAD(&insn_dat[jf].bjumps,
   1360   1.7  alnsn 				    &jtf[1], entries);
   1361   1.1  alnsn 			}
   1362   1.1  alnsn 
   1363   1.7  alnsn 			insn_dat[jf].invalid |= invalid;
   1364   1.7  alnsn 			insn_dat[jt].invalid |= invalid;
   1365   1.7  alnsn 			invalid = 0;
   1366   1.7  alnsn 
   1367   1.1  alnsn 			continue;
   1368   1.1  alnsn 		}
   1369   1.1  alnsn 	}
   1370   1.1  alnsn 
   1371   1.7  alnsn 	return true;
   1372   1.1  alnsn }
   1373   1.1  alnsn 
   1374   1.1  alnsn /*
   1375   1.7  alnsn  * Array Bounds Check Elimination (ABC) pass.
   1376   1.1  alnsn  */
   1377   1.7  alnsn static void
   1378  1.19  alnsn optimize_pass2(const bpf_ctx_t *bc, const struct bpf_insn *insns,
   1379  1.19  alnsn     struct bpfjit_insn_data *insn_dat, size_t insn_count)
   1380   1.7  alnsn {
   1381   1.7  alnsn 	struct bpfjit_jump *jmp;
   1382   1.7  alnsn 	const struct bpf_insn *pc;
   1383   1.7  alnsn 	struct bpfjit_insn_data *pd;
   1384   1.7  alnsn 	size_t i;
   1385   1.8  alnsn 	bpfjit_abc_length_t length, abc_length = 0;
   1386   1.7  alnsn 
   1387  1.19  alnsn 	const size_t extwords = GET_EXTWORDS(bc);
   1388  1.19  alnsn 
   1389   1.7  alnsn 	for (i = insn_count; i != 0; i--) {
   1390   1.7  alnsn 		pc = &insns[i-1];
   1391   1.7  alnsn 		pd = &insn_dat[i-1];
   1392   1.7  alnsn 
   1393   1.7  alnsn 		if (pd->unreachable)
   1394   1.7  alnsn 			continue;
   1395   1.7  alnsn 
   1396   1.7  alnsn 		switch (BPF_CLASS(pc->code)) {
   1397   1.7  alnsn 		case BPF_RET:
   1398  1.11  alnsn 			/*
   1399  1.11  alnsn 			 * It's quite common for bpf programs to
   1400  1.11  alnsn 			 * check packet bytes in increasing order
   1401  1.11  alnsn 			 * and return zero if bytes don't match
   1402  1.11  alnsn 			 * specified critetion. Such programs disable
   1403  1.11  alnsn 			 * ABC optimization completely because for
   1404  1.11  alnsn 			 * every jump there is a branch with no read
   1405  1.11  alnsn 			 * instruction.
   1406  1.13  alnsn 			 * With no side effects, BPF_STMT(BPF_RET+BPF_K, 0)
   1407  1.13  alnsn 			 * is indistinguishable from out-of-bound load.
   1408  1.11  alnsn 			 * Therefore, abc_length can be set to
   1409  1.11  alnsn 			 * MAX_ABC_LENGTH and enable ABC for many
   1410  1.11  alnsn 			 * bpf programs.
   1411  1.13  alnsn 			 * If this optimization encounters any
   1412  1.11  alnsn 			 * instruction with a side effect, it will
   1413  1.11  alnsn 			 * reset abc_length.
   1414  1.11  alnsn 			 */
   1415  1.11  alnsn 			if (BPF_RVAL(pc->code) == BPF_K && pc->k == 0)
   1416  1.11  alnsn 				abc_length = MAX_ABC_LENGTH;
   1417  1.11  alnsn 			else
   1418  1.11  alnsn 				abc_length = 0;
   1419   1.7  alnsn 			break;
   1420   1.7  alnsn 
   1421  1.13  alnsn 		case BPF_MISC:
   1422  1.13  alnsn 			if (BPF_MISCOP(pc->code) == BPF_COP ||
   1423  1.13  alnsn 			    BPF_MISCOP(pc->code) == BPF_COPX) {
   1424  1.13  alnsn 				/* COP instructions can have side effects. */
   1425  1.13  alnsn 				abc_length = 0;
   1426  1.13  alnsn 			}
   1427  1.13  alnsn 			break;
   1428  1.13  alnsn 
   1429  1.13  alnsn 		case BPF_ST:
   1430  1.13  alnsn 		case BPF_STX:
   1431  1.13  alnsn 			if (extwords != 0) {
   1432  1.13  alnsn 				/* Write to memory is visible after a call. */
   1433  1.13  alnsn 				abc_length = 0;
   1434  1.13  alnsn 			}
   1435  1.13  alnsn 			break;
   1436  1.13  alnsn 
   1437   1.7  alnsn 		case BPF_JMP:
   1438   1.7  alnsn 			abc_length = pd->u.jdata.abc_length;
   1439   1.7  alnsn 			break;
   1440   1.7  alnsn 
   1441   1.7  alnsn 		default:
   1442   1.7  alnsn 			if (read_pkt_insn(pc, &length)) {
   1443   1.7  alnsn 				if (abc_length < length)
   1444   1.7  alnsn 					abc_length = length;
   1445   1.7  alnsn 				pd->u.rdata.abc_length = abc_length;
   1446   1.7  alnsn 			}
   1447   1.7  alnsn 			break;
   1448   1.7  alnsn 		}
   1449   1.7  alnsn 
   1450   1.7  alnsn 		SLIST_FOREACH(jmp, &pd->bjumps, entries) {
   1451   1.7  alnsn 			if (jmp->jdata->abc_length > abc_length)
   1452   1.7  alnsn 				jmp->jdata->abc_length = abc_length;
   1453   1.7  alnsn 		}
   1454   1.7  alnsn 	}
   1455   1.7  alnsn }
   1456   1.7  alnsn 
   1457   1.7  alnsn static void
   1458   1.7  alnsn optimize_pass3(const struct bpf_insn *insns,
   1459   1.7  alnsn     struct bpfjit_insn_data *insn_dat, size_t insn_count)
   1460   1.1  alnsn {
   1461   1.7  alnsn 	struct bpfjit_jump *jmp;
   1462   1.1  alnsn 	size_t i;
   1463   1.8  alnsn 	bpfjit_abc_length_t checked_length = 0;
   1464   1.1  alnsn 
   1465   1.1  alnsn 	for (i = 0; i < insn_count; i++) {
   1466   1.7  alnsn 		if (insn_dat[i].unreachable)
   1467   1.7  alnsn 			continue;
   1468   1.1  alnsn 
   1469   1.7  alnsn 		SLIST_FOREACH(jmp, &insn_dat[i].bjumps, entries) {
   1470   1.7  alnsn 			if (jmp->jdata->checked_length < checked_length)
   1471   1.7  alnsn 				checked_length = jmp->jdata->checked_length;
   1472   1.1  alnsn 		}
   1473   1.1  alnsn 
   1474   1.7  alnsn 		if (BPF_CLASS(insns[i].code) == BPF_JMP) {
   1475   1.7  alnsn 			insn_dat[i].u.jdata.checked_length = checked_length;
   1476   1.8  alnsn 		} else if (read_pkt_insn(&insns[i], NULL)) {
   1477   1.7  alnsn 			struct bpfjit_read_pkt_data *rdata =
   1478   1.7  alnsn 			    &insn_dat[i].u.rdata;
   1479   1.7  alnsn 			rdata->check_length = 0;
   1480   1.7  alnsn 			if (checked_length < rdata->abc_length) {
   1481   1.7  alnsn 				checked_length = rdata->abc_length;
   1482   1.7  alnsn 				rdata->check_length = checked_length;
   1483   1.7  alnsn 			}
   1484   1.1  alnsn 		}
   1485   1.7  alnsn 	}
   1486   1.7  alnsn }
   1487   1.1  alnsn 
   1488   1.7  alnsn static bool
   1489  1.19  alnsn optimize(const bpf_ctx_t *bc, const struct bpf_insn *insns,
   1490   1.7  alnsn     struct bpfjit_insn_data *insn_dat, size_t insn_count,
   1491  1.20  alnsn     bpf_memword_init_t *initmask, bpfjit_hint_t *hints)
   1492   1.7  alnsn {
   1493   1.1  alnsn 
   1494   1.7  alnsn 	optimize_init(insn_dat, insn_count);
   1495   1.7  alnsn 
   1496  1.20  alnsn 	if (!optimize_pass1(bc, insns, insn_dat, insn_count, initmask, hints))
   1497   1.7  alnsn 		return false;
   1498   1.1  alnsn 
   1499  1.19  alnsn 	optimize_pass2(bc, insns, insn_dat, insn_count);
   1500   1.7  alnsn 	optimize_pass3(insns, insn_dat, insn_count);
   1501   1.7  alnsn 
   1502   1.7  alnsn 	return true;
   1503   1.1  alnsn }
   1504   1.1  alnsn 
   1505   1.1  alnsn /*
   1506   1.1  alnsn  * Convert BPF_ALU operations except BPF_NEG and BPF_DIV to sljit operation.
   1507   1.1  alnsn  */
   1508   1.1  alnsn static int
   1509   1.7  alnsn bpf_alu_to_sljit_op(const struct bpf_insn *pc)
   1510   1.1  alnsn {
   1511   1.1  alnsn 
   1512   1.1  alnsn 	/*
   1513   1.1  alnsn 	 * Note: all supported 64bit arches have 32bit multiply
   1514   1.1  alnsn 	 * instruction so SLJIT_INT_OP doesn't have any overhead.
   1515   1.1  alnsn 	 */
   1516   1.1  alnsn 	switch (BPF_OP(pc->code)) {
   1517   1.1  alnsn 	case BPF_ADD: return SLJIT_ADD;
   1518   1.1  alnsn 	case BPF_SUB: return SLJIT_SUB;
   1519   1.1  alnsn 	case BPF_MUL: return SLJIT_MUL|SLJIT_INT_OP;
   1520   1.1  alnsn 	case BPF_OR:  return SLJIT_OR;
   1521   1.1  alnsn 	case BPF_AND: return SLJIT_AND;
   1522   1.1  alnsn 	case BPF_LSH: return SLJIT_SHL;
   1523   1.1  alnsn 	case BPF_RSH: return SLJIT_LSHR|SLJIT_INT_OP;
   1524   1.1  alnsn 	default:
   1525   1.7  alnsn 		BJ_ASSERT(false);
   1526   1.1  alnsn 		return 0;
   1527   1.1  alnsn 	}
   1528   1.1  alnsn }
   1529   1.1  alnsn 
   1530   1.1  alnsn /*
   1531   1.1  alnsn  * Convert BPF_JMP operations except BPF_JA to sljit condition.
   1532   1.1  alnsn  */
   1533   1.1  alnsn static int
   1534   1.7  alnsn bpf_jmp_to_sljit_cond(const struct bpf_insn *pc, bool negate)
   1535   1.1  alnsn {
   1536   1.1  alnsn 	/*
   1537   1.1  alnsn 	 * Note: all supported 64bit arches have 32bit comparison
   1538   1.1  alnsn 	 * instructions so SLJIT_INT_OP doesn't have any overhead.
   1539   1.1  alnsn 	 */
   1540   1.1  alnsn 	int rv = SLJIT_INT_OP;
   1541   1.1  alnsn 
   1542   1.1  alnsn 	switch (BPF_OP(pc->code)) {
   1543   1.1  alnsn 	case BPF_JGT:
   1544   1.1  alnsn 		rv |= negate ? SLJIT_C_LESS_EQUAL : SLJIT_C_GREATER;
   1545   1.1  alnsn 		break;
   1546   1.1  alnsn 	case BPF_JGE:
   1547   1.1  alnsn 		rv |= negate ? SLJIT_C_LESS : SLJIT_C_GREATER_EQUAL;
   1548   1.1  alnsn 		break;
   1549   1.1  alnsn 	case BPF_JEQ:
   1550   1.1  alnsn 		rv |= negate ? SLJIT_C_NOT_EQUAL : SLJIT_C_EQUAL;
   1551   1.1  alnsn 		break;
   1552   1.1  alnsn 	case BPF_JSET:
   1553   1.1  alnsn 		rv |= negate ? SLJIT_C_EQUAL : SLJIT_C_NOT_EQUAL;
   1554   1.1  alnsn 		break;
   1555   1.1  alnsn 	default:
   1556   1.7  alnsn 		BJ_ASSERT(false);
   1557   1.1  alnsn 	}
   1558   1.1  alnsn 
   1559   1.1  alnsn 	return rv;
   1560   1.1  alnsn }
   1561   1.1  alnsn 
   1562   1.1  alnsn /*
   1563   1.1  alnsn  * Convert BPF_K and BPF_X to sljit register.
   1564   1.1  alnsn  */
   1565   1.1  alnsn static int
   1566   1.7  alnsn kx_to_reg(const struct bpf_insn *pc)
   1567   1.1  alnsn {
   1568   1.1  alnsn 
   1569   1.1  alnsn 	switch (BPF_SRC(pc->code)) {
   1570   1.1  alnsn 	case BPF_K: return SLJIT_IMM;
   1571   1.7  alnsn 	case BPF_X: return BJ_XREG;
   1572   1.1  alnsn 	default:
   1573   1.7  alnsn 		BJ_ASSERT(false);
   1574   1.1  alnsn 		return 0;
   1575   1.1  alnsn 	}
   1576   1.1  alnsn }
   1577   1.1  alnsn 
   1578  1.12  alnsn static sljit_sw
   1579   1.7  alnsn kx_to_reg_arg(const struct bpf_insn *pc)
   1580   1.1  alnsn {
   1581   1.1  alnsn 
   1582   1.1  alnsn 	switch (BPF_SRC(pc->code)) {
   1583   1.1  alnsn 	case BPF_K: return (uint32_t)pc->k; /* SLJIT_IMM, pc->k, */
   1584   1.7  alnsn 	case BPF_X: return 0;               /* BJ_XREG, 0,      */
   1585   1.1  alnsn 	default:
   1586   1.7  alnsn 		BJ_ASSERT(false);
   1587   1.1  alnsn 		return 0;
   1588   1.1  alnsn 	}
   1589   1.1  alnsn }
   1590   1.1  alnsn 
   1591  1.19  alnsn static bool
   1592  1.19  alnsn generate_insn_code(struct sljit_compiler *compiler, const bpf_ctx_t *bc,
   1593  1.19  alnsn     const struct bpf_insn *insns, struct bpfjit_insn_data *insn_dat,
   1594  1.19  alnsn     size_t insn_count)
   1595   1.1  alnsn {
   1596   1.1  alnsn 	/* a list of jumps to out-of-bound return from a generated function */
   1597   1.1  alnsn 	struct sljit_jump **ret0;
   1598   1.7  alnsn 	size_t ret0_size, ret0_maxsize;
   1599   1.1  alnsn 
   1600  1.19  alnsn 	struct sljit_jump *jump;
   1601  1.19  alnsn 	struct sljit_label *label;
   1602   1.7  alnsn 	const struct bpf_insn *pc;
   1603   1.1  alnsn 	struct bpfjit_jump *bjump, *jtf;
   1604   1.1  alnsn 	struct sljit_jump *to_mchain_jump;
   1605   1.1  alnsn 
   1606  1.19  alnsn 	size_t i;
   1607  1.19  alnsn 	int status;
   1608  1.19  alnsn 	int branching, negate;
   1609  1.19  alnsn 	unsigned int rval, mode, src;
   1610   1.1  alnsn 	uint32_t jt, jf;
   1611   1.1  alnsn 
   1612  1.19  alnsn 	bool unconditional_ret;
   1613  1.19  alnsn 	bool rv;
   1614  1.19  alnsn 
   1615  1.19  alnsn 	const size_t extwords = GET_EXTWORDS(bc);
   1616  1.19  alnsn 	const size_t memwords = GET_MEMWORDS(bc);
   1617  1.13  alnsn 
   1618  1.13  alnsn 	ret0 = NULL;
   1619  1.19  alnsn 	rv = false;
   1620   1.7  alnsn 
   1621   1.1  alnsn 	ret0_size = 0;
   1622   1.7  alnsn 	ret0_maxsize = 64;
   1623   1.7  alnsn 	ret0 = BJ_ALLOC(ret0_maxsize * sizeof(ret0[0]));
   1624   1.7  alnsn 	if (ret0 == NULL)
   1625   1.1  alnsn 		goto fail;
   1626   1.1  alnsn 
   1627   1.1  alnsn 	for (i = 0; i < insn_count; i++) {
   1628   1.7  alnsn 		if (insn_dat[i].unreachable)
   1629   1.1  alnsn 			continue;
   1630   1.1  alnsn 
   1631   1.1  alnsn 		/*
   1632   1.1  alnsn 		 * Resolve jumps to the current insn.
   1633   1.1  alnsn 		 */
   1634   1.1  alnsn 		label = NULL;
   1635   1.7  alnsn 		SLIST_FOREACH(bjump, &insn_dat[i].bjumps, entries) {
   1636   1.7  alnsn 			if (bjump->sjump != NULL) {
   1637   1.1  alnsn 				if (label == NULL)
   1638   1.1  alnsn 					label = sljit_emit_label(compiler);
   1639   1.1  alnsn 				if (label == NULL)
   1640   1.1  alnsn 					goto fail;
   1641   1.7  alnsn 				sljit_set_label(bjump->sjump, label);
   1642   1.1  alnsn 			}
   1643   1.1  alnsn 		}
   1644   1.1  alnsn 
   1645   1.9  alnsn 		to_mchain_jump = NULL;
   1646   1.9  alnsn 		unconditional_ret = false;
   1647   1.9  alnsn 
   1648   1.9  alnsn 		if (read_pkt_insn(&insns[i], NULL)) {
   1649   1.9  alnsn 			if (insn_dat[i].u.rdata.check_length > UINT32_MAX) {
   1650   1.9  alnsn 				/* Jump to "return 0" unconditionally. */
   1651   1.9  alnsn 				unconditional_ret = true;
   1652   1.9  alnsn 				jump = sljit_emit_jump(compiler, SLJIT_JUMP);
   1653   1.9  alnsn 				if (jump == NULL)
   1654   1.9  alnsn 					goto fail;
   1655   1.9  alnsn 				if (!append_jump(jump, &ret0,
   1656   1.9  alnsn 				    &ret0_size, &ret0_maxsize))
   1657   1.9  alnsn 					goto fail;
   1658   1.9  alnsn 			} else if (insn_dat[i].u.rdata.check_length > 0) {
   1659   1.9  alnsn 				/* if (buflen < check_length) return 0; */
   1660   1.9  alnsn 				jump = sljit_emit_cmp(compiler,
   1661   1.9  alnsn 				    SLJIT_C_LESS,
   1662   1.9  alnsn 				    BJ_BUFLEN, 0,
   1663   1.9  alnsn 				    SLJIT_IMM,
   1664   1.9  alnsn 				    insn_dat[i].u.rdata.check_length);
   1665   1.9  alnsn 				if (jump == NULL)
   1666   1.9  alnsn 					goto fail;
   1667   1.1  alnsn #ifdef _KERNEL
   1668   1.9  alnsn 				to_mchain_jump = jump;
   1669   1.1  alnsn #else
   1670   1.9  alnsn 				if (!append_jump(jump, &ret0,
   1671   1.9  alnsn 				    &ret0_size, &ret0_maxsize))
   1672   1.9  alnsn 					goto fail;
   1673   1.1  alnsn #endif
   1674   1.9  alnsn 			}
   1675   1.1  alnsn 		}
   1676   1.1  alnsn 
   1677   1.1  alnsn 		pc = &insns[i];
   1678   1.1  alnsn 		switch (BPF_CLASS(pc->code)) {
   1679   1.1  alnsn 
   1680   1.1  alnsn 		default:
   1681   1.1  alnsn 			goto fail;
   1682   1.1  alnsn 
   1683   1.1  alnsn 		case BPF_LD:
   1684   1.1  alnsn 			/* BPF_LD+BPF_IMM          A <- k */
   1685   1.1  alnsn 			if (pc->code == (BPF_LD|BPF_IMM)) {
   1686   1.1  alnsn 				status = sljit_emit_op1(compiler,
   1687   1.1  alnsn 				    SLJIT_MOV,
   1688   1.7  alnsn 				    BJ_AREG, 0,
   1689   1.1  alnsn 				    SLJIT_IMM, (uint32_t)pc->k);
   1690   1.1  alnsn 				if (status != SLJIT_SUCCESS)
   1691   1.1  alnsn 					goto fail;
   1692   1.1  alnsn 
   1693   1.1  alnsn 				continue;
   1694   1.1  alnsn 			}
   1695   1.1  alnsn 
   1696   1.1  alnsn 			/* BPF_LD+BPF_MEM          A <- M[k] */
   1697   1.1  alnsn 			if (pc->code == (BPF_LD|BPF_MEM)) {
   1698  1.13  alnsn 				if ((uint32_t)pc->k >= memwords)
   1699   1.1  alnsn 					goto fail;
   1700  1.13  alnsn 				status = emit_memload(compiler,
   1701  1.13  alnsn 				    BJ_AREG, pc->k, extwords);
   1702   1.1  alnsn 				if (status != SLJIT_SUCCESS)
   1703   1.1  alnsn 					goto fail;
   1704   1.1  alnsn 
   1705   1.1  alnsn 				continue;
   1706   1.1  alnsn 			}
   1707   1.1  alnsn 
   1708   1.1  alnsn 			/* BPF_LD+BPF_W+BPF_LEN    A <- len */
   1709   1.1  alnsn 			if (pc->code == (BPF_LD|BPF_W|BPF_LEN)) {
   1710   1.1  alnsn 				status = sljit_emit_op1(compiler,
   1711   1.1  alnsn 				    SLJIT_MOV,
   1712   1.7  alnsn 				    BJ_AREG, 0,
   1713  1.13  alnsn 				    SLJIT_MEM1(BJ_ARGS),
   1714  1.13  alnsn 				    offsetof(struct bpf_args, wirelen));
   1715   1.1  alnsn 				if (status != SLJIT_SUCCESS)
   1716   1.1  alnsn 					goto fail;
   1717   1.1  alnsn 
   1718   1.1  alnsn 				continue;
   1719   1.1  alnsn 			}
   1720   1.1  alnsn 
   1721   1.1  alnsn 			mode = BPF_MODE(pc->code);
   1722   1.1  alnsn 			if (mode != BPF_ABS && mode != BPF_IND)
   1723   1.1  alnsn 				goto fail;
   1724   1.1  alnsn 
   1725   1.9  alnsn 			if (unconditional_ret)
   1726   1.9  alnsn 				continue;
   1727   1.9  alnsn 
   1728   1.1  alnsn 			status = emit_pkt_read(compiler, pc,
   1729   1.7  alnsn 			    to_mchain_jump, &ret0, &ret0_size, &ret0_maxsize);
   1730   1.1  alnsn 			if (status != SLJIT_SUCCESS)
   1731   1.1  alnsn 				goto fail;
   1732   1.1  alnsn 
   1733   1.1  alnsn 			continue;
   1734   1.1  alnsn 
   1735   1.1  alnsn 		case BPF_LDX:
   1736   1.1  alnsn 			mode = BPF_MODE(pc->code);
   1737   1.1  alnsn 
   1738   1.1  alnsn 			/* BPF_LDX+BPF_W+BPF_IMM    X <- k */
   1739   1.1  alnsn 			if (mode == BPF_IMM) {
   1740   1.1  alnsn 				if (BPF_SIZE(pc->code) != BPF_W)
   1741   1.1  alnsn 					goto fail;
   1742   1.1  alnsn 				status = sljit_emit_op1(compiler,
   1743   1.1  alnsn 				    SLJIT_MOV,
   1744   1.7  alnsn 				    BJ_XREG, 0,
   1745   1.1  alnsn 				    SLJIT_IMM, (uint32_t)pc->k);
   1746   1.1  alnsn 				if (status != SLJIT_SUCCESS)
   1747   1.1  alnsn 					goto fail;
   1748   1.1  alnsn 
   1749   1.1  alnsn 				continue;
   1750   1.1  alnsn 			}
   1751   1.1  alnsn 
   1752   1.1  alnsn 			/* BPF_LDX+BPF_W+BPF_LEN    X <- len */
   1753   1.1  alnsn 			if (mode == BPF_LEN) {
   1754   1.1  alnsn 				if (BPF_SIZE(pc->code) != BPF_W)
   1755   1.1  alnsn 					goto fail;
   1756   1.1  alnsn 				status = sljit_emit_op1(compiler,
   1757   1.1  alnsn 				    SLJIT_MOV,
   1758   1.7  alnsn 				    BJ_XREG, 0,
   1759  1.13  alnsn 				    SLJIT_MEM1(BJ_ARGS),
   1760  1.13  alnsn 				    offsetof(struct bpf_args, wirelen));
   1761   1.1  alnsn 				if (status != SLJIT_SUCCESS)
   1762   1.1  alnsn 					goto fail;
   1763   1.1  alnsn 
   1764   1.1  alnsn 				continue;
   1765   1.1  alnsn 			}
   1766   1.1  alnsn 
   1767   1.1  alnsn 			/* BPF_LDX+BPF_W+BPF_MEM    X <- M[k] */
   1768   1.1  alnsn 			if (mode == BPF_MEM) {
   1769   1.1  alnsn 				if (BPF_SIZE(pc->code) != BPF_W)
   1770   1.1  alnsn 					goto fail;
   1771  1.13  alnsn 				if ((uint32_t)pc->k >= memwords)
   1772   1.1  alnsn 					goto fail;
   1773  1.13  alnsn 				status = emit_memload(compiler,
   1774  1.13  alnsn 				    BJ_XREG, pc->k, extwords);
   1775   1.1  alnsn 				if (status != SLJIT_SUCCESS)
   1776   1.1  alnsn 					goto fail;
   1777   1.1  alnsn 
   1778   1.1  alnsn 				continue;
   1779   1.1  alnsn 			}
   1780   1.1  alnsn 
   1781   1.1  alnsn 			/* BPF_LDX+BPF_B+BPF_MSH    X <- 4*(P[k:1]&0xf) */
   1782   1.1  alnsn 			if (mode != BPF_MSH || BPF_SIZE(pc->code) != BPF_B)
   1783   1.1  alnsn 				goto fail;
   1784   1.1  alnsn 
   1785   1.9  alnsn 			if (unconditional_ret)
   1786   1.9  alnsn 				continue;
   1787   1.9  alnsn 
   1788   1.1  alnsn 			status = emit_msh(compiler, pc,
   1789   1.7  alnsn 			    to_mchain_jump, &ret0, &ret0_size, &ret0_maxsize);
   1790   1.1  alnsn 			if (status != SLJIT_SUCCESS)
   1791   1.1  alnsn 				goto fail;
   1792   1.1  alnsn 
   1793   1.1  alnsn 			continue;
   1794   1.1  alnsn 
   1795   1.1  alnsn 		case BPF_ST:
   1796   1.8  alnsn 			if (pc->code != BPF_ST ||
   1797  1.13  alnsn 			    (uint32_t)pc->k >= memwords) {
   1798   1.1  alnsn 				goto fail;
   1799   1.8  alnsn 			}
   1800   1.1  alnsn 
   1801  1.13  alnsn 			status = emit_memstore(compiler,
   1802  1.13  alnsn 			    BJ_AREG, pc->k, extwords);
   1803   1.1  alnsn 			if (status != SLJIT_SUCCESS)
   1804   1.1  alnsn 				goto fail;
   1805   1.1  alnsn 
   1806   1.1  alnsn 			continue;
   1807   1.1  alnsn 
   1808   1.1  alnsn 		case BPF_STX:
   1809   1.8  alnsn 			if (pc->code != BPF_STX ||
   1810  1.13  alnsn 			    (uint32_t)pc->k >= memwords) {
   1811   1.1  alnsn 				goto fail;
   1812   1.8  alnsn 			}
   1813   1.1  alnsn 
   1814  1.13  alnsn 			status = emit_memstore(compiler,
   1815  1.13  alnsn 			    BJ_XREG, pc->k, extwords);
   1816   1.1  alnsn 			if (status != SLJIT_SUCCESS)
   1817   1.1  alnsn 				goto fail;
   1818   1.1  alnsn 
   1819   1.1  alnsn 			continue;
   1820   1.1  alnsn 
   1821   1.1  alnsn 		case BPF_ALU:
   1822   1.1  alnsn 			if (pc->code == (BPF_ALU|BPF_NEG)) {
   1823   1.1  alnsn 				status = sljit_emit_op1(compiler,
   1824   1.1  alnsn 				    SLJIT_NEG,
   1825   1.7  alnsn 				    BJ_AREG, 0,
   1826   1.7  alnsn 				    BJ_AREG, 0);
   1827   1.1  alnsn 				if (status != SLJIT_SUCCESS)
   1828   1.1  alnsn 					goto fail;
   1829   1.1  alnsn 
   1830   1.1  alnsn 				continue;
   1831   1.1  alnsn 			}
   1832   1.1  alnsn 
   1833   1.1  alnsn 			if (BPF_OP(pc->code) != BPF_DIV) {
   1834   1.1  alnsn 				status = sljit_emit_op2(compiler,
   1835   1.1  alnsn 				    bpf_alu_to_sljit_op(pc),
   1836   1.7  alnsn 				    BJ_AREG, 0,
   1837   1.7  alnsn 				    BJ_AREG, 0,
   1838   1.1  alnsn 				    kx_to_reg(pc), kx_to_reg_arg(pc));
   1839   1.1  alnsn 				if (status != SLJIT_SUCCESS)
   1840   1.1  alnsn 					goto fail;
   1841   1.1  alnsn 
   1842   1.1  alnsn 				continue;
   1843   1.1  alnsn 			}
   1844   1.1  alnsn 
   1845   1.1  alnsn 			/* BPF_DIV */
   1846   1.1  alnsn 
   1847   1.1  alnsn 			src = BPF_SRC(pc->code);
   1848   1.1  alnsn 			if (src != BPF_X && src != BPF_K)
   1849   1.1  alnsn 				goto fail;
   1850   1.1  alnsn 
   1851   1.1  alnsn 			/* division by zero? */
   1852   1.1  alnsn 			if (src == BPF_X) {
   1853   1.1  alnsn 				jump = sljit_emit_cmp(compiler,
   1854   1.1  alnsn 				    SLJIT_C_EQUAL|SLJIT_INT_OP,
   1855   1.8  alnsn 				    BJ_XREG, 0,
   1856   1.1  alnsn 				    SLJIT_IMM, 0);
   1857   1.1  alnsn 				if (jump == NULL)
   1858   1.1  alnsn 					goto fail;
   1859   1.7  alnsn 				if (!append_jump(jump, &ret0,
   1860   1.7  alnsn 				    &ret0_size, &ret0_maxsize))
   1861   1.7  alnsn 					goto fail;
   1862   1.1  alnsn 			} else if (pc->k == 0) {
   1863   1.1  alnsn 				jump = sljit_emit_jump(compiler, SLJIT_JUMP);
   1864   1.1  alnsn 				if (jump == NULL)
   1865   1.1  alnsn 					goto fail;
   1866   1.7  alnsn 				if (!append_jump(jump, &ret0,
   1867   1.7  alnsn 				    &ret0_size, &ret0_maxsize))
   1868   1.7  alnsn 					goto fail;
   1869   1.1  alnsn 			}
   1870   1.1  alnsn 
   1871   1.1  alnsn 			if (src == BPF_X) {
   1872   1.7  alnsn 				status = emit_division(compiler, BJ_XREG, 0);
   1873   1.1  alnsn 				if (status != SLJIT_SUCCESS)
   1874   1.1  alnsn 					goto fail;
   1875   1.1  alnsn 			} else if (pc->k != 0) {
   1876   1.1  alnsn 				if (pc->k & (pc->k - 1)) {
   1877   1.1  alnsn 				    status = emit_division(compiler,
   1878   1.1  alnsn 				        SLJIT_IMM, (uint32_t)pc->k);
   1879   1.1  alnsn 				} else {
   1880   1.7  alnsn 				    status = emit_pow2_division(compiler,
   1881   1.1  alnsn 				        (uint32_t)pc->k);
   1882   1.1  alnsn 				}
   1883   1.1  alnsn 				if (status != SLJIT_SUCCESS)
   1884   1.1  alnsn 					goto fail;
   1885   1.1  alnsn 			}
   1886   1.1  alnsn 
   1887   1.1  alnsn 			continue;
   1888   1.1  alnsn 
   1889   1.1  alnsn 		case BPF_JMP:
   1890   1.7  alnsn 			if (BPF_OP(pc->code) == BPF_JA) {
   1891   1.1  alnsn 				jt = jf = pc->k;
   1892   1.1  alnsn 			} else {
   1893   1.1  alnsn 				jt = pc->jt;
   1894   1.1  alnsn 				jf = pc->jf;
   1895   1.1  alnsn 			}
   1896   1.1  alnsn 
   1897   1.1  alnsn 			negate = (jt == 0) ? 1 : 0;
   1898   1.1  alnsn 			branching = (jt == jf) ? 0 : 1;
   1899   1.7  alnsn 			jtf = insn_dat[i].u.jdata.jtf;
   1900   1.1  alnsn 
   1901   1.1  alnsn 			if (branching) {
   1902   1.1  alnsn 				if (BPF_OP(pc->code) != BPF_JSET) {
   1903   1.1  alnsn 					jump = sljit_emit_cmp(compiler,
   1904   1.1  alnsn 					    bpf_jmp_to_sljit_cond(pc, negate),
   1905   1.7  alnsn 					    BJ_AREG, 0,
   1906   1.1  alnsn 					    kx_to_reg(pc), kx_to_reg_arg(pc));
   1907   1.1  alnsn 				} else {
   1908   1.1  alnsn 					status = sljit_emit_op2(compiler,
   1909   1.1  alnsn 					    SLJIT_AND,
   1910   1.7  alnsn 					    BJ_TMP1REG, 0,
   1911   1.7  alnsn 					    BJ_AREG, 0,
   1912   1.1  alnsn 					    kx_to_reg(pc), kx_to_reg_arg(pc));
   1913   1.1  alnsn 					if (status != SLJIT_SUCCESS)
   1914   1.1  alnsn 						goto fail;
   1915   1.1  alnsn 
   1916   1.1  alnsn 					jump = sljit_emit_cmp(compiler,
   1917   1.1  alnsn 					    bpf_jmp_to_sljit_cond(pc, negate),
   1918   1.7  alnsn 					    BJ_TMP1REG, 0,
   1919   1.1  alnsn 					    SLJIT_IMM, 0);
   1920   1.1  alnsn 				}
   1921   1.1  alnsn 
   1922   1.1  alnsn 				if (jump == NULL)
   1923   1.1  alnsn 					goto fail;
   1924   1.1  alnsn 
   1925   1.7  alnsn 				BJ_ASSERT(jtf[negate].sjump == NULL);
   1926   1.7  alnsn 				jtf[negate].sjump = jump;
   1927   1.1  alnsn 			}
   1928   1.1  alnsn 
   1929   1.1  alnsn 			if (!branching || (jt != 0 && jf != 0)) {
   1930   1.1  alnsn 				jump = sljit_emit_jump(compiler, SLJIT_JUMP);
   1931   1.1  alnsn 				if (jump == NULL)
   1932   1.1  alnsn 					goto fail;
   1933   1.1  alnsn 
   1934   1.7  alnsn 				BJ_ASSERT(jtf[branching].sjump == NULL);
   1935   1.7  alnsn 				jtf[branching].sjump = jump;
   1936   1.1  alnsn 			}
   1937   1.1  alnsn 
   1938   1.1  alnsn 			continue;
   1939   1.1  alnsn 
   1940   1.1  alnsn 		case BPF_RET:
   1941   1.1  alnsn 			rval = BPF_RVAL(pc->code);
   1942   1.1  alnsn 			if (rval == BPF_X)
   1943   1.1  alnsn 				goto fail;
   1944   1.1  alnsn 
   1945   1.1  alnsn 			/* BPF_RET+BPF_K    accept k bytes */
   1946   1.1  alnsn 			if (rval == BPF_K) {
   1947   1.7  alnsn 				status = sljit_emit_return(compiler,
   1948   1.7  alnsn 				    SLJIT_MOV_UI,
   1949   1.1  alnsn 				    SLJIT_IMM, (uint32_t)pc->k);
   1950   1.1  alnsn 				if (status != SLJIT_SUCCESS)
   1951   1.1  alnsn 					goto fail;
   1952   1.1  alnsn 			}
   1953   1.1  alnsn 
   1954   1.1  alnsn 			/* BPF_RET+BPF_A    accept A bytes */
   1955   1.1  alnsn 			if (rval == BPF_A) {
   1956   1.7  alnsn 				status = sljit_emit_return(compiler,
   1957   1.7  alnsn 				    SLJIT_MOV_UI,
   1958   1.7  alnsn 				    BJ_AREG, 0);
   1959   1.1  alnsn 				if (status != SLJIT_SUCCESS)
   1960   1.1  alnsn 					goto fail;
   1961   1.1  alnsn 			}
   1962   1.1  alnsn 
   1963   1.1  alnsn 			continue;
   1964   1.1  alnsn 
   1965   1.1  alnsn 		case BPF_MISC:
   1966   1.7  alnsn 			switch (BPF_MISCOP(pc->code)) {
   1967   1.7  alnsn 			case BPF_TAX:
   1968   1.1  alnsn 				status = sljit_emit_op1(compiler,
   1969   1.1  alnsn 				    SLJIT_MOV_UI,
   1970   1.7  alnsn 				    BJ_XREG, 0,
   1971   1.7  alnsn 				    BJ_AREG, 0);
   1972   1.1  alnsn 				if (status != SLJIT_SUCCESS)
   1973   1.1  alnsn 					goto fail;
   1974   1.1  alnsn 
   1975   1.1  alnsn 				continue;
   1976   1.1  alnsn 
   1977   1.7  alnsn 			case BPF_TXA:
   1978   1.1  alnsn 				status = sljit_emit_op1(compiler,
   1979   1.1  alnsn 				    SLJIT_MOV,
   1980   1.7  alnsn 				    BJ_AREG, 0,
   1981   1.7  alnsn 				    BJ_XREG, 0);
   1982   1.1  alnsn 				if (status != SLJIT_SUCCESS)
   1983   1.1  alnsn 					goto fail;
   1984   1.1  alnsn 
   1985   1.1  alnsn 				continue;
   1986  1.13  alnsn 
   1987  1.13  alnsn 			case BPF_COP:
   1988  1.13  alnsn 			case BPF_COPX:
   1989  1.13  alnsn 				if (bc == NULL || bc->copfuncs == NULL)
   1990  1.13  alnsn 					goto fail;
   1991  1.13  alnsn 				if (BPF_MISCOP(pc->code) == BPF_COP &&
   1992  1.13  alnsn 				    (uint32_t)pc->k >= bc->nfuncs) {
   1993  1.13  alnsn 					goto fail;
   1994  1.13  alnsn 				}
   1995  1.13  alnsn 
   1996  1.13  alnsn 				jump = NULL;
   1997  1.13  alnsn 				status = emit_cop(compiler, bc, pc, &jump);
   1998  1.13  alnsn 				if (status != SLJIT_SUCCESS)
   1999  1.13  alnsn 					goto fail;
   2000  1.13  alnsn 
   2001  1.13  alnsn 				if (jump != NULL && !append_jump(jump,
   2002  1.13  alnsn 				    &ret0, &ret0_size, &ret0_maxsize))
   2003  1.13  alnsn 					goto fail;
   2004  1.13  alnsn 
   2005  1.13  alnsn 				continue;
   2006   1.1  alnsn 			}
   2007   1.1  alnsn 
   2008   1.1  alnsn 			goto fail;
   2009   1.1  alnsn 		} /* switch */
   2010   1.1  alnsn 	} /* main loop */
   2011   1.1  alnsn 
   2012   1.7  alnsn 	BJ_ASSERT(ret0_size <= ret0_maxsize);
   2013   1.1  alnsn 
   2014   1.7  alnsn 	if (ret0_size > 0) {
   2015   1.1  alnsn 		label = sljit_emit_label(compiler);
   2016   1.1  alnsn 		if (label == NULL)
   2017   1.1  alnsn 			goto fail;
   2018   1.7  alnsn 		for (i = 0; i < ret0_size; i++)
   2019   1.7  alnsn 			sljit_set_label(ret0[i], label);
   2020   1.1  alnsn 	}
   2021   1.1  alnsn 
   2022  1.19  alnsn 	rv = true;
   2023  1.19  alnsn 
   2024  1.19  alnsn fail:
   2025  1.19  alnsn 	if (ret0 != NULL)
   2026  1.19  alnsn 		BJ_FREE(ret0, ret0_maxsize * sizeof(ret0[0]));
   2027  1.19  alnsn 
   2028  1.19  alnsn 	return rv;
   2029  1.19  alnsn }
   2030  1.19  alnsn 
   2031  1.19  alnsn bpfjit_func_t
   2032  1.19  alnsn bpfjit_generate_code(const bpf_ctx_t *bc,
   2033  1.19  alnsn     const struct bpf_insn *insns, size_t insn_count)
   2034  1.19  alnsn {
   2035  1.19  alnsn 	void *rv;
   2036  1.19  alnsn 	struct sljit_compiler *compiler;
   2037  1.19  alnsn 
   2038  1.19  alnsn 	size_t i;
   2039  1.19  alnsn 	int status;
   2040  1.19  alnsn 
   2041  1.19  alnsn 	/* optimization related */
   2042  1.19  alnsn 	bpf_memword_init_t initmask;
   2043  1.20  alnsn 	bpfjit_hint_t hints;
   2044  1.19  alnsn 
   2045  1.19  alnsn 	/* memory store location for initial zero initialization */
   2046  1.19  alnsn 	sljit_si mem_reg;
   2047  1.19  alnsn 	sljit_sw mem_off;
   2048  1.19  alnsn 
   2049  1.19  alnsn 	struct bpfjit_insn_data *insn_dat;
   2050  1.19  alnsn 
   2051  1.19  alnsn 	const size_t extwords = GET_EXTWORDS(bc);
   2052  1.19  alnsn 	const size_t memwords = GET_MEMWORDS(bc);
   2053  1.19  alnsn 	const bpf_memword_init_t preinited = extwords ? bc->preinited : 0;
   2054  1.19  alnsn 
   2055  1.19  alnsn 	rv = NULL;
   2056  1.19  alnsn 	compiler = NULL;
   2057  1.19  alnsn 	insn_dat = NULL;
   2058  1.19  alnsn 
   2059  1.19  alnsn 	if (memwords > MAX_MEMWORDS)
   2060  1.19  alnsn 		goto fail;
   2061  1.19  alnsn 
   2062  1.19  alnsn 	if (insn_count == 0 || insn_count > SIZE_MAX / sizeof(insn_dat[0]))
   2063  1.19  alnsn 		goto fail;
   2064  1.19  alnsn 
   2065  1.19  alnsn 	insn_dat = BJ_ALLOC(insn_count * sizeof(insn_dat[0]));
   2066  1.19  alnsn 	if (insn_dat == NULL)
   2067  1.19  alnsn 		goto fail;
   2068  1.19  alnsn 
   2069  1.20  alnsn 	if (!optimize(bc, insns, insn_dat, insn_count, &initmask, &hints))
   2070  1.19  alnsn 		goto fail;
   2071  1.19  alnsn 
   2072  1.19  alnsn 	compiler = sljit_create_compiler();
   2073  1.19  alnsn 	if (compiler == NULL)
   2074  1.19  alnsn 		goto fail;
   2075  1.19  alnsn 
   2076  1.19  alnsn #if !defined(_KERNEL) && defined(SLJIT_VERBOSE) && SLJIT_VERBOSE
   2077  1.19  alnsn 	sljit_compiler_verbose(compiler, stderr);
   2078  1.19  alnsn #endif
   2079  1.19  alnsn 
   2080  1.19  alnsn 	status = sljit_emit_enter(compiler,
   2081  1.20  alnsn 	    2, nscratches(hints), 3, sizeof(struct bpfjit_stack));
   2082  1.19  alnsn 	if (status != SLJIT_SUCCESS)
   2083  1.19  alnsn 		goto fail;
   2084  1.19  alnsn 
   2085  1.20  alnsn 	if (hints & BJ_HINT_COP) {
   2086  1.19  alnsn 		/* save ctx argument */
   2087  1.19  alnsn 		status = sljit_emit_op1(compiler,
   2088  1.19  alnsn 		    SLJIT_MOV_P,
   2089  1.19  alnsn 		    SLJIT_MEM1(SLJIT_LOCALS_REG),
   2090  1.19  alnsn 		    offsetof(struct bpfjit_stack, ctx),
   2091  1.19  alnsn 		    BJ_CTX_ARG, 0);
   2092  1.19  alnsn 		if (status != SLJIT_SUCCESS)
   2093  1.19  alnsn 			goto fail;
   2094  1.19  alnsn 	}
   2095  1.19  alnsn 
   2096  1.19  alnsn 	if (extwords == 0) {
   2097  1.19  alnsn 		mem_reg = SLJIT_MEM1(SLJIT_LOCALS_REG);
   2098  1.19  alnsn 		mem_off = offsetof(struct bpfjit_stack, mem);
   2099  1.19  alnsn 	} else {
   2100  1.19  alnsn 		/* copy "mem" argument from bpf_args to bpfjit_stack */
   2101  1.19  alnsn 		status = sljit_emit_op1(compiler,
   2102  1.19  alnsn 		    SLJIT_MOV_P,
   2103  1.19  alnsn 		    BJ_TMP1REG, 0,
   2104  1.19  alnsn 		    SLJIT_MEM1(BJ_ARGS), offsetof(struct bpf_args, mem));
   2105  1.19  alnsn 		if (status != SLJIT_SUCCESS)
   2106  1.19  alnsn 			goto fail;
   2107  1.19  alnsn 
   2108  1.19  alnsn 		status = sljit_emit_op1(compiler,
   2109  1.19  alnsn 		    SLJIT_MOV_P,
   2110  1.19  alnsn 		    SLJIT_MEM1(SLJIT_LOCALS_REG),
   2111  1.19  alnsn 		    offsetof(struct bpfjit_stack, extmem),
   2112  1.19  alnsn 		    BJ_TMP1REG, 0);
   2113  1.19  alnsn 		if (status != SLJIT_SUCCESS)
   2114  1.19  alnsn 			goto fail;
   2115  1.19  alnsn 
   2116  1.19  alnsn 		mem_reg = SLJIT_MEM1(BJ_TMP1REG);
   2117  1.19  alnsn 		mem_off = 0;
   2118  1.19  alnsn 	}
   2119  1.19  alnsn 
   2120  1.19  alnsn 	/*
   2121  1.19  alnsn 	 * Exclude pre-initialised external memory words but keep
   2122  1.19  alnsn 	 * initialization statuses of A and X registers in case
   2123  1.19  alnsn 	 * bc->preinited wrongly sets those two bits.
   2124  1.19  alnsn 	 */
   2125  1.19  alnsn 	initmask &= ~preinited | BJ_INIT_ABIT | BJ_INIT_XBIT;
   2126  1.19  alnsn 
   2127  1.19  alnsn #if defined(_KERNEL)
   2128  1.19  alnsn 	/* bpf_filter() checks initialization of memwords. */
   2129  1.19  alnsn 	BJ_ASSERT((initmask & (BJ_INIT_MBIT(memwords) - 1)) == 0);
   2130  1.19  alnsn #endif
   2131  1.19  alnsn 	for (i = 0; i < memwords; i++) {
   2132  1.19  alnsn 		if (initmask & BJ_INIT_MBIT(i)) {
   2133  1.19  alnsn 			/* M[i] = 0; */
   2134  1.19  alnsn 			status = sljit_emit_op1(compiler,
   2135  1.19  alnsn 			    SLJIT_MOV_UI,
   2136  1.19  alnsn 			    mem_reg, mem_off + i * sizeof(uint32_t),
   2137  1.19  alnsn 			    SLJIT_IMM, 0);
   2138  1.19  alnsn 			if (status != SLJIT_SUCCESS)
   2139  1.19  alnsn 				goto fail;
   2140  1.19  alnsn 		}
   2141  1.19  alnsn 	}
   2142  1.19  alnsn 
   2143  1.19  alnsn 	if (initmask & BJ_INIT_ABIT) {
   2144  1.19  alnsn 		/* A = 0; */
   2145  1.19  alnsn 		status = sljit_emit_op1(compiler,
   2146  1.19  alnsn 		    SLJIT_MOV,
   2147  1.19  alnsn 		    BJ_AREG, 0,
   2148  1.19  alnsn 		    SLJIT_IMM, 0);
   2149  1.19  alnsn 		if (status != SLJIT_SUCCESS)
   2150  1.19  alnsn 			goto fail;
   2151  1.19  alnsn 	}
   2152  1.19  alnsn 
   2153  1.19  alnsn 	if (initmask & BJ_INIT_XBIT) {
   2154  1.19  alnsn 		/* X = 0; */
   2155  1.19  alnsn 		status = sljit_emit_op1(compiler,
   2156  1.19  alnsn 		    SLJIT_MOV,
   2157  1.19  alnsn 		    BJ_XREG, 0,
   2158  1.19  alnsn 		    SLJIT_IMM, 0);
   2159  1.19  alnsn 		if (status != SLJIT_SUCCESS)
   2160  1.19  alnsn 			goto fail;
   2161  1.19  alnsn 	}
   2162  1.19  alnsn 
   2163  1.19  alnsn 	status = load_buf_buflen(compiler);
   2164  1.19  alnsn 	if (status != SLJIT_SUCCESS)
   2165  1.19  alnsn 		goto fail;
   2166  1.19  alnsn 
   2167  1.19  alnsn 	if (!generate_insn_code(compiler, bc, insns, insn_dat, insn_count))
   2168  1.19  alnsn 		goto fail;
   2169  1.19  alnsn 
   2170   1.1  alnsn 	status = sljit_emit_return(compiler,
   2171   1.1  alnsn 	    SLJIT_MOV_UI,
   2172   1.7  alnsn 	    SLJIT_IMM, 0);
   2173   1.1  alnsn 	if (status != SLJIT_SUCCESS)
   2174   1.1  alnsn 		goto fail;
   2175   1.1  alnsn 
   2176   1.1  alnsn 	rv = sljit_generate_code(compiler);
   2177   1.1  alnsn 
   2178   1.1  alnsn fail:
   2179   1.1  alnsn 	if (compiler != NULL)
   2180   1.1  alnsn 		sljit_free_compiler(compiler);
   2181   1.1  alnsn 
   2182   1.1  alnsn 	if (insn_dat != NULL)
   2183   1.7  alnsn 		BJ_FREE(insn_dat, insn_count * sizeof(insn_dat[0]));
   2184   1.1  alnsn 
   2185   1.4  rmind 	return (bpfjit_func_t)rv;
   2186   1.1  alnsn }
   2187   1.1  alnsn 
   2188   1.1  alnsn void
   2189   1.4  rmind bpfjit_free_code(bpfjit_func_t code)
   2190   1.1  alnsn {
   2191   1.7  alnsn 
   2192   1.1  alnsn 	sljit_free_code((void *)code);
   2193   1.1  alnsn }
   2194