bpfjit.c revision 1.35 1 1.35 alnsn /* $NetBSD: bpfjit.c,v 1.35 2014/11/20 19:18:52 alnsn Exp $ */
2 1.3 rmind
3 1.1 alnsn /*-
4 1.7 alnsn * Copyright (c) 2011-2014 Alexander Nasonov.
5 1.1 alnsn * All rights reserved.
6 1.1 alnsn *
7 1.1 alnsn * Redistribution and use in source and binary forms, with or without
8 1.1 alnsn * modification, are permitted provided that the following conditions
9 1.1 alnsn * are met:
10 1.1 alnsn *
11 1.1 alnsn * 1. Redistributions of source code must retain the above copyright
12 1.1 alnsn * notice, this list of conditions and the following disclaimer.
13 1.1 alnsn * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 alnsn * notice, this list of conditions and the following disclaimer in
15 1.1 alnsn * the documentation and/or other materials provided with the
16 1.1 alnsn * distribution.
17 1.1 alnsn *
18 1.1 alnsn * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 1.1 alnsn * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 1.1 alnsn * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
21 1.1 alnsn * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
22 1.1 alnsn * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
23 1.1 alnsn * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
24 1.1 alnsn * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
25 1.1 alnsn * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
26 1.1 alnsn * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
27 1.1 alnsn * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
28 1.1 alnsn * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 1.1 alnsn * SUCH DAMAGE.
30 1.1 alnsn */
31 1.1 alnsn
32 1.2 alnsn #include <sys/cdefs.h>
33 1.2 alnsn #ifdef _KERNEL
34 1.35 alnsn __KERNEL_RCSID(0, "$NetBSD: bpfjit.c,v 1.35 2014/11/20 19:18:52 alnsn Exp $");
35 1.2 alnsn #else
36 1.35 alnsn __RCSID("$NetBSD: bpfjit.c,v 1.35 2014/11/20 19:18:52 alnsn Exp $");
37 1.2 alnsn #endif
38 1.2 alnsn
39 1.3 rmind #include <sys/types.h>
40 1.3 rmind #include <sys/queue.h>
41 1.1 alnsn
42 1.1 alnsn #ifndef _KERNEL
43 1.7 alnsn #include <assert.h>
44 1.7 alnsn #define BJ_ASSERT(c) assert(c)
45 1.7 alnsn #else
46 1.7 alnsn #define BJ_ASSERT(c) KASSERT(c)
47 1.7 alnsn #endif
48 1.7 alnsn
49 1.7 alnsn #ifndef _KERNEL
50 1.3 rmind #include <stdlib.h>
51 1.7 alnsn #define BJ_ALLOC(sz) malloc(sz)
52 1.7 alnsn #define BJ_FREE(p, sz) free(p)
53 1.1 alnsn #else
54 1.3 rmind #include <sys/kmem.h>
55 1.7 alnsn #define BJ_ALLOC(sz) kmem_alloc(sz, KM_SLEEP)
56 1.7 alnsn #define BJ_FREE(p, sz) kmem_free(p, sz)
57 1.1 alnsn #endif
58 1.1 alnsn
59 1.1 alnsn #ifndef _KERNEL
60 1.1 alnsn #include <limits.h>
61 1.1 alnsn #include <stdbool.h>
62 1.1 alnsn #include <stddef.h>
63 1.1 alnsn #include <stdint.h>
64 1.1 alnsn #else
65 1.1 alnsn #include <sys/atomic.h>
66 1.1 alnsn #include <sys/module.h>
67 1.1 alnsn #endif
68 1.1 alnsn
69 1.5 rmind #define __BPF_PRIVATE
70 1.5 rmind #include <net/bpf.h>
71 1.3 rmind #include <net/bpfjit.h>
72 1.1 alnsn #include <sljitLir.h>
73 1.1 alnsn
74 1.7 alnsn #if !defined(_KERNEL) && defined(SLJIT_VERBOSE) && SLJIT_VERBOSE
75 1.7 alnsn #include <stdio.h> /* for stderr */
76 1.7 alnsn #endif
77 1.7 alnsn
78 1.7 alnsn /*
79 1.33 christos * XXX: Until we support SLJIT_UMOD properly
80 1.33 christos */
81 1.33 christos #undef BPFJIT_USE_UDIV
82 1.33 christos
83 1.33 christos /*
84 1.13 alnsn * Arguments of generated bpfjit_func_t.
85 1.13 alnsn * The first argument is reassigned upon entry
86 1.13 alnsn * to a more frequently used buf argument.
87 1.13 alnsn */
88 1.13 alnsn #define BJ_CTX_ARG SLJIT_SAVED_REG1
89 1.13 alnsn #define BJ_ARGS SLJIT_SAVED_REG2
90 1.13 alnsn
91 1.13 alnsn /*
92 1.7 alnsn * Permanent register assignments.
93 1.7 alnsn */
94 1.7 alnsn #define BJ_BUF SLJIT_SAVED_REG1
95 1.13 alnsn //#define BJ_ARGS SLJIT_SAVED_REG2
96 1.7 alnsn #define BJ_BUFLEN SLJIT_SAVED_REG3
97 1.12 alnsn #define BJ_AREG SLJIT_SCRATCH_REG1
98 1.12 alnsn #define BJ_TMP1REG SLJIT_SCRATCH_REG2
99 1.12 alnsn #define BJ_TMP2REG SLJIT_SCRATCH_REG3
100 1.32 alnsn #define BJ_XREG SLJIT_TEMPORARY_EREG1
101 1.32 alnsn #define BJ_TMP3REG SLJIT_TEMPORARY_EREG2
102 1.7 alnsn
103 1.13 alnsn #ifdef _KERNEL
104 1.13 alnsn #define MAX_MEMWORDS BPF_MAX_MEMWORDS
105 1.13 alnsn #else
106 1.13 alnsn #define MAX_MEMWORDS BPF_MEMWORDS
107 1.13 alnsn #endif
108 1.13 alnsn
109 1.13 alnsn #define BJ_INIT_NOBITS ((bpf_memword_init_t)0)
110 1.13 alnsn #define BJ_INIT_MBIT(k) BPF_MEMWORD_INIT(k)
111 1.13 alnsn #define BJ_INIT_ABIT BJ_INIT_MBIT(MAX_MEMWORDS)
112 1.13 alnsn #define BJ_INIT_XBIT BJ_INIT_MBIT(MAX_MEMWORDS + 1)
113 1.1 alnsn
114 1.9 alnsn /*
115 1.19 alnsn * Get a number of memwords and external memwords from a bpf_ctx object.
116 1.19 alnsn */
117 1.19 alnsn #define GET_EXTWORDS(bc) ((bc) ? (bc)->extwords : 0)
118 1.19 alnsn #define GET_MEMWORDS(bc) (GET_EXTWORDS(bc) ? GET_EXTWORDS(bc) : BPF_MEMWORDS)
119 1.19 alnsn
120 1.19 alnsn /*
121 1.20 alnsn * Optimization hints.
122 1.20 alnsn */
123 1.20 alnsn typedef unsigned int bpfjit_hint_t;
124 1.28 alnsn #define BJ_HINT_ABS 0x01 /* packet read at absolute offset */
125 1.28 alnsn #define BJ_HINT_IND 0x02 /* packet read at variable offset */
126 1.29 alnsn #define BJ_HINT_MSH 0x04 /* BPF_MSH instruction */
127 1.29 alnsn #define BJ_HINT_COP 0x08 /* BPF_COP or BPF_COPX instruction */
128 1.29 alnsn #define BJ_HINT_COPX 0x10 /* BPF_COPX instruction */
129 1.29 alnsn #define BJ_HINT_XREG 0x20 /* BJ_XREG is needed */
130 1.29 alnsn #define BJ_HINT_LDX 0x40 /* BPF_LDX instruction */
131 1.29 alnsn #define BJ_HINT_PKT (BJ_HINT_ABS|BJ_HINT_IND|BJ_HINT_MSH)
132 1.20 alnsn
133 1.20 alnsn /*
134 1.9 alnsn * Datatype for Array Bounds Check Elimination (ABC) pass.
135 1.9 alnsn */
136 1.9 alnsn typedef uint64_t bpfjit_abc_length_t;
137 1.9 alnsn #define MAX_ABC_LENGTH (UINT32_MAX + UINT64_C(4)) /* max. width is 4 */
138 1.8 alnsn
139 1.7 alnsn struct bpfjit_stack
140 1.7 alnsn {
141 1.13 alnsn bpf_ctx_t *ctx;
142 1.13 alnsn uint32_t *extmem; /* pointer to external memory store */
143 1.32 alnsn uint32_t reg; /* saved A or X register */
144 1.7 alnsn #ifdef _KERNEL
145 1.21 alnsn int err; /* 3rd argument for m_xword/m_xhalf/m_xbyte function call */
146 1.7 alnsn #endif
147 1.13 alnsn uint32_t mem[BPF_MEMWORDS]; /* internal memory store */
148 1.7 alnsn };
149 1.7 alnsn
150 1.7 alnsn /*
151 1.7 alnsn * Data for BPF_JMP instruction.
152 1.7 alnsn * Forward declaration for struct bpfjit_jump.
153 1.1 alnsn */
154 1.7 alnsn struct bpfjit_jump_data;
155 1.1 alnsn
156 1.1 alnsn /*
157 1.7 alnsn * Node of bjumps list.
158 1.1 alnsn */
159 1.3 rmind struct bpfjit_jump {
160 1.7 alnsn struct sljit_jump *sjump;
161 1.7 alnsn SLIST_ENTRY(bpfjit_jump) entries;
162 1.7 alnsn struct bpfjit_jump_data *jdata;
163 1.1 alnsn };
164 1.1 alnsn
165 1.1 alnsn /*
166 1.1 alnsn * Data for BPF_JMP instruction.
167 1.1 alnsn */
168 1.3 rmind struct bpfjit_jump_data {
169 1.1 alnsn /*
170 1.7 alnsn * These entries make up bjumps list:
171 1.7 alnsn * jtf[0] - when coming from jt path,
172 1.7 alnsn * jtf[1] - when coming from jf path.
173 1.1 alnsn */
174 1.7 alnsn struct bpfjit_jump jtf[2];
175 1.7 alnsn /*
176 1.7 alnsn * Length calculated by Array Bounds Check Elimination (ABC) pass.
177 1.7 alnsn */
178 1.8 alnsn bpfjit_abc_length_t abc_length;
179 1.7 alnsn /*
180 1.7 alnsn * Length checked by the last out-of-bounds check.
181 1.7 alnsn */
182 1.8 alnsn bpfjit_abc_length_t checked_length;
183 1.1 alnsn };
184 1.1 alnsn
185 1.1 alnsn /*
186 1.1 alnsn * Data for "read from packet" instructions.
187 1.1 alnsn * See also read_pkt_insn() function below.
188 1.1 alnsn */
189 1.3 rmind struct bpfjit_read_pkt_data {
190 1.1 alnsn /*
191 1.7 alnsn * Length calculated by Array Bounds Check Elimination (ABC) pass.
192 1.7 alnsn */
193 1.8 alnsn bpfjit_abc_length_t abc_length;
194 1.7 alnsn /*
195 1.7 alnsn * If positive, emit "if (buflen < check_length) return 0"
196 1.7 alnsn * out-of-bounds check.
197 1.9 alnsn * Values greater than UINT32_MAX generate unconditional "return 0".
198 1.1 alnsn */
199 1.8 alnsn bpfjit_abc_length_t check_length;
200 1.1 alnsn };
201 1.1 alnsn
202 1.1 alnsn /*
203 1.1 alnsn * Additional (optimization-related) data for bpf_insn.
204 1.1 alnsn */
205 1.3 rmind struct bpfjit_insn_data {
206 1.1 alnsn /* List of jumps to this insn. */
207 1.7 alnsn SLIST_HEAD(, bpfjit_jump) bjumps;
208 1.1 alnsn
209 1.1 alnsn union {
210 1.7 alnsn struct bpfjit_jump_data jdata;
211 1.7 alnsn struct bpfjit_read_pkt_data rdata;
212 1.7 alnsn } u;
213 1.1 alnsn
214 1.13 alnsn bpf_memword_init_t invalid;
215 1.7 alnsn bool unreachable;
216 1.1 alnsn };
217 1.1 alnsn
218 1.1 alnsn #ifdef _KERNEL
219 1.1 alnsn
220 1.1 alnsn uint32_t m_xword(const struct mbuf *, uint32_t, int *);
221 1.1 alnsn uint32_t m_xhalf(const struct mbuf *, uint32_t, int *);
222 1.1 alnsn uint32_t m_xbyte(const struct mbuf *, uint32_t, int *);
223 1.1 alnsn
224 1.1 alnsn MODULE(MODULE_CLASS_MISC, bpfjit, "sljit")
225 1.1 alnsn
226 1.1 alnsn static int
227 1.1 alnsn bpfjit_modcmd(modcmd_t cmd, void *arg)
228 1.1 alnsn {
229 1.1 alnsn
230 1.1 alnsn switch (cmd) {
231 1.1 alnsn case MODULE_CMD_INIT:
232 1.1 alnsn bpfjit_module_ops.bj_free_code = &bpfjit_free_code;
233 1.1 alnsn membar_producer();
234 1.1 alnsn bpfjit_module_ops.bj_generate_code = &bpfjit_generate_code;
235 1.1 alnsn membar_producer();
236 1.1 alnsn return 0;
237 1.1 alnsn
238 1.1 alnsn case MODULE_CMD_FINI:
239 1.1 alnsn return EOPNOTSUPP;
240 1.1 alnsn
241 1.1 alnsn default:
242 1.1 alnsn return ENOTTY;
243 1.1 alnsn }
244 1.1 alnsn }
245 1.1 alnsn #endif
246 1.1 alnsn
247 1.20 alnsn /*
248 1.21 alnsn * Return a number of scratch registers to pass
249 1.20 alnsn * to sljit_emit_enter() function.
250 1.20 alnsn */
251 1.20 alnsn static sljit_si
252 1.20 alnsn nscratches(bpfjit_hint_t hints)
253 1.20 alnsn {
254 1.20 alnsn sljit_si rv = 2;
255 1.20 alnsn
256 1.22 alnsn #ifdef _KERNEL
257 1.24 alnsn if (hints & BJ_HINT_PKT)
258 1.24 alnsn rv = 3; /* xcall with three arguments */
259 1.22 alnsn #endif
260 1.22 alnsn
261 1.27 alnsn if (hints & BJ_HINT_IND)
262 1.20 alnsn rv = 3; /* uses BJ_TMP2REG */
263 1.20 alnsn
264 1.20 alnsn if (hints & BJ_HINT_COP)
265 1.20 alnsn rv = 3; /* calls copfunc with three arguments */
266 1.20 alnsn
267 1.32 alnsn if (hints & BJ_HINT_XREG)
268 1.32 alnsn rv = 4; /* uses BJ_XREG */
269 1.32 alnsn
270 1.32 alnsn #ifdef _KERNEL
271 1.32 alnsn if (hints & BJ_HINT_LDX)
272 1.32 alnsn rv = 5; /* uses BJ_TMP3REG */
273 1.32 alnsn #endif
274 1.32 alnsn
275 1.29 alnsn if (hints & BJ_HINT_COPX)
276 1.32 alnsn rv = 5; /* uses BJ_TMP3REG */
277 1.29 alnsn
278 1.29 alnsn return rv;
279 1.29 alnsn }
280 1.29 alnsn
281 1.29 alnsn /*
282 1.29 alnsn * Return a number of saved registers to pass
283 1.29 alnsn * to sljit_emit_enter() function.
284 1.29 alnsn */
285 1.29 alnsn static sljit_si
286 1.29 alnsn nsaveds(bpfjit_hint_t hints)
287 1.29 alnsn {
288 1.29 alnsn sljit_si rv = 3;
289 1.29 alnsn
290 1.20 alnsn return rv;
291 1.20 alnsn }
292 1.20 alnsn
293 1.1 alnsn static uint32_t
294 1.7 alnsn read_width(const struct bpf_insn *pc)
295 1.1 alnsn {
296 1.1 alnsn
297 1.1 alnsn switch (BPF_SIZE(pc->code)) {
298 1.1 alnsn case BPF_W:
299 1.1 alnsn return 4;
300 1.1 alnsn case BPF_H:
301 1.1 alnsn return 2;
302 1.1 alnsn case BPF_B:
303 1.1 alnsn return 1;
304 1.1 alnsn default:
305 1.7 alnsn BJ_ASSERT(false);
306 1.1 alnsn return 0;
307 1.1 alnsn }
308 1.1 alnsn }
309 1.1 alnsn
310 1.13 alnsn /*
311 1.13 alnsn * Copy buf and buflen members of bpf_args from BJ_ARGS
312 1.13 alnsn * pointer to BJ_BUF and BJ_BUFLEN registers.
313 1.13 alnsn */
314 1.13 alnsn static int
315 1.13 alnsn load_buf_buflen(struct sljit_compiler *compiler)
316 1.13 alnsn {
317 1.13 alnsn int status;
318 1.13 alnsn
319 1.13 alnsn status = sljit_emit_op1(compiler,
320 1.13 alnsn SLJIT_MOV_P,
321 1.13 alnsn BJ_BUF, 0,
322 1.13 alnsn SLJIT_MEM1(BJ_ARGS),
323 1.13 alnsn offsetof(struct bpf_args, pkt));
324 1.13 alnsn if (status != SLJIT_SUCCESS)
325 1.13 alnsn return status;
326 1.13 alnsn
327 1.13 alnsn status = sljit_emit_op1(compiler,
328 1.21 alnsn SLJIT_MOV, /* size_t source */
329 1.13 alnsn BJ_BUFLEN, 0,
330 1.13 alnsn SLJIT_MEM1(BJ_ARGS),
331 1.13 alnsn offsetof(struct bpf_args, buflen));
332 1.13 alnsn
333 1.13 alnsn return status;
334 1.13 alnsn }
335 1.13 alnsn
336 1.7 alnsn static bool
337 1.7 alnsn grow_jumps(struct sljit_jump ***jumps, size_t *size)
338 1.7 alnsn {
339 1.7 alnsn struct sljit_jump **newptr;
340 1.7 alnsn const size_t elemsz = sizeof(struct sljit_jump *);
341 1.7 alnsn size_t old_size = *size;
342 1.7 alnsn size_t new_size = 2 * old_size;
343 1.7 alnsn
344 1.7 alnsn if (new_size < old_size || new_size > SIZE_MAX / elemsz)
345 1.7 alnsn return false;
346 1.7 alnsn
347 1.7 alnsn newptr = BJ_ALLOC(new_size * elemsz);
348 1.7 alnsn if (newptr == NULL)
349 1.7 alnsn return false;
350 1.7 alnsn
351 1.7 alnsn memcpy(newptr, *jumps, old_size * elemsz);
352 1.7 alnsn BJ_FREE(*jumps, old_size * elemsz);
353 1.7 alnsn
354 1.7 alnsn *jumps = newptr;
355 1.7 alnsn *size = new_size;
356 1.7 alnsn return true;
357 1.7 alnsn }
358 1.7 alnsn
359 1.7 alnsn static bool
360 1.7 alnsn append_jump(struct sljit_jump *jump, struct sljit_jump ***jumps,
361 1.7 alnsn size_t *size, size_t *max_size)
362 1.1 alnsn {
363 1.7 alnsn if (*size == *max_size && !grow_jumps(jumps, max_size))
364 1.7 alnsn return false;
365 1.1 alnsn
366 1.7 alnsn (*jumps)[(*size)++] = jump;
367 1.7 alnsn return true;
368 1.1 alnsn }
369 1.1 alnsn
370 1.1 alnsn /*
371 1.24 alnsn * Emit code for BPF_LD+BPF_B+BPF_ABS A <- P[k:1].
372 1.1 alnsn */
373 1.1 alnsn static int
374 1.27 alnsn emit_read8(struct sljit_compiler *compiler, sljit_si src, uint32_t k)
375 1.1 alnsn {
376 1.1 alnsn
377 1.1 alnsn return sljit_emit_op1(compiler,
378 1.1 alnsn SLJIT_MOV_UB,
379 1.7 alnsn BJ_AREG, 0,
380 1.27 alnsn SLJIT_MEM1(src), k);
381 1.1 alnsn }
382 1.1 alnsn
383 1.1 alnsn /*
384 1.24 alnsn * Emit code for BPF_LD+BPF_H+BPF_ABS A <- P[k:2].
385 1.1 alnsn */
386 1.1 alnsn static int
387 1.27 alnsn emit_read16(struct sljit_compiler *compiler, sljit_si src, uint32_t k)
388 1.1 alnsn {
389 1.1 alnsn int status;
390 1.1 alnsn
391 1.27 alnsn BJ_ASSERT(k <= UINT32_MAX - 1);
392 1.27 alnsn
393 1.27 alnsn /* A = buf[k]; */
394 1.1 alnsn status = sljit_emit_op1(compiler,
395 1.1 alnsn SLJIT_MOV_UB,
396 1.27 alnsn BJ_AREG, 0,
397 1.27 alnsn SLJIT_MEM1(src), k);
398 1.1 alnsn if (status != SLJIT_SUCCESS)
399 1.1 alnsn return status;
400 1.1 alnsn
401 1.27 alnsn /* tmp1 = buf[k+1]; */
402 1.1 alnsn status = sljit_emit_op1(compiler,
403 1.1 alnsn SLJIT_MOV_UB,
404 1.27 alnsn BJ_TMP1REG, 0,
405 1.27 alnsn SLJIT_MEM1(src), k+1);
406 1.1 alnsn if (status != SLJIT_SUCCESS)
407 1.1 alnsn return status;
408 1.1 alnsn
409 1.27 alnsn /* A = A << 8; */
410 1.1 alnsn status = sljit_emit_op2(compiler,
411 1.1 alnsn SLJIT_SHL,
412 1.27 alnsn BJ_AREG, 0,
413 1.27 alnsn BJ_AREG, 0,
414 1.1 alnsn SLJIT_IMM, 8);
415 1.1 alnsn if (status != SLJIT_SUCCESS)
416 1.1 alnsn return status;
417 1.1 alnsn
418 1.1 alnsn /* A = A + tmp1; */
419 1.1 alnsn status = sljit_emit_op2(compiler,
420 1.1 alnsn SLJIT_ADD,
421 1.7 alnsn BJ_AREG, 0,
422 1.7 alnsn BJ_AREG, 0,
423 1.7 alnsn BJ_TMP1REG, 0);
424 1.1 alnsn return status;
425 1.1 alnsn }
426 1.1 alnsn
427 1.1 alnsn /*
428 1.24 alnsn * Emit code for BPF_LD+BPF_W+BPF_ABS A <- P[k:4].
429 1.1 alnsn */
430 1.1 alnsn static int
431 1.27 alnsn emit_read32(struct sljit_compiler *compiler, sljit_si src, uint32_t k)
432 1.1 alnsn {
433 1.1 alnsn int status;
434 1.1 alnsn
435 1.27 alnsn BJ_ASSERT(k <= UINT32_MAX - 3);
436 1.1 alnsn
437 1.27 alnsn /* A = buf[k]; */
438 1.1 alnsn status = sljit_emit_op1(compiler,
439 1.1 alnsn SLJIT_MOV_UB,
440 1.27 alnsn BJ_AREG, 0,
441 1.27 alnsn SLJIT_MEM1(src), k);
442 1.1 alnsn if (status != SLJIT_SUCCESS)
443 1.1 alnsn return status;
444 1.1 alnsn
445 1.27 alnsn /* tmp1 = buf[k+1]; */
446 1.1 alnsn status = sljit_emit_op1(compiler,
447 1.1 alnsn SLJIT_MOV_UB,
448 1.27 alnsn BJ_TMP1REG, 0,
449 1.27 alnsn SLJIT_MEM1(src), k+1);
450 1.1 alnsn if (status != SLJIT_SUCCESS)
451 1.1 alnsn return status;
452 1.1 alnsn
453 1.27 alnsn /* A = A << 8; */
454 1.1 alnsn status = sljit_emit_op2(compiler,
455 1.1 alnsn SLJIT_SHL,
456 1.27 alnsn BJ_AREG, 0,
457 1.27 alnsn BJ_AREG, 0,
458 1.27 alnsn SLJIT_IMM, 8);
459 1.1 alnsn if (status != SLJIT_SUCCESS)
460 1.1 alnsn return status;
461 1.1 alnsn
462 1.1 alnsn /* A = A + tmp1; */
463 1.1 alnsn status = sljit_emit_op2(compiler,
464 1.1 alnsn SLJIT_ADD,
465 1.7 alnsn BJ_AREG, 0,
466 1.7 alnsn BJ_AREG, 0,
467 1.7 alnsn BJ_TMP1REG, 0);
468 1.1 alnsn if (status != SLJIT_SUCCESS)
469 1.1 alnsn return status;
470 1.1 alnsn
471 1.1 alnsn /* tmp1 = buf[k+2]; */
472 1.1 alnsn status = sljit_emit_op1(compiler,
473 1.1 alnsn SLJIT_MOV_UB,
474 1.7 alnsn BJ_TMP1REG, 0,
475 1.27 alnsn SLJIT_MEM1(src), k+2);
476 1.1 alnsn if (status != SLJIT_SUCCESS)
477 1.1 alnsn return status;
478 1.1 alnsn
479 1.27 alnsn /* A = A << 8; */
480 1.1 alnsn status = sljit_emit_op2(compiler,
481 1.1 alnsn SLJIT_SHL,
482 1.27 alnsn BJ_AREG, 0,
483 1.27 alnsn BJ_AREG, 0,
484 1.27 alnsn SLJIT_IMM, 8);
485 1.1 alnsn if (status != SLJIT_SUCCESS)
486 1.1 alnsn return status;
487 1.1 alnsn
488 1.27 alnsn /* A = A + tmp1; */
489 1.1 alnsn status = sljit_emit_op2(compiler,
490 1.1 alnsn SLJIT_ADD,
491 1.7 alnsn BJ_AREG, 0,
492 1.7 alnsn BJ_AREG, 0,
493 1.27 alnsn BJ_TMP1REG, 0);
494 1.27 alnsn if (status != SLJIT_SUCCESS)
495 1.27 alnsn return status;
496 1.27 alnsn
497 1.27 alnsn /* tmp1 = buf[k+3]; */
498 1.27 alnsn status = sljit_emit_op1(compiler,
499 1.27 alnsn SLJIT_MOV_UB,
500 1.27 alnsn BJ_TMP1REG, 0,
501 1.27 alnsn SLJIT_MEM1(src), k+3);
502 1.1 alnsn if (status != SLJIT_SUCCESS)
503 1.1 alnsn return status;
504 1.1 alnsn
505 1.27 alnsn /* A = A << 8; */
506 1.1 alnsn status = sljit_emit_op2(compiler,
507 1.1 alnsn SLJIT_SHL,
508 1.27 alnsn BJ_AREG, 0,
509 1.27 alnsn BJ_AREG, 0,
510 1.1 alnsn SLJIT_IMM, 8);
511 1.1 alnsn if (status != SLJIT_SUCCESS)
512 1.1 alnsn return status;
513 1.1 alnsn
514 1.1 alnsn /* A = A + tmp1; */
515 1.1 alnsn status = sljit_emit_op2(compiler,
516 1.1 alnsn SLJIT_ADD,
517 1.7 alnsn BJ_AREG, 0,
518 1.7 alnsn BJ_AREG, 0,
519 1.7 alnsn BJ_TMP1REG, 0);
520 1.1 alnsn return status;
521 1.1 alnsn }
522 1.1 alnsn
523 1.1 alnsn #ifdef _KERNEL
524 1.1 alnsn /*
525 1.24 alnsn * Emit code for m_xword/m_xhalf/m_xbyte call.
526 1.1 alnsn *
527 1.24 alnsn * @pc BPF_LD+BPF_W+BPF_ABS A <- P[k:4]
528 1.24 alnsn * BPF_LD+BPF_H+BPF_ABS A <- P[k:2]
529 1.24 alnsn * BPF_LD+BPF_B+BPF_ABS A <- P[k:1]
530 1.24 alnsn * BPF_LD+BPF_W+BPF_IND A <- P[X+k:4]
531 1.24 alnsn * BPF_LD+BPF_H+BPF_IND A <- P[X+k:2]
532 1.24 alnsn * BPF_LD+BPF_B+BPF_IND A <- P[X+k:1]
533 1.24 alnsn * BPF_LDX+BPF_B+BPF_MSH X <- 4*(P[k:1]&0xf)
534 1.1 alnsn */
535 1.1 alnsn static int
536 1.32 alnsn emit_xcall(struct sljit_compiler *compiler, bpfjit_hint_t hints,
537 1.32 alnsn const struct bpf_insn *pc, int dst, struct sljit_jump ***ret0,
538 1.32 alnsn size_t *ret0_size, size_t *ret0_maxsize,
539 1.1 alnsn uint32_t (*fn)(const struct mbuf *, uint32_t, int *))
540 1.1 alnsn {
541 1.32 alnsn #if BJ_XREG == SLJIT_RETURN_REG || \
542 1.32 alnsn BJ_XREG == SLJIT_SCRATCH_REG1 || \
543 1.32 alnsn BJ_XREG == SLJIT_SCRATCH_REG2 || \
544 1.32 alnsn BJ_XREG == SLJIT_SCRATCH_REG3
545 1.32 alnsn #error "Not supported assignment of registers."
546 1.32 alnsn #endif
547 1.23 alnsn struct sljit_jump *jump;
548 1.32 alnsn sljit_si save_reg;
549 1.1 alnsn int status;
550 1.1 alnsn
551 1.32 alnsn save_reg = (BPF_CLASS(pc->code) == BPF_LDX) ? BJ_AREG : BJ_XREG;
552 1.23 alnsn
553 1.32 alnsn if (save_reg == BJ_AREG || (hints & BJ_HINT_XREG)) {
554 1.32 alnsn /* save A or X */
555 1.1 alnsn status = sljit_emit_op1(compiler,
556 1.32 alnsn SLJIT_MOV_UI, /* uint32_t destination */
557 1.32 alnsn SLJIT_MEM1(SLJIT_LOCALS_REG),
558 1.32 alnsn offsetof(struct bpfjit_stack, reg),
559 1.32 alnsn save_reg, 0);
560 1.1 alnsn if (status != SLJIT_SUCCESS)
561 1.1 alnsn return status;
562 1.1 alnsn }
563 1.1 alnsn
564 1.1 alnsn /*
565 1.23 alnsn * Prepare registers for fn(mbuf, k, &err) call.
566 1.1 alnsn */
567 1.1 alnsn status = sljit_emit_op1(compiler,
568 1.1 alnsn SLJIT_MOV,
569 1.12 alnsn SLJIT_SCRATCH_REG1, 0,
570 1.7 alnsn BJ_BUF, 0);
571 1.1 alnsn if (status != SLJIT_SUCCESS)
572 1.1 alnsn return status;
573 1.1 alnsn
574 1.1 alnsn if (BPF_CLASS(pc->code) == BPF_LD && BPF_MODE(pc->code) == BPF_IND) {
575 1.31 alnsn if (pc->k == 0) {
576 1.31 alnsn /* k = X; */
577 1.31 alnsn status = sljit_emit_op1(compiler,
578 1.31 alnsn SLJIT_MOV,
579 1.31 alnsn SLJIT_SCRATCH_REG2, 0,
580 1.31 alnsn BJ_XREG, 0);
581 1.31 alnsn if (status != SLJIT_SUCCESS)
582 1.31 alnsn return status;
583 1.31 alnsn } else {
584 1.31 alnsn /* if (X > UINT32_MAX - pc->k) return 0; */
585 1.31 alnsn jump = sljit_emit_cmp(compiler,
586 1.31 alnsn SLJIT_C_GREATER,
587 1.31 alnsn BJ_XREG, 0,
588 1.31 alnsn SLJIT_IMM, UINT32_MAX - pc->k);
589 1.31 alnsn if (jump == NULL)
590 1.31 alnsn return SLJIT_ERR_ALLOC_FAILED;
591 1.31 alnsn if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
592 1.31 alnsn return SLJIT_ERR_ALLOC_FAILED;
593 1.31 alnsn
594 1.31 alnsn /* k = X + pc->k; */
595 1.31 alnsn status = sljit_emit_op2(compiler,
596 1.31 alnsn SLJIT_ADD,
597 1.31 alnsn SLJIT_SCRATCH_REG2, 0,
598 1.31 alnsn BJ_XREG, 0,
599 1.31 alnsn SLJIT_IMM, (uint32_t)pc->k);
600 1.31 alnsn if (status != SLJIT_SUCCESS)
601 1.31 alnsn return status;
602 1.31 alnsn }
603 1.1 alnsn } else {
604 1.23 alnsn /* k = pc->k */
605 1.1 alnsn status = sljit_emit_op1(compiler,
606 1.1 alnsn SLJIT_MOV,
607 1.12 alnsn SLJIT_SCRATCH_REG2, 0,
608 1.1 alnsn SLJIT_IMM, (uint32_t)pc->k);
609 1.24 alnsn if (status != SLJIT_SUCCESS)
610 1.24 alnsn return status;
611 1.1 alnsn }
612 1.1 alnsn
613 1.21 alnsn /*
614 1.21 alnsn * The third argument of fn is an address on stack.
615 1.21 alnsn */
616 1.1 alnsn status = sljit_get_local_base(compiler,
617 1.21 alnsn SLJIT_SCRATCH_REG3, 0,
618 1.21 alnsn offsetof(struct bpfjit_stack, err));
619 1.1 alnsn if (status != SLJIT_SUCCESS)
620 1.1 alnsn return status;
621 1.1 alnsn
622 1.1 alnsn /* fn(buf, k, &err); */
623 1.1 alnsn status = sljit_emit_ijump(compiler,
624 1.1 alnsn SLJIT_CALL3,
625 1.1 alnsn SLJIT_IMM, SLJIT_FUNC_OFFSET(fn));
626 1.24 alnsn if (status != SLJIT_SUCCESS)
627 1.24 alnsn return status;
628 1.1 alnsn
629 1.7 alnsn if (dst != SLJIT_RETURN_REG) {
630 1.1 alnsn /* move return value to dst */
631 1.1 alnsn status = sljit_emit_op1(compiler,
632 1.1 alnsn SLJIT_MOV,
633 1.23 alnsn dst, 0,
634 1.1 alnsn SLJIT_RETURN_REG, 0);
635 1.1 alnsn if (status != SLJIT_SUCCESS)
636 1.1 alnsn return status;
637 1.7 alnsn }
638 1.1 alnsn
639 1.30 alnsn /* if (*err != 0) return 0; */
640 1.30 alnsn jump = sljit_emit_cmp(compiler,
641 1.30 alnsn SLJIT_C_NOT_EQUAL|SLJIT_INT_OP,
642 1.21 alnsn SLJIT_MEM1(SLJIT_LOCALS_REG),
643 1.30 alnsn offsetof(struct bpfjit_stack, err),
644 1.1 alnsn SLJIT_IMM, 0);
645 1.23 alnsn if (jump == NULL)
646 1.23 alnsn return SLJIT_ERR_ALLOC_FAILED;
647 1.23 alnsn
648 1.23 alnsn if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
649 1.1 alnsn return SLJIT_ERR_ALLOC_FAILED;
650 1.1 alnsn
651 1.32 alnsn if (save_reg == BJ_AREG || (hints & BJ_HINT_XREG)) {
652 1.32 alnsn /* restore A or X */
653 1.26 alnsn status = sljit_emit_op1(compiler,
654 1.32 alnsn SLJIT_MOV_UI, /* uint32_t source */
655 1.32 alnsn save_reg, 0,
656 1.32 alnsn SLJIT_MEM1(SLJIT_LOCALS_REG),
657 1.32 alnsn offsetof(struct bpfjit_stack, reg));
658 1.26 alnsn if (status != SLJIT_SUCCESS)
659 1.26 alnsn return status;
660 1.26 alnsn }
661 1.26 alnsn
662 1.24 alnsn return SLJIT_SUCCESS;
663 1.1 alnsn }
664 1.1 alnsn #endif
665 1.1 alnsn
666 1.1 alnsn /*
667 1.13 alnsn * Emit code for BPF_COP and BPF_COPX instructions.
668 1.13 alnsn */
669 1.13 alnsn static int
670 1.32 alnsn emit_cop(struct sljit_compiler *compiler, bpfjit_hint_t hints,
671 1.28 alnsn const bpf_ctx_t *bc, const struct bpf_insn *pc,
672 1.28 alnsn struct sljit_jump ***ret0, size_t *ret0_size, size_t *ret0_maxsize)
673 1.13 alnsn {
674 1.32 alnsn #if BJ_XREG == SLJIT_RETURN_REG || \
675 1.32 alnsn BJ_XREG == SLJIT_SCRATCH_REG1 || \
676 1.32 alnsn BJ_XREG == SLJIT_SCRATCH_REG2 || \
677 1.32 alnsn BJ_XREG == SLJIT_SCRATCH_REG3 || \
678 1.32 alnsn BJ_TMP3REG == SLJIT_SCRATCH_REG1 || \
679 1.28 alnsn BJ_TMP3REG == SLJIT_SCRATCH_REG2 || \
680 1.28 alnsn BJ_TMP3REG == SLJIT_SCRATCH_REG3
681 1.13 alnsn #error "Not supported assignment of registers."
682 1.13 alnsn #endif
683 1.13 alnsn
684 1.13 alnsn struct sljit_jump *jump;
685 1.28 alnsn sljit_si call_reg;
686 1.28 alnsn sljit_sw call_off;
687 1.13 alnsn int status;
688 1.13 alnsn
689 1.13 alnsn BJ_ASSERT(bc != NULL && bc->copfuncs != NULL);
690 1.13 alnsn
691 1.32 alnsn if (hints & BJ_HINT_LDX) {
692 1.32 alnsn /* save X */
693 1.32 alnsn status = sljit_emit_op1(compiler,
694 1.32 alnsn SLJIT_MOV_UI, /* uint32_t destination */
695 1.32 alnsn SLJIT_MEM1(SLJIT_LOCALS_REG),
696 1.32 alnsn offsetof(struct bpfjit_stack, reg),
697 1.32 alnsn BJ_XREG, 0);
698 1.32 alnsn if (status != SLJIT_SUCCESS)
699 1.32 alnsn return status;
700 1.32 alnsn }
701 1.32 alnsn
702 1.28 alnsn if (BPF_MISCOP(pc->code) == BPF_COP) {
703 1.28 alnsn call_reg = SLJIT_IMM;
704 1.28 alnsn call_off = SLJIT_FUNC_OFFSET(bc->copfuncs[pc->k]);
705 1.28 alnsn } else {
706 1.13 alnsn /* if (X >= bc->nfuncs) return 0; */
707 1.13 alnsn jump = sljit_emit_cmp(compiler,
708 1.13 alnsn SLJIT_C_GREATER_EQUAL,
709 1.13 alnsn BJ_XREG, 0,
710 1.13 alnsn SLJIT_IMM, bc->nfuncs);
711 1.13 alnsn if (jump == NULL)
712 1.13 alnsn return SLJIT_ERR_ALLOC_FAILED;
713 1.28 alnsn if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
714 1.28 alnsn return SLJIT_ERR_ALLOC_FAILED;
715 1.28 alnsn
716 1.28 alnsn /* tmp1 = ctx; */
717 1.28 alnsn status = sljit_emit_op1(compiler,
718 1.28 alnsn SLJIT_MOV_P,
719 1.28 alnsn BJ_TMP1REG, 0,
720 1.28 alnsn SLJIT_MEM1(SLJIT_LOCALS_REG),
721 1.28 alnsn offsetof(struct bpfjit_stack, ctx));
722 1.28 alnsn if (status != SLJIT_SUCCESS)
723 1.28 alnsn return status;
724 1.28 alnsn
725 1.28 alnsn /* tmp1 = ctx->copfuncs; */
726 1.28 alnsn status = sljit_emit_op1(compiler,
727 1.28 alnsn SLJIT_MOV_P,
728 1.28 alnsn BJ_TMP1REG, 0,
729 1.28 alnsn SLJIT_MEM1(BJ_TMP1REG),
730 1.28 alnsn offsetof(struct bpf_ctx, copfuncs));
731 1.28 alnsn if (status != SLJIT_SUCCESS)
732 1.28 alnsn return status;
733 1.28 alnsn
734 1.28 alnsn /* tmp2 = X; */
735 1.28 alnsn status = sljit_emit_op1(compiler,
736 1.28 alnsn SLJIT_MOV,
737 1.28 alnsn BJ_TMP2REG, 0,
738 1.28 alnsn BJ_XREG, 0);
739 1.28 alnsn if (status != SLJIT_SUCCESS)
740 1.28 alnsn return status;
741 1.28 alnsn
742 1.28 alnsn /* tmp3 = ctx->copfuncs[tmp2]; */
743 1.28 alnsn call_reg = BJ_TMP3REG;
744 1.28 alnsn call_off = 0;
745 1.28 alnsn status = sljit_emit_op1(compiler,
746 1.28 alnsn SLJIT_MOV_P,
747 1.28 alnsn call_reg, call_off,
748 1.28 alnsn SLJIT_MEM2(BJ_TMP1REG, BJ_TMP2REG),
749 1.28 alnsn SLJIT_WORD_SHIFT);
750 1.28 alnsn if (status != SLJIT_SUCCESS)
751 1.28 alnsn return status;
752 1.13 alnsn }
753 1.13 alnsn
754 1.13 alnsn /*
755 1.13 alnsn * Copy bpf_copfunc_t arguments to registers.
756 1.13 alnsn */
757 1.13 alnsn #if BJ_AREG != SLJIT_SCRATCH_REG3
758 1.13 alnsn status = sljit_emit_op1(compiler,
759 1.13 alnsn SLJIT_MOV_UI,
760 1.13 alnsn SLJIT_SCRATCH_REG3, 0,
761 1.13 alnsn BJ_AREG, 0);
762 1.13 alnsn if (status != SLJIT_SUCCESS)
763 1.13 alnsn return status;
764 1.13 alnsn #endif
765 1.13 alnsn
766 1.13 alnsn status = sljit_emit_op1(compiler,
767 1.13 alnsn SLJIT_MOV_P,
768 1.13 alnsn SLJIT_SCRATCH_REG1, 0,
769 1.13 alnsn SLJIT_MEM1(SLJIT_LOCALS_REG),
770 1.13 alnsn offsetof(struct bpfjit_stack, ctx));
771 1.13 alnsn if (status != SLJIT_SUCCESS)
772 1.13 alnsn return status;
773 1.13 alnsn
774 1.13 alnsn status = sljit_emit_op1(compiler,
775 1.13 alnsn SLJIT_MOV_P,
776 1.13 alnsn SLJIT_SCRATCH_REG2, 0,
777 1.13 alnsn BJ_ARGS, 0);
778 1.13 alnsn if (status != SLJIT_SUCCESS)
779 1.13 alnsn return status;
780 1.13 alnsn
781 1.28 alnsn status = sljit_emit_ijump(compiler,
782 1.28 alnsn SLJIT_CALL3, call_reg, call_off);
783 1.28 alnsn if (status != SLJIT_SUCCESS)
784 1.28 alnsn return status;
785 1.13 alnsn
786 1.13 alnsn #if BJ_AREG != SLJIT_RETURN_REG
787 1.13 alnsn status = sljit_emit_op1(compiler,
788 1.13 alnsn SLJIT_MOV,
789 1.13 alnsn BJ_AREG, 0,
790 1.13 alnsn SLJIT_RETURN_REG, 0);
791 1.13 alnsn if (status != SLJIT_SUCCESS)
792 1.13 alnsn return status;
793 1.13 alnsn #endif
794 1.13 alnsn
795 1.32 alnsn if (hints & BJ_HINT_LDX) {
796 1.32 alnsn /* restore X */
797 1.32 alnsn status = sljit_emit_op1(compiler,
798 1.32 alnsn SLJIT_MOV_UI, /* uint32_t source */
799 1.32 alnsn BJ_XREG, 0,
800 1.32 alnsn SLJIT_MEM1(SLJIT_LOCALS_REG),
801 1.32 alnsn offsetof(struct bpfjit_stack, reg));
802 1.32 alnsn if (status != SLJIT_SUCCESS)
803 1.32 alnsn return status;
804 1.32 alnsn }
805 1.32 alnsn
806 1.24 alnsn return SLJIT_SUCCESS;
807 1.13 alnsn }
808 1.13 alnsn
809 1.13 alnsn /*
810 1.1 alnsn * Generate code for
811 1.1 alnsn * BPF_LD+BPF_W+BPF_ABS A <- P[k:4]
812 1.1 alnsn * BPF_LD+BPF_H+BPF_ABS A <- P[k:2]
813 1.1 alnsn * BPF_LD+BPF_B+BPF_ABS A <- P[k:1]
814 1.1 alnsn * BPF_LD+BPF_W+BPF_IND A <- P[X+k:4]
815 1.1 alnsn * BPF_LD+BPF_H+BPF_IND A <- P[X+k:2]
816 1.1 alnsn * BPF_LD+BPF_B+BPF_IND A <- P[X+k:1]
817 1.1 alnsn */
818 1.1 alnsn static int
819 1.32 alnsn emit_pkt_read(struct sljit_compiler *compiler, bpfjit_hint_t hints,
820 1.7 alnsn const struct bpf_insn *pc, struct sljit_jump *to_mchain_jump,
821 1.7 alnsn struct sljit_jump ***ret0, size_t *ret0_size, size_t *ret0_maxsize)
822 1.1 alnsn {
823 1.25 alnsn int status = SLJIT_ERR_ALLOC_FAILED;
824 1.1 alnsn uint32_t width;
825 1.27 alnsn sljit_si ld_reg;
826 1.1 alnsn struct sljit_jump *jump;
827 1.1 alnsn #ifdef _KERNEL
828 1.1 alnsn struct sljit_label *label;
829 1.1 alnsn struct sljit_jump *over_mchain_jump;
830 1.1 alnsn const bool check_zero_buflen = (to_mchain_jump != NULL);
831 1.1 alnsn #endif
832 1.1 alnsn const uint32_t k = pc->k;
833 1.1 alnsn
834 1.1 alnsn #ifdef _KERNEL
835 1.1 alnsn if (to_mchain_jump == NULL) {
836 1.1 alnsn to_mchain_jump = sljit_emit_cmp(compiler,
837 1.1 alnsn SLJIT_C_EQUAL,
838 1.7 alnsn BJ_BUFLEN, 0,
839 1.1 alnsn SLJIT_IMM, 0);
840 1.1 alnsn if (to_mchain_jump == NULL)
841 1.7 alnsn return SLJIT_ERR_ALLOC_FAILED;
842 1.1 alnsn }
843 1.1 alnsn #endif
844 1.1 alnsn
845 1.27 alnsn ld_reg = BJ_BUF;
846 1.1 alnsn width = read_width(pc);
847 1.1 alnsn
848 1.1 alnsn if (BPF_MODE(pc->code) == BPF_IND) {
849 1.1 alnsn /* tmp1 = buflen - (pc->k + width); */
850 1.1 alnsn status = sljit_emit_op2(compiler,
851 1.1 alnsn SLJIT_SUB,
852 1.7 alnsn BJ_TMP1REG, 0,
853 1.7 alnsn BJ_BUFLEN, 0,
854 1.1 alnsn SLJIT_IMM, k + width);
855 1.1 alnsn if (status != SLJIT_SUCCESS)
856 1.1 alnsn return status;
857 1.1 alnsn
858 1.27 alnsn /* ld_reg = buf + X; */
859 1.27 alnsn ld_reg = BJ_TMP2REG;
860 1.1 alnsn status = sljit_emit_op2(compiler,
861 1.1 alnsn SLJIT_ADD,
862 1.27 alnsn ld_reg, 0,
863 1.7 alnsn BJ_BUF, 0,
864 1.7 alnsn BJ_XREG, 0);
865 1.1 alnsn if (status != SLJIT_SUCCESS)
866 1.1 alnsn return status;
867 1.1 alnsn
868 1.1 alnsn /* if (tmp1 < X) return 0; */
869 1.1 alnsn jump = sljit_emit_cmp(compiler,
870 1.1 alnsn SLJIT_C_LESS,
871 1.7 alnsn BJ_TMP1REG, 0,
872 1.7 alnsn BJ_XREG, 0);
873 1.1 alnsn if (jump == NULL)
874 1.7 alnsn return SLJIT_ERR_ALLOC_FAILED;
875 1.7 alnsn if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
876 1.7 alnsn return SLJIT_ERR_ALLOC_FAILED;
877 1.1 alnsn }
878 1.1 alnsn
879 1.1 alnsn switch (width) {
880 1.1 alnsn case 4:
881 1.27 alnsn status = emit_read32(compiler, ld_reg, k);
882 1.1 alnsn break;
883 1.1 alnsn case 2:
884 1.27 alnsn status = emit_read16(compiler, ld_reg, k);
885 1.1 alnsn break;
886 1.1 alnsn case 1:
887 1.27 alnsn status = emit_read8(compiler, ld_reg, k);
888 1.1 alnsn break;
889 1.1 alnsn }
890 1.1 alnsn
891 1.1 alnsn if (status != SLJIT_SUCCESS)
892 1.1 alnsn return status;
893 1.1 alnsn
894 1.1 alnsn #ifdef _KERNEL
895 1.1 alnsn over_mchain_jump = sljit_emit_jump(compiler, SLJIT_JUMP);
896 1.1 alnsn if (over_mchain_jump == NULL)
897 1.7 alnsn return SLJIT_ERR_ALLOC_FAILED;
898 1.1 alnsn
899 1.1 alnsn /* entry point to mchain handler */
900 1.1 alnsn label = sljit_emit_label(compiler);
901 1.1 alnsn if (label == NULL)
902 1.7 alnsn return SLJIT_ERR_ALLOC_FAILED;
903 1.1 alnsn sljit_set_label(to_mchain_jump, label);
904 1.1 alnsn
905 1.1 alnsn if (check_zero_buflen) {
906 1.1 alnsn /* if (buflen != 0) return 0; */
907 1.1 alnsn jump = sljit_emit_cmp(compiler,
908 1.1 alnsn SLJIT_C_NOT_EQUAL,
909 1.7 alnsn BJ_BUFLEN, 0,
910 1.1 alnsn SLJIT_IMM, 0);
911 1.1 alnsn if (jump == NULL)
912 1.1 alnsn return SLJIT_ERR_ALLOC_FAILED;
913 1.7 alnsn if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
914 1.7 alnsn return SLJIT_ERR_ALLOC_FAILED;
915 1.1 alnsn }
916 1.1 alnsn
917 1.1 alnsn switch (width) {
918 1.1 alnsn case 4:
919 1.32 alnsn status = emit_xcall(compiler, hints, pc, BJ_AREG,
920 1.23 alnsn ret0, ret0_size, ret0_maxsize, &m_xword);
921 1.1 alnsn break;
922 1.1 alnsn case 2:
923 1.32 alnsn status = emit_xcall(compiler, hints, pc, BJ_AREG,
924 1.23 alnsn ret0, ret0_size, ret0_maxsize, &m_xhalf);
925 1.1 alnsn break;
926 1.1 alnsn case 1:
927 1.32 alnsn status = emit_xcall(compiler, hints, pc, BJ_AREG,
928 1.23 alnsn ret0, ret0_size, ret0_maxsize, &m_xbyte);
929 1.1 alnsn break;
930 1.1 alnsn }
931 1.1 alnsn
932 1.1 alnsn if (status != SLJIT_SUCCESS)
933 1.1 alnsn return status;
934 1.1 alnsn
935 1.1 alnsn label = sljit_emit_label(compiler);
936 1.1 alnsn if (label == NULL)
937 1.1 alnsn return SLJIT_ERR_ALLOC_FAILED;
938 1.1 alnsn sljit_set_label(over_mchain_jump, label);
939 1.1 alnsn #endif
940 1.1 alnsn
941 1.24 alnsn return SLJIT_SUCCESS;
942 1.1 alnsn }
943 1.1 alnsn
944 1.13 alnsn static int
945 1.19 alnsn emit_memload(struct sljit_compiler *compiler,
946 1.13 alnsn sljit_si dst, uint32_t k, size_t extwords)
947 1.13 alnsn {
948 1.13 alnsn int status;
949 1.13 alnsn sljit_si src;
950 1.13 alnsn sljit_sw srcw;
951 1.13 alnsn
952 1.13 alnsn srcw = k * sizeof(uint32_t);
953 1.13 alnsn
954 1.13 alnsn if (extwords == 0) {
955 1.13 alnsn src = SLJIT_MEM1(SLJIT_LOCALS_REG);
956 1.13 alnsn srcw += offsetof(struct bpfjit_stack, mem);
957 1.13 alnsn } else {
958 1.13 alnsn /* copy extmem pointer to the tmp1 register */
959 1.13 alnsn status = sljit_emit_op1(compiler,
960 1.16 alnsn SLJIT_MOV_P,
961 1.13 alnsn BJ_TMP1REG, 0,
962 1.13 alnsn SLJIT_MEM1(SLJIT_LOCALS_REG),
963 1.13 alnsn offsetof(struct bpfjit_stack, extmem));
964 1.13 alnsn if (status != SLJIT_SUCCESS)
965 1.13 alnsn return status;
966 1.13 alnsn src = SLJIT_MEM1(BJ_TMP1REG);
967 1.13 alnsn }
968 1.13 alnsn
969 1.13 alnsn return sljit_emit_op1(compiler, SLJIT_MOV_UI, dst, 0, src, srcw);
970 1.13 alnsn }
971 1.13 alnsn
972 1.13 alnsn static int
973 1.19 alnsn emit_memstore(struct sljit_compiler *compiler,
974 1.13 alnsn sljit_si src, uint32_t k, size_t extwords)
975 1.13 alnsn {
976 1.13 alnsn int status;
977 1.13 alnsn sljit_si dst;
978 1.13 alnsn sljit_sw dstw;
979 1.13 alnsn
980 1.13 alnsn dstw = k * sizeof(uint32_t);
981 1.13 alnsn
982 1.13 alnsn if (extwords == 0) {
983 1.13 alnsn dst = SLJIT_MEM1(SLJIT_LOCALS_REG);
984 1.13 alnsn dstw += offsetof(struct bpfjit_stack, mem);
985 1.13 alnsn } else {
986 1.13 alnsn /* copy extmem pointer to the tmp1 register */
987 1.13 alnsn status = sljit_emit_op1(compiler,
988 1.16 alnsn SLJIT_MOV_P,
989 1.13 alnsn BJ_TMP1REG, 0,
990 1.13 alnsn SLJIT_MEM1(SLJIT_LOCALS_REG),
991 1.13 alnsn offsetof(struct bpfjit_stack, extmem));
992 1.13 alnsn if (status != SLJIT_SUCCESS)
993 1.13 alnsn return status;
994 1.13 alnsn dst = SLJIT_MEM1(BJ_TMP1REG);
995 1.13 alnsn }
996 1.13 alnsn
997 1.13 alnsn return sljit_emit_op1(compiler, SLJIT_MOV_UI, dst, dstw, src, 0);
998 1.13 alnsn }
999 1.13 alnsn
1000 1.1 alnsn /*
1001 1.24 alnsn * Emit code for BPF_LDX+BPF_B+BPF_MSH X <- 4*(P[k:1]&0xf).
1002 1.1 alnsn */
1003 1.1 alnsn static int
1004 1.32 alnsn emit_msh(struct sljit_compiler *compiler, bpfjit_hint_t hints,
1005 1.7 alnsn const struct bpf_insn *pc, struct sljit_jump *to_mchain_jump,
1006 1.7 alnsn struct sljit_jump ***ret0, size_t *ret0_size, size_t *ret0_maxsize)
1007 1.1 alnsn {
1008 1.1 alnsn int status;
1009 1.1 alnsn #ifdef _KERNEL
1010 1.1 alnsn struct sljit_label *label;
1011 1.1 alnsn struct sljit_jump *jump, *over_mchain_jump;
1012 1.1 alnsn const bool check_zero_buflen = (to_mchain_jump != NULL);
1013 1.1 alnsn #endif
1014 1.1 alnsn const uint32_t k = pc->k;
1015 1.1 alnsn
1016 1.1 alnsn #ifdef _KERNEL
1017 1.1 alnsn if (to_mchain_jump == NULL) {
1018 1.1 alnsn to_mchain_jump = sljit_emit_cmp(compiler,
1019 1.1 alnsn SLJIT_C_EQUAL,
1020 1.7 alnsn BJ_BUFLEN, 0,
1021 1.1 alnsn SLJIT_IMM, 0);
1022 1.1 alnsn if (to_mchain_jump == NULL)
1023 1.7 alnsn return SLJIT_ERR_ALLOC_FAILED;
1024 1.1 alnsn }
1025 1.1 alnsn #endif
1026 1.1 alnsn
1027 1.1 alnsn /* tmp1 = buf[k] */
1028 1.1 alnsn status = sljit_emit_op1(compiler,
1029 1.1 alnsn SLJIT_MOV_UB,
1030 1.7 alnsn BJ_TMP1REG, 0,
1031 1.7 alnsn SLJIT_MEM1(BJ_BUF), k);
1032 1.1 alnsn if (status != SLJIT_SUCCESS)
1033 1.1 alnsn return status;
1034 1.1 alnsn
1035 1.1 alnsn #ifdef _KERNEL
1036 1.1 alnsn over_mchain_jump = sljit_emit_jump(compiler, SLJIT_JUMP);
1037 1.1 alnsn if (over_mchain_jump == NULL)
1038 1.1 alnsn return SLJIT_ERR_ALLOC_FAILED;
1039 1.1 alnsn
1040 1.1 alnsn /* entry point to mchain handler */
1041 1.1 alnsn label = sljit_emit_label(compiler);
1042 1.1 alnsn if (label == NULL)
1043 1.1 alnsn return SLJIT_ERR_ALLOC_FAILED;
1044 1.1 alnsn sljit_set_label(to_mchain_jump, label);
1045 1.1 alnsn
1046 1.1 alnsn if (check_zero_buflen) {
1047 1.1 alnsn /* if (buflen != 0) return 0; */
1048 1.1 alnsn jump = sljit_emit_cmp(compiler,
1049 1.1 alnsn SLJIT_C_NOT_EQUAL,
1050 1.7 alnsn BJ_BUFLEN, 0,
1051 1.1 alnsn SLJIT_IMM, 0);
1052 1.1 alnsn if (jump == NULL)
1053 1.7 alnsn return SLJIT_ERR_ALLOC_FAILED;
1054 1.7 alnsn if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
1055 1.7 alnsn return SLJIT_ERR_ALLOC_FAILED;
1056 1.1 alnsn }
1057 1.1 alnsn
1058 1.32 alnsn status = emit_xcall(compiler, hints, pc, BJ_TMP1REG,
1059 1.23 alnsn ret0, ret0_size, ret0_maxsize, &m_xbyte);
1060 1.1 alnsn if (status != SLJIT_SUCCESS)
1061 1.1 alnsn return status;
1062 1.7 alnsn
1063 1.30 alnsn label = sljit_emit_label(compiler);
1064 1.30 alnsn if (label == NULL)
1065 1.30 alnsn return SLJIT_ERR_ALLOC_FAILED;
1066 1.30 alnsn sljit_set_label(over_mchain_jump, label);
1067 1.30 alnsn #endif
1068 1.30 alnsn
1069 1.1 alnsn /* tmp1 &= 0xf */
1070 1.1 alnsn status = sljit_emit_op2(compiler,
1071 1.1 alnsn SLJIT_AND,
1072 1.7 alnsn BJ_TMP1REG, 0,
1073 1.7 alnsn BJ_TMP1REG, 0,
1074 1.1 alnsn SLJIT_IMM, 0xf);
1075 1.1 alnsn if (status != SLJIT_SUCCESS)
1076 1.1 alnsn return status;
1077 1.1 alnsn
1078 1.30 alnsn /* X = tmp1 << 2 */
1079 1.1 alnsn status = sljit_emit_op2(compiler,
1080 1.1 alnsn SLJIT_SHL,
1081 1.7 alnsn BJ_XREG, 0,
1082 1.7 alnsn BJ_TMP1REG, 0,
1083 1.1 alnsn SLJIT_IMM, 2);
1084 1.1 alnsn if (status != SLJIT_SUCCESS)
1085 1.1 alnsn return status;
1086 1.1 alnsn
1087 1.24 alnsn return SLJIT_SUCCESS;
1088 1.1 alnsn }
1089 1.1 alnsn
1090 1.35 alnsn /*
1091 1.35 alnsn * Emit code for A = A / k or A = A % k when k is a power of 2.
1092 1.35 alnsn * @pc BPF_DIV or BPF_MOD instruction.
1093 1.35 alnsn */
1094 1.1 alnsn static int
1095 1.35 alnsn emit_pow2_moddiv(struct sljit_compiler *compiler, const struct bpf_insn *pc)
1096 1.1 alnsn {
1097 1.35 alnsn uint32_t k = pc->k;
1098 1.1 alnsn int status = SLJIT_SUCCESS;
1099 1.1 alnsn
1100 1.35 alnsn BJ_ASSERT(k != 0 && (k & (k - 1)) == 0);
1101 1.1 alnsn
1102 1.35 alnsn if (BPF_OP(pc->code) == BPF_MOD) {
1103 1.1 alnsn status = sljit_emit_op2(compiler,
1104 1.35 alnsn SLJIT_AND,
1105 1.7 alnsn BJ_AREG, 0,
1106 1.7 alnsn BJ_AREG, 0,
1107 1.35 alnsn SLJIT_IMM, k - 1);
1108 1.35 alnsn } else {
1109 1.35 alnsn int shift = 0;
1110 1.35 alnsn
1111 1.35 alnsn /*
1112 1.35 alnsn * Do shift = __builtin_ctz(k).
1113 1.35 alnsn * The loop is slower, but that's ok.
1114 1.35 alnsn */
1115 1.35 alnsn while (k > 1) {
1116 1.35 alnsn k >>= 1;
1117 1.35 alnsn shift++;
1118 1.35 alnsn }
1119 1.35 alnsn
1120 1.35 alnsn if (shift != 0) {
1121 1.35 alnsn status = sljit_emit_op2(compiler,
1122 1.35 alnsn SLJIT_LSHR|SLJIT_INT_OP,
1123 1.35 alnsn BJ_AREG, 0,
1124 1.35 alnsn BJ_AREG, 0,
1125 1.35 alnsn SLJIT_IMM, shift);
1126 1.35 alnsn }
1127 1.1 alnsn }
1128 1.1 alnsn
1129 1.1 alnsn return status;
1130 1.1 alnsn }
1131 1.1 alnsn
1132 1.1 alnsn #if !defined(BPFJIT_USE_UDIV)
1133 1.1 alnsn static sljit_uw
1134 1.1 alnsn divide(sljit_uw x, sljit_uw y)
1135 1.1 alnsn {
1136 1.1 alnsn
1137 1.1 alnsn return (uint32_t)x / (uint32_t)y;
1138 1.1 alnsn }
1139 1.33 christos
1140 1.33 christos static sljit_uw
1141 1.33 christos modulus(sljit_uw x, sljit_uw y)
1142 1.33 christos {
1143 1.33 christos
1144 1.33 christos return (uint32_t)x % (uint32_t)y;
1145 1.33 christos }
1146 1.1 alnsn #endif
1147 1.1 alnsn
1148 1.1 alnsn /*
1149 1.35 alnsn * Emit code for A = A / div or A = A % div.
1150 1.35 alnsn * @pc BPF_DIV or BPF_MOD instruction.
1151 1.1 alnsn */
1152 1.1 alnsn static int
1153 1.35 alnsn emit_moddiv(struct sljit_compiler *compiler, const struct bpf_insn *pc)
1154 1.1 alnsn {
1155 1.1 alnsn int status;
1156 1.34 alnsn const bool div = BPF_OP(pc->code) == BPF_DIV;
1157 1.35 alnsn const bool xreg = BPF_SRC(pc->code) == BPF_X;
1158 1.1 alnsn
1159 1.32 alnsn #if BJ_XREG == SLJIT_RETURN_REG || \
1160 1.32 alnsn BJ_XREG == SLJIT_SCRATCH_REG1 || \
1161 1.32 alnsn BJ_XREG == SLJIT_SCRATCH_REG2 || \
1162 1.32 alnsn BJ_AREG == SLJIT_SCRATCH_REG2
1163 1.32 alnsn #error "Not supported assignment of registers."
1164 1.32 alnsn #endif
1165 1.32 alnsn
1166 1.12 alnsn #if BJ_AREG != SLJIT_SCRATCH_REG1
1167 1.1 alnsn status = sljit_emit_op1(compiler,
1168 1.1 alnsn SLJIT_MOV,
1169 1.12 alnsn SLJIT_SCRATCH_REG1, 0,
1170 1.7 alnsn BJ_AREG, 0);
1171 1.1 alnsn if (status != SLJIT_SUCCESS)
1172 1.1 alnsn return status;
1173 1.1 alnsn #endif
1174 1.1 alnsn
1175 1.1 alnsn status = sljit_emit_op1(compiler,
1176 1.1 alnsn SLJIT_MOV,
1177 1.12 alnsn SLJIT_SCRATCH_REG2, 0,
1178 1.35 alnsn xreg ? BJ_XREG : SLJIT_IMM,
1179 1.35 alnsn xreg ? 0 : (uint32_t)pc->k);
1180 1.1 alnsn if (status != SLJIT_SUCCESS)
1181 1.1 alnsn return status;
1182 1.1 alnsn
1183 1.1 alnsn #if defined(BPFJIT_USE_UDIV)
1184 1.1 alnsn status = sljit_emit_op0(compiler, SLJIT_UDIV|SLJIT_INT_OP);
1185 1.1 alnsn
1186 1.12 alnsn #if BJ_AREG != SLJIT_SCRATCH_REG1
1187 1.1 alnsn status = sljit_emit_op1(compiler,
1188 1.1 alnsn SLJIT_MOV,
1189 1.7 alnsn BJ_AREG, 0,
1190 1.12 alnsn SLJIT_SCRATCH_REG1, 0);
1191 1.1 alnsn if (status != SLJIT_SUCCESS)
1192 1.1 alnsn return status;
1193 1.1 alnsn #endif
1194 1.1 alnsn #else
1195 1.1 alnsn status = sljit_emit_ijump(compiler,
1196 1.1 alnsn SLJIT_CALL2,
1197 1.33 christos SLJIT_IMM, div ? SLJIT_FUNC_OFFSET(divide) :
1198 1.33 christos SLJIT_FUNC_OFFSET(modulus));
1199 1.1 alnsn
1200 1.7 alnsn #if BJ_AREG != SLJIT_RETURN_REG
1201 1.1 alnsn status = sljit_emit_op1(compiler,
1202 1.1 alnsn SLJIT_MOV,
1203 1.7 alnsn BJ_AREG, 0,
1204 1.1 alnsn SLJIT_RETURN_REG, 0);
1205 1.1 alnsn if (status != SLJIT_SUCCESS)
1206 1.1 alnsn return status;
1207 1.1 alnsn #endif
1208 1.1 alnsn #endif
1209 1.1 alnsn
1210 1.1 alnsn return status;
1211 1.1 alnsn }
1212 1.1 alnsn
1213 1.1 alnsn /*
1214 1.1 alnsn * Return true if pc is a "read from packet" instruction.
1215 1.1 alnsn * If length is not NULL and return value is true, *length will
1216 1.1 alnsn * be set to a safe length required to read a packet.
1217 1.1 alnsn */
1218 1.1 alnsn static bool
1219 1.8 alnsn read_pkt_insn(const struct bpf_insn *pc, bpfjit_abc_length_t *length)
1220 1.1 alnsn {
1221 1.1 alnsn bool rv;
1222 1.8 alnsn bpfjit_abc_length_t width;
1223 1.1 alnsn
1224 1.1 alnsn switch (BPF_CLASS(pc->code)) {
1225 1.1 alnsn default:
1226 1.1 alnsn rv = false;
1227 1.1 alnsn break;
1228 1.1 alnsn
1229 1.1 alnsn case BPF_LD:
1230 1.1 alnsn rv = BPF_MODE(pc->code) == BPF_ABS ||
1231 1.1 alnsn BPF_MODE(pc->code) == BPF_IND;
1232 1.1 alnsn if (rv)
1233 1.1 alnsn width = read_width(pc);
1234 1.1 alnsn break;
1235 1.1 alnsn
1236 1.1 alnsn case BPF_LDX:
1237 1.1 alnsn rv = pc->code == (BPF_LDX|BPF_B|BPF_MSH);
1238 1.1 alnsn width = 1;
1239 1.1 alnsn break;
1240 1.1 alnsn }
1241 1.1 alnsn
1242 1.1 alnsn if (rv && length != NULL) {
1243 1.9 alnsn /*
1244 1.9 alnsn * Values greater than UINT32_MAX will generate
1245 1.9 alnsn * unconditional "return 0".
1246 1.9 alnsn */
1247 1.9 alnsn *length = (uint32_t)pc->k + width;
1248 1.1 alnsn }
1249 1.1 alnsn
1250 1.1 alnsn return rv;
1251 1.1 alnsn }
1252 1.1 alnsn
1253 1.1 alnsn static void
1254 1.7 alnsn optimize_init(struct bpfjit_insn_data *insn_dat, size_t insn_count)
1255 1.1 alnsn {
1256 1.7 alnsn size_t i;
1257 1.1 alnsn
1258 1.7 alnsn for (i = 0; i < insn_count; i++) {
1259 1.7 alnsn SLIST_INIT(&insn_dat[i].bjumps);
1260 1.7 alnsn insn_dat[i].invalid = BJ_INIT_NOBITS;
1261 1.1 alnsn }
1262 1.1 alnsn }
1263 1.1 alnsn
1264 1.1 alnsn /*
1265 1.1 alnsn * The function divides instructions into blocks. Destination of a jump
1266 1.1 alnsn * instruction starts a new block. BPF_RET and BPF_JMP instructions
1267 1.1 alnsn * terminate a block. Blocks are linear, that is, there are no jumps out
1268 1.1 alnsn * from the middle of a block and there are no jumps in to the middle of
1269 1.1 alnsn * a block.
1270 1.7 alnsn *
1271 1.7 alnsn * The function also sets bits in *initmask for memwords that
1272 1.7 alnsn * need to be initialized to zero. Note that this set should be empty
1273 1.7 alnsn * for any valid kernel filter program.
1274 1.1 alnsn */
1275 1.7 alnsn static bool
1276 1.19 alnsn optimize_pass1(const bpf_ctx_t *bc, const struct bpf_insn *insns,
1277 1.19 alnsn struct bpfjit_insn_data *insn_dat, size_t insn_count,
1278 1.20 alnsn bpf_memword_init_t *initmask, bpfjit_hint_t *hints)
1279 1.1 alnsn {
1280 1.7 alnsn struct bpfjit_jump *jtf;
1281 1.1 alnsn size_t i;
1282 1.7 alnsn uint32_t jt, jf;
1283 1.10 alnsn bpfjit_abc_length_t length;
1284 1.13 alnsn bpf_memword_init_t invalid; /* borrowed from bpf_filter() */
1285 1.1 alnsn bool unreachable;
1286 1.1 alnsn
1287 1.19 alnsn const size_t memwords = GET_MEMWORDS(bc);
1288 1.13 alnsn
1289 1.20 alnsn *hints = 0;
1290 1.7 alnsn *initmask = BJ_INIT_NOBITS;
1291 1.1 alnsn
1292 1.1 alnsn unreachable = false;
1293 1.7 alnsn invalid = ~BJ_INIT_NOBITS;
1294 1.1 alnsn
1295 1.1 alnsn for (i = 0; i < insn_count; i++) {
1296 1.7 alnsn if (!SLIST_EMPTY(&insn_dat[i].bjumps))
1297 1.1 alnsn unreachable = false;
1298 1.7 alnsn insn_dat[i].unreachable = unreachable;
1299 1.1 alnsn
1300 1.1 alnsn if (unreachable)
1301 1.1 alnsn continue;
1302 1.1 alnsn
1303 1.7 alnsn invalid |= insn_dat[i].invalid;
1304 1.1 alnsn
1305 1.10 alnsn if (read_pkt_insn(&insns[i], &length) && length > UINT32_MAX)
1306 1.10 alnsn unreachable = true;
1307 1.10 alnsn
1308 1.1 alnsn switch (BPF_CLASS(insns[i].code)) {
1309 1.1 alnsn case BPF_RET:
1310 1.7 alnsn if (BPF_RVAL(insns[i].code) == BPF_A)
1311 1.7 alnsn *initmask |= invalid & BJ_INIT_ABIT;
1312 1.7 alnsn
1313 1.1 alnsn unreachable = true;
1314 1.1 alnsn continue;
1315 1.1 alnsn
1316 1.7 alnsn case BPF_LD:
1317 1.27 alnsn if (BPF_MODE(insns[i].code) == BPF_ABS)
1318 1.27 alnsn *hints |= BJ_HINT_ABS;
1319 1.7 alnsn
1320 1.20 alnsn if (BPF_MODE(insns[i].code) == BPF_IND) {
1321 1.27 alnsn *hints |= BJ_HINT_IND | BJ_HINT_XREG;
1322 1.7 alnsn *initmask |= invalid & BJ_INIT_XBIT;
1323 1.20 alnsn }
1324 1.7 alnsn
1325 1.7 alnsn if (BPF_MODE(insns[i].code) == BPF_MEM &&
1326 1.13 alnsn (uint32_t)insns[i].k < memwords) {
1327 1.7 alnsn *initmask |= invalid & BJ_INIT_MBIT(insns[i].k);
1328 1.7 alnsn }
1329 1.7 alnsn
1330 1.7 alnsn invalid &= ~BJ_INIT_ABIT;
1331 1.7 alnsn continue;
1332 1.7 alnsn
1333 1.7 alnsn case BPF_LDX:
1334 1.20 alnsn *hints |= BJ_HINT_XREG | BJ_HINT_LDX;
1335 1.7 alnsn
1336 1.7 alnsn if (BPF_MODE(insns[i].code) == BPF_MEM &&
1337 1.13 alnsn (uint32_t)insns[i].k < memwords) {
1338 1.7 alnsn *initmask |= invalid & BJ_INIT_MBIT(insns[i].k);
1339 1.7 alnsn }
1340 1.7 alnsn
1341 1.29 alnsn if (BPF_MODE(insns[i].code) == BPF_MSH &&
1342 1.29 alnsn BPF_SIZE(insns[i].code) == BPF_B) {
1343 1.29 alnsn *hints |= BJ_HINT_MSH;
1344 1.29 alnsn }
1345 1.29 alnsn
1346 1.7 alnsn invalid &= ~BJ_INIT_XBIT;
1347 1.7 alnsn continue;
1348 1.7 alnsn
1349 1.7 alnsn case BPF_ST:
1350 1.7 alnsn *initmask |= invalid & BJ_INIT_ABIT;
1351 1.7 alnsn
1352 1.13 alnsn if ((uint32_t)insns[i].k < memwords)
1353 1.7 alnsn invalid &= ~BJ_INIT_MBIT(insns[i].k);
1354 1.7 alnsn
1355 1.7 alnsn continue;
1356 1.7 alnsn
1357 1.7 alnsn case BPF_STX:
1358 1.20 alnsn *hints |= BJ_HINT_XREG;
1359 1.7 alnsn *initmask |= invalid & BJ_INIT_XBIT;
1360 1.7 alnsn
1361 1.13 alnsn if ((uint32_t)insns[i].k < memwords)
1362 1.7 alnsn invalid &= ~BJ_INIT_MBIT(insns[i].k);
1363 1.7 alnsn
1364 1.7 alnsn continue;
1365 1.7 alnsn
1366 1.7 alnsn case BPF_ALU:
1367 1.7 alnsn *initmask |= invalid & BJ_INIT_ABIT;
1368 1.7 alnsn
1369 1.7 alnsn if (insns[i].code != (BPF_ALU|BPF_NEG) &&
1370 1.7 alnsn BPF_SRC(insns[i].code) == BPF_X) {
1371 1.20 alnsn *hints |= BJ_HINT_XREG;
1372 1.7 alnsn *initmask |= invalid & BJ_INIT_XBIT;
1373 1.7 alnsn }
1374 1.7 alnsn
1375 1.7 alnsn invalid &= ~BJ_INIT_ABIT;
1376 1.7 alnsn continue;
1377 1.7 alnsn
1378 1.7 alnsn case BPF_MISC:
1379 1.7 alnsn switch (BPF_MISCOP(insns[i].code)) {
1380 1.7 alnsn case BPF_TAX: // X <- A
1381 1.20 alnsn *hints |= BJ_HINT_XREG;
1382 1.7 alnsn *initmask |= invalid & BJ_INIT_ABIT;
1383 1.7 alnsn invalid &= ~BJ_INIT_XBIT;
1384 1.7 alnsn continue;
1385 1.7 alnsn
1386 1.7 alnsn case BPF_TXA: // A <- X
1387 1.20 alnsn *hints |= BJ_HINT_XREG;
1388 1.7 alnsn *initmask |= invalid & BJ_INIT_XBIT;
1389 1.7 alnsn invalid &= ~BJ_INIT_ABIT;
1390 1.7 alnsn continue;
1391 1.13 alnsn
1392 1.13 alnsn case BPF_COPX:
1393 1.28 alnsn *hints |= BJ_HINT_XREG | BJ_HINT_COPX;
1394 1.13 alnsn /* FALLTHROUGH */
1395 1.13 alnsn
1396 1.13 alnsn case BPF_COP:
1397 1.20 alnsn *hints |= BJ_HINT_COP;
1398 1.13 alnsn *initmask |= invalid & BJ_INIT_ABIT;
1399 1.13 alnsn invalid &= ~BJ_INIT_ABIT;
1400 1.13 alnsn continue;
1401 1.7 alnsn }
1402 1.7 alnsn
1403 1.7 alnsn continue;
1404 1.7 alnsn
1405 1.1 alnsn case BPF_JMP:
1406 1.7 alnsn /* Initialize abc_length for ABC pass. */
1407 1.8 alnsn insn_dat[i].u.jdata.abc_length = MAX_ABC_LENGTH;
1408 1.7 alnsn
1409 1.7 alnsn if (BPF_OP(insns[i].code) == BPF_JA) {
1410 1.1 alnsn jt = jf = insns[i].k;
1411 1.1 alnsn } else {
1412 1.1 alnsn jt = insns[i].jt;
1413 1.1 alnsn jf = insns[i].jf;
1414 1.1 alnsn }
1415 1.1 alnsn
1416 1.1 alnsn if (jt >= insn_count - (i + 1) ||
1417 1.1 alnsn jf >= insn_count - (i + 1)) {
1418 1.7 alnsn return false;
1419 1.1 alnsn }
1420 1.1 alnsn
1421 1.1 alnsn if (jt > 0 && jf > 0)
1422 1.1 alnsn unreachable = true;
1423 1.1 alnsn
1424 1.7 alnsn jt += i + 1;
1425 1.7 alnsn jf += i + 1;
1426 1.7 alnsn
1427 1.7 alnsn jtf = insn_dat[i].u.jdata.jtf;
1428 1.1 alnsn
1429 1.7 alnsn jtf[0].jdata = &insn_dat[i].u.jdata;
1430 1.7 alnsn SLIST_INSERT_HEAD(&insn_dat[jt].bjumps,
1431 1.7 alnsn &jtf[0], entries);
1432 1.1 alnsn
1433 1.1 alnsn if (jf != jt) {
1434 1.7 alnsn jtf[1].jdata = &insn_dat[i].u.jdata;
1435 1.7 alnsn SLIST_INSERT_HEAD(&insn_dat[jf].bjumps,
1436 1.7 alnsn &jtf[1], entries);
1437 1.1 alnsn }
1438 1.1 alnsn
1439 1.7 alnsn insn_dat[jf].invalid |= invalid;
1440 1.7 alnsn insn_dat[jt].invalid |= invalid;
1441 1.7 alnsn invalid = 0;
1442 1.7 alnsn
1443 1.1 alnsn continue;
1444 1.1 alnsn }
1445 1.1 alnsn }
1446 1.1 alnsn
1447 1.7 alnsn return true;
1448 1.1 alnsn }
1449 1.1 alnsn
1450 1.1 alnsn /*
1451 1.7 alnsn * Array Bounds Check Elimination (ABC) pass.
1452 1.1 alnsn */
1453 1.7 alnsn static void
1454 1.19 alnsn optimize_pass2(const bpf_ctx_t *bc, const struct bpf_insn *insns,
1455 1.19 alnsn struct bpfjit_insn_data *insn_dat, size_t insn_count)
1456 1.7 alnsn {
1457 1.7 alnsn struct bpfjit_jump *jmp;
1458 1.7 alnsn const struct bpf_insn *pc;
1459 1.7 alnsn struct bpfjit_insn_data *pd;
1460 1.7 alnsn size_t i;
1461 1.8 alnsn bpfjit_abc_length_t length, abc_length = 0;
1462 1.7 alnsn
1463 1.19 alnsn const size_t extwords = GET_EXTWORDS(bc);
1464 1.19 alnsn
1465 1.7 alnsn for (i = insn_count; i != 0; i--) {
1466 1.7 alnsn pc = &insns[i-1];
1467 1.7 alnsn pd = &insn_dat[i-1];
1468 1.7 alnsn
1469 1.7 alnsn if (pd->unreachable)
1470 1.7 alnsn continue;
1471 1.7 alnsn
1472 1.7 alnsn switch (BPF_CLASS(pc->code)) {
1473 1.7 alnsn case BPF_RET:
1474 1.11 alnsn /*
1475 1.11 alnsn * It's quite common for bpf programs to
1476 1.11 alnsn * check packet bytes in increasing order
1477 1.11 alnsn * and return zero if bytes don't match
1478 1.11 alnsn * specified critetion. Such programs disable
1479 1.11 alnsn * ABC optimization completely because for
1480 1.11 alnsn * every jump there is a branch with no read
1481 1.11 alnsn * instruction.
1482 1.13 alnsn * With no side effects, BPF_STMT(BPF_RET+BPF_K, 0)
1483 1.13 alnsn * is indistinguishable from out-of-bound load.
1484 1.11 alnsn * Therefore, abc_length can be set to
1485 1.11 alnsn * MAX_ABC_LENGTH and enable ABC for many
1486 1.11 alnsn * bpf programs.
1487 1.13 alnsn * If this optimization encounters any
1488 1.11 alnsn * instruction with a side effect, it will
1489 1.11 alnsn * reset abc_length.
1490 1.11 alnsn */
1491 1.11 alnsn if (BPF_RVAL(pc->code) == BPF_K && pc->k == 0)
1492 1.11 alnsn abc_length = MAX_ABC_LENGTH;
1493 1.11 alnsn else
1494 1.11 alnsn abc_length = 0;
1495 1.7 alnsn break;
1496 1.7 alnsn
1497 1.13 alnsn case BPF_MISC:
1498 1.13 alnsn if (BPF_MISCOP(pc->code) == BPF_COP ||
1499 1.13 alnsn BPF_MISCOP(pc->code) == BPF_COPX) {
1500 1.13 alnsn /* COP instructions can have side effects. */
1501 1.13 alnsn abc_length = 0;
1502 1.13 alnsn }
1503 1.13 alnsn break;
1504 1.13 alnsn
1505 1.13 alnsn case BPF_ST:
1506 1.13 alnsn case BPF_STX:
1507 1.13 alnsn if (extwords != 0) {
1508 1.13 alnsn /* Write to memory is visible after a call. */
1509 1.13 alnsn abc_length = 0;
1510 1.13 alnsn }
1511 1.13 alnsn break;
1512 1.13 alnsn
1513 1.7 alnsn case BPF_JMP:
1514 1.7 alnsn abc_length = pd->u.jdata.abc_length;
1515 1.7 alnsn break;
1516 1.7 alnsn
1517 1.7 alnsn default:
1518 1.7 alnsn if (read_pkt_insn(pc, &length)) {
1519 1.7 alnsn if (abc_length < length)
1520 1.7 alnsn abc_length = length;
1521 1.7 alnsn pd->u.rdata.abc_length = abc_length;
1522 1.7 alnsn }
1523 1.7 alnsn break;
1524 1.7 alnsn }
1525 1.7 alnsn
1526 1.7 alnsn SLIST_FOREACH(jmp, &pd->bjumps, entries) {
1527 1.7 alnsn if (jmp->jdata->abc_length > abc_length)
1528 1.7 alnsn jmp->jdata->abc_length = abc_length;
1529 1.7 alnsn }
1530 1.7 alnsn }
1531 1.7 alnsn }
1532 1.7 alnsn
1533 1.7 alnsn static void
1534 1.7 alnsn optimize_pass3(const struct bpf_insn *insns,
1535 1.7 alnsn struct bpfjit_insn_data *insn_dat, size_t insn_count)
1536 1.1 alnsn {
1537 1.7 alnsn struct bpfjit_jump *jmp;
1538 1.1 alnsn size_t i;
1539 1.8 alnsn bpfjit_abc_length_t checked_length = 0;
1540 1.1 alnsn
1541 1.1 alnsn for (i = 0; i < insn_count; i++) {
1542 1.7 alnsn if (insn_dat[i].unreachable)
1543 1.7 alnsn continue;
1544 1.1 alnsn
1545 1.7 alnsn SLIST_FOREACH(jmp, &insn_dat[i].bjumps, entries) {
1546 1.7 alnsn if (jmp->jdata->checked_length < checked_length)
1547 1.7 alnsn checked_length = jmp->jdata->checked_length;
1548 1.1 alnsn }
1549 1.1 alnsn
1550 1.7 alnsn if (BPF_CLASS(insns[i].code) == BPF_JMP) {
1551 1.7 alnsn insn_dat[i].u.jdata.checked_length = checked_length;
1552 1.8 alnsn } else if (read_pkt_insn(&insns[i], NULL)) {
1553 1.7 alnsn struct bpfjit_read_pkt_data *rdata =
1554 1.7 alnsn &insn_dat[i].u.rdata;
1555 1.7 alnsn rdata->check_length = 0;
1556 1.7 alnsn if (checked_length < rdata->abc_length) {
1557 1.7 alnsn checked_length = rdata->abc_length;
1558 1.7 alnsn rdata->check_length = checked_length;
1559 1.7 alnsn }
1560 1.1 alnsn }
1561 1.7 alnsn }
1562 1.7 alnsn }
1563 1.1 alnsn
1564 1.7 alnsn static bool
1565 1.19 alnsn optimize(const bpf_ctx_t *bc, const struct bpf_insn *insns,
1566 1.7 alnsn struct bpfjit_insn_data *insn_dat, size_t insn_count,
1567 1.20 alnsn bpf_memword_init_t *initmask, bpfjit_hint_t *hints)
1568 1.7 alnsn {
1569 1.1 alnsn
1570 1.7 alnsn optimize_init(insn_dat, insn_count);
1571 1.7 alnsn
1572 1.20 alnsn if (!optimize_pass1(bc, insns, insn_dat, insn_count, initmask, hints))
1573 1.7 alnsn return false;
1574 1.1 alnsn
1575 1.19 alnsn optimize_pass2(bc, insns, insn_dat, insn_count);
1576 1.7 alnsn optimize_pass3(insns, insn_dat, insn_count);
1577 1.7 alnsn
1578 1.7 alnsn return true;
1579 1.1 alnsn }
1580 1.1 alnsn
1581 1.1 alnsn /*
1582 1.1 alnsn * Convert BPF_ALU operations except BPF_NEG and BPF_DIV to sljit operation.
1583 1.1 alnsn */
1584 1.1 alnsn static int
1585 1.7 alnsn bpf_alu_to_sljit_op(const struct bpf_insn *pc)
1586 1.1 alnsn {
1587 1.1 alnsn
1588 1.1 alnsn /*
1589 1.1 alnsn * Note: all supported 64bit arches have 32bit multiply
1590 1.1 alnsn * instruction so SLJIT_INT_OP doesn't have any overhead.
1591 1.1 alnsn */
1592 1.1 alnsn switch (BPF_OP(pc->code)) {
1593 1.1 alnsn case BPF_ADD: return SLJIT_ADD;
1594 1.1 alnsn case BPF_SUB: return SLJIT_SUB;
1595 1.1 alnsn case BPF_MUL: return SLJIT_MUL|SLJIT_INT_OP;
1596 1.1 alnsn case BPF_OR: return SLJIT_OR;
1597 1.33 christos case BPF_XOR: return SLJIT_XOR;
1598 1.1 alnsn case BPF_AND: return SLJIT_AND;
1599 1.1 alnsn case BPF_LSH: return SLJIT_SHL;
1600 1.1 alnsn case BPF_RSH: return SLJIT_LSHR|SLJIT_INT_OP;
1601 1.1 alnsn default:
1602 1.7 alnsn BJ_ASSERT(false);
1603 1.1 alnsn return 0;
1604 1.1 alnsn }
1605 1.1 alnsn }
1606 1.1 alnsn
1607 1.1 alnsn /*
1608 1.1 alnsn * Convert BPF_JMP operations except BPF_JA to sljit condition.
1609 1.1 alnsn */
1610 1.1 alnsn static int
1611 1.7 alnsn bpf_jmp_to_sljit_cond(const struct bpf_insn *pc, bool negate)
1612 1.1 alnsn {
1613 1.1 alnsn /*
1614 1.1 alnsn * Note: all supported 64bit arches have 32bit comparison
1615 1.1 alnsn * instructions so SLJIT_INT_OP doesn't have any overhead.
1616 1.1 alnsn */
1617 1.1 alnsn int rv = SLJIT_INT_OP;
1618 1.1 alnsn
1619 1.1 alnsn switch (BPF_OP(pc->code)) {
1620 1.1 alnsn case BPF_JGT:
1621 1.1 alnsn rv |= negate ? SLJIT_C_LESS_EQUAL : SLJIT_C_GREATER;
1622 1.1 alnsn break;
1623 1.1 alnsn case BPF_JGE:
1624 1.1 alnsn rv |= negate ? SLJIT_C_LESS : SLJIT_C_GREATER_EQUAL;
1625 1.1 alnsn break;
1626 1.1 alnsn case BPF_JEQ:
1627 1.1 alnsn rv |= negate ? SLJIT_C_NOT_EQUAL : SLJIT_C_EQUAL;
1628 1.1 alnsn break;
1629 1.1 alnsn case BPF_JSET:
1630 1.1 alnsn rv |= negate ? SLJIT_C_EQUAL : SLJIT_C_NOT_EQUAL;
1631 1.1 alnsn break;
1632 1.1 alnsn default:
1633 1.7 alnsn BJ_ASSERT(false);
1634 1.1 alnsn }
1635 1.1 alnsn
1636 1.1 alnsn return rv;
1637 1.1 alnsn }
1638 1.1 alnsn
1639 1.1 alnsn /*
1640 1.1 alnsn * Convert BPF_K and BPF_X to sljit register.
1641 1.1 alnsn */
1642 1.1 alnsn static int
1643 1.7 alnsn kx_to_reg(const struct bpf_insn *pc)
1644 1.1 alnsn {
1645 1.1 alnsn
1646 1.1 alnsn switch (BPF_SRC(pc->code)) {
1647 1.1 alnsn case BPF_K: return SLJIT_IMM;
1648 1.7 alnsn case BPF_X: return BJ_XREG;
1649 1.1 alnsn default:
1650 1.7 alnsn BJ_ASSERT(false);
1651 1.1 alnsn return 0;
1652 1.1 alnsn }
1653 1.1 alnsn }
1654 1.1 alnsn
1655 1.12 alnsn static sljit_sw
1656 1.7 alnsn kx_to_reg_arg(const struct bpf_insn *pc)
1657 1.1 alnsn {
1658 1.1 alnsn
1659 1.1 alnsn switch (BPF_SRC(pc->code)) {
1660 1.1 alnsn case BPF_K: return (uint32_t)pc->k; /* SLJIT_IMM, pc->k, */
1661 1.7 alnsn case BPF_X: return 0; /* BJ_XREG, 0, */
1662 1.1 alnsn default:
1663 1.7 alnsn BJ_ASSERT(false);
1664 1.1 alnsn return 0;
1665 1.1 alnsn }
1666 1.1 alnsn }
1667 1.1 alnsn
1668 1.19 alnsn static bool
1669 1.32 alnsn generate_insn_code(struct sljit_compiler *compiler, bpfjit_hint_t hints,
1670 1.32 alnsn const bpf_ctx_t *bc, const struct bpf_insn *insns,
1671 1.32 alnsn struct bpfjit_insn_data *insn_dat, size_t insn_count)
1672 1.1 alnsn {
1673 1.1 alnsn /* a list of jumps to out-of-bound return from a generated function */
1674 1.1 alnsn struct sljit_jump **ret0;
1675 1.7 alnsn size_t ret0_size, ret0_maxsize;
1676 1.1 alnsn
1677 1.19 alnsn struct sljit_jump *jump;
1678 1.19 alnsn struct sljit_label *label;
1679 1.7 alnsn const struct bpf_insn *pc;
1680 1.1 alnsn struct bpfjit_jump *bjump, *jtf;
1681 1.1 alnsn struct sljit_jump *to_mchain_jump;
1682 1.1 alnsn
1683 1.19 alnsn size_t i;
1684 1.19 alnsn int status;
1685 1.19 alnsn int branching, negate;
1686 1.33 christos unsigned int rval, mode, src, op;
1687 1.1 alnsn uint32_t jt, jf;
1688 1.1 alnsn
1689 1.19 alnsn bool unconditional_ret;
1690 1.19 alnsn bool rv;
1691 1.19 alnsn
1692 1.19 alnsn const size_t extwords = GET_EXTWORDS(bc);
1693 1.19 alnsn const size_t memwords = GET_MEMWORDS(bc);
1694 1.13 alnsn
1695 1.13 alnsn ret0 = NULL;
1696 1.19 alnsn rv = false;
1697 1.7 alnsn
1698 1.1 alnsn ret0_size = 0;
1699 1.7 alnsn ret0_maxsize = 64;
1700 1.7 alnsn ret0 = BJ_ALLOC(ret0_maxsize * sizeof(ret0[0]));
1701 1.7 alnsn if (ret0 == NULL)
1702 1.1 alnsn goto fail;
1703 1.1 alnsn
1704 1.24 alnsn /* reset sjump members of jdata */
1705 1.24 alnsn for (i = 0; i < insn_count; i++) {
1706 1.24 alnsn if (insn_dat[i].unreachable ||
1707 1.24 alnsn BPF_CLASS(insns[i].code) != BPF_JMP) {
1708 1.24 alnsn continue;
1709 1.24 alnsn }
1710 1.24 alnsn
1711 1.24 alnsn jtf = insn_dat[i].u.jdata.jtf;
1712 1.24 alnsn jtf[0].sjump = jtf[1].sjump = NULL;
1713 1.24 alnsn }
1714 1.24 alnsn
1715 1.24 alnsn /* main loop */
1716 1.1 alnsn for (i = 0; i < insn_count; i++) {
1717 1.7 alnsn if (insn_dat[i].unreachable)
1718 1.1 alnsn continue;
1719 1.1 alnsn
1720 1.1 alnsn /*
1721 1.1 alnsn * Resolve jumps to the current insn.
1722 1.1 alnsn */
1723 1.1 alnsn label = NULL;
1724 1.7 alnsn SLIST_FOREACH(bjump, &insn_dat[i].bjumps, entries) {
1725 1.7 alnsn if (bjump->sjump != NULL) {
1726 1.1 alnsn if (label == NULL)
1727 1.1 alnsn label = sljit_emit_label(compiler);
1728 1.1 alnsn if (label == NULL)
1729 1.1 alnsn goto fail;
1730 1.7 alnsn sljit_set_label(bjump->sjump, label);
1731 1.1 alnsn }
1732 1.1 alnsn }
1733 1.1 alnsn
1734 1.9 alnsn to_mchain_jump = NULL;
1735 1.9 alnsn unconditional_ret = false;
1736 1.9 alnsn
1737 1.9 alnsn if (read_pkt_insn(&insns[i], NULL)) {
1738 1.9 alnsn if (insn_dat[i].u.rdata.check_length > UINT32_MAX) {
1739 1.9 alnsn /* Jump to "return 0" unconditionally. */
1740 1.9 alnsn unconditional_ret = true;
1741 1.9 alnsn jump = sljit_emit_jump(compiler, SLJIT_JUMP);
1742 1.9 alnsn if (jump == NULL)
1743 1.9 alnsn goto fail;
1744 1.9 alnsn if (!append_jump(jump, &ret0,
1745 1.9 alnsn &ret0_size, &ret0_maxsize))
1746 1.9 alnsn goto fail;
1747 1.9 alnsn } else if (insn_dat[i].u.rdata.check_length > 0) {
1748 1.9 alnsn /* if (buflen < check_length) return 0; */
1749 1.9 alnsn jump = sljit_emit_cmp(compiler,
1750 1.9 alnsn SLJIT_C_LESS,
1751 1.9 alnsn BJ_BUFLEN, 0,
1752 1.9 alnsn SLJIT_IMM,
1753 1.9 alnsn insn_dat[i].u.rdata.check_length);
1754 1.9 alnsn if (jump == NULL)
1755 1.9 alnsn goto fail;
1756 1.1 alnsn #ifdef _KERNEL
1757 1.9 alnsn to_mchain_jump = jump;
1758 1.1 alnsn #else
1759 1.9 alnsn if (!append_jump(jump, &ret0,
1760 1.9 alnsn &ret0_size, &ret0_maxsize))
1761 1.9 alnsn goto fail;
1762 1.1 alnsn #endif
1763 1.9 alnsn }
1764 1.1 alnsn }
1765 1.1 alnsn
1766 1.1 alnsn pc = &insns[i];
1767 1.1 alnsn switch (BPF_CLASS(pc->code)) {
1768 1.1 alnsn
1769 1.1 alnsn default:
1770 1.1 alnsn goto fail;
1771 1.1 alnsn
1772 1.1 alnsn case BPF_LD:
1773 1.1 alnsn /* BPF_LD+BPF_IMM A <- k */
1774 1.1 alnsn if (pc->code == (BPF_LD|BPF_IMM)) {
1775 1.1 alnsn status = sljit_emit_op1(compiler,
1776 1.1 alnsn SLJIT_MOV,
1777 1.7 alnsn BJ_AREG, 0,
1778 1.1 alnsn SLJIT_IMM, (uint32_t)pc->k);
1779 1.1 alnsn if (status != SLJIT_SUCCESS)
1780 1.1 alnsn goto fail;
1781 1.1 alnsn
1782 1.1 alnsn continue;
1783 1.1 alnsn }
1784 1.1 alnsn
1785 1.1 alnsn /* BPF_LD+BPF_MEM A <- M[k] */
1786 1.1 alnsn if (pc->code == (BPF_LD|BPF_MEM)) {
1787 1.13 alnsn if ((uint32_t)pc->k >= memwords)
1788 1.1 alnsn goto fail;
1789 1.13 alnsn status = emit_memload(compiler,
1790 1.13 alnsn BJ_AREG, pc->k, extwords);
1791 1.1 alnsn if (status != SLJIT_SUCCESS)
1792 1.1 alnsn goto fail;
1793 1.1 alnsn
1794 1.1 alnsn continue;
1795 1.1 alnsn }
1796 1.1 alnsn
1797 1.1 alnsn /* BPF_LD+BPF_W+BPF_LEN A <- len */
1798 1.1 alnsn if (pc->code == (BPF_LD|BPF_W|BPF_LEN)) {
1799 1.1 alnsn status = sljit_emit_op1(compiler,
1800 1.21 alnsn SLJIT_MOV, /* size_t source */
1801 1.7 alnsn BJ_AREG, 0,
1802 1.13 alnsn SLJIT_MEM1(BJ_ARGS),
1803 1.13 alnsn offsetof(struct bpf_args, wirelen));
1804 1.1 alnsn if (status != SLJIT_SUCCESS)
1805 1.1 alnsn goto fail;
1806 1.1 alnsn
1807 1.1 alnsn continue;
1808 1.1 alnsn }
1809 1.1 alnsn
1810 1.1 alnsn mode = BPF_MODE(pc->code);
1811 1.1 alnsn if (mode != BPF_ABS && mode != BPF_IND)
1812 1.1 alnsn goto fail;
1813 1.1 alnsn
1814 1.9 alnsn if (unconditional_ret)
1815 1.9 alnsn continue;
1816 1.9 alnsn
1817 1.32 alnsn status = emit_pkt_read(compiler, hints, pc,
1818 1.7 alnsn to_mchain_jump, &ret0, &ret0_size, &ret0_maxsize);
1819 1.1 alnsn if (status != SLJIT_SUCCESS)
1820 1.1 alnsn goto fail;
1821 1.1 alnsn
1822 1.1 alnsn continue;
1823 1.1 alnsn
1824 1.1 alnsn case BPF_LDX:
1825 1.1 alnsn mode = BPF_MODE(pc->code);
1826 1.1 alnsn
1827 1.1 alnsn /* BPF_LDX+BPF_W+BPF_IMM X <- k */
1828 1.1 alnsn if (mode == BPF_IMM) {
1829 1.1 alnsn if (BPF_SIZE(pc->code) != BPF_W)
1830 1.1 alnsn goto fail;
1831 1.1 alnsn status = sljit_emit_op1(compiler,
1832 1.1 alnsn SLJIT_MOV,
1833 1.7 alnsn BJ_XREG, 0,
1834 1.1 alnsn SLJIT_IMM, (uint32_t)pc->k);
1835 1.1 alnsn if (status != SLJIT_SUCCESS)
1836 1.1 alnsn goto fail;
1837 1.1 alnsn
1838 1.1 alnsn continue;
1839 1.1 alnsn }
1840 1.1 alnsn
1841 1.1 alnsn /* BPF_LDX+BPF_W+BPF_LEN X <- len */
1842 1.1 alnsn if (mode == BPF_LEN) {
1843 1.1 alnsn if (BPF_SIZE(pc->code) != BPF_W)
1844 1.1 alnsn goto fail;
1845 1.1 alnsn status = sljit_emit_op1(compiler,
1846 1.21 alnsn SLJIT_MOV, /* size_t source */
1847 1.7 alnsn BJ_XREG, 0,
1848 1.13 alnsn SLJIT_MEM1(BJ_ARGS),
1849 1.13 alnsn offsetof(struct bpf_args, wirelen));
1850 1.1 alnsn if (status != SLJIT_SUCCESS)
1851 1.1 alnsn goto fail;
1852 1.1 alnsn
1853 1.1 alnsn continue;
1854 1.1 alnsn }
1855 1.1 alnsn
1856 1.1 alnsn /* BPF_LDX+BPF_W+BPF_MEM X <- M[k] */
1857 1.1 alnsn if (mode == BPF_MEM) {
1858 1.1 alnsn if (BPF_SIZE(pc->code) != BPF_W)
1859 1.1 alnsn goto fail;
1860 1.13 alnsn if ((uint32_t)pc->k >= memwords)
1861 1.1 alnsn goto fail;
1862 1.13 alnsn status = emit_memload(compiler,
1863 1.13 alnsn BJ_XREG, pc->k, extwords);
1864 1.1 alnsn if (status != SLJIT_SUCCESS)
1865 1.1 alnsn goto fail;
1866 1.1 alnsn
1867 1.1 alnsn continue;
1868 1.1 alnsn }
1869 1.1 alnsn
1870 1.1 alnsn /* BPF_LDX+BPF_B+BPF_MSH X <- 4*(P[k:1]&0xf) */
1871 1.1 alnsn if (mode != BPF_MSH || BPF_SIZE(pc->code) != BPF_B)
1872 1.1 alnsn goto fail;
1873 1.1 alnsn
1874 1.9 alnsn if (unconditional_ret)
1875 1.9 alnsn continue;
1876 1.9 alnsn
1877 1.32 alnsn status = emit_msh(compiler, hints, pc,
1878 1.7 alnsn to_mchain_jump, &ret0, &ret0_size, &ret0_maxsize);
1879 1.1 alnsn if (status != SLJIT_SUCCESS)
1880 1.1 alnsn goto fail;
1881 1.1 alnsn
1882 1.1 alnsn continue;
1883 1.1 alnsn
1884 1.1 alnsn case BPF_ST:
1885 1.8 alnsn if (pc->code != BPF_ST ||
1886 1.13 alnsn (uint32_t)pc->k >= memwords) {
1887 1.1 alnsn goto fail;
1888 1.8 alnsn }
1889 1.1 alnsn
1890 1.13 alnsn status = emit_memstore(compiler,
1891 1.13 alnsn BJ_AREG, pc->k, extwords);
1892 1.1 alnsn if (status != SLJIT_SUCCESS)
1893 1.1 alnsn goto fail;
1894 1.1 alnsn
1895 1.1 alnsn continue;
1896 1.1 alnsn
1897 1.1 alnsn case BPF_STX:
1898 1.8 alnsn if (pc->code != BPF_STX ||
1899 1.13 alnsn (uint32_t)pc->k >= memwords) {
1900 1.1 alnsn goto fail;
1901 1.8 alnsn }
1902 1.1 alnsn
1903 1.13 alnsn status = emit_memstore(compiler,
1904 1.13 alnsn BJ_XREG, pc->k, extwords);
1905 1.1 alnsn if (status != SLJIT_SUCCESS)
1906 1.1 alnsn goto fail;
1907 1.1 alnsn
1908 1.1 alnsn continue;
1909 1.1 alnsn
1910 1.1 alnsn case BPF_ALU:
1911 1.1 alnsn if (pc->code == (BPF_ALU|BPF_NEG)) {
1912 1.1 alnsn status = sljit_emit_op1(compiler,
1913 1.1 alnsn SLJIT_NEG,
1914 1.7 alnsn BJ_AREG, 0,
1915 1.7 alnsn BJ_AREG, 0);
1916 1.1 alnsn if (status != SLJIT_SUCCESS)
1917 1.1 alnsn goto fail;
1918 1.1 alnsn
1919 1.1 alnsn continue;
1920 1.1 alnsn }
1921 1.1 alnsn
1922 1.33 christos op = BPF_OP(pc->code);
1923 1.33 christos if (op != BPF_DIV && op != BPF_MOD) {
1924 1.1 alnsn status = sljit_emit_op2(compiler,
1925 1.1 alnsn bpf_alu_to_sljit_op(pc),
1926 1.7 alnsn BJ_AREG, 0,
1927 1.7 alnsn BJ_AREG, 0,
1928 1.1 alnsn kx_to_reg(pc), kx_to_reg_arg(pc));
1929 1.1 alnsn if (status != SLJIT_SUCCESS)
1930 1.1 alnsn goto fail;
1931 1.1 alnsn
1932 1.1 alnsn continue;
1933 1.1 alnsn }
1934 1.1 alnsn
1935 1.33 christos /* BPF_DIV/BPF_MOD */
1936 1.1 alnsn
1937 1.1 alnsn src = BPF_SRC(pc->code);
1938 1.1 alnsn if (src != BPF_X && src != BPF_K)
1939 1.1 alnsn goto fail;
1940 1.1 alnsn
1941 1.1 alnsn /* division by zero? */
1942 1.1 alnsn if (src == BPF_X) {
1943 1.1 alnsn jump = sljit_emit_cmp(compiler,
1944 1.1 alnsn SLJIT_C_EQUAL|SLJIT_INT_OP,
1945 1.8 alnsn BJ_XREG, 0,
1946 1.1 alnsn SLJIT_IMM, 0);
1947 1.1 alnsn if (jump == NULL)
1948 1.1 alnsn goto fail;
1949 1.7 alnsn if (!append_jump(jump, &ret0,
1950 1.7 alnsn &ret0_size, &ret0_maxsize))
1951 1.7 alnsn goto fail;
1952 1.1 alnsn } else if (pc->k == 0) {
1953 1.1 alnsn jump = sljit_emit_jump(compiler, SLJIT_JUMP);
1954 1.1 alnsn if (jump == NULL)
1955 1.1 alnsn goto fail;
1956 1.7 alnsn if (!append_jump(jump, &ret0,
1957 1.7 alnsn &ret0_size, &ret0_maxsize))
1958 1.7 alnsn goto fail;
1959 1.1 alnsn }
1960 1.1 alnsn
1961 1.1 alnsn if (src == BPF_X) {
1962 1.35 alnsn status = emit_moddiv(compiler, pc);
1963 1.1 alnsn if (status != SLJIT_SUCCESS)
1964 1.1 alnsn goto fail;
1965 1.1 alnsn } else if (pc->k != 0) {
1966 1.35 alnsn if (pc->k & (pc->k - 1)) {
1967 1.35 alnsn status = emit_moddiv(compiler, pc);
1968 1.1 alnsn } else {
1969 1.35 alnsn status = emit_pow2_moddiv(compiler, pc);
1970 1.1 alnsn }
1971 1.1 alnsn if (status != SLJIT_SUCCESS)
1972 1.1 alnsn goto fail;
1973 1.1 alnsn }
1974 1.1 alnsn
1975 1.1 alnsn continue;
1976 1.1 alnsn
1977 1.1 alnsn case BPF_JMP:
1978 1.33 christos op = BPF_OP(pc->code);
1979 1.33 christos if (op == BPF_JA) {
1980 1.1 alnsn jt = jf = pc->k;
1981 1.1 alnsn } else {
1982 1.1 alnsn jt = pc->jt;
1983 1.1 alnsn jf = pc->jf;
1984 1.1 alnsn }
1985 1.1 alnsn
1986 1.1 alnsn negate = (jt == 0) ? 1 : 0;
1987 1.1 alnsn branching = (jt == jf) ? 0 : 1;
1988 1.7 alnsn jtf = insn_dat[i].u.jdata.jtf;
1989 1.1 alnsn
1990 1.1 alnsn if (branching) {
1991 1.33 christos if (op != BPF_JSET) {
1992 1.1 alnsn jump = sljit_emit_cmp(compiler,
1993 1.1 alnsn bpf_jmp_to_sljit_cond(pc, negate),
1994 1.7 alnsn BJ_AREG, 0,
1995 1.1 alnsn kx_to_reg(pc), kx_to_reg_arg(pc));
1996 1.1 alnsn } else {
1997 1.1 alnsn status = sljit_emit_op2(compiler,
1998 1.1 alnsn SLJIT_AND,
1999 1.7 alnsn BJ_TMP1REG, 0,
2000 1.7 alnsn BJ_AREG, 0,
2001 1.1 alnsn kx_to_reg(pc), kx_to_reg_arg(pc));
2002 1.1 alnsn if (status != SLJIT_SUCCESS)
2003 1.1 alnsn goto fail;
2004 1.1 alnsn
2005 1.1 alnsn jump = sljit_emit_cmp(compiler,
2006 1.1 alnsn bpf_jmp_to_sljit_cond(pc, negate),
2007 1.7 alnsn BJ_TMP1REG, 0,
2008 1.1 alnsn SLJIT_IMM, 0);
2009 1.1 alnsn }
2010 1.1 alnsn
2011 1.1 alnsn if (jump == NULL)
2012 1.1 alnsn goto fail;
2013 1.1 alnsn
2014 1.7 alnsn BJ_ASSERT(jtf[negate].sjump == NULL);
2015 1.7 alnsn jtf[negate].sjump = jump;
2016 1.1 alnsn }
2017 1.1 alnsn
2018 1.1 alnsn if (!branching || (jt != 0 && jf != 0)) {
2019 1.1 alnsn jump = sljit_emit_jump(compiler, SLJIT_JUMP);
2020 1.1 alnsn if (jump == NULL)
2021 1.1 alnsn goto fail;
2022 1.1 alnsn
2023 1.7 alnsn BJ_ASSERT(jtf[branching].sjump == NULL);
2024 1.7 alnsn jtf[branching].sjump = jump;
2025 1.1 alnsn }
2026 1.1 alnsn
2027 1.1 alnsn continue;
2028 1.1 alnsn
2029 1.1 alnsn case BPF_RET:
2030 1.1 alnsn rval = BPF_RVAL(pc->code);
2031 1.1 alnsn if (rval == BPF_X)
2032 1.1 alnsn goto fail;
2033 1.1 alnsn
2034 1.1 alnsn /* BPF_RET+BPF_K accept k bytes */
2035 1.1 alnsn if (rval == BPF_K) {
2036 1.7 alnsn status = sljit_emit_return(compiler,
2037 1.7 alnsn SLJIT_MOV_UI,
2038 1.1 alnsn SLJIT_IMM, (uint32_t)pc->k);
2039 1.1 alnsn if (status != SLJIT_SUCCESS)
2040 1.1 alnsn goto fail;
2041 1.1 alnsn }
2042 1.1 alnsn
2043 1.1 alnsn /* BPF_RET+BPF_A accept A bytes */
2044 1.1 alnsn if (rval == BPF_A) {
2045 1.7 alnsn status = sljit_emit_return(compiler,
2046 1.7 alnsn SLJIT_MOV_UI,
2047 1.7 alnsn BJ_AREG, 0);
2048 1.1 alnsn if (status != SLJIT_SUCCESS)
2049 1.1 alnsn goto fail;
2050 1.1 alnsn }
2051 1.1 alnsn
2052 1.1 alnsn continue;
2053 1.1 alnsn
2054 1.1 alnsn case BPF_MISC:
2055 1.7 alnsn switch (BPF_MISCOP(pc->code)) {
2056 1.7 alnsn case BPF_TAX:
2057 1.1 alnsn status = sljit_emit_op1(compiler,
2058 1.1 alnsn SLJIT_MOV_UI,
2059 1.7 alnsn BJ_XREG, 0,
2060 1.7 alnsn BJ_AREG, 0);
2061 1.1 alnsn if (status != SLJIT_SUCCESS)
2062 1.1 alnsn goto fail;
2063 1.1 alnsn
2064 1.1 alnsn continue;
2065 1.1 alnsn
2066 1.7 alnsn case BPF_TXA:
2067 1.1 alnsn status = sljit_emit_op1(compiler,
2068 1.1 alnsn SLJIT_MOV,
2069 1.7 alnsn BJ_AREG, 0,
2070 1.7 alnsn BJ_XREG, 0);
2071 1.1 alnsn if (status != SLJIT_SUCCESS)
2072 1.1 alnsn goto fail;
2073 1.1 alnsn
2074 1.1 alnsn continue;
2075 1.13 alnsn
2076 1.13 alnsn case BPF_COP:
2077 1.13 alnsn case BPF_COPX:
2078 1.13 alnsn if (bc == NULL || bc->copfuncs == NULL)
2079 1.13 alnsn goto fail;
2080 1.13 alnsn if (BPF_MISCOP(pc->code) == BPF_COP &&
2081 1.13 alnsn (uint32_t)pc->k >= bc->nfuncs) {
2082 1.13 alnsn goto fail;
2083 1.13 alnsn }
2084 1.13 alnsn
2085 1.32 alnsn status = emit_cop(compiler, hints, bc, pc,
2086 1.28 alnsn &ret0, &ret0_size, &ret0_maxsize);
2087 1.13 alnsn if (status != SLJIT_SUCCESS)
2088 1.13 alnsn goto fail;
2089 1.13 alnsn
2090 1.13 alnsn continue;
2091 1.1 alnsn }
2092 1.1 alnsn
2093 1.1 alnsn goto fail;
2094 1.1 alnsn } /* switch */
2095 1.1 alnsn } /* main loop */
2096 1.1 alnsn
2097 1.7 alnsn BJ_ASSERT(ret0_size <= ret0_maxsize);
2098 1.1 alnsn
2099 1.7 alnsn if (ret0_size > 0) {
2100 1.1 alnsn label = sljit_emit_label(compiler);
2101 1.1 alnsn if (label == NULL)
2102 1.1 alnsn goto fail;
2103 1.7 alnsn for (i = 0; i < ret0_size; i++)
2104 1.7 alnsn sljit_set_label(ret0[i], label);
2105 1.1 alnsn }
2106 1.1 alnsn
2107 1.23 alnsn status = sljit_emit_return(compiler,
2108 1.23 alnsn SLJIT_MOV_UI,
2109 1.23 alnsn SLJIT_IMM, 0);
2110 1.23 alnsn if (status != SLJIT_SUCCESS)
2111 1.23 alnsn goto fail;
2112 1.23 alnsn
2113 1.19 alnsn rv = true;
2114 1.19 alnsn
2115 1.19 alnsn fail:
2116 1.19 alnsn if (ret0 != NULL)
2117 1.19 alnsn BJ_FREE(ret0, ret0_maxsize * sizeof(ret0[0]));
2118 1.19 alnsn
2119 1.19 alnsn return rv;
2120 1.19 alnsn }
2121 1.19 alnsn
2122 1.19 alnsn bpfjit_func_t
2123 1.19 alnsn bpfjit_generate_code(const bpf_ctx_t *bc,
2124 1.19 alnsn const struct bpf_insn *insns, size_t insn_count)
2125 1.19 alnsn {
2126 1.19 alnsn void *rv;
2127 1.19 alnsn struct sljit_compiler *compiler;
2128 1.19 alnsn
2129 1.19 alnsn size_t i;
2130 1.19 alnsn int status;
2131 1.19 alnsn
2132 1.19 alnsn /* optimization related */
2133 1.19 alnsn bpf_memword_init_t initmask;
2134 1.20 alnsn bpfjit_hint_t hints;
2135 1.19 alnsn
2136 1.19 alnsn /* memory store location for initial zero initialization */
2137 1.19 alnsn sljit_si mem_reg;
2138 1.19 alnsn sljit_sw mem_off;
2139 1.19 alnsn
2140 1.19 alnsn struct bpfjit_insn_data *insn_dat;
2141 1.19 alnsn
2142 1.19 alnsn const size_t extwords = GET_EXTWORDS(bc);
2143 1.19 alnsn const size_t memwords = GET_MEMWORDS(bc);
2144 1.19 alnsn const bpf_memword_init_t preinited = extwords ? bc->preinited : 0;
2145 1.19 alnsn
2146 1.19 alnsn rv = NULL;
2147 1.19 alnsn compiler = NULL;
2148 1.19 alnsn insn_dat = NULL;
2149 1.19 alnsn
2150 1.19 alnsn if (memwords > MAX_MEMWORDS)
2151 1.19 alnsn goto fail;
2152 1.19 alnsn
2153 1.19 alnsn if (insn_count == 0 || insn_count > SIZE_MAX / sizeof(insn_dat[0]))
2154 1.19 alnsn goto fail;
2155 1.19 alnsn
2156 1.19 alnsn insn_dat = BJ_ALLOC(insn_count * sizeof(insn_dat[0]));
2157 1.19 alnsn if (insn_dat == NULL)
2158 1.19 alnsn goto fail;
2159 1.19 alnsn
2160 1.20 alnsn if (!optimize(bc, insns, insn_dat, insn_count, &initmask, &hints))
2161 1.19 alnsn goto fail;
2162 1.19 alnsn
2163 1.19 alnsn compiler = sljit_create_compiler();
2164 1.19 alnsn if (compiler == NULL)
2165 1.19 alnsn goto fail;
2166 1.19 alnsn
2167 1.19 alnsn #if !defined(_KERNEL) && defined(SLJIT_VERBOSE) && SLJIT_VERBOSE
2168 1.19 alnsn sljit_compiler_verbose(compiler, stderr);
2169 1.19 alnsn #endif
2170 1.19 alnsn
2171 1.30 alnsn status = sljit_emit_enter(compiler,
2172 1.30 alnsn 2, nscratches(hints), nsaveds(hints), sizeof(struct bpfjit_stack));
2173 1.19 alnsn if (status != SLJIT_SUCCESS)
2174 1.19 alnsn goto fail;
2175 1.19 alnsn
2176 1.20 alnsn if (hints & BJ_HINT_COP) {
2177 1.19 alnsn /* save ctx argument */
2178 1.19 alnsn status = sljit_emit_op1(compiler,
2179 1.19 alnsn SLJIT_MOV_P,
2180 1.19 alnsn SLJIT_MEM1(SLJIT_LOCALS_REG),
2181 1.19 alnsn offsetof(struct bpfjit_stack, ctx),
2182 1.19 alnsn BJ_CTX_ARG, 0);
2183 1.19 alnsn if (status != SLJIT_SUCCESS)
2184 1.19 alnsn goto fail;
2185 1.19 alnsn }
2186 1.19 alnsn
2187 1.19 alnsn if (extwords == 0) {
2188 1.19 alnsn mem_reg = SLJIT_MEM1(SLJIT_LOCALS_REG);
2189 1.19 alnsn mem_off = offsetof(struct bpfjit_stack, mem);
2190 1.19 alnsn } else {
2191 1.19 alnsn /* copy "mem" argument from bpf_args to bpfjit_stack */
2192 1.19 alnsn status = sljit_emit_op1(compiler,
2193 1.19 alnsn SLJIT_MOV_P,
2194 1.19 alnsn BJ_TMP1REG, 0,
2195 1.19 alnsn SLJIT_MEM1(BJ_ARGS), offsetof(struct bpf_args, mem));
2196 1.19 alnsn if (status != SLJIT_SUCCESS)
2197 1.19 alnsn goto fail;
2198 1.19 alnsn
2199 1.19 alnsn status = sljit_emit_op1(compiler,
2200 1.19 alnsn SLJIT_MOV_P,
2201 1.19 alnsn SLJIT_MEM1(SLJIT_LOCALS_REG),
2202 1.19 alnsn offsetof(struct bpfjit_stack, extmem),
2203 1.19 alnsn BJ_TMP1REG, 0);
2204 1.19 alnsn if (status != SLJIT_SUCCESS)
2205 1.19 alnsn goto fail;
2206 1.19 alnsn
2207 1.19 alnsn mem_reg = SLJIT_MEM1(BJ_TMP1REG);
2208 1.19 alnsn mem_off = 0;
2209 1.19 alnsn }
2210 1.19 alnsn
2211 1.19 alnsn /*
2212 1.19 alnsn * Exclude pre-initialised external memory words but keep
2213 1.19 alnsn * initialization statuses of A and X registers in case
2214 1.19 alnsn * bc->preinited wrongly sets those two bits.
2215 1.19 alnsn */
2216 1.19 alnsn initmask &= ~preinited | BJ_INIT_ABIT | BJ_INIT_XBIT;
2217 1.19 alnsn
2218 1.19 alnsn #if defined(_KERNEL)
2219 1.19 alnsn /* bpf_filter() checks initialization of memwords. */
2220 1.19 alnsn BJ_ASSERT((initmask & (BJ_INIT_MBIT(memwords) - 1)) == 0);
2221 1.19 alnsn #endif
2222 1.19 alnsn for (i = 0; i < memwords; i++) {
2223 1.19 alnsn if (initmask & BJ_INIT_MBIT(i)) {
2224 1.19 alnsn /* M[i] = 0; */
2225 1.19 alnsn status = sljit_emit_op1(compiler,
2226 1.19 alnsn SLJIT_MOV_UI,
2227 1.19 alnsn mem_reg, mem_off + i * sizeof(uint32_t),
2228 1.19 alnsn SLJIT_IMM, 0);
2229 1.19 alnsn if (status != SLJIT_SUCCESS)
2230 1.19 alnsn goto fail;
2231 1.19 alnsn }
2232 1.19 alnsn }
2233 1.19 alnsn
2234 1.19 alnsn if (initmask & BJ_INIT_ABIT) {
2235 1.19 alnsn /* A = 0; */
2236 1.19 alnsn status = sljit_emit_op1(compiler,
2237 1.19 alnsn SLJIT_MOV,
2238 1.19 alnsn BJ_AREG, 0,
2239 1.19 alnsn SLJIT_IMM, 0);
2240 1.19 alnsn if (status != SLJIT_SUCCESS)
2241 1.19 alnsn goto fail;
2242 1.19 alnsn }
2243 1.19 alnsn
2244 1.19 alnsn if (initmask & BJ_INIT_XBIT) {
2245 1.19 alnsn /* X = 0; */
2246 1.19 alnsn status = sljit_emit_op1(compiler,
2247 1.19 alnsn SLJIT_MOV,
2248 1.19 alnsn BJ_XREG, 0,
2249 1.19 alnsn SLJIT_IMM, 0);
2250 1.19 alnsn if (status != SLJIT_SUCCESS)
2251 1.19 alnsn goto fail;
2252 1.19 alnsn }
2253 1.19 alnsn
2254 1.19 alnsn status = load_buf_buflen(compiler);
2255 1.19 alnsn if (status != SLJIT_SUCCESS)
2256 1.19 alnsn goto fail;
2257 1.19 alnsn
2258 1.32 alnsn if (!generate_insn_code(compiler, hints,
2259 1.32 alnsn bc, insns, insn_dat, insn_count)) {
2260 1.19 alnsn goto fail;
2261 1.32 alnsn }
2262 1.19 alnsn
2263 1.1 alnsn rv = sljit_generate_code(compiler);
2264 1.1 alnsn
2265 1.1 alnsn fail:
2266 1.1 alnsn if (compiler != NULL)
2267 1.1 alnsn sljit_free_compiler(compiler);
2268 1.1 alnsn
2269 1.1 alnsn if (insn_dat != NULL)
2270 1.7 alnsn BJ_FREE(insn_dat, insn_count * sizeof(insn_dat[0]));
2271 1.1 alnsn
2272 1.4 rmind return (bpfjit_func_t)rv;
2273 1.1 alnsn }
2274 1.1 alnsn
2275 1.1 alnsn void
2276 1.4 rmind bpfjit_free_code(bpfjit_func_t code)
2277 1.1 alnsn {
2278 1.7 alnsn
2279 1.1 alnsn sljit_free_code((void *)code);
2280 1.1 alnsn }
2281