Home | History | Annotate | Line # | Download | only in net
bpfjit.c revision 1.3
      1  1.3  rmind /*	$NetBSD: bpfjit.c,v 1.3 2013/09/20 23:19:52 rmind Exp $	*/
      2  1.3  rmind 
      3  1.1  alnsn /*-
      4  1.1  alnsn  * Copyright (c) 2011-2012 Alexander Nasonov.
      5  1.1  alnsn  * All rights reserved.
      6  1.1  alnsn  *
      7  1.1  alnsn  * Redistribution and use in source and binary forms, with or without
      8  1.1  alnsn  * modification, are permitted provided that the following conditions
      9  1.1  alnsn  * are met:
     10  1.1  alnsn  *
     11  1.1  alnsn  * 1. Redistributions of source code must retain the above copyright
     12  1.1  alnsn  *    notice, this list of conditions and the following disclaimer.
     13  1.1  alnsn  * 2. Redistributions in binary form must reproduce the above copyright
     14  1.1  alnsn  *    notice, this list of conditions and the following disclaimer in
     15  1.1  alnsn  *    the documentation and/or other materials provided with the
     16  1.1  alnsn  *    distribution.
     17  1.1  alnsn  *
     18  1.1  alnsn  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     19  1.1  alnsn  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     20  1.1  alnsn  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
     21  1.1  alnsn  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
     22  1.1  alnsn  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
     23  1.1  alnsn  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
     24  1.1  alnsn  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     25  1.1  alnsn  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     26  1.1  alnsn  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     27  1.1  alnsn  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
     28  1.1  alnsn  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  1.1  alnsn  * SUCH DAMAGE.
     30  1.1  alnsn  */
     31  1.1  alnsn 
     32  1.2  alnsn #include <sys/cdefs.h>
     33  1.2  alnsn #ifdef _KERNEL
     34  1.3  rmind __KERNEL_RCSID(0, "$NetBSD: bpfjit.c,v 1.3 2013/09/20 23:19:52 rmind Exp $");
     35  1.2  alnsn #else
     36  1.3  rmind __RCSID("$NetBSD: bpfjit.c,v 1.3 2013/09/20 23:19:52 rmind Exp $");
     37  1.2  alnsn #endif
     38  1.2  alnsn 
     39  1.3  rmind #include <sys/types.h>
     40  1.3  rmind #include <sys/queue.h>
     41  1.1  alnsn 
     42  1.1  alnsn #ifndef _KERNEL
     43  1.3  rmind #include <stdlib.h>
     44  1.1  alnsn #include <assert.h>
     45  1.3  rmind #define BPFJIT_ALLOC(sz) malloc(sz)
     46  1.3  rmind #define BPFJIT_FREE(p, sz) free(p)
     47  1.1  alnsn #define BPFJIT_ASSERT(c) assert(c)
     48  1.1  alnsn #else
     49  1.3  rmind #include <sys/kmem.h>
     50  1.3  rmind #define BPFJIT_ALLOC(sz) kmem_alloc(sz, KM_SLEEP)
     51  1.3  rmind #define BPFJIT_FREE(p, sz) kmem_free(p, sz)
     52  1.1  alnsn #define BPFJIT_ASSERT(c) KASSERT(c)
     53  1.1  alnsn #endif
     54  1.1  alnsn 
     55  1.1  alnsn #ifndef _KERNEL
     56  1.1  alnsn #include <limits.h>
     57  1.3  rmind #include <stdio.h>
     58  1.1  alnsn #include <stdbool.h>
     59  1.1  alnsn #include <stddef.h>
     60  1.1  alnsn #include <stdint.h>
     61  1.1  alnsn #else
     62  1.1  alnsn #include <sys/atomic.h>
     63  1.1  alnsn #include <sys/module.h>
     64  1.1  alnsn #endif
     65  1.1  alnsn 
     66  1.3  rmind #include <net/bpfjit.h>
     67  1.1  alnsn #include <sljitLir.h>
     68  1.1  alnsn 
     69  1.1  alnsn #define BPFJIT_A	SLJIT_TEMPORARY_REG1
     70  1.1  alnsn #define BPFJIT_X	SLJIT_TEMPORARY_EREG1
     71  1.1  alnsn #define BPFJIT_TMP1	SLJIT_TEMPORARY_REG2
     72  1.1  alnsn #define BPFJIT_TMP2	SLJIT_TEMPORARY_REG3
     73  1.1  alnsn #define BPFJIT_BUF	SLJIT_SAVED_REG1
     74  1.1  alnsn #define BPFJIT_WIRELEN	SLJIT_SAVED_REG2
     75  1.1  alnsn #define BPFJIT_BUFLEN	SLJIT_SAVED_REG3
     76  1.1  alnsn #define BPFJIT_KERN_TMP SLJIT_TEMPORARY_EREG2
     77  1.1  alnsn 
     78  1.1  alnsn /*
     79  1.1  alnsn  * Flags for bpfjit_optimization_hints().
     80  1.1  alnsn  */
     81  1.1  alnsn #define BPFJIT_INIT_X 0x10000
     82  1.1  alnsn #define BPFJIT_INIT_A 0x20000
     83  1.1  alnsn 
     84  1.1  alnsn /*
     85  1.1  alnsn  * Node of bj_jumps list.
     86  1.1  alnsn  */
     87  1.3  rmind struct bpfjit_jump {
     88  1.1  alnsn 	struct sljit_jump *bj_jump;
     89  1.1  alnsn 	SLIST_ENTRY(bpfjit_jump) bj_entries;
     90  1.1  alnsn 	uint32_t bj_safe_length;
     91  1.1  alnsn };
     92  1.1  alnsn 
     93  1.1  alnsn /*
     94  1.1  alnsn  * Data for BPF_JMP instruction.
     95  1.1  alnsn  */
     96  1.3  rmind struct bpfjit_jump_data {
     97  1.1  alnsn 	/*
     98  1.1  alnsn 	 * These entries make up bj_jumps list:
     99  1.1  alnsn 	 * bj_jtf[0] - when coming from jt path,
    100  1.1  alnsn 	 * bj_jtf[1] - when coming from jf path.
    101  1.1  alnsn 	 */
    102  1.1  alnsn 	struct bpfjit_jump bj_jtf[2];
    103  1.1  alnsn };
    104  1.1  alnsn 
    105  1.1  alnsn /*
    106  1.1  alnsn  * Data for "read from packet" instructions.
    107  1.1  alnsn  * See also read_pkt_insn() function below.
    108  1.1  alnsn  */
    109  1.3  rmind struct bpfjit_read_pkt_data {
    110  1.1  alnsn 	/*
    111  1.1  alnsn 	 * If positive, emit "if (buflen < bj_check_length) return 0".
    112  1.1  alnsn 	 * We assume that buflen is never equal to UINT32_MAX (otherwise,
    113  1.1  alnsn 	 * we need a special bool variable to emit unconditional "return 0").
    114  1.1  alnsn 	 */
    115  1.1  alnsn 	uint32_t bj_check_length;
    116  1.1  alnsn };
    117  1.1  alnsn 
    118  1.1  alnsn /*
    119  1.1  alnsn  * Additional (optimization-related) data for bpf_insn.
    120  1.1  alnsn  */
    121  1.3  rmind struct bpfjit_insn_data {
    122  1.1  alnsn 	/* List of jumps to this insn. */
    123  1.1  alnsn 	SLIST_HEAD(, bpfjit_jump) bj_jumps;
    124  1.1  alnsn 
    125  1.1  alnsn 	union {
    126  1.1  alnsn 		struct bpfjit_jump_data     bj_jdata;
    127  1.1  alnsn 		struct bpfjit_read_pkt_data bj_rdata;
    128  1.1  alnsn 	} bj_aux;
    129  1.1  alnsn 
    130  1.1  alnsn 	bool bj_unreachable;
    131  1.1  alnsn };
    132  1.1  alnsn 
    133  1.1  alnsn #ifdef _KERNEL
    134  1.1  alnsn 
    135  1.1  alnsn uint32_t m_xword(const struct mbuf *, uint32_t, int *);
    136  1.1  alnsn uint32_t m_xhalf(const struct mbuf *, uint32_t, int *);
    137  1.1  alnsn uint32_t m_xbyte(const struct mbuf *, uint32_t, int *);
    138  1.1  alnsn 
    139  1.1  alnsn MODULE(MODULE_CLASS_MISC, bpfjit, "sljit")
    140  1.1  alnsn 
    141  1.1  alnsn static int
    142  1.1  alnsn bpfjit_modcmd(modcmd_t cmd, void *arg)
    143  1.1  alnsn {
    144  1.1  alnsn 
    145  1.1  alnsn 	switch (cmd) {
    146  1.1  alnsn 	case MODULE_CMD_INIT:
    147  1.1  alnsn 		bpfjit_module_ops.bj_free_code = &bpfjit_free_code;
    148  1.1  alnsn 		membar_producer();
    149  1.1  alnsn 		bpfjit_module_ops.bj_generate_code = &bpfjit_generate_code;
    150  1.1  alnsn 		membar_producer();
    151  1.1  alnsn 		return 0;
    152  1.1  alnsn 
    153  1.1  alnsn 	case MODULE_CMD_FINI:
    154  1.1  alnsn 		return EOPNOTSUPP;
    155  1.1  alnsn 
    156  1.1  alnsn 	default:
    157  1.1  alnsn 		return ENOTTY;
    158  1.1  alnsn 	}
    159  1.1  alnsn }
    160  1.1  alnsn #endif
    161  1.1  alnsn 
    162  1.1  alnsn static uint32_t
    163  1.1  alnsn read_width(struct bpf_insn *pc)
    164  1.1  alnsn {
    165  1.1  alnsn 
    166  1.1  alnsn 	switch (BPF_SIZE(pc->code)) {
    167  1.1  alnsn 	case BPF_W:
    168  1.1  alnsn 		return 4;
    169  1.1  alnsn 	case BPF_H:
    170  1.1  alnsn 		return 2;
    171  1.1  alnsn 	case BPF_B:
    172  1.1  alnsn 		return 1;
    173  1.1  alnsn 	default:
    174  1.1  alnsn 		BPFJIT_ASSERT(false);
    175  1.1  alnsn 		return 0;
    176  1.1  alnsn 	}
    177  1.1  alnsn }
    178  1.1  alnsn 
    179  1.1  alnsn /*
    180  1.1  alnsn  * Get offset of M[k] on the stack.
    181  1.1  alnsn  */
    182  1.2  alnsn static size_t
    183  1.2  alnsn mem_local_offset(uint32_t k, unsigned int minm)
    184  1.1  alnsn {
    185  1.2  alnsn 	size_t moff = (k - minm) * sizeof(uint32_t);
    186  1.1  alnsn 
    187  1.1  alnsn #ifdef _KERNEL
    188  1.1  alnsn 	/*
    189  1.1  alnsn 	 * 4 bytes for the third argument of m_xword/m_xhalf/m_xbyte.
    190  1.1  alnsn 	 */
    191  1.1  alnsn 	return sizeof(uint32_t) + moff;
    192  1.1  alnsn #else
    193  1.1  alnsn 	return moff;
    194  1.1  alnsn #endif
    195  1.1  alnsn }
    196  1.1  alnsn 
    197  1.1  alnsn /*
    198  1.1  alnsn  * Generate code for BPF_LD+BPF_B+BPF_ABS    A <- P[k:1].
    199  1.1  alnsn  */
    200  1.1  alnsn static int
    201  1.1  alnsn emit_read8(struct sljit_compiler* compiler, uint32_t k)
    202  1.1  alnsn {
    203  1.1  alnsn 
    204  1.1  alnsn 	return sljit_emit_op1(compiler,
    205  1.1  alnsn 	    SLJIT_MOV_UB,
    206  1.1  alnsn 	    BPFJIT_A, 0,
    207  1.1  alnsn 	    SLJIT_MEM1(BPFJIT_BUF), k);
    208  1.1  alnsn }
    209  1.1  alnsn 
    210  1.1  alnsn /*
    211  1.1  alnsn  * Generate code for BPF_LD+BPF_H+BPF_ABS    A <- P[k:2].
    212  1.1  alnsn  */
    213  1.1  alnsn static int
    214  1.1  alnsn emit_read16(struct sljit_compiler* compiler, uint32_t k)
    215  1.1  alnsn {
    216  1.1  alnsn 	int status;
    217  1.1  alnsn 
    218  1.1  alnsn 	/* tmp1 = buf[k]; */
    219  1.1  alnsn 	status = sljit_emit_op1(compiler,
    220  1.1  alnsn 	    SLJIT_MOV_UB,
    221  1.1  alnsn 	    BPFJIT_TMP1, 0,
    222  1.1  alnsn 	    SLJIT_MEM1(BPFJIT_BUF), k);
    223  1.1  alnsn 	if (status != SLJIT_SUCCESS)
    224  1.1  alnsn 		return status;
    225  1.1  alnsn 
    226  1.1  alnsn 	/* A = buf[k+1]; */
    227  1.1  alnsn 	status = sljit_emit_op1(compiler,
    228  1.1  alnsn 	    SLJIT_MOV_UB,
    229  1.1  alnsn 	    BPFJIT_A, 0,
    230  1.1  alnsn 	    SLJIT_MEM1(BPFJIT_BUF), k+1);
    231  1.1  alnsn 	if (status != SLJIT_SUCCESS)
    232  1.1  alnsn 		return status;
    233  1.1  alnsn 
    234  1.1  alnsn 	/* tmp1 = tmp1 << 8; */
    235  1.1  alnsn 	status = sljit_emit_op2(compiler,
    236  1.1  alnsn 	    SLJIT_SHL,
    237  1.1  alnsn 	    BPFJIT_TMP1, 0,
    238  1.1  alnsn 	    BPFJIT_TMP1, 0,
    239  1.1  alnsn 	    SLJIT_IMM, 8);
    240  1.1  alnsn 	if (status != SLJIT_SUCCESS)
    241  1.1  alnsn 		return status;
    242  1.1  alnsn 
    243  1.1  alnsn 	/* A = A + tmp1; */
    244  1.1  alnsn 	status = sljit_emit_op2(compiler,
    245  1.1  alnsn 	    SLJIT_ADD,
    246  1.1  alnsn 	    BPFJIT_A, 0,
    247  1.1  alnsn 	    BPFJIT_A, 0,
    248  1.1  alnsn 	    BPFJIT_TMP1, 0);
    249  1.1  alnsn 	return status;
    250  1.1  alnsn }
    251  1.1  alnsn 
    252  1.1  alnsn /*
    253  1.1  alnsn  * Generate code for BPF_LD+BPF_W+BPF_ABS    A <- P[k:4].
    254  1.1  alnsn  */
    255  1.1  alnsn static int
    256  1.1  alnsn emit_read32(struct sljit_compiler* compiler, uint32_t k)
    257  1.1  alnsn {
    258  1.1  alnsn 	int status;
    259  1.1  alnsn 
    260  1.1  alnsn 	/* tmp1 = buf[k]; */
    261  1.1  alnsn 	status = sljit_emit_op1(compiler,
    262  1.1  alnsn 	    SLJIT_MOV_UB,
    263  1.1  alnsn 	    BPFJIT_TMP1, 0,
    264  1.1  alnsn 	    SLJIT_MEM1(BPFJIT_BUF), k);
    265  1.1  alnsn 	if (status != SLJIT_SUCCESS)
    266  1.1  alnsn 		return status;
    267  1.1  alnsn 
    268  1.1  alnsn 	/* tmp2 = buf[k+1]; */
    269  1.1  alnsn 	status = sljit_emit_op1(compiler,
    270  1.1  alnsn 	    SLJIT_MOV_UB,
    271  1.1  alnsn 	    BPFJIT_TMP2, 0,
    272  1.1  alnsn 	    SLJIT_MEM1(BPFJIT_BUF), k+1);
    273  1.1  alnsn 	if (status != SLJIT_SUCCESS)
    274  1.1  alnsn 		return status;
    275  1.1  alnsn 
    276  1.1  alnsn 	/* A = buf[k+3]; */
    277  1.1  alnsn 	status = sljit_emit_op1(compiler,
    278  1.1  alnsn 	    SLJIT_MOV_UB,
    279  1.1  alnsn 	    BPFJIT_A, 0,
    280  1.1  alnsn 	    SLJIT_MEM1(BPFJIT_BUF), k+3);
    281  1.1  alnsn 	if (status != SLJIT_SUCCESS)
    282  1.1  alnsn 		return status;
    283  1.1  alnsn 
    284  1.1  alnsn 	/* tmp1 = tmp1 << 24; */
    285  1.1  alnsn 	status = sljit_emit_op2(compiler,
    286  1.1  alnsn 	    SLJIT_SHL,
    287  1.1  alnsn 	    BPFJIT_TMP1, 0,
    288  1.1  alnsn 	    BPFJIT_TMP1, 0,
    289  1.1  alnsn 	    SLJIT_IMM, 24);
    290  1.1  alnsn 	if (status != SLJIT_SUCCESS)
    291  1.1  alnsn 		return status;
    292  1.1  alnsn 
    293  1.1  alnsn 	/* A = A + tmp1; */
    294  1.1  alnsn 	status = sljit_emit_op2(compiler,
    295  1.1  alnsn 	    SLJIT_ADD,
    296  1.1  alnsn 	    BPFJIT_A, 0,
    297  1.1  alnsn 	    BPFJIT_A, 0,
    298  1.1  alnsn 	    BPFJIT_TMP1, 0);
    299  1.1  alnsn 	if (status != SLJIT_SUCCESS)
    300  1.1  alnsn 		return status;
    301  1.1  alnsn 
    302  1.1  alnsn 	/* tmp1 = buf[k+2]; */
    303  1.1  alnsn 	status = sljit_emit_op1(compiler,
    304  1.1  alnsn 	    SLJIT_MOV_UB,
    305  1.1  alnsn 	    BPFJIT_TMP1, 0,
    306  1.1  alnsn 	    SLJIT_MEM1(BPFJIT_BUF), k+2);
    307  1.1  alnsn 	if (status != SLJIT_SUCCESS)
    308  1.1  alnsn 		return status;
    309  1.1  alnsn 
    310  1.1  alnsn 	/* tmp2 = tmp2 << 16; */
    311  1.1  alnsn 	status = sljit_emit_op2(compiler,
    312  1.1  alnsn 	    SLJIT_SHL,
    313  1.1  alnsn 	    BPFJIT_TMP2, 0,
    314  1.1  alnsn 	    BPFJIT_TMP2, 0,
    315  1.1  alnsn 	    SLJIT_IMM, 16);
    316  1.1  alnsn 	if (status != SLJIT_SUCCESS)
    317  1.1  alnsn 		return status;
    318  1.1  alnsn 
    319  1.1  alnsn 	/* A = A + tmp2; */
    320  1.1  alnsn 	status = sljit_emit_op2(compiler,
    321  1.1  alnsn 	    SLJIT_ADD,
    322  1.1  alnsn 	    BPFJIT_A, 0,
    323  1.1  alnsn 	    BPFJIT_A, 0,
    324  1.1  alnsn 	    BPFJIT_TMP2, 0);
    325  1.1  alnsn 	if (status != SLJIT_SUCCESS)
    326  1.1  alnsn 		return status;
    327  1.1  alnsn 
    328  1.1  alnsn 	/* tmp1 = tmp1 << 8; */
    329  1.1  alnsn 	status = sljit_emit_op2(compiler,
    330  1.1  alnsn 	    SLJIT_SHL,
    331  1.1  alnsn 	    BPFJIT_TMP1, 0,
    332  1.1  alnsn 	    BPFJIT_TMP1, 0,
    333  1.1  alnsn 	    SLJIT_IMM, 8);
    334  1.1  alnsn 	if (status != SLJIT_SUCCESS)
    335  1.1  alnsn 		return status;
    336  1.1  alnsn 
    337  1.1  alnsn 	/* A = A + tmp1; */
    338  1.1  alnsn 	status = sljit_emit_op2(compiler,
    339  1.1  alnsn 	    SLJIT_ADD,
    340  1.1  alnsn 	    BPFJIT_A, 0,
    341  1.1  alnsn 	    BPFJIT_A, 0,
    342  1.1  alnsn 	    BPFJIT_TMP1, 0);
    343  1.1  alnsn 	return status;
    344  1.1  alnsn }
    345  1.1  alnsn 
    346  1.1  alnsn #ifdef _KERNEL
    347  1.1  alnsn /*
    348  1.1  alnsn  * Generate m_xword/m_xhalf/m_xbyte call.
    349  1.1  alnsn  *
    350  1.1  alnsn  * pc is one of:
    351  1.1  alnsn  * BPF_LD+BPF_W+BPF_ABS    A <- P[k:4]
    352  1.1  alnsn  * BPF_LD+BPF_H+BPF_ABS    A <- P[k:2]
    353  1.1  alnsn  * BPF_LD+BPF_B+BPF_ABS    A <- P[k:1]
    354  1.1  alnsn  * BPF_LD+BPF_W+BPF_IND    A <- P[X+k:4]
    355  1.1  alnsn  * BPF_LD+BPF_H+BPF_IND    A <- P[X+k:2]
    356  1.1  alnsn  * BPF_LD+BPF_B+BPF_IND    A <- P[X+k:1]
    357  1.1  alnsn  * BPF_LDX+BPF_B+BPF_MSH   X <- 4*(P[k:1]&0xf)
    358  1.1  alnsn  *
    359  1.1  alnsn  * dst must be BPFJIT_A for BPF_LD instructions and BPFJIT_X
    360  1.1  alnsn  * or any of BPFJIT_TMP* registrers for BPF_MSH instruction.
    361  1.1  alnsn  */
    362  1.1  alnsn static int
    363  1.1  alnsn emit_xcall(struct sljit_compiler* compiler, struct bpf_insn *pc,
    364  1.1  alnsn     int dst, sljit_w dstw, struct sljit_jump **ret0_jump,
    365  1.1  alnsn     uint32_t (*fn)(const struct mbuf *, uint32_t, int *))
    366  1.1  alnsn {
    367  1.1  alnsn #if BPFJIT_X != SLJIT_TEMPORARY_EREG1 || \
    368  1.1  alnsn     BPFJIT_X == SLJIT_RETURN_REG
    369  1.1  alnsn #error "Not supported assignment of registers."
    370  1.1  alnsn #endif
    371  1.1  alnsn 	int status;
    372  1.1  alnsn 
    373  1.1  alnsn 	/*
    374  1.1  alnsn 	 * The third argument of fn is an address on stack.
    375  1.1  alnsn 	 */
    376  1.1  alnsn 	const int arg3_offset = 0;
    377  1.1  alnsn 
    378  1.1  alnsn 	if (BPF_CLASS(pc->code) == BPF_LDX) {
    379  1.1  alnsn 		/* save A */
    380  1.1  alnsn 		status = sljit_emit_op1(compiler,
    381  1.1  alnsn 		    SLJIT_MOV,
    382  1.1  alnsn 		    BPFJIT_KERN_TMP, 0,
    383  1.1  alnsn 		    BPFJIT_A, 0);
    384  1.1  alnsn 		if (status != SLJIT_SUCCESS)
    385  1.1  alnsn 			return status;
    386  1.1  alnsn 	}
    387  1.1  alnsn 
    388  1.1  alnsn 	/*
    389  1.1  alnsn 	 * Prepare registers for fn(buf, k, &err) call.
    390  1.1  alnsn 	 */
    391  1.1  alnsn 	status = sljit_emit_op1(compiler,
    392  1.1  alnsn 	    SLJIT_MOV,
    393  1.1  alnsn 	    SLJIT_TEMPORARY_REG1, 0,
    394  1.1  alnsn 	    BPFJIT_BUF, 0);
    395  1.1  alnsn 	if (status != SLJIT_SUCCESS)
    396  1.1  alnsn 		return status;
    397  1.1  alnsn 
    398  1.1  alnsn 	if (BPF_CLASS(pc->code) == BPF_LD && BPF_MODE(pc->code) == BPF_IND) {
    399  1.1  alnsn 		status = sljit_emit_op2(compiler,
    400  1.1  alnsn 		    SLJIT_ADD,
    401  1.1  alnsn 		    SLJIT_TEMPORARY_REG2, 0,
    402  1.1  alnsn 		    BPFJIT_X, 0,
    403  1.1  alnsn 		    SLJIT_IMM, (uint32_t)pc->k);
    404  1.1  alnsn 	} else {
    405  1.1  alnsn 		status = sljit_emit_op1(compiler,
    406  1.1  alnsn 		    SLJIT_MOV,
    407  1.1  alnsn 		    SLJIT_TEMPORARY_REG2, 0,
    408  1.1  alnsn 		    SLJIT_IMM, (uint32_t)pc->k);
    409  1.1  alnsn 	}
    410  1.1  alnsn 
    411  1.1  alnsn 	if (status != SLJIT_SUCCESS)
    412  1.1  alnsn 		return status;
    413  1.1  alnsn 
    414  1.1  alnsn 	status = sljit_get_local_base(compiler,
    415  1.1  alnsn 	    SLJIT_TEMPORARY_REG3, 0, arg3_offset);
    416  1.1  alnsn 	if (status != SLJIT_SUCCESS)
    417  1.1  alnsn 		return status;
    418  1.1  alnsn 
    419  1.1  alnsn 	/* fn(buf, k, &err); */
    420  1.1  alnsn 	status = sljit_emit_ijump(compiler,
    421  1.1  alnsn 	    SLJIT_CALL3,
    422  1.1  alnsn 	    SLJIT_IMM, SLJIT_FUNC_OFFSET(fn));
    423  1.1  alnsn 
    424  1.1  alnsn 	if (BPF_CLASS(pc->code) == BPF_LDX) {
    425  1.1  alnsn 
    426  1.1  alnsn 		/* move return value to dst */
    427  1.1  alnsn 		BPFJIT_ASSERT(dst != SLJIT_RETURN_REG);
    428  1.1  alnsn 		status = sljit_emit_op1(compiler,
    429  1.1  alnsn 		    SLJIT_MOV,
    430  1.1  alnsn 		    dst, dstw,
    431  1.1  alnsn 		    SLJIT_RETURN_REG, 0);
    432  1.1  alnsn 		if (status != SLJIT_SUCCESS)
    433  1.1  alnsn 			return status;
    434  1.1  alnsn 
    435  1.1  alnsn 		/* restore A */
    436  1.1  alnsn 		status = sljit_emit_op1(compiler,
    437  1.1  alnsn 		    SLJIT_MOV,
    438  1.1  alnsn 		    BPFJIT_A, 0,
    439  1.1  alnsn 		    BPFJIT_KERN_TMP, 0);
    440  1.1  alnsn 		if (status != SLJIT_SUCCESS)
    441  1.1  alnsn 			return status;
    442  1.1  alnsn 
    443  1.1  alnsn 	} else if (dst != SLJIT_RETURN_REG) {
    444  1.1  alnsn 		status = sljit_emit_op1(compiler,
    445  1.1  alnsn 		    SLJIT_MOV,
    446  1.1  alnsn 		    dst, dstw,
    447  1.1  alnsn 		    SLJIT_RETURN_REG, 0);
    448  1.1  alnsn 		if (status != SLJIT_SUCCESS)
    449  1.1  alnsn 			return status;
    450  1.1  alnsn 	}
    451  1.1  alnsn 
    452  1.1  alnsn 	/* tmp3 = *err; */
    453  1.1  alnsn 	status = sljit_emit_op1(compiler,
    454  1.1  alnsn 	    SLJIT_MOV_UI,
    455  1.1  alnsn 	    SLJIT_TEMPORARY_REG3, 0,
    456  1.1  alnsn 	    SLJIT_MEM1(SLJIT_LOCALS_REG), arg3_offset);
    457  1.1  alnsn 	if (status != SLJIT_SUCCESS)
    458  1.1  alnsn 		return status;
    459  1.1  alnsn 
    460  1.1  alnsn 	/* if (tmp3 != 0) return 0; */
    461  1.1  alnsn 	*ret0_jump = sljit_emit_cmp(compiler,
    462  1.1  alnsn 	    SLJIT_C_NOT_EQUAL,
    463  1.1  alnsn 	    SLJIT_TEMPORARY_REG3, 0,
    464  1.1  alnsn 	    SLJIT_IMM, 0);
    465  1.1  alnsn 	if (*ret0_jump == NULL)
    466  1.1  alnsn 		return SLJIT_ERR_ALLOC_FAILED;
    467  1.1  alnsn 
    468  1.1  alnsn 	return status;
    469  1.1  alnsn }
    470  1.1  alnsn #endif
    471  1.1  alnsn 
    472  1.1  alnsn /*
    473  1.1  alnsn  * Generate code for
    474  1.1  alnsn  * BPF_LD+BPF_W+BPF_ABS    A <- P[k:4]
    475  1.1  alnsn  * BPF_LD+BPF_H+BPF_ABS    A <- P[k:2]
    476  1.1  alnsn  * BPF_LD+BPF_B+BPF_ABS    A <- P[k:1]
    477  1.1  alnsn  * BPF_LD+BPF_W+BPF_IND    A <- P[X+k:4]
    478  1.1  alnsn  * BPF_LD+BPF_H+BPF_IND    A <- P[X+k:2]
    479  1.1  alnsn  * BPF_LD+BPF_B+BPF_IND    A <- P[X+k:1]
    480  1.1  alnsn  */
    481  1.1  alnsn static int
    482  1.1  alnsn emit_pkt_read(struct sljit_compiler* compiler,
    483  1.1  alnsn     struct bpf_insn *pc, struct sljit_jump *to_mchain_jump,
    484  1.1  alnsn     struct sljit_jump **ret0, size_t *ret0_size)
    485  1.1  alnsn {
    486  1.1  alnsn 	int status;
    487  1.1  alnsn 	uint32_t width;
    488  1.1  alnsn 	struct sljit_jump *jump;
    489  1.1  alnsn #ifdef _KERNEL
    490  1.1  alnsn 	struct sljit_label *label;
    491  1.1  alnsn 	struct sljit_jump *over_mchain_jump;
    492  1.1  alnsn 	const bool check_zero_buflen = (to_mchain_jump != NULL);
    493  1.1  alnsn #endif
    494  1.1  alnsn 	const uint32_t k = pc->k;
    495  1.1  alnsn 
    496  1.1  alnsn #ifdef _KERNEL
    497  1.1  alnsn 	if (to_mchain_jump == NULL) {
    498  1.1  alnsn 		to_mchain_jump = sljit_emit_cmp(compiler,
    499  1.1  alnsn 		    SLJIT_C_EQUAL,
    500  1.1  alnsn 		    BPFJIT_BUFLEN, 0,
    501  1.1  alnsn 		    SLJIT_IMM, 0);
    502  1.1  alnsn 		if (to_mchain_jump == NULL)
    503  1.1  alnsn   			return SLJIT_ERR_ALLOC_FAILED;
    504  1.1  alnsn 	}
    505  1.1  alnsn #endif
    506  1.1  alnsn 
    507  1.1  alnsn 	width = read_width(pc);
    508  1.1  alnsn 
    509  1.1  alnsn 	if (BPF_MODE(pc->code) == BPF_IND) {
    510  1.1  alnsn 		/* tmp1 = buflen - (pc->k + width); */
    511  1.1  alnsn 		status = sljit_emit_op2(compiler,
    512  1.1  alnsn 		    SLJIT_SUB,
    513  1.1  alnsn 		    BPFJIT_TMP1, 0,
    514  1.1  alnsn 		    BPFJIT_BUFLEN, 0,
    515  1.1  alnsn 		    SLJIT_IMM, k + width);
    516  1.1  alnsn 		if (status != SLJIT_SUCCESS)
    517  1.1  alnsn 			return status;
    518  1.1  alnsn 
    519  1.1  alnsn 		/* buf += X; */
    520  1.1  alnsn 		status = sljit_emit_op2(compiler,
    521  1.1  alnsn 		    SLJIT_ADD,
    522  1.1  alnsn 		    BPFJIT_BUF, 0,
    523  1.1  alnsn 		    BPFJIT_BUF, 0,
    524  1.1  alnsn 		    BPFJIT_X, 0);
    525  1.1  alnsn 		if (status != SLJIT_SUCCESS)
    526  1.1  alnsn 			return status;
    527  1.1  alnsn 
    528  1.1  alnsn 		/* if (tmp1 < X) return 0; */
    529  1.1  alnsn 		jump = sljit_emit_cmp(compiler,
    530  1.1  alnsn 		    SLJIT_C_LESS,
    531  1.1  alnsn 		    BPFJIT_TMP1, 0,
    532  1.1  alnsn 		    BPFJIT_X, 0);
    533  1.1  alnsn 		if (jump == NULL)
    534  1.1  alnsn   			return SLJIT_ERR_ALLOC_FAILED;
    535  1.1  alnsn 		ret0[(*ret0_size)++] = jump;
    536  1.1  alnsn 	}
    537  1.1  alnsn 
    538  1.1  alnsn 	switch (width) {
    539  1.1  alnsn 	case 4:
    540  1.1  alnsn 		status = emit_read32(compiler, k);
    541  1.1  alnsn 		break;
    542  1.1  alnsn 	case 2:
    543  1.1  alnsn 		status = emit_read16(compiler, k);
    544  1.1  alnsn 		break;
    545  1.1  alnsn 	case 1:
    546  1.1  alnsn 		status = emit_read8(compiler, k);
    547  1.1  alnsn 		break;
    548  1.1  alnsn 	}
    549  1.1  alnsn 
    550  1.1  alnsn 	if (status != SLJIT_SUCCESS)
    551  1.1  alnsn 		return status;
    552  1.1  alnsn 
    553  1.1  alnsn 	if (BPF_MODE(pc->code) == BPF_IND) {
    554  1.1  alnsn 		/* buf -= X; */
    555  1.1  alnsn 		status = sljit_emit_op2(compiler,
    556  1.1  alnsn 		    SLJIT_SUB,
    557  1.1  alnsn 		    BPFJIT_BUF, 0,
    558  1.1  alnsn 		    BPFJIT_BUF, 0,
    559  1.1  alnsn 		    BPFJIT_X, 0);
    560  1.1  alnsn 		if (status != SLJIT_SUCCESS)
    561  1.1  alnsn 			return status;
    562  1.1  alnsn 	}
    563  1.1  alnsn 
    564  1.1  alnsn #ifdef _KERNEL
    565  1.1  alnsn 	over_mchain_jump = sljit_emit_jump(compiler, SLJIT_JUMP);
    566  1.1  alnsn 	if (over_mchain_jump == NULL)
    567  1.1  alnsn   		return SLJIT_ERR_ALLOC_FAILED;
    568  1.1  alnsn 
    569  1.1  alnsn 	/* entry point to mchain handler */
    570  1.1  alnsn 	label = sljit_emit_label(compiler);
    571  1.1  alnsn 	if (label == NULL)
    572  1.1  alnsn   		return SLJIT_ERR_ALLOC_FAILED;
    573  1.1  alnsn 	sljit_set_label(to_mchain_jump, label);
    574  1.1  alnsn 
    575  1.1  alnsn 	if (check_zero_buflen) {
    576  1.1  alnsn 		/* if (buflen != 0) return 0; */
    577  1.1  alnsn 		jump = sljit_emit_cmp(compiler,
    578  1.1  alnsn 		    SLJIT_C_NOT_EQUAL,
    579  1.1  alnsn 		    BPFJIT_BUFLEN, 0,
    580  1.1  alnsn 		    SLJIT_IMM, 0);
    581  1.1  alnsn 		if (jump == NULL)
    582  1.1  alnsn 			return SLJIT_ERR_ALLOC_FAILED;
    583  1.1  alnsn 		ret0[(*ret0_size)++] = jump;
    584  1.1  alnsn 	}
    585  1.1  alnsn 
    586  1.1  alnsn 	switch (width) {
    587  1.1  alnsn 	case 4:
    588  1.1  alnsn 		status = emit_xcall(compiler, pc, BPFJIT_A, 0, &jump, &m_xword);
    589  1.1  alnsn 		break;
    590  1.1  alnsn 	case 2:
    591  1.1  alnsn 		status = emit_xcall(compiler, pc, BPFJIT_A, 0, &jump, &m_xhalf);
    592  1.1  alnsn 		break;
    593  1.1  alnsn 	case 1:
    594  1.1  alnsn 		status = emit_xcall(compiler, pc, BPFJIT_A, 0, &jump, &m_xbyte);
    595  1.1  alnsn 		break;
    596  1.1  alnsn 	}
    597  1.1  alnsn 
    598  1.1  alnsn 	if (status != SLJIT_SUCCESS)
    599  1.1  alnsn 		return status;
    600  1.1  alnsn 
    601  1.1  alnsn 	ret0[(*ret0_size)++] = jump;
    602  1.1  alnsn 
    603  1.1  alnsn 	label = sljit_emit_label(compiler);
    604  1.1  alnsn 	if (label == NULL)
    605  1.1  alnsn 		return SLJIT_ERR_ALLOC_FAILED;
    606  1.1  alnsn 	sljit_set_label(over_mchain_jump, label);
    607  1.1  alnsn #endif
    608  1.1  alnsn 
    609  1.1  alnsn 	return status;
    610  1.1  alnsn }
    611  1.1  alnsn 
    612  1.1  alnsn /*
    613  1.1  alnsn  * Generate code for BPF_LDX+BPF_B+BPF_MSH    X <- 4*(P[k:1]&0xf).
    614  1.1  alnsn  */
    615  1.1  alnsn static int
    616  1.1  alnsn emit_msh(struct sljit_compiler* compiler,
    617  1.1  alnsn     struct bpf_insn *pc, struct sljit_jump *to_mchain_jump,
    618  1.1  alnsn     struct sljit_jump **ret0, size_t *ret0_size)
    619  1.1  alnsn {
    620  1.1  alnsn 	int status;
    621  1.1  alnsn #ifdef _KERNEL
    622  1.1  alnsn 	struct sljit_label *label;
    623  1.1  alnsn 	struct sljit_jump *jump, *over_mchain_jump;
    624  1.1  alnsn 	const bool check_zero_buflen = (to_mchain_jump != NULL);
    625  1.1  alnsn #endif
    626  1.1  alnsn 	const uint32_t k = pc->k;
    627  1.1  alnsn 
    628  1.1  alnsn #ifdef _KERNEL
    629  1.1  alnsn 	if (to_mchain_jump == NULL) {
    630  1.1  alnsn 		to_mchain_jump = sljit_emit_cmp(compiler,
    631  1.1  alnsn 		    SLJIT_C_EQUAL,
    632  1.1  alnsn 		    BPFJIT_BUFLEN, 0,
    633  1.1  alnsn 		    SLJIT_IMM, 0);
    634  1.1  alnsn 		if (to_mchain_jump == NULL)
    635  1.1  alnsn  			return SLJIT_ERR_ALLOC_FAILED;
    636  1.1  alnsn 	}
    637  1.1  alnsn #endif
    638  1.1  alnsn 
    639  1.1  alnsn 	/* tmp1 = buf[k] */
    640  1.1  alnsn 	status = sljit_emit_op1(compiler,
    641  1.1  alnsn 	    SLJIT_MOV_UB,
    642  1.1  alnsn 	    BPFJIT_TMP1, 0,
    643  1.1  alnsn 	    SLJIT_MEM1(BPFJIT_BUF), k);
    644  1.1  alnsn 	if (status != SLJIT_SUCCESS)
    645  1.1  alnsn 		return status;
    646  1.1  alnsn 
    647  1.1  alnsn 	/* tmp1 &= 0xf */
    648  1.1  alnsn 	status = sljit_emit_op2(compiler,
    649  1.1  alnsn 	    SLJIT_AND,
    650  1.1  alnsn 	    BPFJIT_TMP1, 0,
    651  1.1  alnsn 	    BPFJIT_TMP1, 0,
    652  1.1  alnsn 	    SLJIT_IMM, 0xf);
    653  1.1  alnsn 	if (status != SLJIT_SUCCESS)
    654  1.1  alnsn 		return status;
    655  1.1  alnsn 
    656  1.1  alnsn 	/* tmp1 = tmp1 << 2 */
    657  1.1  alnsn 	status = sljit_emit_op2(compiler,
    658  1.1  alnsn 	    SLJIT_SHL,
    659  1.1  alnsn 	    BPFJIT_X, 0,
    660  1.1  alnsn 	    BPFJIT_TMP1, 0,
    661  1.1  alnsn 	    SLJIT_IMM, 2);
    662  1.1  alnsn 	if (status != SLJIT_SUCCESS)
    663  1.1  alnsn 		return status;
    664  1.1  alnsn 
    665  1.1  alnsn #ifdef _KERNEL
    666  1.1  alnsn 	over_mchain_jump = sljit_emit_jump(compiler, SLJIT_JUMP);
    667  1.1  alnsn 	if (over_mchain_jump == NULL)
    668  1.1  alnsn 		return SLJIT_ERR_ALLOC_FAILED;
    669  1.1  alnsn 
    670  1.1  alnsn 	/* entry point to mchain handler */
    671  1.1  alnsn 	label = sljit_emit_label(compiler);
    672  1.1  alnsn 	if (label == NULL)
    673  1.1  alnsn 		return SLJIT_ERR_ALLOC_FAILED;
    674  1.1  alnsn 	sljit_set_label(to_mchain_jump, label);
    675  1.1  alnsn 
    676  1.1  alnsn 	if (check_zero_buflen) {
    677  1.1  alnsn 		/* if (buflen != 0) return 0; */
    678  1.1  alnsn 		jump = sljit_emit_cmp(compiler,
    679  1.1  alnsn 		    SLJIT_C_NOT_EQUAL,
    680  1.1  alnsn 		    BPFJIT_BUFLEN, 0,
    681  1.1  alnsn 		    SLJIT_IMM, 0);
    682  1.1  alnsn 		if (jump == NULL)
    683  1.1  alnsn   			return SLJIT_ERR_ALLOC_FAILED;
    684  1.1  alnsn 		ret0[(*ret0_size)++] = jump;
    685  1.1  alnsn 	}
    686  1.1  alnsn 
    687  1.1  alnsn 	status = emit_xcall(compiler, pc, BPFJIT_TMP1, 0, &jump, &m_xbyte);
    688  1.1  alnsn 	if (status != SLJIT_SUCCESS)
    689  1.1  alnsn 		return status;
    690  1.1  alnsn 	ret0[(*ret0_size)++] = jump;
    691  1.1  alnsn 
    692  1.1  alnsn 	/* tmp1 &= 0xf */
    693  1.1  alnsn 	status = sljit_emit_op2(compiler,
    694  1.1  alnsn 	    SLJIT_AND,
    695  1.1  alnsn 	    BPFJIT_TMP1, 0,
    696  1.1  alnsn 	    BPFJIT_TMP1, 0,
    697  1.1  alnsn 	    SLJIT_IMM, 0xf);
    698  1.1  alnsn 	if (status != SLJIT_SUCCESS)
    699  1.1  alnsn 		return status;
    700  1.1  alnsn 
    701  1.1  alnsn 	/* tmp1 = tmp1 << 2 */
    702  1.1  alnsn 	status = sljit_emit_op2(compiler,
    703  1.1  alnsn 	    SLJIT_SHL,
    704  1.1  alnsn 	    BPFJIT_X, 0,
    705  1.1  alnsn 	    BPFJIT_TMP1, 0,
    706  1.1  alnsn 	    SLJIT_IMM, 2);
    707  1.1  alnsn 	if (status != SLJIT_SUCCESS)
    708  1.1  alnsn 		return status;
    709  1.1  alnsn 
    710  1.1  alnsn 
    711  1.1  alnsn 	label = sljit_emit_label(compiler);
    712  1.1  alnsn 	if (label == NULL)
    713  1.1  alnsn 		return SLJIT_ERR_ALLOC_FAILED;
    714  1.1  alnsn 	sljit_set_label(over_mchain_jump, label);
    715  1.1  alnsn #endif
    716  1.1  alnsn 
    717  1.1  alnsn 	return status;
    718  1.1  alnsn }
    719  1.1  alnsn 
    720  1.1  alnsn static int
    721  1.1  alnsn emit_pow2_division(struct sljit_compiler* compiler, uint32_t k)
    722  1.1  alnsn {
    723  1.1  alnsn 	int shift = 0;
    724  1.1  alnsn 	int status = SLJIT_SUCCESS;
    725  1.1  alnsn 
    726  1.1  alnsn 	while (k > 1) {
    727  1.1  alnsn 		k >>= 1;
    728  1.1  alnsn 		shift++;
    729  1.1  alnsn 	}
    730  1.1  alnsn 
    731  1.1  alnsn 	BPFJIT_ASSERT(k == 1 && shift < 32);
    732  1.1  alnsn 
    733  1.1  alnsn 	if (shift != 0) {
    734  1.1  alnsn 		status = sljit_emit_op2(compiler,
    735  1.1  alnsn 		    SLJIT_LSHR|SLJIT_INT_OP,
    736  1.1  alnsn 		    BPFJIT_A, 0,
    737  1.1  alnsn 		    BPFJIT_A, 0,
    738  1.1  alnsn 		    SLJIT_IMM, shift);
    739  1.1  alnsn 	}
    740  1.1  alnsn 
    741  1.1  alnsn 	return status;
    742  1.1  alnsn }
    743  1.1  alnsn 
    744  1.1  alnsn #if !defined(BPFJIT_USE_UDIV)
    745  1.1  alnsn static sljit_uw
    746  1.1  alnsn divide(sljit_uw x, sljit_uw y)
    747  1.1  alnsn {
    748  1.1  alnsn 
    749  1.1  alnsn 	return (uint32_t)x / (uint32_t)y;
    750  1.1  alnsn }
    751  1.1  alnsn #endif
    752  1.1  alnsn 
    753  1.1  alnsn /*
    754  1.1  alnsn  * Generate A = A / div.
    755  1.1  alnsn  * divt,divw are either SLJIT_IMM,pc->k or BPFJIT_X,0.
    756  1.1  alnsn  */
    757  1.1  alnsn static int
    758  1.1  alnsn emit_division(struct sljit_compiler* compiler, int divt, sljit_w divw)
    759  1.1  alnsn {
    760  1.1  alnsn 	int status;
    761  1.1  alnsn 
    762  1.1  alnsn #if BPFJIT_X == SLJIT_TEMPORARY_REG1 || \
    763  1.1  alnsn     BPFJIT_X == SLJIT_RETURN_REG     || \
    764  1.1  alnsn     BPFJIT_X == SLJIT_TEMPORARY_REG2 || \
    765  1.1  alnsn     BPFJIT_A == SLJIT_TEMPORARY_REG2
    766  1.1  alnsn #error "Not supported assignment of registers."
    767  1.1  alnsn #endif
    768  1.1  alnsn 
    769  1.1  alnsn #if BPFJIT_A != SLJIT_TEMPORARY_REG1
    770  1.1  alnsn 	status = sljit_emit_op1(compiler,
    771  1.1  alnsn 	    SLJIT_MOV,
    772  1.1  alnsn 	    SLJIT_TEMPORARY_REG1, 0,
    773  1.1  alnsn 	    BPFJIT_A, 0);
    774  1.1  alnsn 	if (status != SLJIT_SUCCESS)
    775  1.1  alnsn 		return status;
    776  1.1  alnsn #endif
    777  1.1  alnsn 
    778  1.1  alnsn 	status = sljit_emit_op1(compiler,
    779  1.1  alnsn 	    SLJIT_MOV,
    780  1.1  alnsn 	    SLJIT_TEMPORARY_REG2, 0,
    781  1.1  alnsn 	    divt, divw);
    782  1.1  alnsn 	if (status != SLJIT_SUCCESS)
    783  1.1  alnsn 		return status;
    784  1.1  alnsn 
    785  1.1  alnsn #if defined(BPFJIT_USE_UDIV)
    786  1.1  alnsn 	status = sljit_emit_op0(compiler, SLJIT_UDIV|SLJIT_INT_OP);
    787  1.1  alnsn 
    788  1.1  alnsn #if BPFJIT_A != SLJIT_TEMPORARY_REG1
    789  1.1  alnsn 	status = sljit_emit_op1(compiler,
    790  1.1  alnsn 	    SLJIT_MOV,
    791  1.1  alnsn 	    BPFJIT_A, 0,
    792  1.1  alnsn 	    SLJIT_TEMPORARY_REG1, 0);
    793  1.1  alnsn 	if (status != SLJIT_SUCCESS)
    794  1.1  alnsn 		return status;
    795  1.1  alnsn #endif
    796  1.1  alnsn #else
    797  1.1  alnsn 	status = sljit_emit_ijump(compiler,
    798  1.1  alnsn 	    SLJIT_CALL2,
    799  1.1  alnsn 	    SLJIT_IMM, SLJIT_FUNC_OFFSET(divide));
    800  1.1  alnsn 
    801  1.1  alnsn #if BPFJIT_A != SLJIT_RETURN_REG
    802  1.1  alnsn 	status = sljit_emit_op1(compiler,
    803  1.1  alnsn 	    SLJIT_MOV,
    804  1.1  alnsn 	    BPFJIT_A, 0,
    805  1.1  alnsn 	    SLJIT_RETURN_REG, 0);
    806  1.1  alnsn 	if (status != SLJIT_SUCCESS)
    807  1.1  alnsn 		return status;
    808  1.1  alnsn #endif
    809  1.1  alnsn #endif
    810  1.1  alnsn 
    811  1.1  alnsn 	return status;
    812  1.1  alnsn }
    813  1.1  alnsn 
    814  1.1  alnsn /*
    815  1.1  alnsn  * Count BPF_RET instructions.
    816  1.1  alnsn  */
    817  1.1  alnsn static size_t
    818  1.1  alnsn count_returns(struct bpf_insn *insns, size_t insn_count)
    819  1.1  alnsn {
    820  1.1  alnsn 	size_t i;
    821  1.1  alnsn 	size_t rv;
    822  1.1  alnsn 
    823  1.1  alnsn 	rv = 0;
    824  1.1  alnsn 	for (i = 0; i < insn_count; i++) {
    825  1.1  alnsn 		if (BPF_CLASS(insns[i].code) == BPF_RET)
    826  1.1  alnsn 			rv++;
    827  1.1  alnsn 	}
    828  1.1  alnsn 
    829  1.1  alnsn 	return rv;
    830  1.1  alnsn }
    831  1.1  alnsn 
    832  1.1  alnsn /*
    833  1.1  alnsn  * Return true if pc is a "read from packet" instruction.
    834  1.1  alnsn  * If length is not NULL and return value is true, *length will
    835  1.1  alnsn  * be set to a safe length required to read a packet.
    836  1.1  alnsn  */
    837  1.1  alnsn static bool
    838  1.1  alnsn read_pkt_insn(struct bpf_insn *pc, uint32_t *length)
    839  1.1  alnsn {
    840  1.1  alnsn 	bool rv;
    841  1.1  alnsn 	uint32_t width;
    842  1.1  alnsn 
    843  1.1  alnsn 	switch (BPF_CLASS(pc->code)) {
    844  1.1  alnsn 	default:
    845  1.1  alnsn 		rv = false;
    846  1.1  alnsn 		break;
    847  1.1  alnsn 
    848  1.1  alnsn 	case BPF_LD:
    849  1.1  alnsn 		rv = BPF_MODE(pc->code) == BPF_ABS ||
    850  1.1  alnsn 		     BPF_MODE(pc->code) == BPF_IND;
    851  1.1  alnsn 		if (rv)
    852  1.1  alnsn 			width = read_width(pc);
    853  1.1  alnsn 		break;
    854  1.1  alnsn 
    855  1.1  alnsn 	case BPF_LDX:
    856  1.1  alnsn 		rv = pc->code == (BPF_LDX|BPF_B|BPF_MSH);
    857  1.1  alnsn 		width = 1;
    858  1.1  alnsn 		break;
    859  1.1  alnsn 	}
    860  1.1  alnsn 
    861  1.1  alnsn 	if (rv && length != NULL) {
    862  1.1  alnsn 		*length = (pc->k > UINT32_MAX - width) ?
    863  1.1  alnsn 		    UINT32_MAX : pc->k + width;
    864  1.1  alnsn 	}
    865  1.1  alnsn 
    866  1.1  alnsn 	return rv;
    867  1.1  alnsn }
    868  1.1  alnsn 
    869  1.1  alnsn /*
    870  1.1  alnsn  * Set bj_check_length for all "read from packet" instructions
    871  1.1  alnsn  * in a linear block of instructions [from, to).
    872  1.1  alnsn  */
    873  1.1  alnsn static void
    874  1.1  alnsn set_check_length(struct bpf_insn *insns, struct bpfjit_insn_data *insn_dat,
    875  1.1  alnsn     size_t from, size_t to, uint32_t length)
    876  1.1  alnsn {
    877  1.1  alnsn 
    878  1.1  alnsn 	for (; from < to; from++) {
    879  1.1  alnsn 		if (read_pkt_insn(&insns[from], NULL)) {
    880  1.1  alnsn 			insn_dat[from].bj_aux.bj_rdata.bj_check_length = length;
    881  1.1  alnsn 			length = 0;
    882  1.1  alnsn 		}
    883  1.1  alnsn 	}
    884  1.1  alnsn }
    885  1.1  alnsn 
    886  1.1  alnsn /*
    887  1.1  alnsn  * The function divides instructions into blocks. Destination of a jump
    888  1.1  alnsn  * instruction starts a new block. BPF_RET and BPF_JMP instructions
    889  1.1  alnsn  * terminate a block. Blocks are linear, that is, there are no jumps out
    890  1.1  alnsn  * from the middle of a block and there are no jumps in to the middle of
    891  1.1  alnsn  * a block.
    892  1.1  alnsn  * If a block has one or more "read from packet" instructions,
    893  1.1  alnsn  * bj_check_length will be set to one value for the whole block and that
    894  1.1  alnsn  * value will be equal to the greatest value of safe lengths of "read from
    895  1.1  alnsn  * packet" instructions inside the block.
    896  1.1  alnsn  */
    897  1.1  alnsn static int
    898  1.1  alnsn optimize(struct bpf_insn *insns,
    899  1.1  alnsn     struct bpfjit_insn_data *insn_dat, size_t insn_count)
    900  1.1  alnsn {
    901  1.1  alnsn 	size_t i;
    902  1.1  alnsn 	size_t first_read;
    903  1.1  alnsn 	bool unreachable;
    904  1.1  alnsn 	uint32_t jt, jf;
    905  1.1  alnsn 	uint32_t length, safe_length;
    906  1.1  alnsn 	struct bpfjit_jump *jmp, *jtf;
    907  1.1  alnsn 
    908  1.1  alnsn 	for (i = 0; i < insn_count; i++)
    909  1.1  alnsn 		SLIST_INIT(&insn_dat[i].bj_jumps);
    910  1.1  alnsn 
    911  1.1  alnsn 	safe_length = 0;
    912  1.1  alnsn 	unreachable = false;
    913  1.1  alnsn 	first_read = SIZE_MAX;
    914  1.1  alnsn 
    915  1.1  alnsn 	for (i = 0; i < insn_count; i++) {
    916  1.1  alnsn 
    917  1.1  alnsn 		if (!SLIST_EMPTY(&insn_dat[i].bj_jumps)) {
    918  1.1  alnsn 			unreachable = false;
    919  1.1  alnsn 
    920  1.1  alnsn 			set_check_length(insns, insn_dat,
    921  1.1  alnsn 			    first_read, i, safe_length);
    922  1.1  alnsn 			first_read = SIZE_MAX;
    923  1.1  alnsn 
    924  1.1  alnsn 			safe_length = UINT32_MAX;
    925  1.1  alnsn 			SLIST_FOREACH(jmp, &insn_dat[i].bj_jumps, bj_entries) {
    926  1.1  alnsn 				if (jmp->bj_safe_length < safe_length)
    927  1.1  alnsn 					safe_length = jmp->bj_safe_length;
    928  1.1  alnsn 			}
    929  1.1  alnsn 		}
    930  1.1  alnsn 
    931  1.1  alnsn 		insn_dat[i].bj_unreachable = unreachable;
    932  1.1  alnsn 		if (unreachable)
    933  1.1  alnsn 			continue;
    934  1.1  alnsn 
    935  1.1  alnsn 		if (read_pkt_insn(&insns[i], &length)) {
    936  1.1  alnsn 			if (first_read == SIZE_MAX)
    937  1.1  alnsn 				first_read = i;
    938  1.1  alnsn 			if (length > safe_length)
    939  1.1  alnsn 				safe_length = length;
    940  1.1  alnsn 		}
    941  1.1  alnsn 
    942  1.1  alnsn 		switch (BPF_CLASS(insns[i].code)) {
    943  1.1  alnsn 		case BPF_RET:
    944  1.1  alnsn 			unreachable = true;
    945  1.1  alnsn 			continue;
    946  1.1  alnsn 
    947  1.1  alnsn 		case BPF_JMP:
    948  1.1  alnsn 			if (insns[i].code == (BPF_JMP|BPF_JA)) {
    949  1.1  alnsn 				jt = jf = insns[i].k;
    950  1.1  alnsn 			} else {
    951  1.1  alnsn 				jt = insns[i].jt;
    952  1.1  alnsn 				jf = insns[i].jf;
    953  1.1  alnsn 			}
    954  1.1  alnsn 
    955  1.1  alnsn 			if (jt >= insn_count - (i + 1) ||
    956  1.1  alnsn 			    jf >= insn_count - (i + 1)) {
    957  1.1  alnsn 				return -1;
    958  1.1  alnsn 			}
    959  1.1  alnsn 
    960  1.1  alnsn 			if (jt > 0 && jf > 0)
    961  1.1  alnsn 				unreachable = true;
    962  1.1  alnsn 
    963  1.1  alnsn 			jtf = insn_dat[i].bj_aux.bj_jdata.bj_jtf;
    964  1.1  alnsn 
    965  1.1  alnsn 			jtf[0].bj_jump = NULL;
    966  1.1  alnsn 			jtf[0].bj_safe_length = safe_length;
    967  1.1  alnsn 			SLIST_INSERT_HEAD(&insn_dat[i + 1 + jt].bj_jumps,
    968  1.1  alnsn 			    &jtf[0], bj_entries);
    969  1.1  alnsn 
    970  1.1  alnsn 			if (jf != jt) {
    971  1.1  alnsn 				jtf[1].bj_jump = NULL;
    972  1.1  alnsn 				jtf[1].bj_safe_length = safe_length;
    973  1.1  alnsn 				SLIST_INSERT_HEAD(&insn_dat[i + 1 + jf].bj_jumps,
    974  1.1  alnsn 				    &jtf[1], bj_entries);
    975  1.1  alnsn 			}
    976  1.1  alnsn 
    977  1.1  alnsn 			continue;
    978  1.1  alnsn 		}
    979  1.1  alnsn 	}
    980  1.1  alnsn 
    981  1.1  alnsn 	set_check_length(insns, insn_dat, first_read, insn_count, safe_length);
    982  1.1  alnsn 
    983  1.1  alnsn 	return 0;
    984  1.1  alnsn }
    985  1.1  alnsn 
    986  1.1  alnsn /*
    987  1.1  alnsn  * Count out-of-bounds and division by zero jumps.
    988  1.1  alnsn  *
    989  1.1  alnsn  * insn_dat should be initialized by optimize().
    990  1.1  alnsn  */
    991  1.1  alnsn static size_t
    992  1.1  alnsn get_ret0_size(struct bpf_insn *insns, struct bpfjit_insn_data *insn_dat,
    993  1.1  alnsn     size_t insn_count)
    994  1.1  alnsn {
    995  1.1  alnsn 	size_t rv = 0;
    996  1.1  alnsn 	size_t i;
    997  1.1  alnsn 
    998  1.1  alnsn 	for (i = 0; i < insn_count; i++) {
    999  1.1  alnsn 
   1000  1.1  alnsn 		if (read_pkt_insn(&insns[i], NULL)) {
   1001  1.1  alnsn 			if (insn_dat[i].bj_aux.bj_rdata.bj_check_length > 0)
   1002  1.1  alnsn 				rv++;
   1003  1.1  alnsn #ifdef _KERNEL
   1004  1.1  alnsn 			rv++;
   1005  1.1  alnsn #endif
   1006  1.1  alnsn 		}
   1007  1.1  alnsn 
   1008  1.1  alnsn 		if (insns[i].code == (BPF_LD|BPF_IND|BPF_B) ||
   1009  1.1  alnsn 		    insns[i].code == (BPF_LD|BPF_IND|BPF_H) ||
   1010  1.1  alnsn 		    insns[i].code == (BPF_LD|BPF_IND|BPF_W)) {
   1011  1.1  alnsn 			rv++;
   1012  1.1  alnsn 		}
   1013  1.1  alnsn 
   1014  1.1  alnsn 		if (insns[i].code == (BPF_ALU|BPF_DIV|BPF_X))
   1015  1.1  alnsn 			rv++;
   1016  1.1  alnsn 
   1017  1.1  alnsn 		if (insns[i].code == (BPF_ALU|BPF_DIV|BPF_K) &&
   1018  1.1  alnsn 		    insns[i].k == 0) {
   1019  1.1  alnsn 			rv++;
   1020  1.1  alnsn 		}
   1021  1.1  alnsn 	}
   1022  1.1  alnsn 
   1023  1.1  alnsn 	return rv;
   1024  1.1  alnsn }
   1025  1.1  alnsn 
   1026  1.1  alnsn /*
   1027  1.1  alnsn  * Convert BPF_ALU operations except BPF_NEG and BPF_DIV to sljit operation.
   1028  1.1  alnsn  */
   1029  1.1  alnsn static int
   1030  1.1  alnsn bpf_alu_to_sljit_op(struct bpf_insn *pc)
   1031  1.1  alnsn {
   1032  1.1  alnsn 
   1033  1.1  alnsn 	/*
   1034  1.1  alnsn 	 * Note: all supported 64bit arches have 32bit multiply
   1035  1.1  alnsn 	 * instruction so SLJIT_INT_OP doesn't have any overhead.
   1036  1.1  alnsn 	 */
   1037  1.1  alnsn 	switch (BPF_OP(pc->code)) {
   1038  1.1  alnsn 	case BPF_ADD: return SLJIT_ADD;
   1039  1.1  alnsn 	case BPF_SUB: return SLJIT_SUB;
   1040  1.1  alnsn 	case BPF_MUL: return SLJIT_MUL|SLJIT_INT_OP;
   1041  1.1  alnsn 	case BPF_OR:  return SLJIT_OR;
   1042  1.1  alnsn 	case BPF_AND: return SLJIT_AND;
   1043  1.1  alnsn 	case BPF_LSH: return SLJIT_SHL;
   1044  1.1  alnsn 	case BPF_RSH: return SLJIT_LSHR|SLJIT_INT_OP;
   1045  1.1  alnsn 	default:
   1046  1.1  alnsn 		BPFJIT_ASSERT(false);
   1047  1.1  alnsn 		return 0;
   1048  1.1  alnsn 	}
   1049  1.1  alnsn }
   1050  1.1  alnsn 
   1051  1.1  alnsn /*
   1052  1.1  alnsn  * Convert BPF_JMP operations except BPF_JA to sljit condition.
   1053  1.1  alnsn  */
   1054  1.1  alnsn static int
   1055  1.1  alnsn bpf_jmp_to_sljit_cond(struct bpf_insn *pc, bool negate)
   1056  1.1  alnsn {
   1057  1.1  alnsn 	/*
   1058  1.1  alnsn 	 * Note: all supported 64bit arches have 32bit comparison
   1059  1.1  alnsn 	 * instructions so SLJIT_INT_OP doesn't have any overhead.
   1060  1.1  alnsn 	 */
   1061  1.1  alnsn 	int rv = SLJIT_INT_OP;
   1062  1.1  alnsn 
   1063  1.1  alnsn 	switch (BPF_OP(pc->code)) {
   1064  1.1  alnsn 	case BPF_JGT:
   1065  1.1  alnsn 		rv |= negate ? SLJIT_C_LESS_EQUAL : SLJIT_C_GREATER;
   1066  1.1  alnsn 		break;
   1067  1.1  alnsn 	case BPF_JGE:
   1068  1.1  alnsn 		rv |= negate ? SLJIT_C_LESS : SLJIT_C_GREATER_EQUAL;
   1069  1.1  alnsn 		break;
   1070  1.1  alnsn 	case BPF_JEQ:
   1071  1.1  alnsn 		rv |= negate ? SLJIT_C_NOT_EQUAL : SLJIT_C_EQUAL;
   1072  1.1  alnsn 		break;
   1073  1.1  alnsn 	case BPF_JSET:
   1074  1.1  alnsn 		rv |= negate ? SLJIT_C_EQUAL : SLJIT_C_NOT_EQUAL;
   1075  1.1  alnsn 		break;
   1076  1.1  alnsn 	default:
   1077  1.1  alnsn 		BPFJIT_ASSERT(false);
   1078  1.1  alnsn 	}
   1079  1.1  alnsn 
   1080  1.1  alnsn 	return rv;
   1081  1.1  alnsn }
   1082  1.1  alnsn 
   1083  1.1  alnsn static unsigned int
   1084  1.1  alnsn bpfjit_optimization_hints(struct bpf_insn *insns, size_t insn_count)
   1085  1.1  alnsn {
   1086  1.1  alnsn 	unsigned int rv = BPFJIT_INIT_A;
   1087  1.1  alnsn 	struct bpf_insn *pc;
   1088  1.2  alnsn 	unsigned int minm, maxm;
   1089  1.1  alnsn 
   1090  1.1  alnsn 	BPFJIT_ASSERT(BPF_MEMWORDS - 1 <= 0xff);
   1091  1.1  alnsn 
   1092  1.1  alnsn 	maxm = 0;
   1093  1.1  alnsn 	minm = BPF_MEMWORDS - 1;
   1094  1.1  alnsn 
   1095  1.1  alnsn 	for (pc = insns; pc != insns + insn_count; pc++) {
   1096  1.1  alnsn 		switch (BPF_CLASS(pc->code)) {
   1097  1.1  alnsn 		case BPF_LD:
   1098  1.1  alnsn 			if (BPF_MODE(pc->code) == BPF_IND)
   1099  1.1  alnsn 				rv |= BPFJIT_INIT_X;
   1100  1.1  alnsn 			if (BPF_MODE(pc->code) == BPF_MEM &&
   1101  1.1  alnsn 			    (uint32_t)pc->k < BPF_MEMWORDS) {
   1102  1.1  alnsn 				if (pc->k > maxm)
   1103  1.1  alnsn 					maxm = pc->k;
   1104  1.1  alnsn 				if (pc->k < minm)
   1105  1.1  alnsn 					minm = pc->k;
   1106  1.1  alnsn 			}
   1107  1.1  alnsn 			continue;
   1108  1.1  alnsn 		case BPF_LDX:
   1109  1.1  alnsn 			rv |= BPFJIT_INIT_X;
   1110  1.1  alnsn 			if (BPF_MODE(pc->code) == BPF_MEM &&
   1111  1.1  alnsn 			    (uint32_t)pc->k < BPF_MEMWORDS) {
   1112  1.1  alnsn 				if (pc->k > maxm)
   1113  1.1  alnsn 					maxm = pc->k;
   1114  1.1  alnsn 				if (pc->k < minm)
   1115  1.1  alnsn 					minm = pc->k;
   1116  1.1  alnsn 			}
   1117  1.1  alnsn 			continue;
   1118  1.1  alnsn 		case BPF_ST:
   1119  1.1  alnsn 			if ((uint32_t)pc->k < BPF_MEMWORDS) {
   1120  1.1  alnsn 				if (pc->k > maxm)
   1121  1.1  alnsn 					maxm = pc->k;
   1122  1.1  alnsn 				if (pc->k < minm)
   1123  1.1  alnsn 					minm = pc->k;
   1124  1.1  alnsn 			}
   1125  1.1  alnsn 			continue;
   1126  1.1  alnsn 		case BPF_STX:
   1127  1.1  alnsn 			rv |= BPFJIT_INIT_X;
   1128  1.1  alnsn 			if ((uint32_t)pc->k < BPF_MEMWORDS) {
   1129  1.1  alnsn 				if (pc->k > maxm)
   1130  1.1  alnsn 					maxm = pc->k;
   1131  1.1  alnsn 				if (pc->k < minm)
   1132  1.1  alnsn 					minm = pc->k;
   1133  1.1  alnsn 			}
   1134  1.1  alnsn 			continue;
   1135  1.1  alnsn 		case BPF_ALU:
   1136  1.1  alnsn 			if (pc->code == (BPF_ALU|BPF_NEG))
   1137  1.1  alnsn 				continue;
   1138  1.1  alnsn 			if (BPF_SRC(pc->code) == BPF_X)
   1139  1.1  alnsn 				rv |= BPFJIT_INIT_X;
   1140  1.1  alnsn 			continue;
   1141  1.1  alnsn 		case BPF_JMP:
   1142  1.1  alnsn 			if (pc->code == (BPF_JMP|BPF_JA))
   1143  1.1  alnsn 				continue;
   1144  1.1  alnsn 			if (BPF_SRC(pc->code) == BPF_X)
   1145  1.1  alnsn 				rv |= BPFJIT_INIT_X;
   1146  1.1  alnsn 			continue;
   1147  1.1  alnsn 		case BPF_RET:
   1148  1.1  alnsn 			continue;
   1149  1.1  alnsn 		case BPF_MISC:
   1150  1.1  alnsn 			rv |= BPFJIT_INIT_X;
   1151  1.1  alnsn 			continue;
   1152  1.1  alnsn 		default:
   1153  1.1  alnsn 			BPFJIT_ASSERT(false);
   1154  1.1  alnsn 		}
   1155  1.1  alnsn 	}
   1156  1.1  alnsn 
   1157  1.1  alnsn 	return rv | (maxm << 8) | minm;
   1158  1.1  alnsn }
   1159  1.1  alnsn 
   1160  1.1  alnsn /*
   1161  1.1  alnsn  * Convert BPF_K and BPF_X to sljit register.
   1162  1.1  alnsn  */
   1163  1.1  alnsn static int
   1164  1.1  alnsn kx_to_reg(struct bpf_insn *pc)
   1165  1.1  alnsn {
   1166  1.1  alnsn 
   1167  1.1  alnsn 	switch (BPF_SRC(pc->code)) {
   1168  1.1  alnsn 	case BPF_K: return SLJIT_IMM;
   1169  1.1  alnsn 	case BPF_X: return BPFJIT_X;
   1170  1.1  alnsn 	default:
   1171  1.1  alnsn 		BPFJIT_ASSERT(false);
   1172  1.1  alnsn 		return 0;
   1173  1.1  alnsn 	}
   1174  1.1  alnsn }
   1175  1.1  alnsn 
   1176  1.1  alnsn static sljit_w
   1177  1.1  alnsn kx_to_reg_arg(struct bpf_insn *pc)
   1178  1.1  alnsn {
   1179  1.1  alnsn 
   1180  1.1  alnsn 	switch (BPF_SRC(pc->code)) {
   1181  1.1  alnsn 	case BPF_K: return (uint32_t)pc->k; /* SLJIT_IMM, pc->k, */
   1182  1.1  alnsn 	case BPF_X: return 0;               /* BPFJIT_X, 0,      */
   1183  1.1  alnsn 	default:
   1184  1.1  alnsn 		BPFJIT_ASSERT(false);
   1185  1.1  alnsn 		return 0;
   1186  1.1  alnsn 	}
   1187  1.1  alnsn }
   1188  1.1  alnsn 
   1189  1.1  alnsn bpfjit_function_t
   1190  1.1  alnsn bpfjit_generate_code(struct bpf_insn *insns, size_t insn_count)
   1191  1.1  alnsn {
   1192  1.1  alnsn 	void *rv;
   1193  1.1  alnsn 	size_t i;
   1194  1.1  alnsn 	int status;
   1195  1.1  alnsn 	int branching, negate;
   1196  1.1  alnsn 	unsigned int rval, mode, src;
   1197  1.1  alnsn 	int ntmp;
   1198  1.2  alnsn 	unsigned int locals_size;
   1199  1.2  alnsn 	unsigned int minm, maxm; /* min/max k for M[k] */
   1200  1.2  alnsn 	size_t mem_locals_start; /* start of M[] array */
   1201  1.1  alnsn 	unsigned int opts;
   1202  1.1  alnsn 	struct bpf_insn *pc;
   1203  1.1  alnsn 	struct sljit_compiler* compiler;
   1204  1.1  alnsn 
   1205  1.1  alnsn 	/* a list of jumps to a normal return from a generated function */
   1206  1.1  alnsn 	struct sljit_jump **returns;
   1207  1.1  alnsn 	size_t returns_size, returns_maxsize;
   1208  1.1  alnsn 
   1209  1.1  alnsn 	/* a list of jumps to out-of-bound return from a generated function */
   1210  1.1  alnsn 	struct sljit_jump **ret0;
   1211  1.3  rmind 	size_t ret0_size = 0, ret0_maxsize = 0;
   1212  1.1  alnsn 
   1213  1.1  alnsn 	struct bpfjit_insn_data *insn_dat;
   1214  1.1  alnsn 
   1215  1.1  alnsn 	/* for local use */
   1216  1.1  alnsn 	struct sljit_label *label;
   1217  1.1  alnsn 	struct sljit_jump *jump;
   1218  1.1  alnsn 	struct bpfjit_jump *bjump, *jtf;
   1219  1.1  alnsn 
   1220  1.1  alnsn 	struct sljit_jump *to_mchain_jump;
   1221  1.1  alnsn 
   1222  1.1  alnsn 	uint32_t jt, jf;
   1223  1.1  alnsn 
   1224  1.1  alnsn 	rv = NULL;
   1225  1.1  alnsn 	compiler = NULL;
   1226  1.1  alnsn 	insn_dat = NULL;
   1227  1.1  alnsn 	returns = NULL;
   1228  1.1  alnsn 	ret0 = NULL;
   1229  1.1  alnsn 
   1230  1.1  alnsn 	opts = bpfjit_optimization_hints(insns, insn_count);
   1231  1.1  alnsn 	minm = opts & 0xff;
   1232  1.1  alnsn 	maxm = (opts >> 8) & 0xff;
   1233  1.1  alnsn 	mem_locals_start = mem_local_offset(0, 0);
   1234  1.1  alnsn 	locals_size = (minm <= maxm) ?
   1235  1.1  alnsn 	    mem_local_offset(maxm + 1, minm) : mem_locals_start;
   1236  1.1  alnsn 
   1237  1.1  alnsn 	ntmp = 4;
   1238  1.1  alnsn #ifdef _KERNEL
   1239  1.1  alnsn 	ntmp += 1; /* for BPFJIT_KERN_TMP */
   1240  1.1  alnsn #endif
   1241  1.1  alnsn 
   1242  1.1  alnsn 	returns_maxsize = count_returns(insns, insn_count);
   1243  1.1  alnsn 	if (returns_maxsize  == 0)
   1244  1.1  alnsn 		goto fail;
   1245  1.1  alnsn 
   1246  1.3  rmind 	insn_dat = BPFJIT_ALLOC(insn_count * sizeof(insn_dat[0]));
   1247  1.1  alnsn 	if (insn_dat == NULL)
   1248  1.1  alnsn 		goto fail;
   1249  1.1  alnsn 
   1250  1.1  alnsn 	if (optimize(insns, insn_dat, insn_count) < 0)
   1251  1.1  alnsn 		goto fail;
   1252  1.1  alnsn 
   1253  1.1  alnsn 	ret0_size = 0;
   1254  1.1  alnsn 	ret0_maxsize = get_ret0_size(insns, insn_dat, insn_count);
   1255  1.1  alnsn 	if (ret0_maxsize > 0) {
   1256  1.3  rmind 		ret0 = BPFJIT_ALLOC(ret0_maxsize * sizeof(ret0[0]));
   1257  1.1  alnsn 		if (ret0 == NULL)
   1258  1.1  alnsn 			goto fail;
   1259  1.1  alnsn 	}
   1260  1.1  alnsn 
   1261  1.1  alnsn 	returns_size = 0;
   1262  1.3  rmind 	returns = BPFJIT_ALLOC(returns_maxsize * sizeof(returns[0]));
   1263  1.1  alnsn 	if (returns == NULL)
   1264  1.1  alnsn 		goto fail;
   1265  1.1  alnsn 
   1266  1.1  alnsn 	compiler = sljit_create_compiler();
   1267  1.1  alnsn 	if (compiler == NULL)
   1268  1.1  alnsn 		goto fail;
   1269  1.1  alnsn 
   1270  1.1  alnsn #if !defined(_KERNEL) && defined(SLJIT_VERBOSE) && SLJIT_VERBOSE
   1271  1.1  alnsn 	sljit_compiler_verbose(compiler, stderr);
   1272  1.1  alnsn #endif
   1273  1.1  alnsn 
   1274  1.1  alnsn 	status = sljit_emit_enter(compiler, 3, ntmp, 3, locals_size);
   1275  1.1  alnsn 	if (status != SLJIT_SUCCESS)
   1276  1.1  alnsn 		goto fail;
   1277  1.1  alnsn 
   1278  1.1  alnsn 	for (i = mem_locals_start; i < locals_size; i+= sizeof(uint32_t)) {
   1279  1.1  alnsn 		status = sljit_emit_op1(compiler,
   1280  1.1  alnsn 		    SLJIT_MOV_UI,
   1281  1.1  alnsn 		    SLJIT_MEM1(SLJIT_LOCALS_REG), i,
   1282  1.1  alnsn 		    SLJIT_IMM, 0);
   1283  1.1  alnsn 		if (status != SLJIT_SUCCESS)
   1284  1.1  alnsn 			goto fail;
   1285  1.1  alnsn 	}
   1286  1.1  alnsn 
   1287  1.1  alnsn 	if (opts & BPFJIT_INIT_A) {
   1288  1.1  alnsn 		/* A = 0; */
   1289  1.1  alnsn 		status = sljit_emit_op1(compiler,
   1290  1.1  alnsn 		    SLJIT_MOV,
   1291  1.1  alnsn 		    BPFJIT_A, 0,
   1292  1.1  alnsn 		    SLJIT_IMM, 0);
   1293  1.1  alnsn 		if (status != SLJIT_SUCCESS)
   1294  1.1  alnsn 			goto fail;
   1295  1.1  alnsn 	}
   1296  1.1  alnsn 
   1297  1.1  alnsn 	if (opts & BPFJIT_INIT_X) {
   1298  1.1  alnsn 		/* X = 0; */
   1299  1.1  alnsn 		status = sljit_emit_op1(compiler,
   1300  1.1  alnsn 		    SLJIT_MOV,
   1301  1.1  alnsn 		    BPFJIT_X, 0,
   1302  1.1  alnsn 		    SLJIT_IMM, 0);
   1303  1.1  alnsn 		if (status != SLJIT_SUCCESS)
   1304  1.1  alnsn 			goto fail;
   1305  1.1  alnsn 	}
   1306  1.1  alnsn 
   1307  1.1  alnsn 	for (i = 0; i < insn_count; i++) {
   1308  1.1  alnsn 		if (insn_dat[i].bj_unreachable)
   1309  1.1  alnsn 			continue;
   1310  1.1  alnsn 
   1311  1.1  alnsn 		to_mchain_jump = NULL;
   1312  1.1  alnsn 
   1313  1.1  alnsn 		/*
   1314  1.1  alnsn 		 * Resolve jumps to the current insn.
   1315  1.1  alnsn 		 */
   1316  1.1  alnsn 		label = NULL;
   1317  1.1  alnsn 		SLIST_FOREACH(bjump, &insn_dat[i].bj_jumps, bj_entries) {
   1318  1.1  alnsn 			if (bjump->bj_jump != NULL) {
   1319  1.1  alnsn 				if (label == NULL)
   1320  1.1  alnsn 					label = sljit_emit_label(compiler);
   1321  1.1  alnsn 				if (label == NULL)
   1322  1.1  alnsn 					goto fail;
   1323  1.1  alnsn 				sljit_set_label(bjump->bj_jump, label);
   1324  1.1  alnsn 			}
   1325  1.1  alnsn 		}
   1326  1.1  alnsn 
   1327  1.1  alnsn 		if (read_pkt_insn(&insns[i], NULL) &&
   1328  1.1  alnsn 		    insn_dat[i].bj_aux.bj_rdata.bj_check_length > 0) {
   1329  1.1  alnsn 			/* if (buflen < bj_check_length) return 0; */
   1330  1.1  alnsn 			jump = sljit_emit_cmp(compiler,
   1331  1.1  alnsn 			    SLJIT_C_LESS,
   1332  1.1  alnsn 			    BPFJIT_BUFLEN, 0,
   1333  1.1  alnsn 			    SLJIT_IMM,
   1334  1.1  alnsn 			    insn_dat[i].bj_aux.bj_rdata.bj_check_length);
   1335  1.1  alnsn 			if (jump == NULL)
   1336  1.1  alnsn 		  		goto fail;
   1337  1.1  alnsn #ifdef _KERNEL
   1338  1.1  alnsn 			to_mchain_jump = jump;
   1339  1.1  alnsn #else
   1340  1.1  alnsn 			ret0[ret0_size++] = jump;
   1341  1.1  alnsn #endif
   1342  1.1  alnsn 		}
   1343  1.1  alnsn 
   1344  1.1  alnsn 		pc = &insns[i];
   1345  1.1  alnsn 		switch (BPF_CLASS(pc->code)) {
   1346  1.1  alnsn 
   1347  1.1  alnsn 		default:
   1348  1.1  alnsn 			goto fail;
   1349  1.1  alnsn 
   1350  1.1  alnsn 		case BPF_LD:
   1351  1.1  alnsn 			/* BPF_LD+BPF_IMM          A <- k */
   1352  1.1  alnsn 			if (pc->code == (BPF_LD|BPF_IMM)) {
   1353  1.1  alnsn 				status = sljit_emit_op1(compiler,
   1354  1.1  alnsn 				    SLJIT_MOV,
   1355  1.1  alnsn 				    BPFJIT_A, 0,
   1356  1.1  alnsn 				    SLJIT_IMM, (uint32_t)pc->k);
   1357  1.1  alnsn 				if (status != SLJIT_SUCCESS)
   1358  1.1  alnsn 					goto fail;
   1359  1.1  alnsn 
   1360  1.1  alnsn 				continue;
   1361  1.1  alnsn 			}
   1362  1.1  alnsn 
   1363  1.1  alnsn 			/* BPF_LD+BPF_MEM          A <- M[k] */
   1364  1.1  alnsn 			if (pc->code == (BPF_LD|BPF_MEM)) {
   1365  1.1  alnsn 				if (pc->k < minm || pc->k > maxm)
   1366  1.1  alnsn 					goto fail;
   1367  1.1  alnsn 				status = sljit_emit_op1(compiler,
   1368  1.1  alnsn 				    SLJIT_MOV_UI,
   1369  1.1  alnsn 				    BPFJIT_A, 0,
   1370  1.1  alnsn 				    SLJIT_MEM1(SLJIT_LOCALS_REG),
   1371  1.1  alnsn 				    mem_local_offset(pc->k, minm));
   1372  1.1  alnsn 				if (status != SLJIT_SUCCESS)
   1373  1.1  alnsn 					goto fail;
   1374  1.1  alnsn 
   1375  1.1  alnsn 				continue;
   1376  1.1  alnsn 			}
   1377  1.1  alnsn 
   1378  1.1  alnsn 			/* BPF_LD+BPF_W+BPF_LEN    A <- len */
   1379  1.1  alnsn 			if (pc->code == (BPF_LD|BPF_W|BPF_LEN)) {
   1380  1.1  alnsn 				status = sljit_emit_op1(compiler,
   1381  1.1  alnsn 				    SLJIT_MOV,
   1382  1.1  alnsn 				    BPFJIT_A, 0,
   1383  1.1  alnsn 				    BPFJIT_WIRELEN, 0);
   1384  1.1  alnsn 				if (status != SLJIT_SUCCESS)
   1385  1.1  alnsn 					goto fail;
   1386  1.1  alnsn 
   1387  1.1  alnsn 				continue;
   1388  1.1  alnsn 			}
   1389  1.1  alnsn 
   1390  1.1  alnsn 			mode = BPF_MODE(pc->code);
   1391  1.1  alnsn 			if (mode != BPF_ABS && mode != BPF_IND)
   1392  1.1  alnsn 				goto fail;
   1393  1.1  alnsn 
   1394  1.1  alnsn 			status = emit_pkt_read(compiler, pc,
   1395  1.1  alnsn 			    to_mchain_jump, ret0, &ret0_size);
   1396  1.1  alnsn 			if (status != SLJIT_SUCCESS)
   1397  1.1  alnsn 				goto fail;
   1398  1.1  alnsn 
   1399  1.1  alnsn 			continue;
   1400  1.1  alnsn 
   1401  1.1  alnsn 		case BPF_LDX:
   1402  1.1  alnsn 			mode = BPF_MODE(pc->code);
   1403  1.1  alnsn 
   1404  1.1  alnsn 			/* BPF_LDX+BPF_W+BPF_IMM    X <- k */
   1405  1.1  alnsn 			if (mode == BPF_IMM) {
   1406  1.1  alnsn 				if (BPF_SIZE(pc->code) != BPF_W)
   1407  1.1  alnsn 					goto fail;
   1408  1.1  alnsn 				status = sljit_emit_op1(compiler,
   1409  1.1  alnsn 				    SLJIT_MOV,
   1410  1.1  alnsn 				    BPFJIT_X, 0,
   1411  1.1  alnsn 				    SLJIT_IMM, (uint32_t)pc->k);
   1412  1.1  alnsn 				if (status != SLJIT_SUCCESS)
   1413  1.1  alnsn 					goto fail;
   1414  1.1  alnsn 
   1415  1.1  alnsn 				continue;
   1416  1.1  alnsn 			}
   1417  1.1  alnsn 
   1418  1.1  alnsn 			/* BPF_LDX+BPF_W+BPF_LEN    X <- len */
   1419  1.1  alnsn 			if (mode == BPF_LEN) {
   1420  1.1  alnsn 				if (BPF_SIZE(pc->code) != BPF_W)
   1421  1.1  alnsn 					goto fail;
   1422  1.1  alnsn 				status = sljit_emit_op1(compiler,
   1423  1.1  alnsn 				    SLJIT_MOV,
   1424  1.1  alnsn 				    BPFJIT_X, 0,
   1425  1.1  alnsn 				    BPFJIT_WIRELEN, 0);
   1426  1.1  alnsn 				if (status != SLJIT_SUCCESS)
   1427  1.1  alnsn 					goto fail;
   1428  1.1  alnsn 
   1429  1.1  alnsn 				continue;
   1430  1.1  alnsn 			}
   1431  1.1  alnsn 
   1432  1.1  alnsn 			/* BPF_LDX+BPF_W+BPF_MEM    X <- M[k] */
   1433  1.1  alnsn 			if (mode == BPF_MEM) {
   1434  1.1  alnsn 				if (BPF_SIZE(pc->code) != BPF_W)
   1435  1.1  alnsn 					goto fail;
   1436  1.1  alnsn 				if (pc->k < minm || pc->k > maxm)
   1437  1.1  alnsn 					goto fail;
   1438  1.1  alnsn 				status = sljit_emit_op1(compiler,
   1439  1.1  alnsn 				    SLJIT_MOV_UI,
   1440  1.1  alnsn 				    BPFJIT_X, 0,
   1441  1.1  alnsn 				    SLJIT_MEM1(SLJIT_LOCALS_REG),
   1442  1.1  alnsn 				    mem_local_offset(pc->k, minm));
   1443  1.1  alnsn 				if (status != SLJIT_SUCCESS)
   1444  1.1  alnsn 					goto fail;
   1445  1.1  alnsn 
   1446  1.1  alnsn 				continue;
   1447  1.1  alnsn 			}
   1448  1.1  alnsn 
   1449  1.1  alnsn 			/* BPF_LDX+BPF_B+BPF_MSH    X <- 4*(P[k:1]&0xf) */
   1450  1.1  alnsn 			if (mode != BPF_MSH || BPF_SIZE(pc->code) != BPF_B)
   1451  1.1  alnsn 				goto fail;
   1452  1.1  alnsn 
   1453  1.1  alnsn 			status = emit_msh(compiler, pc,
   1454  1.1  alnsn 			    to_mchain_jump, ret0, &ret0_size);
   1455  1.1  alnsn 			if (status != SLJIT_SUCCESS)
   1456  1.1  alnsn 				goto fail;
   1457  1.1  alnsn 
   1458  1.1  alnsn 			continue;
   1459  1.1  alnsn 
   1460  1.1  alnsn 		case BPF_ST:
   1461  1.1  alnsn 			if (pc->code != BPF_ST || pc->k < minm || pc->k > maxm)
   1462  1.1  alnsn 				goto fail;
   1463  1.1  alnsn 
   1464  1.1  alnsn 			status = sljit_emit_op1(compiler,
   1465  1.1  alnsn 			    SLJIT_MOV_UI,
   1466  1.1  alnsn 			    SLJIT_MEM1(SLJIT_LOCALS_REG),
   1467  1.1  alnsn 			    mem_local_offset(pc->k, minm),
   1468  1.1  alnsn 			    BPFJIT_A, 0);
   1469  1.1  alnsn 			if (status != SLJIT_SUCCESS)
   1470  1.1  alnsn 				goto fail;
   1471  1.1  alnsn 
   1472  1.1  alnsn 			continue;
   1473  1.1  alnsn 
   1474  1.1  alnsn 		case BPF_STX:
   1475  1.1  alnsn 			if (pc->code != BPF_STX || pc->k < minm || pc->k > maxm)
   1476  1.1  alnsn 				goto fail;
   1477  1.1  alnsn 
   1478  1.1  alnsn 			status = sljit_emit_op1(compiler,
   1479  1.1  alnsn 			    SLJIT_MOV_UI,
   1480  1.1  alnsn 			    SLJIT_MEM1(SLJIT_LOCALS_REG),
   1481  1.1  alnsn 			    mem_local_offset(pc->k, minm),
   1482  1.1  alnsn 			    BPFJIT_X, 0);
   1483  1.1  alnsn 			if (status != SLJIT_SUCCESS)
   1484  1.1  alnsn 				goto fail;
   1485  1.1  alnsn 
   1486  1.1  alnsn 			continue;
   1487  1.1  alnsn 
   1488  1.1  alnsn 		case BPF_ALU:
   1489  1.1  alnsn 
   1490  1.1  alnsn 			if (pc->code == (BPF_ALU|BPF_NEG)) {
   1491  1.1  alnsn 				status = sljit_emit_op1(compiler,
   1492  1.1  alnsn 				    SLJIT_NEG,
   1493  1.1  alnsn 				    BPFJIT_A, 0,
   1494  1.1  alnsn 				    BPFJIT_A, 0);
   1495  1.1  alnsn 				if (status != SLJIT_SUCCESS)
   1496  1.1  alnsn 					goto fail;
   1497  1.1  alnsn 
   1498  1.1  alnsn 				continue;
   1499  1.1  alnsn 			}
   1500  1.1  alnsn 
   1501  1.1  alnsn 			if (BPF_OP(pc->code) != BPF_DIV) {
   1502  1.1  alnsn 				status = sljit_emit_op2(compiler,
   1503  1.1  alnsn 				    bpf_alu_to_sljit_op(pc),
   1504  1.1  alnsn 				    BPFJIT_A, 0,
   1505  1.1  alnsn 				    BPFJIT_A, 0,
   1506  1.1  alnsn 				    kx_to_reg(pc), kx_to_reg_arg(pc));
   1507  1.1  alnsn 				if (status != SLJIT_SUCCESS)
   1508  1.1  alnsn 					goto fail;
   1509  1.1  alnsn 
   1510  1.1  alnsn 				continue;
   1511  1.1  alnsn 			}
   1512  1.1  alnsn 
   1513  1.1  alnsn 			/* BPF_DIV */
   1514  1.1  alnsn 
   1515  1.1  alnsn 			src = BPF_SRC(pc->code);
   1516  1.1  alnsn 			if (src != BPF_X && src != BPF_K)
   1517  1.1  alnsn 				goto fail;
   1518  1.1  alnsn 
   1519  1.1  alnsn 			/* division by zero? */
   1520  1.1  alnsn 			if (src == BPF_X) {
   1521  1.1  alnsn 				jump = sljit_emit_cmp(compiler,
   1522  1.1  alnsn 				    SLJIT_C_EQUAL|SLJIT_INT_OP,
   1523  1.1  alnsn 				    BPFJIT_X, 0,
   1524  1.1  alnsn 				    SLJIT_IMM, 0);
   1525  1.1  alnsn 				if (jump == NULL)
   1526  1.1  alnsn 					goto fail;
   1527  1.1  alnsn 				ret0[ret0_size++] = jump;
   1528  1.1  alnsn 			} else if (pc->k == 0) {
   1529  1.1  alnsn 				jump = sljit_emit_jump(compiler, SLJIT_JUMP);
   1530  1.1  alnsn 				if (jump == NULL)
   1531  1.1  alnsn 					goto fail;
   1532  1.1  alnsn 				ret0[ret0_size++] = jump;
   1533  1.1  alnsn 			}
   1534  1.1  alnsn 
   1535  1.1  alnsn 			if (src == BPF_X) {
   1536  1.1  alnsn 				status = emit_division(compiler, BPFJIT_X, 0);
   1537  1.1  alnsn 				if (status != SLJIT_SUCCESS)
   1538  1.1  alnsn 					goto fail;
   1539  1.1  alnsn 			} else if (pc->k != 0) {
   1540  1.1  alnsn 				if (pc->k & (pc->k - 1)) {
   1541  1.1  alnsn 				    status = emit_division(compiler,
   1542  1.1  alnsn 				        SLJIT_IMM, (uint32_t)pc->k);
   1543  1.1  alnsn 				} else {
   1544  1.1  alnsn     				    status = emit_pow2_division(compiler,
   1545  1.1  alnsn 				        (uint32_t)pc->k);
   1546  1.1  alnsn 				}
   1547  1.1  alnsn 				if (status != SLJIT_SUCCESS)
   1548  1.1  alnsn 					goto fail;
   1549  1.1  alnsn 			}
   1550  1.1  alnsn 
   1551  1.1  alnsn 			continue;
   1552  1.1  alnsn 
   1553  1.1  alnsn 		case BPF_JMP:
   1554  1.1  alnsn 
   1555  1.1  alnsn 			if (pc->code == (BPF_JMP|BPF_JA)) {
   1556  1.1  alnsn 				jt = jf = pc->k;
   1557  1.1  alnsn 			} else {
   1558  1.1  alnsn 				jt = pc->jt;
   1559  1.1  alnsn 				jf = pc->jf;
   1560  1.1  alnsn 			}
   1561  1.1  alnsn 
   1562  1.1  alnsn 			negate = (jt == 0) ? 1 : 0;
   1563  1.1  alnsn 			branching = (jt == jf) ? 0 : 1;
   1564  1.1  alnsn 			jtf = insn_dat[i].bj_aux.bj_jdata.bj_jtf;
   1565  1.1  alnsn 
   1566  1.1  alnsn 			if (branching) {
   1567  1.1  alnsn 				if (BPF_OP(pc->code) != BPF_JSET) {
   1568  1.1  alnsn 					jump = sljit_emit_cmp(compiler,
   1569  1.1  alnsn 					    bpf_jmp_to_sljit_cond(pc, negate),
   1570  1.1  alnsn 					    BPFJIT_A, 0,
   1571  1.1  alnsn 					    kx_to_reg(pc), kx_to_reg_arg(pc));
   1572  1.1  alnsn 				} else {
   1573  1.1  alnsn 					status = sljit_emit_op2(compiler,
   1574  1.1  alnsn 					    SLJIT_AND,
   1575  1.1  alnsn 					    BPFJIT_TMP1, 0,
   1576  1.1  alnsn 					    BPFJIT_A, 0,
   1577  1.1  alnsn 					    kx_to_reg(pc), kx_to_reg_arg(pc));
   1578  1.1  alnsn 					if (status != SLJIT_SUCCESS)
   1579  1.1  alnsn 						goto fail;
   1580  1.1  alnsn 
   1581  1.1  alnsn 					jump = sljit_emit_cmp(compiler,
   1582  1.1  alnsn 					    bpf_jmp_to_sljit_cond(pc, negate),
   1583  1.1  alnsn 					    BPFJIT_TMP1, 0,
   1584  1.1  alnsn 					    SLJIT_IMM, 0);
   1585  1.1  alnsn 				}
   1586  1.1  alnsn 
   1587  1.1  alnsn 				if (jump == NULL)
   1588  1.1  alnsn 					goto fail;
   1589  1.1  alnsn 
   1590  1.1  alnsn 				BPFJIT_ASSERT(jtf[negate].bj_jump == NULL);
   1591  1.1  alnsn 				jtf[negate].bj_jump = jump;
   1592  1.1  alnsn 			}
   1593  1.1  alnsn 
   1594  1.1  alnsn 			if (!branching || (jt != 0 && jf != 0)) {
   1595  1.1  alnsn 				jump = sljit_emit_jump(compiler, SLJIT_JUMP);
   1596  1.1  alnsn 				if (jump == NULL)
   1597  1.1  alnsn 					goto fail;
   1598  1.1  alnsn 
   1599  1.1  alnsn 				BPFJIT_ASSERT(jtf[branching].bj_jump == NULL);
   1600  1.1  alnsn 				jtf[branching].bj_jump = jump;
   1601  1.1  alnsn 			}
   1602  1.1  alnsn 
   1603  1.1  alnsn 			continue;
   1604  1.1  alnsn 
   1605  1.1  alnsn 		case BPF_RET:
   1606  1.1  alnsn 
   1607  1.1  alnsn 			rval = BPF_RVAL(pc->code);
   1608  1.1  alnsn 			if (rval == BPF_X)
   1609  1.1  alnsn 				goto fail;
   1610  1.1  alnsn 
   1611  1.1  alnsn 			/* BPF_RET+BPF_K    accept k bytes */
   1612  1.1  alnsn 			if (rval == BPF_K) {
   1613  1.1  alnsn 				status = sljit_emit_op1(compiler,
   1614  1.1  alnsn 				    SLJIT_MOV,
   1615  1.1  alnsn 				    BPFJIT_A, 0,
   1616  1.1  alnsn 				    SLJIT_IMM, (uint32_t)pc->k);
   1617  1.1  alnsn 				if (status != SLJIT_SUCCESS)
   1618  1.1  alnsn 					goto fail;
   1619  1.1  alnsn 			}
   1620  1.1  alnsn 
   1621  1.1  alnsn 			/* BPF_RET+BPF_A    accept A bytes */
   1622  1.1  alnsn 			if (rval == BPF_A) {
   1623  1.1  alnsn #if BPFJIT_A != SLJIT_RETURN_REG
   1624  1.1  alnsn 				status = sljit_emit_op1(compiler,
   1625  1.1  alnsn 				    SLJIT_MOV,
   1626  1.1  alnsn 				    SLJIT_RETURN_REG, 0,
   1627  1.1  alnsn 				    BPFJIT_A, 0);
   1628  1.1  alnsn 				if (status != SLJIT_SUCCESS)
   1629  1.1  alnsn 					goto fail;
   1630  1.1  alnsn #endif
   1631  1.1  alnsn 			}
   1632  1.1  alnsn 
   1633  1.1  alnsn 			/*
   1634  1.1  alnsn 			 * Save a jump to a normal return. If the program
   1635  1.1  alnsn 			 * ends with BPF_RET, no jump is needed because
   1636  1.1  alnsn 			 * the normal return is generated right after the
   1637  1.1  alnsn 			 * last instruction.
   1638  1.1  alnsn 			 */
   1639  1.1  alnsn 			if (i != insn_count - 1) {
   1640  1.1  alnsn 				jump = sljit_emit_jump(compiler, SLJIT_JUMP);
   1641  1.1  alnsn 				if (jump == NULL)
   1642  1.1  alnsn 					goto fail;
   1643  1.1  alnsn 				returns[returns_size++] = jump;
   1644  1.1  alnsn 			}
   1645  1.1  alnsn 
   1646  1.1  alnsn 			continue;
   1647  1.1  alnsn 
   1648  1.1  alnsn 		case BPF_MISC:
   1649  1.1  alnsn 
   1650  1.1  alnsn 			if (pc->code == (BPF_MISC|BPF_TAX)) {
   1651  1.1  alnsn 				status = sljit_emit_op1(compiler,
   1652  1.1  alnsn 				    SLJIT_MOV_UI,
   1653  1.1  alnsn 				    BPFJIT_X, 0,
   1654  1.1  alnsn 				    BPFJIT_A, 0);
   1655  1.1  alnsn 				if (status != SLJIT_SUCCESS)
   1656  1.1  alnsn 					goto fail;
   1657  1.1  alnsn 
   1658  1.1  alnsn 				continue;
   1659  1.1  alnsn 			}
   1660  1.1  alnsn 
   1661  1.1  alnsn 			if (pc->code == (BPF_MISC|BPF_TXA)) {
   1662  1.1  alnsn 				status = sljit_emit_op1(compiler,
   1663  1.1  alnsn 				    SLJIT_MOV,
   1664  1.1  alnsn 				    BPFJIT_A, 0,
   1665  1.1  alnsn 				    BPFJIT_X, 0);
   1666  1.1  alnsn 				if (status != SLJIT_SUCCESS)
   1667  1.1  alnsn 					goto fail;
   1668  1.1  alnsn 
   1669  1.1  alnsn 				continue;
   1670  1.1  alnsn 			}
   1671  1.1  alnsn 
   1672  1.1  alnsn 			goto fail;
   1673  1.1  alnsn 		} /* switch */
   1674  1.1  alnsn 	} /* main loop */
   1675  1.1  alnsn 
   1676  1.1  alnsn 	BPFJIT_ASSERT(ret0_size == ret0_maxsize);
   1677  1.1  alnsn 	BPFJIT_ASSERT(returns_size <= returns_maxsize);
   1678  1.1  alnsn 
   1679  1.1  alnsn 	if (returns_size > 0) {
   1680  1.1  alnsn 		label = sljit_emit_label(compiler);
   1681  1.1  alnsn 		if (label == NULL)
   1682  1.1  alnsn 			goto fail;
   1683  1.1  alnsn 		for (i = 0; i < returns_size; i++)
   1684  1.1  alnsn 			sljit_set_label(returns[i], label);
   1685  1.1  alnsn 	}
   1686  1.1  alnsn 
   1687  1.1  alnsn 	status = sljit_emit_return(compiler,
   1688  1.1  alnsn 	    SLJIT_MOV_UI,
   1689  1.1  alnsn 	    BPFJIT_A, 0);
   1690  1.1  alnsn 	if (status != SLJIT_SUCCESS)
   1691  1.1  alnsn 		goto fail;
   1692  1.1  alnsn 
   1693  1.1  alnsn 	if (ret0_size > 0) {
   1694  1.1  alnsn 		label = sljit_emit_label(compiler);
   1695  1.1  alnsn 		if (label == NULL)
   1696  1.1  alnsn 			goto fail;
   1697  1.1  alnsn 
   1698  1.1  alnsn 		for (i = 0; i < ret0_size; i++)
   1699  1.1  alnsn 			sljit_set_label(ret0[i], label);
   1700  1.1  alnsn 
   1701  1.1  alnsn 		status = sljit_emit_op1(compiler,
   1702  1.1  alnsn 		    SLJIT_MOV,
   1703  1.1  alnsn 		    SLJIT_RETURN_REG, 0,
   1704  1.1  alnsn 		    SLJIT_IMM, 0);
   1705  1.1  alnsn 		if (status != SLJIT_SUCCESS)
   1706  1.1  alnsn 			goto fail;
   1707  1.1  alnsn 
   1708  1.1  alnsn 		status = sljit_emit_return(compiler,
   1709  1.1  alnsn 		    SLJIT_MOV_UI,
   1710  1.1  alnsn 		    SLJIT_RETURN_REG, 0);
   1711  1.1  alnsn 		if (status != SLJIT_SUCCESS)
   1712  1.1  alnsn 			goto fail;
   1713  1.1  alnsn 	}
   1714  1.1  alnsn 
   1715  1.1  alnsn 	rv = sljit_generate_code(compiler);
   1716  1.1  alnsn 
   1717  1.1  alnsn fail:
   1718  1.1  alnsn 	if (compiler != NULL)
   1719  1.1  alnsn 		sljit_free_compiler(compiler);
   1720  1.1  alnsn 
   1721  1.1  alnsn 	if (insn_dat != NULL)
   1722  1.3  rmind 		BPFJIT_FREE(insn_dat, insn_count * sizeof(insn_dat[0]));
   1723  1.1  alnsn 
   1724  1.1  alnsn 	if (returns != NULL)
   1725  1.3  rmind 		BPFJIT_FREE(returns, returns_maxsize * sizeof(returns[0]));
   1726  1.1  alnsn 
   1727  1.1  alnsn 	if (ret0 != NULL)
   1728  1.3  rmind 		BPFJIT_FREE(ret0, ret0_maxsize * sizeof(ret0[0]));
   1729  1.1  alnsn 
   1730  1.1  alnsn 	return (bpfjit_function_t)rv;
   1731  1.1  alnsn }
   1732  1.1  alnsn 
   1733  1.1  alnsn void
   1734  1.1  alnsn bpfjit_free_code(bpfjit_function_t code)
   1735  1.1  alnsn {
   1736  1.1  alnsn 
   1737  1.1  alnsn 	sljit_free_code((void *)code);
   1738  1.1  alnsn }
   1739