bpfjit.c revision 1.27 1 1.27 alnsn /* $NetBSD: bpfjit.c,v 1.27 2014/07/13 18:48:27 alnsn Exp $ */
2 1.3 rmind
3 1.1 alnsn /*-
4 1.7 alnsn * Copyright (c) 2011-2014 Alexander Nasonov.
5 1.1 alnsn * All rights reserved.
6 1.1 alnsn *
7 1.1 alnsn * Redistribution and use in source and binary forms, with or without
8 1.1 alnsn * modification, are permitted provided that the following conditions
9 1.1 alnsn * are met:
10 1.1 alnsn *
11 1.1 alnsn * 1. Redistributions of source code must retain the above copyright
12 1.1 alnsn * notice, this list of conditions and the following disclaimer.
13 1.1 alnsn * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 alnsn * notice, this list of conditions and the following disclaimer in
15 1.1 alnsn * the documentation and/or other materials provided with the
16 1.1 alnsn * distribution.
17 1.1 alnsn *
18 1.1 alnsn * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 1.1 alnsn * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 1.1 alnsn * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
21 1.1 alnsn * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
22 1.1 alnsn * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
23 1.1 alnsn * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
24 1.1 alnsn * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
25 1.1 alnsn * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
26 1.1 alnsn * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
27 1.1 alnsn * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
28 1.1 alnsn * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 1.1 alnsn * SUCH DAMAGE.
30 1.1 alnsn */
31 1.1 alnsn
32 1.2 alnsn #include <sys/cdefs.h>
33 1.2 alnsn #ifdef _KERNEL
34 1.27 alnsn __KERNEL_RCSID(0, "$NetBSD: bpfjit.c,v 1.27 2014/07/13 18:48:27 alnsn Exp $");
35 1.2 alnsn #else
36 1.27 alnsn __RCSID("$NetBSD: bpfjit.c,v 1.27 2014/07/13 18:48:27 alnsn Exp $");
37 1.2 alnsn #endif
38 1.2 alnsn
39 1.3 rmind #include <sys/types.h>
40 1.3 rmind #include <sys/queue.h>
41 1.1 alnsn
42 1.1 alnsn #ifndef _KERNEL
43 1.7 alnsn #include <assert.h>
44 1.7 alnsn #define BJ_ASSERT(c) assert(c)
45 1.7 alnsn #else
46 1.7 alnsn #define BJ_ASSERT(c) KASSERT(c)
47 1.7 alnsn #endif
48 1.7 alnsn
49 1.7 alnsn #ifndef _KERNEL
50 1.3 rmind #include <stdlib.h>
51 1.7 alnsn #define BJ_ALLOC(sz) malloc(sz)
52 1.7 alnsn #define BJ_FREE(p, sz) free(p)
53 1.1 alnsn #else
54 1.3 rmind #include <sys/kmem.h>
55 1.7 alnsn #define BJ_ALLOC(sz) kmem_alloc(sz, KM_SLEEP)
56 1.7 alnsn #define BJ_FREE(p, sz) kmem_free(p, sz)
57 1.1 alnsn #endif
58 1.1 alnsn
59 1.1 alnsn #ifndef _KERNEL
60 1.1 alnsn #include <limits.h>
61 1.1 alnsn #include <stdbool.h>
62 1.1 alnsn #include <stddef.h>
63 1.1 alnsn #include <stdint.h>
64 1.1 alnsn #else
65 1.1 alnsn #include <sys/atomic.h>
66 1.1 alnsn #include <sys/module.h>
67 1.1 alnsn #endif
68 1.1 alnsn
69 1.5 rmind #define __BPF_PRIVATE
70 1.5 rmind #include <net/bpf.h>
71 1.3 rmind #include <net/bpfjit.h>
72 1.1 alnsn #include <sljitLir.h>
73 1.1 alnsn
74 1.7 alnsn #if !defined(_KERNEL) && defined(SLJIT_VERBOSE) && SLJIT_VERBOSE
75 1.7 alnsn #include <stdio.h> /* for stderr */
76 1.7 alnsn #endif
77 1.7 alnsn
78 1.7 alnsn /*
79 1.13 alnsn * Arguments of generated bpfjit_func_t.
80 1.13 alnsn * The first argument is reassigned upon entry
81 1.13 alnsn * to a more frequently used buf argument.
82 1.13 alnsn */
83 1.13 alnsn #define BJ_CTX_ARG SLJIT_SAVED_REG1
84 1.13 alnsn #define BJ_ARGS SLJIT_SAVED_REG2
85 1.13 alnsn
86 1.13 alnsn /*
87 1.7 alnsn * Permanent register assignments.
88 1.7 alnsn */
89 1.7 alnsn #define BJ_BUF SLJIT_SAVED_REG1
90 1.13 alnsn //#define BJ_ARGS SLJIT_SAVED_REG2
91 1.7 alnsn #define BJ_BUFLEN SLJIT_SAVED_REG3
92 1.12 alnsn #define BJ_AREG SLJIT_SCRATCH_REG1
93 1.12 alnsn #define BJ_TMP1REG SLJIT_SCRATCH_REG2
94 1.12 alnsn #define BJ_TMP2REG SLJIT_SCRATCH_REG3
95 1.7 alnsn #define BJ_XREG SLJIT_TEMPORARY_EREG1
96 1.7 alnsn #define BJ_TMP3REG SLJIT_TEMPORARY_EREG2
97 1.7 alnsn
98 1.13 alnsn /*
99 1.13 alnsn * EREG registers can't be used for indirect calls, reuse BJ_BUF and
100 1.13 alnsn * BJ_BUFLEN registers. They can be easily restored from BJ_ARGS.
101 1.13 alnsn */
102 1.13 alnsn #define BJ_COPF_PTR SLJIT_SAVED_REG1
103 1.13 alnsn #define BJ_COPF_IDX SLJIT_SAVED_REG3
104 1.13 alnsn
105 1.13 alnsn #ifdef _KERNEL
106 1.13 alnsn #define MAX_MEMWORDS BPF_MAX_MEMWORDS
107 1.13 alnsn #else
108 1.13 alnsn #define MAX_MEMWORDS BPF_MEMWORDS
109 1.13 alnsn #endif
110 1.13 alnsn
111 1.13 alnsn #define BJ_INIT_NOBITS ((bpf_memword_init_t)0)
112 1.13 alnsn #define BJ_INIT_MBIT(k) BPF_MEMWORD_INIT(k)
113 1.13 alnsn #define BJ_INIT_ABIT BJ_INIT_MBIT(MAX_MEMWORDS)
114 1.13 alnsn #define BJ_INIT_XBIT BJ_INIT_MBIT(MAX_MEMWORDS + 1)
115 1.1 alnsn
116 1.9 alnsn /*
117 1.19 alnsn * Get a number of memwords and external memwords from a bpf_ctx object.
118 1.19 alnsn */
119 1.19 alnsn #define GET_EXTWORDS(bc) ((bc) ? (bc)->extwords : 0)
120 1.19 alnsn #define GET_MEMWORDS(bc) (GET_EXTWORDS(bc) ? GET_EXTWORDS(bc) : BPF_MEMWORDS)
121 1.19 alnsn
122 1.19 alnsn /*
123 1.20 alnsn * Optimization hints.
124 1.20 alnsn */
125 1.20 alnsn typedef unsigned int bpfjit_hint_t;
126 1.27 alnsn #define BJ_HINT_ABS 0x01 /* packet read at absolute offset */
127 1.27 alnsn #define BJ_HINT_IND 0x02 /* packet read at variable offset */
128 1.27 alnsn #define BJ_HINT_COP 0x04 /* BPF_COP or BPF_COPX instruction */
129 1.20 alnsn #define BJ_HINT_XREG 0x08 /* BJ_XREG is needed */
130 1.20 alnsn #define BJ_HINT_LDX 0x10 /* BPF_LDX instruction */
131 1.27 alnsn #define BJ_HINT_PKT (BJ_HINT_ABS|BJ_HINT_IND) /* packet read */
132 1.20 alnsn
133 1.20 alnsn /*
134 1.9 alnsn * Datatype for Array Bounds Check Elimination (ABC) pass.
135 1.9 alnsn */
136 1.9 alnsn typedef uint64_t bpfjit_abc_length_t;
137 1.9 alnsn #define MAX_ABC_LENGTH (UINT32_MAX + UINT64_C(4)) /* max. width is 4 */
138 1.8 alnsn
139 1.7 alnsn struct bpfjit_stack
140 1.7 alnsn {
141 1.13 alnsn bpf_ctx_t *ctx;
142 1.13 alnsn uint32_t *extmem; /* pointer to external memory store */
143 1.7 alnsn #ifdef _KERNEL
144 1.21 alnsn int err; /* 3rd argument for m_xword/m_xhalf/m_xbyte function call */
145 1.7 alnsn #endif
146 1.13 alnsn uint32_t mem[BPF_MEMWORDS]; /* internal memory store */
147 1.7 alnsn };
148 1.7 alnsn
149 1.7 alnsn /*
150 1.7 alnsn * Data for BPF_JMP instruction.
151 1.7 alnsn * Forward declaration for struct bpfjit_jump.
152 1.1 alnsn */
153 1.7 alnsn struct bpfjit_jump_data;
154 1.1 alnsn
155 1.1 alnsn /*
156 1.7 alnsn * Node of bjumps list.
157 1.1 alnsn */
158 1.3 rmind struct bpfjit_jump {
159 1.7 alnsn struct sljit_jump *sjump;
160 1.7 alnsn SLIST_ENTRY(bpfjit_jump) entries;
161 1.7 alnsn struct bpfjit_jump_data *jdata;
162 1.1 alnsn };
163 1.1 alnsn
164 1.1 alnsn /*
165 1.1 alnsn * Data for BPF_JMP instruction.
166 1.1 alnsn */
167 1.3 rmind struct bpfjit_jump_data {
168 1.1 alnsn /*
169 1.7 alnsn * These entries make up bjumps list:
170 1.7 alnsn * jtf[0] - when coming from jt path,
171 1.7 alnsn * jtf[1] - when coming from jf path.
172 1.1 alnsn */
173 1.7 alnsn struct bpfjit_jump jtf[2];
174 1.7 alnsn /*
175 1.7 alnsn * Length calculated by Array Bounds Check Elimination (ABC) pass.
176 1.7 alnsn */
177 1.8 alnsn bpfjit_abc_length_t abc_length;
178 1.7 alnsn /*
179 1.7 alnsn * Length checked by the last out-of-bounds check.
180 1.7 alnsn */
181 1.8 alnsn bpfjit_abc_length_t checked_length;
182 1.1 alnsn };
183 1.1 alnsn
184 1.1 alnsn /*
185 1.1 alnsn * Data for "read from packet" instructions.
186 1.1 alnsn * See also read_pkt_insn() function below.
187 1.1 alnsn */
188 1.3 rmind struct bpfjit_read_pkt_data {
189 1.1 alnsn /*
190 1.7 alnsn * Length calculated by Array Bounds Check Elimination (ABC) pass.
191 1.7 alnsn */
192 1.8 alnsn bpfjit_abc_length_t abc_length;
193 1.7 alnsn /*
194 1.7 alnsn * If positive, emit "if (buflen < check_length) return 0"
195 1.7 alnsn * out-of-bounds check.
196 1.9 alnsn * Values greater than UINT32_MAX generate unconditional "return 0".
197 1.1 alnsn */
198 1.8 alnsn bpfjit_abc_length_t check_length;
199 1.1 alnsn };
200 1.1 alnsn
201 1.1 alnsn /*
202 1.1 alnsn * Additional (optimization-related) data for bpf_insn.
203 1.1 alnsn */
204 1.3 rmind struct bpfjit_insn_data {
205 1.1 alnsn /* List of jumps to this insn. */
206 1.7 alnsn SLIST_HEAD(, bpfjit_jump) bjumps;
207 1.1 alnsn
208 1.1 alnsn union {
209 1.7 alnsn struct bpfjit_jump_data jdata;
210 1.7 alnsn struct bpfjit_read_pkt_data rdata;
211 1.7 alnsn } u;
212 1.1 alnsn
213 1.13 alnsn bpf_memword_init_t invalid;
214 1.7 alnsn bool unreachable;
215 1.1 alnsn };
216 1.1 alnsn
217 1.1 alnsn #ifdef _KERNEL
218 1.1 alnsn
219 1.1 alnsn uint32_t m_xword(const struct mbuf *, uint32_t, int *);
220 1.1 alnsn uint32_t m_xhalf(const struct mbuf *, uint32_t, int *);
221 1.1 alnsn uint32_t m_xbyte(const struct mbuf *, uint32_t, int *);
222 1.1 alnsn
223 1.1 alnsn MODULE(MODULE_CLASS_MISC, bpfjit, "sljit")
224 1.1 alnsn
225 1.1 alnsn static int
226 1.1 alnsn bpfjit_modcmd(modcmd_t cmd, void *arg)
227 1.1 alnsn {
228 1.1 alnsn
229 1.1 alnsn switch (cmd) {
230 1.1 alnsn case MODULE_CMD_INIT:
231 1.1 alnsn bpfjit_module_ops.bj_free_code = &bpfjit_free_code;
232 1.1 alnsn membar_producer();
233 1.1 alnsn bpfjit_module_ops.bj_generate_code = &bpfjit_generate_code;
234 1.1 alnsn membar_producer();
235 1.1 alnsn return 0;
236 1.1 alnsn
237 1.1 alnsn case MODULE_CMD_FINI:
238 1.1 alnsn return EOPNOTSUPP;
239 1.1 alnsn
240 1.1 alnsn default:
241 1.1 alnsn return ENOTTY;
242 1.1 alnsn }
243 1.1 alnsn }
244 1.1 alnsn #endif
245 1.1 alnsn
246 1.20 alnsn /*
247 1.21 alnsn * Return a number of scratch registers to pass
248 1.20 alnsn * to sljit_emit_enter() function.
249 1.20 alnsn */
250 1.20 alnsn static sljit_si
251 1.20 alnsn nscratches(bpfjit_hint_t hints)
252 1.20 alnsn {
253 1.20 alnsn sljit_si rv = 2;
254 1.20 alnsn
255 1.22 alnsn #ifdef _KERNEL
256 1.24 alnsn if (hints & BJ_HINT_PKT)
257 1.24 alnsn rv = 3; /* xcall with three arguments */
258 1.22 alnsn #endif
259 1.22 alnsn
260 1.27 alnsn if (hints & BJ_HINT_IND)
261 1.20 alnsn rv = 3; /* uses BJ_TMP2REG */
262 1.20 alnsn
263 1.20 alnsn if (hints & BJ_HINT_COP)
264 1.20 alnsn rv = 3; /* calls copfunc with three arguments */
265 1.20 alnsn
266 1.20 alnsn if (hints & BJ_HINT_XREG)
267 1.20 alnsn rv = 4; /* uses BJ_XREG */
268 1.20 alnsn
269 1.20 alnsn #ifdef _KERNEL
270 1.20 alnsn if (hints & BJ_HINT_LDX)
271 1.20 alnsn rv = 5; /* uses BJ_TMP3REG */
272 1.20 alnsn #endif
273 1.20 alnsn
274 1.20 alnsn return rv;
275 1.20 alnsn }
276 1.20 alnsn
277 1.1 alnsn static uint32_t
278 1.7 alnsn read_width(const struct bpf_insn *pc)
279 1.1 alnsn {
280 1.1 alnsn
281 1.1 alnsn switch (BPF_SIZE(pc->code)) {
282 1.1 alnsn case BPF_W:
283 1.1 alnsn return 4;
284 1.1 alnsn case BPF_H:
285 1.1 alnsn return 2;
286 1.1 alnsn case BPF_B:
287 1.1 alnsn return 1;
288 1.1 alnsn default:
289 1.7 alnsn BJ_ASSERT(false);
290 1.1 alnsn return 0;
291 1.1 alnsn }
292 1.1 alnsn }
293 1.1 alnsn
294 1.13 alnsn /*
295 1.13 alnsn * Copy buf and buflen members of bpf_args from BJ_ARGS
296 1.13 alnsn * pointer to BJ_BUF and BJ_BUFLEN registers.
297 1.13 alnsn */
298 1.13 alnsn static int
299 1.13 alnsn load_buf_buflen(struct sljit_compiler *compiler)
300 1.13 alnsn {
301 1.13 alnsn int status;
302 1.13 alnsn
303 1.13 alnsn status = sljit_emit_op1(compiler,
304 1.13 alnsn SLJIT_MOV_P,
305 1.13 alnsn BJ_BUF, 0,
306 1.13 alnsn SLJIT_MEM1(BJ_ARGS),
307 1.13 alnsn offsetof(struct bpf_args, pkt));
308 1.13 alnsn if (status != SLJIT_SUCCESS)
309 1.13 alnsn return status;
310 1.13 alnsn
311 1.13 alnsn status = sljit_emit_op1(compiler,
312 1.21 alnsn SLJIT_MOV, /* size_t source */
313 1.13 alnsn BJ_BUFLEN, 0,
314 1.13 alnsn SLJIT_MEM1(BJ_ARGS),
315 1.13 alnsn offsetof(struct bpf_args, buflen));
316 1.13 alnsn
317 1.13 alnsn return status;
318 1.13 alnsn }
319 1.13 alnsn
320 1.7 alnsn static bool
321 1.7 alnsn grow_jumps(struct sljit_jump ***jumps, size_t *size)
322 1.7 alnsn {
323 1.7 alnsn struct sljit_jump **newptr;
324 1.7 alnsn const size_t elemsz = sizeof(struct sljit_jump *);
325 1.7 alnsn size_t old_size = *size;
326 1.7 alnsn size_t new_size = 2 * old_size;
327 1.7 alnsn
328 1.7 alnsn if (new_size < old_size || new_size > SIZE_MAX / elemsz)
329 1.7 alnsn return false;
330 1.7 alnsn
331 1.7 alnsn newptr = BJ_ALLOC(new_size * elemsz);
332 1.7 alnsn if (newptr == NULL)
333 1.7 alnsn return false;
334 1.7 alnsn
335 1.7 alnsn memcpy(newptr, *jumps, old_size * elemsz);
336 1.7 alnsn BJ_FREE(*jumps, old_size * elemsz);
337 1.7 alnsn
338 1.7 alnsn *jumps = newptr;
339 1.7 alnsn *size = new_size;
340 1.7 alnsn return true;
341 1.7 alnsn }
342 1.7 alnsn
343 1.7 alnsn static bool
344 1.7 alnsn append_jump(struct sljit_jump *jump, struct sljit_jump ***jumps,
345 1.7 alnsn size_t *size, size_t *max_size)
346 1.1 alnsn {
347 1.7 alnsn if (*size == *max_size && !grow_jumps(jumps, max_size))
348 1.7 alnsn return false;
349 1.1 alnsn
350 1.7 alnsn (*jumps)[(*size)++] = jump;
351 1.7 alnsn return true;
352 1.1 alnsn }
353 1.1 alnsn
354 1.1 alnsn /*
355 1.24 alnsn * Emit code for BPF_LD+BPF_B+BPF_ABS A <- P[k:1].
356 1.1 alnsn */
357 1.1 alnsn static int
358 1.27 alnsn emit_read8(struct sljit_compiler *compiler, sljit_si src, uint32_t k)
359 1.1 alnsn {
360 1.1 alnsn
361 1.1 alnsn return sljit_emit_op1(compiler,
362 1.1 alnsn SLJIT_MOV_UB,
363 1.7 alnsn BJ_AREG, 0,
364 1.27 alnsn SLJIT_MEM1(src), k);
365 1.1 alnsn }
366 1.1 alnsn
367 1.1 alnsn /*
368 1.24 alnsn * Emit code for BPF_LD+BPF_H+BPF_ABS A <- P[k:2].
369 1.1 alnsn */
370 1.1 alnsn static int
371 1.27 alnsn emit_read16(struct sljit_compiler *compiler, sljit_si src, uint32_t k)
372 1.1 alnsn {
373 1.1 alnsn int status;
374 1.1 alnsn
375 1.27 alnsn BJ_ASSERT(k <= UINT32_MAX - 1);
376 1.27 alnsn
377 1.27 alnsn /* A = buf[k]; */
378 1.1 alnsn status = sljit_emit_op1(compiler,
379 1.1 alnsn SLJIT_MOV_UB,
380 1.27 alnsn BJ_AREG, 0,
381 1.27 alnsn SLJIT_MEM1(src), k);
382 1.1 alnsn if (status != SLJIT_SUCCESS)
383 1.1 alnsn return status;
384 1.1 alnsn
385 1.27 alnsn /* tmp1 = buf[k+1]; */
386 1.1 alnsn status = sljit_emit_op1(compiler,
387 1.1 alnsn SLJIT_MOV_UB,
388 1.27 alnsn BJ_TMP1REG, 0,
389 1.27 alnsn SLJIT_MEM1(src), k+1);
390 1.1 alnsn if (status != SLJIT_SUCCESS)
391 1.1 alnsn return status;
392 1.1 alnsn
393 1.27 alnsn /* A = A << 8; */
394 1.1 alnsn status = sljit_emit_op2(compiler,
395 1.1 alnsn SLJIT_SHL,
396 1.27 alnsn BJ_AREG, 0,
397 1.27 alnsn BJ_AREG, 0,
398 1.1 alnsn SLJIT_IMM, 8);
399 1.1 alnsn if (status != SLJIT_SUCCESS)
400 1.1 alnsn return status;
401 1.1 alnsn
402 1.1 alnsn /* A = A + tmp1; */
403 1.1 alnsn status = sljit_emit_op2(compiler,
404 1.1 alnsn SLJIT_ADD,
405 1.7 alnsn BJ_AREG, 0,
406 1.7 alnsn BJ_AREG, 0,
407 1.7 alnsn BJ_TMP1REG, 0);
408 1.1 alnsn return status;
409 1.1 alnsn }
410 1.1 alnsn
411 1.1 alnsn /*
412 1.24 alnsn * Emit code for BPF_LD+BPF_W+BPF_ABS A <- P[k:4].
413 1.1 alnsn */
414 1.1 alnsn static int
415 1.27 alnsn emit_read32(struct sljit_compiler *compiler, sljit_si src, uint32_t k)
416 1.1 alnsn {
417 1.1 alnsn int status;
418 1.1 alnsn
419 1.27 alnsn BJ_ASSERT(k <= UINT32_MAX - 3);
420 1.1 alnsn
421 1.27 alnsn /* A = buf[k]; */
422 1.1 alnsn status = sljit_emit_op1(compiler,
423 1.1 alnsn SLJIT_MOV_UB,
424 1.27 alnsn BJ_AREG, 0,
425 1.27 alnsn SLJIT_MEM1(src), k);
426 1.1 alnsn if (status != SLJIT_SUCCESS)
427 1.1 alnsn return status;
428 1.1 alnsn
429 1.27 alnsn /* tmp1 = buf[k+1]; */
430 1.1 alnsn status = sljit_emit_op1(compiler,
431 1.1 alnsn SLJIT_MOV_UB,
432 1.27 alnsn BJ_TMP1REG, 0,
433 1.27 alnsn SLJIT_MEM1(src), k+1);
434 1.1 alnsn if (status != SLJIT_SUCCESS)
435 1.1 alnsn return status;
436 1.1 alnsn
437 1.27 alnsn /* A = A << 8; */
438 1.1 alnsn status = sljit_emit_op2(compiler,
439 1.1 alnsn SLJIT_SHL,
440 1.27 alnsn BJ_AREG, 0,
441 1.27 alnsn BJ_AREG, 0,
442 1.27 alnsn SLJIT_IMM, 8);
443 1.1 alnsn if (status != SLJIT_SUCCESS)
444 1.1 alnsn return status;
445 1.1 alnsn
446 1.1 alnsn /* A = A + tmp1; */
447 1.1 alnsn status = sljit_emit_op2(compiler,
448 1.1 alnsn SLJIT_ADD,
449 1.7 alnsn BJ_AREG, 0,
450 1.7 alnsn BJ_AREG, 0,
451 1.7 alnsn BJ_TMP1REG, 0);
452 1.1 alnsn if (status != SLJIT_SUCCESS)
453 1.1 alnsn return status;
454 1.1 alnsn
455 1.1 alnsn /* tmp1 = buf[k+2]; */
456 1.1 alnsn status = sljit_emit_op1(compiler,
457 1.1 alnsn SLJIT_MOV_UB,
458 1.7 alnsn BJ_TMP1REG, 0,
459 1.27 alnsn SLJIT_MEM1(src), k+2);
460 1.1 alnsn if (status != SLJIT_SUCCESS)
461 1.1 alnsn return status;
462 1.1 alnsn
463 1.27 alnsn /* A = A << 8; */
464 1.1 alnsn status = sljit_emit_op2(compiler,
465 1.1 alnsn SLJIT_SHL,
466 1.27 alnsn BJ_AREG, 0,
467 1.27 alnsn BJ_AREG, 0,
468 1.27 alnsn SLJIT_IMM, 8);
469 1.1 alnsn if (status != SLJIT_SUCCESS)
470 1.1 alnsn return status;
471 1.1 alnsn
472 1.27 alnsn /* A = A + tmp1; */
473 1.1 alnsn status = sljit_emit_op2(compiler,
474 1.1 alnsn SLJIT_ADD,
475 1.7 alnsn BJ_AREG, 0,
476 1.7 alnsn BJ_AREG, 0,
477 1.27 alnsn BJ_TMP1REG, 0);
478 1.27 alnsn if (status != SLJIT_SUCCESS)
479 1.27 alnsn return status;
480 1.27 alnsn
481 1.27 alnsn /* tmp1 = buf[k+3]; */
482 1.27 alnsn status = sljit_emit_op1(compiler,
483 1.27 alnsn SLJIT_MOV_UB,
484 1.27 alnsn BJ_TMP1REG, 0,
485 1.27 alnsn SLJIT_MEM1(src), k+3);
486 1.1 alnsn if (status != SLJIT_SUCCESS)
487 1.1 alnsn return status;
488 1.1 alnsn
489 1.27 alnsn /* A = A << 8; */
490 1.1 alnsn status = sljit_emit_op2(compiler,
491 1.1 alnsn SLJIT_SHL,
492 1.27 alnsn BJ_AREG, 0,
493 1.27 alnsn BJ_AREG, 0,
494 1.1 alnsn SLJIT_IMM, 8);
495 1.1 alnsn if (status != SLJIT_SUCCESS)
496 1.1 alnsn return status;
497 1.1 alnsn
498 1.1 alnsn /* A = A + tmp1; */
499 1.1 alnsn status = sljit_emit_op2(compiler,
500 1.1 alnsn SLJIT_ADD,
501 1.7 alnsn BJ_AREG, 0,
502 1.7 alnsn BJ_AREG, 0,
503 1.7 alnsn BJ_TMP1REG, 0);
504 1.1 alnsn return status;
505 1.1 alnsn }
506 1.1 alnsn
507 1.1 alnsn #ifdef _KERNEL
508 1.1 alnsn /*
509 1.24 alnsn * Emit code for m_xword/m_xhalf/m_xbyte call.
510 1.1 alnsn *
511 1.24 alnsn * @pc BPF_LD+BPF_W+BPF_ABS A <- P[k:4]
512 1.24 alnsn * BPF_LD+BPF_H+BPF_ABS A <- P[k:2]
513 1.24 alnsn * BPF_LD+BPF_B+BPF_ABS A <- P[k:1]
514 1.24 alnsn * BPF_LD+BPF_W+BPF_IND A <- P[X+k:4]
515 1.24 alnsn * BPF_LD+BPF_H+BPF_IND A <- P[X+k:2]
516 1.24 alnsn * BPF_LD+BPF_B+BPF_IND A <- P[X+k:1]
517 1.24 alnsn * BPF_LDX+BPF_B+BPF_MSH X <- 4*(P[k:1]&0xf)
518 1.1 alnsn */
519 1.1 alnsn static int
520 1.19 alnsn emit_xcall(struct sljit_compiler *compiler, const struct bpf_insn *pc,
521 1.23 alnsn int dst, struct sljit_jump ***ret0, size_t *ret0_size, size_t *ret0_maxsize,
522 1.1 alnsn uint32_t (*fn)(const struct mbuf *, uint32_t, int *))
523 1.1 alnsn {
524 1.23 alnsn #if BJ_XREG == SLJIT_RETURN_REG || \
525 1.23 alnsn BJ_XREG == SLJIT_SCRATCH_REG1 || \
526 1.23 alnsn BJ_XREG == SLJIT_SCRATCH_REG2 || \
527 1.23 alnsn BJ_XREG == SLJIT_SCRATCH_REG3 || \
528 1.23 alnsn BJ_TMP3REG == SLJIT_RETURN_REG || \
529 1.23 alnsn BJ_TMP3REG == SLJIT_SCRATCH_REG1 || \
530 1.23 alnsn BJ_TMP3REG == SLJIT_SCRATCH_REG2 || \
531 1.23 alnsn BJ_TMP3REG == SLJIT_SCRATCH_REG3
532 1.1 alnsn #error "Not supported assignment of registers."
533 1.1 alnsn #endif
534 1.23 alnsn struct sljit_jump *jump;
535 1.1 alnsn int status;
536 1.1 alnsn
537 1.23 alnsn BJ_ASSERT(dst != BJ_TMP2REG && dst != BJ_TMP3REG);
538 1.23 alnsn
539 1.1 alnsn if (BPF_CLASS(pc->code) == BPF_LDX) {
540 1.1 alnsn /* save A */
541 1.1 alnsn status = sljit_emit_op1(compiler,
542 1.1 alnsn SLJIT_MOV,
543 1.7 alnsn BJ_TMP3REG, 0,
544 1.7 alnsn BJ_AREG, 0);
545 1.1 alnsn if (status != SLJIT_SUCCESS)
546 1.1 alnsn return status;
547 1.1 alnsn }
548 1.1 alnsn
549 1.1 alnsn /*
550 1.23 alnsn * Prepare registers for fn(mbuf, k, &err) call.
551 1.1 alnsn */
552 1.1 alnsn status = sljit_emit_op1(compiler,
553 1.1 alnsn SLJIT_MOV,
554 1.12 alnsn SLJIT_SCRATCH_REG1, 0,
555 1.7 alnsn BJ_BUF, 0);
556 1.1 alnsn if (status != SLJIT_SUCCESS)
557 1.1 alnsn return status;
558 1.1 alnsn
559 1.1 alnsn if (BPF_CLASS(pc->code) == BPF_LD && BPF_MODE(pc->code) == BPF_IND) {
560 1.26 alnsn /* if (X > UINT32_MAX - pc->k) return 0; */
561 1.26 alnsn jump = sljit_emit_cmp(compiler,
562 1.26 alnsn SLJIT_C_GREATER,
563 1.26 alnsn BJ_XREG, 0,
564 1.26 alnsn SLJIT_IMM, UINT32_MAX - pc->k);
565 1.26 alnsn if (jump == NULL)
566 1.26 alnsn return SLJIT_ERR_ALLOC_FAILED;
567 1.26 alnsn if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
568 1.26 alnsn return SLJIT_ERR_ALLOC_FAILED;
569 1.26 alnsn
570 1.23 alnsn /* k = X + pc->k; */
571 1.1 alnsn status = sljit_emit_op2(compiler,
572 1.26 alnsn SLJIT_ADD,
573 1.12 alnsn SLJIT_SCRATCH_REG2, 0,
574 1.7 alnsn BJ_XREG, 0,
575 1.1 alnsn SLJIT_IMM, (uint32_t)pc->k);
576 1.24 alnsn if (status != SLJIT_SUCCESS)
577 1.24 alnsn return status;
578 1.1 alnsn } else {
579 1.23 alnsn /* k = pc->k */
580 1.1 alnsn status = sljit_emit_op1(compiler,
581 1.1 alnsn SLJIT_MOV,
582 1.12 alnsn SLJIT_SCRATCH_REG2, 0,
583 1.1 alnsn SLJIT_IMM, (uint32_t)pc->k);
584 1.24 alnsn if (status != SLJIT_SUCCESS)
585 1.24 alnsn return status;
586 1.1 alnsn }
587 1.1 alnsn
588 1.21 alnsn /*
589 1.21 alnsn * The third argument of fn is an address on stack.
590 1.21 alnsn */
591 1.1 alnsn status = sljit_get_local_base(compiler,
592 1.21 alnsn SLJIT_SCRATCH_REG3, 0,
593 1.21 alnsn offsetof(struct bpfjit_stack, err));
594 1.1 alnsn if (status != SLJIT_SUCCESS)
595 1.1 alnsn return status;
596 1.1 alnsn
597 1.1 alnsn /* fn(buf, k, &err); */
598 1.1 alnsn status = sljit_emit_ijump(compiler,
599 1.1 alnsn SLJIT_CALL3,
600 1.1 alnsn SLJIT_IMM, SLJIT_FUNC_OFFSET(fn));
601 1.24 alnsn if (status != SLJIT_SUCCESS)
602 1.24 alnsn return status;
603 1.1 alnsn
604 1.7 alnsn if (dst != SLJIT_RETURN_REG) {
605 1.1 alnsn /* move return value to dst */
606 1.1 alnsn status = sljit_emit_op1(compiler,
607 1.1 alnsn SLJIT_MOV,
608 1.23 alnsn dst, 0,
609 1.1 alnsn SLJIT_RETURN_REG, 0);
610 1.1 alnsn if (status != SLJIT_SUCCESS)
611 1.1 alnsn return status;
612 1.7 alnsn }
613 1.1 alnsn
614 1.23 alnsn /* tmp2 = *err; */
615 1.1 alnsn status = sljit_emit_op1(compiler,
616 1.1 alnsn SLJIT_MOV_UI,
617 1.23 alnsn BJ_TMP2REG, 0,
618 1.21 alnsn SLJIT_MEM1(SLJIT_LOCALS_REG),
619 1.21 alnsn offsetof(struct bpfjit_stack, err));
620 1.1 alnsn if (status != SLJIT_SUCCESS)
621 1.1 alnsn return status;
622 1.1 alnsn
623 1.23 alnsn /* if (tmp2 != 0) return 0; */
624 1.23 alnsn jump = sljit_emit_cmp(compiler,
625 1.1 alnsn SLJIT_C_NOT_EQUAL,
626 1.23 alnsn BJ_TMP2REG, 0,
627 1.1 alnsn SLJIT_IMM, 0);
628 1.23 alnsn if (jump == NULL)
629 1.23 alnsn return SLJIT_ERR_ALLOC_FAILED;
630 1.23 alnsn
631 1.23 alnsn if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
632 1.1 alnsn return SLJIT_ERR_ALLOC_FAILED;
633 1.1 alnsn
634 1.26 alnsn if (BPF_CLASS(pc->code) == BPF_LDX) {
635 1.26 alnsn /* restore A */
636 1.26 alnsn status = sljit_emit_op1(compiler,
637 1.26 alnsn SLJIT_MOV,
638 1.26 alnsn BJ_AREG, 0,
639 1.26 alnsn BJ_TMP3REG, 0);
640 1.26 alnsn if (status != SLJIT_SUCCESS)
641 1.26 alnsn return status;
642 1.26 alnsn }
643 1.26 alnsn
644 1.24 alnsn return SLJIT_SUCCESS;
645 1.1 alnsn }
646 1.1 alnsn #endif
647 1.1 alnsn
648 1.1 alnsn /*
649 1.13 alnsn * Emit code for BPF_COP and BPF_COPX instructions.
650 1.13 alnsn */
651 1.13 alnsn static int
652 1.19 alnsn emit_cop(struct sljit_compiler *compiler, const bpf_ctx_t *bc,
653 1.13 alnsn const struct bpf_insn *pc, struct sljit_jump **ret0_jump)
654 1.13 alnsn {
655 1.13 alnsn #if BJ_XREG == SLJIT_RETURN_REG || \
656 1.13 alnsn BJ_XREG == SLJIT_SCRATCH_REG1 || \
657 1.13 alnsn BJ_XREG == SLJIT_SCRATCH_REG2 || \
658 1.13 alnsn BJ_XREG == SLJIT_SCRATCH_REG3 || \
659 1.13 alnsn BJ_COPF_PTR == BJ_ARGS || \
660 1.13 alnsn BJ_COPF_IDX == BJ_ARGS
661 1.13 alnsn #error "Not supported assignment of registers."
662 1.13 alnsn #endif
663 1.13 alnsn
664 1.13 alnsn struct sljit_jump *jump;
665 1.13 alnsn int status;
666 1.13 alnsn
667 1.13 alnsn jump = NULL;
668 1.13 alnsn
669 1.13 alnsn BJ_ASSERT(bc != NULL && bc->copfuncs != NULL);
670 1.13 alnsn
671 1.13 alnsn if (BPF_MISCOP(pc->code) == BPF_COPX) {
672 1.13 alnsn /* if (X >= bc->nfuncs) return 0; */
673 1.13 alnsn jump = sljit_emit_cmp(compiler,
674 1.13 alnsn SLJIT_C_GREATER_EQUAL,
675 1.13 alnsn BJ_XREG, 0,
676 1.13 alnsn SLJIT_IMM, bc->nfuncs);
677 1.13 alnsn if (jump == NULL)
678 1.13 alnsn return SLJIT_ERR_ALLOC_FAILED;
679 1.13 alnsn }
680 1.13 alnsn
681 1.13 alnsn if (jump != NULL)
682 1.13 alnsn *ret0_jump = jump;
683 1.13 alnsn
684 1.13 alnsn /*
685 1.13 alnsn * Copy bpf_copfunc_t arguments to registers.
686 1.13 alnsn */
687 1.13 alnsn #if BJ_AREG != SLJIT_SCRATCH_REG3
688 1.13 alnsn status = sljit_emit_op1(compiler,
689 1.13 alnsn SLJIT_MOV_UI,
690 1.13 alnsn SLJIT_SCRATCH_REG3, 0,
691 1.13 alnsn BJ_AREG, 0);
692 1.13 alnsn if (status != SLJIT_SUCCESS)
693 1.13 alnsn return status;
694 1.13 alnsn #endif
695 1.13 alnsn
696 1.13 alnsn status = sljit_emit_op1(compiler,
697 1.13 alnsn SLJIT_MOV_P,
698 1.13 alnsn SLJIT_SCRATCH_REG1, 0,
699 1.13 alnsn SLJIT_MEM1(SLJIT_LOCALS_REG),
700 1.13 alnsn offsetof(struct bpfjit_stack, ctx));
701 1.13 alnsn if (status != SLJIT_SUCCESS)
702 1.13 alnsn return status;
703 1.13 alnsn
704 1.13 alnsn status = sljit_emit_op1(compiler,
705 1.13 alnsn SLJIT_MOV_P,
706 1.13 alnsn SLJIT_SCRATCH_REG2, 0,
707 1.13 alnsn BJ_ARGS, 0);
708 1.13 alnsn if (status != SLJIT_SUCCESS)
709 1.13 alnsn return status;
710 1.13 alnsn
711 1.13 alnsn if (BPF_MISCOP(pc->code) == BPF_COP) {
712 1.13 alnsn status = sljit_emit_ijump(compiler,
713 1.13 alnsn SLJIT_CALL3,
714 1.13 alnsn SLJIT_IMM, SLJIT_FUNC_OFFSET(bc->copfuncs[pc->k]));
715 1.13 alnsn if (status != SLJIT_SUCCESS)
716 1.13 alnsn return status;
717 1.13 alnsn } else if (BPF_MISCOP(pc->code) == BPF_COPX) {
718 1.13 alnsn /* load ctx->copfuncs */
719 1.13 alnsn status = sljit_emit_op1(compiler,
720 1.13 alnsn SLJIT_MOV_P,
721 1.13 alnsn BJ_COPF_PTR, 0,
722 1.13 alnsn SLJIT_MEM1(SLJIT_SCRATCH_REG1),
723 1.13 alnsn offsetof(struct bpf_ctx, copfuncs));
724 1.13 alnsn if (status != SLJIT_SUCCESS)
725 1.13 alnsn return status;
726 1.13 alnsn
727 1.13 alnsn /*
728 1.13 alnsn * Load X to a register that can be used for
729 1.13 alnsn * memory addressing.
730 1.13 alnsn */
731 1.13 alnsn status = sljit_emit_op1(compiler,
732 1.21 alnsn SLJIT_MOV,
733 1.13 alnsn BJ_COPF_IDX, 0,
734 1.13 alnsn BJ_XREG, 0);
735 1.13 alnsn if (status != SLJIT_SUCCESS)
736 1.13 alnsn return status;
737 1.13 alnsn
738 1.13 alnsn status = sljit_emit_ijump(compiler,
739 1.13 alnsn SLJIT_CALL3,
740 1.13 alnsn SLJIT_MEM2(BJ_COPF_PTR, BJ_COPF_IDX),
741 1.13 alnsn SLJIT_WORD_SHIFT);
742 1.13 alnsn if (status != SLJIT_SUCCESS)
743 1.13 alnsn return status;
744 1.13 alnsn
745 1.13 alnsn status = load_buf_buflen(compiler);
746 1.13 alnsn if (status != SLJIT_SUCCESS)
747 1.13 alnsn return status;
748 1.13 alnsn }
749 1.13 alnsn
750 1.13 alnsn #if BJ_AREG != SLJIT_RETURN_REG
751 1.13 alnsn status = sljit_emit_op1(compiler,
752 1.13 alnsn SLJIT_MOV,
753 1.13 alnsn BJ_AREG, 0,
754 1.13 alnsn SLJIT_RETURN_REG, 0);
755 1.13 alnsn if (status != SLJIT_SUCCESS)
756 1.13 alnsn return status;
757 1.13 alnsn #endif
758 1.13 alnsn
759 1.24 alnsn return SLJIT_SUCCESS;
760 1.13 alnsn }
761 1.13 alnsn
762 1.13 alnsn /*
763 1.1 alnsn * Generate code for
764 1.1 alnsn * BPF_LD+BPF_W+BPF_ABS A <- P[k:4]
765 1.1 alnsn * BPF_LD+BPF_H+BPF_ABS A <- P[k:2]
766 1.1 alnsn * BPF_LD+BPF_B+BPF_ABS A <- P[k:1]
767 1.1 alnsn * BPF_LD+BPF_W+BPF_IND A <- P[X+k:4]
768 1.1 alnsn * BPF_LD+BPF_H+BPF_IND A <- P[X+k:2]
769 1.1 alnsn * BPF_LD+BPF_B+BPF_IND A <- P[X+k:1]
770 1.1 alnsn */
771 1.1 alnsn static int
772 1.19 alnsn emit_pkt_read(struct sljit_compiler *compiler,
773 1.7 alnsn const struct bpf_insn *pc, struct sljit_jump *to_mchain_jump,
774 1.7 alnsn struct sljit_jump ***ret0, size_t *ret0_size, size_t *ret0_maxsize)
775 1.1 alnsn {
776 1.25 alnsn int status = SLJIT_ERR_ALLOC_FAILED;
777 1.1 alnsn uint32_t width;
778 1.27 alnsn sljit_si ld_reg;
779 1.1 alnsn struct sljit_jump *jump;
780 1.1 alnsn #ifdef _KERNEL
781 1.1 alnsn struct sljit_label *label;
782 1.1 alnsn struct sljit_jump *over_mchain_jump;
783 1.1 alnsn const bool check_zero_buflen = (to_mchain_jump != NULL);
784 1.1 alnsn #endif
785 1.1 alnsn const uint32_t k = pc->k;
786 1.1 alnsn
787 1.1 alnsn #ifdef _KERNEL
788 1.1 alnsn if (to_mchain_jump == NULL) {
789 1.1 alnsn to_mchain_jump = sljit_emit_cmp(compiler,
790 1.1 alnsn SLJIT_C_EQUAL,
791 1.7 alnsn BJ_BUFLEN, 0,
792 1.1 alnsn SLJIT_IMM, 0);
793 1.1 alnsn if (to_mchain_jump == NULL)
794 1.7 alnsn return SLJIT_ERR_ALLOC_FAILED;
795 1.1 alnsn }
796 1.1 alnsn #endif
797 1.1 alnsn
798 1.27 alnsn ld_reg = BJ_BUF;
799 1.1 alnsn width = read_width(pc);
800 1.1 alnsn
801 1.1 alnsn if (BPF_MODE(pc->code) == BPF_IND) {
802 1.1 alnsn /* tmp1 = buflen - (pc->k + width); */
803 1.1 alnsn status = sljit_emit_op2(compiler,
804 1.1 alnsn SLJIT_SUB,
805 1.7 alnsn BJ_TMP1REG, 0,
806 1.7 alnsn BJ_BUFLEN, 0,
807 1.1 alnsn SLJIT_IMM, k + width);
808 1.1 alnsn if (status != SLJIT_SUCCESS)
809 1.1 alnsn return status;
810 1.1 alnsn
811 1.27 alnsn /* ld_reg = buf + X; */
812 1.27 alnsn ld_reg = BJ_TMP2REG;
813 1.1 alnsn status = sljit_emit_op2(compiler,
814 1.1 alnsn SLJIT_ADD,
815 1.27 alnsn ld_reg, 0,
816 1.7 alnsn BJ_BUF, 0,
817 1.7 alnsn BJ_XREG, 0);
818 1.1 alnsn if (status != SLJIT_SUCCESS)
819 1.1 alnsn return status;
820 1.1 alnsn
821 1.1 alnsn /* if (tmp1 < X) return 0; */
822 1.1 alnsn jump = sljit_emit_cmp(compiler,
823 1.1 alnsn SLJIT_C_LESS,
824 1.7 alnsn BJ_TMP1REG, 0,
825 1.7 alnsn BJ_XREG, 0);
826 1.1 alnsn if (jump == NULL)
827 1.7 alnsn return SLJIT_ERR_ALLOC_FAILED;
828 1.7 alnsn if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
829 1.7 alnsn return SLJIT_ERR_ALLOC_FAILED;
830 1.1 alnsn }
831 1.1 alnsn
832 1.1 alnsn switch (width) {
833 1.1 alnsn case 4:
834 1.27 alnsn status = emit_read32(compiler, ld_reg, k);
835 1.1 alnsn break;
836 1.1 alnsn case 2:
837 1.27 alnsn status = emit_read16(compiler, ld_reg, k);
838 1.1 alnsn break;
839 1.1 alnsn case 1:
840 1.27 alnsn status = emit_read8(compiler, ld_reg, k);
841 1.1 alnsn break;
842 1.1 alnsn }
843 1.1 alnsn
844 1.1 alnsn if (status != SLJIT_SUCCESS)
845 1.1 alnsn return status;
846 1.1 alnsn
847 1.1 alnsn #ifdef _KERNEL
848 1.1 alnsn over_mchain_jump = sljit_emit_jump(compiler, SLJIT_JUMP);
849 1.1 alnsn if (over_mchain_jump == NULL)
850 1.7 alnsn return SLJIT_ERR_ALLOC_FAILED;
851 1.1 alnsn
852 1.1 alnsn /* entry point to mchain handler */
853 1.1 alnsn label = sljit_emit_label(compiler);
854 1.1 alnsn if (label == NULL)
855 1.7 alnsn return SLJIT_ERR_ALLOC_FAILED;
856 1.1 alnsn sljit_set_label(to_mchain_jump, label);
857 1.1 alnsn
858 1.1 alnsn if (check_zero_buflen) {
859 1.1 alnsn /* if (buflen != 0) return 0; */
860 1.1 alnsn jump = sljit_emit_cmp(compiler,
861 1.1 alnsn SLJIT_C_NOT_EQUAL,
862 1.7 alnsn BJ_BUFLEN, 0,
863 1.1 alnsn SLJIT_IMM, 0);
864 1.1 alnsn if (jump == NULL)
865 1.1 alnsn return SLJIT_ERR_ALLOC_FAILED;
866 1.7 alnsn if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
867 1.7 alnsn return SLJIT_ERR_ALLOC_FAILED;
868 1.1 alnsn }
869 1.1 alnsn
870 1.1 alnsn switch (width) {
871 1.1 alnsn case 4:
872 1.23 alnsn status = emit_xcall(compiler, pc, BJ_AREG,
873 1.23 alnsn ret0, ret0_size, ret0_maxsize, &m_xword);
874 1.1 alnsn break;
875 1.1 alnsn case 2:
876 1.23 alnsn status = emit_xcall(compiler, pc, BJ_AREG,
877 1.23 alnsn ret0, ret0_size, ret0_maxsize, &m_xhalf);
878 1.1 alnsn break;
879 1.1 alnsn case 1:
880 1.23 alnsn status = emit_xcall(compiler, pc, BJ_AREG,
881 1.23 alnsn ret0, ret0_size, ret0_maxsize, &m_xbyte);
882 1.1 alnsn break;
883 1.1 alnsn }
884 1.1 alnsn
885 1.1 alnsn if (status != SLJIT_SUCCESS)
886 1.1 alnsn return status;
887 1.1 alnsn
888 1.1 alnsn label = sljit_emit_label(compiler);
889 1.1 alnsn if (label == NULL)
890 1.1 alnsn return SLJIT_ERR_ALLOC_FAILED;
891 1.1 alnsn sljit_set_label(over_mchain_jump, label);
892 1.1 alnsn #endif
893 1.1 alnsn
894 1.24 alnsn return SLJIT_SUCCESS;
895 1.1 alnsn }
896 1.1 alnsn
897 1.13 alnsn static int
898 1.19 alnsn emit_memload(struct sljit_compiler *compiler,
899 1.13 alnsn sljit_si dst, uint32_t k, size_t extwords)
900 1.13 alnsn {
901 1.13 alnsn int status;
902 1.13 alnsn sljit_si src;
903 1.13 alnsn sljit_sw srcw;
904 1.13 alnsn
905 1.13 alnsn srcw = k * sizeof(uint32_t);
906 1.13 alnsn
907 1.13 alnsn if (extwords == 0) {
908 1.13 alnsn src = SLJIT_MEM1(SLJIT_LOCALS_REG);
909 1.13 alnsn srcw += offsetof(struct bpfjit_stack, mem);
910 1.13 alnsn } else {
911 1.13 alnsn /* copy extmem pointer to the tmp1 register */
912 1.13 alnsn status = sljit_emit_op1(compiler,
913 1.16 alnsn SLJIT_MOV_P,
914 1.13 alnsn BJ_TMP1REG, 0,
915 1.13 alnsn SLJIT_MEM1(SLJIT_LOCALS_REG),
916 1.13 alnsn offsetof(struct bpfjit_stack, extmem));
917 1.13 alnsn if (status != SLJIT_SUCCESS)
918 1.13 alnsn return status;
919 1.13 alnsn src = SLJIT_MEM1(BJ_TMP1REG);
920 1.13 alnsn }
921 1.13 alnsn
922 1.13 alnsn return sljit_emit_op1(compiler, SLJIT_MOV_UI, dst, 0, src, srcw);
923 1.13 alnsn }
924 1.13 alnsn
925 1.13 alnsn static int
926 1.19 alnsn emit_memstore(struct sljit_compiler *compiler,
927 1.13 alnsn sljit_si src, uint32_t k, size_t extwords)
928 1.13 alnsn {
929 1.13 alnsn int status;
930 1.13 alnsn sljit_si dst;
931 1.13 alnsn sljit_sw dstw;
932 1.13 alnsn
933 1.13 alnsn dstw = k * sizeof(uint32_t);
934 1.13 alnsn
935 1.13 alnsn if (extwords == 0) {
936 1.13 alnsn dst = SLJIT_MEM1(SLJIT_LOCALS_REG);
937 1.13 alnsn dstw += offsetof(struct bpfjit_stack, mem);
938 1.13 alnsn } else {
939 1.13 alnsn /* copy extmem pointer to the tmp1 register */
940 1.13 alnsn status = sljit_emit_op1(compiler,
941 1.16 alnsn SLJIT_MOV_P,
942 1.13 alnsn BJ_TMP1REG, 0,
943 1.13 alnsn SLJIT_MEM1(SLJIT_LOCALS_REG),
944 1.13 alnsn offsetof(struct bpfjit_stack, extmem));
945 1.13 alnsn if (status != SLJIT_SUCCESS)
946 1.13 alnsn return status;
947 1.13 alnsn dst = SLJIT_MEM1(BJ_TMP1REG);
948 1.13 alnsn }
949 1.13 alnsn
950 1.13 alnsn return sljit_emit_op1(compiler, SLJIT_MOV_UI, dst, dstw, src, 0);
951 1.13 alnsn }
952 1.13 alnsn
953 1.1 alnsn /*
954 1.24 alnsn * Emit code for BPF_LDX+BPF_B+BPF_MSH X <- 4*(P[k:1]&0xf).
955 1.1 alnsn */
956 1.1 alnsn static int
957 1.19 alnsn emit_msh(struct sljit_compiler *compiler,
958 1.7 alnsn const struct bpf_insn *pc, struct sljit_jump *to_mchain_jump,
959 1.7 alnsn struct sljit_jump ***ret0, size_t *ret0_size, size_t *ret0_maxsize)
960 1.1 alnsn {
961 1.1 alnsn int status;
962 1.1 alnsn #ifdef _KERNEL
963 1.1 alnsn struct sljit_label *label;
964 1.1 alnsn struct sljit_jump *jump, *over_mchain_jump;
965 1.1 alnsn const bool check_zero_buflen = (to_mchain_jump != NULL);
966 1.1 alnsn #endif
967 1.1 alnsn const uint32_t k = pc->k;
968 1.1 alnsn
969 1.1 alnsn #ifdef _KERNEL
970 1.1 alnsn if (to_mchain_jump == NULL) {
971 1.1 alnsn to_mchain_jump = sljit_emit_cmp(compiler,
972 1.1 alnsn SLJIT_C_EQUAL,
973 1.7 alnsn BJ_BUFLEN, 0,
974 1.1 alnsn SLJIT_IMM, 0);
975 1.1 alnsn if (to_mchain_jump == NULL)
976 1.7 alnsn return SLJIT_ERR_ALLOC_FAILED;
977 1.1 alnsn }
978 1.1 alnsn #endif
979 1.1 alnsn
980 1.1 alnsn /* tmp1 = buf[k] */
981 1.1 alnsn status = sljit_emit_op1(compiler,
982 1.1 alnsn SLJIT_MOV_UB,
983 1.7 alnsn BJ_TMP1REG, 0,
984 1.7 alnsn SLJIT_MEM1(BJ_BUF), k);
985 1.1 alnsn if (status != SLJIT_SUCCESS)
986 1.1 alnsn return status;
987 1.1 alnsn
988 1.1 alnsn /* tmp1 &= 0xf */
989 1.1 alnsn status = sljit_emit_op2(compiler,
990 1.1 alnsn SLJIT_AND,
991 1.7 alnsn BJ_TMP1REG, 0,
992 1.7 alnsn BJ_TMP1REG, 0,
993 1.1 alnsn SLJIT_IMM, 0xf);
994 1.1 alnsn if (status != SLJIT_SUCCESS)
995 1.1 alnsn return status;
996 1.1 alnsn
997 1.1 alnsn /* tmp1 = tmp1 << 2 */
998 1.1 alnsn status = sljit_emit_op2(compiler,
999 1.1 alnsn SLJIT_SHL,
1000 1.7 alnsn BJ_XREG, 0,
1001 1.7 alnsn BJ_TMP1REG, 0,
1002 1.1 alnsn SLJIT_IMM, 2);
1003 1.1 alnsn if (status != SLJIT_SUCCESS)
1004 1.1 alnsn return status;
1005 1.1 alnsn
1006 1.1 alnsn #ifdef _KERNEL
1007 1.1 alnsn over_mchain_jump = sljit_emit_jump(compiler, SLJIT_JUMP);
1008 1.1 alnsn if (over_mchain_jump == NULL)
1009 1.1 alnsn return SLJIT_ERR_ALLOC_FAILED;
1010 1.1 alnsn
1011 1.1 alnsn /* entry point to mchain handler */
1012 1.1 alnsn label = sljit_emit_label(compiler);
1013 1.1 alnsn if (label == NULL)
1014 1.1 alnsn return SLJIT_ERR_ALLOC_FAILED;
1015 1.1 alnsn sljit_set_label(to_mchain_jump, label);
1016 1.1 alnsn
1017 1.1 alnsn if (check_zero_buflen) {
1018 1.1 alnsn /* if (buflen != 0) return 0; */
1019 1.1 alnsn jump = sljit_emit_cmp(compiler,
1020 1.1 alnsn SLJIT_C_NOT_EQUAL,
1021 1.7 alnsn BJ_BUFLEN, 0,
1022 1.1 alnsn SLJIT_IMM, 0);
1023 1.1 alnsn if (jump == NULL)
1024 1.7 alnsn return SLJIT_ERR_ALLOC_FAILED;
1025 1.7 alnsn if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
1026 1.7 alnsn return SLJIT_ERR_ALLOC_FAILED;
1027 1.1 alnsn }
1028 1.1 alnsn
1029 1.23 alnsn status = emit_xcall(compiler, pc, BJ_TMP1REG,
1030 1.23 alnsn ret0, ret0_size, ret0_maxsize, &m_xbyte);
1031 1.1 alnsn if (status != SLJIT_SUCCESS)
1032 1.1 alnsn return status;
1033 1.7 alnsn
1034 1.1 alnsn /* tmp1 &= 0xf */
1035 1.1 alnsn status = sljit_emit_op2(compiler,
1036 1.1 alnsn SLJIT_AND,
1037 1.7 alnsn BJ_TMP1REG, 0,
1038 1.7 alnsn BJ_TMP1REG, 0,
1039 1.1 alnsn SLJIT_IMM, 0xf);
1040 1.1 alnsn if (status != SLJIT_SUCCESS)
1041 1.1 alnsn return status;
1042 1.1 alnsn
1043 1.1 alnsn /* tmp1 = tmp1 << 2 */
1044 1.1 alnsn status = sljit_emit_op2(compiler,
1045 1.1 alnsn SLJIT_SHL,
1046 1.7 alnsn BJ_XREG, 0,
1047 1.7 alnsn BJ_TMP1REG, 0,
1048 1.1 alnsn SLJIT_IMM, 2);
1049 1.1 alnsn if (status != SLJIT_SUCCESS)
1050 1.1 alnsn return status;
1051 1.1 alnsn
1052 1.1 alnsn
1053 1.1 alnsn label = sljit_emit_label(compiler);
1054 1.1 alnsn if (label == NULL)
1055 1.1 alnsn return SLJIT_ERR_ALLOC_FAILED;
1056 1.1 alnsn sljit_set_label(over_mchain_jump, label);
1057 1.1 alnsn #endif
1058 1.1 alnsn
1059 1.24 alnsn return SLJIT_SUCCESS;
1060 1.1 alnsn }
1061 1.1 alnsn
1062 1.1 alnsn static int
1063 1.19 alnsn emit_pow2_division(struct sljit_compiler *compiler, uint32_t k)
1064 1.1 alnsn {
1065 1.1 alnsn int shift = 0;
1066 1.1 alnsn int status = SLJIT_SUCCESS;
1067 1.1 alnsn
1068 1.1 alnsn while (k > 1) {
1069 1.1 alnsn k >>= 1;
1070 1.1 alnsn shift++;
1071 1.1 alnsn }
1072 1.1 alnsn
1073 1.7 alnsn BJ_ASSERT(k == 1 && shift < 32);
1074 1.1 alnsn
1075 1.1 alnsn if (shift != 0) {
1076 1.1 alnsn status = sljit_emit_op2(compiler,
1077 1.1 alnsn SLJIT_LSHR|SLJIT_INT_OP,
1078 1.7 alnsn BJ_AREG, 0,
1079 1.7 alnsn BJ_AREG, 0,
1080 1.1 alnsn SLJIT_IMM, shift);
1081 1.1 alnsn }
1082 1.1 alnsn
1083 1.1 alnsn return status;
1084 1.1 alnsn }
1085 1.1 alnsn
1086 1.1 alnsn #if !defined(BPFJIT_USE_UDIV)
1087 1.1 alnsn static sljit_uw
1088 1.1 alnsn divide(sljit_uw x, sljit_uw y)
1089 1.1 alnsn {
1090 1.1 alnsn
1091 1.1 alnsn return (uint32_t)x / (uint32_t)y;
1092 1.1 alnsn }
1093 1.1 alnsn #endif
1094 1.1 alnsn
1095 1.1 alnsn /*
1096 1.24 alnsn * Emit code for A = A / div.
1097 1.7 alnsn * divt,divw are either SLJIT_IMM,pc->k or BJ_XREG,0.
1098 1.1 alnsn */
1099 1.1 alnsn static int
1100 1.19 alnsn emit_division(struct sljit_compiler *compiler, int divt, sljit_sw divw)
1101 1.1 alnsn {
1102 1.1 alnsn int status;
1103 1.1 alnsn
1104 1.7 alnsn #if BJ_XREG == SLJIT_RETURN_REG || \
1105 1.12 alnsn BJ_XREG == SLJIT_SCRATCH_REG1 || \
1106 1.12 alnsn BJ_XREG == SLJIT_SCRATCH_REG2 || \
1107 1.12 alnsn BJ_AREG == SLJIT_SCRATCH_REG2
1108 1.1 alnsn #error "Not supported assignment of registers."
1109 1.1 alnsn #endif
1110 1.1 alnsn
1111 1.12 alnsn #if BJ_AREG != SLJIT_SCRATCH_REG1
1112 1.1 alnsn status = sljit_emit_op1(compiler,
1113 1.1 alnsn SLJIT_MOV,
1114 1.12 alnsn SLJIT_SCRATCH_REG1, 0,
1115 1.7 alnsn BJ_AREG, 0);
1116 1.1 alnsn if (status != SLJIT_SUCCESS)
1117 1.1 alnsn return status;
1118 1.1 alnsn #endif
1119 1.1 alnsn
1120 1.1 alnsn status = sljit_emit_op1(compiler,
1121 1.1 alnsn SLJIT_MOV,
1122 1.12 alnsn SLJIT_SCRATCH_REG2, 0,
1123 1.1 alnsn divt, divw);
1124 1.1 alnsn if (status != SLJIT_SUCCESS)
1125 1.1 alnsn return status;
1126 1.1 alnsn
1127 1.1 alnsn #if defined(BPFJIT_USE_UDIV)
1128 1.1 alnsn status = sljit_emit_op0(compiler, SLJIT_UDIV|SLJIT_INT_OP);
1129 1.1 alnsn
1130 1.12 alnsn #if BJ_AREG != SLJIT_SCRATCH_REG1
1131 1.1 alnsn status = sljit_emit_op1(compiler,
1132 1.1 alnsn SLJIT_MOV,
1133 1.7 alnsn BJ_AREG, 0,
1134 1.12 alnsn SLJIT_SCRATCH_REG1, 0);
1135 1.1 alnsn if (status != SLJIT_SUCCESS)
1136 1.1 alnsn return status;
1137 1.1 alnsn #endif
1138 1.1 alnsn #else
1139 1.1 alnsn status = sljit_emit_ijump(compiler,
1140 1.1 alnsn SLJIT_CALL2,
1141 1.1 alnsn SLJIT_IMM, SLJIT_FUNC_OFFSET(divide));
1142 1.1 alnsn
1143 1.7 alnsn #if BJ_AREG != SLJIT_RETURN_REG
1144 1.1 alnsn status = sljit_emit_op1(compiler,
1145 1.1 alnsn SLJIT_MOV,
1146 1.7 alnsn BJ_AREG, 0,
1147 1.1 alnsn SLJIT_RETURN_REG, 0);
1148 1.1 alnsn if (status != SLJIT_SUCCESS)
1149 1.1 alnsn return status;
1150 1.1 alnsn #endif
1151 1.1 alnsn #endif
1152 1.1 alnsn
1153 1.1 alnsn return status;
1154 1.1 alnsn }
1155 1.1 alnsn
1156 1.1 alnsn /*
1157 1.1 alnsn * Return true if pc is a "read from packet" instruction.
1158 1.1 alnsn * If length is not NULL and return value is true, *length will
1159 1.1 alnsn * be set to a safe length required to read a packet.
1160 1.1 alnsn */
1161 1.1 alnsn static bool
1162 1.8 alnsn read_pkt_insn(const struct bpf_insn *pc, bpfjit_abc_length_t *length)
1163 1.1 alnsn {
1164 1.1 alnsn bool rv;
1165 1.8 alnsn bpfjit_abc_length_t width;
1166 1.1 alnsn
1167 1.1 alnsn switch (BPF_CLASS(pc->code)) {
1168 1.1 alnsn default:
1169 1.1 alnsn rv = false;
1170 1.1 alnsn break;
1171 1.1 alnsn
1172 1.1 alnsn case BPF_LD:
1173 1.1 alnsn rv = BPF_MODE(pc->code) == BPF_ABS ||
1174 1.1 alnsn BPF_MODE(pc->code) == BPF_IND;
1175 1.1 alnsn if (rv)
1176 1.1 alnsn width = read_width(pc);
1177 1.1 alnsn break;
1178 1.1 alnsn
1179 1.1 alnsn case BPF_LDX:
1180 1.1 alnsn rv = pc->code == (BPF_LDX|BPF_B|BPF_MSH);
1181 1.1 alnsn width = 1;
1182 1.1 alnsn break;
1183 1.1 alnsn }
1184 1.1 alnsn
1185 1.1 alnsn if (rv && length != NULL) {
1186 1.9 alnsn /*
1187 1.9 alnsn * Values greater than UINT32_MAX will generate
1188 1.9 alnsn * unconditional "return 0".
1189 1.9 alnsn */
1190 1.9 alnsn *length = (uint32_t)pc->k + width;
1191 1.1 alnsn }
1192 1.1 alnsn
1193 1.1 alnsn return rv;
1194 1.1 alnsn }
1195 1.1 alnsn
1196 1.1 alnsn static void
1197 1.7 alnsn optimize_init(struct bpfjit_insn_data *insn_dat, size_t insn_count)
1198 1.1 alnsn {
1199 1.7 alnsn size_t i;
1200 1.1 alnsn
1201 1.7 alnsn for (i = 0; i < insn_count; i++) {
1202 1.7 alnsn SLIST_INIT(&insn_dat[i].bjumps);
1203 1.7 alnsn insn_dat[i].invalid = BJ_INIT_NOBITS;
1204 1.1 alnsn }
1205 1.1 alnsn }
1206 1.1 alnsn
1207 1.1 alnsn /*
1208 1.1 alnsn * The function divides instructions into blocks. Destination of a jump
1209 1.1 alnsn * instruction starts a new block. BPF_RET and BPF_JMP instructions
1210 1.1 alnsn * terminate a block. Blocks are linear, that is, there are no jumps out
1211 1.1 alnsn * from the middle of a block and there are no jumps in to the middle of
1212 1.1 alnsn * a block.
1213 1.7 alnsn *
1214 1.7 alnsn * The function also sets bits in *initmask for memwords that
1215 1.7 alnsn * need to be initialized to zero. Note that this set should be empty
1216 1.7 alnsn * for any valid kernel filter program.
1217 1.1 alnsn */
1218 1.7 alnsn static bool
1219 1.19 alnsn optimize_pass1(const bpf_ctx_t *bc, const struct bpf_insn *insns,
1220 1.19 alnsn struct bpfjit_insn_data *insn_dat, size_t insn_count,
1221 1.20 alnsn bpf_memword_init_t *initmask, bpfjit_hint_t *hints)
1222 1.1 alnsn {
1223 1.7 alnsn struct bpfjit_jump *jtf;
1224 1.1 alnsn size_t i;
1225 1.7 alnsn uint32_t jt, jf;
1226 1.10 alnsn bpfjit_abc_length_t length;
1227 1.13 alnsn bpf_memword_init_t invalid; /* borrowed from bpf_filter() */
1228 1.1 alnsn bool unreachable;
1229 1.1 alnsn
1230 1.19 alnsn const size_t memwords = GET_MEMWORDS(bc);
1231 1.13 alnsn
1232 1.20 alnsn *hints = 0;
1233 1.7 alnsn *initmask = BJ_INIT_NOBITS;
1234 1.1 alnsn
1235 1.1 alnsn unreachable = false;
1236 1.7 alnsn invalid = ~BJ_INIT_NOBITS;
1237 1.1 alnsn
1238 1.1 alnsn for (i = 0; i < insn_count; i++) {
1239 1.7 alnsn if (!SLIST_EMPTY(&insn_dat[i].bjumps))
1240 1.1 alnsn unreachable = false;
1241 1.7 alnsn insn_dat[i].unreachable = unreachable;
1242 1.1 alnsn
1243 1.1 alnsn if (unreachable)
1244 1.1 alnsn continue;
1245 1.1 alnsn
1246 1.7 alnsn invalid |= insn_dat[i].invalid;
1247 1.1 alnsn
1248 1.10 alnsn if (read_pkt_insn(&insns[i], &length) && length > UINT32_MAX)
1249 1.10 alnsn unreachable = true;
1250 1.10 alnsn
1251 1.1 alnsn switch (BPF_CLASS(insns[i].code)) {
1252 1.1 alnsn case BPF_RET:
1253 1.7 alnsn if (BPF_RVAL(insns[i].code) == BPF_A)
1254 1.7 alnsn *initmask |= invalid & BJ_INIT_ABIT;
1255 1.7 alnsn
1256 1.1 alnsn unreachable = true;
1257 1.1 alnsn continue;
1258 1.1 alnsn
1259 1.7 alnsn case BPF_LD:
1260 1.27 alnsn if (BPF_MODE(insns[i].code) == BPF_ABS)
1261 1.27 alnsn *hints |= BJ_HINT_ABS;
1262 1.7 alnsn
1263 1.20 alnsn if (BPF_MODE(insns[i].code) == BPF_IND) {
1264 1.27 alnsn *hints |= BJ_HINT_IND | BJ_HINT_XREG;
1265 1.7 alnsn *initmask |= invalid & BJ_INIT_XBIT;
1266 1.20 alnsn }
1267 1.7 alnsn
1268 1.7 alnsn if (BPF_MODE(insns[i].code) == BPF_MEM &&
1269 1.13 alnsn (uint32_t)insns[i].k < memwords) {
1270 1.7 alnsn *initmask |= invalid & BJ_INIT_MBIT(insns[i].k);
1271 1.7 alnsn }
1272 1.7 alnsn
1273 1.7 alnsn invalid &= ~BJ_INIT_ABIT;
1274 1.7 alnsn continue;
1275 1.7 alnsn
1276 1.7 alnsn case BPF_LDX:
1277 1.20 alnsn *hints |= BJ_HINT_XREG | BJ_HINT_LDX;
1278 1.7 alnsn
1279 1.7 alnsn if (BPF_MODE(insns[i].code) == BPF_MEM &&
1280 1.13 alnsn (uint32_t)insns[i].k < memwords) {
1281 1.7 alnsn *initmask |= invalid & BJ_INIT_MBIT(insns[i].k);
1282 1.7 alnsn }
1283 1.7 alnsn
1284 1.7 alnsn invalid &= ~BJ_INIT_XBIT;
1285 1.7 alnsn continue;
1286 1.7 alnsn
1287 1.7 alnsn case BPF_ST:
1288 1.7 alnsn *initmask |= invalid & BJ_INIT_ABIT;
1289 1.7 alnsn
1290 1.13 alnsn if ((uint32_t)insns[i].k < memwords)
1291 1.7 alnsn invalid &= ~BJ_INIT_MBIT(insns[i].k);
1292 1.7 alnsn
1293 1.7 alnsn continue;
1294 1.7 alnsn
1295 1.7 alnsn case BPF_STX:
1296 1.20 alnsn *hints |= BJ_HINT_XREG;
1297 1.7 alnsn *initmask |= invalid & BJ_INIT_XBIT;
1298 1.7 alnsn
1299 1.13 alnsn if ((uint32_t)insns[i].k < memwords)
1300 1.7 alnsn invalid &= ~BJ_INIT_MBIT(insns[i].k);
1301 1.7 alnsn
1302 1.7 alnsn continue;
1303 1.7 alnsn
1304 1.7 alnsn case BPF_ALU:
1305 1.7 alnsn *initmask |= invalid & BJ_INIT_ABIT;
1306 1.7 alnsn
1307 1.7 alnsn if (insns[i].code != (BPF_ALU|BPF_NEG) &&
1308 1.7 alnsn BPF_SRC(insns[i].code) == BPF_X) {
1309 1.20 alnsn *hints |= BJ_HINT_XREG;
1310 1.7 alnsn *initmask |= invalid & BJ_INIT_XBIT;
1311 1.7 alnsn }
1312 1.7 alnsn
1313 1.7 alnsn invalid &= ~BJ_INIT_ABIT;
1314 1.7 alnsn continue;
1315 1.7 alnsn
1316 1.7 alnsn case BPF_MISC:
1317 1.7 alnsn switch (BPF_MISCOP(insns[i].code)) {
1318 1.7 alnsn case BPF_TAX: // X <- A
1319 1.20 alnsn *hints |= BJ_HINT_XREG;
1320 1.7 alnsn *initmask |= invalid & BJ_INIT_ABIT;
1321 1.7 alnsn invalid &= ~BJ_INIT_XBIT;
1322 1.7 alnsn continue;
1323 1.7 alnsn
1324 1.7 alnsn case BPF_TXA: // A <- X
1325 1.20 alnsn *hints |= BJ_HINT_XREG;
1326 1.7 alnsn *initmask |= invalid & BJ_INIT_XBIT;
1327 1.7 alnsn invalid &= ~BJ_INIT_ABIT;
1328 1.7 alnsn continue;
1329 1.13 alnsn
1330 1.13 alnsn case BPF_COPX:
1331 1.20 alnsn *hints |= BJ_HINT_XREG;
1332 1.13 alnsn /* FALLTHROUGH */
1333 1.13 alnsn
1334 1.13 alnsn case BPF_COP:
1335 1.20 alnsn *hints |= BJ_HINT_COP;
1336 1.13 alnsn *initmask |= invalid & BJ_INIT_ABIT;
1337 1.13 alnsn invalid &= ~BJ_INIT_ABIT;
1338 1.13 alnsn continue;
1339 1.7 alnsn }
1340 1.7 alnsn
1341 1.7 alnsn continue;
1342 1.7 alnsn
1343 1.1 alnsn case BPF_JMP:
1344 1.7 alnsn /* Initialize abc_length for ABC pass. */
1345 1.8 alnsn insn_dat[i].u.jdata.abc_length = MAX_ABC_LENGTH;
1346 1.7 alnsn
1347 1.7 alnsn if (BPF_OP(insns[i].code) == BPF_JA) {
1348 1.1 alnsn jt = jf = insns[i].k;
1349 1.1 alnsn } else {
1350 1.1 alnsn jt = insns[i].jt;
1351 1.1 alnsn jf = insns[i].jf;
1352 1.1 alnsn }
1353 1.1 alnsn
1354 1.1 alnsn if (jt >= insn_count - (i + 1) ||
1355 1.1 alnsn jf >= insn_count - (i + 1)) {
1356 1.7 alnsn return false;
1357 1.1 alnsn }
1358 1.1 alnsn
1359 1.1 alnsn if (jt > 0 && jf > 0)
1360 1.1 alnsn unreachable = true;
1361 1.1 alnsn
1362 1.7 alnsn jt += i + 1;
1363 1.7 alnsn jf += i + 1;
1364 1.7 alnsn
1365 1.7 alnsn jtf = insn_dat[i].u.jdata.jtf;
1366 1.1 alnsn
1367 1.7 alnsn jtf[0].jdata = &insn_dat[i].u.jdata;
1368 1.7 alnsn SLIST_INSERT_HEAD(&insn_dat[jt].bjumps,
1369 1.7 alnsn &jtf[0], entries);
1370 1.1 alnsn
1371 1.1 alnsn if (jf != jt) {
1372 1.7 alnsn jtf[1].jdata = &insn_dat[i].u.jdata;
1373 1.7 alnsn SLIST_INSERT_HEAD(&insn_dat[jf].bjumps,
1374 1.7 alnsn &jtf[1], entries);
1375 1.1 alnsn }
1376 1.1 alnsn
1377 1.7 alnsn insn_dat[jf].invalid |= invalid;
1378 1.7 alnsn insn_dat[jt].invalid |= invalid;
1379 1.7 alnsn invalid = 0;
1380 1.7 alnsn
1381 1.1 alnsn continue;
1382 1.1 alnsn }
1383 1.1 alnsn }
1384 1.1 alnsn
1385 1.7 alnsn return true;
1386 1.1 alnsn }
1387 1.1 alnsn
1388 1.1 alnsn /*
1389 1.7 alnsn * Array Bounds Check Elimination (ABC) pass.
1390 1.1 alnsn */
1391 1.7 alnsn static void
1392 1.19 alnsn optimize_pass2(const bpf_ctx_t *bc, const struct bpf_insn *insns,
1393 1.19 alnsn struct bpfjit_insn_data *insn_dat, size_t insn_count)
1394 1.7 alnsn {
1395 1.7 alnsn struct bpfjit_jump *jmp;
1396 1.7 alnsn const struct bpf_insn *pc;
1397 1.7 alnsn struct bpfjit_insn_data *pd;
1398 1.7 alnsn size_t i;
1399 1.8 alnsn bpfjit_abc_length_t length, abc_length = 0;
1400 1.7 alnsn
1401 1.19 alnsn const size_t extwords = GET_EXTWORDS(bc);
1402 1.19 alnsn
1403 1.7 alnsn for (i = insn_count; i != 0; i--) {
1404 1.7 alnsn pc = &insns[i-1];
1405 1.7 alnsn pd = &insn_dat[i-1];
1406 1.7 alnsn
1407 1.7 alnsn if (pd->unreachable)
1408 1.7 alnsn continue;
1409 1.7 alnsn
1410 1.7 alnsn switch (BPF_CLASS(pc->code)) {
1411 1.7 alnsn case BPF_RET:
1412 1.11 alnsn /*
1413 1.11 alnsn * It's quite common for bpf programs to
1414 1.11 alnsn * check packet bytes in increasing order
1415 1.11 alnsn * and return zero if bytes don't match
1416 1.11 alnsn * specified critetion. Such programs disable
1417 1.11 alnsn * ABC optimization completely because for
1418 1.11 alnsn * every jump there is a branch with no read
1419 1.11 alnsn * instruction.
1420 1.13 alnsn * With no side effects, BPF_STMT(BPF_RET+BPF_K, 0)
1421 1.13 alnsn * is indistinguishable from out-of-bound load.
1422 1.11 alnsn * Therefore, abc_length can be set to
1423 1.11 alnsn * MAX_ABC_LENGTH and enable ABC for many
1424 1.11 alnsn * bpf programs.
1425 1.13 alnsn * If this optimization encounters any
1426 1.11 alnsn * instruction with a side effect, it will
1427 1.11 alnsn * reset abc_length.
1428 1.11 alnsn */
1429 1.11 alnsn if (BPF_RVAL(pc->code) == BPF_K && pc->k == 0)
1430 1.11 alnsn abc_length = MAX_ABC_LENGTH;
1431 1.11 alnsn else
1432 1.11 alnsn abc_length = 0;
1433 1.7 alnsn break;
1434 1.7 alnsn
1435 1.13 alnsn case BPF_MISC:
1436 1.13 alnsn if (BPF_MISCOP(pc->code) == BPF_COP ||
1437 1.13 alnsn BPF_MISCOP(pc->code) == BPF_COPX) {
1438 1.13 alnsn /* COP instructions can have side effects. */
1439 1.13 alnsn abc_length = 0;
1440 1.13 alnsn }
1441 1.13 alnsn break;
1442 1.13 alnsn
1443 1.13 alnsn case BPF_ST:
1444 1.13 alnsn case BPF_STX:
1445 1.13 alnsn if (extwords != 0) {
1446 1.13 alnsn /* Write to memory is visible after a call. */
1447 1.13 alnsn abc_length = 0;
1448 1.13 alnsn }
1449 1.13 alnsn break;
1450 1.13 alnsn
1451 1.7 alnsn case BPF_JMP:
1452 1.7 alnsn abc_length = pd->u.jdata.abc_length;
1453 1.7 alnsn break;
1454 1.7 alnsn
1455 1.7 alnsn default:
1456 1.7 alnsn if (read_pkt_insn(pc, &length)) {
1457 1.7 alnsn if (abc_length < length)
1458 1.7 alnsn abc_length = length;
1459 1.7 alnsn pd->u.rdata.abc_length = abc_length;
1460 1.7 alnsn }
1461 1.7 alnsn break;
1462 1.7 alnsn }
1463 1.7 alnsn
1464 1.7 alnsn SLIST_FOREACH(jmp, &pd->bjumps, entries) {
1465 1.7 alnsn if (jmp->jdata->abc_length > abc_length)
1466 1.7 alnsn jmp->jdata->abc_length = abc_length;
1467 1.7 alnsn }
1468 1.7 alnsn }
1469 1.7 alnsn }
1470 1.7 alnsn
1471 1.7 alnsn static void
1472 1.7 alnsn optimize_pass3(const struct bpf_insn *insns,
1473 1.7 alnsn struct bpfjit_insn_data *insn_dat, size_t insn_count)
1474 1.1 alnsn {
1475 1.7 alnsn struct bpfjit_jump *jmp;
1476 1.1 alnsn size_t i;
1477 1.8 alnsn bpfjit_abc_length_t checked_length = 0;
1478 1.1 alnsn
1479 1.1 alnsn for (i = 0; i < insn_count; i++) {
1480 1.7 alnsn if (insn_dat[i].unreachable)
1481 1.7 alnsn continue;
1482 1.1 alnsn
1483 1.7 alnsn SLIST_FOREACH(jmp, &insn_dat[i].bjumps, entries) {
1484 1.7 alnsn if (jmp->jdata->checked_length < checked_length)
1485 1.7 alnsn checked_length = jmp->jdata->checked_length;
1486 1.1 alnsn }
1487 1.1 alnsn
1488 1.7 alnsn if (BPF_CLASS(insns[i].code) == BPF_JMP) {
1489 1.7 alnsn insn_dat[i].u.jdata.checked_length = checked_length;
1490 1.8 alnsn } else if (read_pkt_insn(&insns[i], NULL)) {
1491 1.7 alnsn struct bpfjit_read_pkt_data *rdata =
1492 1.7 alnsn &insn_dat[i].u.rdata;
1493 1.7 alnsn rdata->check_length = 0;
1494 1.7 alnsn if (checked_length < rdata->abc_length) {
1495 1.7 alnsn checked_length = rdata->abc_length;
1496 1.7 alnsn rdata->check_length = checked_length;
1497 1.7 alnsn }
1498 1.1 alnsn }
1499 1.7 alnsn }
1500 1.7 alnsn }
1501 1.1 alnsn
1502 1.7 alnsn static bool
1503 1.19 alnsn optimize(const bpf_ctx_t *bc, const struct bpf_insn *insns,
1504 1.7 alnsn struct bpfjit_insn_data *insn_dat, size_t insn_count,
1505 1.20 alnsn bpf_memword_init_t *initmask, bpfjit_hint_t *hints)
1506 1.7 alnsn {
1507 1.1 alnsn
1508 1.7 alnsn optimize_init(insn_dat, insn_count);
1509 1.7 alnsn
1510 1.20 alnsn if (!optimize_pass1(bc, insns, insn_dat, insn_count, initmask, hints))
1511 1.7 alnsn return false;
1512 1.1 alnsn
1513 1.19 alnsn optimize_pass2(bc, insns, insn_dat, insn_count);
1514 1.7 alnsn optimize_pass3(insns, insn_dat, insn_count);
1515 1.7 alnsn
1516 1.7 alnsn return true;
1517 1.1 alnsn }
1518 1.1 alnsn
1519 1.1 alnsn /*
1520 1.1 alnsn * Convert BPF_ALU operations except BPF_NEG and BPF_DIV to sljit operation.
1521 1.1 alnsn */
1522 1.1 alnsn static int
1523 1.7 alnsn bpf_alu_to_sljit_op(const struct bpf_insn *pc)
1524 1.1 alnsn {
1525 1.1 alnsn
1526 1.1 alnsn /*
1527 1.1 alnsn * Note: all supported 64bit arches have 32bit multiply
1528 1.1 alnsn * instruction so SLJIT_INT_OP doesn't have any overhead.
1529 1.1 alnsn */
1530 1.1 alnsn switch (BPF_OP(pc->code)) {
1531 1.1 alnsn case BPF_ADD: return SLJIT_ADD;
1532 1.1 alnsn case BPF_SUB: return SLJIT_SUB;
1533 1.1 alnsn case BPF_MUL: return SLJIT_MUL|SLJIT_INT_OP;
1534 1.1 alnsn case BPF_OR: return SLJIT_OR;
1535 1.1 alnsn case BPF_AND: return SLJIT_AND;
1536 1.1 alnsn case BPF_LSH: return SLJIT_SHL;
1537 1.1 alnsn case BPF_RSH: return SLJIT_LSHR|SLJIT_INT_OP;
1538 1.1 alnsn default:
1539 1.7 alnsn BJ_ASSERT(false);
1540 1.1 alnsn return 0;
1541 1.1 alnsn }
1542 1.1 alnsn }
1543 1.1 alnsn
1544 1.1 alnsn /*
1545 1.1 alnsn * Convert BPF_JMP operations except BPF_JA to sljit condition.
1546 1.1 alnsn */
1547 1.1 alnsn static int
1548 1.7 alnsn bpf_jmp_to_sljit_cond(const struct bpf_insn *pc, bool negate)
1549 1.1 alnsn {
1550 1.1 alnsn /*
1551 1.1 alnsn * Note: all supported 64bit arches have 32bit comparison
1552 1.1 alnsn * instructions so SLJIT_INT_OP doesn't have any overhead.
1553 1.1 alnsn */
1554 1.1 alnsn int rv = SLJIT_INT_OP;
1555 1.1 alnsn
1556 1.1 alnsn switch (BPF_OP(pc->code)) {
1557 1.1 alnsn case BPF_JGT:
1558 1.1 alnsn rv |= negate ? SLJIT_C_LESS_EQUAL : SLJIT_C_GREATER;
1559 1.1 alnsn break;
1560 1.1 alnsn case BPF_JGE:
1561 1.1 alnsn rv |= negate ? SLJIT_C_LESS : SLJIT_C_GREATER_EQUAL;
1562 1.1 alnsn break;
1563 1.1 alnsn case BPF_JEQ:
1564 1.1 alnsn rv |= negate ? SLJIT_C_NOT_EQUAL : SLJIT_C_EQUAL;
1565 1.1 alnsn break;
1566 1.1 alnsn case BPF_JSET:
1567 1.1 alnsn rv |= negate ? SLJIT_C_EQUAL : SLJIT_C_NOT_EQUAL;
1568 1.1 alnsn break;
1569 1.1 alnsn default:
1570 1.7 alnsn BJ_ASSERT(false);
1571 1.1 alnsn }
1572 1.1 alnsn
1573 1.1 alnsn return rv;
1574 1.1 alnsn }
1575 1.1 alnsn
1576 1.1 alnsn /*
1577 1.1 alnsn * Convert BPF_K and BPF_X to sljit register.
1578 1.1 alnsn */
1579 1.1 alnsn static int
1580 1.7 alnsn kx_to_reg(const struct bpf_insn *pc)
1581 1.1 alnsn {
1582 1.1 alnsn
1583 1.1 alnsn switch (BPF_SRC(pc->code)) {
1584 1.1 alnsn case BPF_K: return SLJIT_IMM;
1585 1.7 alnsn case BPF_X: return BJ_XREG;
1586 1.1 alnsn default:
1587 1.7 alnsn BJ_ASSERT(false);
1588 1.1 alnsn return 0;
1589 1.1 alnsn }
1590 1.1 alnsn }
1591 1.1 alnsn
1592 1.12 alnsn static sljit_sw
1593 1.7 alnsn kx_to_reg_arg(const struct bpf_insn *pc)
1594 1.1 alnsn {
1595 1.1 alnsn
1596 1.1 alnsn switch (BPF_SRC(pc->code)) {
1597 1.1 alnsn case BPF_K: return (uint32_t)pc->k; /* SLJIT_IMM, pc->k, */
1598 1.7 alnsn case BPF_X: return 0; /* BJ_XREG, 0, */
1599 1.1 alnsn default:
1600 1.7 alnsn BJ_ASSERT(false);
1601 1.1 alnsn return 0;
1602 1.1 alnsn }
1603 1.1 alnsn }
1604 1.1 alnsn
1605 1.19 alnsn static bool
1606 1.19 alnsn generate_insn_code(struct sljit_compiler *compiler, const bpf_ctx_t *bc,
1607 1.19 alnsn const struct bpf_insn *insns, struct bpfjit_insn_data *insn_dat,
1608 1.19 alnsn size_t insn_count)
1609 1.1 alnsn {
1610 1.1 alnsn /* a list of jumps to out-of-bound return from a generated function */
1611 1.1 alnsn struct sljit_jump **ret0;
1612 1.7 alnsn size_t ret0_size, ret0_maxsize;
1613 1.1 alnsn
1614 1.19 alnsn struct sljit_jump *jump;
1615 1.19 alnsn struct sljit_label *label;
1616 1.7 alnsn const struct bpf_insn *pc;
1617 1.1 alnsn struct bpfjit_jump *bjump, *jtf;
1618 1.1 alnsn struct sljit_jump *to_mchain_jump;
1619 1.1 alnsn
1620 1.19 alnsn size_t i;
1621 1.19 alnsn int status;
1622 1.19 alnsn int branching, negate;
1623 1.19 alnsn unsigned int rval, mode, src;
1624 1.1 alnsn uint32_t jt, jf;
1625 1.1 alnsn
1626 1.19 alnsn bool unconditional_ret;
1627 1.19 alnsn bool rv;
1628 1.19 alnsn
1629 1.19 alnsn const size_t extwords = GET_EXTWORDS(bc);
1630 1.19 alnsn const size_t memwords = GET_MEMWORDS(bc);
1631 1.13 alnsn
1632 1.13 alnsn ret0 = NULL;
1633 1.19 alnsn rv = false;
1634 1.7 alnsn
1635 1.1 alnsn ret0_size = 0;
1636 1.7 alnsn ret0_maxsize = 64;
1637 1.7 alnsn ret0 = BJ_ALLOC(ret0_maxsize * sizeof(ret0[0]));
1638 1.7 alnsn if (ret0 == NULL)
1639 1.1 alnsn goto fail;
1640 1.1 alnsn
1641 1.24 alnsn /* reset sjump members of jdata */
1642 1.24 alnsn for (i = 0; i < insn_count; i++) {
1643 1.24 alnsn if (insn_dat[i].unreachable ||
1644 1.24 alnsn BPF_CLASS(insns[i].code) != BPF_JMP) {
1645 1.24 alnsn continue;
1646 1.24 alnsn }
1647 1.24 alnsn
1648 1.24 alnsn jtf = insn_dat[i].u.jdata.jtf;
1649 1.24 alnsn jtf[0].sjump = jtf[1].sjump = NULL;
1650 1.24 alnsn }
1651 1.24 alnsn
1652 1.24 alnsn /* main loop */
1653 1.1 alnsn for (i = 0; i < insn_count; i++) {
1654 1.7 alnsn if (insn_dat[i].unreachable)
1655 1.1 alnsn continue;
1656 1.1 alnsn
1657 1.1 alnsn /*
1658 1.1 alnsn * Resolve jumps to the current insn.
1659 1.1 alnsn */
1660 1.1 alnsn label = NULL;
1661 1.7 alnsn SLIST_FOREACH(bjump, &insn_dat[i].bjumps, entries) {
1662 1.7 alnsn if (bjump->sjump != NULL) {
1663 1.1 alnsn if (label == NULL)
1664 1.1 alnsn label = sljit_emit_label(compiler);
1665 1.1 alnsn if (label == NULL)
1666 1.1 alnsn goto fail;
1667 1.7 alnsn sljit_set_label(bjump->sjump, label);
1668 1.1 alnsn }
1669 1.1 alnsn }
1670 1.1 alnsn
1671 1.9 alnsn to_mchain_jump = NULL;
1672 1.9 alnsn unconditional_ret = false;
1673 1.9 alnsn
1674 1.9 alnsn if (read_pkt_insn(&insns[i], NULL)) {
1675 1.9 alnsn if (insn_dat[i].u.rdata.check_length > UINT32_MAX) {
1676 1.9 alnsn /* Jump to "return 0" unconditionally. */
1677 1.9 alnsn unconditional_ret = true;
1678 1.9 alnsn jump = sljit_emit_jump(compiler, SLJIT_JUMP);
1679 1.9 alnsn if (jump == NULL)
1680 1.9 alnsn goto fail;
1681 1.9 alnsn if (!append_jump(jump, &ret0,
1682 1.9 alnsn &ret0_size, &ret0_maxsize))
1683 1.9 alnsn goto fail;
1684 1.9 alnsn } else if (insn_dat[i].u.rdata.check_length > 0) {
1685 1.9 alnsn /* if (buflen < check_length) return 0; */
1686 1.9 alnsn jump = sljit_emit_cmp(compiler,
1687 1.9 alnsn SLJIT_C_LESS,
1688 1.9 alnsn BJ_BUFLEN, 0,
1689 1.9 alnsn SLJIT_IMM,
1690 1.9 alnsn insn_dat[i].u.rdata.check_length);
1691 1.9 alnsn if (jump == NULL)
1692 1.9 alnsn goto fail;
1693 1.1 alnsn #ifdef _KERNEL
1694 1.9 alnsn to_mchain_jump = jump;
1695 1.1 alnsn #else
1696 1.9 alnsn if (!append_jump(jump, &ret0,
1697 1.9 alnsn &ret0_size, &ret0_maxsize))
1698 1.9 alnsn goto fail;
1699 1.1 alnsn #endif
1700 1.9 alnsn }
1701 1.1 alnsn }
1702 1.1 alnsn
1703 1.1 alnsn pc = &insns[i];
1704 1.1 alnsn switch (BPF_CLASS(pc->code)) {
1705 1.1 alnsn
1706 1.1 alnsn default:
1707 1.1 alnsn goto fail;
1708 1.1 alnsn
1709 1.1 alnsn case BPF_LD:
1710 1.1 alnsn /* BPF_LD+BPF_IMM A <- k */
1711 1.1 alnsn if (pc->code == (BPF_LD|BPF_IMM)) {
1712 1.1 alnsn status = sljit_emit_op1(compiler,
1713 1.1 alnsn SLJIT_MOV,
1714 1.7 alnsn BJ_AREG, 0,
1715 1.1 alnsn SLJIT_IMM, (uint32_t)pc->k);
1716 1.1 alnsn if (status != SLJIT_SUCCESS)
1717 1.1 alnsn goto fail;
1718 1.1 alnsn
1719 1.1 alnsn continue;
1720 1.1 alnsn }
1721 1.1 alnsn
1722 1.1 alnsn /* BPF_LD+BPF_MEM A <- M[k] */
1723 1.1 alnsn if (pc->code == (BPF_LD|BPF_MEM)) {
1724 1.13 alnsn if ((uint32_t)pc->k >= memwords)
1725 1.1 alnsn goto fail;
1726 1.13 alnsn status = emit_memload(compiler,
1727 1.13 alnsn BJ_AREG, pc->k, extwords);
1728 1.1 alnsn if (status != SLJIT_SUCCESS)
1729 1.1 alnsn goto fail;
1730 1.1 alnsn
1731 1.1 alnsn continue;
1732 1.1 alnsn }
1733 1.1 alnsn
1734 1.1 alnsn /* BPF_LD+BPF_W+BPF_LEN A <- len */
1735 1.1 alnsn if (pc->code == (BPF_LD|BPF_W|BPF_LEN)) {
1736 1.1 alnsn status = sljit_emit_op1(compiler,
1737 1.21 alnsn SLJIT_MOV, /* size_t source */
1738 1.7 alnsn BJ_AREG, 0,
1739 1.13 alnsn SLJIT_MEM1(BJ_ARGS),
1740 1.13 alnsn offsetof(struct bpf_args, wirelen));
1741 1.1 alnsn if (status != SLJIT_SUCCESS)
1742 1.1 alnsn goto fail;
1743 1.1 alnsn
1744 1.1 alnsn continue;
1745 1.1 alnsn }
1746 1.1 alnsn
1747 1.1 alnsn mode = BPF_MODE(pc->code);
1748 1.1 alnsn if (mode != BPF_ABS && mode != BPF_IND)
1749 1.1 alnsn goto fail;
1750 1.1 alnsn
1751 1.9 alnsn if (unconditional_ret)
1752 1.9 alnsn continue;
1753 1.9 alnsn
1754 1.1 alnsn status = emit_pkt_read(compiler, pc,
1755 1.7 alnsn to_mchain_jump, &ret0, &ret0_size, &ret0_maxsize);
1756 1.1 alnsn if (status != SLJIT_SUCCESS)
1757 1.1 alnsn goto fail;
1758 1.1 alnsn
1759 1.1 alnsn continue;
1760 1.1 alnsn
1761 1.1 alnsn case BPF_LDX:
1762 1.1 alnsn mode = BPF_MODE(pc->code);
1763 1.1 alnsn
1764 1.1 alnsn /* BPF_LDX+BPF_W+BPF_IMM X <- k */
1765 1.1 alnsn if (mode == BPF_IMM) {
1766 1.1 alnsn if (BPF_SIZE(pc->code) != BPF_W)
1767 1.1 alnsn goto fail;
1768 1.1 alnsn status = sljit_emit_op1(compiler,
1769 1.1 alnsn SLJIT_MOV,
1770 1.7 alnsn BJ_XREG, 0,
1771 1.1 alnsn SLJIT_IMM, (uint32_t)pc->k);
1772 1.1 alnsn if (status != SLJIT_SUCCESS)
1773 1.1 alnsn goto fail;
1774 1.1 alnsn
1775 1.1 alnsn continue;
1776 1.1 alnsn }
1777 1.1 alnsn
1778 1.1 alnsn /* BPF_LDX+BPF_W+BPF_LEN X <- len */
1779 1.1 alnsn if (mode == BPF_LEN) {
1780 1.1 alnsn if (BPF_SIZE(pc->code) != BPF_W)
1781 1.1 alnsn goto fail;
1782 1.1 alnsn status = sljit_emit_op1(compiler,
1783 1.21 alnsn SLJIT_MOV, /* size_t source */
1784 1.7 alnsn BJ_XREG, 0,
1785 1.13 alnsn SLJIT_MEM1(BJ_ARGS),
1786 1.13 alnsn offsetof(struct bpf_args, wirelen));
1787 1.1 alnsn if (status != SLJIT_SUCCESS)
1788 1.1 alnsn goto fail;
1789 1.1 alnsn
1790 1.1 alnsn continue;
1791 1.1 alnsn }
1792 1.1 alnsn
1793 1.1 alnsn /* BPF_LDX+BPF_W+BPF_MEM X <- M[k] */
1794 1.1 alnsn if (mode == BPF_MEM) {
1795 1.1 alnsn if (BPF_SIZE(pc->code) != BPF_W)
1796 1.1 alnsn goto fail;
1797 1.13 alnsn if ((uint32_t)pc->k >= memwords)
1798 1.1 alnsn goto fail;
1799 1.13 alnsn status = emit_memload(compiler,
1800 1.13 alnsn BJ_XREG, pc->k, extwords);
1801 1.1 alnsn if (status != SLJIT_SUCCESS)
1802 1.1 alnsn goto fail;
1803 1.1 alnsn
1804 1.1 alnsn continue;
1805 1.1 alnsn }
1806 1.1 alnsn
1807 1.1 alnsn /* BPF_LDX+BPF_B+BPF_MSH X <- 4*(P[k:1]&0xf) */
1808 1.1 alnsn if (mode != BPF_MSH || BPF_SIZE(pc->code) != BPF_B)
1809 1.1 alnsn goto fail;
1810 1.1 alnsn
1811 1.9 alnsn if (unconditional_ret)
1812 1.9 alnsn continue;
1813 1.9 alnsn
1814 1.1 alnsn status = emit_msh(compiler, pc,
1815 1.7 alnsn to_mchain_jump, &ret0, &ret0_size, &ret0_maxsize);
1816 1.1 alnsn if (status != SLJIT_SUCCESS)
1817 1.1 alnsn goto fail;
1818 1.1 alnsn
1819 1.1 alnsn continue;
1820 1.1 alnsn
1821 1.1 alnsn case BPF_ST:
1822 1.8 alnsn if (pc->code != BPF_ST ||
1823 1.13 alnsn (uint32_t)pc->k >= memwords) {
1824 1.1 alnsn goto fail;
1825 1.8 alnsn }
1826 1.1 alnsn
1827 1.13 alnsn status = emit_memstore(compiler,
1828 1.13 alnsn BJ_AREG, pc->k, extwords);
1829 1.1 alnsn if (status != SLJIT_SUCCESS)
1830 1.1 alnsn goto fail;
1831 1.1 alnsn
1832 1.1 alnsn continue;
1833 1.1 alnsn
1834 1.1 alnsn case BPF_STX:
1835 1.8 alnsn if (pc->code != BPF_STX ||
1836 1.13 alnsn (uint32_t)pc->k >= memwords) {
1837 1.1 alnsn goto fail;
1838 1.8 alnsn }
1839 1.1 alnsn
1840 1.13 alnsn status = emit_memstore(compiler,
1841 1.13 alnsn BJ_XREG, pc->k, extwords);
1842 1.1 alnsn if (status != SLJIT_SUCCESS)
1843 1.1 alnsn goto fail;
1844 1.1 alnsn
1845 1.1 alnsn continue;
1846 1.1 alnsn
1847 1.1 alnsn case BPF_ALU:
1848 1.1 alnsn if (pc->code == (BPF_ALU|BPF_NEG)) {
1849 1.1 alnsn status = sljit_emit_op1(compiler,
1850 1.1 alnsn SLJIT_NEG,
1851 1.7 alnsn BJ_AREG, 0,
1852 1.7 alnsn BJ_AREG, 0);
1853 1.1 alnsn if (status != SLJIT_SUCCESS)
1854 1.1 alnsn goto fail;
1855 1.1 alnsn
1856 1.1 alnsn continue;
1857 1.1 alnsn }
1858 1.1 alnsn
1859 1.1 alnsn if (BPF_OP(pc->code) != BPF_DIV) {
1860 1.1 alnsn status = sljit_emit_op2(compiler,
1861 1.1 alnsn bpf_alu_to_sljit_op(pc),
1862 1.7 alnsn BJ_AREG, 0,
1863 1.7 alnsn BJ_AREG, 0,
1864 1.1 alnsn kx_to_reg(pc), kx_to_reg_arg(pc));
1865 1.1 alnsn if (status != SLJIT_SUCCESS)
1866 1.1 alnsn goto fail;
1867 1.1 alnsn
1868 1.1 alnsn continue;
1869 1.1 alnsn }
1870 1.1 alnsn
1871 1.1 alnsn /* BPF_DIV */
1872 1.1 alnsn
1873 1.1 alnsn src = BPF_SRC(pc->code);
1874 1.1 alnsn if (src != BPF_X && src != BPF_K)
1875 1.1 alnsn goto fail;
1876 1.1 alnsn
1877 1.1 alnsn /* division by zero? */
1878 1.1 alnsn if (src == BPF_X) {
1879 1.1 alnsn jump = sljit_emit_cmp(compiler,
1880 1.1 alnsn SLJIT_C_EQUAL|SLJIT_INT_OP,
1881 1.8 alnsn BJ_XREG, 0,
1882 1.1 alnsn SLJIT_IMM, 0);
1883 1.1 alnsn if (jump == NULL)
1884 1.1 alnsn goto fail;
1885 1.7 alnsn if (!append_jump(jump, &ret0,
1886 1.7 alnsn &ret0_size, &ret0_maxsize))
1887 1.7 alnsn goto fail;
1888 1.1 alnsn } else if (pc->k == 0) {
1889 1.1 alnsn jump = sljit_emit_jump(compiler, SLJIT_JUMP);
1890 1.1 alnsn if (jump == NULL)
1891 1.1 alnsn goto fail;
1892 1.7 alnsn if (!append_jump(jump, &ret0,
1893 1.7 alnsn &ret0_size, &ret0_maxsize))
1894 1.7 alnsn goto fail;
1895 1.1 alnsn }
1896 1.1 alnsn
1897 1.1 alnsn if (src == BPF_X) {
1898 1.7 alnsn status = emit_division(compiler, BJ_XREG, 0);
1899 1.1 alnsn if (status != SLJIT_SUCCESS)
1900 1.1 alnsn goto fail;
1901 1.1 alnsn } else if (pc->k != 0) {
1902 1.1 alnsn if (pc->k & (pc->k - 1)) {
1903 1.1 alnsn status = emit_division(compiler,
1904 1.1 alnsn SLJIT_IMM, (uint32_t)pc->k);
1905 1.1 alnsn } else {
1906 1.7 alnsn status = emit_pow2_division(compiler,
1907 1.1 alnsn (uint32_t)pc->k);
1908 1.1 alnsn }
1909 1.1 alnsn if (status != SLJIT_SUCCESS)
1910 1.1 alnsn goto fail;
1911 1.1 alnsn }
1912 1.1 alnsn
1913 1.1 alnsn continue;
1914 1.1 alnsn
1915 1.1 alnsn case BPF_JMP:
1916 1.7 alnsn if (BPF_OP(pc->code) == BPF_JA) {
1917 1.1 alnsn jt = jf = pc->k;
1918 1.1 alnsn } else {
1919 1.1 alnsn jt = pc->jt;
1920 1.1 alnsn jf = pc->jf;
1921 1.1 alnsn }
1922 1.1 alnsn
1923 1.1 alnsn negate = (jt == 0) ? 1 : 0;
1924 1.1 alnsn branching = (jt == jf) ? 0 : 1;
1925 1.7 alnsn jtf = insn_dat[i].u.jdata.jtf;
1926 1.1 alnsn
1927 1.1 alnsn if (branching) {
1928 1.1 alnsn if (BPF_OP(pc->code) != BPF_JSET) {
1929 1.1 alnsn jump = sljit_emit_cmp(compiler,
1930 1.1 alnsn bpf_jmp_to_sljit_cond(pc, negate),
1931 1.7 alnsn BJ_AREG, 0,
1932 1.1 alnsn kx_to_reg(pc), kx_to_reg_arg(pc));
1933 1.1 alnsn } else {
1934 1.1 alnsn status = sljit_emit_op2(compiler,
1935 1.1 alnsn SLJIT_AND,
1936 1.7 alnsn BJ_TMP1REG, 0,
1937 1.7 alnsn BJ_AREG, 0,
1938 1.1 alnsn kx_to_reg(pc), kx_to_reg_arg(pc));
1939 1.1 alnsn if (status != SLJIT_SUCCESS)
1940 1.1 alnsn goto fail;
1941 1.1 alnsn
1942 1.1 alnsn jump = sljit_emit_cmp(compiler,
1943 1.1 alnsn bpf_jmp_to_sljit_cond(pc, negate),
1944 1.7 alnsn BJ_TMP1REG, 0,
1945 1.1 alnsn SLJIT_IMM, 0);
1946 1.1 alnsn }
1947 1.1 alnsn
1948 1.1 alnsn if (jump == NULL)
1949 1.1 alnsn goto fail;
1950 1.1 alnsn
1951 1.7 alnsn BJ_ASSERT(jtf[negate].sjump == NULL);
1952 1.7 alnsn jtf[negate].sjump = jump;
1953 1.1 alnsn }
1954 1.1 alnsn
1955 1.1 alnsn if (!branching || (jt != 0 && jf != 0)) {
1956 1.1 alnsn jump = sljit_emit_jump(compiler, SLJIT_JUMP);
1957 1.1 alnsn if (jump == NULL)
1958 1.1 alnsn goto fail;
1959 1.1 alnsn
1960 1.7 alnsn BJ_ASSERT(jtf[branching].sjump == NULL);
1961 1.7 alnsn jtf[branching].sjump = jump;
1962 1.1 alnsn }
1963 1.1 alnsn
1964 1.1 alnsn continue;
1965 1.1 alnsn
1966 1.1 alnsn case BPF_RET:
1967 1.1 alnsn rval = BPF_RVAL(pc->code);
1968 1.1 alnsn if (rval == BPF_X)
1969 1.1 alnsn goto fail;
1970 1.1 alnsn
1971 1.1 alnsn /* BPF_RET+BPF_K accept k bytes */
1972 1.1 alnsn if (rval == BPF_K) {
1973 1.7 alnsn status = sljit_emit_return(compiler,
1974 1.7 alnsn SLJIT_MOV_UI,
1975 1.1 alnsn SLJIT_IMM, (uint32_t)pc->k);
1976 1.1 alnsn if (status != SLJIT_SUCCESS)
1977 1.1 alnsn goto fail;
1978 1.1 alnsn }
1979 1.1 alnsn
1980 1.1 alnsn /* BPF_RET+BPF_A accept A bytes */
1981 1.1 alnsn if (rval == BPF_A) {
1982 1.7 alnsn status = sljit_emit_return(compiler,
1983 1.7 alnsn SLJIT_MOV_UI,
1984 1.7 alnsn BJ_AREG, 0);
1985 1.1 alnsn if (status != SLJIT_SUCCESS)
1986 1.1 alnsn goto fail;
1987 1.1 alnsn }
1988 1.1 alnsn
1989 1.1 alnsn continue;
1990 1.1 alnsn
1991 1.1 alnsn case BPF_MISC:
1992 1.7 alnsn switch (BPF_MISCOP(pc->code)) {
1993 1.7 alnsn case BPF_TAX:
1994 1.1 alnsn status = sljit_emit_op1(compiler,
1995 1.1 alnsn SLJIT_MOV_UI,
1996 1.7 alnsn BJ_XREG, 0,
1997 1.7 alnsn BJ_AREG, 0);
1998 1.1 alnsn if (status != SLJIT_SUCCESS)
1999 1.1 alnsn goto fail;
2000 1.1 alnsn
2001 1.1 alnsn continue;
2002 1.1 alnsn
2003 1.7 alnsn case BPF_TXA:
2004 1.1 alnsn status = sljit_emit_op1(compiler,
2005 1.1 alnsn SLJIT_MOV,
2006 1.7 alnsn BJ_AREG, 0,
2007 1.7 alnsn BJ_XREG, 0);
2008 1.1 alnsn if (status != SLJIT_SUCCESS)
2009 1.1 alnsn goto fail;
2010 1.1 alnsn
2011 1.1 alnsn continue;
2012 1.13 alnsn
2013 1.13 alnsn case BPF_COP:
2014 1.13 alnsn case BPF_COPX:
2015 1.13 alnsn if (bc == NULL || bc->copfuncs == NULL)
2016 1.13 alnsn goto fail;
2017 1.13 alnsn if (BPF_MISCOP(pc->code) == BPF_COP &&
2018 1.13 alnsn (uint32_t)pc->k >= bc->nfuncs) {
2019 1.13 alnsn goto fail;
2020 1.13 alnsn }
2021 1.13 alnsn
2022 1.13 alnsn jump = NULL;
2023 1.13 alnsn status = emit_cop(compiler, bc, pc, &jump);
2024 1.13 alnsn if (status != SLJIT_SUCCESS)
2025 1.13 alnsn goto fail;
2026 1.13 alnsn
2027 1.13 alnsn if (jump != NULL && !append_jump(jump,
2028 1.13 alnsn &ret0, &ret0_size, &ret0_maxsize))
2029 1.13 alnsn goto fail;
2030 1.13 alnsn
2031 1.13 alnsn continue;
2032 1.1 alnsn }
2033 1.1 alnsn
2034 1.1 alnsn goto fail;
2035 1.1 alnsn } /* switch */
2036 1.1 alnsn } /* main loop */
2037 1.1 alnsn
2038 1.7 alnsn BJ_ASSERT(ret0_size <= ret0_maxsize);
2039 1.1 alnsn
2040 1.7 alnsn if (ret0_size > 0) {
2041 1.1 alnsn label = sljit_emit_label(compiler);
2042 1.1 alnsn if (label == NULL)
2043 1.1 alnsn goto fail;
2044 1.7 alnsn for (i = 0; i < ret0_size; i++)
2045 1.7 alnsn sljit_set_label(ret0[i], label);
2046 1.1 alnsn }
2047 1.1 alnsn
2048 1.23 alnsn status = sljit_emit_return(compiler,
2049 1.23 alnsn SLJIT_MOV_UI,
2050 1.23 alnsn SLJIT_IMM, 0);
2051 1.23 alnsn if (status != SLJIT_SUCCESS)
2052 1.23 alnsn goto fail;
2053 1.23 alnsn
2054 1.19 alnsn rv = true;
2055 1.19 alnsn
2056 1.19 alnsn fail:
2057 1.19 alnsn if (ret0 != NULL)
2058 1.19 alnsn BJ_FREE(ret0, ret0_maxsize * sizeof(ret0[0]));
2059 1.19 alnsn
2060 1.19 alnsn return rv;
2061 1.19 alnsn }
2062 1.19 alnsn
2063 1.19 alnsn bpfjit_func_t
2064 1.19 alnsn bpfjit_generate_code(const bpf_ctx_t *bc,
2065 1.19 alnsn const struct bpf_insn *insns, size_t insn_count)
2066 1.19 alnsn {
2067 1.19 alnsn void *rv;
2068 1.19 alnsn struct sljit_compiler *compiler;
2069 1.19 alnsn
2070 1.19 alnsn size_t i;
2071 1.19 alnsn int status;
2072 1.19 alnsn
2073 1.19 alnsn /* optimization related */
2074 1.19 alnsn bpf_memword_init_t initmask;
2075 1.20 alnsn bpfjit_hint_t hints;
2076 1.19 alnsn
2077 1.19 alnsn /* memory store location for initial zero initialization */
2078 1.19 alnsn sljit_si mem_reg;
2079 1.19 alnsn sljit_sw mem_off;
2080 1.19 alnsn
2081 1.19 alnsn struct bpfjit_insn_data *insn_dat;
2082 1.19 alnsn
2083 1.19 alnsn const size_t extwords = GET_EXTWORDS(bc);
2084 1.19 alnsn const size_t memwords = GET_MEMWORDS(bc);
2085 1.19 alnsn const bpf_memword_init_t preinited = extwords ? bc->preinited : 0;
2086 1.19 alnsn
2087 1.19 alnsn rv = NULL;
2088 1.19 alnsn compiler = NULL;
2089 1.19 alnsn insn_dat = NULL;
2090 1.19 alnsn
2091 1.19 alnsn if (memwords > MAX_MEMWORDS)
2092 1.19 alnsn goto fail;
2093 1.19 alnsn
2094 1.19 alnsn if (insn_count == 0 || insn_count > SIZE_MAX / sizeof(insn_dat[0]))
2095 1.19 alnsn goto fail;
2096 1.19 alnsn
2097 1.19 alnsn insn_dat = BJ_ALLOC(insn_count * sizeof(insn_dat[0]));
2098 1.19 alnsn if (insn_dat == NULL)
2099 1.19 alnsn goto fail;
2100 1.19 alnsn
2101 1.20 alnsn if (!optimize(bc, insns, insn_dat, insn_count, &initmask, &hints))
2102 1.19 alnsn goto fail;
2103 1.19 alnsn
2104 1.19 alnsn compiler = sljit_create_compiler();
2105 1.19 alnsn if (compiler == NULL)
2106 1.19 alnsn goto fail;
2107 1.19 alnsn
2108 1.19 alnsn #if !defined(_KERNEL) && defined(SLJIT_VERBOSE) && SLJIT_VERBOSE
2109 1.19 alnsn sljit_compiler_verbose(compiler, stderr);
2110 1.19 alnsn #endif
2111 1.19 alnsn
2112 1.19 alnsn status = sljit_emit_enter(compiler,
2113 1.20 alnsn 2, nscratches(hints), 3, sizeof(struct bpfjit_stack));
2114 1.19 alnsn if (status != SLJIT_SUCCESS)
2115 1.19 alnsn goto fail;
2116 1.19 alnsn
2117 1.20 alnsn if (hints & BJ_HINT_COP) {
2118 1.19 alnsn /* save ctx argument */
2119 1.19 alnsn status = sljit_emit_op1(compiler,
2120 1.19 alnsn SLJIT_MOV_P,
2121 1.19 alnsn SLJIT_MEM1(SLJIT_LOCALS_REG),
2122 1.19 alnsn offsetof(struct bpfjit_stack, ctx),
2123 1.19 alnsn BJ_CTX_ARG, 0);
2124 1.19 alnsn if (status != SLJIT_SUCCESS)
2125 1.19 alnsn goto fail;
2126 1.19 alnsn }
2127 1.19 alnsn
2128 1.19 alnsn if (extwords == 0) {
2129 1.19 alnsn mem_reg = SLJIT_MEM1(SLJIT_LOCALS_REG);
2130 1.19 alnsn mem_off = offsetof(struct bpfjit_stack, mem);
2131 1.19 alnsn } else {
2132 1.19 alnsn /* copy "mem" argument from bpf_args to bpfjit_stack */
2133 1.19 alnsn status = sljit_emit_op1(compiler,
2134 1.19 alnsn SLJIT_MOV_P,
2135 1.19 alnsn BJ_TMP1REG, 0,
2136 1.19 alnsn SLJIT_MEM1(BJ_ARGS), offsetof(struct bpf_args, mem));
2137 1.19 alnsn if (status != SLJIT_SUCCESS)
2138 1.19 alnsn goto fail;
2139 1.19 alnsn
2140 1.19 alnsn status = sljit_emit_op1(compiler,
2141 1.19 alnsn SLJIT_MOV_P,
2142 1.19 alnsn SLJIT_MEM1(SLJIT_LOCALS_REG),
2143 1.19 alnsn offsetof(struct bpfjit_stack, extmem),
2144 1.19 alnsn BJ_TMP1REG, 0);
2145 1.19 alnsn if (status != SLJIT_SUCCESS)
2146 1.19 alnsn goto fail;
2147 1.19 alnsn
2148 1.19 alnsn mem_reg = SLJIT_MEM1(BJ_TMP1REG);
2149 1.19 alnsn mem_off = 0;
2150 1.19 alnsn }
2151 1.19 alnsn
2152 1.19 alnsn /*
2153 1.19 alnsn * Exclude pre-initialised external memory words but keep
2154 1.19 alnsn * initialization statuses of A and X registers in case
2155 1.19 alnsn * bc->preinited wrongly sets those two bits.
2156 1.19 alnsn */
2157 1.19 alnsn initmask &= ~preinited | BJ_INIT_ABIT | BJ_INIT_XBIT;
2158 1.19 alnsn
2159 1.19 alnsn #if defined(_KERNEL)
2160 1.19 alnsn /* bpf_filter() checks initialization of memwords. */
2161 1.19 alnsn BJ_ASSERT((initmask & (BJ_INIT_MBIT(memwords) - 1)) == 0);
2162 1.19 alnsn #endif
2163 1.19 alnsn for (i = 0; i < memwords; i++) {
2164 1.19 alnsn if (initmask & BJ_INIT_MBIT(i)) {
2165 1.19 alnsn /* M[i] = 0; */
2166 1.19 alnsn status = sljit_emit_op1(compiler,
2167 1.19 alnsn SLJIT_MOV_UI,
2168 1.19 alnsn mem_reg, mem_off + i * sizeof(uint32_t),
2169 1.19 alnsn SLJIT_IMM, 0);
2170 1.19 alnsn if (status != SLJIT_SUCCESS)
2171 1.19 alnsn goto fail;
2172 1.19 alnsn }
2173 1.19 alnsn }
2174 1.19 alnsn
2175 1.19 alnsn if (initmask & BJ_INIT_ABIT) {
2176 1.19 alnsn /* A = 0; */
2177 1.19 alnsn status = sljit_emit_op1(compiler,
2178 1.19 alnsn SLJIT_MOV,
2179 1.19 alnsn BJ_AREG, 0,
2180 1.19 alnsn SLJIT_IMM, 0);
2181 1.19 alnsn if (status != SLJIT_SUCCESS)
2182 1.19 alnsn goto fail;
2183 1.19 alnsn }
2184 1.19 alnsn
2185 1.19 alnsn if (initmask & BJ_INIT_XBIT) {
2186 1.19 alnsn /* X = 0; */
2187 1.19 alnsn status = sljit_emit_op1(compiler,
2188 1.19 alnsn SLJIT_MOV,
2189 1.19 alnsn BJ_XREG, 0,
2190 1.19 alnsn SLJIT_IMM, 0);
2191 1.19 alnsn if (status != SLJIT_SUCCESS)
2192 1.19 alnsn goto fail;
2193 1.19 alnsn }
2194 1.19 alnsn
2195 1.19 alnsn status = load_buf_buflen(compiler);
2196 1.19 alnsn if (status != SLJIT_SUCCESS)
2197 1.19 alnsn goto fail;
2198 1.19 alnsn
2199 1.19 alnsn if (!generate_insn_code(compiler, bc, insns, insn_dat, insn_count))
2200 1.19 alnsn goto fail;
2201 1.19 alnsn
2202 1.1 alnsn rv = sljit_generate_code(compiler);
2203 1.1 alnsn
2204 1.1 alnsn fail:
2205 1.1 alnsn if (compiler != NULL)
2206 1.1 alnsn sljit_free_compiler(compiler);
2207 1.1 alnsn
2208 1.1 alnsn if (insn_dat != NULL)
2209 1.7 alnsn BJ_FREE(insn_dat, insn_count * sizeof(insn_dat[0]));
2210 1.1 alnsn
2211 1.4 rmind return (bpfjit_func_t)rv;
2212 1.1 alnsn }
2213 1.1 alnsn
2214 1.1 alnsn void
2215 1.4 rmind bpfjit_free_code(bpfjit_func_t code)
2216 1.1 alnsn {
2217 1.7 alnsn
2218 1.1 alnsn sljit_free_code((void *)code);
2219 1.1 alnsn }
2220