bpfjit.c revision 1.3 1 1.3 rmind /* $NetBSD: bpfjit.c,v 1.3 2013/09/20 23:19:52 rmind Exp $ */
2 1.3 rmind
3 1.1 alnsn /*-
4 1.1 alnsn * Copyright (c) 2011-2012 Alexander Nasonov.
5 1.1 alnsn * All rights reserved.
6 1.1 alnsn *
7 1.1 alnsn * Redistribution and use in source and binary forms, with or without
8 1.1 alnsn * modification, are permitted provided that the following conditions
9 1.1 alnsn * are met:
10 1.1 alnsn *
11 1.1 alnsn * 1. Redistributions of source code must retain the above copyright
12 1.1 alnsn * notice, this list of conditions and the following disclaimer.
13 1.1 alnsn * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 alnsn * notice, this list of conditions and the following disclaimer in
15 1.1 alnsn * the documentation and/or other materials provided with the
16 1.1 alnsn * distribution.
17 1.1 alnsn *
18 1.1 alnsn * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 1.1 alnsn * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 1.1 alnsn * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
21 1.1 alnsn * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
22 1.1 alnsn * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
23 1.1 alnsn * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
24 1.1 alnsn * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
25 1.1 alnsn * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
26 1.1 alnsn * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
27 1.1 alnsn * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
28 1.1 alnsn * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 1.1 alnsn * SUCH DAMAGE.
30 1.1 alnsn */
31 1.1 alnsn
32 1.2 alnsn #include <sys/cdefs.h>
33 1.2 alnsn #ifdef _KERNEL
34 1.3 rmind __KERNEL_RCSID(0, "$NetBSD: bpfjit.c,v 1.3 2013/09/20 23:19:52 rmind Exp $");
35 1.2 alnsn #else
36 1.3 rmind __RCSID("$NetBSD: bpfjit.c,v 1.3 2013/09/20 23:19:52 rmind Exp $");
37 1.2 alnsn #endif
38 1.2 alnsn
39 1.3 rmind #include <sys/types.h>
40 1.3 rmind #include <sys/queue.h>
41 1.1 alnsn
42 1.1 alnsn #ifndef _KERNEL
43 1.3 rmind #include <stdlib.h>
44 1.1 alnsn #include <assert.h>
45 1.3 rmind #define BPFJIT_ALLOC(sz) malloc(sz)
46 1.3 rmind #define BPFJIT_FREE(p, sz) free(p)
47 1.1 alnsn #define BPFJIT_ASSERT(c) assert(c)
48 1.1 alnsn #else
49 1.3 rmind #include <sys/kmem.h>
50 1.3 rmind #define BPFJIT_ALLOC(sz) kmem_alloc(sz, KM_SLEEP)
51 1.3 rmind #define BPFJIT_FREE(p, sz) kmem_free(p, sz)
52 1.1 alnsn #define BPFJIT_ASSERT(c) KASSERT(c)
53 1.1 alnsn #endif
54 1.1 alnsn
55 1.1 alnsn #ifndef _KERNEL
56 1.1 alnsn #include <limits.h>
57 1.3 rmind #include <stdio.h>
58 1.1 alnsn #include <stdbool.h>
59 1.1 alnsn #include <stddef.h>
60 1.1 alnsn #include <stdint.h>
61 1.1 alnsn #else
62 1.1 alnsn #include <sys/atomic.h>
63 1.1 alnsn #include <sys/module.h>
64 1.1 alnsn #endif
65 1.1 alnsn
66 1.3 rmind #include <net/bpfjit.h>
67 1.1 alnsn #include <sljitLir.h>
68 1.1 alnsn
69 1.1 alnsn #define BPFJIT_A SLJIT_TEMPORARY_REG1
70 1.1 alnsn #define BPFJIT_X SLJIT_TEMPORARY_EREG1
71 1.1 alnsn #define BPFJIT_TMP1 SLJIT_TEMPORARY_REG2
72 1.1 alnsn #define BPFJIT_TMP2 SLJIT_TEMPORARY_REG3
73 1.1 alnsn #define BPFJIT_BUF SLJIT_SAVED_REG1
74 1.1 alnsn #define BPFJIT_WIRELEN SLJIT_SAVED_REG2
75 1.1 alnsn #define BPFJIT_BUFLEN SLJIT_SAVED_REG3
76 1.1 alnsn #define BPFJIT_KERN_TMP SLJIT_TEMPORARY_EREG2
77 1.1 alnsn
78 1.1 alnsn /*
79 1.1 alnsn * Flags for bpfjit_optimization_hints().
80 1.1 alnsn */
81 1.1 alnsn #define BPFJIT_INIT_X 0x10000
82 1.1 alnsn #define BPFJIT_INIT_A 0x20000
83 1.1 alnsn
84 1.1 alnsn /*
85 1.1 alnsn * Node of bj_jumps list.
86 1.1 alnsn */
87 1.3 rmind struct bpfjit_jump {
88 1.1 alnsn struct sljit_jump *bj_jump;
89 1.1 alnsn SLIST_ENTRY(bpfjit_jump) bj_entries;
90 1.1 alnsn uint32_t bj_safe_length;
91 1.1 alnsn };
92 1.1 alnsn
93 1.1 alnsn /*
94 1.1 alnsn * Data for BPF_JMP instruction.
95 1.1 alnsn */
96 1.3 rmind struct bpfjit_jump_data {
97 1.1 alnsn /*
98 1.1 alnsn * These entries make up bj_jumps list:
99 1.1 alnsn * bj_jtf[0] - when coming from jt path,
100 1.1 alnsn * bj_jtf[1] - when coming from jf path.
101 1.1 alnsn */
102 1.1 alnsn struct bpfjit_jump bj_jtf[2];
103 1.1 alnsn };
104 1.1 alnsn
105 1.1 alnsn /*
106 1.1 alnsn * Data for "read from packet" instructions.
107 1.1 alnsn * See also read_pkt_insn() function below.
108 1.1 alnsn */
109 1.3 rmind struct bpfjit_read_pkt_data {
110 1.1 alnsn /*
111 1.1 alnsn * If positive, emit "if (buflen < bj_check_length) return 0".
112 1.1 alnsn * We assume that buflen is never equal to UINT32_MAX (otherwise,
113 1.1 alnsn * we need a special bool variable to emit unconditional "return 0").
114 1.1 alnsn */
115 1.1 alnsn uint32_t bj_check_length;
116 1.1 alnsn };
117 1.1 alnsn
118 1.1 alnsn /*
119 1.1 alnsn * Additional (optimization-related) data for bpf_insn.
120 1.1 alnsn */
121 1.3 rmind struct bpfjit_insn_data {
122 1.1 alnsn /* List of jumps to this insn. */
123 1.1 alnsn SLIST_HEAD(, bpfjit_jump) bj_jumps;
124 1.1 alnsn
125 1.1 alnsn union {
126 1.1 alnsn struct bpfjit_jump_data bj_jdata;
127 1.1 alnsn struct bpfjit_read_pkt_data bj_rdata;
128 1.1 alnsn } bj_aux;
129 1.1 alnsn
130 1.1 alnsn bool bj_unreachable;
131 1.1 alnsn };
132 1.1 alnsn
133 1.1 alnsn #ifdef _KERNEL
134 1.1 alnsn
135 1.1 alnsn uint32_t m_xword(const struct mbuf *, uint32_t, int *);
136 1.1 alnsn uint32_t m_xhalf(const struct mbuf *, uint32_t, int *);
137 1.1 alnsn uint32_t m_xbyte(const struct mbuf *, uint32_t, int *);
138 1.1 alnsn
139 1.1 alnsn MODULE(MODULE_CLASS_MISC, bpfjit, "sljit")
140 1.1 alnsn
141 1.1 alnsn static int
142 1.1 alnsn bpfjit_modcmd(modcmd_t cmd, void *arg)
143 1.1 alnsn {
144 1.1 alnsn
145 1.1 alnsn switch (cmd) {
146 1.1 alnsn case MODULE_CMD_INIT:
147 1.1 alnsn bpfjit_module_ops.bj_free_code = &bpfjit_free_code;
148 1.1 alnsn membar_producer();
149 1.1 alnsn bpfjit_module_ops.bj_generate_code = &bpfjit_generate_code;
150 1.1 alnsn membar_producer();
151 1.1 alnsn return 0;
152 1.1 alnsn
153 1.1 alnsn case MODULE_CMD_FINI:
154 1.1 alnsn return EOPNOTSUPP;
155 1.1 alnsn
156 1.1 alnsn default:
157 1.1 alnsn return ENOTTY;
158 1.1 alnsn }
159 1.1 alnsn }
160 1.1 alnsn #endif
161 1.1 alnsn
162 1.1 alnsn static uint32_t
163 1.1 alnsn read_width(struct bpf_insn *pc)
164 1.1 alnsn {
165 1.1 alnsn
166 1.1 alnsn switch (BPF_SIZE(pc->code)) {
167 1.1 alnsn case BPF_W:
168 1.1 alnsn return 4;
169 1.1 alnsn case BPF_H:
170 1.1 alnsn return 2;
171 1.1 alnsn case BPF_B:
172 1.1 alnsn return 1;
173 1.1 alnsn default:
174 1.1 alnsn BPFJIT_ASSERT(false);
175 1.1 alnsn return 0;
176 1.1 alnsn }
177 1.1 alnsn }
178 1.1 alnsn
179 1.1 alnsn /*
180 1.1 alnsn * Get offset of M[k] on the stack.
181 1.1 alnsn */
182 1.2 alnsn static size_t
183 1.2 alnsn mem_local_offset(uint32_t k, unsigned int minm)
184 1.1 alnsn {
185 1.2 alnsn size_t moff = (k - minm) * sizeof(uint32_t);
186 1.1 alnsn
187 1.1 alnsn #ifdef _KERNEL
188 1.1 alnsn /*
189 1.1 alnsn * 4 bytes for the third argument of m_xword/m_xhalf/m_xbyte.
190 1.1 alnsn */
191 1.1 alnsn return sizeof(uint32_t) + moff;
192 1.1 alnsn #else
193 1.1 alnsn return moff;
194 1.1 alnsn #endif
195 1.1 alnsn }
196 1.1 alnsn
197 1.1 alnsn /*
198 1.1 alnsn * Generate code for BPF_LD+BPF_B+BPF_ABS A <- P[k:1].
199 1.1 alnsn */
200 1.1 alnsn static int
201 1.1 alnsn emit_read8(struct sljit_compiler* compiler, uint32_t k)
202 1.1 alnsn {
203 1.1 alnsn
204 1.1 alnsn return sljit_emit_op1(compiler,
205 1.1 alnsn SLJIT_MOV_UB,
206 1.1 alnsn BPFJIT_A, 0,
207 1.1 alnsn SLJIT_MEM1(BPFJIT_BUF), k);
208 1.1 alnsn }
209 1.1 alnsn
210 1.1 alnsn /*
211 1.1 alnsn * Generate code for BPF_LD+BPF_H+BPF_ABS A <- P[k:2].
212 1.1 alnsn */
213 1.1 alnsn static int
214 1.1 alnsn emit_read16(struct sljit_compiler* compiler, uint32_t k)
215 1.1 alnsn {
216 1.1 alnsn int status;
217 1.1 alnsn
218 1.1 alnsn /* tmp1 = buf[k]; */
219 1.1 alnsn status = sljit_emit_op1(compiler,
220 1.1 alnsn SLJIT_MOV_UB,
221 1.1 alnsn BPFJIT_TMP1, 0,
222 1.1 alnsn SLJIT_MEM1(BPFJIT_BUF), k);
223 1.1 alnsn if (status != SLJIT_SUCCESS)
224 1.1 alnsn return status;
225 1.1 alnsn
226 1.1 alnsn /* A = buf[k+1]; */
227 1.1 alnsn status = sljit_emit_op1(compiler,
228 1.1 alnsn SLJIT_MOV_UB,
229 1.1 alnsn BPFJIT_A, 0,
230 1.1 alnsn SLJIT_MEM1(BPFJIT_BUF), k+1);
231 1.1 alnsn if (status != SLJIT_SUCCESS)
232 1.1 alnsn return status;
233 1.1 alnsn
234 1.1 alnsn /* tmp1 = tmp1 << 8; */
235 1.1 alnsn status = sljit_emit_op2(compiler,
236 1.1 alnsn SLJIT_SHL,
237 1.1 alnsn BPFJIT_TMP1, 0,
238 1.1 alnsn BPFJIT_TMP1, 0,
239 1.1 alnsn SLJIT_IMM, 8);
240 1.1 alnsn if (status != SLJIT_SUCCESS)
241 1.1 alnsn return status;
242 1.1 alnsn
243 1.1 alnsn /* A = A + tmp1; */
244 1.1 alnsn status = sljit_emit_op2(compiler,
245 1.1 alnsn SLJIT_ADD,
246 1.1 alnsn BPFJIT_A, 0,
247 1.1 alnsn BPFJIT_A, 0,
248 1.1 alnsn BPFJIT_TMP1, 0);
249 1.1 alnsn return status;
250 1.1 alnsn }
251 1.1 alnsn
252 1.1 alnsn /*
253 1.1 alnsn * Generate code for BPF_LD+BPF_W+BPF_ABS A <- P[k:4].
254 1.1 alnsn */
255 1.1 alnsn static int
256 1.1 alnsn emit_read32(struct sljit_compiler* compiler, uint32_t k)
257 1.1 alnsn {
258 1.1 alnsn int status;
259 1.1 alnsn
260 1.1 alnsn /* tmp1 = buf[k]; */
261 1.1 alnsn status = sljit_emit_op1(compiler,
262 1.1 alnsn SLJIT_MOV_UB,
263 1.1 alnsn BPFJIT_TMP1, 0,
264 1.1 alnsn SLJIT_MEM1(BPFJIT_BUF), k);
265 1.1 alnsn if (status != SLJIT_SUCCESS)
266 1.1 alnsn return status;
267 1.1 alnsn
268 1.1 alnsn /* tmp2 = buf[k+1]; */
269 1.1 alnsn status = sljit_emit_op1(compiler,
270 1.1 alnsn SLJIT_MOV_UB,
271 1.1 alnsn BPFJIT_TMP2, 0,
272 1.1 alnsn SLJIT_MEM1(BPFJIT_BUF), k+1);
273 1.1 alnsn if (status != SLJIT_SUCCESS)
274 1.1 alnsn return status;
275 1.1 alnsn
276 1.1 alnsn /* A = buf[k+3]; */
277 1.1 alnsn status = sljit_emit_op1(compiler,
278 1.1 alnsn SLJIT_MOV_UB,
279 1.1 alnsn BPFJIT_A, 0,
280 1.1 alnsn SLJIT_MEM1(BPFJIT_BUF), k+3);
281 1.1 alnsn if (status != SLJIT_SUCCESS)
282 1.1 alnsn return status;
283 1.1 alnsn
284 1.1 alnsn /* tmp1 = tmp1 << 24; */
285 1.1 alnsn status = sljit_emit_op2(compiler,
286 1.1 alnsn SLJIT_SHL,
287 1.1 alnsn BPFJIT_TMP1, 0,
288 1.1 alnsn BPFJIT_TMP1, 0,
289 1.1 alnsn SLJIT_IMM, 24);
290 1.1 alnsn if (status != SLJIT_SUCCESS)
291 1.1 alnsn return status;
292 1.1 alnsn
293 1.1 alnsn /* A = A + tmp1; */
294 1.1 alnsn status = sljit_emit_op2(compiler,
295 1.1 alnsn SLJIT_ADD,
296 1.1 alnsn BPFJIT_A, 0,
297 1.1 alnsn BPFJIT_A, 0,
298 1.1 alnsn BPFJIT_TMP1, 0);
299 1.1 alnsn if (status != SLJIT_SUCCESS)
300 1.1 alnsn return status;
301 1.1 alnsn
302 1.1 alnsn /* tmp1 = buf[k+2]; */
303 1.1 alnsn status = sljit_emit_op1(compiler,
304 1.1 alnsn SLJIT_MOV_UB,
305 1.1 alnsn BPFJIT_TMP1, 0,
306 1.1 alnsn SLJIT_MEM1(BPFJIT_BUF), k+2);
307 1.1 alnsn if (status != SLJIT_SUCCESS)
308 1.1 alnsn return status;
309 1.1 alnsn
310 1.1 alnsn /* tmp2 = tmp2 << 16; */
311 1.1 alnsn status = sljit_emit_op2(compiler,
312 1.1 alnsn SLJIT_SHL,
313 1.1 alnsn BPFJIT_TMP2, 0,
314 1.1 alnsn BPFJIT_TMP2, 0,
315 1.1 alnsn SLJIT_IMM, 16);
316 1.1 alnsn if (status != SLJIT_SUCCESS)
317 1.1 alnsn return status;
318 1.1 alnsn
319 1.1 alnsn /* A = A + tmp2; */
320 1.1 alnsn status = sljit_emit_op2(compiler,
321 1.1 alnsn SLJIT_ADD,
322 1.1 alnsn BPFJIT_A, 0,
323 1.1 alnsn BPFJIT_A, 0,
324 1.1 alnsn BPFJIT_TMP2, 0);
325 1.1 alnsn if (status != SLJIT_SUCCESS)
326 1.1 alnsn return status;
327 1.1 alnsn
328 1.1 alnsn /* tmp1 = tmp1 << 8; */
329 1.1 alnsn status = sljit_emit_op2(compiler,
330 1.1 alnsn SLJIT_SHL,
331 1.1 alnsn BPFJIT_TMP1, 0,
332 1.1 alnsn BPFJIT_TMP1, 0,
333 1.1 alnsn SLJIT_IMM, 8);
334 1.1 alnsn if (status != SLJIT_SUCCESS)
335 1.1 alnsn return status;
336 1.1 alnsn
337 1.1 alnsn /* A = A + tmp1; */
338 1.1 alnsn status = sljit_emit_op2(compiler,
339 1.1 alnsn SLJIT_ADD,
340 1.1 alnsn BPFJIT_A, 0,
341 1.1 alnsn BPFJIT_A, 0,
342 1.1 alnsn BPFJIT_TMP1, 0);
343 1.1 alnsn return status;
344 1.1 alnsn }
345 1.1 alnsn
346 1.1 alnsn #ifdef _KERNEL
347 1.1 alnsn /*
348 1.1 alnsn * Generate m_xword/m_xhalf/m_xbyte call.
349 1.1 alnsn *
350 1.1 alnsn * pc is one of:
351 1.1 alnsn * BPF_LD+BPF_W+BPF_ABS A <- P[k:4]
352 1.1 alnsn * BPF_LD+BPF_H+BPF_ABS A <- P[k:2]
353 1.1 alnsn * BPF_LD+BPF_B+BPF_ABS A <- P[k:1]
354 1.1 alnsn * BPF_LD+BPF_W+BPF_IND A <- P[X+k:4]
355 1.1 alnsn * BPF_LD+BPF_H+BPF_IND A <- P[X+k:2]
356 1.1 alnsn * BPF_LD+BPF_B+BPF_IND A <- P[X+k:1]
357 1.1 alnsn * BPF_LDX+BPF_B+BPF_MSH X <- 4*(P[k:1]&0xf)
358 1.1 alnsn *
359 1.1 alnsn * dst must be BPFJIT_A for BPF_LD instructions and BPFJIT_X
360 1.1 alnsn * or any of BPFJIT_TMP* registrers for BPF_MSH instruction.
361 1.1 alnsn */
362 1.1 alnsn static int
363 1.1 alnsn emit_xcall(struct sljit_compiler* compiler, struct bpf_insn *pc,
364 1.1 alnsn int dst, sljit_w dstw, struct sljit_jump **ret0_jump,
365 1.1 alnsn uint32_t (*fn)(const struct mbuf *, uint32_t, int *))
366 1.1 alnsn {
367 1.1 alnsn #if BPFJIT_X != SLJIT_TEMPORARY_EREG1 || \
368 1.1 alnsn BPFJIT_X == SLJIT_RETURN_REG
369 1.1 alnsn #error "Not supported assignment of registers."
370 1.1 alnsn #endif
371 1.1 alnsn int status;
372 1.1 alnsn
373 1.1 alnsn /*
374 1.1 alnsn * The third argument of fn is an address on stack.
375 1.1 alnsn */
376 1.1 alnsn const int arg3_offset = 0;
377 1.1 alnsn
378 1.1 alnsn if (BPF_CLASS(pc->code) == BPF_LDX) {
379 1.1 alnsn /* save A */
380 1.1 alnsn status = sljit_emit_op1(compiler,
381 1.1 alnsn SLJIT_MOV,
382 1.1 alnsn BPFJIT_KERN_TMP, 0,
383 1.1 alnsn BPFJIT_A, 0);
384 1.1 alnsn if (status != SLJIT_SUCCESS)
385 1.1 alnsn return status;
386 1.1 alnsn }
387 1.1 alnsn
388 1.1 alnsn /*
389 1.1 alnsn * Prepare registers for fn(buf, k, &err) call.
390 1.1 alnsn */
391 1.1 alnsn status = sljit_emit_op1(compiler,
392 1.1 alnsn SLJIT_MOV,
393 1.1 alnsn SLJIT_TEMPORARY_REG1, 0,
394 1.1 alnsn BPFJIT_BUF, 0);
395 1.1 alnsn if (status != SLJIT_SUCCESS)
396 1.1 alnsn return status;
397 1.1 alnsn
398 1.1 alnsn if (BPF_CLASS(pc->code) == BPF_LD && BPF_MODE(pc->code) == BPF_IND) {
399 1.1 alnsn status = sljit_emit_op2(compiler,
400 1.1 alnsn SLJIT_ADD,
401 1.1 alnsn SLJIT_TEMPORARY_REG2, 0,
402 1.1 alnsn BPFJIT_X, 0,
403 1.1 alnsn SLJIT_IMM, (uint32_t)pc->k);
404 1.1 alnsn } else {
405 1.1 alnsn status = sljit_emit_op1(compiler,
406 1.1 alnsn SLJIT_MOV,
407 1.1 alnsn SLJIT_TEMPORARY_REG2, 0,
408 1.1 alnsn SLJIT_IMM, (uint32_t)pc->k);
409 1.1 alnsn }
410 1.1 alnsn
411 1.1 alnsn if (status != SLJIT_SUCCESS)
412 1.1 alnsn return status;
413 1.1 alnsn
414 1.1 alnsn status = sljit_get_local_base(compiler,
415 1.1 alnsn SLJIT_TEMPORARY_REG3, 0, arg3_offset);
416 1.1 alnsn if (status != SLJIT_SUCCESS)
417 1.1 alnsn return status;
418 1.1 alnsn
419 1.1 alnsn /* fn(buf, k, &err); */
420 1.1 alnsn status = sljit_emit_ijump(compiler,
421 1.1 alnsn SLJIT_CALL3,
422 1.1 alnsn SLJIT_IMM, SLJIT_FUNC_OFFSET(fn));
423 1.1 alnsn
424 1.1 alnsn if (BPF_CLASS(pc->code) == BPF_LDX) {
425 1.1 alnsn
426 1.1 alnsn /* move return value to dst */
427 1.1 alnsn BPFJIT_ASSERT(dst != SLJIT_RETURN_REG);
428 1.1 alnsn status = sljit_emit_op1(compiler,
429 1.1 alnsn SLJIT_MOV,
430 1.1 alnsn dst, dstw,
431 1.1 alnsn SLJIT_RETURN_REG, 0);
432 1.1 alnsn if (status != SLJIT_SUCCESS)
433 1.1 alnsn return status;
434 1.1 alnsn
435 1.1 alnsn /* restore A */
436 1.1 alnsn status = sljit_emit_op1(compiler,
437 1.1 alnsn SLJIT_MOV,
438 1.1 alnsn BPFJIT_A, 0,
439 1.1 alnsn BPFJIT_KERN_TMP, 0);
440 1.1 alnsn if (status != SLJIT_SUCCESS)
441 1.1 alnsn return status;
442 1.1 alnsn
443 1.1 alnsn } else if (dst != SLJIT_RETURN_REG) {
444 1.1 alnsn status = sljit_emit_op1(compiler,
445 1.1 alnsn SLJIT_MOV,
446 1.1 alnsn dst, dstw,
447 1.1 alnsn SLJIT_RETURN_REG, 0);
448 1.1 alnsn if (status != SLJIT_SUCCESS)
449 1.1 alnsn return status;
450 1.1 alnsn }
451 1.1 alnsn
452 1.1 alnsn /* tmp3 = *err; */
453 1.1 alnsn status = sljit_emit_op1(compiler,
454 1.1 alnsn SLJIT_MOV_UI,
455 1.1 alnsn SLJIT_TEMPORARY_REG3, 0,
456 1.1 alnsn SLJIT_MEM1(SLJIT_LOCALS_REG), arg3_offset);
457 1.1 alnsn if (status != SLJIT_SUCCESS)
458 1.1 alnsn return status;
459 1.1 alnsn
460 1.1 alnsn /* if (tmp3 != 0) return 0; */
461 1.1 alnsn *ret0_jump = sljit_emit_cmp(compiler,
462 1.1 alnsn SLJIT_C_NOT_EQUAL,
463 1.1 alnsn SLJIT_TEMPORARY_REG3, 0,
464 1.1 alnsn SLJIT_IMM, 0);
465 1.1 alnsn if (*ret0_jump == NULL)
466 1.1 alnsn return SLJIT_ERR_ALLOC_FAILED;
467 1.1 alnsn
468 1.1 alnsn return status;
469 1.1 alnsn }
470 1.1 alnsn #endif
471 1.1 alnsn
472 1.1 alnsn /*
473 1.1 alnsn * Generate code for
474 1.1 alnsn * BPF_LD+BPF_W+BPF_ABS A <- P[k:4]
475 1.1 alnsn * BPF_LD+BPF_H+BPF_ABS A <- P[k:2]
476 1.1 alnsn * BPF_LD+BPF_B+BPF_ABS A <- P[k:1]
477 1.1 alnsn * BPF_LD+BPF_W+BPF_IND A <- P[X+k:4]
478 1.1 alnsn * BPF_LD+BPF_H+BPF_IND A <- P[X+k:2]
479 1.1 alnsn * BPF_LD+BPF_B+BPF_IND A <- P[X+k:1]
480 1.1 alnsn */
481 1.1 alnsn static int
482 1.1 alnsn emit_pkt_read(struct sljit_compiler* compiler,
483 1.1 alnsn struct bpf_insn *pc, struct sljit_jump *to_mchain_jump,
484 1.1 alnsn struct sljit_jump **ret0, size_t *ret0_size)
485 1.1 alnsn {
486 1.1 alnsn int status;
487 1.1 alnsn uint32_t width;
488 1.1 alnsn struct sljit_jump *jump;
489 1.1 alnsn #ifdef _KERNEL
490 1.1 alnsn struct sljit_label *label;
491 1.1 alnsn struct sljit_jump *over_mchain_jump;
492 1.1 alnsn const bool check_zero_buflen = (to_mchain_jump != NULL);
493 1.1 alnsn #endif
494 1.1 alnsn const uint32_t k = pc->k;
495 1.1 alnsn
496 1.1 alnsn #ifdef _KERNEL
497 1.1 alnsn if (to_mchain_jump == NULL) {
498 1.1 alnsn to_mchain_jump = sljit_emit_cmp(compiler,
499 1.1 alnsn SLJIT_C_EQUAL,
500 1.1 alnsn BPFJIT_BUFLEN, 0,
501 1.1 alnsn SLJIT_IMM, 0);
502 1.1 alnsn if (to_mchain_jump == NULL)
503 1.1 alnsn return SLJIT_ERR_ALLOC_FAILED;
504 1.1 alnsn }
505 1.1 alnsn #endif
506 1.1 alnsn
507 1.1 alnsn width = read_width(pc);
508 1.1 alnsn
509 1.1 alnsn if (BPF_MODE(pc->code) == BPF_IND) {
510 1.1 alnsn /* tmp1 = buflen - (pc->k + width); */
511 1.1 alnsn status = sljit_emit_op2(compiler,
512 1.1 alnsn SLJIT_SUB,
513 1.1 alnsn BPFJIT_TMP1, 0,
514 1.1 alnsn BPFJIT_BUFLEN, 0,
515 1.1 alnsn SLJIT_IMM, k + width);
516 1.1 alnsn if (status != SLJIT_SUCCESS)
517 1.1 alnsn return status;
518 1.1 alnsn
519 1.1 alnsn /* buf += X; */
520 1.1 alnsn status = sljit_emit_op2(compiler,
521 1.1 alnsn SLJIT_ADD,
522 1.1 alnsn BPFJIT_BUF, 0,
523 1.1 alnsn BPFJIT_BUF, 0,
524 1.1 alnsn BPFJIT_X, 0);
525 1.1 alnsn if (status != SLJIT_SUCCESS)
526 1.1 alnsn return status;
527 1.1 alnsn
528 1.1 alnsn /* if (tmp1 < X) return 0; */
529 1.1 alnsn jump = sljit_emit_cmp(compiler,
530 1.1 alnsn SLJIT_C_LESS,
531 1.1 alnsn BPFJIT_TMP1, 0,
532 1.1 alnsn BPFJIT_X, 0);
533 1.1 alnsn if (jump == NULL)
534 1.1 alnsn return SLJIT_ERR_ALLOC_FAILED;
535 1.1 alnsn ret0[(*ret0_size)++] = jump;
536 1.1 alnsn }
537 1.1 alnsn
538 1.1 alnsn switch (width) {
539 1.1 alnsn case 4:
540 1.1 alnsn status = emit_read32(compiler, k);
541 1.1 alnsn break;
542 1.1 alnsn case 2:
543 1.1 alnsn status = emit_read16(compiler, k);
544 1.1 alnsn break;
545 1.1 alnsn case 1:
546 1.1 alnsn status = emit_read8(compiler, k);
547 1.1 alnsn break;
548 1.1 alnsn }
549 1.1 alnsn
550 1.1 alnsn if (status != SLJIT_SUCCESS)
551 1.1 alnsn return status;
552 1.1 alnsn
553 1.1 alnsn if (BPF_MODE(pc->code) == BPF_IND) {
554 1.1 alnsn /* buf -= X; */
555 1.1 alnsn status = sljit_emit_op2(compiler,
556 1.1 alnsn SLJIT_SUB,
557 1.1 alnsn BPFJIT_BUF, 0,
558 1.1 alnsn BPFJIT_BUF, 0,
559 1.1 alnsn BPFJIT_X, 0);
560 1.1 alnsn if (status != SLJIT_SUCCESS)
561 1.1 alnsn return status;
562 1.1 alnsn }
563 1.1 alnsn
564 1.1 alnsn #ifdef _KERNEL
565 1.1 alnsn over_mchain_jump = sljit_emit_jump(compiler, SLJIT_JUMP);
566 1.1 alnsn if (over_mchain_jump == NULL)
567 1.1 alnsn return SLJIT_ERR_ALLOC_FAILED;
568 1.1 alnsn
569 1.1 alnsn /* entry point to mchain handler */
570 1.1 alnsn label = sljit_emit_label(compiler);
571 1.1 alnsn if (label == NULL)
572 1.1 alnsn return SLJIT_ERR_ALLOC_FAILED;
573 1.1 alnsn sljit_set_label(to_mchain_jump, label);
574 1.1 alnsn
575 1.1 alnsn if (check_zero_buflen) {
576 1.1 alnsn /* if (buflen != 0) return 0; */
577 1.1 alnsn jump = sljit_emit_cmp(compiler,
578 1.1 alnsn SLJIT_C_NOT_EQUAL,
579 1.1 alnsn BPFJIT_BUFLEN, 0,
580 1.1 alnsn SLJIT_IMM, 0);
581 1.1 alnsn if (jump == NULL)
582 1.1 alnsn return SLJIT_ERR_ALLOC_FAILED;
583 1.1 alnsn ret0[(*ret0_size)++] = jump;
584 1.1 alnsn }
585 1.1 alnsn
586 1.1 alnsn switch (width) {
587 1.1 alnsn case 4:
588 1.1 alnsn status = emit_xcall(compiler, pc, BPFJIT_A, 0, &jump, &m_xword);
589 1.1 alnsn break;
590 1.1 alnsn case 2:
591 1.1 alnsn status = emit_xcall(compiler, pc, BPFJIT_A, 0, &jump, &m_xhalf);
592 1.1 alnsn break;
593 1.1 alnsn case 1:
594 1.1 alnsn status = emit_xcall(compiler, pc, BPFJIT_A, 0, &jump, &m_xbyte);
595 1.1 alnsn break;
596 1.1 alnsn }
597 1.1 alnsn
598 1.1 alnsn if (status != SLJIT_SUCCESS)
599 1.1 alnsn return status;
600 1.1 alnsn
601 1.1 alnsn ret0[(*ret0_size)++] = jump;
602 1.1 alnsn
603 1.1 alnsn label = sljit_emit_label(compiler);
604 1.1 alnsn if (label == NULL)
605 1.1 alnsn return SLJIT_ERR_ALLOC_FAILED;
606 1.1 alnsn sljit_set_label(over_mchain_jump, label);
607 1.1 alnsn #endif
608 1.1 alnsn
609 1.1 alnsn return status;
610 1.1 alnsn }
611 1.1 alnsn
612 1.1 alnsn /*
613 1.1 alnsn * Generate code for BPF_LDX+BPF_B+BPF_MSH X <- 4*(P[k:1]&0xf).
614 1.1 alnsn */
615 1.1 alnsn static int
616 1.1 alnsn emit_msh(struct sljit_compiler* compiler,
617 1.1 alnsn struct bpf_insn *pc, struct sljit_jump *to_mchain_jump,
618 1.1 alnsn struct sljit_jump **ret0, size_t *ret0_size)
619 1.1 alnsn {
620 1.1 alnsn int status;
621 1.1 alnsn #ifdef _KERNEL
622 1.1 alnsn struct sljit_label *label;
623 1.1 alnsn struct sljit_jump *jump, *over_mchain_jump;
624 1.1 alnsn const bool check_zero_buflen = (to_mchain_jump != NULL);
625 1.1 alnsn #endif
626 1.1 alnsn const uint32_t k = pc->k;
627 1.1 alnsn
628 1.1 alnsn #ifdef _KERNEL
629 1.1 alnsn if (to_mchain_jump == NULL) {
630 1.1 alnsn to_mchain_jump = sljit_emit_cmp(compiler,
631 1.1 alnsn SLJIT_C_EQUAL,
632 1.1 alnsn BPFJIT_BUFLEN, 0,
633 1.1 alnsn SLJIT_IMM, 0);
634 1.1 alnsn if (to_mchain_jump == NULL)
635 1.1 alnsn return SLJIT_ERR_ALLOC_FAILED;
636 1.1 alnsn }
637 1.1 alnsn #endif
638 1.1 alnsn
639 1.1 alnsn /* tmp1 = buf[k] */
640 1.1 alnsn status = sljit_emit_op1(compiler,
641 1.1 alnsn SLJIT_MOV_UB,
642 1.1 alnsn BPFJIT_TMP1, 0,
643 1.1 alnsn SLJIT_MEM1(BPFJIT_BUF), k);
644 1.1 alnsn if (status != SLJIT_SUCCESS)
645 1.1 alnsn return status;
646 1.1 alnsn
647 1.1 alnsn /* tmp1 &= 0xf */
648 1.1 alnsn status = sljit_emit_op2(compiler,
649 1.1 alnsn SLJIT_AND,
650 1.1 alnsn BPFJIT_TMP1, 0,
651 1.1 alnsn BPFJIT_TMP1, 0,
652 1.1 alnsn SLJIT_IMM, 0xf);
653 1.1 alnsn if (status != SLJIT_SUCCESS)
654 1.1 alnsn return status;
655 1.1 alnsn
656 1.1 alnsn /* tmp1 = tmp1 << 2 */
657 1.1 alnsn status = sljit_emit_op2(compiler,
658 1.1 alnsn SLJIT_SHL,
659 1.1 alnsn BPFJIT_X, 0,
660 1.1 alnsn BPFJIT_TMP1, 0,
661 1.1 alnsn SLJIT_IMM, 2);
662 1.1 alnsn if (status != SLJIT_SUCCESS)
663 1.1 alnsn return status;
664 1.1 alnsn
665 1.1 alnsn #ifdef _KERNEL
666 1.1 alnsn over_mchain_jump = sljit_emit_jump(compiler, SLJIT_JUMP);
667 1.1 alnsn if (over_mchain_jump == NULL)
668 1.1 alnsn return SLJIT_ERR_ALLOC_FAILED;
669 1.1 alnsn
670 1.1 alnsn /* entry point to mchain handler */
671 1.1 alnsn label = sljit_emit_label(compiler);
672 1.1 alnsn if (label == NULL)
673 1.1 alnsn return SLJIT_ERR_ALLOC_FAILED;
674 1.1 alnsn sljit_set_label(to_mchain_jump, label);
675 1.1 alnsn
676 1.1 alnsn if (check_zero_buflen) {
677 1.1 alnsn /* if (buflen != 0) return 0; */
678 1.1 alnsn jump = sljit_emit_cmp(compiler,
679 1.1 alnsn SLJIT_C_NOT_EQUAL,
680 1.1 alnsn BPFJIT_BUFLEN, 0,
681 1.1 alnsn SLJIT_IMM, 0);
682 1.1 alnsn if (jump == NULL)
683 1.1 alnsn return SLJIT_ERR_ALLOC_FAILED;
684 1.1 alnsn ret0[(*ret0_size)++] = jump;
685 1.1 alnsn }
686 1.1 alnsn
687 1.1 alnsn status = emit_xcall(compiler, pc, BPFJIT_TMP1, 0, &jump, &m_xbyte);
688 1.1 alnsn if (status != SLJIT_SUCCESS)
689 1.1 alnsn return status;
690 1.1 alnsn ret0[(*ret0_size)++] = jump;
691 1.1 alnsn
692 1.1 alnsn /* tmp1 &= 0xf */
693 1.1 alnsn status = sljit_emit_op2(compiler,
694 1.1 alnsn SLJIT_AND,
695 1.1 alnsn BPFJIT_TMP1, 0,
696 1.1 alnsn BPFJIT_TMP1, 0,
697 1.1 alnsn SLJIT_IMM, 0xf);
698 1.1 alnsn if (status != SLJIT_SUCCESS)
699 1.1 alnsn return status;
700 1.1 alnsn
701 1.1 alnsn /* tmp1 = tmp1 << 2 */
702 1.1 alnsn status = sljit_emit_op2(compiler,
703 1.1 alnsn SLJIT_SHL,
704 1.1 alnsn BPFJIT_X, 0,
705 1.1 alnsn BPFJIT_TMP1, 0,
706 1.1 alnsn SLJIT_IMM, 2);
707 1.1 alnsn if (status != SLJIT_SUCCESS)
708 1.1 alnsn return status;
709 1.1 alnsn
710 1.1 alnsn
711 1.1 alnsn label = sljit_emit_label(compiler);
712 1.1 alnsn if (label == NULL)
713 1.1 alnsn return SLJIT_ERR_ALLOC_FAILED;
714 1.1 alnsn sljit_set_label(over_mchain_jump, label);
715 1.1 alnsn #endif
716 1.1 alnsn
717 1.1 alnsn return status;
718 1.1 alnsn }
719 1.1 alnsn
720 1.1 alnsn static int
721 1.1 alnsn emit_pow2_division(struct sljit_compiler* compiler, uint32_t k)
722 1.1 alnsn {
723 1.1 alnsn int shift = 0;
724 1.1 alnsn int status = SLJIT_SUCCESS;
725 1.1 alnsn
726 1.1 alnsn while (k > 1) {
727 1.1 alnsn k >>= 1;
728 1.1 alnsn shift++;
729 1.1 alnsn }
730 1.1 alnsn
731 1.1 alnsn BPFJIT_ASSERT(k == 1 && shift < 32);
732 1.1 alnsn
733 1.1 alnsn if (shift != 0) {
734 1.1 alnsn status = sljit_emit_op2(compiler,
735 1.1 alnsn SLJIT_LSHR|SLJIT_INT_OP,
736 1.1 alnsn BPFJIT_A, 0,
737 1.1 alnsn BPFJIT_A, 0,
738 1.1 alnsn SLJIT_IMM, shift);
739 1.1 alnsn }
740 1.1 alnsn
741 1.1 alnsn return status;
742 1.1 alnsn }
743 1.1 alnsn
744 1.1 alnsn #if !defined(BPFJIT_USE_UDIV)
745 1.1 alnsn static sljit_uw
746 1.1 alnsn divide(sljit_uw x, sljit_uw y)
747 1.1 alnsn {
748 1.1 alnsn
749 1.1 alnsn return (uint32_t)x / (uint32_t)y;
750 1.1 alnsn }
751 1.1 alnsn #endif
752 1.1 alnsn
753 1.1 alnsn /*
754 1.1 alnsn * Generate A = A / div.
755 1.1 alnsn * divt,divw are either SLJIT_IMM,pc->k or BPFJIT_X,0.
756 1.1 alnsn */
757 1.1 alnsn static int
758 1.1 alnsn emit_division(struct sljit_compiler* compiler, int divt, sljit_w divw)
759 1.1 alnsn {
760 1.1 alnsn int status;
761 1.1 alnsn
762 1.1 alnsn #if BPFJIT_X == SLJIT_TEMPORARY_REG1 || \
763 1.1 alnsn BPFJIT_X == SLJIT_RETURN_REG || \
764 1.1 alnsn BPFJIT_X == SLJIT_TEMPORARY_REG2 || \
765 1.1 alnsn BPFJIT_A == SLJIT_TEMPORARY_REG2
766 1.1 alnsn #error "Not supported assignment of registers."
767 1.1 alnsn #endif
768 1.1 alnsn
769 1.1 alnsn #if BPFJIT_A != SLJIT_TEMPORARY_REG1
770 1.1 alnsn status = sljit_emit_op1(compiler,
771 1.1 alnsn SLJIT_MOV,
772 1.1 alnsn SLJIT_TEMPORARY_REG1, 0,
773 1.1 alnsn BPFJIT_A, 0);
774 1.1 alnsn if (status != SLJIT_SUCCESS)
775 1.1 alnsn return status;
776 1.1 alnsn #endif
777 1.1 alnsn
778 1.1 alnsn status = sljit_emit_op1(compiler,
779 1.1 alnsn SLJIT_MOV,
780 1.1 alnsn SLJIT_TEMPORARY_REG2, 0,
781 1.1 alnsn divt, divw);
782 1.1 alnsn if (status != SLJIT_SUCCESS)
783 1.1 alnsn return status;
784 1.1 alnsn
785 1.1 alnsn #if defined(BPFJIT_USE_UDIV)
786 1.1 alnsn status = sljit_emit_op0(compiler, SLJIT_UDIV|SLJIT_INT_OP);
787 1.1 alnsn
788 1.1 alnsn #if BPFJIT_A != SLJIT_TEMPORARY_REG1
789 1.1 alnsn status = sljit_emit_op1(compiler,
790 1.1 alnsn SLJIT_MOV,
791 1.1 alnsn BPFJIT_A, 0,
792 1.1 alnsn SLJIT_TEMPORARY_REG1, 0);
793 1.1 alnsn if (status != SLJIT_SUCCESS)
794 1.1 alnsn return status;
795 1.1 alnsn #endif
796 1.1 alnsn #else
797 1.1 alnsn status = sljit_emit_ijump(compiler,
798 1.1 alnsn SLJIT_CALL2,
799 1.1 alnsn SLJIT_IMM, SLJIT_FUNC_OFFSET(divide));
800 1.1 alnsn
801 1.1 alnsn #if BPFJIT_A != SLJIT_RETURN_REG
802 1.1 alnsn status = sljit_emit_op1(compiler,
803 1.1 alnsn SLJIT_MOV,
804 1.1 alnsn BPFJIT_A, 0,
805 1.1 alnsn SLJIT_RETURN_REG, 0);
806 1.1 alnsn if (status != SLJIT_SUCCESS)
807 1.1 alnsn return status;
808 1.1 alnsn #endif
809 1.1 alnsn #endif
810 1.1 alnsn
811 1.1 alnsn return status;
812 1.1 alnsn }
813 1.1 alnsn
814 1.1 alnsn /*
815 1.1 alnsn * Count BPF_RET instructions.
816 1.1 alnsn */
817 1.1 alnsn static size_t
818 1.1 alnsn count_returns(struct bpf_insn *insns, size_t insn_count)
819 1.1 alnsn {
820 1.1 alnsn size_t i;
821 1.1 alnsn size_t rv;
822 1.1 alnsn
823 1.1 alnsn rv = 0;
824 1.1 alnsn for (i = 0; i < insn_count; i++) {
825 1.1 alnsn if (BPF_CLASS(insns[i].code) == BPF_RET)
826 1.1 alnsn rv++;
827 1.1 alnsn }
828 1.1 alnsn
829 1.1 alnsn return rv;
830 1.1 alnsn }
831 1.1 alnsn
832 1.1 alnsn /*
833 1.1 alnsn * Return true if pc is a "read from packet" instruction.
834 1.1 alnsn * If length is not NULL and return value is true, *length will
835 1.1 alnsn * be set to a safe length required to read a packet.
836 1.1 alnsn */
837 1.1 alnsn static bool
838 1.1 alnsn read_pkt_insn(struct bpf_insn *pc, uint32_t *length)
839 1.1 alnsn {
840 1.1 alnsn bool rv;
841 1.1 alnsn uint32_t width;
842 1.1 alnsn
843 1.1 alnsn switch (BPF_CLASS(pc->code)) {
844 1.1 alnsn default:
845 1.1 alnsn rv = false;
846 1.1 alnsn break;
847 1.1 alnsn
848 1.1 alnsn case BPF_LD:
849 1.1 alnsn rv = BPF_MODE(pc->code) == BPF_ABS ||
850 1.1 alnsn BPF_MODE(pc->code) == BPF_IND;
851 1.1 alnsn if (rv)
852 1.1 alnsn width = read_width(pc);
853 1.1 alnsn break;
854 1.1 alnsn
855 1.1 alnsn case BPF_LDX:
856 1.1 alnsn rv = pc->code == (BPF_LDX|BPF_B|BPF_MSH);
857 1.1 alnsn width = 1;
858 1.1 alnsn break;
859 1.1 alnsn }
860 1.1 alnsn
861 1.1 alnsn if (rv && length != NULL) {
862 1.1 alnsn *length = (pc->k > UINT32_MAX - width) ?
863 1.1 alnsn UINT32_MAX : pc->k + width;
864 1.1 alnsn }
865 1.1 alnsn
866 1.1 alnsn return rv;
867 1.1 alnsn }
868 1.1 alnsn
869 1.1 alnsn /*
870 1.1 alnsn * Set bj_check_length for all "read from packet" instructions
871 1.1 alnsn * in a linear block of instructions [from, to).
872 1.1 alnsn */
873 1.1 alnsn static void
874 1.1 alnsn set_check_length(struct bpf_insn *insns, struct bpfjit_insn_data *insn_dat,
875 1.1 alnsn size_t from, size_t to, uint32_t length)
876 1.1 alnsn {
877 1.1 alnsn
878 1.1 alnsn for (; from < to; from++) {
879 1.1 alnsn if (read_pkt_insn(&insns[from], NULL)) {
880 1.1 alnsn insn_dat[from].bj_aux.bj_rdata.bj_check_length = length;
881 1.1 alnsn length = 0;
882 1.1 alnsn }
883 1.1 alnsn }
884 1.1 alnsn }
885 1.1 alnsn
886 1.1 alnsn /*
887 1.1 alnsn * The function divides instructions into blocks. Destination of a jump
888 1.1 alnsn * instruction starts a new block. BPF_RET and BPF_JMP instructions
889 1.1 alnsn * terminate a block. Blocks are linear, that is, there are no jumps out
890 1.1 alnsn * from the middle of a block and there are no jumps in to the middle of
891 1.1 alnsn * a block.
892 1.1 alnsn * If a block has one or more "read from packet" instructions,
893 1.1 alnsn * bj_check_length will be set to one value for the whole block and that
894 1.1 alnsn * value will be equal to the greatest value of safe lengths of "read from
895 1.1 alnsn * packet" instructions inside the block.
896 1.1 alnsn */
897 1.1 alnsn static int
898 1.1 alnsn optimize(struct bpf_insn *insns,
899 1.1 alnsn struct bpfjit_insn_data *insn_dat, size_t insn_count)
900 1.1 alnsn {
901 1.1 alnsn size_t i;
902 1.1 alnsn size_t first_read;
903 1.1 alnsn bool unreachable;
904 1.1 alnsn uint32_t jt, jf;
905 1.1 alnsn uint32_t length, safe_length;
906 1.1 alnsn struct bpfjit_jump *jmp, *jtf;
907 1.1 alnsn
908 1.1 alnsn for (i = 0; i < insn_count; i++)
909 1.1 alnsn SLIST_INIT(&insn_dat[i].bj_jumps);
910 1.1 alnsn
911 1.1 alnsn safe_length = 0;
912 1.1 alnsn unreachable = false;
913 1.1 alnsn first_read = SIZE_MAX;
914 1.1 alnsn
915 1.1 alnsn for (i = 0; i < insn_count; i++) {
916 1.1 alnsn
917 1.1 alnsn if (!SLIST_EMPTY(&insn_dat[i].bj_jumps)) {
918 1.1 alnsn unreachable = false;
919 1.1 alnsn
920 1.1 alnsn set_check_length(insns, insn_dat,
921 1.1 alnsn first_read, i, safe_length);
922 1.1 alnsn first_read = SIZE_MAX;
923 1.1 alnsn
924 1.1 alnsn safe_length = UINT32_MAX;
925 1.1 alnsn SLIST_FOREACH(jmp, &insn_dat[i].bj_jumps, bj_entries) {
926 1.1 alnsn if (jmp->bj_safe_length < safe_length)
927 1.1 alnsn safe_length = jmp->bj_safe_length;
928 1.1 alnsn }
929 1.1 alnsn }
930 1.1 alnsn
931 1.1 alnsn insn_dat[i].bj_unreachable = unreachable;
932 1.1 alnsn if (unreachable)
933 1.1 alnsn continue;
934 1.1 alnsn
935 1.1 alnsn if (read_pkt_insn(&insns[i], &length)) {
936 1.1 alnsn if (first_read == SIZE_MAX)
937 1.1 alnsn first_read = i;
938 1.1 alnsn if (length > safe_length)
939 1.1 alnsn safe_length = length;
940 1.1 alnsn }
941 1.1 alnsn
942 1.1 alnsn switch (BPF_CLASS(insns[i].code)) {
943 1.1 alnsn case BPF_RET:
944 1.1 alnsn unreachable = true;
945 1.1 alnsn continue;
946 1.1 alnsn
947 1.1 alnsn case BPF_JMP:
948 1.1 alnsn if (insns[i].code == (BPF_JMP|BPF_JA)) {
949 1.1 alnsn jt = jf = insns[i].k;
950 1.1 alnsn } else {
951 1.1 alnsn jt = insns[i].jt;
952 1.1 alnsn jf = insns[i].jf;
953 1.1 alnsn }
954 1.1 alnsn
955 1.1 alnsn if (jt >= insn_count - (i + 1) ||
956 1.1 alnsn jf >= insn_count - (i + 1)) {
957 1.1 alnsn return -1;
958 1.1 alnsn }
959 1.1 alnsn
960 1.1 alnsn if (jt > 0 && jf > 0)
961 1.1 alnsn unreachable = true;
962 1.1 alnsn
963 1.1 alnsn jtf = insn_dat[i].bj_aux.bj_jdata.bj_jtf;
964 1.1 alnsn
965 1.1 alnsn jtf[0].bj_jump = NULL;
966 1.1 alnsn jtf[0].bj_safe_length = safe_length;
967 1.1 alnsn SLIST_INSERT_HEAD(&insn_dat[i + 1 + jt].bj_jumps,
968 1.1 alnsn &jtf[0], bj_entries);
969 1.1 alnsn
970 1.1 alnsn if (jf != jt) {
971 1.1 alnsn jtf[1].bj_jump = NULL;
972 1.1 alnsn jtf[1].bj_safe_length = safe_length;
973 1.1 alnsn SLIST_INSERT_HEAD(&insn_dat[i + 1 + jf].bj_jumps,
974 1.1 alnsn &jtf[1], bj_entries);
975 1.1 alnsn }
976 1.1 alnsn
977 1.1 alnsn continue;
978 1.1 alnsn }
979 1.1 alnsn }
980 1.1 alnsn
981 1.1 alnsn set_check_length(insns, insn_dat, first_read, insn_count, safe_length);
982 1.1 alnsn
983 1.1 alnsn return 0;
984 1.1 alnsn }
985 1.1 alnsn
986 1.1 alnsn /*
987 1.1 alnsn * Count out-of-bounds and division by zero jumps.
988 1.1 alnsn *
989 1.1 alnsn * insn_dat should be initialized by optimize().
990 1.1 alnsn */
991 1.1 alnsn static size_t
992 1.1 alnsn get_ret0_size(struct bpf_insn *insns, struct bpfjit_insn_data *insn_dat,
993 1.1 alnsn size_t insn_count)
994 1.1 alnsn {
995 1.1 alnsn size_t rv = 0;
996 1.1 alnsn size_t i;
997 1.1 alnsn
998 1.1 alnsn for (i = 0; i < insn_count; i++) {
999 1.1 alnsn
1000 1.1 alnsn if (read_pkt_insn(&insns[i], NULL)) {
1001 1.1 alnsn if (insn_dat[i].bj_aux.bj_rdata.bj_check_length > 0)
1002 1.1 alnsn rv++;
1003 1.1 alnsn #ifdef _KERNEL
1004 1.1 alnsn rv++;
1005 1.1 alnsn #endif
1006 1.1 alnsn }
1007 1.1 alnsn
1008 1.1 alnsn if (insns[i].code == (BPF_LD|BPF_IND|BPF_B) ||
1009 1.1 alnsn insns[i].code == (BPF_LD|BPF_IND|BPF_H) ||
1010 1.1 alnsn insns[i].code == (BPF_LD|BPF_IND|BPF_W)) {
1011 1.1 alnsn rv++;
1012 1.1 alnsn }
1013 1.1 alnsn
1014 1.1 alnsn if (insns[i].code == (BPF_ALU|BPF_DIV|BPF_X))
1015 1.1 alnsn rv++;
1016 1.1 alnsn
1017 1.1 alnsn if (insns[i].code == (BPF_ALU|BPF_DIV|BPF_K) &&
1018 1.1 alnsn insns[i].k == 0) {
1019 1.1 alnsn rv++;
1020 1.1 alnsn }
1021 1.1 alnsn }
1022 1.1 alnsn
1023 1.1 alnsn return rv;
1024 1.1 alnsn }
1025 1.1 alnsn
1026 1.1 alnsn /*
1027 1.1 alnsn * Convert BPF_ALU operations except BPF_NEG and BPF_DIV to sljit operation.
1028 1.1 alnsn */
1029 1.1 alnsn static int
1030 1.1 alnsn bpf_alu_to_sljit_op(struct bpf_insn *pc)
1031 1.1 alnsn {
1032 1.1 alnsn
1033 1.1 alnsn /*
1034 1.1 alnsn * Note: all supported 64bit arches have 32bit multiply
1035 1.1 alnsn * instruction so SLJIT_INT_OP doesn't have any overhead.
1036 1.1 alnsn */
1037 1.1 alnsn switch (BPF_OP(pc->code)) {
1038 1.1 alnsn case BPF_ADD: return SLJIT_ADD;
1039 1.1 alnsn case BPF_SUB: return SLJIT_SUB;
1040 1.1 alnsn case BPF_MUL: return SLJIT_MUL|SLJIT_INT_OP;
1041 1.1 alnsn case BPF_OR: return SLJIT_OR;
1042 1.1 alnsn case BPF_AND: return SLJIT_AND;
1043 1.1 alnsn case BPF_LSH: return SLJIT_SHL;
1044 1.1 alnsn case BPF_RSH: return SLJIT_LSHR|SLJIT_INT_OP;
1045 1.1 alnsn default:
1046 1.1 alnsn BPFJIT_ASSERT(false);
1047 1.1 alnsn return 0;
1048 1.1 alnsn }
1049 1.1 alnsn }
1050 1.1 alnsn
1051 1.1 alnsn /*
1052 1.1 alnsn * Convert BPF_JMP operations except BPF_JA to sljit condition.
1053 1.1 alnsn */
1054 1.1 alnsn static int
1055 1.1 alnsn bpf_jmp_to_sljit_cond(struct bpf_insn *pc, bool negate)
1056 1.1 alnsn {
1057 1.1 alnsn /*
1058 1.1 alnsn * Note: all supported 64bit arches have 32bit comparison
1059 1.1 alnsn * instructions so SLJIT_INT_OP doesn't have any overhead.
1060 1.1 alnsn */
1061 1.1 alnsn int rv = SLJIT_INT_OP;
1062 1.1 alnsn
1063 1.1 alnsn switch (BPF_OP(pc->code)) {
1064 1.1 alnsn case BPF_JGT:
1065 1.1 alnsn rv |= negate ? SLJIT_C_LESS_EQUAL : SLJIT_C_GREATER;
1066 1.1 alnsn break;
1067 1.1 alnsn case BPF_JGE:
1068 1.1 alnsn rv |= negate ? SLJIT_C_LESS : SLJIT_C_GREATER_EQUAL;
1069 1.1 alnsn break;
1070 1.1 alnsn case BPF_JEQ:
1071 1.1 alnsn rv |= negate ? SLJIT_C_NOT_EQUAL : SLJIT_C_EQUAL;
1072 1.1 alnsn break;
1073 1.1 alnsn case BPF_JSET:
1074 1.1 alnsn rv |= negate ? SLJIT_C_EQUAL : SLJIT_C_NOT_EQUAL;
1075 1.1 alnsn break;
1076 1.1 alnsn default:
1077 1.1 alnsn BPFJIT_ASSERT(false);
1078 1.1 alnsn }
1079 1.1 alnsn
1080 1.1 alnsn return rv;
1081 1.1 alnsn }
1082 1.1 alnsn
1083 1.1 alnsn static unsigned int
1084 1.1 alnsn bpfjit_optimization_hints(struct bpf_insn *insns, size_t insn_count)
1085 1.1 alnsn {
1086 1.1 alnsn unsigned int rv = BPFJIT_INIT_A;
1087 1.1 alnsn struct bpf_insn *pc;
1088 1.2 alnsn unsigned int minm, maxm;
1089 1.1 alnsn
1090 1.1 alnsn BPFJIT_ASSERT(BPF_MEMWORDS - 1 <= 0xff);
1091 1.1 alnsn
1092 1.1 alnsn maxm = 0;
1093 1.1 alnsn minm = BPF_MEMWORDS - 1;
1094 1.1 alnsn
1095 1.1 alnsn for (pc = insns; pc != insns + insn_count; pc++) {
1096 1.1 alnsn switch (BPF_CLASS(pc->code)) {
1097 1.1 alnsn case BPF_LD:
1098 1.1 alnsn if (BPF_MODE(pc->code) == BPF_IND)
1099 1.1 alnsn rv |= BPFJIT_INIT_X;
1100 1.1 alnsn if (BPF_MODE(pc->code) == BPF_MEM &&
1101 1.1 alnsn (uint32_t)pc->k < BPF_MEMWORDS) {
1102 1.1 alnsn if (pc->k > maxm)
1103 1.1 alnsn maxm = pc->k;
1104 1.1 alnsn if (pc->k < minm)
1105 1.1 alnsn minm = pc->k;
1106 1.1 alnsn }
1107 1.1 alnsn continue;
1108 1.1 alnsn case BPF_LDX:
1109 1.1 alnsn rv |= BPFJIT_INIT_X;
1110 1.1 alnsn if (BPF_MODE(pc->code) == BPF_MEM &&
1111 1.1 alnsn (uint32_t)pc->k < BPF_MEMWORDS) {
1112 1.1 alnsn if (pc->k > maxm)
1113 1.1 alnsn maxm = pc->k;
1114 1.1 alnsn if (pc->k < minm)
1115 1.1 alnsn minm = pc->k;
1116 1.1 alnsn }
1117 1.1 alnsn continue;
1118 1.1 alnsn case BPF_ST:
1119 1.1 alnsn if ((uint32_t)pc->k < BPF_MEMWORDS) {
1120 1.1 alnsn if (pc->k > maxm)
1121 1.1 alnsn maxm = pc->k;
1122 1.1 alnsn if (pc->k < minm)
1123 1.1 alnsn minm = pc->k;
1124 1.1 alnsn }
1125 1.1 alnsn continue;
1126 1.1 alnsn case BPF_STX:
1127 1.1 alnsn rv |= BPFJIT_INIT_X;
1128 1.1 alnsn if ((uint32_t)pc->k < BPF_MEMWORDS) {
1129 1.1 alnsn if (pc->k > maxm)
1130 1.1 alnsn maxm = pc->k;
1131 1.1 alnsn if (pc->k < minm)
1132 1.1 alnsn minm = pc->k;
1133 1.1 alnsn }
1134 1.1 alnsn continue;
1135 1.1 alnsn case BPF_ALU:
1136 1.1 alnsn if (pc->code == (BPF_ALU|BPF_NEG))
1137 1.1 alnsn continue;
1138 1.1 alnsn if (BPF_SRC(pc->code) == BPF_X)
1139 1.1 alnsn rv |= BPFJIT_INIT_X;
1140 1.1 alnsn continue;
1141 1.1 alnsn case BPF_JMP:
1142 1.1 alnsn if (pc->code == (BPF_JMP|BPF_JA))
1143 1.1 alnsn continue;
1144 1.1 alnsn if (BPF_SRC(pc->code) == BPF_X)
1145 1.1 alnsn rv |= BPFJIT_INIT_X;
1146 1.1 alnsn continue;
1147 1.1 alnsn case BPF_RET:
1148 1.1 alnsn continue;
1149 1.1 alnsn case BPF_MISC:
1150 1.1 alnsn rv |= BPFJIT_INIT_X;
1151 1.1 alnsn continue;
1152 1.1 alnsn default:
1153 1.1 alnsn BPFJIT_ASSERT(false);
1154 1.1 alnsn }
1155 1.1 alnsn }
1156 1.1 alnsn
1157 1.1 alnsn return rv | (maxm << 8) | minm;
1158 1.1 alnsn }
1159 1.1 alnsn
1160 1.1 alnsn /*
1161 1.1 alnsn * Convert BPF_K and BPF_X to sljit register.
1162 1.1 alnsn */
1163 1.1 alnsn static int
1164 1.1 alnsn kx_to_reg(struct bpf_insn *pc)
1165 1.1 alnsn {
1166 1.1 alnsn
1167 1.1 alnsn switch (BPF_SRC(pc->code)) {
1168 1.1 alnsn case BPF_K: return SLJIT_IMM;
1169 1.1 alnsn case BPF_X: return BPFJIT_X;
1170 1.1 alnsn default:
1171 1.1 alnsn BPFJIT_ASSERT(false);
1172 1.1 alnsn return 0;
1173 1.1 alnsn }
1174 1.1 alnsn }
1175 1.1 alnsn
1176 1.1 alnsn static sljit_w
1177 1.1 alnsn kx_to_reg_arg(struct bpf_insn *pc)
1178 1.1 alnsn {
1179 1.1 alnsn
1180 1.1 alnsn switch (BPF_SRC(pc->code)) {
1181 1.1 alnsn case BPF_K: return (uint32_t)pc->k; /* SLJIT_IMM, pc->k, */
1182 1.1 alnsn case BPF_X: return 0; /* BPFJIT_X, 0, */
1183 1.1 alnsn default:
1184 1.1 alnsn BPFJIT_ASSERT(false);
1185 1.1 alnsn return 0;
1186 1.1 alnsn }
1187 1.1 alnsn }
1188 1.1 alnsn
1189 1.1 alnsn bpfjit_function_t
1190 1.1 alnsn bpfjit_generate_code(struct bpf_insn *insns, size_t insn_count)
1191 1.1 alnsn {
1192 1.1 alnsn void *rv;
1193 1.1 alnsn size_t i;
1194 1.1 alnsn int status;
1195 1.1 alnsn int branching, negate;
1196 1.1 alnsn unsigned int rval, mode, src;
1197 1.1 alnsn int ntmp;
1198 1.2 alnsn unsigned int locals_size;
1199 1.2 alnsn unsigned int minm, maxm; /* min/max k for M[k] */
1200 1.2 alnsn size_t mem_locals_start; /* start of M[] array */
1201 1.1 alnsn unsigned int opts;
1202 1.1 alnsn struct bpf_insn *pc;
1203 1.1 alnsn struct sljit_compiler* compiler;
1204 1.1 alnsn
1205 1.1 alnsn /* a list of jumps to a normal return from a generated function */
1206 1.1 alnsn struct sljit_jump **returns;
1207 1.1 alnsn size_t returns_size, returns_maxsize;
1208 1.1 alnsn
1209 1.1 alnsn /* a list of jumps to out-of-bound return from a generated function */
1210 1.1 alnsn struct sljit_jump **ret0;
1211 1.3 rmind size_t ret0_size = 0, ret0_maxsize = 0;
1212 1.1 alnsn
1213 1.1 alnsn struct bpfjit_insn_data *insn_dat;
1214 1.1 alnsn
1215 1.1 alnsn /* for local use */
1216 1.1 alnsn struct sljit_label *label;
1217 1.1 alnsn struct sljit_jump *jump;
1218 1.1 alnsn struct bpfjit_jump *bjump, *jtf;
1219 1.1 alnsn
1220 1.1 alnsn struct sljit_jump *to_mchain_jump;
1221 1.1 alnsn
1222 1.1 alnsn uint32_t jt, jf;
1223 1.1 alnsn
1224 1.1 alnsn rv = NULL;
1225 1.1 alnsn compiler = NULL;
1226 1.1 alnsn insn_dat = NULL;
1227 1.1 alnsn returns = NULL;
1228 1.1 alnsn ret0 = NULL;
1229 1.1 alnsn
1230 1.1 alnsn opts = bpfjit_optimization_hints(insns, insn_count);
1231 1.1 alnsn minm = opts & 0xff;
1232 1.1 alnsn maxm = (opts >> 8) & 0xff;
1233 1.1 alnsn mem_locals_start = mem_local_offset(0, 0);
1234 1.1 alnsn locals_size = (minm <= maxm) ?
1235 1.1 alnsn mem_local_offset(maxm + 1, minm) : mem_locals_start;
1236 1.1 alnsn
1237 1.1 alnsn ntmp = 4;
1238 1.1 alnsn #ifdef _KERNEL
1239 1.1 alnsn ntmp += 1; /* for BPFJIT_KERN_TMP */
1240 1.1 alnsn #endif
1241 1.1 alnsn
1242 1.1 alnsn returns_maxsize = count_returns(insns, insn_count);
1243 1.1 alnsn if (returns_maxsize == 0)
1244 1.1 alnsn goto fail;
1245 1.1 alnsn
1246 1.3 rmind insn_dat = BPFJIT_ALLOC(insn_count * sizeof(insn_dat[0]));
1247 1.1 alnsn if (insn_dat == NULL)
1248 1.1 alnsn goto fail;
1249 1.1 alnsn
1250 1.1 alnsn if (optimize(insns, insn_dat, insn_count) < 0)
1251 1.1 alnsn goto fail;
1252 1.1 alnsn
1253 1.1 alnsn ret0_size = 0;
1254 1.1 alnsn ret0_maxsize = get_ret0_size(insns, insn_dat, insn_count);
1255 1.1 alnsn if (ret0_maxsize > 0) {
1256 1.3 rmind ret0 = BPFJIT_ALLOC(ret0_maxsize * sizeof(ret0[0]));
1257 1.1 alnsn if (ret0 == NULL)
1258 1.1 alnsn goto fail;
1259 1.1 alnsn }
1260 1.1 alnsn
1261 1.1 alnsn returns_size = 0;
1262 1.3 rmind returns = BPFJIT_ALLOC(returns_maxsize * sizeof(returns[0]));
1263 1.1 alnsn if (returns == NULL)
1264 1.1 alnsn goto fail;
1265 1.1 alnsn
1266 1.1 alnsn compiler = sljit_create_compiler();
1267 1.1 alnsn if (compiler == NULL)
1268 1.1 alnsn goto fail;
1269 1.1 alnsn
1270 1.1 alnsn #if !defined(_KERNEL) && defined(SLJIT_VERBOSE) && SLJIT_VERBOSE
1271 1.1 alnsn sljit_compiler_verbose(compiler, stderr);
1272 1.1 alnsn #endif
1273 1.1 alnsn
1274 1.1 alnsn status = sljit_emit_enter(compiler, 3, ntmp, 3, locals_size);
1275 1.1 alnsn if (status != SLJIT_SUCCESS)
1276 1.1 alnsn goto fail;
1277 1.1 alnsn
1278 1.1 alnsn for (i = mem_locals_start; i < locals_size; i+= sizeof(uint32_t)) {
1279 1.1 alnsn status = sljit_emit_op1(compiler,
1280 1.1 alnsn SLJIT_MOV_UI,
1281 1.1 alnsn SLJIT_MEM1(SLJIT_LOCALS_REG), i,
1282 1.1 alnsn SLJIT_IMM, 0);
1283 1.1 alnsn if (status != SLJIT_SUCCESS)
1284 1.1 alnsn goto fail;
1285 1.1 alnsn }
1286 1.1 alnsn
1287 1.1 alnsn if (opts & BPFJIT_INIT_A) {
1288 1.1 alnsn /* A = 0; */
1289 1.1 alnsn status = sljit_emit_op1(compiler,
1290 1.1 alnsn SLJIT_MOV,
1291 1.1 alnsn BPFJIT_A, 0,
1292 1.1 alnsn SLJIT_IMM, 0);
1293 1.1 alnsn if (status != SLJIT_SUCCESS)
1294 1.1 alnsn goto fail;
1295 1.1 alnsn }
1296 1.1 alnsn
1297 1.1 alnsn if (opts & BPFJIT_INIT_X) {
1298 1.1 alnsn /* X = 0; */
1299 1.1 alnsn status = sljit_emit_op1(compiler,
1300 1.1 alnsn SLJIT_MOV,
1301 1.1 alnsn BPFJIT_X, 0,
1302 1.1 alnsn SLJIT_IMM, 0);
1303 1.1 alnsn if (status != SLJIT_SUCCESS)
1304 1.1 alnsn goto fail;
1305 1.1 alnsn }
1306 1.1 alnsn
1307 1.1 alnsn for (i = 0; i < insn_count; i++) {
1308 1.1 alnsn if (insn_dat[i].bj_unreachable)
1309 1.1 alnsn continue;
1310 1.1 alnsn
1311 1.1 alnsn to_mchain_jump = NULL;
1312 1.1 alnsn
1313 1.1 alnsn /*
1314 1.1 alnsn * Resolve jumps to the current insn.
1315 1.1 alnsn */
1316 1.1 alnsn label = NULL;
1317 1.1 alnsn SLIST_FOREACH(bjump, &insn_dat[i].bj_jumps, bj_entries) {
1318 1.1 alnsn if (bjump->bj_jump != NULL) {
1319 1.1 alnsn if (label == NULL)
1320 1.1 alnsn label = sljit_emit_label(compiler);
1321 1.1 alnsn if (label == NULL)
1322 1.1 alnsn goto fail;
1323 1.1 alnsn sljit_set_label(bjump->bj_jump, label);
1324 1.1 alnsn }
1325 1.1 alnsn }
1326 1.1 alnsn
1327 1.1 alnsn if (read_pkt_insn(&insns[i], NULL) &&
1328 1.1 alnsn insn_dat[i].bj_aux.bj_rdata.bj_check_length > 0) {
1329 1.1 alnsn /* if (buflen < bj_check_length) return 0; */
1330 1.1 alnsn jump = sljit_emit_cmp(compiler,
1331 1.1 alnsn SLJIT_C_LESS,
1332 1.1 alnsn BPFJIT_BUFLEN, 0,
1333 1.1 alnsn SLJIT_IMM,
1334 1.1 alnsn insn_dat[i].bj_aux.bj_rdata.bj_check_length);
1335 1.1 alnsn if (jump == NULL)
1336 1.1 alnsn goto fail;
1337 1.1 alnsn #ifdef _KERNEL
1338 1.1 alnsn to_mchain_jump = jump;
1339 1.1 alnsn #else
1340 1.1 alnsn ret0[ret0_size++] = jump;
1341 1.1 alnsn #endif
1342 1.1 alnsn }
1343 1.1 alnsn
1344 1.1 alnsn pc = &insns[i];
1345 1.1 alnsn switch (BPF_CLASS(pc->code)) {
1346 1.1 alnsn
1347 1.1 alnsn default:
1348 1.1 alnsn goto fail;
1349 1.1 alnsn
1350 1.1 alnsn case BPF_LD:
1351 1.1 alnsn /* BPF_LD+BPF_IMM A <- k */
1352 1.1 alnsn if (pc->code == (BPF_LD|BPF_IMM)) {
1353 1.1 alnsn status = sljit_emit_op1(compiler,
1354 1.1 alnsn SLJIT_MOV,
1355 1.1 alnsn BPFJIT_A, 0,
1356 1.1 alnsn SLJIT_IMM, (uint32_t)pc->k);
1357 1.1 alnsn if (status != SLJIT_SUCCESS)
1358 1.1 alnsn goto fail;
1359 1.1 alnsn
1360 1.1 alnsn continue;
1361 1.1 alnsn }
1362 1.1 alnsn
1363 1.1 alnsn /* BPF_LD+BPF_MEM A <- M[k] */
1364 1.1 alnsn if (pc->code == (BPF_LD|BPF_MEM)) {
1365 1.1 alnsn if (pc->k < minm || pc->k > maxm)
1366 1.1 alnsn goto fail;
1367 1.1 alnsn status = sljit_emit_op1(compiler,
1368 1.1 alnsn SLJIT_MOV_UI,
1369 1.1 alnsn BPFJIT_A, 0,
1370 1.1 alnsn SLJIT_MEM1(SLJIT_LOCALS_REG),
1371 1.1 alnsn mem_local_offset(pc->k, minm));
1372 1.1 alnsn if (status != SLJIT_SUCCESS)
1373 1.1 alnsn goto fail;
1374 1.1 alnsn
1375 1.1 alnsn continue;
1376 1.1 alnsn }
1377 1.1 alnsn
1378 1.1 alnsn /* BPF_LD+BPF_W+BPF_LEN A <- len */
1379 1.1 alnsn if (pc->code == (BPF_LD|BPF_W|BPF_LEN)) {
1380 1.1 alnsn status = sljit_emit_op1(compiler,
1381 1.1 alnsn SLJIT_MOV,
1382 1.1 alnsn BPFJIT_A, 0,
1383 1.1 alnsn BPFJIT_WIRELEN, 0);
1384 1.1 alnsn if (status != SLJIT_SUCCESS)
1385 1.1 alnsn goto fail;
1386 1.1 alnsn
1387 1.1 alnsn continue;
1388 1.1 alnsn }
1389 1.1 alnsn
1390 1.1 alnsn mode = BPF_MODE(pc->code);
1391 1.1 alnsn if (mode != BPF_ABS && mode != BPF_IND)
1392 1.1 alnsn goto fail;
1393 1.1 alnsn
1394 1.1 alnsn status = emit_pkt_read(compiler, pc,
1395 1.1 alnsn to_mchain_jump, ret0, &ret0_size);
1396 1.1 alnsn if (status != SLJIT_SUCCESS)
1397 1.1 alnsn goto fail;
1398 1.1 alnsn
1399 1.1 alnsn continue;
1400 1.1 alnsn
1401 1.1 alnsn case BPF_LDX:
1402 1.1 alnsn mode = BPF_MODE(pc->code);
1403 1.1 alnsn
1404 1.1 alnsn /* BPF_LDX+BPF_W+BPF_IMM X <- k */
1405 1.1 alnsn if (mode == BPF_IMM) {
1406 1.1 alnsn if (BPF_SIZE(pc->code) != BPF_W)
1407 1.1 alnsn goto fail;
1408 1.1 alnsn status = sljit_emit_op1(compiler,
1409 1.1 alnsn SLJIT_MOV,
1410 1.1 alnsn BPFJIT_X, 0,
1411 1.1 alnsn SLJIT_IMM, (uint32_t)pc->k);
1412 1.1 alnsn if (status != SLJIT_SUCCESS)
1413 1.1 alnsn goto fail;
1414 1.1 alnsn
1415 1.1 alnsn continue;
1416 1.1 alnsn }
1417 1.1 alnsn
1418 1.1 alnsn /* BPF_LDX+BPF_W+BPF_LEN X <- len */
1419 1.1 alnsn if (mode == BPF_LEN) {
1420 1.1 alnsn if (BPF_SIZE(pc->code) != BPF_W)
1421 1.1 alnsn goto fail;
1422 1.1 alnsn status = sljit_emit_op1(compiler,
1423 1.1 alnsn SLJIT_MOV,
1424 1.1 alnsn BPFJIT_X, 0,
1425 1.1 alnsn BPFJIT_WIRELEN, 0);
1426 1.1 alnsn if (status != SLJIT_SUCCESS)
1427 1.1 alnsn goto fail;
1428 1.1 alnsn
1429 1.1 alnsn continue;
1430 1.1 alnsn }
1431 1.1 alnsn
1432 1.1 alnsn /* BPF_LDX+BPF_W+BPF_MEM X <- M[k] */
1433 1.1 alnsn if (mode == BPF_MEM) {
1434 1.1 alnsn if (BPF_SIZE(pc->code) != BPF_W)
1435 1.1 alnsn goto fail;
1436 1.1 alnsn if (pc->k < minm || pc->k > maxm)
1437 1.1 alnsn goto fail;
1438 1.1 alnsn status = sljit_emit_op1(compiler,
1439 1.1 alnsn SLJIT_MOV_UI,
1440 1.1 alnsn BPFJIT_X, 0,
1441 1.1 alnsn SLJIT_MEM1(SLJIT_LOCALS_REG),
1442 1.1 alnsn mem_local_offset(pc->k, minm));
1443 1.1 alnsn if (status != SLJIT_SUCCESS)
1444 1.1 alnsn goto fail;
1445 1.1 alnsn
1446 1.1 alnsn continue;
1447 1.1 alnsn }
1448 1.1 alnsn
1449 1.1 alnsn /* BPF_LDX+BPF_B+BPF_MSH X <- 4*(P[k:1]&0xf) */
1450 1.1 alnsn if (mode != BPF_MSH || BPF_SIZE(pc->code) != BPF_B)
1451 1.1 alnsn goto fail;
1452 1.1 alnsn
1453 1.1 alnsn status = emit_msh(compiler, pc,
1454 1.1 alnsn to_mchain_jump, ret0, &ret0_size);
1455 1.1 alnsn if (status != SLJIT_SUCCESS)
1456 1.1 alnsn goto fail;
1457 1.1 alnsn
1458 1.1 alnsn continue;
1459 1.1 alnsn
1460 1.1 alnsn case BPF_ST:
1461 1.1 alnsn if (pc->code != BPF_ST || pc->k < minm || pc->k > maxm)
1462 1.1 alnsn goto fail;
1463 1.1 alnsn
1464 1.1 alnsn status = sljit_emit_op1(compiler,
1465 1.1 alnsn SLJIT_MOV_UI,
1466 1.1 alnsn SLJIT_MEM1(SLJIT_LOCALS_REG),
1467 1.1 alnsn mem_local_offset(pc->k, minm),
1468 1.1 alnsn BPFJIT_A, 0);
1469 1.1 alnsn if (status != SLJIT_SUCCESS)
1470 1.1 alnsn goto fail;
1471 1.1 alnsn
1472 1.1 alnsn continue;
1473 1.1 alnsn
1474 1.1 alnsn case BPF_STX:
1475 1.1 alnsn if (pc->code != BPF_STX || pc->k < minm || pc->k > maxm)
1476 1.1 alnsn goto fail;
1477 1.1 alnsn
1478 1.1 alnsn status = sljit_emit_op1(compiler,
1479 1.1 alnsn SLJIT_MOV_UI,
1480 1.1 alnsn SLJIT_MEM1(SLJIT_LOCALS_REG),
1481 1.1 alnsn mem_local_offset(pc->k, minm),
1482 1.1 alnsn BPFJIT_X, 0);
1483 1.1 alnsn if (status != SLJIT_SUCCESS)
1484 1.1 alnsn goto fail;
1485 1.1 alnsn
1486 1.1 alnsn continue;
1487 1.1 alnsn
1488 1.1 alnsn case BPF_ALU:
1489 1.1 alnsn
1490 1.1 alnsn if (pc->code == (BPF_ALU|BPF_NEG)) {
1491 1.1 alnsn status = sljit_emit_op1(compiler,
1492 1.1 alnsn SLJIT_NEG,
1493 1.1 alnsn BPFJIT_A, 0,
1494 1.1 alnsn BPFJIT_A, 0);
1495 1.1 alnsn if (status != SLJIT_SUCCESS)
1496 1.1 alnsn goto fail;
1497 1.1 alnsn
1498 1.1 alnsn continue;
1499 1.1 alnsn }
1500 1.1 alnsn
1501 1.1 alnsn if (BPF_OP(pc->code) != BPF_DIV) {
1502 1.1 alnsn status = sljit_emit_op2(compiler,
1503 1.1 alnsn bpf_alu_to_sljit_op(pc),
1504 1.1 alnsn BPFJIT_A, 0,
1505 1.1 alnsn BPFJIT_A, 0,
1506 1.1 alnsn kx_to_reg(pc), kx_to_reg_arg(pc));
1507 1.1 alnsn if (status != SLJIT_SUCCESS)
1508 1.1 alnsn goto fail;
1509 1.1 alnsn
1510 1.1 alnsn continue;
1511 1.1 alnsn }
1512 1.1 alnsn
1513 1.1 alnsn /* BPF_DIV */
1514 1.1 alnsn
1515 1.1 alnsn src = BPF_SRC(pc->code);
1516 1.1 alnsn if (src != BPF_X && src != BPF_K)
1517 1.1 alnsn goto fail;
1518 1.1 alnsn
1519 1.1 alnsn /* division by zero? */
1520 1.1 alnsn if (src == BPF_X) {
1521 1.1 alnsn jump = sljit_emit_cmp(compiler,
1522 1.1 alnsn SLJIT_C_EQUAL|SLJIT_INT_OP,
1523 1.1 alnsn BPFJIT_X, 0,
1524 1.1 alnsn SLJIT_IMM, 0);
1525 1.1 alnsn if (jump == NULL)
1526 1.1 alnsn goto fail;
1527 1.1 alnsn ret0[ret0_size++] = jump;
1528 1.1 alnsn } else if (pc->k == 0) {
1529 1.1 alnsn jump = sljit_emit_jump(compiler, SLJIT_JUMP);
1530 1.1 alnsn if (jump == NULL)
1531 1.1 alnsn goto fail;
1532 1.1 alnsn ret0[ret0_size++] = jump;
1533 1.1 alnsn }
1534 1.1 alnsn
1535 1.1 alnsn if (src == BPF_X) {
1536 1.1 alnsn status = emit_division(compiler, BPFJIT_X, 0);
1537 1.1 alnsn if (status != SLJIT_SUCCESS)
1538 1.1 alnsn goto fail;
1539 1.1 alnsn } else if (pc->k != 0) {
1540 1.1 alnsn if (pc->k & (pc->k - 1)) {
1541 1.1 alnsn status = emit_division(compiler,
1542 1.1 alnsn SLJIT_IMM, (uint32_t)pc->k);
1543 1.1 alnsn } else {
1544 1.1 alnsn status = emit_pow2_division(compiler,
1545 1.1 alnsn (uint32_t)pc->k);
1546 1.1 alnsn }
1547 1.1 alnsn if (status != SLJIT_SUCCESS)
1548 1.1 alnsn goto fail;
1549 1.1 alnsn }
1550 1.1 alnsn
1551 1.1 alnsn continue;
1552 1.1 alnsn
1553 1.1 alnsn case BPF_JMP:
1554 1.1 alnsn
1555 1.1 alnsn if (pc->code == (BPF_JMP|BPF_JA)) {
1556 1.1 alnsn jt = jf = pc->k;
1557 1.1 alnsn } else {
1558 1.1 alnsn jt = pc->jt;
1559 1.1 alnsn jf = pc->jf;
1560 1.1 alnsn }
1561 1.1 alnsn
1562 1.1 alnsn negate = (jt == 0) ? 1 : 0;
1563 1.1 alnsn branching = (jt == jf) ? 0 : 1;
1564 1.1 alnsn jtf = insn_dat[i].bj_aux.bj_jdata.bj_jtf;
1565 1.1 alnsn
1566 1.1 alnsn if (branching) {
1567 1.1 alnsn if (BPF_OP(pc->code) != BPF_JSET) {
1568 1.1 alnsn jump = sljit_emit_cmp(compiler,
1569 1.1 alnsn bpf_jmp_to_sljit_cond(pc, negate),
1570 1.1 alnsn BPFJIT_A, 0,
1571 1.1 alnsn kx_to_reg(pc), kx_to_reg_arg(pc));
1572 1.1 alnsn } else {
1573 1.1 alnsn status = sljit_emit_op2(compiler,
1574 1.1 alnsn SLJIT_AND,
1575 1.1 alnsn BPFJIT_TMP1, 0,
1576 1.1 alnsn BPFJIT_A, 0,
1577 1.1 alnsn kx_to_reg(pc), kx_to_reg_arg(pc));
1578 1.1 alnsn if (status != SLJIT_SUCCESS)
1579 1.1 alnsn goto fail;
1580 1.1 alnsn
1581 1.1 alnsn jump = sljit_emit_cmp(compiler,
1582 1.1 alnsn bpf_jmp_to_sljit_cond(pc, negate),
1583 1.1 alnsn BPFJIT_TMP1, 0,
1584 1.1 alnsn SLJIT_IMM, 0);
1585 1.1 alnsn }
1586 1.1 alnsn
1587 1.1 alnsn if (jump == NULL)
1588 1.1 alnsn goto fail;
1589 1.1 alnsn
1590 1.1 alnsn BPFJIT_ASSERT(jtf[negate].bj_jump == NULL);
1591 1.1 alnsn jtf[negate].bj_jump = jump;
1592 1.1 alnsn }
1593 1.1 alnsn
1594 1.1 alnsn if (!branching || (jt != 0 && jf != 0)) {
1595 1.1 alnsn jump = sljit_emit_jump(compiler, SLJIT_JUMP);
1596 1.1 alnsn if (jump == NULL)
1597 1.1 alnsn goto fail;
1598 1.1 alnsn
1599 1.1 alnsn BPFJIT_ASSERT(jtf[branching].bj_jump == NULL);
1600 1.1 alnsn jtf[branching].bj_jump = jump;
1601 1.1 alnsn }
1602 1.1 alnsn
1603 1.1 alnsn continue;
1604 1.1 alnsn
1605 1.1 alnsn case BPF_RET:
1606 1.1 alnsn
1607 1.1 alnsn rval = BPF_RVAL(pc->code);
1608 1.1 alnsn if (rval == BPF_X)
1609 1.1 alnsn goto fail;
1610 1.1 alnsn
1611 1.1 alnsn /* BPF_RET+BPF_K accept k bytes */
1612 1.1 alnsn if (rval == BPF_K) {
1613 1.1 alnsn status = sljit_emit_op1(compiler,
1614 1.1 alnsn SLJIT_MOV,
1615 1.1 alnsn BPFJIT_A, 0,
1616 1.1 alnsn SLJIT_IMM, (uint32_t)pc->k);
1617 1.1 alnsn if (status != SLJIT_SUCCESS)
1618 1.1 alnsn goto fail;
1619 1.1 alnsn }
1620 1.1 alnsn
1621 1.1 alnsn /* BPF_RET+BPF_A accept A bytes */
1622 1.1 alnsn if (rval == BPF_A) {
1623 1.1 alnsn #if BPFJIT_A != SLJIT_RETURN_REG
1624 1.1 alnsn status = sljit_emit_op1(compiler,
1625 1.1 alnsn SLJIT_MOV,
1626 1.1 alnsn SLJIT_RETURN_REG, 0,
1627 1.1 alnsn BPFJIT_A, 0);
1628 1.1 alnsn if (status != SLJIT_SUCCESS)
1629 1.1 alnsn goto fail;
1630 1.1 alnsn #endif
1631 1.1 alnsn }
1632 1.1 alnsn
1633 1.1 alnsn /*
1634 1.1 alnsn * Save a jump to a normal return. If the program
1635 1.1 alnsn * ends with BPF_RET, no jump is needed because
1636 1.1 alnsn * the normal return is generated right after the
1637 1.1 alnsn * last instruction.
1638 1.1 alnsn */
1639 1.1 alnsn if (i != insn_count - 1) {
1640 1.1 alnsn jump = sljit_emit_jump(compiler, SLJIT_JUMP);
1641 1.1 alnsn if (jump == NULL)
1642 1.1 alnsn goto fail;
1643 1.1 alnsn returns[returns_size++] = jump;
1644 1.1 alnsn }
1645 1.1 alnsn
1646 1.1 alnsn continue;
1647 1.1 alnsn
1648 1.1 alnsn case BPF_MISC:
1649 1.1 alnsn
1650 1.1 alnsn if (pc->code == (BPF_MISC|BPF_TAX)) {
1651 1.1 alnsn status = sljit_emit_op1(compiler,
1652 1.1 alnsn SLJIT_MOV_UI,
1653 1.1 alnsn BPFJIT_X, 0,
1654 1.1 alnsn BPFJIT_A, 0);
1655 1.1 alnsn if (status != SLJIT_SUCCESS)
1656 1.1 alnsn goto fail;
1657 1.1 alnsn
1658 1.1 alnsn continue;
1659 1.1 alnsn }
1660 1.1 alnsn
1661 1.1 alnsn if (pc->code == (BPF_MISC|BPF_TXA)) {
1662 1.1 alnsn status = sljit_emit_op1(compiler,
1663 1.1 alnsn SLJIT_MOV,
1664 1.1 alnsn BPFJIT_A, 0,
1665 1.1 alnsn BPFJIT_X, 0);
1666 1.1 alnsn if (status != SLJIT_SUCCESS)
1667 1.1 alnsn goto fail;
1668 1.1 alnsn
1669 1.1 alnsn continue;
1670 1.1 alnsn }
1671 1.1 alnsn
1672 1.1 alnsn goto fail;
1673 1.1 alnsn } /* switch */
1674 1.1 alnsn } /* main loop */
1675 1.1 alnsn
1676 1.1 alnsn BPFJIT_ASSERT(ret0_size == ret0_maxsize);
1677 1.1 alnsn BPFJIT_ASSERT(returns_size <= returns_maxsize);
1678 1.1 alnsn
1679 1.1 alnsn if (returns_size > 0) {
1680 1.1 alnsn label = sljit_emit_label(compiler);
1681 1.1 alnsn if (label == NULL)
1682 1.1 alnsn goto fail;
1683 1.1 alnsn for (i = 0; i < returns_size; i++)
1684 1.1 alnsn sljit_set_label(returns[i], label);
1685 1.1 alnsn }
1686 1.1 alnsn
1687 1.1 alnsn status = sljit_emit_return(compiler,
1688 1.1 alnsn SLJIT_MOV_UI,
1689 1.1 alnsn BPFJIT_A, 0);
1690 1.1 alnsn if (status != SLJIT_SUCCESS)
1691 1.1 alnsn goto fail;
1692 1.1 alnsn
1693 1.1 alnsn if (ret0_size > 0) {
1694 1.1 alnsn label = sljit_emit_label(compiler);
1695 1.1 alnsn if (label == NULL)
1696 1.1 alnsn goto fail;
1697 1.1 alnsn
1698 1.1 alnsn for (i = 0; i < ret0_size; i++)
1699 1.1 alnsn sljit_set_label(ret0[i], label);
1700 1.1 alnsn
1701 1.1 alnsn status = sljit_emit_op1(compiler,
1702 1.1 alnsn SLJIT_MOV,
1703 1.1 alnsn SLJIT_RETURN_REG, 0,
1704 1.1 alnsn SLJIT_IMM, 0);
1705 1.1 alnsn if (status != SLJIT_SUCCESS)
1706 1.1 alnsn goto fail;
1707 1.1 alnsn
1708 1.1 alnsn status = sljit_emit_return(compiler,
1709 1.1 alnsn SLJIT_MOV_UI,
1710 1.1 alnsn SLJIT_RETURN_REG, 0);
1711 1.1 alnsn if (status != SLJIT_SUCCESS)
1712 1.1 alnsn goto fail;
1713 1.1 alnsn }
1714 1.1 alnsn
1715 1.1 alnsn rv = sljit_generate_code(compiler);
1716 1.1 alnsn
1717 1.1 alnsn fail:
1718 1.1 alnsn if (compiler != NULL)
1719 1.1 alnsn sljit_free_compiler(compiler);
1720 1.1 alnsn
1721 1.1 alnsn if (insn_dat != NULL)
1722 1.3 rmind BPFJIT_FREE(insn_dat, insn_count * sizeof(insn_dat[0]));
1723 1.1 alnsn
1724 1.1 alnsn if (returns != NULL)
1725 1.3 rmind BPFJIT_FREE(returns, returns_maxsize * sizeof(returns[0]));
1726 1.1 alnsn
1727 1.1 alnsn if (ret0 != NULL)
1728 1.3 rmind BPFJIT_FREE(ret0, ret0_maxsize * sizeof(ret0[0]));
1729 1.1 alnsn
1730 1.1 alnsn return (bpfjit_function_t)rv;
1731 1.1 alnsn }
1732 1.1 alnsn
1733 1.1 alnsn void
1734 1.1 alnsn bpfjit_free_code(bpfjit_function_t code)
1735 1.1 alnsn {
1736 1.1 alnsn
1737 1.1 alnsn sljit_free_code((void *)code);
1738 1.1 alnsn }
1739