Home | History | Annotate | Line # | Download | only in net
bpfjit.c revision 1.36.2.2
      1  1.36.2.2     skrll /*	$NetBSD: bpfjit.c,v 1.36.2.2 2016/03/19 11:30:32 skrll Exp $	*/
      2       1.3     rmind 
      3       1.1     alnsn /*-
      4  1.36.2.1     skrll  * Copyright (c) 2011-2015 Alexander Nasonov.
      5       1.1     alnsn  * All rights reserved.
      6       1.1     alnsn  *
      7       1.1     alnsn  * Redistribution and use in source and binary forms, with or without
      8       1.1     alnsn  * modification, are permitted provided that the following conditions
      9       1.1     alnsn  * are met:
     10       1.1     alnsn  *
     11       1.1     alnsn  * 1. Redistributions of source code must retain the above copyright
     12       1.1     alnsn  *    notice, this list of conditions and the following disclaimer.
     13       1.1     alnsn  * 2. Redistributions in binary form must reproduce the above copyright
     14       1.1     alnsn  *    notice, this list of conditions and the following disclaimer in
     15       1.1     alnsn  *    the documentation and/or other materials provided with the
     16       1.1     alnsn  *    distribution.
     17       1.1     alnsn  *
     18       1.1     alnsn  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     19       1.1     alnsn  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     20       1.1     alnsn  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
     21       1.1     alnsn  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
     22       1.1     alnsn  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
     23       1.1     alnsn  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
     24       1.1     alnsn  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     25       1.1     alnsn  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     26       1.1     alnsn  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     27       1.1     alnsn  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
     28       1.1     alnsn  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29       1.1     alnsn  * SUCH DAMAGE.
     30       1.1     alnsn  */
     31       1.1     alnsn 
     32       1.2     alnsn #include <sys/cdefs.h>
     33       1.2     alnsn #ifdef _KERNEL
     34  1.36.2.2     skrll __KERNEL_RCSID(0, "$NetBSD: bpfjit.c,v 1.36.2.2 2016/03/19 11:30:32 skrll Exp $");
     35       1.2     alnsn #else
     36  1.36.2.2     skrll __RCSID("$NetBSD: bpfjit.c,v 1.36.2.2 2016/03/19 11:30:32 skrll Exp $");
     37       1.2     alnsn #endif
     38       1.2     alnsn 
     39       1.3     rmind #include <sys/types.h>
     40       1.3     rmind #include <sys/queue.h>
     41       1.1     alnsn 
     42       1.1     alnsn #ifndef _KERNEL
     43       1.7     alnsn #include <assert.h>
     44       1.7     alnsn #define BJ_ASSERT(c) assert(c)
     45       1.7     alnsn #else
     46       1.7     alnsn #define BJ_ASSERT(c) KASSERT(c)
     47       1.7     alnsn #endif
     48       1.7     alnsn 
     49       1.7     alnsn #ifndef _KERNEL
     50       1.3     rmind #include <stdlib.h>
     51       1.7     alnsn #define BJ_ALLOC(sz) malloc(sz)
     52       1.7     alnsn #define BJ_FREE(p, sz) free(p)
     53       1.1     alnsn #else
     54       1.3     rmind #include <sys/kmem.h>
     55       1.7     alnsn #define BJ_ALLOC(sz) kmem_alloc(sz, KM_SLEEP)
     56       1.7     alnsn #define BJ_FREE(p, sz) kmem_free(p, sz)
     57       1.1     alnsn #endif
     58       1.1     alnsn 
     59       1.1     alnsn #ifndef _KERNEL
     60       1.1     alnsn #include <limits.h>
     61       1.1     alnsn #include <stdbool.h>
     62       1.1     alnsn #include <stddef.h>
     63       1.1     alnsn #include <stdint.h>
     64       1.1     alnsn #else
     65       1.1     alnsn #include <sys/atomic.h>
     66       1.1     alnsn #include <sys/module.h>
     67       1.1     alnsn #endif
     68       1.1     alnsn 
     69       1.5     rmind #define	__BPF_PRIVATE
     70       1.5     rmind #include <net/bpf.h>
     71       1.3     rmind #include <net/bpfjit.h>
     72       1.1     alnsn #include <sljitLir.h>
     73       1.1     alnsn 
     74       1.7     alnsn #if !defined(_KERNEL) && defined(SLJIT_VERBOSE) && SLJIT_VERBOSE
     75       1.7     alnsn #include <stdio.h> /* for stderr */
     76       1.7     alnsn #endif
     77       1.7     alnsn 
     78       1.7     alnsn /*
     79  1.36.2.2     skrll  * Number of saved registers to pass to sljit_emit_enter() function.
     80  1.36.2.2     skrll  */
     81  1.36.2.2     skrll #define NSAVEDS		3
     82  1.36.2.2     skrll 
     83  1.36.2.2     skrll /*
     84      1.13     alnsn  * Arguments of generated bpfjit_func_t.
     85      1.13     alnsn  * The first argument is reassigned upon entry
     86      1.13     alnsn  * to a more frequently used buf argument.
     87      1.13     alnsn  */
     88      1.13     alnsn #define BJ_CTX_ARG	SLJIT_SAVED_REG1
     89      1.13     alnsn #define BJ_ARGS		SLJIT_SAVED_REG2
     90      1.13     alnsn 
     91      1.13     alnsn /*
     92       1.7     alnsn  * Permanent register assignments.
     93       1.7     alnsn  */
     94       1.7     alnsn #define BJ_BUF		SLJIT_SAVED_REG1
     95      1.13     alnsn //#define BJ_ARGS	SLJIT_SAVED_REG2
     96       1.7     alnsn #define BJ_BUFLEN	SLJIT_SAVED_REG3
     97      1.12     alnsn #define BJ_AREG		SLJIT_SCRATCH_REG1
     98      1.12     alnsn #define BJ_TMP1REG	SLJIT_SCRATCH_REG2
     99      1.12     alnsn #define BJ_TMP2REG	SLJIT_SCRATCH_REG3
    100      1.32     alnsn #define BJ_XREG		SLJIT_TEMPORARY_EREG1
    101      1.32     alnsn #define BJ_TMP3REG	SLJIT_TEMPORARY_EREG2
    102       1.7     alnsn 
    103      1.13     alnsn #ifdef _KERNEL
    104      1.13     alnsn #define MAX_MEMWORDS BPF_MAX_MEMWORDS
    105      1.13     alnsn #else
    106      1.13     alnsn #define MAX_MEMWORDS BPF_MEMWORDS
    107      1.13     alnsn #endif
    108      1.13     alnsn 
    109      1.13     alnsn #define BJ_INIT_NOBITS  ((bpf_memword_init_t)0)
    110      1.13     alnsn #define BJ_INIT_MBIT(k) BPF_MEMWORD_INIT(k)
    111      1.13     alnsn #define BJ_INIT_ABIT    BJ_INIT_MBIT(MAX_MEMWORDS)
    112      1.13     alnsn #define BJ_INIT_XBIT    BJ_INIT_MBIT(MAX_MEMWORDS + 1)
    113       1.1     alnsn 
    114       1.9     alnsn /*
    115      1.19     alnsn  * Get a number of memwords and external memwords from a bpf_ctx object.
    116      1.19     alnsn  */
    117      1.19     alnsn #define GET_EXTWORDS(bc) ((bc) ? (bc)->extwords : 0)
    118      1.19     alnsn #define GET_MEMWORDS(bc) (GET_EXTWORDS(bc) ? GET_EXTWORDS(bc) : BPF_MEMWORDS)
    119      1.19     alnsn 
    120      1.19     alnsn /*
    121      1.20     alnsn  * Optimization hints.
    122      1.20     alnsn  */
    123      1.20     alnsn typedef unsigned int bpfjit_hint_t;
    124      1.28     alnsn #define BJ_HINT_ABS  0x01 /* packet read at absolute offset   */
    125      1.28     alnsn #define BJ_HINT_IND  0x02 /* packet read at variable offset   */
    126      1.29     alnsn #define BJ_HINT_MSH  0x04 /* BPF_MSH instruction              */
    127      1.29     alnsn #define BJ_HINT_COP  0x08 /* BPF_COP or BPF_COPX instruction  */
    128      1.29     alnsn #define BJ_HINT_COPX 0x10 /* BPF_COPX instruction             */
    129      1.29     alnsn #define BJ_HINT_XREG 0x20 /* BJ_XREG is needed                */
    130      1.29     alnsn #define BJ_HINT_LDX  0x40 /* BPF_LDX instruction              */
    131      1.29     alnsn #define BJ_HINT_PKT  (BJ_HINT_ABS|BJ_HINT_IND|BJ_HINT_MSH)
    132      1.20     alnsn 
    133      1.20     alnsn /*
    134       1.9     alnsn  * Datatype for Array Bounds Check Elimination (ABC) pass.
    135       1.9     alnsn  */
    136       1.9     alnsn typedef uint64_t bpfjit_abc_length_t;
    137       1.9     alnsn #define MAX_ABC_LENGTH (UINT32_MAX + UINT64_C(4)) /* max. width is 4 */
    138       1.8     alnsn 
    139       1.7     alnsn struct bpfjit_stack
    140       1.7     alnsn {
    141      1.13     alnsn 	bpf_ctx_t *ctx;
    142      1.13     alnsn 	uint32_t *extmem; /* pointer to external memory store */
    143      1.32     alnsn 	uint32_t reg; /* saved A or X register */
    144       1.7     alnsn #ifdef _KERNEL
    145      1.21     alnsn 	int err; /* 3rd argument for m_xword/m_xhalf/m_xbyte function call */
    146       1.7     alnsn #endif
    147      1.13     alnsn 	uint32_t mem[BPF_MEMWORDS]; /* internal memory store */
    148       1.7     alnsn };
    149       1.7     alnsn 
    150       1.7     alnsn /*
    151       1.7     alnsn  * Data for BPF_JMP instruction.
    152       1.7     alnsn  * Forward declaration for struct bpfjit_jump.
    153       1.1     alnsn  */
    154       1.7     alnsn struct bpfjit_jump_data;
    155       1.1     alnsn 
    156       1.1     alnsn /*
    157       1.7     alnsn  * Node of bjumps list.
    158       1.1     alnsn  */
    159       1.3     rmind struct bpfjit_jump {
    160       1.7     alnsn 	struct sljit_jump *sjump;
    161       1.7     alnsn 	SLIST_ENTRY(bpfjit_jump) entries;
    162       1.7     alnsn 	struct bpfjit_jump_data *jdata;
    163       1.1     alnsn };
    164       1.1     alnsn 
    165       1.1     alnsn /*
    166       1.1     alnsn  * Data for BPF_JMP instruction.
    167       1.1     alnsn  */
    168       1.3     rmind struct bpfjit_jump_data {
    169       1.1     alnsn 	/*
    170       1.7     alnsn 	 * These entries make up bjumps list:
    171       1.7     alnsn 	 * jtf[0] - when coming from jt path,
    172       1.7     alnsn 	 * jtf[1] - when coming from jf path.
    173       1.1     alnsn 	 */
    174       1.7     alnsn 	struct bpfjit_jump jtf[2];
    175       1.7     alnsn 	/*
    176       1.7     alnsn 	 * Length calculated by Array Bounds Check Elimination (ABC) pass.
    177       1.7     alnsn 	 */
    178       1.8     alnsn 	bpfjit_abc_length_t abc_length;
    179       1.7     alnsn 	/*
    180       1.7     alnsn 	 * Length checked by the last out-of-bounds check.
    181       1.7     alnsn 	 */
    182       1.8     alnsn 	bpfjit_abc_length_t checked_length;
    183       1.1     alnsn };
    184       1.1     alnsn 
    185       1.1     alnsn /*
    186       1.1     alnsn  * Data for "read from packet" instructions.
    187       1.1     alnsn  * See also read_pkt_insn() function below.
    188       1.1     alnsn  */
    189       1.3     rmind struct bpfjit_read_pkt_data {
    190       1.1     alnsn 	/*
    191       1.7     alnsn 	 * Length calculated by Array Bounds Check Elimination (ABC) pass.
    192       1.7     alnsn 	 */
    193       1.8     alnsn 	bpfjit_abc_length_t abc_length;
    194       1.7     alnsn 	/*
    195       1.7     alnsn 	 * If positive, emit "if (buflen < check_length) return 0"
    196       1.7     alnsn 	 * out-of-bounds check.
    197       1.9     alnsn 	 * Values greater than UINT32_MAX generate unconditional "return 0".
    198       1.1     alnsn 	 */
    199       1.8     alnsn 	bpfjit_abc_length_t check_length;
    200       1.1     alnsn };
    201       1.1     alnsn 
    202       1.1     alnsn /*
    203       1.1     alnsn  * Additional (optimization-related) data for bpf_insn.
    204       1.1     alnsn  */
    205       1.3     rmind struct bpfjit_insn_data {
    206       1.1     alnsn 	/* List of jumps to this insn. */
    207       1.7     alnsn 	SLIST_HEAD(, bpfjit_jump) bjumps;
    208       1.1     alnsn 
    209       1.1     alnsn 	union {
    210       1.7     alnsn 		struct bpfjit_jump_data     jdata;
    211       1.7     alnsn 		struct bpfjit_read_pkt_data rdata;
    212       1.7     alnsn 	} u;
    213       1.1     alnsn 
    214      1.13     alnsn 	bpf_memword_init_t invalid;
    215       1.7     alnsn 	bool unreachable;
    216       1.1     alnsn };
    217       1.1     alnsn 
    218       1.1     alnsn #ifdef _KERNEL
    219       1.1     alnsn 
    220       1.1     alnsn uint32_t m_xword(const struct mbuf *, uint32_t, int *);
    221       1.1     alnsn uint32_t m_xhalf(const struct mbuf *, uint32_t, int *);
    222       1.1     alnsn uint32_t m_xbyte(const struct mbuf *, uint32_t, int *);
    223       1.1     alnsn 
    224       1.1     alnsn MODULE(MODULE_CLASS_MISC, bpfjit, "sljit")
    225       1.1     alnsn 
    226       1.1     alnsn static int
    227       1.1     alnsn bpfjit_modcmd(modcmd_t cmd, void *arg)
    228       1.1     alnsn {
    229       1.1     alnsn 
    230       1.1     alnsn 	switch (cmd) {
    231       1.1     alnsn 	case MODULE_CMD_INIT:
    232       1.1     alnsn 		bpfjit_module_ops.bj_free_code = &bpfjit_free_code;
    233       1.1     alnsn 		membar_producer();
    234       1.1     alnsn 		bpfjit_module_ops.bj_generate_code = &bpfjit_generate_code;
    235       1.1     alnsn 		membar_producer();
    236       1.1     alnsn 		return 0;
    237       1.1     alnsn 
    238       1.1     alnsn 	case MODULE_CMD_FINI:
    239       1.1     alnsn 		return EOPNOTSUPP;
    240       1.1     alnsn 
    241       1.1     alnsn 	default:
    242       1.1     alnsn 		return ENOTTY;
    243       1.1     alnsn 	}
    244       1.1     alnsn }
    245       1.1     alnsn #endif
    246       1.1     alnsn 
    247      1.20     alnsn /*
    248      1.21     alnsn  * Return a number of scratch registers to pass
    249      1.20     alnsn  * to sljit_emit_enter() function.
    250      1.20     alnsn  */
    251      1.20     alnsn static sljit_si
    252      1.20     alnsn nscratches(bpfjit_hint_t hints)
    253      1.20     alnsn {
    254      1.20     alnsn 	sljit_si rv = 2;
    255      1.20     alnsn 
    256      1.22     alnsn #ifdef _KERNEL
    257      1.24     alnsn 	if (hints & BJ_HINT_PKT)
    258      1.24     alnsn 		rv = 3; /* xcall with three arguments */
    259      1.22     alnsn #endif
    260      1.22     alnsn 
    261      1.27     alnsn 	if (hints & BJ_HINT_IND)
    262      1.20     alnsn 		rv = 3; /* uses BJ_TMP2REG */
    263      1.20     alnsn 
    264      1.20     alnsn 	if (hints & BJ_HINT_COP)
    265      1.20     alnsn 		rv = 3; /* calls copfunc with three arguments */
    266      1.20     alnsn 
    267      1.32     alnsn 	if (hints & BJ_HINT_XREG)
    268      1.32     alnsn 		rv = 4; /* uses BJ_XREG */
    269      1.32     alnsn 
    270      1.32     alnsn #ifdef _KERNEL
    271      1.32     alnsn 	if (hints & BJ_HINT_LDX)
    272      1.32     alnsn 		rv = 5; /* uses BJ_TMP3REG */
    273      1.32     alnsn #endif
    274      1.32     alnsn 
    275      1.29     alnsn 	if (hints & BJ_HINT_COPX)
    276      1.32     alnsn 		rv = 5; /* uses BJ_TMP3REG */
    277      1.29     alnsn 
    278      1.29     alnsn 	return rv;
    279      1.29     alnsn }
    280      1.29     alnsn 
    281       1.1     alnsn static uint32_t
    282       1.7     alnsn read_width(const struct bpf_insn *pc)
    283       1.1     alnsn {
    284       1.1     alnsn 
    285       1.1     alnsn 	switch (BPF_SIZE(pc->code)) {
    286  1.36.2.1     skrll 	case BPF_W: return 4;
    287  1.36.2.1     skrll 	case BPF_H: return 2;
    288  1.36.2.1     skrll 	case BPF_B: return 1;
    289  1.36.2.1     skrll 	default:    return 0;
    290       1.1     alnsn 	}
    291       1.1     alnsn }
    292       1.1     alnsn 
    293      1.13     alnsn /*
    294      1.13     alnsn  * Copy buf and buflen members of bpf_args from BJ_ARGS
    295      1.13     alnsn  * pointer to BJ_BUF and BJ_BUFLEN registers.
    296      1.13     alnsn  */
    297      1.13     alnsn static int
    298      1.13     alnsn load_buf_buflen(struct sljit_compiler *compiler)
    299      1.13     alnsn {
    300      1.13     alnsn 	int status;
    301      1.13     alnsn 
    302      1.13     alnsn 	status = sljit_emit_op1(compiler,
    303      1.13     alnsn 	    SLJIT_MOV_P,
    304      1.13     alnsn 	    BJ_BUF, 0,
    305      1.13     alnsn 	    SLJIT_MEM1(BJ_ARGS),
    306      1.13     alnsn 	    offsetof(struct bpf_args, pkt));
    307      1.13     alnsn 	if (status != SLJIT_SUCCESS)
    308      1.13     alnsn 		return status;
    309      1.13     alnsn 
    310      1.13     alnsn 	status = sljit_emit_op1(compiler,
    311      1.21     alnsn 	    SLJIT_MOV, /* size_t source */
    312      1.13     alnsn 	    BJ_BUFLEN, 0,
    313      1.13     alnsn 	    SLJIT_MEM1(BJ_ARGS),
    314      1.13     alnsn 	    offsetof(struct bpf_args, buflen));
    315      1.13     alnsn 
    316      1.13     alnsn 	return status;
    317      1.13     alnsn }
    318      1.13     alnsn 
    319       1.7     alnsn static bool
    320       1.7     alnsn grow_jumps(struct sljit_jump ***jumps, size_t *size)
    321       1.7     alnsn {
    322       1.7     alnsn 	struct sljit_jump **newptr;
    323       1.7     alnsn 	const size_t elemsz = sizeof(struct sljit_jump *);
    324       1.7     alnsn 	size_t old_size = *size;
    325       1.7     alnsn 	size_t new_size = 2 * old_size;
    326       1.7     alnsn 
    327       1.7     alnsn 	if (new_size < old_size || new_size > SIZE_MAX / elemsz)
    328       1.7     alnsn 		return false;
    329       1.7     alnsn 
    330       1.7     alnsn 	newptr = BJ_ALLOC(new_size * elemsz);
    331       1.7     alnsn 	if (newptr == NULL)
    332       1.7     alnsn 		return false;
    333       1.7     alnsn 
    334       1.7     alnsn 	memcpy(newptr, *jumps, old_size * elemsz);
    335       1.7     alnsn 	BJ_FREE(*jumps, old_size * elemsz);
    336       1.7     alnsn 
    337       1.7     alnsn 	*jumps = newptr;
    338       1.7     alnsn 	*size = new_size;
    339       1.7     alnsn 	return true;
    340       1.7     alnsn }
    341       1.7     alnsn 
    342       1.7     alnsn static bool
    343       1.7     alnsn append_jump(struct sljit_jump *jump, struct sljit_jump ***jumps,
    344       1.7     alnsn     size_t *size, size_t *max_size)
    345       1.1     alnsn {
    346       1.7     alnsn 	if (*size == *max_size && !grow_jumps(jumps, max_size))
    347       1.7     alnsn 		return false;
    348       1.1     alnsn 
    349       1.7     alnsn 	(*jumps)[(*size)++] = jump;
    350       1.7     alnsn 	return true;
    351       1.1     alnsn }
    352       1.1     alnsn 
    353       1.1     alnsn /*
    354      1.24     alnsn  * Emit code for BPF_LD+BPF_B+BPF_ABS    A <- P[k:1].
    355       1.1     alnsn  */
    356       1.1     alnsn static int
    357      1.27     alnsn emit_read8(struct sljit_compiler *compiler, sljit_si src, uint32_t k)
    358       1.1     alnsn {
    359       1.1     alnsn 
    360       1.1     alnsn 	return sljit_emit_op1(compiler,
    361       1.1     alnsn 	    SLJIT_MOV_UB,
    362       1.7     alnsn 	    BJ_AREG, 0,
    363      1.27     alnsn 	    SLJIT_MEM1(src), k);
    364       1.1     alnsn }
    365       1.1     alnsn 
    366       1.1     alnsn /*
    367      1.24     alnsn  * Emit code for BPF_LD+BPF_H+BPF_ABS    A <- P[k:2].
    368       1.1     alnsn  */
    369       1.1     alnsn static int
    370      1.27     alnsn emit_read16(struct sljit_compiler *compiler, sljit_si src, uint32_t k)
    371       1.1     alnsn {
    372       1.1     alnsn 	int status;
    373       1.1     alnsn 
    374      1.27     alnsn 	BJ_ASSERT(k <= UINT32_MAX - 1);
    375      1.27     alnsn 
    376      1.27     alnsn 	/* A = buf[k]; */
    377       1.1     alnsn 	status = sljit_emit_op1(compiler,
    378       1.1     alnsn 	    SLJIT_MOV_UB,
    379      1.27     alnsn 	    BJ_AREG, 0,
    380      1.27     alnsn 	    SLJIT_MEM1(src), k);
    381       1.1     alnsn 	if (status != SLJIT_SUCCESS)
    382       1.1     alnsn 		return status;
    383       1.1     alnsn 
    384      1.27     alnsn 	/* tmp1 = buf[k+1]; */
    385       1.1     alnsn 	status = sljit_emit_op1(compiler,
    386       1.1     alnsn 	    SLJIT_MOV_UB,
    387      1.27     alnsn 	    BJ_TMP1REG, 0,
    388      1.27     alnsn 	    SLJIT_MEM1(src), k+1);
    389       1.1     alnsn 	if (status != SLJIT_SUCCESS)
    390       1.1     alnsn 		return status;
    391       1.1     alnsn 
    392      1.27     alnsn 	/* A = A << 8; */
    393       1.1     alnsn 	status = sljit_emit_op2(compiler,
    394       1.1     alnsn 	    SLJIT_SHL,
    395      1.27     alnsn 	    BJ_AREG, 0,
    396      1.27     alnsn 	    BJ_AREG, 0,
    397       1.1     alnsn 	    SLJIT_IMM, 8);
    398       1.1     alnsn 	if (status != SLJIT_SUCCESS)
    399       1.1     alnsn 		return status;
    400       1.1     alnsn 
    401       1.1     alnsn 	/* A = A + tmp1; */
    402       1.1     alnsn 	status = sljit_emit_op2(compiler,
    403       1.1     alnsn 	    SLJIT_ADD,
    404       1.7     alnsn 	    BJ_AREG, 0,
    405       1.7     alnsn 	    BJ_AREG, 0,
    406       1.7     alnsn 	    BJ_TMP1REG, 0);
    407       1.1     alnsn 	return status;
    408       1.1     alnsn }
    409       1.1     alnsn 
    410       1.1     alnsn /*
    411      1.24     alnsn  * Emit code for BPF_LD+BPF_W+BPF_ABS    A <- P[k:4].
    412       1.1     alnsn  */
    413       1.1     alnsn static int
    414      1.27     alnsn emit_read32(struct sljit_compiler *compiler, sljit_si src, uint32_t k)
    415       1.1     alnsn {
    416       1.1     alnsn 	int status;
    417       1.1     alnsn 
    418      1.27     alnsn 	BJ_ASSERT(k <= UINT32_MAX - 3);
    419       1.1     alnsn 
    420      1.27     alnsn 	/* A = buf[k]; */
    421       1.1     alnsn 	status = sljit_emit_op1(compiler,
    422       1.1     alnsn 	    SLJIT_MOV_UB,
    423      1.27     alnsn 	    BJ_AREG, 0,
    424      1.27     alnsn 	    SLJIT_MEM1(src), k);
    425       1.1     alnsn 	if (status != SLJIT_SUCCESS)
    426       1.1     alnsn 		return status;
    427       1.1     alnsn 
    428      1.27     alnsn 	/* tmp1 = buf[k+1]; */
    429       1.1     alnsn 	status = sljit_emit_op1(compiler,
    430       1.1     alnsn 	    SLJIT_MOV_UB,
    431      1.27     alnsn 	    BJ_TMP1REG, 0,
    432      1.27     alnsn 	    SLJIT_MEM1(src), k+1);
    433       1.1     alnsn 	if (status != SLJIT_SUCCESS)
    434       1.1     alnsn 		return status;
    435       1.1     alnsn 
    436      1.27     alnsn 	/* A = A << 8; */
    437       1.1     alnsn 	status = sljit_emit_op2(compiler,
    438       1.1     alnsn 	    SLJIT_SHL,
    439      1.27     alnsn 	    BJ_AREG, 0,
    440      1.27     alnsn 	    BJ_AREG, 0,
    441      1.27     alnsn 	    SLJIT_IMM, 8);
    442       1.1     alnsn 	if (status != SLJIT_SUCCESS)
    443       1.1     alnsn 		return status;
    444       1.1     alnsn 
    445       1.1     alnsn 	/* A = A + tmp1; */
    446       1.1     alnsn 	status = sljit_emit_op2(compiler,
    447       1.1     alnsn 	    SLJIT_ADD,
    448       1.7     alnsn 	    BJ_AREG, 0,
    449       1.7     alnsn 	    BJ_AREG, 0,
    450       1.7     alnsn 	    BJ_TMP1REG, 0);
    451       1.1     alnsn 	if (status != SLJIT_SUCCESS)
    452       1.1     alnsn 		return status;
    453       1.1     alnsn 
    454       1.1     alnsn 	/* tmp1 = buf[k+2]; */
    455       1.1     alnsn 	status = sljit_emit_op1(compiler,
    456       1.1     alnsn 	    SLJIT_MOV_UB,
    457       1.7     alnsn 	    BJ_TMP1REG, 0,
    458      1.27     alnsn 	    SLJIT_MEM1(src), k+2);
    459       1.1     alnsn 	if (status != SLJIT_SUCCESS)
    460       1.1     alnsn 		return status;
    461       1.1     alnsn 
    462      1.27     alnsn 	/* A = A << 8; */
    463       1.1     alnsn 	status = sljit_emit_op2(compiler,
    464       1.1     alnsn 	    SLJIT_SHL,
    465      1.27     alnsn 	    BJ_AREG, 0,
    466      1.27     alnsn 	    BJ_AREG, 0,
    467      1.27     alnsn 	    SLJIT_IMM, 8);
    468       1.1     alnsn 	if (status != SLJIT_SUCCESS)
    469       1.1     alnsn 		return status;
    470       1.1     alnsn 
    471      1.27     alnsn 	/* A = A + tmp1; */
    472       1.1     alnsn 	status = sljit_emit_op2(compiler,
    473       1.1     alnsn 	    SLJIT_ADD,
    474       1.7     alnsn 	    BJ_AREG, 0,
    475       1.7     alnsn 	    BJ_AREG, 0,
    476      1.27     alnsn 	    BJ_TMP1REG, 0);
    477      1.27     alnsn 	if (status != SLJIT_SUCCESS)
    478      1.27     alnsn 		return status;
    479      1.27     alnsn 
    480      1.27     alnsn 	/* tmp1 = buf[k+3]; */
    481      1.27     alnsn 	status = sljit_emit_op1(compiler,
    482      1.27     alnsn 	    SLJIT_MOV_UB,
    483      1.27     alnsn 	    BJ_TMP1REG, 0,
    484      1.27     alnsn 	    SLJIT_MEM1(src), k+3);
    485       1.1     alnsn 	if (status != SLJIT_SUCCESS)
    486       1.1     alnsn 		return status;
    487       1.1     alnsn 
    488      1.27     alnsn 	/* A = A << 8; */
    489       1.1     alnsn 	status = sljit_emit_op2(compiler,
    490       1.1     alnsn 	    SLJIT_SHL,
    491      1.27     alnsn 	    BJ_AREG, 0,
    492      1.27     alnsn 	    BJ_AREG, 0,
    493       1.1     alnsn 	    SLJIT_IMM, 8);
    494       1.1     alnsn 	if (status != SLJIT_SUCCESS)
    495       1.1     alnsn 		return status;
    496       1.1     alnsn 
    497       1.1     alnsn 	/* A = A + tmp1; */
    498       1.1     alnsn 	status = sljit_emit_op2(compiler,
    499       1.1     alnsn 	    SLJIT_ADD,
    500       1.7     alnsn 	    BJ_AREG, 0,
    501       1.7     alnsn 	    BJ_AREG, 0,
    502       1.7     alnsn 	    BJ_TMP1REG, 0);
    503       1.1     alnsn 	return status;
    504       1.1     alnsn }
    505       1.1     alnsn 
    506       1.1     alnsn #ifdef _KERNEL
    507       1.1     alnsn /*
    508      1.24     alnsn  * Emit code for m_xword/m_xhalf/m_xbyte call.
    509       1.1     alnsn  *
    510      1.24     alnsn  * @pc BPF_LD+BPF_W+BPF_ABS    A <- P[k:4]
    511      1.24     alnsn  *     BPF_LD+BPF_H+BPF_ABS    A <- P[k:2]
    512      1.24     alnsn  *     BPF_LD+BPF_B+BPF_ABS    A <- P[k:1]
    513      1.24     alnsn  *     BPF_LD+BPF_W+BPF_IND    A <- P[X+k:4]
    514      1.24     alnsn  *     BPF_LD+BPF_H+BPF_IND    A <- P[X+k:2]
    515      1.24     alnsn  *     BPF_LD+BPF_B+BPF_IND    A <- P[X+k:1]
    516      1.24     alnsn  *     BPF_LDX+BPF_B+BPF_MSH   X <- 4*(P[k:1]&0xf)
    517       1.1     alnsn  */
    518       1.1     alnsn static int
    519      1.32     alnsn emit_xcall(struct sljit_compiler *compiler, bpfjit_hint_t hints,
    520      1.32     alnsn     const struct bpf_insn *pc, int dst, struct sljit_jump ***ret0,
    521      1.32     alnsn     size_t *ret0_size, size_t *ret0_maxsize,
    522       1.1     alnsn     uint32_t (*fn)(const struct mbuf *, uint32_t, int *))
    523       1.1     alnsn {
    524      1.32     alnsn #if BJ_XREG == SLJIT_RETURN_REG   || \
    525      1.32     alnsn     BJ_XREG == SLJIT_SCRATCH_REG1 || \
    526      1.32     alnsn     BJ_XREG == SLJIT_SCRATCH_REG2 || \
    527      1.32     alnsn     BJ_XREG == SLJIT_SCRATCH_REG3
    528      1.32     alnsn #error "Not supported assignment of registers."
    529      1.32     alnsn #endif
    530      1.23     alnsn 	struct sljit_jump *jump;
    531      1.32     alnsn 	sljit_si save_reg;
    532       1.1     alnsn 	int status;
    533       1.1     alnsn 
    534      1.32     alnsn 	save_reg = (BPF_CLASS(pc->code) == BPF_LDX) ? BJ_AREG : BJ_XREG;
    535      1.23     alnsn 
    536      1.32     alnsn 	if (save_reg == BJ_AREG || (hints & BJ_HINT_XREG)) {
    537      1.32     alnsn 		/* save A or X */
    538       1.1     alnsn 		status = sljit_emit_op1(compiler,
    539      1.32     alnsn 		    SLJIT_MOV_UI, /* uint32_t destination */
    540      1.32     alnsn 		    SLJIT_MEM1(SLJIT_LOCALS_REG),
    541      1.32     alnsn 		    offsetof(struct bpfjit_stack, reg),
    542      1.32     alnsn 		    save_reg, 0);
    543       1.1     alnsn 		if (status != SLJIT_SUCCESS)
    544       1.1     alnsn 			return status;
    545       1.1     alnsn 	}
    546       1.1     alnsn 
    547       1.1     alnsn 	/*
    548      1.23     alnsn 	 * Prepare registers for fn(mbuf, k, &err) call.
    549       1.1     alnsn 	 */
    550       1.1     alnsn 	status = sljit_emit_op1(compiler,
    551       1.1     alnsn 	    SLJIT_MOV,
    552      1.12     alnsn 	    SLJIT_SCRATCH_REG1, 0,
    553       1.7     alnsn 	    BJ_BUF, 0);
    554       1.1     alnsn 	if (status != SLJIT_SUCCESS)
    555       1.1     alnsn 		return status;
    556       1.1     alnsn 
    557       1.1     alnsn 	if (BPF_CLASS(pc->code) == BPF_LD && BPF_MODE(pc->code) == BPF_IND) {
    558      1.31     alnsn 		if (pc->k == 0) {
    559      1.31     alnsn 			/* k = X; */
    560      1.31     alnsn 			status = sljit_emit_op1(compiler,
    561      1.31     alnsn 			    SLJIT_MOV,
    562      1.31     alnsn 			    SLJIT_SCRATCH_REG2, 0,
    563      1.31     alnsn 			    BJ_XREG, 0);
    564      1.31     alnsn 			if (status != SLJIT_SUCCESS)
    565      1.31     alnsn 				return status;
    566      1.31     alnsn 		} else {
    567      1.31     alnsn 			/* if (X > UINT32_MAX - pc->k) return 0; */
    568      1.31     alnsn 			jump = sljit_emit_cmp(compiler,
    569      1.31     alnsn 			    SLJIT_C_GREATER,
    570      1.31     alnsn 			    BJ_XREG, 0,
    571      1.31     alnsn 			    SLJIT_IMM, UINT32_MAX - pc->k);
    572      1.31     alnsn 			if (jump == NULL)
    573      1.31     alnsn 				return SLJIT_ERR_ALLOC_FAILED;
    574      1.31     alnsn 			if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
    575      1.31     alnsn 				return SLJIT_ERR_ALLOC_FAILED;
    576      1.31     alnsn 
    577      1.31     alnsn 			/* k = X + pc->k; */
    578      1.31     alnsn 			status = sljit_emit_op2(compiler,
    579      1.31     alnsn 			    SLJIT_ADD,
    580      1.31     alnsn 			    SLJIT_SCRATCH_REG2, 0,
    581      1.31     alnsn 			    BJ_XREG, 0,
    582      1.31     alnsn 			    SLJIT_IMM, (uint32_t)pc->k);
    583      1.31     alnsn 			if (status != SLJIT_SUCCESS)
    584      1.31     alnsn 				return status;
    585      1.31     alnsn 		}
    586       1.1     alnsn 	} else {
    587      1.23     alnsn 		/* k = pc->k */
    588       1.1     alnsn 		status = sljit_emit_op1(compiler,
    589       1.1     alnsn 		    SLJIT_MOV,
    590      1.12     alnsn 		    SLJIT_SCRATCH_REG2, 0,
    591       1.1     alnsn 		    SLJIT_IMM, (uint32_t)pc->k);
    592      1.24     alnsn 		if (status != SLJIT_SUCCESS)
    593      1.24     alnsn 			return status;
    594       1.1     alnsn 	}
    595       1.1     alnsn 
    596      1.21     alnsn 	/*
    597      1.21     alnsn 	 * The third argument of fn is an address on stack.
    598      1.21     alnsn 	 */
    599       1.1     alnsn 	status = sljit_get_local_base(compiler,
    600      1.21     alnsn 	    SLJIT_SCRATCH_REG3, 0,
    601      1.21     alnsn 	    offsetof(struct bpfjit_stack, err));
    602       1.1     alnsn 	if (status != SLJIT_SUCCESS)
    603       1.1     alnsn 		return status;
    604       1.1     alnsn 
    605       1.1     alnsn 	/* fn(buf, k, &err); */
    606       1.1     alnsn 	status = sljit_emit_ijump(compiler,
    607       1.1     alnsn 	    SLJIT_CALL3,
    608       1.1     alnsn 	    SLJIT_IMM, SLJIT_FUNC_OFFSET(fn));
    609      1.24     alnsn 	if (status != SLJIT_SUCCESS)
    610      1.24     alnsn 		return status;
    611       1.1     alnsn 
    612       1.7     alnsn 	if (dst != SLJIT_RETURN_REG) {
    613       1.1     alnsn 		/* move return value to dst */
    614       1.1     alnsn 		status = sljit_emit_op1(compiler,
    615       1.1     alnsn 		    SLJIT_MOV,
    616      1.23     alnsn 		    dst, 0,
    617       1.1     alnsn 		    SLJIT_RETURN_REG, 0);
    618       1.1     alnsn 		if (status != SLJIT_SUCCESS)
    619       1.1     alnsn 			return status;
    620       1.7     alnsn 	}
    621       1.1     alnsn 
    622      1.30     alnsn 	/* if (*err != 0) return 0; */
    623      1.30     alnsn 	jump = sljit_emit_cmp(compiler,
    624      1.30     alnsn 	    SLJIT_C_NOT_EQUAL|SLJIT_INT_OP,
    625      1.21     alnsn 	    SLJIT_MEM1(SLJIT_LOCALS_REG),
    626      1.30     alnsn 	    offsetof(struct bpfjit_stack, err),
    627       1.1     alnsn 	    SLJIT_IMM, 0);
    628      1.23     alnsn 	if (jump == NULL)
    629      1.23     alnsn 		return SLJIT_ERR_ALLOC_FAILED;
    630      1.23     alnsn 
    631      1.23     alnsn 	if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
    632       1.1     alnsn 		return SLJIT_ERR_ALLOC_FAILED;
    633       1.1     alnsn 
    634      1.32     alnsn 	if (save_reg == BJ_AREG || (hints & BJ_HINT_XREG)) {
    635      1.32     alnsn 		/* restore A or X */
    636      1.26     alnsn 		status = sljit_emit_op1(compiler,
    637      1.32     alnsn 		    SLJIT_MOV_UI, /* uint32_t source */
    638      1.32     alnsn 		    save_reg, 0,
    639      1.32     alnsn 		    SLJIT_MEM1(SLJIT_LOCALS_REG),
    640      1.32     alnsn 		    offsetof(struct bpfjit_stack, reg));
    641      1.26     alnsn 		if (status != SLJIT_SUCCESS)
    642      1.26     alnsn 			return status;
    643      1.26     alnsn 	}
    644      1.26     alnsn 
    645      1.24     alnsn 	return SLJIT_SUCCESS;
    646       1.1     alnsn }
    647       1.1     alnsn #endif
    648       1.1     alnsn 
    649       1.1     alnsn /*
    650      1.13     alnsn  * Emit code for BPF_COP and BPF_COPX instructions.
    651      1.13     alnsn  */
    652      1.13     alnsn static int
    653      1.32     alnsn emit_cop(struct sljit_compiler *compiler, bpfjit_hint_t hints,
    654      1.28     alnsn     const bpf_ctx_t *bc, const struct bpf_insn *pc,
    655      1.28     alnsn     struct sljit_jump ***ret0, size_t *ret0_size, size_t *ret0_maxsize)
    656      1.13     alnsn {
    657      1.32     alnsn #if BJ_XREG    == SLJIT_RETURN_REG   || \
    658      1.32     alnsn     BJ_XREG    == SLJIT_SCRATCH_REG1 || \
    659      1.32     alnsn     BJ_XREG    == SLJIT_SCRATCH_REG2 || \
    660      1.32     alnsn     BJ_XREG    == SLJIT_SCRATCH_REG3 || \
    661      1.32     alnsn     BJ_TMP3REG == SLJIT_SCRATCH_REG1 || \
    662      1.28     alnsn     BJ_TMP3REG == SLJIT_SCRATCH_REG2 || \
    663      1.28     alnsn     BJ_TMP3REG == SLJIT_SCRATCH_REG3
    664      1.13     alnsn #error "Not supported assignment of registers."
    665      1.13     alnsn #endif
    666      1.13     alnsn 
    667      1.13     alnsn 	struct sljit_jump *jump;
    668      1.28     alnsn 	sljit_si call_reg;
    669      1.28     alnsn 	sljit_sw call_off;
    670      1.13     alnsn 	int status;
    671      1.13     alnsn 
    672      1.13     alnsn 	BJ_ASSERT(bc != NULL && bc->copfuncs != NULL);
    673      1.13     alnsn 
    674      1.32     alnsn 	if (hints & BJ_HINT_LDX) {
    675      1.32     alnsn 		/* save X */
    676      1.32     alnsn 		status = sljit_emit_op1(compiler,
    677      1.32     alnsn 		    SLJIT_MOV_UI, /* uint32_t destination */
    678      1.32     alnsn 		    SLJIT_MEM1(SLJIT_LOCALS_REG),
    679      1.32     alnsn 		    offsetof(struct bpfjit_stack, reg),
    680      1.32     alnsn 		    BJ_XREG, 0);
    681      1.32     alnsn 		if (status != SLJIT_SUCCESS)
    682      1.32     alnsn 			return status;
    683      1.32     alnsn 	}
    684      1.32     alnsn 
    685      1.28     alnsn 	if (BPF_MISCOP(pc->code) == BPF_COP) {
    686      1.28     alnsn 		call_reg = SLJIT_IMM;
    687      1.28     alnsn 		call_off = SLJIT_FUNC_OFFSET(bc->copfuncs[pc->k]);
    688      1.28     alnsn 	} else {
    689      1.13     alnsn 		/* if (X >= bc->nfuncs) return 0; */
    690      1.13     alnsn 		jump = sljit_emit_cmp(compiler,
    691      1.13     alnsn 		    SLJIT_C_GREATER_EQUAL,
    692      1.13     alnsn 		    BJ_XREG, 0,
    693      1.13     alnsn 		    SLJIT_IMM, bc->nfuncs);
    694      1.13     alnsn 		if (jump == NULL)
    695      1.13     alnsn 			return SLJIT_ERR_ALLOC_FAILED;
    696      1.28     alnsn 		if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
    697      1.28     alnsn 			return SLJIT_ERR_ALLOC_FAILED;
    698      1.28     alnsn 
    699      1.28     alnsn 		/* tmp1 = ctx; */
    700      1.28     alnsn 		status = sljit_emit_op1(compiler,
    701      1.28     alnsn 		    SLJIT_MOV_P,
    702      1.28     alnsn 		    BJ_TMP1REG, 0,
    703      1.28     alnsn 		    SLJIT_MEM1(SLJIT_LOCALS_REG),
    704      1.28     alnsn 		    offsetof(struct bpfjit_stack, ctx));
    705      1.28     alnsn 		if (status != SLJIT_SUCCESS)
    706      1.28     alnsn 			return status;
    707      1.28     alnsn 
    708      1.28     alnsn 		/* tmp1 = ctx->copfuncs; */
    709      1.28     alnsn 		status = sljit_emit_op1(compiler,
    710      1.28     alnsn 		    SLJIT_MOV_P,
    711      1.28     alnsn 		    BJ_TMP1REG, 0,
    712      1.28     alnsn 		    SLJIT_MEM1(BJ_TMP1REG),
    713      1.28     alnsn 		    offsetof(struct bpf_ctx, copfuncs));
    714      1.28     alnsn 		if (status != SLJIT_SUCCESS)
    715      1.28     alnsn 			return status;
    716      1.28     alnsn 
    717      1.28     alnsn 		/* tmp2 = X; */
    718      1.28     alnsn 		status = sljit_emit_op1(compiler,
    719      1.28     alnsn 		    SLJIT_MOV,
    720      1.28     alnsn 		    BJ_TMP2REG, 0,
    721      1.28     alnsn 		    BJ_XREG, 0);
    722      1.28     alnsn 		if (status != SLJIT_SUCCESS)
    723      1.28     alnsn 			return status;
    724      1.28     alnsn 
    725      1.28     alnsn 		/* tmp3 = ctx->copfuncs[tmp2]; */
    726      1.28     alnsn 		call_reg = BJ_TMP3REG;
    727      1.28     alnsn 		call_off = 0;
    728      1.28     alnsn 		status = sljit_emit_op1(compiler,
    729      1.28     alnsn 		    SLJIT_MOV_P,
    730      1.28     alnsn 		    call_reg, call_off,
    731      1.28     alnsn 		    SLJIT_MEM2(BJ_TMP1REG, BJ_TMP2REG),
    732      1.28     alnsn 		    SLJIT_WORD_SHIFT);
    733      1.28     alnsn 		if (status != SLJIT_SUCCESS)
    734      1.28     alnsn 			return status;
    735      1.13     alnsn 	}
    736      1.13     alnsn 
    737      1.13     alnsn 	/*
    738      1.13     alnsn 	 * Copy bpf_copfunc_t arguments to registers.
    739      1.13     alnsn 	 */
    740      1.13     alnsn #if BJ_AREG != SLJIT_SCRATCH_REG3
    741      1.13     alnsn 	status = sljit_emit_op1(compiler,
    742      1.13     alnsn 	    SLJIT_MOV_UI,
    743      1.13     alnsn 	    SLJIT_SCRATCH_REG3, 0,
    744      1.13     alnsn 	    BJ_AREG, 0);
    745      1.13     alnsn 	if (status != SLJIT_SUCCESS)
    746      1.13     alnsn 		return status;
    747      1.13     alnsn #endif
    748      1.13     alnsn 
    749      1.13     alnsn 	status = sljit_emit_op1(compiler,
    750      1.13     alnsn 	    SLJIT_MOV_P,
    751      1.13     alnsn 	    SLJIT_SCRATCH_REG1, 0,
    752      1.13     alnsn 	    SLJIT_MEM1(SLJIT_LOCALS_REG),
    753      1.13     alnsn 	    offsetof(struct bpfjit_stack, ctx));
    754      1.13     alnsn 	if (status != SLJIT_SUCCESS)
    755      1.13     alnsn 		return status;
    756      1.13     alnsn 
    757      1.13     alnsn 	status = sljit_emit_op1(compiler,
    758      1.13     alnsn 	    SLJIT_MOV_P,
    759      1.13     alnsn 	    SLJIT_SCRATCH_REG2, 0,
    760      1.13     alnsn 	    BJ_ARGS, 0);
    761      1.13     alnsn 	if (status != SLJIT_SUCCESS)
    762      1.13     alnsn 		return status;
    763      1.13     alnsn 
    764      1.28     alnsn 	status = sljit_emit_ijump(compiler,
    765      1.28     alnsn 	    SLJIT_CALL3, call_reg, call_off);
    766      1.28     alnsn 	if (status != SLJIT_SUCCESS)
    767      1.28     alnsn 		return status;
    768      1.13     alnsn 
    769      1.13     alnsn #if BJ_AREG != SLJIT_RETURN_REG
    770      1.13     alnsn 	status = sljit_emit_op1(compiler,
    771      1.13     alnsn 	    SLJIT_MOV,
    772      1.13     alnsn 	    BJ_AREG, 0,
    773      1.13     alnsn 	    SLJIT_RETURN_REG, 0);
    774      1.13     alnsn 	if (status != SLJIT_SUCCESS)
    775      1.13     alnsn 		return status;
    776      1.13     alnsn #endif
    777      1.13     alnsn 
    778      1.32     alnsn 	if (hints & BJ_HINT_LDX) {
    779      1.32     alnsn 		/* restore X */
    780      1.32     alnsn 		status = sljit_emit_op1(compiler,
    781      1.32     alnsn 		    SLJIT_MOV_UI, /* uint32_t source */
    782      1.32     alnsn 		    BJ_XREG, 0,
    783      1.32     alnsn 		    SLJIT_MEM1(SLJIT_LOCALS_REG),
    784      1.32     alnsn 		    offsetof(struct bpfjit_stack, reg));
    785      1.32     alnsn 		if (status != SLJIT_SUCCESS)
    786      1.32     alnsn 			return status;
    787      1.32     alnsn 	}
    788      1.32     alnsn 
    789      1.24     alnsn 	return SLJIT_SUCCESS;
    790      1.13     alnsn }
    791      1.13     alnsn 
    792      1.13     alnsn /*
    793       1.1     alnsn  * Generate code for
    794       1.1     alnsn  * BPF_LD+BPF_W+BPF_ABS    A <- P[k:4]
    795       1.1     alnsn  * BPF_LD+BPF_H+BPF_ABS    A <- P[k:2]
    796       1.1     alnsn  * BPF_LD+BPF_B+BPF_ABS    A <- P[k:1]
    797       1.1     alnsn  * BPF_LD+BPF_W+BPF_IND    A <- P[X+k:4]
    798       1.1     alnsn  * BPF_LD+BPF_H+BPF_IND    A <- P[X+k:2]
    799       1.1     alnsn  * BPF_LD+BPF_B+BPF_IND    A <- P[X+k:1]
    800       1.1     alnsn  */
    801       1.1     alnsn static int
    802      1.32     alnsn emit_pkt_read(struct sljit_compiler *compiler, bpfjit_hint_t hints,
    803       1.7     alnsn     const struct bpf_insn *pc, struct sljit_jump *to_mchain_jump,
    804       1.7     alnsn     struct sljit_jump ***ret0, size_t *ret0_size, size_t *ret0_maxsize)
    805       1.1     alnsn {
    806      1.25     alnsn 	int status = SLJIT_ERR_ALLOC_FAILED;
    807       1.1     alnsn 	uint32_t width;
    808      1.27     alnsn 	sljit_si ld_reg;
    809       1.1     alnsn 	struct sljit_jump *jump;
    810       1.1     alnsn #ifdef _KERNEL
    811       1.1     alnsn 	struct sljit_label *label;
    812       1.1     alnsn 	struct sljit_jump *over_mchain_jump;
    813       1.1     alnsn 	const bool check_zero_buflen = (to_mchain_jump != NULL);
    814       1.1     alnsn #endif
    815       1.1     alnsn 	const uint32_t k = pc->k;
    816       1.1     alnsn 
    817       1.1     alnsn #ifdef _KERNEL
    818       1.1     alnsn 	if (to_mchain_jump == NULL) {
    819       1.1     alnsn 		to_mchain_jump = sljit_emit_cmp(compiler,
    820       1.1     alnsn 		    SLJIT_C_EQUAL,
    821       1.7     alnsn 		    BJ_BUFLEN, 0,
    822       1.1     alnsn 		    SLJIT_IMM, 0);
    823       1.1     alnsn 		if (to_mchain_jump == NULL)
    824       1.7     alnsn 			return SLJIT_ERR_ALLOC_FAILED;
    825       1.1     alnsn 	}
    826       1.1     alnsn #endif
    827       1.1     alnsn 
    828      1.27     alnsn 	ld_reg = BJ_BUF;
    829       1.1     alnsn 	width = read_width(pc);
    830  1.36.2.1     skrll 	if (width == 0)
    831  1.36.2.1     skrll 		return SLJIT_ERR_ALLOC_FAILED;
    832       1.1     alnsn 
    833       1.1     alnsn 	if (BPF_MODE(pc->code) == BPF_IND) {
    834       1.1     alnsn 		/* tmp1 = buflen - (pc->k + width); */
    835       1.1     alnsn 		status = sljit_emit_op2(compiler,
    836       1.1     alnsn 		    SLJIT_SUB,
    837       1.7     alnsn 		    BJ_TMP1REG, 0,
    838       1.7     alnsn 		    BJ_BUFLEN, 0,
    839       1.1     alnsn 		    SLJIT_IMM, k + width);
    840       1.1     alnsn 		if (status != SLJIT_SUCCESS)
    841       1.1     alnsn 			return status;
    842       1.1     alnsn 
    843      1.27     alnsn 		/* ld_reg = buf + X; */
    844      1.27     alnsn 		ld_reg = BJ_TMP2REG;
    845       1.1     alnsn 		status = sljit_emit_op2(compiler,
    846       1.1     alnsn 		    SLJIT_ADD,
    847      1.27     alnsn 		    ld_reg, 0,
    848       1.7     alnsn 		    BJ_BUF, 0,
    849       1.7     alnsn 		    BJ_XREG, 0);
    850       1.1     alnsn 		if (status != SLJIT_SUCCESS)
    851       1.1     alnsn 			return status;
    852       1.1     alnsn 
    853       1.1     alnsn 		/* if (tmp1 < X) return 0; */
    854       1.1     alnsn 		jump = sljit_emit_cmp(compiler,
    855       1.1     alnsn 		    SLJIT_C_LESS,
    856       1.7     alnsn 		    BJ_TMP1REG, 0,
    857       1.7     alnsn 		    BJ_XREG, 0);
    858       1.1     alnsn 		if (jump == NULL)
    859       1.7     alnsn 			return SLJIT_ERR_ALLOC_FAILED;
    860       1.7     alnsn 		if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
    861       1.7     alnsn 			return SLJIT_ERR_ALLOC_FAILED;
    862       1.1     alnsn 	}
    863       1.1     alnsn 
    864  1.36.2.1     skrll 	/*
    865  1.36.2.1     skrll 	 * Don't emit wrapped-around reads. They're dead code but
    866  1.36.2.1     skrll 	 * dead code elimination logic isn't smart enough to figure
    867  1.36.2.1     skrll 	 * it out.
    868  1.36.2.1     skrll 	 */
    869  1.36.2.1     skrll 	if (k <= UINT32_MAX - width + 1) {
    870  1.36.2.1     skrll 		switch (width) {
    871  1.36.2.1     skrll 		case 4:
    872  1.36.2.1     skrll 			status = emit_read32(compiler, ld_reg, k);
    873  1.36.2.1     skrll 			break;
    874  1.36.2.1     skrll 		case 2:
    875  1.36.2.1     skrll 			status = emit_read16(compiler, ld_reg, k);
    876  1.36.2.1     skrll 			break;
    877  1.36.2.1     skrll 		case 1:
    878  1.36.2.1     skrll 			status = emit_read8(compiler, ld_reg, k);
    879  1.36.2.1     skrll 			break;
    880  1.36.2.1     skrll 		}
    881       1.1     alnsn 
    882  1.36.2.1     skrll 		if (status != SLJIT_SUCCESS)
    883  1.36.2.1     skrll 			return status;
    884  1.36.2.1     skrll 	}
    885       1.1     alnsn 
    886       1.1     alnsn #ifdef _KERNEL
    887       1.1     alnsn 	over_mchain_jump = sljit_emit_jump(compiler, SLJIT_JUMP);
    888       1.1     alnsn 	if (over_mchain_jump == NULL)
    889       1.7     alnsn 		return SLJIT_ERR_ALLOC_FAILED;
    890       1.1     alnsn 
    891       1.1     alnsn 	/* entry point to mchain handler */
    892       1.1     alnsn 	label = sljit_emit_label(compiler);
    893       1.1     alnsn 	if (label == NULL)
    894       1.7     alnsn 		return SLJIT_ERR_ALLOC_FAILED;
    895       1.1     alnsn 	sljit_set_label(to_mchain_jump, label);
    896       1.1     alnsn 
    897       1.1     alnsn 	if (check_zero_buflen) {
    898       1.1     alnsn 		/* if (buflen != 0) return 0; */
    899       1.1     alnsn 		jump = sljit_emit_cmp(compiler,
    900       1.1     alnsn 		    SLJIT_C_NOT_EQUAL,
    901       1.7     alnsn 		    BJ_BUFLEN, 0,
    902       1.1     alnsn 		    SLJIT_IMM, 0);
    903       1.1     alnsn 		if (jump == NULL)
    904       1.1     alnsn 			return SLJIT_ERR_ALLOC_FAILED;
    905       1.7     alnsn 		if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
    906       1.7     alnsn 			return SLJIT_ERR_ALLOC_FAILED;
    907       1.1     alnsn 	}
    908       1.1     alnsn 
    909       1.1     alnsn 	switch (width) {
    910       1.1     alnsn 	case 4:
    911      1.32     alnsn 		status = emit_xcall(compiler, hints, pc, BJ_AREG,
    912      1.23     alnsn 		    ret0, ret0_size, ret0_maxsize, &m_xword);
    913       1.1     alnsn 		break;
    914       1.1     alnsn 	case 2:
    915      1.32     alnsn 		status = emit_xcall(compiler, hints, pc, BJ_AREG,
    916      1.23     alnsn 		    ret0, ret0_size, ret0_maxsize, &m_xhalf);
    917       1.1     alnsn 		break;
    918       1.1     alnsn 	case 1:
    919      1.32     alnsn 		status = emit_xcall(compiler, hints, pc, BJ_AREG,
    920      1.23     alnsn 		    ret0, ret0_size, ret0_maxsize, &m_xbyte);
    921       1.1     alnsn 		break;
    922       1.1     alnsn 	}
    923       1.1     alnsn 
    924       1.1     alnsn 	if (status != SLJIT_SUCCESS)
    925       1.1     alnsn 		return status;
    926       1.1     alnsn 
    927       1.1     alnsn 	label = sljit_emit_label(compiler);
    928       1.1     alnsn 	if (label == NULL)
    929       1.1     alnsn 		return SLJIT_ERR_ALLOC_FAILED;
    930       1.1     alnsn 	sljit_set_label(over_mchain_jump, label);
    931       1.1     alnsn #endif
    932       1.1     alnsn 
    933      1.24     alnsn 	return SLJIT_SUCCESS;
    934       1.1     alnsn }
    935       1.1     alnsn 
    936      1.13     alnsn static int
    937      1.19     alnsn emit_memload(struct sljit_compiler *compiler,
    938      1.13     alnsn     sljit_si dst, uint32_t k, size_t extwords)
    939      1.13     alnsn {
    940      1.13     alnsn 	int status;
    941      1.13     alnsn 	sljit_si src;
    942      1.13     alnsn 	sljit_sw srcw;
    943      1.13     alnsn 
    944      1.13     alnsn 	srcw = k * sizeof(uint32_t);
    945      1.13     alnsn 
    946      1.13     alnsn 	if (extwords == 0) {
    947      1.13     alnsn 		src = SLJIT_MEM1(SLJIT_LOCALS_REG);
    948      1.13     alnsn 		srcw += offsetof(struct bpfjit_stack, mem);
    949      1.13     alnsn 	} else {
    950      1.13     alnsn 		/* copy extmem pointer to the tmp1 register */
    951      1.13     alnsn 		status = sljit_emit_op1(compiler,
    952      1.16     alnsn 		    SLJIT_MOV_P,
    953      1.13     alnsn 		    BJ_TMP1REG, 0,
    954      1.13     alnsn 		    SLJIT_MEM1(SLJIT_LOCALS_REG),
    955      1.13     alnsn 		    offsetof(struct bpfjit_stack, extmem));
    956      1.13     alnsn 		if (status != SLJIT_SUCCESS)
    957      1.13     alnsn 			return status;
    958      1.13     alnsn 		src = SLJIT_MEM1(BJ_TMP1REG);
    959      1.13     alnsn 	}
    960      1.13     alnsn 
    961      1.13     alnsn 	return sljit_emit_op1(compiler, SLJIT_MOV_UI, dst, 0, src, srcw);
    962      1.13     alnsn }
    963      1.13     alnsn 
    964      1.13     alnsn static int
    965      1.19     alnsn emit_memstore(struct sljit_compiler *compiler,
    966      1.13     alnsn     sljit_si src, uint32_t k, size_t extwords)
    967      1.13     alnsn {
    968      1.13     alnsn 	int status;
    969      1.13     alnsn 	sljit_si dst;
    970      1.13     alnsn 	sljit_sw dstw;
    971      1.13     alnsn 
    972      1.13     alnsn 	dstw = k * sizeof(uint32_t);
    973      1.13     alnsn 
    974      1.13     alnsn 	if (extwords == 0) {
    975      1.13     alnsn 		dst = SLJIT_MEM1(SLJIT_LOCALS_REG);
    976      1.13     alnsn 		dstw += offsetof(struct bpfjit_stack, mem);
    977      1.13     alnsn 	} else {
    978      1.13     alnsn 		/* copy extmem pointer to the tmp1 register */
    979      1.13     alnsn 		status = sljit_emit_op1(compiler,
    980      1.16     alnsn 		    SLJIT_MOV_P,
    981      1.13     alnsn 		    BJ_TMP1REG, 0,
    982      1.13     alnsn 		    SLJIT_MEM1(SLJIT_LOCALS_REG),
    983      1.13     alnsn 		    offsetof(struct bpfjit_stack, extmem));
    984      1.13     alnsn 		if (status != SLJIT_SUCCESS)
    985      1.13     alnsn 			return status;
    986      1.13     alnsn 		dst = SLJIT_MEM1(BJ_TMP1REG);
    987      1.13     alnsn 	}
    988      1.13     alnsn 
    989      1.13     alnsn 	return sljit_emit_op1(compiler, SLJIT_MOV_UI, dst, dstw, src, 0);
    990      1.13     alnsn }
    991      1.13     alnsn 
    992       1.1     alnsn /*
    993      1.24     alnsn  * Emit code for BPF_LDX+BPF_B+BPF_MSH    X <- 4*(P[k:1]&0xf).
    994       1.1     alnsn  */
    995       1.1     alnsn static int
    996      1.32     alnsn emit_msh(struct sljit_compiler *compiler, bpfjit_hint_t hints,
    997       1.7     alnsn     const struct bpf_insn *pc, struct sljit_jump *to_mchain_jump,
    998       1.7     alnsn     struct sljit_jump ***ret0, size_t *ret0_size, size_t *ret0_maxsize)
    999       1.1     alnsn {
   1000       1.1     alnsn 	int status;
   1001       1.1     alnsn #ifdef _KERNEL
   1002       1.1     alnsn 	struct sljit_label *label;
   1003       1.1     alnsn 	struct sljit_jump *jump, *over_mchain_jump;
   1004       1.1     alnsn 	const bool check_zero_buflen = (to_mchain_jump != NULL);
   1005       1.1     alnsn #endif
   1006       1.1     alnsn 	const uint32_t k = pc->k;
   1007       1.1     alnsn 
   1008       1.1     alnsn #ifdef _KERNEL
   1009       1.1     alnsn 	if (to_mchain_jump == NULL) {
   1010       1.1     alnsn 		to_mchain_jump = sljit_emit_cmp(compiler,
   1011       1.1     alnsn 		    SLJIT_C_EQUAL,
   1012       1.7     alnsn 		    BJ_BUFLEN, 0,
   1013       1.1     alnsn 		    SLJIT_IMM, 0);
   1014       1.1     alnsn 		if (to_mchain_jump == NULL)
   1015       1.7     alnsn 			return SLJIT_ERR_ALLOC_FAILED;
   1016       1.1     alnsn 	}
   1017       1.1     alnsn #endif
   1018       1.1     alnsn 
   1019       1.1     alnsn 	/* tmp1 = buf[k] */
   1020       1.1     alnsn 	status = sljit_emit_op1(compiler,
   1021       1.1     alnsn 	    SLJIT_MOV_UB,
   1022       1.7     alnsn 	    BJ_TMP1REG, 0,
   1023       1.7     alnsn 	    SLJIT_MEM1(BJ_BUF), k);
   1024       1.1     alnsn 	if (status != SLJIT_SUCCESS)
   1025       1.1     alnsn 		return status;
   1026       1.1     alnsn 
   1027       1.1     alnsn #ifdef _KERNEL
   1028       1.1     alnsn 	over_mchain_jump = sljit_emit_jump(compiler, SLJIT_JUMP);
   1029       1.1     alnsn 	if (over_mchain_jump == NULL)
   1030       1.1     alnsn 		return SLJIT_ERR_ALLOC_FAILED;
   1031       1.1     alnsn 
   1032       1.1     alnsn 	/* entry point to mchain handler */
   1033       1.1     alnsn 	label = sljit_emit_label(compiler);
   1034       1.1     alnsn 	if (label == NULL)
   1035       1.1     alnsn 		return SLJIT_ERR_ALLOC_FAILED;
   1036       1.1     alnsn 	sljit_set_label(to_mchain_jump, label);
   1037       1.1     alnsn 
   1038       1.1     alnsn 	if (check_zero_buflen) {
   1039       1.1     alnsn 		/* if (buflen != 0) return 0; */
   1040       1.1     alnsn 		jump = sljit_emit_cmp(compiler,
   1041       1.1     alnsn 		    SLJIT_C_NOT_EQUAL,
   1042       1.7     alnsn 		    BJ_BUFLEN, 0,
   1043       1.1     alnsn 		    SLJIT_IMM, 0);
   1044       1.1     alnsn 		if (jump == NULL)
   1045       1.7     alnsn 			return SLJIT_ERR_ALLOC_FAILED;
   1046       1.7     alnsn 		if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
   1047       1.7     alnsn 			return SLJIT_ERR_ALLOC_FAILED;
   1048       1.1     alnsn 	}
   1049       1.1     alnsn 
   1050      1.32     alnsn 	status = emit_xcall(compiler, hints, pc, BJ_TMP1REG,
   1051      1.23     alnsn 	    ret0, ret0_size, ret0_maxsize, &m_xbyte);
   1052       1.1     alnsn 	if (status != SLJIT_SUCCESS)
   1053       1.1     alnsn 		return status;
   1054       1.7     alnsn 
   1055      1.30     alnsn 	label = sljit_emit_label(compiler);
   1056      1.30     alnsn 	if (label == NULL)
   1057      1.30     alnsn 		return SLJIT_ERR_ALLOC_FAILED;
   1058      1.30     alnsn 	sljit_set_label(over_mchain_jump, label);
   1059      1.30     alnsn #endif
   1060      1.30     alnsn 
   1061       1.1     alnsn 	/* tmp1 &= 0xf */
   1062       1.1     alnsn 	status = sljit_emit_op2(compiler,
   1063       1.1     alnsn 	    SLJIT_AND,
   1064       1.7     alnsn 	    BJ_TMP1REG, 0,
   1065       1.7     alnsn 	    BJ_TMP1REG, 0,
   1066       1.1     alnsn 	    SLJIT_IMM, 0xf);
   1067       1.1     alnsn 	if (status != SLJIT_SUCCESS)
   1068       1.1     alnsn 		return status;
   1069       1.1     alnsn 
   1070      1.30     alnsn 	/* X = tmp1 << 2 */
   1071       1.1     alnsn 	status = sljit_emit_op2(compiler,
   1072       1.1     alnsn 	    SLJIT_SHL,
   1073       1.7     alnsn 	    BJ_XREG, 0,
   1074       1.7     alnsn 	    BJ_TMP1REG, 0,
   1075       1.1     alnsn 	    SLJIT_IMM, 2);
   1076       1.1     alnsn 	if (status != SLJIT_SUCCESS)
   1077       1.1     alnsn 		return status;
   1078       1.1     alnsn 
   1079      1.24     alnsn 	return SLJIT_SUCCESS;
   1080       1.1     alnsn }
   1081       1.1     alnsn 
   1082      1.35     alnsn /*
   1083      1.35     alnsn  * Emit code for A = A / k or A = A % k when k is a power of 2.
   1084      1.35     alnsn  * @pc BPF_DIV or BPF_MOD instruction.
   1085      1.35     alnsn  */
   1086       1.1     alnsn static int
   1087      1.35     alnsn emit_pow2_moddiv(struct sljit_compiler *compiler, const struct bpf_insn *pc)
   1088       1.1     alnsn {
   1089      1.35     alnsn 	uint32_t k = pc->k;
   1090       1.1     alnsn 	int status = SLJIT_SUCCESS;
   1091       1.1     alnsn 
   1092      1.35     alnsn 	BJ_ASSERT(k != 0 && (k & (k - 1)) == 0);
   1093       1.1     alnsn 
   1094      1.35     alnsn 	if (BPF_OP(pc->code) == BPF_MOD) {
   1095       1.1     alnsn 		status = sljit_emit_op2(compiler,
   1096      1.35     alnsn 		    SLJIT_AND,
   1097       1.7     alnsn 		    BJ_AREG, 0,
   1098       1.7     alnsn 		    BJ_AREG, 0,
   1099      1.35     alnsn 		    SLJIT_IMM, k - 1);
   1100      1.35     alnsn 	} else {
   1101      1.35     alnsn 		int shift = 0;
   1102      1.35     alnsn 
   1103      1.35     alnsn 		/*
   1104      1.35     alnsn 		 * Do shift = __builtin_ctz(k).
   1105      1.35     alnsn 		 * The loop is slower, but that's ok.
   1106      1.35     alnsn 		 */
   1107      1.35     alnsn 		while (k > 1) {
   1108      1.35     alnsn 			k >>= 1;
   1109      1.35     alnsn 			shift++;
   1110      1.35     alnsn 		}
   1111      1.35     alnsn 
   1112      1.35     alnsn 		if (shift != 0) {
   1113      1.35     alnsn 			status = sljit_emit_op2(compiler,
   1114      1.35     alnsn 			    SLJIT_LSHR|SLJIT_INT_OP,
   1115      1.35     alnsn 			    BJ_AREG, 0,
   1116      1.35     alnsn 			    BJ_AREG, 0,
   1117      1.35     alnsn 			    SLJIT_IMM, shift);
   1118      1.35     alnsn 		}
   1119       1.1     alnsn 	}
   1120       1.1     alnsn 
   1121       1.1     alnsn 	return status;
   1122       1.1     alnsn }
   1123       1.1     alnsn 
   1124       1.1     alnsn #if !defined(BPFJIT_USE_UDIV)
   1125       1.1     alnsn static sljit_uw
   1126       1.1     alnsn divide(sljit_uw x, sljit_uw y)
   1127       1.1     alnsn {
   1128       1.1     alnsn 
   1129       1.1     alnsn 	return (uint32_t)x / (uint32_t)y;
   1130       1.1     alnsn }
   1131      1.33  christos 
   1132      1.33  christos static sljit_uw
   1133      1.33  christos modulus(sljit_uw x, sljit_uw y)
   1134      1.33  christos {
   1135      1.33  christos 
   1136      1.33  christos 	return (uint32_t)x % (uint32_t)y;
   1137      1.33  christos }
   1138       1.1     alnsn #endif
   1139       1.1     alnsn 
   1140       1.1     alnsn /*
   1141      1.35     alnsn  * Emit code for A = A / div or A = A % div.
   1142      1.35     alnsn  * @pc BPF_DIV or BPF_MOD instruction.
   1143       1.1     alnsn  */
   1144       1.1     alnsn static int
   1145      1.35     alnsn emit_moddiv(struct sljit_compiler *compiler, const struct bpf_insn *pc)
   1146       1.1     alnsn {
   1147       1.1     alnsn 	int status;
   1148  1.36.2.1     skrll 	const bool xdiv = BPF_OP(pc->code) == BPF_DIV;
   1149      1.35     alnsn 	const bool xreg = BPF_SRC(pc->code) == BPF_X;
   1150       1.1     alnsn 
   1151      1.32     alnsn #if BJ_XREG == SLJIT_RETURN_REG   || \
   1152      1.32     alnsn     BJ_XREG == SLJIT_SCRATCH_REG1 || \
   1153      1.32     alnsn     BJ_XREG == SLJIT_SCRATCH_REG2 || \
   1154      1.32     alnsn     BJ_AREG == SLJIT_SCRATCH_REG2
   1155      1.32     alnsn #error "Not supported assignment of registers."
   1156      1.32     alnsn #endif
   1157      1.32     alnsn 
   1158      1.12     alnsn #if BJ_AREG != SLJIT_SCRATCH_REG1
   1159       1.1     alnsn 	status = sljit_emit_op1(compiler,
   1160       1.1     alnsn 	    SLJIT_MOV,
   1161      1.12     alnsn 	    SLJIT_SCRATCH_REG1, 0,
   1162       1.7     alnsn 	    BJ_AREG, 0);
   1163       1.1     alnsn 	if (status != SLJIT_SUCCESS)
   1164       1.1     alnsn 		return status;
   1165       1.1     alnsn #endif
   1166       1.1     alnsn 
   1167       1.1     alnsn 	status = sljit_emit_op1(compiler,
   1168       1.1     alnsn 	    SLJIT_MOV,
   1169      1.12     alnsn 	    SLJIT_SCRATCH_REG2, 0,
   1170      1.35     alnsn 	    xreg ? BJ_XREG : SLJIT_IMM,
   1171      1.35     alnsn 	    xreg ? 0 : (uint32_t)pc->k);
   1172       1.1     alnsn 	if (status != SLJIT_SUCCESS)
   1173       1.1     alnsn 		return status;
   1174       1.1     alnsn 
   1175       1.1     alnsn #if defined(BPFJIT_USE_UDIV)
   1176       1.1     alnsn 	status = sljit_emit_op0(compiler, SLJIT_UDIV|SLJIT_INT_OP);
   1177       1.1     alnsn 
   1178      1.36     alnsn 	if (BPF_OP(pc->code) == BPF_DIV) {
   1179      1.12     alnsn #if BJ_AREG != SLJIT_SCRATCH_REG1
   1180      1.36     alnsn 		status = sljit_emit_op1(compiler,
   1181      1.36     alnsn 		    SLJIT_MOV,
   1182      1.36     alnsn 		    BJ_AREG, 0,
   1183      1.36     alnsn 		    SLJIT_SCRATCH_REG1, 0);
   1184      1.36     alnsn #endif
   1185      1.36     alnsn 	} else {
   1186      1.36     alnsn #if BJ_AREG != SLJIT_SCRATCH_REG2
   1187      1.36     alnsn 		/* Remainder is in SLJIT_SCRATCH_REG2. */
   1188      1.36     alnsn 		status = sljit_emit_op1(compiler,
   1189      1.36     alnsn 		    SLJIT_MOV,
   1190      1.36     alnsn 		    BJ_AREG, 0,
   1191      1.36     alnsn 		    SLJIT_SCRATCH_REG2, 0);
   1192      1.36     alnsn #endif
   1193      1.36     alnsn 	}
   1194      1.36     alnsn 
   1195       1.1     alnsn 	if (status != SLJIT_SUCCESS)
   1196       1.1     alnsn 		return status;
   1197       1.1     alnsn #else
   1198       1.1     alnsn 	status = sljit_emit_ijump(compiler,
   1199       1.1     alnsn 	    SLJIT_CALL2,
   1200  1.36.2.1     skrll 	    SLJIT_IMM, xdiv ? SLJIT_FUNC_OFFSET(divide) :
   1201      1.33  christos 		SLJIT_FUNC_OFFSET(modulus));
   1202       1.1     alnsn 
   1203       1.7     alnsn #if BJ_AREG != SLJIT_RETURN_REG
   1204       1.1     alnsn 	status = sljit_emit_op1(compiler,
   1205       1.1     alnsn 	    SLJIT_MOV,
   1206       1.7     alnsn 	    BJ_AREG, 0,
   1207       1.1     alnsn 	    SLJIT_RETURN_REG, 0);
   1208       1.1     alnsn 	if (status != SLJIT_SUCCESS)
   1209       1.1     alnsn 		return status;
   1210       1.1     alnsn #endif
   1211       1.1     alnsn #endif
   1212       1.1     alnsn 
   1213       1.1     alnsn 	return status;
   1214       1.1     alnsn }
   1215       1.1     alnsn 
   1216       1.1     alnsn /*
   1217       1.1     alnsn  * Return true if pc is a "read from packet" instruction.
   1218       1.1     alnsn  * If length is not NULL and return value is true, *length will
   1219       1.1     alnsn  * be set to a safe length required to read a packet.
   1220       1.1     alnsn  */
   1221       1.1     alnsn static bool
   1222       1.8     alnsn read_pkt_insn(const struct bpf_insn *pc, bpfjit_abc_length_t *length)
   1223       1.1     alnsn {
   1224       1.1     alnsn 	bool rv;
   1225  1.36.2.1     skrll 	bpfjit_abc_length_t width = 0; /* XXXuninit */
   1226       1.1     alnsn 
   1227       1.1     alnsn 	switch (BPF_CLASS(pc->code)) {
   1228       1.1     alnsn 	default:
   1229       1.1     alnsn 		rv = false;
   1230       1.1     alnsn 		break;
   1231       1.1     alnsn 
   1232       1.1     alnsn 	case BPF_LD:
   1233       1.1     alnsn 		rv = BPF_MODE(pc->code) == BPF_ABS ||
   1234       1.1     alnsn 		     BPF_MODE(pc->code) == BPF_IND;
   1235  1.36.2.1     skrll 		if (rv) {
   1236       1.1     alnsn 			width = read_width(pc);
   1237  1.36.2.1     skrll 			rv = (width != 0);
   1238  1.36.2.1     skrll 		}
   1239       1.1     alnsn 		break;
   1240       1.1     alnsn 
   1241       1.1     alnsn 	case BPF_LDX:
   1242  1.36.2.1     skrll 		rv = BPF_MODE(pc->code) == BPF_MSH &&
   1243  1.36.2.1     skrll 		     BPF_SIZE(pc->code) == BPF_B;
   1244       1.1     alnsn 		width = 1;
   1245       1.1     alnsn 		break;
   1246       1.1     alnsn 	}
   1247       1.1     alnsn 
   1248       1.1     alnsn 	if (rv && length != NULL) {
   1249       1.9     alnsn 		/*
   1250       1.9     alnsn 		 * Values greater than UINT32_MAX will generate
   1251       1.9     alnsn 		 * unconditional "return 0".
   1252       1.9     alnsn 		 */
   1253       1.9     alnsn 		*length = (uint32_t)pc->k + width;
   1254       1.1     alnsn 	}
   1255       1.1     alnsn 
   1256       1.1     alnsn 	return rv;
   1257       1.1     alnsn }
   1258       1.1     alnsn 
   1259       1.1     alnsn static void
   1260       1.7     alnsn optimize_init(struct bpfjit_insn_data *insn_dat, size_t insn_count)
   1261       1.1     alnsn {
   1262       1.7     alnsn 	size_t i;
   1263       1.1     alnsn 
   1264       1.7     alnsn 	for (i = 0; i < insn_count; i++) {
   1265       1.7     alnsn 		SLIST_INIT(&insn_dat[i].bjumps);
   1266       1.7     alnsn 		insn_dat[i].invalid = BJ_INIT_NOBITS;
   1267       1.1     alnsn 	}
   1268       1.1     alnsn }
   1269       1.1     alnsn 
   1270       1.1     alnsn /*
   1271       1.1     alnsn  * The function divides instructions into blocks. Destination of a jump
   1272       1.1     alnsn  * instruction starts a new block. BPF_RET and BPF_JMP instructions
   1273       1.1     alnsn  * terminate a block. Blocks are linear, that is, there are no jumps out
   1274       1.1     alnsn  * from the middle of a block and there are no jumps in to the middle of
   1275       1.1     alnsn  * a block.
   1276       1.7     alnsn  *
   1277       1.7     alnsn  * The function also sets bits in *initmask for memwords that
   1278       1.7     alnsn  * need to be initialized to zero. Note that this set should be empty
   1279       1.7     alnsn  * for any valid kernel filter program.
   1280       1.1     alnsn  */
   1281       1.7     alnsn static bool
   1282      1.19     alnsn optimize_pass1(const bpf_ctx_t *bc, const struct bpf_insn *insns,
   1283      1.19     alnsn     struct bpfjit_insn_data *insn_dat, size_t insn_count,
   1284      1.20     alnsn     bpf_memword_init_t *initmask, bpfjit_hint_t *hints)
   1285       1.1     alnsn {
   1286       1.7     alnsn 	struct bpfjit_jump *jtf;
   1287       1.1     alnsn 	size_t i;
   1288       1.7     alnsn 	uint32_t jt, jf;
   1289      1.10     alnsn 	bpfjit_abc_length_t length;
   1290      1.13     alnsn 	bpf_memword_init_t invalid; /* borrowed from bpf_filter() */
   1291       1.1     alnsn 	bool unreachable;
   1292       1.1     alnsn 
   1293      1.19     alnsn 	const size_t memwords = GET_MEMWORDS(bc);
   1294      1.13     alnsn 
   1295      1.20     alnsn 	*hints = 0;
   1296       1.7     alnsn 	*initmask = BJ_INIT_NOBITS;
   1297       1.1     alnsn 
   1298       1.1     alnsn 	unreachable = false;
   1299       1.7     alnsn 	invalid = ~BJ_INIT_NOBITS;
   1300       1.1     alnsn 
   1301       1.1     alnsn 	for (i = 0; i < insn_count; i++) {
   1302       1.7     alnsn 		if (!SLIST_EMPTY(&insn_dat[i].bjumps))
   1303       1.1     alnsn 			unreachable = false;
   1304       1.7     alnsn 		insn_dat[i].unreachable = unreachable;
   1305       1.1     alnsn 
   1306       1.1     alnsn 		if (unreachable)
   1307       1.1     alnsn 			continue;
   1308       1.1     alnsn 
   1309       1.7     alnsn 		invalid |= insn_dat[i].invalid;
   1310       1.1     alnsn 
   1311      1.10     alnsn 		if (read_pkt_insn(&insns[i], &length) && length > UINT32_MAX)
   1312      1.10     alnsn 			unreachable = true;
   1313      1.10     alnsn 
   1314       1.1     alnsn 		switch (BPF_CLASS(insns[i].code)) {
   1315       1.1     alnsn 		case BPF_RET:
   1316       1.7     alnsn 			if (BPF_RVAL(insns[i].code) == BPF_A)
   1317       1.7     alnsn 				*initmask |= invalid & BJ_INIT_ABIT;
   1318       1.7     alnsn 
   1319       1.1     alnsn 			unreachable = true;
   1320       1.1     alnsn 			continue;
   1321       1.1     alnsn 
   1322       1.7     alnsn 		case BPF_LD:
   1323      1.27     alnsn 			if (BPF_MODE(insns[i].code) == BPF_ABS)
   1324      1.27     alnsn 				*hints |= BJ_HINT_ABS;
   1325       1.7     alnsn 
   1326      1.20     alnsn 			if (BPF_MODE(insns[i].code) == BPF_IND) {
   1327      1.27     alnsn 				*hints |= BJ_HINT_IND | BJ_HINT_XREG;
   1328       1.7     alnsn 				*initmask |= invalid & BJ_INIT_XBIT;
   1329      1.20     alnsn 			}
   1330       1.7     alnsn 
   1331       1.7     alnsn 			if (BPF_MODE(insns[i].code) == BPF_MEM &&
   1332      1.13     alnsn 			    (uint32_t)insns[i].k < memwords) {
   1333       1.7     alnsn 				*initmask |= invalid & BJ_INIT_MBIT(insns[i].k);
   1334       1.7     alnsn 			}
   1335       1.7     alnsn 
   1336       1.7     alnsn 			invalid &= ~BJ_INIT_ABIT;
   1337       1.7     alnsn 			continue;
   1338       1.7     alnsn 
   1339       1.7     alnsn 		case BPF_LDX:
   1340      1.20     alnsn 			*hints |= BJ_HINT_XREG | BJ_HINT_LDX;
   1341       1.7     alnsn 
   1342       1.7     alnsn 			if (BPF_MODE(insns[i].code) == BPF_MEM &&
   1343      1.13     alnsn 			    (uint32_t)insns[i].k < memwords) {
   1344       1.7     alnsn 				*initmask |= invalid & BJ_INIT_MBIT(insns[i].k);
   1345       1.7     alnsn 			}
   1346       1.7     alnsn 
   1347      1.29     alnsn 			if (BPF_MODE(insns[i].code) == BPF_MSH &&
   1348      1.29     alnsn 			    BPF_SIZE(insns[i].code) == BPF_B) {
   1349      1.29     alnsn 				*hints |= BJ_HINT_MSH;
   1350      1.29     alnsn 			}
   1351      1.29     alnsn 
   1352       1.7     alnsn 			invalid &= ~BJ_INIT_XBIT;
   1353       1.7     alnsn 			continue;
   1354       1.7     alnsn 
   1355       1.7     alnsn 		case BPF_ST:
   1356       1.7     alnsn 			*initmask |= invalid & BJ_INIT_ABIT;
   1357       1.7     alnsn 
   1358      1.13     alnsn 			if ((uint32_t)insns[i].k < memwords)
   1359       1.7     alnsn 				invalid &= ~BJ_INIT_MBIT(insns[i].k);
   1360       1.7     alnsn 
   1361       1.7     alnsn 			continue;
   1362       1.7     alnsn 
   1363       1.7     alnsn 		case BPF_STX:
   1364      1.20     alnsn 			*hints |= BJ_HINT_XREG;
   1365       1.7     alnsn 			*initmask |= invalid & BJ_INIT_XBIT;
   1366       1.7     alnsn 
   1367      1.13     alnsn 			if ((uint32_t)insns[i].k < memwords)
   1368       1.7     alnsn 				invalid &= ~BJ_INIT_MBIT(insns[i].k);
   1369       1.7     alnsn 
   1370       1.7     alnsn 			continue;
   1371       1.7     alnsn 
   1372       1.7     alnsn 		case BPF_ALU:
   1373       1.7     alnsn 			*initmask |= invalid & BJ_INIT_ABIT;
   1374       1.7     alnsn 
   1375       1.7     alnsn 			if (insns[i].code != (BPF_ALU|BPF_NEG) &&
   1376       1.7     alnsn 			    BPF_SRC(insns[i].code) == BPF_X) {
   1377      1.20     alnsn 				*hints |= BJ_HINT_XREG;
   1378       1.7     alnsn 				*initmask |= invalid & BJ_INIT_XBIT;
   1379       1.7     alnsn 			}
   1380       1.7     alnsn 
   1381       1.7     alnsn 			invalid &= ~BJ_INIT_ABIT;
   1382       1.7     alnsn 			continue;
   1383       1.7     alnsn 
   1384       1.7     alnsn 		case BPF_MISC:
   1385       1.7     alnsn 			switch (BPF_MISCOP(insns[i].code)) {
   1386       1.7     alnsn 			case BPF_TAX: // X <- A
   1387      1.20     alnsn 				*hints |= BJ_HINT_XREG;
   1388       1.7     alnsn 				*initmask |= invalid & BJ_INIT_ABIT;
   1389       1.7     alnsn 				invalid &= ~BJ_INIT_XBIT;
   1390       1.7     alnsn 				continue;
   1391       1.7     alnsn 
   1392       1.7     alnsn 			case BPF_TXA: // A <- X
   1393      1.20     alnsn 				*hints |= BJ_HINT_XREG;
   1394       1.7     alnsn 				*initmask |= invalid & BJ_INIT_XBIT;
   1395       1.7     alnsn 				invalid &= ~BJ_INIT_ABIT;
   1396       1.7     alnsn 				continue;
   1397      1.13     alnsn 
   1398      1.13     alnsn 			case BPF_COPX:
   1399      1.28     alnsn 				*hints |= BJ_HINT_XREG | BJ_HINT_COPX;
   1400      1.13     alnsn 				/* FALLTHROUGH */
   1401      1.13     alnsn 
   1402      1.13     alnsn 			case BPF_COP:
   1403      1.20     alnsn 				*hints |= BJ_HINT_COP;
   1404      1.13     alnsn 				*initmask |= invalid & BJ_INIT_ABIT;
   1405      1.13     alnsn 				invalid &= ~BJ_INIT_ABIT;
   1406      1.13     alnsn 				continue;
   1407       1.7     alnsn 			}
   1408       1.7     alnsn 
   1409       1.7     alnsn 			continue;
   1410       1.7     alnsn 
   1411       1.1     alnsn 		case BPF_JMP:
   1412       1.7     alnsn 			/* Initialize abc_length for ABC pass. */
   1413       1.8     alnsn 			insn_dat[i].u.jdata.abc_length = MAX_ABC_LENGTH;
   1414       1.7     alnsn 
   1415  1.36.2.1     skrll 			*initmask |= invalid & BJ_INIT_ABIT;
   1416  1.36.2.1     skrll 
   1417  1.36.2.1     skrll 			if (BPF_SRC(insns[i].code) == BPF_X) {
   1418  1.36.2.1     skrll 				*hints |= BJ_HINT_XREG;
   1419  1.36.2.1     skrll 				*initmask |= invalid & BJ_INIT_XBIT;
   1420  1.36.2.1     skrll 			}
   1421  1.36.2.1     skrll 
   1422       1.7     alnsn 			if (BPF_OP(insns[i].code) == BPF_JA) {
   1423       1.1     alnsn 				jt = jf = insns[i].k;
   1424       1.1     alnsn 			} else {
   1425       1.1     alnsn 				jt = insns[i].jt;
   1426       1.1     alnsn 				jf = insns[i].jf;
   1427       1.1     alnsn 			}
   1428       1.1     alnsn 
   1429       1.1     alnsn 			if (jt >= insn_count - (i + 1) ||
   1430       1.1     alnsn 			    jf >= insn_count - (i + 1)) {
   1431       1.7     alnsn 				return false;
   1432       1.1     alnsn 			}
   1433       1.1     alnsn 
   1434       1.1     alnsn 			if (jt > 0 && jf > 0)
   1435       1.1     alnsn 				unreachable = true;
   1436       1.1     alnsn 
   1437       1.7     alnsn 			jt += i + 1;
   1438       1.7     alnsn 			jf += i + 1;
   1439       1.7     alnsn 
   1440       1.7     alnsn 			jtf = insn_dat[i].u.jdata.jtf;
   1441       1.1     alnsn 
   1442       1.7     alnsn 			jtf[0].jdata = &insn_dat[i].u.jdata;
   1443       1.7     alnsn 			SLIST_INSERT_HEAD(&insn_dat[jt].bjumps,
   1444       1.7     alnsn 			    &jtf[0], entries);
   1445       1.1     alnsn 
   1446       1.1     alnsn 			if (jf != jt) {
   1447       1.7     alnsn 				jtf[1].jdata = &insn_dat[i].u.jdata;
   1448       1.7     alnsn 				SLIST_INSERT_HEAD(&insn_dat[jf].bjumps,
   1449       1.7     alnsn 				    &jtf[1], entries);
   1450       1.1     alnsn 			}
   1451       1.1     alnsn 
   1452       1.7     alnsn 			insn_dat[jf].invalid |= invalid;
   1453       1.7     alnsn 			insn_dat[jt].invalid |= invalid;
   1454       1.7     alnsn 			invalid = 0;
   1455       1.7     alnsn 
   1456       1.1     alnsn 			continue;
   1457       1.1     alnsn 		}
   1458       1.1     alnsn 	}
   1459       1.1     alnsn 
   1460       1.7     alnsn 	return true;
   1461       1.1     alnsn }
   1462       1.1     alnsn 
   1463       1.1     alnsn /*
   1464       1.7     alnsn  * Array Bounds Check Elimination (ABC) pass.
   1465       1.1     alnsn  */
   1466       1.7     alnsn static void
   1467      1.19     alnsn optimize_pass2(const bpf_ctx_t *bc, const struct bpf_insn *insns,
   1468      1.19     alnsn     struct bpfjit_insn_data *insn_dat, size_t insn_count)
   1469       1.7     alnsn {
   1470       1.7     alnsn 	struct bpfjit_jump *jmp;
   1471       1.7     alnsn 	const struct bpf_insn *pc;
   1472       1.7     alnsn 	struct bpfjit_insn_data *pd;
   1473       1.7     alnsn 	size_t i;
   1474       1.8     alnsn 	bpfjit_abc_length_t length, abc_length = 0;
   1475       1.7     alnsn 
   1476      1.19     alnsn 	const size_t extwords = GET_EXTWORDS(bc);
   1477      1.19     alnsn 
   1478       1.7     alnsn 	for (i = insn_count; i != 0; i--) {
   1479       1.7     alnsn 		pc = &insns[i-1];
   1480       1.7     alnsn 		pd = &insn_dat[i-1];
   1481       1.7     alnsn 
   1482       1.7     alnsn 		if (pd->unreachable)
   1483       1.7     alnsn 			continue;
   1484       1.7     alnsn 
   1485       1.7     alnsn 		switch (BPF_CLASS(pc->code)) {
   1486       1.7     alnsn 		case BPF_RET:
   1487      1.11     alnsn 			/*
   1488      1.11     alnsn 			 * It's quite common for bpf programs to
   1489      1.11     alnsn 			 * check packet bytes in increasing order
   1490      1.11     alnsn 			 * and return zero if bytes don't match
   1491      1.11     alnsn 			 * specified critetion. Such programs disable
   1492      1.11     alnsn 			 * ABC optimization completely because for
   1493      1.11     alnsn 			 * every jump there is a branch with no read
   1494      1.11     alnsn 			 * instruction.
   1495      1.13     alnsn 			 * With no side effects, BPF_STMT(BPF_RET+BPF_K, 0)
   1496      1.13     alnsn 			 * is indistinguishable from out-of-bound load.
   1497      1.11     alnsn 			 * Therefore, abc_length can be set to
   1498      1.11     alnsn 			 * MAX_ABC_LENGTH and enable ABC for many
   1499      1.11     alnsn 			 * bpf programs.
   1500      1.13     alnsn 			 * If this optimization encounters any
   1501      1.11     alnsn 			 * instruction with a side effect, it will
   1502      1.11     alnsn 			 * reset abc_length.
   1503      1.11     alnsn 			 */
   1504      1.11     alnsn 			if (BPF_RVAL(pc->code) == BPF_K && pc->k == 0)
   1505      1.11     alnsn 				abc_length = MAX_ABC_LENGTH;
   1506      1.11     alnsn 			else
   1507      1.11     alnsn 				abc_length = 0;
   1508       1.7     alnsn 			break;
   1509       1.7     alnsn 
   1510      1.13     alnsn 		case BPF_MISC:
   1511      1.13     alnsn 			if (BPF_MISCOP(pc->code) == BPF_COP ||
   1512      1.13     alnsn 			    BPF_MISCOP(pc->code) == BPF_COPX) {
   1513      1.13     alnsn 				/* COP instructions can have side effects. */
   1514      1.13     alnsn 				abc_length = 0;
   1515      1.13     alnsn 			}
   1516      1.13     alnsn 			break;
   1517      1.13     alnsn 
   1518      1.13     alnsn 		case BPF_ST:
   1519      1.13     alnsn 		case BPF_STX:
   1520      1.13     alnsn 			if (extwords != 0) {
   1521      1.13     alnsn 				/* Write to memory is visible after a call. */
   1522      1.13     alnsn 				abc_length = 0;
   1523      1.13     alnsn 			}
   1524      1.13     alnsn 			break;
   1525      1.13     alnsn 
   1526       1.7     alnsn 		case BPF_JMP:
   1527       1.7     alnsn 			abc_length = pd->u.jdata.abc_length;
   1528       1.7     alnsn 			break;
   1529       1.7     alnsn 
   1530       1.7     alnsn 		default:
   1531       1.7     alnsn 			if (read_pkt_insn(pc, &length)) {
   1532       1.7     alnsn 				if (abc_length < length)
   1533       1.7     alnsn 					abc_length = length;
   1534       1.7     alnsn 				pd->u.rdata.abc_length = abc_length;
   1535       1.7     alnsn 			}
   1536       1.7     alnsn 			break;
   1537       1.7     alnsn 		}
   1538       1.7     alnsn 
   1539       1.7     alnsn 		SLIST_FOREACH(jmp, &pd->bjumps, entries) {
   1540       1.7     alnsn 			if (jmp->jdata->abc_length > abc_length)
   1541       1.7     alnsn 				jmp->jdata->abc_length = abc_length;
   1542       1.7     alnsn 		}
   1543       1.7     alnsn 	}
   1544       1.7     alnsn }
   1545       1.7     alnsn 
   1546       1.7     alnsn static void
   1547       1.7     alnsn optimize_pass3(const struct bpf_insn *insns,
   1548       1.7     alnsn     struct bpfjit_insn_data *insn_dat, size_t insn_count)
   1549       1.1     alnsn {
   1550       1.7     alnsn 	struct bpfjit_jump *jmp;
   1551       1.1     alnsn 	size_t i;
   1552       1.8     alnsn 	bpfjit_abc_length_t checked_length = 0;
   1553       1.1     alnsn 
   1554       1.1     alnsn 	for (i = 0; i < insn_count; i++) {
   1555       1.7     alnsn 		if (insn_dat[i].unreachable)
   1556       1.7     alnsn 			continue;
   1557       1.1     alnsn 
   1558       1.7     alnsn 		SLIST_FOREACH(jmp, &insn_dat[i].bjumps, entries) {
   1559       1.7     alnsn 			if (jmp->jdata->checked_length < checked_length)
   1560       1.7     alnsn 				checked_length = jmp->jdata->checked_length;
   1561       1.1     alnsn 		}
   1562       1.1     alnsn 
   1563       1.7     alnsn 		if (BPF_CLASS(insns[i].code) == BPF_JMP) {
   1564       1.7     alnsn 			insn_dat[i].u.jdata.checked_length = checked_length;
   1565       1.8     alnsn 		} else if (read_pkt_insn(&insns[i], NULL)) {
   1566       1.7     alnsn 			struct bpfjit_read_pkt_data *rdata =
   1567       1.7     alnsn 			    &insn_dat[i].u.rdata;
   1568       1.7     alnsn 			rdata->check_length = 0;
   1569       1.7     alnsn 			if (checked_length < rdata->abc_length) {
   1570       1.7     alnsn 				checked_length = rdata->abc_length;
   1571       1.7     alnsn 				rdata->check_length = checked_length;
   1572       1.7     alnsn 			}
   1573       1.1     alnsn 		}
   1574       1.7     alnsn 	}
   1575       1.7     alnsn }
   1576       1.1     alnsn 
   1577       1.7     alnsn static bool
   1578      1.19     alnsn optimize(const bpf_ctx_t *bc, const struct bpf_insn *insns,
   1579       1.7     alnsn     struct bpfjit_insn_data *insn_dat, size_t insn_count,
   1580      1.20     alnsn     bpf_memword_init_t *initmask, bpfjit_hint_t *hints)
   1581       1.7     alnsn {
   1582       1.1     alnsn 
   1583       1.7     alnsn 	optimize_init(insn_dat, insn_count);
   1584       1.7     alnsn 
   1585      1.20     alnsn 	if (!optimize_pass1(bc, insns, insn_dat, insn_count, initmask, hints))
   1586       1.7     alnsn 		return false;
   1587       1.1     alnsn 
   1588      1.19     alnsn 	optimize_pass2(bc, insns, insn_dat, insn_count);
   1589       1.7     alnsn 	optimize_pass3(insns, insn_dat, insn_count);
   1590       1.7     alnsn 
   1591       1.7     alnsn 	return true;
   1592       1.1     alnsn }
   1593       1.1     alnsn 
   1594       1.1     alnsn /*
   1595       1.1     alnsn  * Convert BPF_ALU operations except BPF_NEG and BPF_DIV to sljit operation.
   1596       1.1     alnsn  */
   1597       1.1     alnsn static int
   1598       1.7     alnsn bpf_alu_to_sljit_op(const struct bpf_insn *pc)
   1599       1.1     alnsn {
   1600  1.36.2.1     skrll 	const int bad = SLJIT_UNUSED;
   1601  1.36.2.1     skrll 	const uint32_t k = pc->k;
   1602       1.1     alnsn 
   1603       1.1     alnsn 	/*
   1604       1.1     alnsn 	 * Note: all supported 64bit arches have 32bit multiply
   1605       1.1     alnsn 	 * instruction so SLJIT_INT_OP doesn't have any overhead.
   1606       1.1     alnsn 	 */
   1607       1.1     alnsn 	switch (BPF_OP(pc->code)) {
   1608       1.1     alnsn 	case BPF_ADD: return SLJIT_ADD;
   1609       1.1     alnsn 	case BPF_SUB: return SLJIT_SUB;
   1610       1.1     alnsn 	case BPF_MUL: return SLJIT_MUL|SLJIT_INT_OP;
   1611       1.1     alnsn 	case BPF_OR:  return SLJIT_OR;
   1612      1.33  christos 	case BPF_XOR: return SLJIT_XOR;
   1613       1.1     alnsn 	case BPF_AND: return SLJIT_AND;
   1614  1.36.2.1     skrll 	case BPF_LSH: return (k > 31) ? bad : SLJIT_SHL;
   1615  1.36.2.1     skrll 	case BPF_RSH: return (k > 31) ? bad : SLJIT_LSHR|SLJIT_INT_OP;
   1616       1.1     alnsn 	default:
   1617  1.36.2.1     skrll 		return bad;
   1618       1.1     alnsn 	}
   1619       1.1     alnsn }
   1620       1.1     alnsn 
   1621       1.1     alnsn /*
   1622       1.1     alnsn  * Convert BPF_JMP operations except BPF_JA to sljit condition.
   1623       1.1     alnsn  */
   1624       1.1     alnsn static int
   1625       1.7     alnsn bpf_jmp_to_sljit_cond(const struct bpf_insn *pc, bool negate)
   1626       1.1     alnsn {
   1627       1.1     alnsn 	/*
   1628       1.1     alnsn 	 * Note: all supported 64bit arches have 32bit comparison
   1629       1.1     alnsn 	 * instructions so SLJIT_INT_OP doesn't have any overhead.
   1630       1.1     alnsn 	 */
   1631       1.1     alnsn 	int rv = SLJIT_INT_OP;
   1632       1.1     alnsn 
   1633       1.1     alnsn 	switch (BPF_OP(pc->code)) {
   1634       1.1     alnsn 	case BPF_JGT:
   1635       1.1     alnsn 		rv |= negate ? SLJIT_C_LESS_EQUAL : SLJIT_C_GREATER;
   1636       1.1     alnsn 		break;
   1637       1.1     alnsn 	case BPF_JGE:
   1638       1.1     alnsn 		rv |= negate ? SLJIT_C_LESS : SLJIT_C_GREATER_EQUAL;
   1639       1.1     alnsn 		break;
   1640       1.1     alnsn 	case BPF_JEQ:
   1641       1.1     alnsn 		rv |= negate ? SLJIT_C_NOT_EQUAL : SLJIT_C_EQUAL;
   1642       1.1     alnsn 		break;
   1643       1.1     alnsn 	case BPF_JSET:
   1644       1.1     alnsn 		rv |= negate ? SLJIT_C_EQUAL : SLJIT_C_NOT_EQUAL;
   1645       1.1     alnsn 		break;
   1646       1.1     alnsn 	default:
   1647       1.7     alnsn 		BJ_ASSERT(false);
   1648       1.1     alnsn 	}
   1649       1.1     alnsn 
   1650       1.1     alnsn 	return rv;
   1651       1.1     alnsn }
   1652       1.1     alnsn 
   1653       1.1     alnsn /*
   1654       1.1     alnsn  * Convert BPF_K and BPF_X to sljit register.
   1655       1.1     alnsn  */
   1656       1.1     alnsn static int
   1657       1.7     alnsn kx_to_reg(const struct bpf_insn *pc)
   1658       1.1     alnsn {
   1659       1.1     alnsn 
   1660       1.1     alnsn 	switch (BPF_SRC(pc->code)) {
   1661       1.1     alnsn 	case BPF_K: return SLJIT_IMM;
   1662       1.7     alnsn 	case BPF_X: return BJ_XREG;
   1663       1.1     alnsn 	default:
   1664       1.7     alnsn 		BJ_ASSERT(false);
   1665       1.1     alnsn 		return 0;
   1666       1.1     alnsn 	}
   1667       1.1     alnsn }
   1668       1.1     alnsn 
   1669      1.12     alnsn static sljit_sw
   1670       1.7     alnsn kx_to_reg_arg(const struct bpf_insn *pc)
   1671       1.1     alnsn {
   1672       1.1     alnsn 
   1673       1.1     alnsn 	switch (BPF_SRC(pc->code)) {
   1674       1.1     alnsn 	case BPF_K: return (uint32_t)pc->k; /* SLJIT_IMM, pc->k, */
   1675       1.7     alnsn 	case BPF_X: return 0;               /* BJ_XREG, 0,      */
   1676       1.1     alnsn 	default:
   1677       1.7     alnsn 		BJ_ASSERT(false);
   1678       1.1     alnsn 		return 0;
   1679       1.1     alnsn 	}
   1680       1.1     alnsn }
   1681       1.1     alnsn 
   1682      1.19     alnsn static bool
   1683      1.32     alnsn generate_insn_code(struct sljit_compiler *compiler, bpfjit_hint_t hints,
   1684      1.32     alnsn     const bpf_ctx_t *bc, const struct bpf_insn *insns,
   1685      1.32     alnsn     struct bpfjit_insn_data *insn_dat, size_t insn_count)
   1686       1.1     alnsn {
   1687       1.1     alnsn 	/* a list of jumps to out-of-bound return from a generated function */
   1688       1.1     alnsn 	struct sljit_jump **ret0;
   1689       1.7     alnsn 	size_t ret0_size, ret0_maxsize;
   1690       1.1     alnsn 
   1691      1.19     alnsn 	struct sljit_jump *jump;
   1692      1.19     alnsn 	struct sljit_label *label;
   1693       1.7     alnsn 	const struct bpf_insn *pc;
   1694       1.1     alnsn 	struct bpfjit_jump *bjump, *jtf;
   1695       1.1     alnsn 	struct sljit_jump *to_mchain_jump;
   1696       1.1     alnsn 
   1697      1.19     alnsn 	size_t i;
   1698      1.19     alnsn 	int status;
   1699      1.19     alnsn 	int branching, negate;
   1700      1.33  christos 	unsigned int rval, mode, src, op;
   1701       1.1     alnsn 	uint32_t jt, jf;
   1702       1.1     alnsn 
   1703      1.19     alnsn 	bool unconditional_ret;
   1704      1.19     alnsn 	bool rv;
   1705      1.19     alnsn 
   1706      1.19     alnsn 	const size_t extwords = GET_EXTWORDS(bc);
   1707      1.19     alnsn 	const size_t memwords = GET_MEMWORDS(bc);
   1708      1.13     alnsn 
   1709      1.13     alnsn 	ret0 = NULL;
   1710      1.19     alnsn 	rv = false;
   1711       1.7     alnsn 
   1712       1.1     alnsn 	ret0_size = 0;
   1713       1.7     alnsn 	ret0_maxsize = 64;
   1714       1.7     alnsn 	ret0 = BJ_ALLOC(ret0_maxsize * sizeof(ret0[0]));
   1715       1.7     alnsn 	if (ret0 == NULL)
   1716       1.1     alnsn 		goto fail;
   1717       1.1     alnsn 
   1718      1.24     alnsn 	/* reset sjump members of jdata */
   1719      1.24     alnsn 	for (i = 0; i < insn_count; i++) {
   1720      1.24     alnsn 		if (insn_dat[i].unreachable ||
   1721      1.24     alnsn 		    BPF_CLASS(insns[i].code) != BPF_JMP) {
   1722      1.24     alnsn 			continue;
   1723      1.24     alnsn 		}
   1724      1.24     alnsn 
   1725      1.24     alnsn 		jtf = insn_dat[i].u.jdata.jtf;
   1726      1.24     alnsn 		jtf[0].sjump = jtf[1].sjump = NULL;
   1727      1.24     alnsn 	}
   1728      1.24     alnsn 
   1729      1.24     alnsn 	/* main loop */
   1730       1.1     alnsn 	for (i = 0; i < insn_count; i++) {
   1731       1.7     alnsn 		if (insn_dat[i].unreachable)
   1732       1.1     alnsn 			continue;
   1733       1.1     alnsn 
   1734       1.1     alnsn 		/*
   1735       1.1     alnsn 		 * Resolve jumps to the current insn.
   1736       1.1     alnsn 		 */
   1737       1.1     alnsn 		label = NULL;
   1738       1.7     alnsn 		SLIST_FOREACH(bjump, &insn_dat[i].bjumps, entries) {
   1739       1.7     alnsn 			if (bjump->sjump != NULL) {
   1740       1.1     alnsn 				if (label == NULL)
   1741       1.1     alnsn 					label = sljit_emit_label(compiler);
   1742       1.1     alnsn 				if (label == NULL)
   1743       1.1     alnsn 					goto fail;
   1744       1.7     alnsn 				sljit_set_label(bjump->sjump, label);
   1745       1.1     alnsn 			}
   1746       1.1     alnsn 		}
   1747       1.1     alnsn 
   1748       1.9     alnsn 		to_mchain_jump = NULL;
   1749       1.9     alnsn 		unconditional_ret = false;
   1750       1.9     alnsn 
   1751       1.9     alnsn 		if (read_pkt_insn(&insns[i], NULL)) {
   1752       1.9     alnsn 			if (insn_dat[i].u.rdata.check_length > UINT32_MAX) {
   1753       1.9     alnsn 				/* Jump to "return 0" unconditionally. */
   1754       1.9     alnsn 				unconditional_ret = true;
   1755       1.9     alnsn 				jump = sljit_emit_jump(compiler, SLJIT_JUMP);
   1756       1.9     alnsn 				if (jump == NULL)
   1757       1.9     alnsn 					goto fail;
   1758       1.9     alnsn 				if (!append_jump(jump, &ret0,
   1759       1.9     alnsn 				    &ret0_size, &ret0_maxsize))
   1760       1.9     alnsn 					goto fail;
   1761       1.9     alnsn 			} else if (insn_dat[i].u.rdata.check_length > 0) {
   1762       1.9     alnsn 				/* if (buflen < check_length) return 0; */
   1763       1.9     alnsn 				jump = sljit_emit_cmp(compiler,
   1764       1.9     alnsn 				    SLJIT_C_LESS,
   1765       1.9     alnsn 				    BJ_BUFLEN, 0,
   1766       1.9     alnsn 				    SLJIT_IMM,
   1767       1.9     alnsn 				    insn_dat[i].u.rdata.check_length);
   1768       1.9     alnsn 				if (jump == NULL)
   1769       1.9     alnsn 					goto fail;
   1770       1.1     alnsn #ifdef _KERNEL
   1771       1.9     alnsn 				to_mchain_jump = jump;
   1772       1.1     alnsn #else
   1773       1.9     alnsn 				if (!append_jump(jump, &ret0,
   1774       1.9     alnsn 				    &ret0_size, &ret0_maxsize))
   1775       1.9     alnsn 					goto fail;
   1776       1.1     alnsn #endif
   1777       1.9     alnsn 			}
   1778       1.1     alnsn 		}
   1779       1.1     alnsn 
   1780       1.1     alnsn 		pc = &insns[i];
   1781       1.1     alnsn 		switch (BPF_CLASS(pc->code)) {
   1782       1.1     alnsn 
   1783       1.1     alnsn 		default:
   1784       1.1     alnsn 			goto fail;
   1785       1.1     alnsn 
   1786       1.1     alnsn 		case BPF_LD:
   1787       1.1     alnsn 			/* BPF_LD+BPF_IMM          A <- k */
   1788       1.1     alnsn 			if (pc->code == (BPF_LD|BPF_IMM)) {
   1789       1.1     alnsn 				status = sljit_emit_op1(compiler,
   1790       1.1     alnsn 				    SLJIT_MOV,
   1791       1.7     alnsn 				    BJ_AREG, 0,
   1792       1.1     alnsn 				    SLJIT_IMM, (uint32_t)pc->k);
   1793       1.1     alnsn 				if (status != SLJIT_SUCCESS)
   1794       1.1     alnsn 					goto fail;
   1795       1.1     alnsn 
   1796       1.1     alnsn 				continue;
   1797       1.1     alnsn 			}
   1798       1.1     alnsn 
   1799       1.1     alnsn 			/* BPF_LD+BPF_MEM          A <- M[k] */
   1800       1.1     alnsn 			if (pc->code == (BPF_LD|BPF_MEM)) {
   1801      1.13     alnsn 				if ((uint32_t)pc->k >= memwords)
   1802       1.1     alnsn 					goto fail;
   1803      1.13     alnsn 				status = emit_memload(compiler,
   1804      1.13     alnsn 				    BJ_AREG, pc->k, extwords);
   1805       1.1     alnsn 				if (status != SLJIT_SUCCESS)
   1806       1.1     alnsn 					goto fail;
   1807       1.1     alnsn 
   1808       1.1     alnsn 				continue;
   1809       1.1     alnsn 			}
   1810       1.1     alnsn 
   1811       1.1     alnsn 			/* BPF_LD+BPF_W+BPF_LEN    A <- len */
   1812       1.1     alnsn 			if (pc->code == (BPF_LD|BPF_W|BPF_LEN)) {
   1813       1.1     alnsn 				status = sljit_emit_op1(compiler,
   1814      1.21     alnsn 				    SLJIT_MOV, /* size_t source */
   1815       1.7     alnsn 				    BJ_AREG, 0,
   1816      1.13     alnsn 				    SLJIT_MEM1(BJ_ARGS),
   1817      1.13     alnsn 				    offsetof(struct bpf_args, wirelen));
   1818       1.1     alnsn 				if (status != SLJIT_SUCCESS)
   1819       1.1     alnsn 					goto fail;
   1820       1.1     alnsn 
   1821       1.1     alnsn 				continue;
   1822       1.1     alnsn 			}
   1823       1.1     alnsn 
   1824       1.1     alnsn 			mode = BPF_MODE(pc->code);
   1825       1.1     alnsn 			if (mode != BPF_ABS && mode != BPF_IND)
   1826       1.1     alnsn 				goto fail;
   1827       1.1     alnsn 
   1828       1.9     alnsn 			if (unconditional_ret)
   1829       1.9     alnsn 				continue;
   1830       1.9     alnsn 
   1831      1.32     alnsn 			status = emit_pkt_read(compiler, hints, pc,
   1832       1.7     alnsn 			    to_mchain_jump, &ret0, &ret0_size, &ret0_maxsize);
   1833       1.1     alnsn 			if (status != SLJIT_SUCCESS)
   1834       1.1     alnsn 				goto fail;
   1835       1.1     alnsn 
   1836       1.1     alnsn 			continue;
   1837       1.1     alnsn 
   1838       1.1     alnsn 		case BPF_LDX:
   1839       1.1     alnsn 			mode = BPF_MODE(pc->code);
   1840       1.1     alnsn 
   1841       1.1     alnsn 			/* BPF_LDX+BPF_W+BPF_IMM    X <- k */
   1842       1.1     alnsn 			if (mode == BPF_IMM) {
   1843       1.1     alnsn 				if (BPF_SIZE(pc->code) != BPF_W)
   1844       1.1     alnsn 					goto fail;
   1845       1.1     alnsn 				status = sljit_emit_op1(compiler,
   1846       1.1     alnsn 				    SLJIT_MOV,
   1847       1.7     alnsn 				    BJ_XREG, 0,
   1848       1.1     alnsn 				    SLJIT_IMM, (uint32_t)pc->k);
   1849       1.1     alnsn 				if (status != SLJIT_SUCCESS)
   1850       1.1     alnsn 					goto fail;
   1851       1.1     alnsn 
   1852       1.1     alnsn 				continue;
   1853       1.1     alnsn 			}
   1854       1.1     alnsn 
   1855       1.1     alnsn 			/* BPF_LDX+BPF_W+BPF_LEN    X <- len */
   1856       1.1     alnsn 			if (mode == BPF_LEN) {
   1857       1.1     alnsn 				if (BPF_SIZE(pc->code) != BPF_W)
   1858       1.1     alnsn 					goto fail;
   1859       1.1     alnsn 				status = sljit_emit_op1(compiler,
   1860      1.21     alnsn 				    SLJIT_MOV, /* size_t source */
   1861       1.7     alnsn 				    BJ_XREG, 0,
   1862      1.13     alnsn 				    SLJIT_MEM1(BJ_ARGS),
   1863      1.13     alnsn 				    offsetof(struct bpf_args, wirelen));
   1864       1.1     alnsn 				if (status != SLJIT_SUCCESS)
   1865       1.1     alnsn 					goto fail;
   1866       1.1     alnsn 
   1867       1.1     alnsn 				continue;
   1868       1.1     alnsn 			}
   1869       1.1     alnsn 
   1870       1.1     alnsn 			/* BPF_LDX+BPF_W+BPF_MEM    X <- M[k] */
   1871       1.1     alnsn 			if (mode == BPF_MEM) {
   1872       1.1     alnsn 				if (BPF_SIZE(pc->code) != BPF_W)
   1873       1.1     alnsn 					goto fail;
   1874      1.13     alnsn 				if ((uint32_t)pc->k >= memwords)
   1875       1.1     alnsn 					goto fail;
   1876      1.13     alnsn 				status = emit_memload(compiler,
   1877      1.13     alnsn 				    BJ_XREG, pc->k, extwords);
   1878       1.1     alnsn 				if (status != SLJIT_SUCCESS)
   1879       1.1     alnsn 					goto fail;
   1880       1.1     alnsn 
   1881       1.1     alnsn 				continue;
   1882       1.1     alnsn 			}
   1883       1.1     alnsn 
   1884       1.1     alnsn 			/* BPF_LDX+BPF_B+BPF_MSH    X <- 4*(P[k:1]&0xf) */
   1885       1.1     alnsn 			if (mode != BPF_MSH || BPF_SIZE(pc->code) != BPF_B)
   1886       1.1     alnsn 				goto fail;
   1887       1.1     alnsn 
   1888       1.9     alnsn 			if (unconditional_ret)
   1889       1.9     alnsn 				continue;
   1890       1.9     alnsn 
   1891      1.32     alnsn 			status = emit_msh(compiler, hints, pc,
   1892       1.7     alnsn 			    to_mchain_jump, &ret0, &ret0_size, &ret0_maxsize);
   1893       1.1     alnsn 			if (status != SLJIT_SUCCESS)
   1894       1.1     alnsn 				goto fail;
   1895       1.1     alnsn 
   1896       1.1     alnsn 			continue;
   1897       1.1     alnsn 
   1898       1.1     alnsn 		case BPF_ST:
   1899       1.8     alnsn 			if (pc->code != BPF_ST ||
   1900      1.13     alnsn 			    (uint32_t)pc->k >= memwords) {
   1901       1.1     alnsn 				goto fail;
   1902       1.8     alnsn 			}
   1903       1.1     alnsn 
   1904      1.13     alnsn 			status = emit_memstore(compiler,
   1905      1.13     alnsn 			    BJ_AREG, pc->k, extwords);
   1906       1.1     alnsn 			if (status != SLJIT_SUCCESS)
   1907       1.1     alnsn 				goto fail;
   1908       1.1     alnsn 
   1909       1.1     alnsn 			continue;
   1910       1.1     alnsn 
   1911       1.1     alnsn 		case BPF_STX:
   1912       1.8     alnsn 			if (pc->code != BPF_STX ||
   1913      1.13     alnsn 			    (uint32_t)pc->k >= memwords) {
   1914       1.1     alnsn 				goto fail;
   1915       1.8     alnsn 			}
   1916       1.1     alnsn 
   1917      1.13     alnsn 			status = emit_memstore(compiler,
   1918      1.13     alnsn 			    BJ_XREG, pc->k, extwords);
   1919       1.1     alnsn 			if (status != SLJIT_SUCCESS)
   1920       1.1     alnsn 				goto fail;
   1921       1.1     alnsn 
   1922       1.1     alnsn 			continue;
   1923       1.1     alnsn 
   1924       1.1     alnsn 		case BPF_ALU:
   1925       1.1     alnsn 			if (pc->code == (BPF_ALU|BPF_NEG)) {
   1926       1.1     alnsn 				status = sljit_emit_op1(compiler,
   1927       1.1     alnsn 				    SLJIT_NEG,
   1928       1.7     alnsn 				    BJ_AREG, 0,
   1929       1.7     alnsn 				    BJ_AREG, 0);
   1930       1.1     alnsn 				if (status != SLJIT_SUCCESS)
   1931       1.1     alnsn 					goto fail;
   1932       1.1     alnsn 
   1933       1.1     alnsn 				continue;
   1934       1.1     alnsn 			}
   1935       1.1     alnsn 
   1936      1.33  christos 			op = BPF_OP(pc->code);
   1937      1.33  christos 			if (op != BPF_DIV && op != BPF_MOD) {
   1938  1.36.2.1     skrll 				const int op2 = bpf_alu_to_sljit_op(pc);
   1939  1.36.2.1     skrll 
   1940  1.36.2.1     skrll 				if (op2 == SLJIT_UNUSED)
   1941  1.36.2.1     skrll 					goto fail;
   1942       1.1     alnsn 				status = sljit_emit_op2(compiler,
   1943  1.36.2.1     skrll 				    op2, BJ_AREG, 0, BJ_AREG, 0,
   1944       1.1     alnsn 				    kx_to_reg(pc), kx_to_reg_arg(pc));
   1945       1.1     alnsn 				if (status != SLJIT_SUCCESS)
   1946       1.1     alnsn 					goto fail;
   1947       1.1     alnsn 
   1948       1.1     alnsn 				continue;
   1949       1.1     alnsn 			}
   1950       1.1     alnsn 
   1951      1.33  christos 			/* BPF_DIV/BPF_MOD */
   1952       1.1     alnsn 
   1953       1.1     alnsn 			src = BPF_SRC(pc->code);
   1954       1.1     alnsn 			if (src != BPF_X && src != BPF_K)
   1955       1.1     alnsn 				goto fail;
   1956       1.1     alnsn 
   1957       1.1     alnsn 			/* division by zero? */
   1958       1.1     alnsn 			if (src == BPF_X) {
   1959       1.1     alnsn 				jump = sljit_emit_cmp(compiler,
   1960       1.1     alnsn 				    SLJIT_C_EQUAL|SLJIT_INT_OP,
   1961       1.8     alnsn 				    BJ_XREG, 0,
   1962       1.1     alnsn 				    SLJIT_IMM, 0);
   1963       1.1     alnsn 				if (jump == NULL)
   1964       1.1     alnsn 					goto fail;
   1965       1.7     alnsn 				if (!append_jump(jump, &ret0,
   1966       1.7     alnsn 				    &ret0_size, &ret0_maxsize))
   1967       1.7     alnsn 					goto fail;
   1968       1.1     alnsn 			} else if (pc->k == 0) {
   1969       1.1     alnsn 				jump = sljit_emit_jump(compiler, SLJIT_JUMP);
   1970       1.1     alnsn 				if (jump == NULL)
   1971       1.1     alnsn 					goto fail;
   1972       1.7     alnsn 				if (!append_jump(jump, &ret0,
   1973       1.7     alnsn 				    &ret0_size, &ret0_maxsize))
   1974       1.7     alnsn 					goto fail;
   1975       1.1     alnsn 			}
   1976       1.1     alnsn 
   1977       1.1     alnsn 			if (src == BPF_X) {
   1978      1.35     alnsn 				status = emit_moddiv(compiler, pc);
   1979       1.1     alnsn 				if (status != SLJIT_SUCCESS)
   1980       1.1     alnsn 					goto fail;
   1981       1.1     alnsn 			} else if (pc->k != 0) {
   1982      1.35     alnsn 				if (pc->k & (pc->k - 1)) {
   1983      1.35     alnsn 					status = emit_moddiv(compiler, pc);
   1984       1.1     alnsn 				} else {
   1985      1.35     alnsn 					status = emit_pow2_moddiv(compiler, pc);
   1986       1.1     alnsn 				}
   1987       1.1     alnsn 				if (status != SLJIT_SUCCESS)
   1988       1.1     alnsn 					goto fail;
   1989       1.1     alnsn 			}
   1990       1.1     alnsn 
   1991       1.1     alnsn 			continue;
   1992       1.1     alnsn 
   1993       1.1     alnsn 		case BPF_JMP:
   1994      1.33  christos 			op = BPF_OP(pc->code);
   1995      1.33  christos 			if (op == BPF_JA) {
   1996       1.1     alnsn 				jt = jf = pc->k;
   1997       1.1     alnsn 			} else {
   1998       1.1     alnsn 				jt = pc->jt;
   1999       1.1     alnsn 				jf = pc->jf;
   2000       1.1     alnsn 			}
   2001       1.1     alnsn 
   2002       1.1     alnsn 			negate = (jt == 0) ? 1 : 0;
   2003       1.1     alnsn 			branching = (jt == jf) ? 0 : 1;
   2004       1.7     alnsn 			jtf = insn_dat[i].u.jdata.jtf;
   2005       1.1     alnsn 
   2006       1.1     alnsn 			if (branching) {
   2007      1.33  christos 				if (op != BPF_JSET) {
   2008       1.1     alnsn 					jump = sljit_emit_cmp(compiler,
   2009       1.1     alnsn 					    bpf_jmp_to_sljit_cond(pc, negate),
   2010       1.7     alnsn 					    BJ_AREG, 0,
   2011       1.1     alnsn 					    kx_to_reg(pc), kx_to_reg_arg(pc));
   2012       1.1     alnsn 				} else {
   2013       1.1     alnsn 					status = sljit_emit_op2(compiler,
   2014       1.1     alnsn 					    SLJIT_AND,
   2015       1.7     alnsn 					    BJ_TMP1REG, 0,
   2016       1.7     alnsn 					    BJ_AREG, 0,
   2017       1.1     alnsn 					    kx_to_reg(pc), kx_to_reg_arg(pc));
   2018       1.1     alnsn 					if (status != SLJIT_SUCCESS)
   2019       1.1     alnsn 						goto fail;
   2020       1.1     alnsn 
   2021       1.1     alnsn 					jump = sljit_emit_cmp(compiler,
   2022       1.1     alnsn 					    bpf_jmp_to_sljit_cond(pc, negate),
   2023       1.7     alnsn 					    BJ_TMP1REG, 0,
   2024       1.1     alnsn 					    SLJIT_IMM, 0);
   2025       1.1     alnsn 				}
   2026       1.1     alnsn 
   2027       1.1     alnsn 				if (jump == NULL)
   2028       1.1     alnsn 					goto fail;
   2029       1.1     alnsn 
   2030       1.7     alnsn 				BJ_ASSERT(jtf[negate].sjump == NULL);
   2031       1.7     alnsn 				jtf[negate].sjump = jump;
   2032       1.1     alnsn 			}
   2033       1.1     alnsn 
   2034       1.1     alnsn 			if (!branching || (jt != 0 && jf != 0)) {
   2035       1.1     alnsn 				jump = sljit_emit_jump(compiler, SLJIT_JUMP);
   2036       1.1     alnsn 				if (jump == NULL)
   2037       1.1     alnsn 					goto fail;
   2038       1.1     alnsn 
   2039       1.7     alnsn 				BJ_ASSERT(jtf[branching].sjump == NULL);
   2040       1.7     alnsn 				jtf[branching].sjump = jump;
   2041       1.1     alnsn 			}
   2042       1.1     alnsn 
   2043       1.1     alnsn 			continue;
   2044       1.1     alnsn 
   2045       1.1     alnsn 		case BPF_RET:
   2046       1.1     alnsn 			rval = BPF_RVAL(pc->code);
   2047       1.1     alnsn 			if (rval == BPF_X)
   2048       1.1     alnsn 				goto fail;
   2049       1.1     alnsn 
   2050       1.1     alnsn 			/* BPF_RET+BPF_K    accept k bytes */
   2051       1.1     alnsn 			if (rval == BPF_K) {
   2052       1.7     alnsn 				status = sljit_emit_return(compiler,
   2053       1.7     alnsn 				    SLJIT_MOV_UI,
   2054       1.1     alnsn 				    SLJIT_IMM, (uint32_t)pc->k);
   2055       1.1     alnsn 				if (status != SLJIT_SUCCESS)
   2056       1.1     alnsn 					goto fail;
   2057       1.1     alnsn 			}
   2058       1.1     alnsn 
   2059       1.1     alnsn 			/* BPF_RET+BPF_A    accept A bytes */
   2060       1.1     alnsn 			if (rval == BPF_A) {
   2061       1.7     alnsn 				status = sljit_emit_return(compiler,
   2062       1.7     alnsn 				    SLJIT_MOV_UI,
   2063       1.7     alnsn 				    BJ_AREG, 0);
   2064       1.1     alnsn 				if (status != SLJIT_SUCCESS)
   2065       1.1     alnsn 					goto fail;
   2066       1.1     alnsn 			}
   2067       1.1     alnsn 
   2068       1.1     alnsn 			continue;
   2069       1.1     alnsn 
   2070       1.1     alnsn 		case BPF_MISC:
   2071       1.7     alnsn 			switch (BPF_MISCOP(pc->code)) {
   2072       1.7     alnsn 			case BPF_TAX:
   2073       1.1     alnsn 				status = sljit_emit_op1(compiler,
   2074       1.1     alnsn 				    SLJIT_MOV_UI,
   2075       1.7     alnsn 				    BJ_XREG, 0,
   2076       1.7     alnsn 				    BJ_AREG, 0);
   2077       1.1     alnsn 				if (status != SLJIT_SUCCESS)
   2078       1.1     alnsn 					goto fail;
   2079       1.1     alnsn 
   2080       1.1     alnsn 				continue;
   2081       1.1     alnsn 
   2082       1.7     alnsn 			case BPF_TXA:
   2083       1.1     alnsn 				status = sljit_emit_op1(compiler,
   2084       1.1     alnsn 				    SLJIT_MOV,
   2085       1.7     alnsn 				    BJ_AREG, 0,
   2086       1.7     alnsn 				    BJ_XREG, 0);
   2087       1.1     alnsn 				if (status != SLJIT_SUCCESS)
   2088       1.1     alnsn 					goto fail;
   2089       1.1     alnsn 
   2090       1.1     alnsn 				continue;
   2091      1.13     alnsn 
   2092      1.13     alnsn 			case BPF_COP:
   2093      1.13     alnsn 			case BPF_COPX:
   2094      1.13     alnsn 				if (bc == NULL || bc->copfuncs == NULL)
   2095      1.13     alnsn 					goto fail;
   2096      1.13     alnsn 				if (BPF_MISCOP(pc->code) == BPF_COP &&
   2097      1.13     alnsn 				    (uint32_t)pc->k >= bc->nfuncs) {
   2098      1.13     alnsn 					goto fail;
   2099      1.13     alnsn 				}
   2100      1.13     alnsn 
   2101      1.32     alnsn 				status = emit_cop(compiler, hints, bc, pc,
   2102      1.28     alnsn 				    &ret0, &ret0_size, &ret0_maxsize);
   2103      1.13     alnsn 				if (status != SLJIT_SUCCESS)
   2104      1.13     alnsn 					goto fail;
   2105      1.13     alnsn 
   2106      1.13     alnsn 				continue;
   2107       1.1     alnsn 			}
   2108       1.1     alnsn 
   2109       1.1     alnsn 			goto fail;
   2110       1.1     alnsn 		} /* switch */
   2111       1.1     alnsn 	} /* main loop */
   2112       1.1     alnsn 
   2113       1.7     alnsn 	BJ_ASSERT(ret0_size <= ret0_maxsize);
   2114       1.1     alnsn 
   2115       1.7     alnsn 	if (ret0_size > 0) {
   2116       1.1     alnsn 		label = sljit_emit_label(compiler);
   2117       1.1     alnsn 		if (label == NULL)
   2118       1.1     alnsn 			goto fail;
   2119       1.7     alnsn 		for (i = 0; i < ret0_size; i++)
   2120       1.7     alnsn 			sljit_set_label(ret0[i], label);
   2121       1.1     alnsn 	}
   2122       1.1     alnsn 
   2123      1.23     alnsn 	status = sljit_emit_return(compiler,
   2124      1.23     alnsn 	    SLJIT_MOV_UI,
   2125      1.23     alnsn 	    SLJIT_IMM, 0);
   2126      1.23     alnsn 	if (status != SLJIT_SUCCESS)
   2127      1.23     alnsn 		goto fail;
   2128      1.23     alnsn 
   2129      1.19     alnsn 	rv = true;
   2130      1.19     alnsn 
   2131      1.19     alnsn fail:
   2132      1.19     alnsn 	if (ret0 != NULL)
   2133      1.19     alnsn 		BJ_FREE(ret0, ret0_maxsize * sizeof(ret0[0]));
   2134      1.19     alnsn 
   2135      1.19     alnsn 	return rv;
   2136      1.19     alnsn }
   2137      1.19     alnsn 
   2138      1.19     alnsn bpfjit_func_t
   2139      1.19     alnsn bpfjit_generate_code(const bpf_ctx_t *bc,
   2140      1.19     alnsn     const struct bpf_insn *insns, size_t insn_count)
   2141      1.19     alnsn {
   2142      1.19     alnsn 	void *rv;
   2143      1.19     alnsn 	struct sljit_compiler *compiler;
   2144      1.19     alnsn 
   2145      1.19     alnsn 	size_t i;
   2146      1.19     alnsn 	int status;
   2147      1.19     alnsn 
   2148      1.19     alnsn 	/* optimization related */
   2149      1.19     alnsn 	bpf_memword_init_t initmask;
   2150      1.20     alnsn 	bpfjit_hint_t hints;
   2151      1.19     alnsn 
   2152      1.19     alnsn 	/* memory store location for initial zero initialization */
   2153      1.19     alnsn 	sljit_si mem_reg;
   2154      1.19     alnsn 	sljit_sw mem_off;
   2155      1.19     alnsn 
   2156      1.19     alnsn 	struct bpfjit_insn_data *insn_dat;
   2157      1.19     alnsn 
   2158      1.19     alnsn 	const size_t extwords = GET_EXTWORDS(bc);
   2159      1.19     alnsn 	const size_t memwords = GET_MEMWORDS(bc);
   2160      1.19     alnsn 	const bpf_memword_init_t preinited = extwords ? bc->preinited : 0;
   2161      1.19     alnsn 
   2162      1.19     alnsn 	rv = NULL;
   2163      1.19     alnsn 	compiler = NULL;
   2164      1.19     alnsn 	insn_dat = NULL;
   2165      1.19     alnsn 
   2166      1.19     alnsn 	if (memwords > MAX_MEMWORDS)
   2167      1.19     alnsn 		goto fail;
   2168      1.19     alnsn 
   2169      1.19     alnsn 	if (insn_count == 0 || insn_count > SIZE_MAX / sizeof(insn_dat[0]))
   2170      1.19     alnsn 		goto fail;
   2171      1.19     alnsn 
   2172      1.19     alnsn 	insn_dat = BJ_ALLOC(insn_count * sizeof(insn_dat[0]));
   2173      1.19     alnsn 	if (insn_dat == NULL)
   2174      1.19     alnsn 		goto fail;
   2175      1.19     alnsn 
   2176      1.20     alnsn 	if (!optimize(bc, insns, insn_dat, insn_count, &initmask, &hints))
   2177      1.19     alnsn 		goto fail;
   2178      1.19     alnsn 
   2179      1.19     alnsn 	compiler = sljit_create_compiler();
   2180      1.19     alnsn 	if (compiler == NULL)
   2181      1.19     alnsn 		goto fail;
   2182      1.19     alnsn 
   2183      1.19     alnsn #if !defined(_KERNEL) && defined(SLJIT_VERBOSE) && SLJIT_VERBOSE
   2184      1.19     alnsn 	sljit_compiler_verbose(compiler, stderr);
   2185      1.19     alnsn #endif
   2186      1.19     alnsn 
   2187      1.30     alnsn 	status = sljit_emit_enter(compiler,
   2188  1.36.2.2     skrll 	    2, nscratches(hints), NSAVEDS, sizeof(struct bpfjit_stack));
   2189      1.19     alnsn 	if (status != SLJIT_SUCCESS)
   2190      1.19     alnsn 		goto fail;
   2191      1.19     alnsn 
   2192      1.20     alnsn 	if (hints & BJ_HINT_COP) {
   2193      1.19     alnsn 		/* save ctx argument */
   2194      1.19     alnsn 		status = sljit_emit_op1(compiler,
   2195      1.19     alnsn 		    SLJIT_MOV_P,
   2196      1.19     alnsn 		    SLJIT_MEM1(SLJIT_LOCALS_REG),
   2197      1.19     alnsn 		    offsetof(struct bpfjit_stack, ctx),
   2198      1.19     alnsn 		    BJ_CTX_ARG, 0);
   2199      1.19     alnsn 		if (status != SLJIT_SUCCESS)
   2200      1.19     alnsn 			goto fail;
   2201      1.19     alnsn 	}
   2202      1.19     alnsn 
   2203      1.19     alnsn 	if (extwords == 0) {
   2204      1.19     alnsn 		mem_reg = SLJIT_MEM1(SLJIT_LOCALS_REG);
   2205      1.19     alnsn 		mem_off = offsetof(struct bpfjit_stack, mem);
   2206      1.19     alnsn 	} else {
   2207      1.19     alnsn 		/* copy "mem" argument from bpf_args to bpfjit_stack */
   2208      1.19     alnsn 		status = sljit_emit_op1(compiler,
   2209      1.19     alnsn 		    SLJIT_MOV_P,
   2210      1.19     alnsn 		    BJ_TMP1REG, 0,
   2211      1.19     alnsn 		    SLJIT_MEM1(BJ_ARGS), offsetof(struct bpf_args, mem));
   2212      1.19     alnsn 		if (status != SLJIT_SUCCESS)
   2213      1.19     alnsn 			goto fail;
   2214      1.19     alnsn 
   2215      1.19     alnsn 		status = sljit_emit_op1(compiler,
   2216      1.19     alnsn 		    SLJIT_MOV_P,
   2217      1.19     alnsn 		    SLJIT_MEM1(SLJIT_LOCALS_REG),
   2218      1.19     alnsn 		    offsetof(struct bpfjit_stack, extmem),
   2219      1.19     alnsn 		    BJ_TMP1REG, 0);
   2220      1.19     alnsn 		if (status != SLJIT_SUCCESS)
   2221      1.19     alnsn 			goto fail;
   2222      1.19     alnsn 
   2223      1.19     alnsn 		mem_reg = SLJIT_MEM1(BJ_TMP1REG);
   2224      1.19     alnsn 		mem_off = 0;
   2225      1.19     alnsn 	}
   2226      1.19     alnsn 
   2227      1.19     alnsn 	/*
   2228      1.19     alnsn 	 * Exclude pre-initialised external memory words but keep
   2229      1.19     alnsn 	 * initialization statuses of A and X registers in case
   2230      1.19     alnsn 	 * bc->preinited wrongly sets those two bits.
   2231      1.19     alnsn 	 */
   2232      1.19     alnsn 	initmask &= ~preinited | BJ_INIT_ABIT | BJ_INIT_XBIT;
   2233      1.19     alnsn 
   2234      1.19     alnsn #if defined(_KERNEL)
   2235      1.19     alnsn 	/* bpf_filter() checks initialization of memwords. */
   2236      1.19     alnsn 	BJ_ASSERT((initmask & (BJ_INIT_MBIT(memwords) - 1)) == 0);
   2237      1.19     alnsn #endif
   2238      1.19     alnsn 	for (i = 0; i < memwords; i++) {
   2239      1.19     alnsn 		if (initmask & BJ_INIT_MBIT(i)) {
   2240      1.19     alnsn 			/* M[i] = 0; */
   2241      1.19     alnsn 			status = sljit_emit_op1(compiler,
   2242      1.19     alnsn 			    SLJIT_MOV_UI,
   2243      1.19     alnsn 			    mem_reg, mem_off + i * sizeof(uint32_t),
   2244      1.19     alnsn 			    SLJIT_IMM, 0);
   2245      1.19     alnsn 			if (status != SLJIT_SUCCESS)
   2246      1.19     alnsn 				goto fail;
   2247      1.19     alnsn 		}
   2248      1.19     alnsn 	}
   2249      1.19     alnsn 
   2250      1.19     alnsn 	if (initmask & BJ_INIT_ABIT) {
   2251      1.19     alnsn 		/* A = 0; */
   2252      1.19     alnsn 		status = sljit_emit_op1(compiler,
   2253      1.19     alnsn 		    SLJIT_MOV,
   2254      1.19     alnsn 		    BJ_AREG, 0,
   2255      1.19     alnsn 		    SLJIT_IMM, 0);
   2256      1.19     alnsn 		if (status != SLJIT_SUCCESS)
   2257      1.19     alnsn 			goto fail;
   2258      1.19     alnsn 	}
   2259      1.19     alnsn 
   2260      1.19     alnsn 	if (initmask & BJ_INIT_XBIT) {
   2261      1.19     alnsn 		/* X = 0; */
   2262      1.19     alnsn 		status = sljit_emit_op1(compiler,
   2263      1.19     alnsn 		    SLJIT_MOV,
   2264      1.19     alnsn 		    BJ_XREG, 0,
   2265      1.19     alnsn 		    SLJIT_IMM, 0);
   2266      1.19     alnsn 		if (status != SLJIT_SUCCESS)
   2267      1.19     alnsn 			goto fail;
   2268      1.19     alnsn 	}
   2269      1.19     alnsn 
   2270      1.19     alnsn 	status = load_buf_buflen(compiler);
   2271      1.19     alnsn 	if (status != SLJIT_SUCCESS)
   2272      1.19     alnsn 		goto fail;
   2273      1.19     alnsn 
   2274      1.32     alnsn 	if (!generate_insn_code(compiler, hints,
   2275      1.32     alnsn 	    bc, insns, insn_dat, insn_count)) {
   2276      1.19     alnsn 		goto fail;
   2277      1.32     alnsn 	}
   2278      1.19     alnsn 
   2279       1.1     alnsn 	rv = sljit_generate_code(compiler);
   2280       1.1     alnsn 
   2281       1.1     alnsn fail:
   2282       1.1     alnsn 	if (compiler != NULL)
   2283       1.1     alnsn 		sljit_free_compiler(compiler);
   2284       1.1     alnsn 
   2285       1.1     alnsn 	if (insn_dat != NULL)
   2286       1.7     alnsn 		BJ_FREE(insn_dat, insn_count * sizeof(insn_dat[0]));
   2287       1.1     alnsn 
   2288       1.4     rmind 	return (bpfjit_func_t)rv;
   2289       1.1     alnsn }
   2290       1.1     alnsn 
   2291       1.1     alnsn void
   2292       1.4     rmind bpfjit_free_code(bpfjit_func_t code)
   2293       1.1     alnsn {
   2294       1.7     alnsn 
   2295       1.1     alnsn 	sljit_free_code((void *)code);
   2296       1.1     alnsn }
   2297