Home | History | Annotate | Line # | Download | only in net
bpfjit.c revision 1.32.2.1
      1  1.32.2.1  martin /*	$NetBSD: bpfjit.c,v 1.32.2.1 2015/02/16 20:48:40 martin Exp $	*/
      2       1.3   rmind 
      3       1.1   alnsn /*-
      4       1.7   alnsn  * Copyright (c) 2011-2014 Alexander Nasonov.
      5       1.1   alnsn  * All rights reserved.
      6       1.1   alnsn  *
      7       1.1   alnsn  * Redistribution and use in source and binary forms, with or without
      8       1.1   alnsn  * modification, are permitted provided that the following conditions
      9       1.1   alnsn  * are met:
     10       1.1   alnsn  *
     11       1.1   alnsn  * 1. Redistributions of source code must retain the above copyright
     12       1.1   alnsn  *    notice, this list of conditions and the following disclaimer.
     13       1.1   alnsn  * 2. Redistributions in binary form must reproduce the above copyright
     14       1.1   alnsn  *    notice, this list of conditions and the following disclaimer in
     15       1.1   alnsn  *    the documentation and/or other materials provided with the
     16       1.1   alnsn  *    distribution.
     17       1.1   alnsn  *
     18       1.1   alnsn  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     19       1.1   alnsn  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     20       1.1   alnsn  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
     21       1.1   alnsn  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
     22       1.1   alnsn  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
     23       1.1   alnsn  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
     24       1.1   alnsn  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     25       1.1   alnsn  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     26       1.1   alnsn  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     27       1.1   alnsn  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
     28       1.1   alnsn  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29       1.1   alnsn  * SUCH DAMAGE.
     30       1.1   alnsn  */
     31       1.1   alnsn 
     32       1.2   alnsn #include <sys/cdefs.h>
     33       1.2   alnsn #ifdef _KERNEL
     34  1.32.2.1  martin __KERNEL_RCSID(0, "$NetBSD: bpfjit.c,v 1.32.2.1 2015/02/16 20:48:40 martin Exp $");
     35       1.2   alnsn #else
     36  1.32.2.1  martin __RCSID("$NetBSD: bpfjit.c,v 1.32.2.1 2015/02/16 20:48:40 martin Exp $");
     37       1.2   alnsn #endif
     38       1.2   alnsn 
     39       1.3   rmind #include <sys/types.h>
     40       1.3   rmind #include <sys/queue.h>
     41       1.1   alnsn 
     42       1.1   alnsn #ifndef _KERNEL
     43       1.7   alnsn #include <assert.h>
     44       1.7   alnsn #define BJ_ASSERT(c) assert(c)
     45       1.7   alnsn #else
     46       1.7   alnsn #define BJ_ASSERT(c) KASSERT(c)
     47       1.7   alnsn #endif
     48       1.7   alnsn 
     49       1.7   alnsn #ifndef _KERNEL
     50       1.3   rmind #include <stdlib.h>
     51       1.7   alnsn #define BJ_ALLOC(sz) malloc(sz)
     52       1.7   alnsn #define BJ_FREE(p, sz) free(p)
     53       1.1   alnsn #else
     54       1.3   rmind #include <sys/kmem.h>
     55       1.7   alnsn #define BJ_ALLOC(sz) kmem_alloc(sz, KM_SLEEP)
     56       1.7   alnsn #define BJ_FREE(p, sz) kmem_free(p, sz)
     57       1.1   alnsn #endif
     58       1.1   alnsn 
     59       1.1   alnsn #ifndef _KERNEL
     60       1.1   alnsn #include <limits.h>
     61       1.1   alnsn #include <stdbool.h>
     62       1.1   alnsn #include <stddef.h>
     63       1.1   alnsn #include <stdint.h>
     64       1.1   alnsn #else
     65       1.1   alnsn #include <sys/atomic.h>
     66       1.1   alnsn #include <sys/module.h>
     67       1.1   alnsn #endif
     68       1.1   alnsn 
     69       1.5   rmind #define	__BPF_PRIVATE
     70       1.5   rmind #include <net/bpf.h>
     71       1.3   rmind #include <net/bpfjit.h>
     72       1.1   alnsn #include <sljitLir.h>
     73       1.1   alnsn 
     74       1.7   alnsn #if !defined(_KERNEL) && defined(SLJIT_VERBOSE) && SLJIT_VERBOSE
     75       1.7   alnsn #include <stdio.h> /* for stderr */
     76       1.7   alnsn #endif
     77       1.7   alnsn 
     78       1.7   alnsn /*
     79      1.13   alnsn  * Arguments of generated bpfjit_func_t.
     80      1.13   alnsn  * The first argument is reassigned upon entry
     81      1.13   alnsn  * to a more frequently used buf argument.
     82      1.13   alnsn  */
     83      1.13   alnsn #define BJ_CTX_ARG	SLJIT_SAVED_REG1
     84      1.13   alnsn #define BJ_ARGS		SLJIT_SAVED_REG2
     85      1.13   alnsn 
     86      1.13   alnsn /*
     87       1.7   alnsn  * Permanent register assignments.
     88       1.7   alnsn  */
     89       1.7   alnsn #define BJ_BUF		SLJIT_SAVED_REG1
     90      1.13   alnsn //#define BJ_ARGS	SLJIT_SAVED_REG2
     91       1.7   alnsn #define BJ_BUFLEN	SLJIT_SAVED_REG3
     92      1.12   alnsn #define BJ_AREG		SLJIT_SCRATCH_REG1
     93      1.12   alnsn #define BJ_TMP1REG	SLJIT_SCRATCH_REG2
     94      1.12   alnsn #define BJ_TMP2REG	SLJIT_SCRATCH_REG3
     95      1.32   alnsn #define BJ_XREG		SLJIT_TEMPORARY_EREG1
     96      1.32   alnsn #define BJ_TMP3REG	SLJIT_TEMPORARY_EREG2
     97       1.7   alnsn 
     98      1.13   alnsn #ifdef _KERNEL
     99      1.13   alnsn #define MAX_MEMWORDS BPF_MAX_MEMWORDS
    100      1.13   alnsn #else
    101      1.13   alnsn #define MAX_MEMWORDS BPF_MEMWORDS
    102      1.13   alnsn #endif
    103      1.13   alnsn 
    104      1.13   alnsn #define BJ_INIT_NOBITS  ((bpf_memword_init_t)0)
    105      1.13   alnsn #define BJ_INIT_MBIT(k) BPF_MEMWORD_INIT(k)
    106      1.13   alnsn #define BJ_INIT_ABIT    BJ_INIT_MBIT(MAX_MEMWORDS)
    107      1.13   alnsn #define BJ_INIT_XBIT    BJ_INIT_MBIT(MAX_MEMWORDS + 1)
    108       1.1   alnsn 
    109       1.9   alnsn /*
    110      1.19   alnsn  * Get a number of memwords and external memwords from a bpf_ctx object.
    111      1.19   alnsn  */
    112      1.19   alnsn #define GET_EXTWORDS(bc) ((bc) ? (bc)->extwords : 0)
    113      1.19   alnsn #define GET_MEMWORDS(bc) (GET_EXTWORDS(bc) ? GET_EXTWORDS(bc) : BPF_MEMWORDS)
    114      1.19   alnsn 
    115      1.19   alnsn /*
    116      1.20   alnsn  * Optimization hints.
    117      1.20   alnsn  */
    118      1.20   alnsn typedef unsigned int bpfjit_hint_t;
    119      1.28   alnsn #define BJ_HINT_ABS  0x01 /* packet read at absolute offset   */
    120      1.28   alnsn #define BJ_HINT_IND  0x02 /* packet read at variable offset   */
    121      1.29   alnsn #define BJ_HINT_MSH  0x04 /* BPF_MSH instruction              */
    122      1.29   alnsn #define BJ_HINT_COP  0x08 /* BPF_COP or BPF_COPX instruction  */
    123      1.29   alnsn #define BJ_HINT_COPX 0x10 /* BPF_COPX instruction             */
    124      1.29   alnsn #define BJ_HINT_XREG 0x20 /* BJ_XREG is needed                */
    125      1.29   alnsn #define BJ_HINT_LDX  0x40 /* BPF_LDX instruction              */
    126      1.29   alnsn #define BJ_HINT_PKT  (BJ_HINT_ABS|BJ_HINT_IND|BJ_HINT_MSH)
    127      1.20   alnsn 
    128      1.20   alnsn /*
    129       1.9   alnsn  * Datatype for Array Bounds Check Elimination (ABC) pass.
    130       1.9   alnsn  */
    131       1.9   alnsn typedef uint64_t bpfjit_abc_length_t;
    132       1.9   alnsn #define MAX_ABC_LENGTH (UINT32_MAX + UINT64_C(4)) /* max. width is 4 */
    133       1.8   alnsn 
    134       1.7   alnsn struct bpfjit_stack
    135       1.7   alnsn {
    136      1.13   alnsn 	bpf_ctx_t *ctx;
    137      1.13   alnsn 	uint32_t *extmem; /* pointer to external memory store */
    138      1.32   alnsn 	uint32_t reg; /* saved A or X register */
    139       1.7   alnsn #ifdef _KERNEL
    140      1.21   alnsn 	int err; /* 3rd argument for m_xword/m_xhalf/m_xbyte function call */
    141       1.7   alnsn #endif
    142      1.13   alnsn 	uint32_t mem[BPF_MEMWORDS]; /* internal memory store */
    143       1.7   alnsn };
    144       1.7   alnsn 
    145       1.7   alnsn /*
    146       1.7   alnsn  * Data for BPF_JMP instruction.
    147       1.7   alnsn  * Forward declaration for struct bpfjit_jump.
    148       1.1   alnsn  */
    149       1.7   alnsn struct bpfjit_jump_data;
    150       1.1   alnsn 
    151       1.1   alnsn /*
    152       1.7   alnsn  * Node of bjumps list.
    153       1.1   alnsn  */
    154       1.3   rmind struct bpfjit_jump {
    155       1.7   alnsn 	struct sljit_jump *sjump;
    156       1.7   alnsn 	SLIST_ENTRY(bpfjit_jump) entries;
    157       1.7   alnsn 	struct bpfjit_jump_data *jdata;
    158       1.1   alnsn };
    159       1.1   alnsn 
    160       1.1   alnsn /*
    161       1.1   alnsn  * Data for BPF_JMP instruction.
    162       1.1   alnsn  */
    163       1.3   rmind struct bpfjit_jump_data {
    164       1.1   alnsn 	/*
    165       1.7   alnsn 	 * These entries make up bjumps list:
    166       1.7   alnsn 	 * jtf[0] - when coming from jt path,
    167       1.7   alnsn 	 * jtf[1] - when coming from jf path.
    168       1.1   alnsn 	 */
    169       1.7   alnsn 	struct bpfjit_jump jtf[2];
    170       1.7   alnsn 	/*
    171       1.7   alnsn 	 * Length calculated by Array Bounds Check Elimination (ABC) pass.
    172       1.7   alnsn 	 */
    173       1.8   alnsn 	bpfjit_abc_length_t abc_length;
    174       1.7   alnsn 	/*
    175       1.7   alnsn 	 * Length checked by the last out-of-bounds check.
    176       1.7   alnsn 	 */
    177       1.8   alnsn 	bpfjit_abc_length_t checked_length;
    178       1.1   alnsn };
    179       1.1   alnsn 
    180       1.1   alnsn /*
    181       1.1   alnsn  * Data for "read from packet" instructions.
    182       1.1   alnsn  * See also read_pkt_insn() function below.
    183       1.1   alnsn  */
    184       1.3   rmind struct bpfjit_read_pkt_data {
    185       1.1   alnsn 	/*
    186       1.7   alnsn 	 * Length calculated by Array Bounds Check Elimination (ABC) pass.
    187       1.7   alnsn 	 */
    188       1.8   alnsn 	bpfjit_abc_length_t abc_length;
    189       1.7   alnsn 	/*
    190       1.7   alnsn 	 * If positive, emit "if (buflen < check_length) return 0"
    191       1.7   alnsn 	 * out-of-bounds check.
    192       1.9   alnsn 	 * Values greater than UINT32_MAX generate unconditional "return 0".
    193       1.1   alnsn 	 */
    194       1.8   alnsn 	bpfjit_abc_length_t check_length;
    195       1.1   alnsn };
    196       1.1   alnsn 
    197       1.1   alnsn /*
    198       1.1   alnsn  * Additional (optimization-related) data for bpf_insn.
    199       1.1   alnsn  */
    200       1.3   rmind struct bpfjit_insn_data {
    201       1.1   alnsn 	/* List of jumps to this insn. */
    202       1.7   alnsn 	SLIST_HEAD(, bpfjit_jump) bjumps;
    203       1.1   alnsn 
    204       1.1   alnsn 	union {
    205       1.7   alnsn 		struct bpfjit_jump_data     jdata;
    206       1.7   alnsn 		struct bpfjit_read_pkt_data rdata;
    207       1.7   alnsn 	} u;
    208       1.1   alnsn 
    209      1.13   alnsn 	bpf_memword_init_t invalid;
    210       1.7   alnsn 	bool unreachable;
    211       1.1   alnsn };
    212       1.1   alnsn 
    213       1.1   alnsn #ifdef _KERNEL
    214       1.1   alnsn 
    215       1.1   alnsn uint32_t m_xword(const struct mbuf *, uint32_t, int *);
    216       1.1   alnsn uint32_t m_xhalf(const struct mbuf *, uint32_t, int *);
    217       1.1   alnsn uint32_t m_xbyte(const struct mbuf *, uint32_t, int *);
    218       1.1   alnsn 
    219       1.1   alnsn MODULE(MODULE_CLASS_MISC, bpfjit, "sljit")
    220       1.1   alnsn 
    221       1.1   alnsn static int
    222       1.1   alnsn bpfjit_modcmd(modcmd_t cmd, void *arg)
    223       1.1   alnsn {
    224       1.1   alnsn 
    225       1.1   alnsn 	switch (cmd) {
    226       1.1   alnsn 	case MODULE_CMD_INIT:
    227       1.1   alnsn 		bpfjit_module_ops.bj_free_code = &bpfjit_free_code;
    228       1.1   alnsn 		membar_producer();
    229       1.1   alnsn 		bpfjit_module_ops.bj_generate_code = &bpfjit_generate_code;
    230       1.1   alnsn 		membar_producer();
    231       1.1   alnsn 		return 0;
    232       1.1   alnsn 
    233       1.1   alnsn 	case MODULE_CMD_FINI:
    234       1.1   alnsn 		return EOPNOTSUPP;
    235       1.1   alnsn 
    236       1.1   alnsn 	default:
    237       1.1   alnsn 		return ENOTTY;
    238       1.1   alnsn 	}
    239       1.1   alnsn }
    240       1.1   alnsn #endif
    241       1.1   alnsn 
    242      1.20   alnsn /*
    243      1.21   alnsn  * Return a number of scratch registers to pass
    244      1.20   alnsn  * to sljit_emit_enter() function.
    245      1.20   alnsn  */
    246      1.20   alnsn static sljit_si
    247      1.20   alnsn nscratches(bpfjit_hint_t hints)
    248      1.20   alnsn {
    249      1.20   alnsn 	sljit_si rv = 2;
    250      1.20   alnsn 
    251      1.22   alnsn #ifdef _KERNEL
    252      1.24   alnsn 	if (hints & BJ_HINT_PKT)
    253      1.24   alnsn 		rv = 3; /* xcall with three arguments */
    254      1.22   alnsn #endif
    255      1.22   alnsn 
    256      1.27   alnsn 	if (hints & BJ_HINT_IND)
    257      1.20   alnsn 		rv = 3; /* uses BJ_TMP2REG */
    258      1.20   alnsn 
    259      1.20   alnsn 	if (hints & BJ_HINT_COP)
    260      1.20   alnsn 		rv = 3; /* calls copfunc with three arguments */
    261      1.20   alnsn 
    262      1.32   alnsn 	if (hints & BJ_HINT_XREG)
    263      1.32   alnsn 		rv = 4; /* uses BJ_XREG */
    264      1.32   alnsn 
    265      1.32   alnsn #ifdef _KERNEL
    266      1.32   alnsn 	if (hints & BJ_HINT_LDX)
    267      1.32   alnsn 		rv = 5; /* uses BJ_TMP3REG */
    268      1.32   alnsn #endif
    269      1.32   alnsn 
    270      1.29   alnsn 	if (hints & BJ_HINT_COPX)
    271      1.32   alnsn 		rv = 5; /* uses BJ_TMP3REG */
    272      1.29   alnsn 
    273      1.29   alnsn 	return rv;
    274      1.29   alnsn }
    275      1.29   alnsn 
    276      1.29   alnsn /*
    277      1.29   alnsn  * Return a number of saved registers to pass
    278      1.29   alnsn  * to sljit_emit_enter() function.
    279      1.29   alnsn  */
    280      1.29   alnsn static sljit_si
    281      1.29   alnsn nsaveds(bpfjit_hint_t hints)
    282      1.29   alnsn {
    283      1.29   alnsn 	sljit_si rv = 3;
    284      1.29   alnsn 
    285      1.20   alnsn 	return rv;
    286      1.20   alnsn }
    287      1.20   alnsn 
    288       1.1   alnsn static uint32_t
    289       1.7   alnsn read_width(const struct bpf_insn *pc)
    290       1.1   alnsn {
    291       1.1   alnsn 
    292       1.1   alnsn 	switch (BPF_SIZE(pc->code)) {
    293  1.32.2.1  martin 	case BPF_W: return 4;
    294  1.32.2.1  martin 	case BPF_H: return 2;
    295  1.32.2.1  martin 	case BPF_B: return 1;
    296  1.32.2.1  martin 	default:    return 0;
    297       1.1   alnsn 	}
    298       1.1   alnsn }
    299       1.1   alnsn 
    300      1.13   alnsn /*
    301      1.13   alnsn  * Copy buf and buflen members of bpf_args from BJ_ARGS
    302      1.13   alnsn  * pointer to BJ_BUF and BJ_BUFLEN registers.
    303      1.13   alnsn  */
    304      1.13   alnsn static int
    305      1.13   alnsn load_buf_buflen(struct sljit_compiler *compiler)
    306      1.13   alnsn {
    307      1.13   alnsn 	int status;
    308      1.13   alnsn 
    309      1.13   alnsn 	status = sljit_emit_op1(compiler,
    310      1.13   alnsn 	    SLJIT_MOV_P,
    311      1.13   alnsn 	    BJ_BUF, 0,
    312      1.13   alnsn 	    SLJIT_MEM1(BJ_ARGS),
    313      1.13   alnsn 	    offsetof(struct bpf_args, pkt));
    314      1.13   alnsn 	if (status != SLJIT_SUCCESS)
    315      1.13   alnsn 		return status;
    316      1.13   alnsn 
    317      1.13   alnsn 	status = sljit_emit_op1(compiler,
    318      1.21   alnsn 	    SLJIT_MOV, /* size_t source */
    319      1.13   alnsn 	    BJ_BUFLEN, 0,
    320      1.13   alnsn 	    SLJIT_MEM1(BJ_ARGS),
    321      1.13   alnsn 	    offsetof(struct bpf_args, buflen));
    322      1.13   alnsn 
    323      1.13   alnsn 	return status;
    324      1.13   alnsn }
    325      1.13   alnsn 
    326       1.7   alnsn static bool
    327       1.7   alnsn grow_jumps(struct sljit_jump ***jumps, size_t *size)
    328       1.7   alnsn {
    329       1.7   alnsn 	struct sljit_jump **newptr;
    330       1.7   alnsn 	const size_t elemsz = sizeof(struct sljit_jump *);
    331       1.7   alnsn 	size_t old_size = *size;
    332       1.7   alnsn 	size_t new_size = 2 * old_size;
    333       1.7   alnsn 
    334       1.7   alnsn 	if (new_size < old_size || new_size > SIZE_MAX / elemsz)
    335       1.7   alnsn 		return false;
    336       1.7   alnsn 
    337       1.7   alnsn 	newptr = BJ_ALLOC(new_size * elemsz);
    338       1.7   alnsn 	if (newptr == NULL)
    339       1.7   alnsn 		return false;
    340       1.7   alnsn 
    341       1.7   alnsn 	memcpy(newptr, *jumps, old_size * elemsz);
    342       1.7   alnsn 	BJ_FREE(*jumps, old_size * elemsz);
    343       1.7   alnsn 
    344       1.7   alnsn 	*jumps = newptr;
    345       1.7   alnsn 	*size = new_size;
    346       1.7   alnsn 	return true;
    347       1.7   alnsn }
    348       1.7   alnsn 
    349       1.7   alnsn static bool
    350       1.7   alnsn append_jump(struct sljit_jump *jump, struct sljit_jump ***jumps,
    351       1.7   alnsn     size_t *size, size_t *max_size)
    352       1.1   alnsn {
    353       1.7   alnsn 	if (*size == *max_size && !grow_jumps(jumps, max_size))
    354       1.7   alnsn 		return false;
    355       1.1   alnsn 
    356       1.7   alnsn 	(*jumps)[(*size)++] = jump;
    357       1.7   alnsn 	return true;
    358       1.1   alnsn }
    359       1.1   alnsn 
    360       1.1   alnsn /*
    361      1.24   alnsn  * Emit code for BPF_LD+BPF_B+BPF_ABS    A <- P[k:1].
    362       1.1   alnsn  */
    363       1.1   alnsn static int
    364      1.27   alnsn emit_read8(struct sljit_compiler *compiler, sljit_si src, uint32_t k)
    365       1.1   alnsn {
    366       1.1   alnsn 
    367       1.1   alnsn 	return sljit_emit_op1(compiler,
    368       1.1   alnsn 	    SLJIT_MOV_UB,
    369       1.7   alnsn 	    BJ_AREG, 0,
    370      1.27   alnsn 	    SLJIT_MEM1(src), k);
    371       1.1   alnsn }
    372       1.1   alnsn 
    373       1.1   alnsn /*
    374      1.24   alnsn  * Emit code for BPF_LD+BPF_H+BPF_ABS    A <- P[k:2].
    375       1.1   alnsn  */
    376       1.1   alnsn static int
    377      1.27   alnsn emit_read16(struct sljit_compiler *compiler, sljit_si src, uint32_t k)
    378       1.1   alnsn {
    379       1.1   alnsn 	int status;
    380       1.1   alnsn 
    381      1.27   alnsn 	BJ_ASSERT(k <= UINT32_MAX - 1);
    382      1.27   alnsn 
    383      1.27   alnsn 	/* A = buf[k]; */
    384       1.1   alnsn 	status = sljit_emit_op1(compiler,
    385       1.1   alnsn 	    SLJIT_MOV_UB,
    386      1.27   alnsn 	    BJ_AREG, 0,
    387      1.27   alnsn 	    SLJIT_MEM1(src), k);
    388       1.1   alnsn 	if (status != SLJIT_SUCCESS)
    389       1.1   alnsn 		return status;
    390       1.1   alnsn 
    391      1.27   alnsn 	/* tmp1 = buf[k+1]; */
    392       1.1   alnsn 	status = sljit_emit_op1(compiler,
    393       1.1   alnsn 	    SLJIT_MOV_UB,
    394      1.27   alnsn 	    BJ_TMP1REG, 0,
    395      1.27   alnsn 	    SLJIT_MEM1(src), k+1);
    396       1.1   alnsn 	if (status != SLJIT_SUCCESS)
    397       1.1   alnsn 		return status;
    398       1.1   alnsn 
    399      1.27   alnsn 	/* A = A << 8; */
    400       1.1   alnsn 	status = sljit_emit_op2(compiler,
    401       1.1   alnsn 	    SLJIT_SHL,
    402      1.27   alnsn 	    BJ_AREG, 0,
    403      1.27   alnsn 	    BJ_AREG, 0,
    404       1.1   alnsn 	    SLJIT_IMM, 8);
    405       1.1   alnsn 	if (status != SLJIT_SUCCESS)
    406       1.1   alnsn 		return status;
    407       1.1   alnsn 
    408       1.1   alnsn 	/* A = A + tmp1; */
    409       1.1   alnsn 	status = sljit_emit_op2(compiler,
    410       1.1   alnsn 	    SLJIT_ADD,
    411       1.7   alnsn 	    BJ_AREG, 0,
    412       1.7   alnsn 	    BJ_AREG, 0,
    413       1.7   alnsn 	    BJ_TMP1REG, 0);
    414       1.1   alnsn 	return status;
    415       1.1   alnsn }
    416       1.1   alnsn 
    417       1.1   alnsn /*
    418      1.24   alnsn  * Emit code for BPF_LD+BPF_W+BPF_ABS    A <- P[k:4].
    419       1.1   alnsn  */
    420       1.1   alnsn static int
    421      1.27   alnsn emit_read32(struct sljit_compiler *compiler, sljit_si src, uint32_t k)
    422       1.1   alnsn {
    423       1.1   alnsn 	int status;
    424       1.1   alnsn 
    425      1.27   alnsn 	BJ_ASSERT(k <= UINT32_MAX - 3);
    426       1.1   alnsn 
    427      1.27   alnsn 	/* A = buf[k]; */
    428       1.1   alnsn 	status = sljit_emit_op1(compiler,
    429       1.1   alnsn 	    SLJIT_MOV_UB,
    430      1.27   alnsn 	    BJ_AREG, 0,
    431      1.27   alnsn 	    SLJIT_MEM1(src), k);
    432       1.1   alnsn 	if (status != SLJIT_SUCCESS)
    433       1.1   alnsn 		return status;
    434       1.1   alnsn 
    435      1.27   alnsn 	/* tmp1 = buf[k+1]; */
    436       1.1   alnsn 	status = sljit_emit_op1(compiler,
    437       1.1   alnsn 	    SLJIT_MOV_UB,
    438      1.27   alnsn 	    BJ_TMP1REG, 0,
    439      1.27   alnsn 	    SLJIT_MEM1(src), k+1);
    440       1.1   alnsn 	if (status != SLJIT_SUCCESS)
    441       1.1   alnsn 		return status;
    442       1.1   alnsn 
    443      1.27   alnsn 	/* A = A << 8; */
    444       1.1   alnsn 	status = sljit_emit_op2(compiler,
    445       1.1   alnsn 	    SLJIT_SHL,
    446      1.27   alnsn 	    BJ_AREG, 0,
    447      1.27   alnsn 	    BJ_AREG, 0,
    448      1.27   alnsn 	    SLJIT_IMM, 8);
    449       1.1   alnsn 	if (status != SLJIT_SUCCESS)
    450       1.1   alnsn 		return status;
    451       1.1   alnsn 
    452       1.1   alnsn 	/* A = A + tmp1; */
    453       1.1   alnsn 	status = sljit_emit_op2(compiler,
    454       1.1   alnsn 	    SLJIT_ADD,
    455       1.7   alnsn 	    BJ_AREG, 0,
    456       1.7   alnsn 	    BJ_AREG, 0,
    457       1.7   alnsn 	    BJ_TMP1REG, 0);
    458       1.1   alnsn 	if (status != SLJIT_SUCCESS)
    459       1.1   alnsn 		return status;
    460       1.1   alnsn 
    461       1.1   alnsn 	/* tmp1 = buf[k+2]; */
    462       1.1   alnsn 	status = sljit_emit_op1(compiler,
    463       1.1   alnsn 	    SLJIT_MOV_UB,
    464       1.7   alnsn 	    BJ_TMP1REG, 0,
    465      1.27   alnsn 	    SLJIT_MEM1(src), k+2);
    466       1.1   alnsn 	if (status != SLJIT_SUCCESS)
    467       1.1   alnsn 		return status;
    468       1.1   alnsn 
    469      1.27   alnsn 	/* A = A << 8; */
    470       1.1   alnsn 	status = sljit_emit_op2(compiler,
    471       1.1   alnsn 	    SLJIT_SHL,
    472      1.27   alnsn 	    BJ_AREG, 0,
    473      1.27   alnsn 	    BJ_AREG, 0,
    474      1.27   alnsn 	    SLJIT_IMM, 8);
    475       1.1   alnsn 	if (status != SLJIT_SUCCESS)
    476       1.1   alnsn 		return status;
    477       1.1   alnsn 
    478      1.27   alnsn 	/* A = A + tmp1; */
    479       1.1   alnsn 	status = sljit_emit_op2(compiler,
    480       1.1   alnsn 	    SLJIT_ADD,
    481       1.7   alnsn 	    BJ_AREG, 0,
    482       1.7   alnsn 	    BJ_AREG, 0,
    483      1.27   alnsn 	    BJ_TMP1REG, 0);
    484      1.27   alnsn 	if (status != SLJIT_SUCCESS)
    485      1.27   alnsn 		return status;
    486      1.27   alnsn 
    487      1.27   alnsn 	/* tmp1 = buf[k+3]; */
    488      1.27   alnsn 	status = sljit_emit_op1(compiler,
    489      1.27   alnsn 	    SLJIT_MOV_UB,
    490      1.27   alnsn 	    BJ_TMP1REG, 0,
    491      1.27   alnsn 	    SLJIT_MEM1(src), k+3);
    492       1.1   alnsn 	if (status != SLJIT_SUCCESS)
    493       1.1   alnsn 		return status;
    494       1.1   alnsn 
    495      1.27   alnsn 	/* A = A << 8; */
    496       1.1   alnsn 	status = sljit_emit_op2(compiler,
    497       1.1   alnsn 	    SLJIT_SHL,
    498      1.27   alnsn 	    BJ_AREG, 0,
    499      1.27   alnsn 	    BJ_AREG, 0,
    500       1.1   alnsn 	    SLJIT_IMM, 8);
    501       1.1   alnsn 	if (status != SLJIT_SUCCESS)
    502       1.1   alnsn 		return status;
    503       1.1   alnsn 
    504       1.1   alnsn 	/* A = A + tmp1; */
    505       1.1   alnsn 	status = sljit_emit_op2(compiler,
    506       1.1   alnsn 	    SLJIT_ADD,
    507       1.7   alnsn 	    BJ_AREG, 0,
    508       1.7   alnsn 	    BJ_AREG, 0,
    509       1.7   alnsn 	    BJ_TMP1REG, 0);
    510       1.1   alnsn 	return status;
    511       1.1   alnsn }
    512       1.1   alnsn 
    513       1.1   alnsn #ifdef _KERNEL
    514       1.1   alnsn /*
    515      1.24   alnsn  * Emit code for m_xword/m_xhalf/m_xbyte call.
    516       1.1   alnsn  *
    517      1.24   alnsn  * @pc BPF_LD+BPF_W+BPF_ABS    A <- P[k:4]
    518      1.24   alnsn  *     BPF_LD+BPF_H+BPF_ABS    A <- P[k:2]
    519      1.24   alnsn  *     BPF_LD+BPF_B+BPF_ABS    A <- P[k:1]
    520      1.24   alnsn  *     BPF_LD+BPF_W+BPF_IND    A <- P[X+k:4]
    521      1.24   alnsn  *     BPF_LD+BPF_H+BPF_IND    A <- P[X+k:2]
    522      1.24   alnsn  *     BPF_LD+BPF_B+BPF_IND    A <- P[X+k:1]
    523      1.24   alnsn  *     BPF_LDX+BPF_B+BPF_MSH   X <- 4*(P[k:1]&0xf)
    524       1.1   alnsn  */
    525       1.1   alnsn static int
    526      1.32   alnsn emit_xcall(struct sljit_compiler *compiler, bpfjit_hint_t hints,
    527      1.32   alnsn     const struct bpf_insn *pc, int dst, struct sljit_jump ***ret0,
    528      1.32   alnsn     size_t *ret0_size, size_t *ret0_maxsize,
    529       1.1   alnsn     uint32_t (*fn)(const struct mbuf *, uint32_t, int *))
    530       1.1   alnsn {
    531      1.32   alnsn #if BJ_XREG == SLJIT_RETURN_REG   || \
    532      1.32   alnsn     BJ_XREG == SLJIT_SCRATCH_REG1 || \
    533      1.32   alnsn     BJ_XREG == SLJIT_SCRATCH_REG2 || \
    534      1.32   alnsn     BJ_XREG == SLJIT_SCRATCH_REG3
    535      1.32   alnsn #error "Not supported assignment of registers."
    536      1.32   alnsn #endif
    537      1.23   alnsn 	struct sljit_jump *jump;
    538      1.32   alnsn 	sljit_si save_reg;
    539       1.1   alnsn 	int status;
    540       1.1   alnsn 
    541      1.32   alnsn 	save_reg = (BPF_CLASS(pc->code) == BPF_LDX) ? BJ_AREG : BJ_XREG;
    542      1.23   alnsn 
    543      1.32   alnsn 	if (save_reg == BJ_AREG || (hints & BJ_HINT_XREG)) {
    544      1.32   alnsn 		/* save A or X */
    545       1.1   alnsn 		status = sljit_emit_op1(compiler,
    546      1.32   alnsn 		    SLJIT_MOV_UI, /* uint32_t destination */
    547      1.32   alnsn 		    SLJIT_MEM1(SLJIT_LOCALS_REG),
    548      1.32   alnsn 		    offsetof(struct bpfjit_stack, reg),
    549      1.32   alnsn 		    save_reg, 0);
    550       1.1   alnsn 		if (status != SLJIT_SUCCESS)
    551       1.1   alnsn 			return status;
    552       1.1   alnsn 	}
    553       1.1   alnsn 
    554       1.1   alnsn 	/*
    555      1.23   alnsn 	 * Prepare registers for fn(mbuf, k, &err) call.
    556       1.1   alnsn 	 */
    557       1.1   alnsn 	status = sljit_emit_op1(compiler,
    558       1.1   alnsn 	    SLJIT_MOV,
    559      1.12   alnsn 	    SLJIT_SCRATCH_REG1, 0,
    560       1.7   alnsn 	    BJ_BUF, 0);
    561       1.1   alnsn 	if (status != SLJIT_SUCCESS)
    562       1.1   alnsn 		return status;
    563       1.1   alnsn 
    564       1.1   alnsn 	if (BPF_CLASS(pc->code) == BPF_LD && BPF_MODE(pc->code) == BPF_IND) {
    565      1.31   alnsn 		if (pc->k == 0) {
    566      1.31   alnsn 			/* k = X; */
    567      1.31   alnsn 			status = sljit_emit_op1(compiler,
    568      1.31   alnsn 			    SLJIT_MOV,
    569      1.31   alnsn 			    SLJIT_SCRATCH_REG2, 0,
    570      1.31   alnsn 			    BJ_XREG, 0);
    571      1.31   alnsn 			if (status != SLJIT_SUCCESS)
    572      1.31   alnsn 				return status;
    573      1.31   alnsn 		} else {
    574      1.31   alnsn 			/* if (X > UINT32_MAX - pc->k) return 0; */
    575      1.31   alnsn 			jump = sljit_emit_cmp(compiler,
    576      1.31   alnsn 			    SLJIT_C_GREATER,
    577      1.31   alnsn 			    BJ_XREG, 0,
    578      1.31   alnsn 			    SLJIT_IMM, UINT32_MAX - pc->k);
    579      1.31   alnsn 			if (jump == NULL)
    580      1.31   alnsn 				return SLJIT_ERR_ALLOC_FAILED;
    581      1.31   alnsn 			if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
    582      1.31   alnsn 				return SLJIT_ERR_ALLOC_FAILED;
    583      1.31   alnsn 
    584      1.31   alnsn 			/* k = X + pc->k; */
    585      1.31   alnsn 			status = sljit_emit_op2(compiler,
    586      1.31   alnsn 			    SLJIT_ADD,
    587      1.31   alnsn 			    SLJIT_SCRATCH_REG2, 0,
    588      1.31   alnsn 			    BJ_XREG, 0,
    589      1.31   alnsn 			    SLJIT_IMM, (uint32_t)pc->k);
    590      1.31   alnsn 			if (status != SLJIT_SUCCESS)
    591      1.31   alnsn 				return status;
    592      1.31   alnsn 		}
    593       1.1   alnsn 	} else {
    594      1.23   alnsn 		/* k = pc->k */
    595       1.1   alnsn 		status = sljit_emit_op1(compiler,
    596       1.1   alnsn 		    SLJIT_MOV,
    597      1.12   alnsn 		    SLJIT_SCRATCH_REG2, 0,
    598       1.1   alnsn 		    SLJIT_IMM, (uint32_t)pc->k);
    599      1.24   alnsn 		if (status != SLJIT_SUCCESS)
    600      1.24   alnsn 			return status;
    601       1.1   alnsn 	}
    602       1.1   alnsn 
    603      1.21   alnsn 	/*
    604      1.21   alnsn 	 * The third argument of fn is an address on stack.
    605      1.21   alnsn 	 */
    606       1.1   alnsn 	status = sljit_get_local_base(compiler,
    607      1.21   alnsn 	    SLJIT_SCRATCH_REG3, 0,
    608      1.21   alnsn 	    offsetof(struct bpfjit_stack, err));
    609       1.1   alnsn 	if (status != SLJIT_SUCCESS)
    610       1.1   alnsn 		return status;
    611       1.1   alnsn 
    612       1.1   alnsn 	/* fn(buf, k, &err); */
    613       1.1   alnsn 	status = sljit_emit_ijump(compiler,
    614       1.1   alnsn 	    SLJIT_CALL3,
    615       1.1   alnsn 	    SLJIT_IMM, SLJIT_FUNC_OFFSET(fn));
    616      1.24   alnsn 	if (status != SLJIT_SUCCESS)
    617      1.24   alnsn 		return status;
    618       1.1   alnsn 
    619       1.7   alnsn 	if (dst != SLJIT_RETURN_REG) {
    620       1.1   alnsn 		/* move return value to dst */
    621       1.1   alnsn 		status = sljit_emit_op1(compiler,
    622       1.1   alnsn 		    SLJIT_MOV,
    623      1.23   alnsn 		    dst, 0,
    624       1.1   alnsn 		    SLJIT_RETURN_REG, 0);
    625       1.1   alnsn 		if (status != SLJIT_SUCCESS)
    626       1.1   alnsn 			return status;
    627       1.7   alnsn 	}
    628       1.1   alnsn 
    629      1.30   alnsn 	/* if (*err != 0) return 0; */
    630      1.30   alnsn 	jump = sljit_emit_cmp(compiler,
    631      1.30   alnsn 	    SLJIT_C_NOT_EQUAL|SLJIT_INT_OP,
    632      1.21   alnsn 	    SLJIT_MEM1(SLJIT_LOCALS_REG),
    633      1.30   alnsn 	    offsetof(struct bpfjit_stack, err),
    634       1.1   alnsn 	    SLJIT_IMM, 0);
    635      1.23   alnsn 	if (jump == NULL)
    636      1.23   alnsn 		return SLJIT_ERR_ALLOC_FAILED;
    637      1.23   alnsn 
    638      1.23   alnsn 	if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
    639       1.1   alnsn 		return SLJIT_ERR_ALLOC_FAILED;
    640       1.1   alnsn 
    641      1.32   alnsn 	if (save_reg == BJ_AREG || (hints & BJ_HINT_XREG)) {
    642      1.32   alnsn 		/* restore A or X */
    643      1.26   alnsn 		status = sljit_emit_op1(compiler,
    644      1.32   alnsn 		    SLJIT_MOV_UI, /* uint32_t source */
    645      1.32   alnsn 		    save_reg, 0,
    646      1.32   alnsn 		    SLJIT_MEM1(SLJIT_LOCALS_REG),
    647      1.32   alnsn 		    offsetof(struct bpfjit_stack, reg));
    648      1.26   alnsn 		if (status != SLJIT_SUCCESS)
    649      1.26   alnsn 			return status;
    650      1.26   alnsn 	}
    651      1.26   alnsn 
    652      1.24   alnsn 	return SLJIT_SUCCESS;
    653       1.1   alnsn }
    654       1.1   alnsn #endif
    655       1.1   alnsn 
    656       1.1   alnsn /*
    657      1.13   alnsn  * Emit code for BPF_COP and BPF_COPX instructions.
    658      1.13   alnsn  */
    659      1.13   alnsn static int
    660      1.32   alnsn emit_cop(struct sljit_compiler *compiler, bpfjit_hint_t hints,
    661      1.28   alnsn     const bpf_ctx_t *bc, const struct bpf_insn *pc,
    662      1.28   alnsn     struct sljit_jump ***ret0, size_t *ret0_size, size_t *ret0_maxsize)
    663      1.13   alnsn {
    664      1.32   alnsn #if BJ_XREG    == SLJIT_RETURN_REG   || \
    665      1.32   alnsn     BJ_XREG    == SLJIT_SCRATCH_REG1 || \
    666      1.32   alnsn     BJ_XREG    == SLJIT_SCRATCH_REG2 || \
    667      1.32   alnsn     BJ_XREG    == SLJIT_SCRATCH_REG3 || \
    668      1.32   alnsn     BJ_TMP3REG == SLJIT_SCRATCH_REG1 || \
    669      1.28   alnsn     BJ_TMP3REG == SLJIT_SCRATCH_REG2 || \
    670      1.28   alnsn     BJ_TMP3REG == SLJIT_SCRATCH_REG3
    671      1.13   alnsn #error "Not supported assignment of registers."
    672      1.13   alnsn #endif
    673      1.13   alnsn 
    674      1.13   alnsn 	struct sljit_jump *jump;
    675      1.28   alnsn 	sljit_si call_reg;
    676      1.28   alnsn 	sljit_sw call_off;
    677      1.13   alnsn 	int status;
    678      1.13   alnsn 
    679      1.13   alnsn 	BJ_ASSERT(bc != NULL && bc->copfuncs != NULL);
    680      1.13   alnsn 
    681      1.32   alnsn 	if (hints & BJ_HINT_LDX) {
    682      1.32   alnsn 		/* save X */
    683      1.32   alnsn 		status = sljit_emit_op1(compiler,
    684      1.32   alnsn 		    SLJIT_MOV_UI, /* uint32_t destination */
    685      1.32   alnsn 		    SLJIT_MEM1(SLJIT_LOCALS_REG),
    686      1.32   alnsn 		    offsetof(struct bpfjit_stack, reg),
    687      1.32   alnsn 		    BJ_XREG, 0);
    688      1.32   alnsn 		if (status != SLJIT_SUCCESS)
    689      1.32   alnsn 			return status;
    690      1.32   alnsn 	}
    691      1.32   alnsn 
    692      1.28   alnsn 	if (BPF_MISCOP(pc->code) == BPF_COP) {
    693      1.28   alnsn 		call_reg = SLJIT_IMM;
    694      1.28   alnsn 		call_off = SLJIT_FUNC_OFFSET(bc->copfuncs[pc->k]);
    695      1.28   alnsn 	} else {
    696      1.13   alnsn 		/* if (X >= bc->nfuncs) return 0; */
    697      1.13   alnsn 		jump = sljit_emit_cmp(compiler,
    698      1.13   alnsn 		    SLJIT_C_GREATER_EQUAL,
    699      1.13   alnsn 		    BJ_XREG, 0,
    700      1.13   alnsn 		    SLJIT_IMM, bc->nfuncs);
    701      1.13   alnsn 		if (jump == NULL)
    702      1.13   alnsn 			return SLJIT_ERR_ALLOC_FAILED;
    703      1.28   alnsn 		if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
    704      1.28   alnsn 			return SLJIT_ERR_ALLOC_FAILED;
    705      1.28   alnsn 
    706      1.28   alnsn 		/* tmp1 = ctx; */
    707      1.28   alnsn 		status = sljit_emit_op1(compiler,
    708      1.28   alnsn 		    SLJIT_MOV_P,
    709      1.28   alnsn 		    BJ_TMP1REG, 0,
    710      1.28   alnsn 		    SLJIT_MEM1(SLJIT_LOCALS_REG),
    711      1.28   alnsn 		    offsetof(struct bpfjit_stack, ctx));
    712      1.28   alnsn 		if (status != SLJIT_SUCCESS)
    713      1.28   alnsn 			return status;
    714      1.28   alnsn 
    715      1.28   alnsn 		/* tmp1 = ctx->copfuncs; */
    716      1.28   alnsn 		status = sljit_emit_op1(compiler,
    717      1.28   alnsn 		    SLJIT_MOV_P,
    718      1.28   alnsn 		    BJ_TMP1REG, 0,
    719      1.28   alnsn 		    SLJIT_MEM1(BJ_TMP1REG),
    720      1.28   alnsn 		    offsetof(struct bpf_ctx, copfuncs));
    721      1.28   alnsn 		if (status != SLJIT_SUCCESS)
    722      1.28   alnsn 			return status;
    723      1.28   alnsn 
    724      1.28   alnsn 		/* tmp2 = X; */
    725      1.28   alnsn 		status = sljit_emit_op1(compiler,
    726      1.28   alnsn 		    SLJIT_MOV,
    727      1.28   alnsn 		    BJ_TMP2REG, 0,
    728      1.28   alnsn 		    BJ_XREG, 0);
    729      1.28   alnsn 		if (status != SLJIT_SUCCESS)
    730      1.28   alnsn 			return status;
    731      1.28   alnsn 
    732      1.28   alnsn 		/* tmp3 = ctx->copfuncs[tmp2]; */
    733      1.28   alnsn 		call_reg = BJ_TMP3REG;
    734      1.28   alnsn 		call_off = 0;
    735      1.28   alnsn 		status = sljit_emit_op1(compiler,
    736      1.28   alnsn 		    SLJIT_MOV_P,
    737      1.28   alnsn 		    call_reg, call_off,
    738      1.28   alnsn 		    SLJIT_MEM2(BJ_TMP1REG, BJ_TMP2REG),
    739      1.28   alnsn 		    SLJIT_WORD_SHIFT);
    740      1.28   alnsn 		if (status != SLJIT_SUCCESS)
    741      1.28   alnsn 			return status;
    742      1.13   alnsn 	}
    743      1.13   alnsn 
    744      1.13   alnsn 	/*
    745      1.13   alnsn 	 * Copy bpf_copfunc_t arguments to registers.
    746      1.13   alnsn 	 */
    747      1.13   alnsn #if BJ_AREG != SLJIT_SCRATCH_REG3
    748      1.13   alnsn 	status = sljit_emit_op1(compiler,
    749      1.13   alnsn 	    SLJIT_MOV_UI,
    750      1.13   alnsn 	    SLJIT_SCRATCH_REG3, 0,
    751      1.13   alnsn 	    BJ_AREG, 0);
    752      1.13   alnsn 	if (status != SLJIT_SUCCESS)
    753      1.13   alnsn 		return status;
    754      1.13   alnsn #endif
    755      1.13   alnsn 
    756      1.13   alnsn 	status = sljit_emit_op1(compiler,
    757      1.13   alnsn 	    SLJIT_MOV_P,
    758      1.13   alnsn 	    SLJIT_SCRATCH_REG1, 0,
    759      1.13   alnsn 	    SLJIT_MEM1(SLJIT_LOCALS_REG),
    760      1.13   alnsn 	    offsetof(struct bpfjit_stack, ctx));
    761      1.13   alnsn 	if (status != SLJIT_SUCCESS)
    762      1.13   alnsn 		return status;
    763      1.13   alnsn 
    764      1.13   alnsn 	status = sljit_emit_op1(compiler,
    765      1.13   alnsn 	    SLJIT_MOV_P,
    766      1.13   alnsn 	    SLJIT_SCRATCH_REG2, 0,
    767      1.13   alnsn 	    BJ_ARGS, 0);
    768      1.13   alnsn 	if (status != SLJIT_SUCCESS)
    769      1.13   alnsn 		return status;
    770      1.13   alnsn 
    771      1.28   alnsn 	status = sljit_emit_ijump(compiler,
    772      1.28   alnsn 	    SLJIT_CALL3, call_reg, call_off);
    773      1.28   alnsn 	if (status != SLJIT_SUCCESS)
    774      1.28   alnsn 		return status;
    775      1.13   alnsn 
    776      1.13   alnsn #if BJ_AREG != SLJIT_RETURN_REG
    777      1.13   alnsn 	status = sljit_emit_op1(compiler,
    778      1.13   alnsn 	    SLJIT_MOV,
    779      1.13   alnsn 	    BJ_AREG, 0,
    780      1.13   alnsn 	    SLJIT_RETURN_REG, 0);
    781      1.13   alnsn 	if (status != SLJIT_SUCCESS)
    782      1.13   alnsn 		return status;
    783      1.13   alnsn #endif
    784      1.13   alnsn 
    785      1.32   alnsn 	if (hints & BJ_HINT_LDX) {
    786      1.32   alnsn 		/* restore X */
    787      1.32   alnsn 		status = sljit_emit_op1(compiler,
    788      1.32   alnsn 		    SLJIT_MOV_UI, /* uint32_t source */
    789      1.32   alnsn 		    BJ_XREG, 0,
    790      1.32   alnsn 		    SLJIT_MEM1(SLJIT_LOCALS_REG),
    791      1.32   alnsn 		    offsetof(struct bpfjit_stack, reg));
    792      1.32   alnsn 		if (status != SLJIT_SUCCESS)
    793      1.32   alnsn 			return status;
    794      1.32   alnsn 	}
    795      1.32   alnsn 
    796      1.24   alnsn 	return SLJIT_SUCCESS;
    797      1.13   alnsn }
    798      1.13   alnsn 
    799      1.13   alnsn /*
    800       1.1   alnsn  * Generate code for
    801       1.1   alnsn  * BPF_LD+BPF_W+BPF_ABS    A <- P[k:4]
    802       1.1   alnsn  * BPF_LD+BPF_H+BPF_ABS    A <- P[k:2]
    803       1.1   alnsn  * BPF_LD+BPF_B+BPF_ABS    A <- P[k:1]
    804       1.1   alnsn  * BPF_LD+BPF_W+BPF_IND    A <- P[X+k:4]
    805       1.1   alnsn  * BPF_LD+BPF_H+BPF_IND    A <- P[X+k:2]
    806       1.1   alnsn  * BPF_LD+BPF_B+BPF_IND    A <- P[X+k:1]
    807       1.1   alnsn  */
    808       1.1   alnsn static int
    809      1.32   alnsn emit_pkt_read(struct sljit_compiler *compiler, bpfjit_hint_t hints,
    810       1.7   alnsn     const struct bpf_insn *pc, struct sljit_jump *to_mchain_jump,
    811       1.7   alnsn     struct sljit_jump ***ret0, size_t *ret0_size, size_t *ret0_maxsize)
    812       1.1   alnsn {
    813      1.25   alnsn 	int status = SLJIT_ERR_ALLOC_FAILED;
    814       1.1   alnsn 	uint32_t width;
    815      1.27   alnsn 	sljit_si ld_reg;
    816       1.1   alnsn 	struct sljit_jump *jump;
    817       1.1   alnsn #ifdef _KERNEL
    818       1.1   alnsn 	struct sljit_label *label;
    819       1.1   alnsn 	struct sljit_jump *over_mchain_jump;
    820       1.1   alnsn 	const bool check_zero_buflen = (to_mchain_jump != NULL);
    821       1.1   alnsn #endif
    822       1.1   alnsn 	const uint32_t k = pc->k;
    823       1.1   alnsn 
    824       1.1   alnsn #ifdef _KERNEL
    825       1.1   alnsn 	if (to_mchain_jump == NULL) {
    826       1.1   alnsn 		to_mchain_jump = sljit_emit_cmp(compiler,
    827       1.1   alnsn 		    SLJIT_C_EQUAL,
    828       1.7   alnsn 		    BJ_BUFLEN, 0,
    829       1.1   alnsn 		    SLJIT_IMM, 0);
    830       1.1   alnsn 		if (to_mchain_jump == NULL)
    831       1.7   alnsn 			return SLJIT_ERR_ALLOC_FAILED;
    832       1.1   alnsn 	}
    833       1.1   alnsn #endif
    834       1.1   alnsn 
    835      1.27   alnsn 	ld_reg = BJ_BUF;
    836       1.1   alnsn 	width = read_width(pc);
    837  1.32.2.1  martin 	if (width == 0)
    838  1.32.2.1  martin 		return SLJIT_ERR_ALLOC_FAILED;
    839       1.1   alnsn 
    840       1.1   alnsn 	if (BPF_MODE(pc->code) == BPF_IND) {
    841       1.1   alnsn 		/* tmp1 = buflen - (pc->k + width); */
    842       1.1   alnsn 		status = sljit_emit_op2(compiler,
    843       1.1   alnsn 		    SLJIT_SUB,
    844       1.7   alnsn 		    BJ_TMP1REG, 0,
    845       1.7   alnsn 		    BJ_BUFLEN, 0,
    846       1.1   alnsn 		    SLJIT_IMM, k + width);
    847       1.1   alnsn 		if (status != SLJIT_SUCCESS)
    848       1.1   alnsn 			return status;
    849       1.1   alnsn 
    850      1.27   alnsn 		/* ld_reg = buf + X; */
    851      1.27   alnsn 		ld_reg = BJ_TMP2REG;
    852       1.1   alnsn 		status = sljit_emit_op2(compiler,
    853       1.1   alnsn 		    SLJIT_ADD,
    854      1.27   alnsn 		    ld_reg, 0,
    855       1.7   alnsn 		    BJ_BUF, 0,
    856       1.7   alnsn 		    BJ_XREG, 0);
    857       1.1   alnsn 		if (status != SLJIT_SUCCESS)
    858       1.1   alnsn 			return status;
    859       1.1   alnsn 
    860       1.1   alnsn 		/* if (tmp1 < X) return 0; */
    861       1.1   alnsn 		jump = sljit_emit_cmp(compiler,
    862       1.1   alnsn 		    SLJIT_C_LESS,
    863       1.7   alnsn 		    BJ_TMP1REG, 0,
    864       1.7   alnsn 		    BJ_XREG, 0);
    865       1.1   alnsn 		if (jump == NULL)
    866       1.7   alnsn 			return SLJIT_ERR_ALLOC_FAILED;
    867       1.7   alnsn 		if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
    868       1.7   alnsn 			return SLJIT_ERR_ALLOC_FAILED;
    869       1.1   alnsn 	}
    870       1.1   alnsn 
    871  1.32.2.1  martin 	/*
    872  1.32.2.1  martin 	 * Don't emit wrapped-around reads. They're dead code but
    873  1.32.2.1  martin 	 * dead code elimination logic isn't smart enough to figure
    874  1.32.2.1  martin 	 * it out.
    875  1.32.2.1  martin 	 */
    876  1.32.2.1  martin 	if (k <= UINT32_MAX - width + 1) {
    877  1.32.2.1  martin 		switch (width) {
    878  1.32.2.1  martin 		case 4:
    879  1.32.2.1  martin 			status = emit_read32(compiler, ld_reg, k);
    880  1.32.2.1  martin 			break;
    881  1.32.2.1  martin 		case 2:
    882  1.32.2.1  martin 			status = emit_read16(compiler, ld_reg, k);
    883  1.32.2.1  martin 			break;
    884  1.32.2.1  martin 		case 1:
    885  1.32.2.1  martin 			status = emit_read8(compiler, ld_reg, k);
    886  1.32.2.1  martin 			break;
    887  1.32.2.1  martin 		}
    888       1.1   alnsn 
    889  1.32.2.1  martin 		if (status != SLJIT_SUCCESS)
    890  1.32.2.1  martin 			return status;
    891  1.32.2.1  martin 	}
    892       1.1   alnsn 
    893       1.1   alnsn #ifdef _KERNEL
    894       1.1   alnsn 	over_mchain_jump = sljit_emit_jump(compiler, SLJIT_JUMP);
    895       1.1   alnsn 	if (over_mchain_jump == NULL)
    896       1.7   alnsn 		return SLJIT_ERR_ALLOC_FAILED;
    897       1.1   alnsn 
    898       1.1   alnsn 	/* entry point to mchain handler */
    899       1.1   alnsn 	label = sljit_emit_label(compiler);
    900       1.1   alnsn 	if (label == NULL)
    901       1.7   alnsn 		return SLJIT_ERR_ALLOC_FAILED;
    902       1.1   alnsn 	sljit_set_label(to_mchain_jump, label);
    903       1.1   alnsn 
    904       1.1   alnsn 	if (check_zero_buflen) {
    905       1.1   alnsn 		/* if (buflen != 0) return 0; */
    906       1.1   alnsn 		jump = sljit_emit_cmp(compiler,
    907       1.1   alnsn 		    SLJIT_C_NOT_EQUAL,
    908       1.7   alnsn 		    BJ_BUFLEN, 0,
    909       1.1   alnsn 		    SLJIT_IMM, 0);
    910       1.1   alnsn 		if (jump == NULL)
    911       1.1   alnsn 			return SLJIT_ERR_ALLOC_FAILED;
    912       1.7   alnsn 		if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
    913       1.7   alnsn 			return SLJIT_ERR_ALLOC_FAILED;
    914       1.1   alnsn 	}
    915       1.1   alnsn 
    916       1.1   alnsn 	switch (width) {
    917       1.1   alnsn 	case 4:
    918      1.32   alnsn 		status = emit_xcall(compiler, hints, pc, BJ_AREG,
    919      1.23   alnsn 		    ret0, ret0_size, ret0_maxsize, &m_xword);
    920       1.1   alnsn 		break;
    921       1.1   alnsn 	case 2:
    922      1.32   alnsn 		status = emit_xcall(compiler, hints, pc, BJ_AREG,
    923      1.23   alnsn 		    ret0, ret0_size, ret0_maxsize, &m_xhalf);
    924       1.1   alnsn 		break;
    925       1.1   alnsn 	case 1:
    926      1.32   alnsn 		status = emit_xcall(compiler, hints, pc, BJ_AREG,
    927      1.23   alnsn 		    ret0, ret0_size, ret0_maxsize, &m_xbyte);
    928       1.1   alnsn 		break;
    929       1.1   alnsn 	}
    930       1.1   alnsn 
    931       1.1   alnsn 	if (status != SLJIT_SUCCESS)
    932       1.1   alnsn 		return status;
    933       1.1   alnsn 
    934       1.1   alnsn 	label = sljit_emit_label(compiler);
    935       1.1   alnsn 	if (label == NULL)
    936       1.1   alnsn 		return SLJIT_ERR_ALLOC_FAILED;
    937       1.1   alnsn 	sljit_set_label(over_mchain_jump, label);
    938       1.1   alnsn #endif
    939       1.1   alnsn 
    940      1.24   alnsn 	return SLJIT_SUCCESS;
    941       1.1   alnsn }
    942       1.1   alnsn 
    943      1.13   alnsn static int
    944      1.19   alnsn emit_memload(struct sljit_compiler *compiler,
    945      1.13   alnsn     sljit_si dst, uint32_t k, size_t extwords)
    946      1.13   alnsn {
    947      1.13   alnsn 	int status;
    948      1.13   alnsn 	sljit_si src;
    949      1.13   alnsn 	sljit_sw srcw;
    950      1.13   alnsn 
    951      1.13   alnsn 	srcw = k * sizeof(uint32_t);
    952      1.13   alnsn 
    953      1.13   alnsn 	if (extwords == 0) {
    954      1.13   alnsn 		src = SLJIT_MEM1(SLJIT_LOCALS_REG);
    955      1.13   alnsn 		srcw += offsetof(struct bpfjit_stack, mem);
    956      1.13   alnsn 	} else {
    957      1.13   alnsn 		/* copy extmem pointer to the tmp1 register */
    958      1.13   alnsn 		status = sljit_emit_op1(compiler,
    959      1.16   alnsn 		    SLJIT_MOV_P,
    960      1.13   alnsn 		    BJ_TMP1REG, 0,
    961      1.13   alnsn 		    SLJIT_MEM1(SLJIT_LOCALS_REG),
    962      1.13   alnsn 		    offsetof(struct bpfjit_stack, extmem));
    963      1.13   alnsn 		if (status != SLJIT_SUCCESS)
    964      1.13   alnsn 			return status;
    965      1.13   alnsn 		src = SLJIT_MEM1(BJ_TMP1REG);
    966      1.13   alnsn 	}
    967      1.13   alnsn 
    968      1.13   alnsn 	return sljit_emit_op1(compiler, SLJIT_MOV_UI, dst, 0, src, srcw);
    969      1.13   alnsn }
    970      1.13   alnsn 
    971      1.13   alnsn static int
    972      1.19   alnsn emit_memstore(struct sljit_compiler *compiler,
    973      1.13   alnsn     sljit_si src, uint32_t k, size_t extwords)
    974      1.13   alnsn {
    975      1.13   alnsn 	int status;
    976      1.13   alnsn 	sljit_si dst;
    977      1.13   alnsn 	sljit_sw dstw;
    978      1.13   alnsn 
    979      1.13   alnsn 	dstw = k * sizeof(uint32_t);
    980      1.13   alnsn 
    981      1.13   alnsn 	if (extwords == 0) {
    982      1.13   alnsn 		dst = SLJIT_MEM1(SLJIT_LOCALS_REG);
    983      1.13   alnsn 		dstw += offsetof(struct bpfjit_stack, mem);
    984      1.13   alnsn 	} else {
    985      1.13   alnsn 		/* copy extmem pointer to the tmp1 register */
    986      1.13   alnsn 		status = sljit_emit_op1(compiler,
    987      1.16   alnsn 		    SLJIT_MOV_P,
    988      1.13   alnsn 		    BJ_TMP1REG, 0,
    989      1.13   alnsn 		    SLJIT_MEM1(SLJIT_LOCALS_REG),
    990      1.13   alnsn 		    offsetof(struct bpfjit_stack, extmem));
    991      1.13   alnsn 		if (status != SLJIT_SUCCESS)
    992      1.13   alnsn 			return status;
    993      1.13   alnsn 		dst = SLJIT_MEM1(BJ_TMP1REG);
    994      1.13   alnsn 	}
    995      1.13   alnsn 
    996      1.13   alnsn 	return sljit_emit_op1(compiler, SLJIT_MOV_UI, dst, dstw, src, 0);
    997      1.13   alnsn }
    998      1.13   alnsn 
    999       1.1   alnsn /*
   1000      1.24   alnsn  * Emit code for BPF_LDX+BPF_B+BPF_MSH    X <- 4*(P[k:1]&0xf).
   1001       1.1   alnsn  */
   1002       1.1   alnsn static int
   1003      1.32   alnsn emit_msh(struct sljit_compiler *compiler, bpfjit_hint_t hints,
   1004       1.7   alnsn     const struct bpf_insn *pc, struct sljit_jump *to_mchain_jump,
   1005       1.7   alnsn     struct sljit_jump ***ret0, size_t *ret0_size, size_t *ret0_maxsize)
   1006       1.1   alnsn {
   1007       1.1   alnsn 	int status;
   1008       1.1   alnsn #ifdef _KERNEL
   1009       1.1   alnsn 	struct sljit_label *label;
   1010       1.1   alnsn 	struct sljit_jump *jump, *over_mchain_jump;
   1011       1.1   alnsn 	const bool check_zero_buflen = (to_mchain_jump != NULL);
   1012       1.1   alnsn #endif
   1013       1.1   alnsn 	const uint32_t k = pc->k;
   1014       1.1   alnsn 
   1015       1.1   alnsn #ifdef _KERNEL
   1016       1.1   alnsn 	if (to_mchain_jump == NULL) {
   1017       1.1   alnsn 		to_mchain_jump = sljit_emit_cmp(compiler,
   1018       1.1   alnsn 		    SLJIT_C_EQUAL,
   1019       1.7   alnsn 		    BJ_BUFLEN, 0,
   1020       1.1   alnsn 		    SLJIT_IMM, 0);
   1021       1.1   alnsn 		if (to_mchain_jump == NULL)
   1022       1.7   alnsn 			return SLJIT_ERR_ALLOC_FAILED;
   1023       1.1   alnsn 	}
   1024       1.1   alnsn #endif
   1025       1.1   alnsn 
   1026       1.1   alnsn 	/* tmp1 = buf[k] */
   1027       1.1   alnsn 	status = sljit_emit_op1(compiler,
   1028       1.1   alnsn 	    SLJIT_MOV_UB,
   1029       1.7   alnsn 	    BJ_TMP1REG, 0,
   1030       1.7   alnsn 	    SLJIT_MEM1(BJ_BUF), k);
   1031       1.1   alnsn 	if (status != SLJIT_SUCCESS)
   1032       1.1   alnsn 		return status;
   1033       1.1   alnsn 
   1034       1.1   alnsn #ifdef _KERNEL
   1035       1.1   alnsn 	over_mchain_jump = sljit_emit_jump(compiler, SLJIT_JUMP);
   1036       1.1   alnsn 	if (over_mchain_jump == NULL)
   1037       1.1   alnsn 		return SLJIT_ERR_ALLOC_FAILED;
   1038       1.1   alnsn 
   1039       1.1   alnsn 	/* entry point to mchain handler */
   1040       1.1   alnsn 	label = sljit_emit_label(compiler);
   1041       1.1   alnsn 	if (label == NULL)
   1042       1.1   alnsn 		return SLJIT_ERR_ALLOC_FAILED;
   1043       1.1   alnsn 	sljit_set_label(to_mchain_jump, label);
   1044       1.1   alnsn 
   1045       1.1   alnsn 	if (check_zero_buflen) {
   1046       1.1   alnsn 		/* if (buflen != 0) return 0; */
   1047       1.1   alnsn 		jump = sljit_emit_cmp(compiler,
   1048       1.1   alnsn 		    SLJIT_C_NOT_EQUAL,
   1049       1.7   alnsn 		    BJ_BUFLEN, 0,
   1050       1.1   alnsn 		    SLJIT_IMM, 0);
   1051       1.1   alnsn 		if (jump == NULL)
   1052       1.7   alnsn 			return SLJIT_ERR_ALLOC_FAILED;
   1053       1.7   alnsn 		if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
   1054       1.7   alnsn 			return SLJIT_ERR_ALLOC_FAILED;
   1055       1.1   alnsn 	}
   1056       1.1   alnsn 
   1057      1.32   alnsn 	status = emit_xcall(compiler, hints, pc, BJ_TMP1REG,
   1058      1.23   alnsn 	    ret0, ret0_size, ret0_maxsize, &m_xbyte);
   1059       1.1   alnsn 	if (status != SLJIT_SUCCESS)
   1060       1.1   alnsn 		return status;
   1061       1.7   alnsn 
   1062      1.30   alnsn 	label = sljit_emit_label(compiler);
   1063      1.30   alnsn 	if (label == NULL)
   1064      1.30   alnsn 		return SLJIT_ERR_ALLOC_FAILED;
   1065      1.30   alnsn 	sljit_set_label(over_mchain_jump, label);
   1066      1.30   alnsn #endif
   1067      1.30   alnsn 
   1068       1.1   alnsn 	/* tmp1 &= 0xf */
   1069       1.1   alnsn 	status = sljit_emit_op2(compiler,
   1070       1.1   alnsn 	    SLJIT_AND,
   1071       1.7   alnsn 	    BJ_TMP1REG, 0,
   1072       1.7   alnsn 	    BJ_TMP1REG, 0,
   1073       1.1   alnsn 	    SLJIT_IMM, 0xf);
   1074       1.1   alnsn 	if (status != SLJIT_SUCCESS)
   1075       1.1   alnsn 		return status;
   1076       1.1   alnsn 
   1077      1.30   alnsn 	/* X = tmp1 << 2 */
   1078       1.1   alnsn 	status = sljit_emit_op2(compiler,
   1079       1.1   alnsn 	    SLJIT_SHL,
   1080       1.7   alnsn 	    BJ_XREG, 0,
   1081       1.7   alnsn 	    BJ_TMP1REG, 0,
   1082       1.1   alnsn 	    SLJIT_IMM, 2);
   1083       1.1   alnsn 	if (status != SLJIT_SUCCESS)
   1084       1.1   alnsn 		return status;
   1085       1.1   alnsn 
   1086      1.24   alnsn 	return SLJIT_SUCCESS;
   1087       1.1   alnsn }
   1088       1.1   alnsn 
   1089       1.1   alnsn static int
   1090      1.19   alnsn emit_pow2_division(struct sljit_compiler *compiler, uint32_t k)
   1091       1.1   alnsn {
   1092       1.1   alnsn 	int shift = 0;
   1093       1.1   alnsn 	int status = SLJIT_SUCCESS;
   1094       1.1   alnsn 
   1095       1.1   alnsn 	while (k > 1) {
   1096       1.1   alnsn 		k >>= 1;
   1097       1.1   alnsn 		shift++;
   1098       1.1   alnsn 	}
   1099       1.1   alnsn 
   1100       1.7   alnsn 	BJ_ASSERT(k == 1 && shift < 32);
   1101       1.1   alnsn 
   1102       1.1   alnsn 	if (shift != 0) {
   1103       1.1   alnsn 		status = sljit_emit_op2(compiler,
   1104       1.1   alnsn 		    SLJIT_LSHR|SLJIT_INT_OP,
   1105       1.7   alnsn 		    BJ_AREG, 0,
   1106       1.7   alnsn 		    BJ_AREG, 0,
   1107       1.1   alnsn 		    SLJIT_IMM, shift);
   1108       1.1   alnsn 	}
   1109       1.1   alnsn 
   1110       1.1   alnsn 	return status;
   1111       1.1   alnsn }
   1112       1.1   alnsn 
   1113       1.1   alnsn #if !defined(BPFJIT_USE_UDIV)
   1114       1.1   alnsn static sljit_uw
   1115       1.1   alnsn divide(sljit_uw x, sljit_uw y)
   1116       1.1   alnsn {
   1117       1.1   alnsn 
   1118       1.1   alnsn 	return (uint32_t)x / (uint32_t)y;
   1119       1.1   alnsn }
   1120       1.1   alnsn #endif
   1121       1.1   alnsn 
   1122       1.1   alnsn /*
   1123      1.24   alnsn  * Emit code for A = A / div.
   1124       1.7   alnsn  * divt,divw are either SLJIT_IMM,pc->k or BJ_XREG,0.
   1125       1.1   alnsn  */
   1126       1.1   alnsn static int
   1127      1.19   alnsn emit_division(struct sljit_compiler *compiler, int divt, sljit_sw divw)
   1128       1.1   alnsn {
   1129       1.1   alnsn 	int status;
   1130       1.1   alnsn 
   1131      1.32   alnsn #if BJ_XREG == SLJIT_RETURN_REG   || \
   1132      1.32   alnsn     BJ_XREG == SLJIT_SCRATCH_REG1 || \
   1133      1.32   alnsn     BJ_XREG == SLJIT_SCRATCH_REG2 || \
   1134      1.32   alnsn     BJ_AREG == SLJIT_SCRATCH_REG2
   1135      1.32   alnsn #error "Not supported assignment of registers."
   1136      1.32   alnsn #endif
   1137      1.32   alnsn 
   1138      1.12   alnsn #if BJ_AREG != SLJIT_SCRATCH_REG1
   1139       1.1   alnsn 	status = sljit_emit_op1(compiler,
   1140       1.1   alnsn 	    SLJIT_MOV,
   1141      1.12   alnsn 	    SLJIT_SCRATCH_REG1, 0,
   1142       1.7   alnsn 	    BJ_AREG, 0);
   1143       1.1   alnsn 	if (status != SLJIT_SUCCESS)
   1144       1.1   alnsn 		return status;
   1145       1.1   alnsn #endif
   1146       1.1   alnsn 
   1147       1.1   alnsn 	status = sljit_emit_op1(compiler,
   1148       1.1   alnsn 	    SLJIT_MOV,
   1149      1.12   alnsn 	    SLJIT_SCRATCH_REG2, 0,
   1150       1.1   alnsn 	    divt, divw);
   1151       1.1   alnsn 	if (status != SLJIT_SUCCESS)
   1152       1.1   alnsn 		return status;
   1153       1.1   alnsn 
   1154       1.1   alnsn #if defined(BPFJIT_USE_UDIV)
   1155       1.1   alnsn 	status = sljit_emit_op0(compiler, SLJIT_UDIV|SLJIT_INT_OP);
   1156       1.1   alnsn 
   1157      1.12   alnsn #if BJ_AREG != SLJIT_SCRATCH_REG1
   1158       1.1   alnsn 	status = sljit_emit_op1(compiler,
   1159       1.1   alnsn 	    SLJIT_MOV,
   1160       1.7   alnsn 	    BJ_AREG, 0,
   1161      1.12   alnsn 	    SLJIT_SCRATCH_REG1, 0);
   1162       1.1   alnsn 	if (status != SLJIT_SUCCESS)
   1163       1.1   alnsn 		return status;
   1164       1.1   alnsn #endif
   1165       1.1   alnsn #else
   1166       1.1   alnsn 	status = sljit_emit_ijump(compiler,
   1167       1.1   alnsn 	    SLJIT_CALL2,
   1168       1.1   alnsn 	    SLJIT_IMM, SLJIT_FUNC_OFFSET(divide));
   1169       1.1   alnsn 
   1170       1.7   alnsn #if BJ_AREG != SLJIT_RETURN_REG
   1171       1.1   alnsn 	status = sljit_emit_op1(compiler,
   1172       1.1   alnsn 	    SLJIT_MOV,
   1173       1.7   alnsn 	    BJ_AREG, 0,
   1174       1.1   alnsn 	    SLJIT_RETURN_REG, 0);
   1175       1.1   alnsn 	if (status != SLJIT_SUCCESS)
   1176       1.1   alnsn 		return status;
   1177       1.1   alnsn #endif
   1178       1.1   alnsn #endif
   1179       1.1   alnsn 
   1180       1.1   alnsn 	return status;
   1181       1.1   alnsn }
   1182       1.1   alnsn 
   1183       1.1   alnsn /*
   1184       1.1   alnsn  * Return true if pc is a "read from packet" instruction.
   1185       1.1   alnsn  * If length is not NULL and return value is true, *length will
   1186       1.1   alnsn  * be set to a safe length required to read a packet.
   1187       1.1   alnsn  */
   1188       1.1   alnsn static bool
   1189       1.8   alnsn read_pkt_insn(const struct bpf_insn *pc, bpfjit_abc_length_t *length)
   1190       1.1   alnsn {
   1191       1.1   alnsn 	bool rv;
   1192       1.8   alnsn 	bpfjit_abc_length_t width;
   1193       1.1   alnsn 
   1194       1.1   alnsn 	switch (BPF_CLASS(pc->code)) {
   1195       1.1   alnsn 	default:
   1196       1.1   alnsn 		rv = false;
   1197       1.1   alnsn 		break;
   1198       1.1   alnsn 
   1199       1.1   alnsn 	case BPF_LD:
   1200       1.1   alnsn 		rv = BPF_MODE(pc->code) == BPF_ABS ||
   1201       1.1   alnsn 		     BPF_MODE(pc->code) == BPF_IND;
   1202  1.32.2.1  martin 		if (rv) {
   1203       1.1   alnsn 			width = read_width(pc);
   1204  1.32.2.1  martin 			rv = (width != 0);
   1205  1.32.2.1  martin 		}
   1206       1.1   alnsn 		break;
   1207       1.1   alnsn 
   1208       1.1   alnsn 	case BPF_LDX:
   1209  1.32.2.1  martin 		rv = BPF_MODE(pc->code) == BPF_MSH &&
   1210  1.32.2.1  martin 		     BPF_SIZE(pc->code) == BPF_B;
   1211       1.1   alnsn 		width = 1;
   1212       1.1   alnsn 		break;
   1213       1.1   alnsn 	}
   1214       1.1   alnsn 
   1215       1.1   alnsn 	if (rv && length != NULL) {
   1216       1.9   alnsn 		/*
   1217       1.9   alnsn 		 * Values greater than UINT32_MAX will generate
   1218       1.9   alnsn 		 * unconditional "return 0".
   1219       1.9   alnsn 		 */
   1220       1.9   alnsn 		*length = (uint32_t)pc->k + width;
   1221       1.1   alnsn 	}
   1222       1.1   alnsn 
   1223       1.1   alnsn 	return rv;
   1224       1.1   alnsn }
   1225       1.1   alnsn 
   1226       1.1   alnsn static void
   1227       1.7   alnsn optimize_init(struct bpfjit_insn_data *insn_dat, size_t insn_count)
   1228       1.1   alnsn {
   1229       1.7   alnsn 	size_t i;
   1230       1.1   alnsn 
   1231       1.7   alnsn 	for (i = 0; i < insn_count; i++) {
   1232       1.7   alnsn 		SLIST_INIT(&insn_dat[i].bjumps);
   1233       1.7   alnsn 		insn_dat[i].invalid = BJ_INIT_NOBITS;
   1234       1.1   alnsn 	}
   1235       1.1   alnsn }
   1236       1.1   alnsn 
   1237       1.1   alnsn /*
   1238       1.1   alnsn  * The function divides instructions into blocks. Destination of a jump
   1239       1.1   alnsn  * instruction starts a new block. BPF_RET and BPF_JMP instructions
   1240       1.1   alnsn  * terminate a block. Blocks are linear, that is, there are no jumps out
   1241       1.1   alnsn  * from the middle of a block and there are no jumps in to the middle of
   1242       1.1   alnsn  * a block.
   1243       1.7   alnsn  *
   1244       1.7   alnsn  * The function also sets bits in *initmask for memwords that
   1245       1.7   alnsn  * need to be initialized to zero. Note that this set should be empty
   1246       1.7   alnsn  * for any valid kernel filter program.
   1247       1.1   alnsn  */
   1248       1.7   alnsn static bool
   1249      1.19   alnsn optimize_pass1(const bpf_ctx_t *bc, const struct bpf_insn *insns,
   1250      1.19   alnsn     struct bpfjit_insn_data *insn_dat, size_t insn_count,
   1251      1.20   alnsn     bpf_memword_init_t *initmask, bpfjit_hint_t *hints)
   1252       1.1   alnsn {
   1253       1.7   alnsn 	struct bpfjit_jump *jtf;
   1254       1.1   alnsn 	size_t i;
   1255       1.7   alnsn 	uint32_t jt, jf;
   1256      1.10   alnsn 	bpfjit_abc_length_t length;
   1257      1.13   alnsn 	bpf_memword_init_t invalid; /* borrowed from bpf_filter() */
   1258       1.1   alnsn 	bool unreachable;
   1259       1.1   alnsn 
   1260      1.19   alnsn 	const size_t memwords = GET_MEMWORDS(bc);
   1261      1.13   alnsn 
   1262      1.20   alnsn 	*hints = 0;
   1263       1.7   alnsn 	*initmask = BJ_INIT_NOBITS;
   1264       1.1   alnsn 
   1265       1.1   alnsn 	unreachable = false;
   1266       1.7   alnsn 	invalid = ~BJ_INIT_NOBITS;
   1267       1.1   alnsn 
   1268       1.1   alnsn 	for (i = 0; i < insn_count; i++) {
   1269       1.7   alnsn 		if (!SLIST_EMPTY(&insn_dat[i].bjumps))
   1270       1.1   alnsn 			unreachable = false;
   1271       1.7   alnsn 		insn_dat[i].unreachable = unreachable;
   1272       1.1   alnsn 
   1273       1.1   alnsn 		if (unreachable)
   1274       1.1   alnsn 			continue;
   1275       1.1   alnsn 
   1276       1.7   alnsn 		invalid |= insn_dat[i].invalid;
   1277       1.1   alnsn 
   1278      1.10   alnsn 		if (read_pkt_insn(&insns[i], &length) && length > UINT32_MAX)
   1279      1.10   alnsn 			unreachable = true;
   1280      1.10   alnsn 
   1281       1.1   alnsn 		switch (BPF_CLASS(insns[i].code)) {
   1282       1.1   alnsn 		case BPF_RET:
   1283       1.7   alnsn 			if (BPF_RVAL(insns[i].code) == BPF_A)
   1284       1.7   alnsn 				*initmask |= invalid & BJ_INIT_ABIT;
   1285       1.7   alnsn 
   1286       1.1   alnsn 			unreachable = true;
   1287       1.1   alnsn 			continue;
   1288       1.1   alnsn 
   1289       1.7   alnsn 		case BPF_LD:
   1290      1.27   alnsn 			if (BPF_MODE(insns[i].code) == BPF_ABS)
   1291      1.27   alnsn 				*hints |= BJ_HINT_ABS;
   1292       1.7   alnsn 
   1293      1.20   alnsn 			if (BPF_MODE(insns[i].code) == BPF_IND) {
   1294      1.27   alnsn 				*hints |= BJ_HINT_IND | BJ_HINT_XREG;
   1295       1.7   alnsn 				*initmask |= invalid & BJ_INIT_XBIT;
   1296      1.20   alnsn 			}
   1297       1.7   alnsn 
   1298       1.7   alnsn 			if (BPF_MODE(insns[i].code) == BPF_MEM &&
   1299      1.13   alnsn 			    (uint32_t)insns[i].k < memwords) {
   1300       1.7   alnsn 				*initmask |= invalid & BJ_INIT_MBIT(insns[i].k);
   1301       1.7   alnsn 			}
   1302       1.7   alnsn 
   1303       1.7   alnsn 			invalid &= ~BJ_INIT_ABIT;
   1304       1.7   alnsn 			continue;
   1305       1.7   alnsn 
   1306       1.7   alnsn 		case BPF_LDX:
   1307      1.20   alnsn 			*hints |= BJ_HINT_XREG | BJ_HINT_LDX;
   1308       1.7   alnsn 
   1309       1.7   alnsn 			if (BPF_MODE(insns[i].code) == BPF_MEM &&
   1310      1.13   alnsn 			    (uint32_t)insns[i].k < memwords) {
   1311       1.7   alnsn 				*initmask |= invalid & BJ_INIT_MBIT(insns[i].k);
   1312       1.7   alnsn 			}
   1313       1.7   alnsn 
   1314      1.29   alnsn 			if (BPF_MODE(insns[i].code) == BPF_MSH &&
   1315      1.29   alnsn 			    BPF_SIZE(insns[i].code) == BPF_B) {
   1316      1.29   alnsn 				*hints |= BJ_HINT_MSH;
   1317      1.29   alnsn 			}
   1318      1.29   alnsn 
   1319       1.7   alnsn 			invalid &= ~BJ_INIT_XBIT;
   1320       1.7   alnsn 			continue;
   1321       1.7   alnsn 
   1322       1.7   alnsn 		case BPF_ST:
   1323       1.7   alnsn 			*initmask |= invalid & BJ_INIT_ABIT;
   1324       1.7   alnsn 
   1325      1.13   alnsn 			if ((uint32_t)insns[i].k < memwords)
   1326       1.7   alnsn 				invalid &= ~BJ_INIT_MBIT(insns[i].k);
   1327       1.7   alnsn 
   1328       1.7   alnsn 			continue;
   1329       1.7   alnsn 
   1330       1.7   alnsn 		case BPF_STX:
   1331      1.20   alnsn 			*hints |= BJ_HINT_XREG;
   1332       1.7   alnsn 			*initmask |= invalid & BJ_INIT_XBIT;
   1333       1.7   alnsn 
   1334      1.13   alnsn 			if ((uint32_t)insns[i].k < memwords)
   1335       1.7   alnsn 				invalid &= ~BJ_INIT_MBIT(insns[i].k);
   1336       1.7   alnsn 
   1337       1.7   alnsn 			continue;
   1338       1.7   alnsn 
   1339       1.7   alnsn 		case BPF_ALU:
   1340       1.7   alnsn 			*initmask |= invalid & BJ_INIT_ABIT;
   1341       1.7   alnsn 
   1342       1.7   alnsn 			if (insns[i].code != (BPF_ALU|BPF_NEG) &&
   1343       1.7   alnsn 			    BPF_SRC(insns[i].code) == BPF_X) {
   1344      1.20   alnsn 				*hints |= BJ_HINT_XREG;
   1345       1.7   alnsn 				*initmask |= invalid & BJ_INIT_XBIT;
   1346       1.7   alnsn 			}
   1347       1.7   alnsn 
   1348       1.7   alnsn 			invalid &= ~BJ_INIT_ABIT;
   1349       1.7   alnsn 			continue;
   1350       1.7   alnsn 
   1351       1.7   alnsn 		case BPF_MISC:
   1352       1.7   alnsn 			switch (BPF_MISCOP(insns[i].code)) {
   1353       1.7   alnsn 			case BPF_TAX: // X <- A
   1354      1.20   alnsn 				*hints |= BJ_HINT_XREG;
   1355       1.7   alnsn 				*initmask |= invalid & BJ_INIT_ABIT;
   1356       1.7   alnsn 				invalid &= ~BJ_INIT_XBIT;
   1357       1.7   alnsn 				continue;
   1358       1.7   alnsn 
   1359       1.7   alnsn 			case BPF_TXA: // A <- X
   1360      1.20   alnsn 				*hints |= BJ_HINT_XREG;
   1361       1.7   alnsn 				*initmask |= invalid & BJ_INIT_XBIT;
   1362       1.7   alnsn 				invalid &= ~BJ_INIT_ABIT;
   1363       1.7   alnsn 				continue;
   1364      1.13   alnsn 
   1365      1.13   alnsn 			case BPF_COPX:
   1366      1.28   alnsn 				*hints |= BJ_HINT_XREG | BJ_HINT_COPX;
   1367      1.13   alnsn 				/* FALLTHROUGH */
   1368      1.13   alnsn 
   1369      1.13   alnsn 			case BPF_COP:
   1370      1.20   alnsn 				*hints |= BJ_HINT_COP;
   1371      1.13   alnsn 				*initmask |= invalid & BJ_INIT_ABIT;
   1372      1.13   alnsn 				invalid &= ~BJ_INIT_ABIT;
   1373      1.13   alnsn 				continue;
   1374       1.7   alnsn 			}
   1375       1.7   alnsn 
   1376       1.7   alnsn 			continue;
   1377       1.7   alnsn 
   1378       1.1   alnsn 		case BPF_JMP:
   1379       1.7   alnsn 			/* Initialize abc_length for ABC pass. */
   1380       1.8   alnsn 			insn_dat[i].u.jdata.abc_length = MAX_ABC_LENGTH;
   1381       1.7   alnsn 
   1382  1.32.2.1  martin 			*initmask |= invalid & BJ_INIT_ABIT;
   1383  1.32.2.1  martin 
   1384  1.32.2.1  martin 			if (BPF_SRC(insns[i].code) == BPF_X) {
   1385  1.32.2.1  martin 				*hints |= BJ_HINT_XREG;
   1386  1.32.2.1  martin 				*initmask |= invalid & BJ_INIT_XBIT;
   1387  1.32.2.1  martin 			}
   1388  1.32.2.1  martin 
   1389       1.7   alnsn 			if (BPF_OP(insns[i].code) == BPF_JA) {
   1390       1.1   alnsn 				jt = jf = insns[i].k;
   1391       1.1   alnsn 			} else {
   1392       1.1   alnsn 				jt = insns[i].jt;
   1393       1.1   alnsn 				jf = insns[i].jf;
   1394       1.1   alnsn 			}
   1395       1.1   alnsn 
   1396       1.1   alnsn 			if (jt >= insn_count - (i + 1) ||
   1397       1.1   alnsn 			    jf >= insn_count - (i + 1)) {
   1398       1.7   alnsn 				return false;
   1399       1.1   alnsn 			}
   1400       1.1   alnsn 
   1401       1.1   alnsn 			if (jt > 0 && jf > 0)
   1402       1.1   alnsn 				unreachable = true;
   1403       1.1   alnsn 
   1404       1.7   alnsn 			jt += i + 1;
   1405       1.7   alnsn 			jf += i + 1;
   1406       1.7   alnsn 
   1407       1.7   alnsn 			jtf = insn_dat[i].u.jdata.jtf;
   1408       1.1   alnsn 
   1409       1.7   alnsn 			jtf[0].jdata = &insn_dat[i].u.jdata;
   1410       1.7   alnsn 			SLIST_INSERT_HEAD(&insn_dat[jt].bjumps,
   1411       1.7   alnsn 			    &jtf[0], entries);
   1412       1.1   alnsn 
   1413       1.1   alnsn 			if (jf != jt) {
   1414       1.7   alnsn 				jtf[1].jdata = &insn_dat[i].u.jdata;
   1415       1.7   alnsn 				SLIST_INSERT_HEAD(&insn_dat[jf].bjumps,
   1416       1.7   alnsn 				    &jtf[1], entries);
   1417       1.1   alnsn 			}
   1418       1.1   alnsn 
   1419       1.7   alnsn 			insn_dat[jf].invalid |= invalid;
   1420       1.7   alnsn 			insn_dat[jt].invalid |= invalid;
   1421       1.7   alnsn 			invalid = 0;
   1422       1.7   alnsn 
   1423       1.1   alnsn 			continue;
   1424       1.1   alnsn 		}
   1425       1.1   alnsn 	}
   1426       1.1   alnsn 
   1427       1.7   alnsn 	return true;
   1428       1.1   alnsn }
   1429       1.1   alnsn 
   1430       1.1   alnsn /*
   1431       1.7   alnsn  * Array Bounds Check Elimination (ABC) pass.
   1432       1.1   alnsn  */
   1433       1.7   alnsn static void
   1434      1.19   alnsn optimize_pass2(const bpf_ctx_t *bc, const struct bpf_insn *insns,
   1435      1.19   alnsn     struct bpfjit_insn_data *insn_dat, size_t insn_count)
   1436       1.7   alnsn {
   1437       1.7   alnsn 	struct bpfjit_jump *jmp;
   1438       1.7   alnsn 	const struct bpf_insn *pc;
   1439       1.7   alnsn 	struct bpfjit_insn_data *pd;
   1440       1.7   alnsn 	size_t i;
   1441       1.8   alnsn 	bpfjit_abc_length_t length, abc_length = 0;
   1442       1.7   alnsn 
   1443      1.19   alnsn 	const size_t extwords = GET_EXTWORDS(bc);
   1444      1.19   alnsn 
   1445       1.7   alnsn 	for (i = insn_count; i != 0; i--) {
   1446       1.7   alnsn 		pc = &insns[i-1];
   1447       1.7   alnsn 		pd = &insn_dat[i-1];
   1448       1.7   alnsn 
   1449       1.7   alnsn 		if (pd->unreachable)
   1450       1.7   alnsn 			continue;
   1451       1.7   alnsn 
   1452       1.7   alnsn 		switch (BPF_CLASS(pc->code)) {
   1453       1.7   alnsn 		case BPF_RET:
   1454      1.11   alnsn 			/*
   1455      1.11   alnsn 			 * It's quite common for bpf programs to
   1456      1.11   alnsn 			 * check packet bytes in increasing order
   1457      1.11   alnsn 			 * and return zero if bytes don't match
   1458      1.11   alnsn 			 * specified critetion. Such programs disable
   1459      1.11   alnsn 			 * ABC optimization completely because for
   1460      1.11   alnsn 			 * every jump there is a branch with no read
   1461      1.11   alnsn 			 * instruction.
   1462      1.13   alnsn 			 * With no side effects, BPF_STMT(BPF_RET+BPF_K, 0)
   1463      1.13   alnsn 			 * is indistinguishable from out-of-bound load.
   1464      1.11   alnsn 			 * Therefore, abc_length can be set to
   1465      1.11   alnsn 			 * MAX_ABC_LENGTH and enable ABC for many
   1466      1.11   alnsn 			 * bpf programs.
   1467      1.13   alnsn 			 * If this optimization encounters any
   1468      1.11   alnsn 			 * instruction with a side effect, it will
   1469      1.11   alnsn 			 * reset abc_length.
   1470      1.11   alnsn 			 */
   1471      1.11   alnsn 			if (BPF_RVAL(pc->code) == BPF_K && pc->k == 0)
   1472      1.11   alnsn 				abc_length = MAX_ABC_LENGTH;
   1473      1.11   alnsn 			else
   1474      1.11   alnsn 				abc_length = 0;
   1475       1.7   alnsn 			break;
   1476       1.7   alnsn 
   1477      1.13   alnsn 		case BPF_MISC:
   1478      1.13   alnsn 			if (BPF_MISCOP(pc->code) == BPF_COP ||
   1479      1.13   alnsn 			    BPF_MISCOP(pc->code) == BPF_COPX) {
   1480      1.13   alnsn 				/* COP instructions can have side effects. */
   1481      1.13   alnsn 				abc_length = 0;
   1482      1.13   alnsn 			}
   1483      1.13   alnsn 			break;
   1484      1.13   alnsn 
   1485      1.13   alnsn 		case BPF_ST:
   1486      1.13   alnsn 		case BPF_STX:
   1487      1.13   alnsn 			if (extwords != 0) {
   1488      1.13   alnsn 				/* Write to memory is visible after a call. */
   1489      1.13   alnsn 				abc_length = 0;
   1490      1.13   alnsn 			}
   1491      1.13   alnsn 			break;
   1492      1.13   alnsn 
   1493       1.7   alnsn 		case BPF_JMP:
   1494       1.7   alnsn 			abc_length = pd->u.jdata.abc_length;
   1495       1.7   alnsn 			break;
   1496       1.7   alnsn 
   1497       1.7   alnsn 		default:
   1498       1.7   alnsn 			if (read_pkt_insn(pc, &length)) {
   1499       1.7   alnsn 				if (abc_length < length)
   1500       1.7   alnsn 					abc_length = length;
   1501       1.7   alnsn 				pd->u.rdata.abc_length = abc_length;
   1502       1.7   alnsn 			}
   1503       1.7   alnsn 			break;
   1504       1.7   alnsn 		}
   1505       1.7   alnsn 
   1506       1.7   alnsn 		SLIST_FOREACH(jmp, &pd->bjumps, entries) {
   1507       1.7   alnsn 			if (jmp->jdata->abc_length > abc_length)
   1508       1.7   alnsn 				jmp->jdata->abc_length = abc_length;
   1509       1.7   alnsn 		}
   1510       1.7   alnsn 	}
   1511       1.7   alnsn }
   1512       1.7   alnsn 
   1513       1.7   alnsn static void
   1514       1.7   alnsn optimize_pass3(const struct bpf_insn *insns,
   1515       1.7   alnsn     struct bpfjit_insn_data *insn_dat, size_t insn_count)
   1516       1.1   alnsn {
   1517       1.7   alnsn 	struct bpfjit_jump *jmp;
   1518       1.1   alnsn 	size_t i;
   1519       1.8   alnsn 	bpfjit_abc_length_t checked_length = 0;
   1520       1.1   alnsn 
   1521       1.1   alnsn 	for (i = 0; i < insn_count; i++) {
   1522       1.7   alnsn 		if (insn_dat[i].unreachable)
   1523       1.7   alnsn 			continue;
   1524       1.1   alnsn 
   1525       1.7   alnsn 		SLIST_FOREACH(jmp, &insn_dat[i].bjumps, entries) {
   1526       1.7   alnsn 			if (jmp->jdata->checked_length < checked_length)
   1527       1.7   alnsn 				checked_length = jmp->jdata->checked_length;
   1528       1.1   alnsn 		}
   1529       1.1   alnsn 
   1530       1.7   alnsn 		if (BPF_CLASS(insns[i].code) == BPF_JMP) {
   1531       1.7   alnsn 			insn_dat[i].u.jdata.checked_length = checked_length;
   1532       1.8   alnsn 		} else if (read_pkt_insn(&insns[i], NULL)) {
   1533       1.7   alnsn 			struct bpfjit_read_pkt_data *rdata =
   1534       1.7   alnsn 			    &insn_dat[i].u.rdata;
   1535       1.7   alnsn 			rdata->check_length = 0;
   1536       1.7   alnsn 			if (checked_length < rdata->abc_length) {
   1537       1.7   alnsn 				checked_length = rdata->abc_length;
   1538       1.7   alnsn 				rdata->check_length = checked_length;
   1539       1.7   alnsn 			}
   1540       1.1   alnsn 		}
   1541       1.7   alnsn 	}
   1542       1.7   alnsn }
   1543       1.1   alnsn 
   1544       1.7   alnsn static bool
   1545      1.19   alnsn optimize(const bpf_ctx_t *bc, const struct bpf_insn *insns,
   1546       1.7   alnsn     struct bpfjit_insn_data *insn_dat, size_t insn_count,
   1547      1.20   alnsn     bpf_memword_init_t *initmask, bpfjit_hint_t *hints)
   1548       1.7   alnsn {
   1549       1.1   alnsn 
   1550       1.7   alnsn 	optimize_init(insn_dat, insn_count);
   1551       1.7   alnsn 
   1552      1.20   alnsn 	if (!optimize_pass1(bc, insns, insn_dat, insn_count, initmask, hints))
   1553       1.7   alnsn 		return false;
   1554       1.1   alnsn 
   1555      1.19   alnsn 	optimize_pass2(bc, insns, insn_dat, insn_count);
   1556       1.7   alnsn 	optimize_pass3(insns, insn_dat, insn_count);
   1557       1.7   alnsn 
   1558       1.7   alnsn 	return true;
   1559       1.1   alnsn }
   1560       1.1   alnsn 
   1561       1.1   alnsn /*
   1562       1.1   alnsn  * Convert BPF_ALU operations except BPF_NEG and BPF_DIV to sljit operation.
   1563       1.1   alnsn  */
   1564       1.1   alnsn static int
   1565       1.7   alnsn bpf_alu_to_sljit_op(const struct bpf_insn *pc)
   1566       1.1   alnsn {
   1567  1.32.2.1  martin 	const int bad = SLJIT_UNUSED;
   1568       1.1   alnsn 
   1569       1.1   alnsn 	/*
   1570       1.1   alnsn 	 * Note: all supported 64bit arches have 32bit multiply
   1571       1.1   alnsn 	 * instruction so SLJIT_INT_OP doesn't have any overhead.
   1572       1.1   alnsn 	 */
   1573       1.1   alnsn 	switch (BPF_OP(pc->code)) {
   1574       1.1   alnsn 	case BPF_ADD: return SLJIT_ADD;
   1575       1.1   alnsn 	case BPF_SUB: return SLJIT_SUB;
   1576       1.1   alnsn 	case BPF_MUL: return SLJIT_MUL|SLJIT_INT_OP;
   1577       1.1   alnsn 	case BPF_OR:  return SLJIT_OR;
   1578       1.1   alnsn 	case BPF_AND: return SLJIT_AND;
   1579  1.32.2.1  martin 	case BPF_LSH: return (pc->k > 31) ? bad : SLJIT_SHL;
   1580  1.32.2.1  martin 	case BPF_RSH: return (pc->k > 31) ? bad : SLJIT_LSHR|SLJIT_INT_OP;
   1581       1.1   alnsn 	default:
   1582  1.32.2.1  martin 		return bad;
   1583       1.1   alnsn 	}
   1584       1.1   alnsn }
   1585       1.1   alnsn 
   1586       1.1   alnsn /*
   1587       1.1   alnsn  * Convert BPF_JMP operations except BPF_JA to sljit condition.
   1588       1.1   alnsn  */
   1589       1.1   alnsn static int
   1590       1.7   alnsn bpf_jmp_to_sljit_cond(const struct bpf_insn *pc, bool negate)
   1591       1.1   alnsn {
   1592       1.1   alnsn 	/*
   1593       1.1   alnsn 	 * Note: all supported 64bit arches have 32bit comparison
   1594       1.1   alnsn 	 * instructions so SLJIT_INT_OP doesn't have any overhead.
   1595       1.1   alnsn 	 */
   1596       1.1   alnsn 	int rv = SLJIT_INT_OP;
   1597       1.1   alnsn 
   1598       1.1   alnsn 	switch (BPF_OP(pc->code)) {
   1599       1.1   alnsn 	case BPF_JGT:
   1600       1.1   alnsn 		rv |= negate ? SLJIT_C_LESS_EQUAL : SLJIT_C_GREATER;
   1601       1.1   alnsn 		break;
   1602       1.1   alnsn 	case BPF_JGE:
   1603       1.1   alnsn 		rv |= negate ? SLJIT_C_LESS : SLJIT_C_GREATER_EQUAL;
   1604       1.1   alnsn 		break;
   1605       1.1   alnsn 	case BPF_JEQ:
   1606       1.1   alnsn 		rv |= negate ? SLJIT_C_NOT_EQUAL : SLJIT_C_EQUAL;
   1607       1.1   alnsn 		break;
   1608       1.1   alnsn 	case BPF_JSET:
   1609       1.1   alnsn 		rv |= negate ? SLJIT_C_EQUAL : SLJIT_C_NOT_EQUAL;
   1610       1.1   alnsn 		break;
   1611       1.1   alnsn 	default:
   1612       1.7   alnsn 		BJ_ASSERT(false);
   1613       1.1   alnsn 	}
   1614       1.1   alnsn 
   1615       1.1   alnsn 	return rv;
   1616       1.1   alnsn }
   1617       1.1   alnsn 
   1618       1.1   alnsn /*
   1619       1.1   alnsn  * Convert BPF_K and BPF_X to sljit register.
   1620       1.1   alnsn  */
   1621       1.1   alnsn static int
   1622       1.7   alnsn kx_to_reg(const struct bpf_insn *pc)
   1623       1.1   alnsn {
   1624       1.1   alnsn 
   1625       1.1   alnsn 	switch (BPF_SRC(pc->code)) {
   1626       1.1   alnsn 	case BPF_K: return SLJIT_IMM;
   1627       1.7   alnsn 	case BPF_X: return BJ_XREG;
   1628       1.1   alnsn 	default:
   1629       1.7   alnsn 		BJ_ASSERT(false);
   1630       1.1   alnsn 		return 0;
   1631       1.1   alnsn 	}
   1632       1.1   alnsn }
   1633       1.1   alnsn 
   1634      1.12   alnsn static sljit_sw
   1635       1.7   alnsn kx_to_reg_arg(const struct bpf_insn *pc)
   1636       1.1   alnsn {
   1637       1.1   alnsn 
   1638       1.1   alnsn 	switch (BPF_SRC(pc->code)) {
   1639       1.1   alnsn 	case BPF_K: return (uint32_t)pc->k; /* SLJIT_IMM, pc->k, */
   1640       1.7   alnsn 	case BPF_X: return 0;               /* BJ_XREG, 0,      */
   1641       1.1   alnsn 	default:
   1642       1.7   alnsn 		BJ_ASSERT(false);
   1643       1.1   alnsn 		return 0;
   1644       1.1   alnsn 	}
   1645       1.1   alnsn }
   1646       1.1   alnsn 
   1647      1.19   alnsn static bool
   1648      1.32   alnsn generate_insn_code(struct sljit_compiler *compiler, bpfjit_hint_t hints,
   1649      1.32   alnsn     const bpf_ctx_t *bc, const struct bpf_insn *insns,
   1650      1.32   alnsn     struct bpfjit_insn_data *insn_dat, size_t insn_count)
   1651       1.1   alnsn {
   1652       1.1   alnsn 	/* a list of jumps to out-of-bound return from a generated function */
   1653       1.1   alnsn 	struct sljit_jump **ret0;
   1654       1.7   alnsn 	size_t ret0_size, ret0_maxsize;
   1655       1.1   alnsn 
   1656      1.19   alnsn 	struct sljit_jump *jump;
   1657      1.19   alnsn 	struct sljit_label *label;
   1658       1.7   alnsn 	const struct bpf_insn *pc;
   1659       1.1   alnsn 	struct bpfjit_jump *bjump, *jtf;
   1660       1.1   alnsn 	struct sljit_jump *to_mchain_jump;
   1661       1.1   alnsn 
   1662      1.19   alnsn 	size_t i;
   1663      1.19   alnsn 	int status;
   1664      1.19   alnsn 	int branching, negate;
   1665      1.19   alnsn 	unsigned int rval, mode, src;
   1666       1.1   alnsn 	uint32_t jt, jf;
   1667       1.1   alnsn 
   1668      1.19   alnsn 	bool unconditional_ret;
   1669      1.19   alnsn 	bool rv;
   1670      1.19   alnsn 
   1671      1.19   alnsn 	const size_t extwords = GET_EXTWORDS(bc);
   1672      1.19   alnsn 	const size_t memwords = GET_MEMWORDS(bc);
   1673      1.13   alnsn 
   1674      1.13   alnsn 	ret0 = NULL;
   1675      1.19   alnsn 	rv = false;
   1676       1.7   alnsn 
   1677       1.1   alnsn 	ret0_size = 0;
   1678       1.7   alnsn 	ret0_maxsize = 64;
   1679       1.7   alnsn 	ret0 = BJ_ALLOC(ret0_maxsize * sizeof(ret0[0]));
   1680       1.7   alnsn 	if (ret0 == NULL)
   1681       1.1   alnsn 		goto fail;
   1682       1.1   alnsn 
   1683      1.24   alnsn 	/* reset sjump members of jdata */
   1684      1.24   alnsn 	for (i = 0; i < insn_count; i++) {
   1685      1.24   alnsn 		if (insn_dat[i].unreachable ||
   1686      1.24   alnsn 		    BPF_CLASS(insns[i].code) != BPF_JMP) {
   1687      1.24   alnsn 			continue;
   1688      1.24   alnsn 		}
   1689      1.24   alnsn 
   1690      1.24   alnsn 		jtf = insn_dat[i].u.jdata.jtf;
   1691      1.24   alnsn 		jtf[0].sjump = jtf[1].sjump = NULL;
   1692      1.24   alnsn 	}
   1693      1.24   alnsn 
   1694      1.24   alnsn 	/* main loop */
   1695       1.1   alnsn 	for (i = 0; i < insn_count; i++) {
   1696       1.7   alnsn 		if (insn_dat[i].unreachable)
   1697       1.1   alnsn 			continue;
   1698       1.1   alnsn 
   1699       1.1   alnsn 		/*
   1700       1.1   alnsn 		 * Resolve jumps to the current insn.
   1701       1.1   alnsn 		 */
   1702       1.1   alnsn 		label = NULL;
   1703       1.7   alnsn 		SLIST_FOREACH(bjump, &insn_dat[i].bjumps, entries) {
   1704       1.7   alnsn 			if (bjump->sjump != NULL) {
   1705       1.1   alnsn 				if (label == NULL)
   1706       1.1   alnsn 					label = sljit_emit_label(compiler);
   1707       1.1   alnsn 				if (label == NULL)
   1708       1.1   alnsn 					goto fail;
   1709       1.7   alnsn 				sljit_set_label(bjump->sjump, label);
   1710       1.1   alnsn 			}
   1711       1.1   alnsn 		}
   1712       1.1   alnsn 
   1713       1.9   alnsn 		to_mchain_jump = NULL;
   1714       1.9   alnsn 		unconditional_ret = false;
   1715       1.9   alnsn 
   1716       1.9   alnsn 		if (read_pkt_insn(&insns[i], NULL)) {
   1717       1.9   alnsn 			if (insn_dat[i].u.rdata.check_length > UINT32_MAX) {
   1718       1.9   alnsn 				/* Jump to "return 0" unconditionally. */
   1719       1.9   alnsn 				unconditional_ret = true;
   1720       1.9   alnsn 				jump = sljit_emit_jump(compiler, SLJIT_JUMP);
   1721       1.9   alnsn 				if (jump == NULL)
   1722       1.9   alnsn 					goto fail;
   1723       1.9   alnsn 				if (!append_jump(jump, &ret0,
   1724       1.9   alnsn 				    &ret0_size, &ret0_maxsize))
   1725       1.9   alnsn 					goto fail;
   1726       1.9   alnsn 			} else if (insn_dat[i].u.rdata.check_length > 0) {
   1727       1.9   alnsn 				/* if (buflen < check_length) return 0; */
   1728       1.9   alnsn 				jump = sljit_emit_cmp(compiler,
   1729       1.9   alnsn 				    SLJIT_C_LESS,
   1730       1.9   alnsn 				    BJ_BUFLEN, 0,
   1731       1.9   alnsn 				    SLJIT_IMM,
   1732       1.9   alnsn 				    insn_dat[i].u.rdata.check_length);
   1733       1.9   alnsn 				if (jump == NULL)
   1734       1.9   alnsn 					goto fail;
   1735       1.1   alnsn #ifdef _KERNEL
   1736       1.9   alnsn 				to_mchain_jump = jump;
   1737       1.1   alnsn #else
   1738       1.9   alnsn 				if (!append_jump(jump, &ret0,
   1739       1.9   alnsn 				    &ret0_size, &ret0_maxsize))
   1740       1.9   alnsn 					goto fail;
   1741       1.1   alnsn #endif
   1742       1.9   alnsn 			}
   1743       1.1   alnsn 		}
   1744       1.1   alnsn 
   1745       1.1   alnsn 		pc = &insns[i];
   1746       1.1   alnsn 		switch (BPF_CLASS(pc->code)) {
   1747       1.1   alnsn 
   1748       1.1   alnsn 		default:
   1749       1.1   alnsn 			goto fail;
   1750       1.1   alnsn 
   1751       1.1   alnsn 		case BPF_LD:
   1752       1.1   alnsn 			/* BPF_LD+BPF_IMM          A <- k */
   1753       1.1   alnsn 			if (pc->code == (BPF_LD|BPF_IMM)) {
   1754       1.1   alnsn 				status = sljit_emit_op1(compiler,
   1755       1.1   alnsn 				    SLJIT_MOV,
   1756       1.7   alnsn 				    BJ_AREG, 0,
   1757       1.1   alnsn 				    SLJIT_IMM, (uint32_t)pc->k);
   1758       1.1   alnsn 				if (status != SLJIT_SUCCESS)
   1759       1.1   alnsn 					goto fail;
   1760       1.1   alnsn 
   1761       1.1   alnsn 				continue;
   1762       1.1   alnsn 			}
   1763       1.1   alnsn 
   1764       1.1   alnsn 			/* BPF_LD+BPF_MEM          A <- M[k] */
   1765       1.1   alnsn 			if (pc->code == (BPF_LD|BPF_MEM)) {
   1766      1.13   alnsn 				if ((uint32_t)pc->k >= memwords)
   1767       1.1   alnsn 					goto fail;
   1768      1.13   alnsn 				status = emit_memload(compiler,
   1769      1.13   alnsn 				    BJ_AREG, pc->k, extwords);
   1770       1.1   alnsn 				if (status != SLJIT_SUCCESS)
   1771       1.1   alnsn 					goto fail;
   1772       1.1   alnsn 
   1773       1.1   alnsn 				continue;
   1774       1.1   alnsn 			}
   1775       1.1   alnsn 
   1776       1.1   alnsn 			/* BPF_LD+BPF_W+BPF_LEN    A <- len */
   1777       1.1   alnsn 			if (pc->code == (BPF_LD|BPF_W|BPF_LEN)) {
   1778       1.1   alnsn 				status = sljit_emit_op1(compiler,
   1779      1.21   alnsn 				    SLJIT_MOV, /* size_t source */
   1780       1.7   alnsn 				    BJ_AREG, 0,
   1781      1.13   alnsn 				    SLJIT_MEM1(BJ_ARGS),
   1782      1.13   alnsn 				    offsetof(struct bpf_args, wirelen));
   1783       1.1   alnsn 				if (status != SLJIT_SUCCESS)
   1784       1.1   alnsn 					goto fail;
   1785       1.1   alnsn 
   1786       1.1   alnsn 				continue;
   1787       1.1   alnsn 			}
   1788       1.1   alnsn 
   1789       1.1   alnsn 			mode = BPF_MODE(pc->code);
   1790       1.1   alnsn 			if (mode != BPF_ABS && mode != BPF_IND)
   1791       1.1   alnsn 				goto fail;
   1792       1.1   alnsn 
   1793       1.9   alnsn 			if (unconditional_ret)
   1794       1.9   alnsn 				continue;
   1795       1.9   alnsn 
   1796      1.32   alnsn 			status = emit_pkt_read(compiler, hints, pc,
   1797       1.7   alnsn 			    to_mchain_jump, &ret0, &ret0_size, &ret0_maxsize);
   1798       1.1   alnsn 			if (status != SLJIT_SUCCESS)
   1799       1.1   alnsn 				goto fail;
   1800       1.1   alnsn 
   1801       1.1   alnsn 			continue;
   1802       1.1   alnsn 
   1803       1.1   alnsn 		case BPF_LDX:
   1804       1.1   alnsn 			mode = BPF_MODE(pc->code);
   1805       1.1   alnsn 
   1806       1.1   alnsn 			/* BPF_LDX+BPF_W+BPF_IMM    X <- k */
   1807       1.1   alnsn 			if (mode == BPF_IMM) {
   1808       1.1   alnsn 				if (BPF_SIZE(pc->code) != BPF_W)
   1809       1.1   alnsn 					goto fail;
   1810       1.1   alnsn 				status = sljit_emit_op1(compiler,
   1811       1.1   alnsn 				    SLJIT_MOV,
   1812       1.7   alnsn 				    BJ_XREG, 0,
   1813       1.1   alnsn 				    SLJIT_IMM, (uint32_t)pc->k);
   1814       1.1   alnsn 				if (status != SLJIT_SUCCESS)
   1815       1.1   alnsn 					goto fail;
   1816       1.1   alnsn 
   1817       1.1   alnsn 				continue;
   1818       1.1   alnsn 			}
   1819       1.1   alnsn 
   1820       1.1   alnsn 			/* BPF_LDX+BPF_W+BPF_LEN    X <- len */
   1821       1.1   alnsn 			if (mode == BPF_LEN) {
   1822       1.1   alnsn 				if (BPF_SIZE(pc->code) != BPF_W)
   1823       1.1   alnsn 					goto fail;
   1824       1.1   alnsn 				status = sljit_emit_op1(compiler,
   1825      1.21   alnsn 				    SLJIT_MOV, /* size_t source */
   1826       1.7   alnsn 				    BJ_XREG, 0,
   1827      1.13   alnsn 				    SLJIT_MEM1(BJ_ARGS),
   1828      1.13   alnsn 				    offsetof(struct bpf_args, wirelen));
   1829       1.1   alnsn 				if (status != SLJIT_SUCCESS)
   1830       1.1   alnsn 					goto fail;
   1831       1.1   alnsn 
   1832       1.1   alnsn 				continue;
   1833       1.1   alnsn 			}
   1834       1.1   alnsn 
   1835       1.1   alnsn 			/* BPF_LDX+BPF_W+BPF_MEM    X <- M[k] */
   1836       1.1   alnsn 			if (mode == BPF_MEM) {
   1837       1.1   alnsn 				if (BPF_SIZE(pc->code) != BPF_W)
   1838       1.1   alnsn 					goto fail;
   1839      1.13   alnsn 				if ((uint32_t)pc->k >= memwords)
   1840       1.1   alnsn 					goto fail;
   1841      1.13   alnsn 				status = emit_memload(compiler,
   1842      1.13   alnsn 				    BJ_XREG, pc->k, extwords);
   1843       1.1   alnsn 				if (status != SLJIT_SUCCESS)
   1844       1.1   alnsn 					goto fail;
   1845       1.1   alnsn 
   1846       1.1   alnsn 				continue;
   1847       1.1   alnsn 			}
   1848       1.1   alnsn 
   1849       1.1   alnsn 			/* BPF_LDX+BPF_B+BPF_MSH    X <- 4*(P[k:1]&0xf) */
   1850       1.1   alnsn 			if (mode != BPF_MSH || BPF_SIZE(pc->code) != BPF_B)
   1851       1.1   alnsn 				goto fail;
   1852       1.1   alnsn 
   1853       1.9   alnsn 			if (unconditional_ret)
   1854       1.9   alnsn 				continue;
   1855       1.9   alnsn 
   1856      1.32   alnsn 			status = emit_msh(compiler, hints, pc,
   1857       1.7   alnsn 			    to_mchain_jump, &ret0, &ret0_size, &ret0_maxsize);
   1858       1.1   alnsn 			if (status != SLJIT_SUCCESS)
   1859       1.1   alnsn 				goto fail;
   1860       1.1   alnsn 
   1861       1.1   alnsn 			continue;
   1862       1.1   alnsn 
   1863       1.1   alnsn 		case BPF_ST:
   1864       1.8   alnsn 			if (pc->code != BPF_ST ||
   1865      1.13   alnsn 			    (uint32_t)pc->k >= memwords) {
   1866       1.1   alnsn 				goto fail;
   1867       1.8   alnsn 			}
   1868       1.1   alnsn 
   1869      1.13   alnsn 			status = emit_memstore(compiler,
   1870      1.13   alnsn 			    BJ_AREG, pc->k, extwords);
   1871       1.1   alnsn 			if (status != SLJIT_SUCCESS)
   1872       1.1   alnsn 				goto fail;
   1873       1.1   alnsn 
   1874       1.1   alnsn 			continue;
   1875       1.1   alnsn 
   1876       1.1   alnsn 		case BPF_STX:
   1877       1.8   alnsn 			if (pc->code != BPF_STX ||
   1878      1.13   alnsn 			    (uint32_t)pc->k >= memwords) {
   1879       1.1   alnsn 				goto fail;
   1880       1.8   alnsn 			}
   1881       1.1   alnsn 
   1882      1.13   alnsn 			status = emit_memstore(compiler,
   1883      1.13   alnsn 			    BJ_XREG, pc->k, extwords);
   1884       1.1   alnsn 			if (status != SLJIT_SUCCESS)
   1885       1.1   alnsn 				goto fail;
   1886       1.1   alnsn 
   1887       1.1   alnsn 			continue;
   1888       1.1   alnsn 
   1889       1.1   alnsn 		case BPF_ALU:
   1890       1.1   alnsn 			if (pc->code == (BPF_ALU|BPF_NEG)) {
   1891       1.1   alnsn 				status = sljit_emit_op1(compiler,
   1892       1.1   alnsn 				    SLJIT_NEG,
   1893       1.7   alnsn 				    BJ_AREG, 0,
   1894       1.7   alnsn 				    BJ_AREG, 0);
   1895       1.1   alnsn 				if (status != SLJIT_SUCCESS)
   1896       1.1   alnsn 					goto fail;
   1897       1.1   alnsn 
   1898       1.1   alnsn 				continue;
   1899       1.1   alnsn 			}
   1900       1.1   alnsn 
   1901       1.1   alnsn 			if (BPF_OP(pc->code) != BPF_DIV) {
   1902  1.32.2.1  martin 				const int op2 = bpf_alu_to_sljit_op(pc);
   1903  1.32.2.1  martin 
   1904  1.32.2.1  martin 				if (op2 == SLJIT_UNUSED)
   1905  1.32.2.1  martin 					goto fail;
   1906       1.1   alnsn 				status = sljit_emit_op2(compiler,
   1907  1.32.2.1  martin 				    op2, BJ_AREG, 0, BJ_AREG, 0,
   1908       1.1   alnsn 				    kx_to_reg(pc), kx_to_reg_arg(pc));
   1909       1.1   alnsn 				if (status != SLJIT_SUCCESS)
   1910       1.1   alnsn 					goto fail;
   1911       1.1   alnsn 
   1912       1.1   alnsn 				continue;
   1913       1.1   alnsn 			}
   1914       1.1   alnsn 
   1915       1.1   alnsn 			/* BPF_DIV */
   1916       1.1   alnsn 
   1917       1.1   alnsn 			src = BPF_SRC(pc->code);
   1918       1.1   alnsn 			if (src != BPF_X && src != BPF_K)
   1919       1.1   alnsn 				goto fail;
   1920       1.1   alnsn 
   1921       1.1   alnsn 			/* division by zero? */
   1922       1.1   alnsn 			if (src == BPF_X) {
   1923       1.1   alnsn 				jump = sljit_emit_cmp(compiler,
   1924       1.1   alnsn 				    SLJIT_C_EQUAL|SLJIT_INT_OP,
   1925       1.8   alnsn 				    BJ_XREG, 0,
   1926       1.1   alnsn 				    SLJIT_IMM, 0);
   1927       1.1   alnsn 				if (jump == NULL)
   1928       1.1   alnsn 					goto fail;
   1929       1.7   alnsn 				if (!append_jump(jump, &ret0,
   1930       1.7   alnsn 				    &ret0_size, &ret0_maxsize))
   1931       1.7   alnsn 					goto fail;
   1932       1.1   alnsn 			} else if (pc->k == 0) {
   1933       1.1   alnsn 				jump = sljit_emit_jump(compiler, SLJIT_JUMP);
   1934       1.1   alnsn 				if (jump == NULL)
   1935       1.1   alnsn 					goto fail;
   1936       1.7   alnsn 				if (!append_jump(jump, &ret0,
   1937       1.7   alnsn 				    &ret0_size, &ret0_maxsize))
   1938       1.7   alnsn 					goto fail;
   1939       1.1   alnsn 			}
   1940       1.1   alnsn 
   1941       1.1   alnsn 			if (src == BPF_X) {
   1942       1.7   alnsn 				status = emit_division(compiler, BJ_XREG, 0);
   1943       1.1   alnsn 				if (status != SLJIT_SUCCESS)
   1944       1.1   alnsn 					goto fail;
   1945       1.1   alnsn 			} else if (pc->k != 0) {
   1946       1.1   alnsn 				if (pc->k & (pc->k - 1)) {
   1947       1.1   alnsn 				    status = emit_division(compiler,
   1948       1.1   alnsn 				        SLJIT_IMM, (uint32_t)pc->k);
   1949       1.1   alnsn 				} else {
   1950       1.7   alnsn 				    status = emit_pow2_division(compiler,
   1951       1.1   alnsn 				        (uint32_t)pc->k);
   1952       1.1   alnsn 				}
   1953       1.1   alnsn 				if (status != SLJIT_SUCCESS)
   1954       1.1   alnsn 					goto fail;
   1955       1.1   alnsn 			}
   1956       1.1   alnsn 
   1957       1.1   alnsn 			continue;
   1958       1.1   alnsn 
   1959       1.1   alnsn 		case BPF_JMP:
   1960       1.7   alnsn 			if (BPF_OP(pc->code) == BPF_JA) {
   1961       1.1   alnsn 				jt = jf = pc->k;
   1962       1.1   alnsn 			} else {
   1963       1.1   alnsn 				jt = pc->jt;
   1964       1.1   alnsn 				jf = pc->jf;
   1965       1.1   alnsn 			}
   1966       1.1   alnsn 
   1967       1.1   alnsn 			negate = (jt == 0) ? 1 : 0;
   1968       1.1   alnsn 			branching = (jt == jf) ? 0 : 1;
   1969       1.7   alnsn 			jtf = insn_dat[i].u.jdata.jtf;
   1970       1.1   alnsn 
   1971       1.1   alnsn 			if (branching) {
   1972       1.1   alnsn 				if (BPF_OP(pc->code) != BPF_JSET) {
   1973       1.1   alnsn 					jump = sljit_emit_cmp(compiler,
   1974       1.1   alnsn 					    bpf_jmp_to_sljit_cond(pc, negate),
   1975       1.7   alnsn 					    BJ_AREG, 0,
   1976       1.1   alnsn 					    kx_to_reg(pc), kx_to_reg_arg(pc));
   1977       1.1   alnsn 				} else {
   1978       1.1   alnsn 					status = sljit_emit_op2(compiler,
   1979       1.1   alnsn 					    SLJIT_AND,
   1980       1.7   alnsn 					    BJ_TMP1REG, 0,
   1981       1.7   alnsn 					    BJ_AREG, 0,
   1982       1.1   alnsn 					    kx_to_reg(pc), kx_to_reg_arg(pc));
   1983       1.1   alnsn 					if (status != SLJIT_SUCCESS)
   1984       1.1   alnsn 						goto fail;
   1985       1.1   alnsn 
   1986       1.1   alnsn 					jump = sljit_emit_cmp(compiler,
   1987       1.1   alnsn 					    bpf_jmp_to_sljit_cond(pc, negate),
   1988       1.7   alnsn 					    BJ_TMP1REG, 0,
   1989       1.1   alnsn 					    SLJIT_IMM, 0);
   1990       1.1   alnsn 				}
   1991       1.1   alnsn 
   1992       1.1   alnsn 				if (jump == NULL)
   1993       1.1   alnsn 					goto fail;
   1994       1.1   alnsn 
   1995       1.7   alnsn 				BJ_ASSERT(jtf[negate].sjump == NULL);
   1996       1.7   alnsn 				jtf[negate].sjump = jump;
   1997       1.1   alnsn 			}
   1998       1.1   alnsn 
   1999       1.1   alnsn 			if (!branching || (jt != 0 && jf != 0)) {
   2000       1.1   alnsn 				jump = sljit_emit_jump(compiler, SLJIT_JUMP);
   2001       1.1   alnsn 				if (jump == NULL)
   2002       1.1   alnsn 					goto fail;
   2003       1.1   alnsn 
   2004       1.7   alnsn 				BJ_ASSERT(jtf[branching].sjump == NULL);
   2005       1.7   alnsn 				jtf[branching].sjump = jump;
   2006       1.1   alnsn 			}
   2007       1.1   alnsn 
   2008       1.1   alnsn 			continue;
   2009       1.1   alnsn 
   2010       1.1   alnsn 		case BPF_RET:
   2011       1.1   alnsn 			rval = BPF_RVAL(pc->code);
   2012       1.1   alnsn 			if (rval == BPF_X)
   2013       1.1   alnsn 				goto fail;
   2014       1.1   alnsn 
   2015       1.1   alnsn 			/* BPF_RET+BPF_K    accept k bytes */
   2016       1.1   alnsn 			if (rval == BPF_K) {
   2017       1.7   alnsn 				status = sljit_emit_return(compiler,
   2018       1.7   alnsn 				    SLJIT_MOV_UI,
   2019       1.1   alnsn 				    SLJIT_IMM, (uint32_t)pc->k);
   2020       1.1   alnsn 				if (status != SLJIT_SUCCESS)
   2021       1.1   alnsn 					goto fail;
   2022       1.1   alnsn 			}
   2023       1.1   alnsn 
   2024       1.1   alnsn 			/* BPF_RET+BPF_A    accept A bytes */
   2025       1.1   alnsn 			if (rval == BPF_A) {
   2026       1.7   alnsn 				status = sljit_emit_return(compiler,
   2027       1.7   alnsn 				    SLJIT_MOV_UI,
   2028       1.7   alnsn 				    BJ_AREG, 0);
   2029       1.1   alnsn 				if (status != SLJIT_SUCCESS)
   2030       1.1   alnsn 					goto fail;
   2031       1.1   alnsn 			}
   2032       1.1   alnsn 
   2033       1.1   alnsn 			continue;
   2034       1.1   alnsn 
   2035       1.1   alnsn 		case BPF_MISC:
   2036       1.7   alnsn 			switch (BPF_MISCOP(pc->code)) {
   2037       1.7   alnsn 			case BPF_TAX:
   2038       1.1   alnsn 				status = sljit_emit_op1(compiler,
   2039       1.1   alnsn 				    SLJIT_MOV_UI,
   2040       1.7   alnsn 				    BJ_XREG, 0,
   2041       1.7   alnsn 				    BJ_AREG, 0);
   2042       1.1   alnsn 				if (status != SLJIT_SUCCESS)
   2043       1.1   alnsn 					goto fail;
   2044       1.1   alnsn 
   2045       1.1   alnsn 				continue;
   2046       1.1   alnsn 
   2047       1.7   alnsn 			case BPF_TXA:
   2048       1.1   alnsn 				status = sljit_emit_op1(compiler,
   2049       1.1   alnsn 				    SLJIT_MOV,
   2050       1.7   alnsn 				    BJ_AREG, 0,
   2051       1.7   alnsn 				    BJ_XREG, 0);
   2052       1.1   alnsn 				if (status != SLJIT_SUCCESS)
   2053       1.1   alnsn 					goto fail;
   2054       1.1   alnsn 
   2055       1.1   alnsn 				continue;
   2056      1.13   alnsn 
   2057      1.13   alnsn 			case BPF_COP:
   2058      1.13   alnsn 			case BPF_COPX:
   2059      1.13   alnsn 				if (bc == NULL || bc->copfuncs == NULL)
   2060      1.13   alnsn 					goto fail;
   2061      1.13   alnsn 				if (BPF_MISCOP(pc->code) == BPF_COP &&
   2062      1.13   alnsn 				    (uint32_t)pc->k >= bc->nfuncs) {
   2063      1.13   alnsn 					goto fail;
   2064      1.13   alnsn 				}
   2065      1.13   alnsn 
   2066      1.32   alnsn 				status = emit_cop(compiler, hints, bc, pc,
   2067      1.28   alnsn 				    &ret0, &ret0_size, &ret0_maxsize);
   2068      1.13   alnsn 				if (status != SLJIT_SUCCESS)
   2069      1.13   alnsn 					goto fail;
   2070      1.13   alnsn 
   2071      1.13   alnsn 				continue;
   2072       1.1   alnsn 			}
   2073       1.1   alnsn 
   2074       1.1   alnsn 			goto fail;
   2075       1.1   alnsn 		} /* switch */
   2076       1.1   alnsn 	} /* main loop */
   2077       1.1   alnsn 
   2078       1.7   alnsn 	BJ_ASSERT(ret0_size <= ret0_maxsize);
   2079       1.1   alnsn 
   2080       1.7   alnsn 	if (ret0_size > 0) {
   2081       1.1   alnsn 		label = sljit_emit_label(compiler);
   2082       1.1   alnsn 		if (label == NULL)
   2083       1.1   alnsn 			goto fail;
   2084       1.7   alnsn 		for (i = 0; i < ret0_size; i++)
   2085       1.7   alnsn 			sljit_set_label(ret0[i], label);
   2086       1.1   alnsn 	}
   2087       1.1   alnsn 
   2088      1.23   alnsn 	status = sljit_emit_return(compiler,
   2089      1.23   alnsn 	    SLJIT_MOV_UI,
   2090      1.23   alnsn 	    SLJIT_IMM, 0);
   2091      1.23   alnsn 	if (status != SLJIT_SUCCESS)
   2092      1.23   alnsn 		goto fail;
   2093      1.23   alnsn 
   2094      1.19   alnsn 	rv = true;
   2095      1.19   alnsn 
   2096      1.19   alnsn fail:
   2097      1.19   alnsn 	if (ret0 != NULL)
   2098      1.19   alnsn 		BJ_FREE(ret0, ret0_maxsize * sizeof(ret0[0]));
   2099      1.19   alnsn 
   2100      1.19   alnsn 	return rv;
   2101      1.19   alnsn }
   2102      1.19   alnsn 
   2103      1.19   alnsn bpfjit_func_t
   2104      1.19   alnsn bpfjit_generate_code(const bpf_ctx_t *bc,
   2105      1.19   alnsn     const struct bpf_insn *insns, size_t insn_count)
   2106      1.19   alnsn {
   2107      1.19   alnsn 	void *rv;
   2108      1.19   alnsn 	struct sljit_compiler *compiler;
   2109      1.19   alnsn 
   2110      1.19   alnsn 	size_t i;
   2111      1.19   alnsn 	int status;
   2112      1.19   alnsn 
   2113      1.19   alnsn 	/* optimization related */
   2114      1.19   alnsn 	bpf_memword_init_t initmask;
   2115      1.20   alnsn 	bpfjit_hint_t hints;
   2116      1.19   alnsn 
   2117      1.19   alnsn 	/* memory store location for initial zero initialization */
   2118      1.19   alnsn 	sljit_si mem_reg;
   2119      1.19   alnsn 	sljit_sw mem_off;
   2120      1.19   alnsn 
   2121      1.19   alnsn 	struct bpfjit_insn_data *insn_dat;
   2122      1.19   alnsn 
   2123      1.19   alnsn 	const size_t extwords = GET_EXTWORDS(bc);
   2124      1.19   alnsn 	const size_t memwords = GET_MEMWORDS(bc);
   2125      1.19   alnsn 	const bpf_memword_init_t preinited = extwords ? bc->preinited : 0;
   2126      1.19   alnsn 
   2127      1.19   alnsn 	rv = NULL;
   2128      1.19   alnsn 	compiler = NULL;
   2129      1.19   alnsn 	insn_dat = NULL;
   2130      1.19   alnsn 
   2131      1.19   alnsn 	if (memwords > MAX_MEMWORDS)
   2132      1.19   alnsn 		goto fail;
   2133      1.19   alnsn 
   2134      1.19   alnsn 	if (insn_count == 0 || insn_count > SIZE_MAX / sizeof(insn_dat[0]))
   2135      1.19   alnsn 		goto fail;
   2136      1.19   alnsn 
   2137      1.19   alnsn 	insn_dat = BJ_ALLOC(insn_count * sizeof(insn_dat[0]));
   2138      1.19   alnsn 	if (insn_dat == NULL)
   2139      1.19   alnsn 		goto fail;
   2140      1.19   alnsn 
   2141      1.20   alnsn 	if (!optimize(bc, insns, insn_dat, insn_count, &initmask, &hints))
   2142      1.19   alnsn 		goto fail;
   2143      1.19   alnsn 
   2144      1.19   alnsn 	compiler = sljit_create_compiler();
   2145      1.19   alnsn 	if (compiler == NULL)
   2146      1.19   alnsn 		goto fail;
   2147      1.19   alnsn 
   2148      1.19   alnsn #if !defined(_KERNEL) && defined(SLJIT_VERBOSE) && SLJIT_VERBOSE
   2149      1.19   alnsn 	sljit_compiler_verbose(compiler, stderr);
   2150      1.19   alnsn #endif
   2151      1.19   alnsn 
   2152      1.30   alnsn 	status = sljit_emit_enter(compiler,
   2153      1.30   alnsn 	    2, nscratches(hints), nsaveds(hints), sizeof(struct bpfjit_stack));
   2154      1.19   alnsn 	if (status != SLJIT_SUCCESS)
   2155      1.19   alnsn 		goto fail;
   2156      1.19   alnsn 
   2157      1.20   alnsn 	if (hints & BJ_HINT_COP) {
   2158      1.19   alnsn 		/* save ctx argument */
   2159      1.19   alnsn 		status = sljit_emit_op1(compiler,
   2160      1.19   alnsn 		    SLJIT_MOV_P,
   2161      1.19   alnsn 		    SLJIT_MEM1(SLJIT_LOCALS_REG),
   2162      1.19   alnsn 		    offsetof(struct bpfjit_stack, ctx),
   2163      1.19   alnsn 		    BJ_CTX_ARG, 0);
   2164      1.19   alnsn 		if (status != SLJIT_SUCCESS)
   2165      1.19   alnsn 			goto fail;
   2166      1.19   alnsn 	}
   2167      1.19   alnsn 
   2168      1.19   alnsn 	if (extwords == 0) {
   2169      1.19   alnsn 		mem_reg = SLJIT_MEM1(SLJIT_LOCALS_REG);
   2170      1.19   alnsn 		mem_off = offsetof(struct bpfjit_stack, mem);
   2171      1.19   alnsn 	} else {
   2172      1.19   alnsn 		/* copy "mem" argument from bpf_args to bpfjit_stack */
   2173      1.19   alnsn 		status = sljit_emit_op1(compiler,
   2174      1.19   alnsn 		    SLJIT_MOV_P,
   2175      1.19   alnsn 		    BJ_TMP1REG, 0,
   2176      1.19   alnsn 		    SLJIT_MEM1(BJ_ARGS), offsetof(struct bpf_args, mem));
   2177      1.19   alnsn 		if (status != SLJIT_SUCCESS)
   2178      1.19   alnsn 			goto fail;
   2179      1.19   alnsn 
   2180      1.19   alnsn 		status = sljit_emit_op1(compiler,
   2181      1.19   alnsn 		    SLJIT_MOV_P,
   2182      1.19   alnsn 		    SLJIT_MEM1(SLJIT_LOCALS_REG),
   2183      1.19   alnsn 		    offsetof(struct bpfjit_stack, extmem),
   2184      1.19   alnsn 		    BJ_TMP1REG, 0);
   2185      1.19   alnsn 		if (status != SLJIT_SUCCESS)
   2186      1.19   alnsn 			goto fail;
   2187      1.19   alnsn 
   2188      1.19   alnsn 		mem_reg = SLJIT_MEM1(BJ_TMP1REG);
   2189      1.19   alnsn 		mem_off = 0;
   2190      1.19   alnsn 	}
   2191      1.19   alnsn 
   2192      1.19   alnsn 	/*
   2193      1.19   alnsn 	 * Exclude pre-initialised external memory words but keep
   2194      1.19   alnsn 	 * initialization statuses of A and X registers in case
   2195      1.19   alnsn 	 * bc->preinited wrongly sets those two bits.
   2196      1.19   alnsn 	 */
   2197      1.19   alnsn 	initmask &= ~preinited | BJ_INIT_ABIT | BJ_INIT_XBIT;
   2198      1.19   alnsn 
   2199      1.19   alnsn #if defined(_KERNEL)
   2200      1.19   alnsn 	/* bpf_filter() checks initialization of memwords. */
   2201      1.19   alnsn 	BJ_ASSERT((initmask & (BJ_INIT_MBIT(memwords) - 1)) == 0);
   2202      1.19   alnsn #endif
   2203      1.19   alnsn 	for (i = 0; i < memwords; i++) {
   2204      1.19   alnsn 		if (initmask & BJ_INIT_MBIT(i)) {
   2205      1.19   alnsn 			/* M[i] = 0; */
   2206      1.19   alnsn 			status = sljit_emit_op1(compiler,
   2207      1.19   alnsn 			    SLJIT_MOV_UI,
   2208      1.19   alnsn 			    mem_reg, mem_off + i * sizeof(uint32_t),
   2209      1.19   alnsn 			    SLJIT_IMM, 0);
   2210      1.19   alnsn 			if (status != SLJIT_SUCCESS)
   2211      1.19   alnsn 				goto fail;
   2212      1.19   alnsn 		}
   2213      1.19   alnsn 	}
   2214      1.19   alnsn 
   2215      1.19   alnsn 	if (initmask & BJ_INIT_ABIT) {
   2216      1.19   alnsn 		/* A = 0; */
   2217      1.19   alnsn 		status = sljit_emit_op1(compiler,
   2218      1.19   alnsn 		    SLJIT_MOV,
   2219      1.19   alnsn 		    BJ_AREG, 0,
   2220      1.19   alnsn 		    SLJIT_IMM, 0);
   2221      1.19   alnsn 		if (status != SLJIT_SUCCESS)
   2222      1.19   alnsn 			goto fail;
   2223      1.19   alnsn 	}
   2224      1.19   alnsn 
   2225      1.19   alnsn 	if (initmask & BJ_INIT_XBIT) {
   2226      1.19   alnsn 		/* X = 0; */
   2227      1.19   alnsn 		status = sljit_emit_op1(compiler,
   2228      1.19   alnsn 		    SLJIT_MOV,
   2229      1.19   alnsn 		    BJ_XREG, 0,
   2230      1.19   alnsn 		    SLJIT_IMM, 0);
   2231      1.19   alnsn 		if (status != SLJIT_SUCCESS)
   2232      1.19   alnsn 			goto fail;
   2233      1.19   alnsn 	}
   2234      1.19   alnsn 
   2235      1.19   alnsn 	status = load_buf_buflen(compiler);
   2236      1.19   alnsn 	if (status != SLJIT_SUCCESS)
   2237      1.19   alnsn 		goto fail;
   2238      1.19   alnsn 
   2239      1.32   alnsn 	if (!generate_insn_code(compiler, hints,
   2240      1.32   alnsn 	    bc, insns, insn_dat, insn_count)) {
   2241      1.19   alnsn 		goto fail;
   2242      1.32   alnsn 	}
   2243      1.19   alnsn 
   2244       1.1   alnsn 	rv = sljit_generate_code(compiler);
   2245       1.1   alnsn 
   2246       1.1   alnsn fail:
   2247       1.1   alnsn 	if (compiler != NULL)
   2248       1.1   alnsn 		sljit_free_compiler(compiler);
   2249       1.1   alnsn 
   2250       1.1   alnsn 	if (insn_dat != NULL)
   2251       1.7   alnsn 		BJ_FREE(insn_dat, insn_count * sizeof(insn_dat[0]));
   2252       1.1   alnsn 
   2253       1.4   rmind 	return (bpfjit_func_t)rv;
   2254       1.1   alnsn }
   2255       1.1   alnsn 
   2256       1.1   alnsn void
   2257       1.4   rmind bpfjit_free_code(bpfjit_func_t code)
   2258       1.1   alnsn {
   2259       1.7   alnsn 
   2260       1.1   alnsn 	sljit_free_code((void *)code);
   2261       1.1   alnsn }
   2262