bpfjit.c revision 1.45 1 1.45 alnsn /* $NetBSD: bpfjit.c,v 1.45 2016/05/29 17:20:22 alnsn Exp $ */
2 1.3 rmind
3 1.1 alnsn /*-
4 1.43 alnsn * Copyright (c) 2011-2015 Alexander Nasonov.
5 1.1 alnsn * All rights reserved.
6 1.1 alnsn *
7 1.1 alnsn * Redistribution and use in source and binary forms, with or without
8 1.1 alnsn * modification, are permitted provided that the following conditions
9 1.1 alnsn * are met:
10 1.1 alnsn *
11 1.1 alnsn * 1. Redistributions of source code must retain the above copyright
12 1.1 alnsn * notice, this list of conditions and the following disclaimer.
13 1.1 alnsn * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 alnsn * notice, this list of conditions and the following disclaimer in
15 1.1 alnsn * the documentation and/or other materials provided with the
16 1.1 alnsn * distribution.
17 1.1 alnsn *
18 1.1 alnsn * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 1.1 alnsn * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 1.1 alnsn * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
21 1.1 alnsn * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
22 1.1 alnsn * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
23 1.1 alnsn * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
24 1.1 alnsn * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
25 1.1 alnsn * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
26 1.1 alnsn * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
27 1.1 alnsn * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
28 1.1 alnsn * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 1.1 alnsn * SUCH DAMAGE.
30 1.1 alnsn */
31 1.1 alnsn
32 1.2 alnsn #include <sys/cdefs.h>
33 1.2 alnsn #ifdef _KERNEL
34 1.45 alnsn __KERNEL_RCSID(0, "$NetBSD: bpfjit.c,v 1.45 2016/05/29 17:20:22 alnsn Exp $");
35 1.2 alnsn #else
36 1.45 alnsn __RCSID("$NetBSD: bpfjit.c,v 1.45 2016/05/29 17:20:22 alnsn Exp $");
37 1.2 alnsn #endif
38 1.2 alnsn
39 1.3 rmind #include <sys/types.h>
40 1.3 rmind #include <sys/queue.h>
41 1.1 alnsn
42 1.1 alnsn #ifndef _KERNEL
43 1.7 alnsn #include <assert.h>
44 1.7 alnsn #define BJ_ASSERT(c) assert(c)
45 1.7 alnsn #else
46 1.7 alnsn #define BJ_ASSERT(c) KASSERT(c)
47 1.7 alnsn #endif
48 1.7 alnsn
49 1.7 alnsn #ifndef _KERNEL
50 1.3 rmind #include <stdlib.h>
51 1.7 alnsn #define BJ_ALLOC(sz) malloc(sz)
52 1.7 alnsn #define BJ_FREE(p, sz) free(p)
53 1.1 alnsn #else
54 1.3 rmind #include <sys/kmem.h>
55 1.7 alnsn #define BJ_ALLOC(sz) kmem_alloc(sz, KM_SLEEP)
56 1.7 alnsn #define BJ_FREE(p, sz) kmem_free(p, sz)
57 1.1 alnsn #endif
58 1.1 alnsn
59 1.1 alnsn #ifndef _KERNEL
60 1.1 alnsn #include <limits.h>
61 1.1 alnsn #include <stdbool.h>
62 1.1 alnsn #include <stddef.h>
63 1.1 alnsn #include <stdint.h>
64 1.1 alnsn #else
65 1.1 alnsn #include <sys/atomic.h>
66 1.1 alnsn #include <sys/module.h>
67 1.1 alnsn #endif
68 1.1 alnsn
69 1.5 rmind #define __BPF_PRIVATE
70 1.5 rmind #include <net/bpf.h>
71 1.3 rmind #include <net/bpfjit.h>
72 1.1 alnsn #include <sljitLir.h>
73 1.1 alnsn
74 1.7 alnsn #if !defined(_KERNEL) && defined(SLJIT_VERBOSE) && SLJIT_VERBOSE
75 1.7 alnsn #include <stdio.h> /* for stderr */
76 1.7 alnsn #endif
77 1.7 alnsn
78 1.7 alnsn /*
79 1.44 alnsn * Number of saved registers to pass to sljit_emit_enter() function.
80 1.44 alnsn */
81 1.44 alnsn #define NSAVEDS 3
82 1.44 alnsn
83 1.44 alnsn /*
84 1.13 alnsn * Arguments of generated bpfjit_func_t.
85 1.13 alnsn * The first argument is reassigned upon entry
86 1.13 alnsn * to a more frequently used buf argument.
87 1.13 alnsn */
88 1.45 alnsn #define BJ_CTX_ARG SLJIT_S0
89 1.45 alnsn #define BJ_ARGS SLJIT_S1
90 1.13 alnsn
91 1.13 alnsn /*
92 1.7 alnsn * Permanent register assignments.
93 1.7 alnsn */
94 1.45 alnsn #define BJ_BUF SLJIT_S0
95 1.45 alnsn //#define BJ_ARGS SLJIT_S1
96 1.45 alnsn #define BJ_BUFLEN SLJIT_S2
97 1.45 alnsn #define BJ_AREG SLJIT_R0
98 1.45 alnsn #define BJ_TMP1REG SLJIT_R1
99 1.45 alnsn #define BJ_TMP2REG SLJIT_R2
100 1.45 alnsn #define BJ_XREG SLJIT_R3
101 1.45 alnsn #define BJ_TMP3REG SLJIT_R4
102 1.7 alnsn
103 1.13 alnsn #ifdef _KERNEL
104 1.13 alnsn #define MAX_MEMWORDS BPF_MAX_MEMWORDS
105 1.13 alnsn #else
106 1.13 alnsn #define MAX_MEMWORDS BPF_MEMWORDS
107 1.13 alnsn #endif
108 1.13 alnsn
109 1.13 alnsn #define BJ_INIT_NOBITS ((bpf_memword_init_t)0)
110 1.13 alnsn #define BJ_INIT_MBIT(k) BPF_MEMWORD_INIT(k)
111 1.13 alnsn #define BJ_INIT_ABIT BJ_INIT_MBIT(MAX_MEMWORDS)
112 1.13 alnsn #define BJ_INIT_XBIT BJ_INIT_MBIT(MAX_MEMWORDS + 1)
113 1.1 alnsn
114 1.9 alnsn /*
115 1.19 alnsn * Get a number of memwords and external memwords from a bpf_ctx object.
116 1.19 alnsn */
117 1.19 alnsn #define GET_EXTWORDS(bc) ((bc) ? (bc)->extwords : 0)
118 1.19 alnsn #define GET_MEMWORDS(bc) (GET_EXTWORDS(bc) ? GET_EXTWORDS(bc) : BPF_MEMWORDS)
119 1.19 alnsn
120 1.19 alnsn /*
121 1.20 alnsn * Optimization hints.
122 1.20 alnsn */
123 1.20 alnsn typedef unsigned int bpfjit_hint_t;
124 1.28 alnsn #define BJ_HINT_ABS 0x01 /* packet read at absolute offset */
125 1.28 alnsn #define BJ_HINT_IND 0x02 /* packet read at variable offset */
126 1.29 alnsn #define BJ_HINT_MSH 0x04 /* BPF_MSH instruction */
127 1.29 alnsn #define BJ_HINT_COP 0x08 /* BPF_COP or BPF_COPX instruction */
128 1.29 alnsn #define BJ_HINT_COPX 0x10 /* BPF_COPX instruction */
129 1.29 alnsn #define BJ_HINT_XREG 0x20 /* BJ_XREG is needed */
130 1.29 alnsn #define BJ_HINT_LDX 0x40 /* BPF_LDX instruction */
131 1.29 alnsn #define BJ_HINT_PKT (BJ_HINT_ABS|BJ_HINT_IND|BJ_HINT_MSH)
132 1.20 alnsn
133 1.20 alnsn /*
134 1.9 alnsn * Datatype for Array Bounds Check Elimination (ABC) pass.
135 1.9 alnsn */
136 1.9 alnsn typedef uint64_t bpfjit_abc_length_t;
137 1.9 alnsn #define MAX_ABC_LENGTH (UINT32_MAX + UINT64_C(4)) /* max. width is 4 */
138 1.8 alnsn
139 1.7 alnsn struct bpfjit_stack
140 1.7 alnsn {
141 1.13 alnsn bpf_ctx_t *ctx;
142 1.13 alnsn uint32_t *extmem; /* pointer to external memory store */
143 1.32 alnsn uint32_t reg; /* saved A or X register */
144 1.7 alnsn #ifdef _KERNEL
145 1.21 alnsn int err; /* 3rd argument for m_xword/m_xhalf/m_xbyte function call */
146 1.7 alnsn #endif
147 1.13 alnsn uint32_t mem[BPF_MEMWORDS]; /* internal memory store */
148 1.7 alnsn };
149 1.7 alnsn
150 1.7 alnsn /*
151 1.7 alnsn * Data for BPF_JMP instruction.
152 1.7 alnsn * Forward declaration for struct bpfjit_jump.
153 1.1 alnsn */
154 1.7 alnsn struct bpfjit_jump_data;
155 1.1 alnsn
156 1.1 alnsn /*
157 1.7 alnsn * Node of bjumps list.
158 1.1 alnsn */
159 1.3 rmind struct bpfjit_jump {
160 1.7 alnsn struct sljit_jump *sjump;
161 1.7 alnsn SLIST_ENTRY(bpfjit_jump) entries;
162 1.7 alnsn struct bpfjit_jump_data *jdata;
163 1.1 alnsn };
164 1.1 alnsn
165 1.1 alnsn /*
166 1.1 alnsn * Data for BPF_JMP instruction.
167 1.1 alnsn */
168 1.3 rmind struct bpfjit_jump_data {
169 1.1 alnsn /*
170 1.7 alnsn * These entries make up bjumps list:
171 1.7 alnsn * jtf[0] - when coming from jt path,
172 1.7 alnsn * jtf[1] - when coming from jf path.
173 1.1 alnsn */
174 1.7 alnsn struct bpfjit_jump jtf[2];
175 1.7 alnsn /*
176 1.7 alnsn * Length calculated by Array Bounds Check Elimination (ABC) pass.
177 1.7 alnsn */
178 1.8 alnsn bpfjit_abc_length_t abc_length;
179 1.7 alnsn /*
180 1.7 alnsn * Length checked by the last out-of-bounds check.
181 1.7 alnsn */
182 1.8 alnsn bpfjit_abc_length_t checked_length;
183 1.1 alnsn };
184 1.1 alnsn
185 1.1 alnsn /*
186 1.1 alnsn * Data for "read from packet" instructions.
187 1.1 alnsn * See also read_pkt_insn() function below.
188 1.1 alnsn */
189 1.3 rmind struct bpfjit_read_pkt_data {
190 1.1 alnsn /*
191 1.7 alnsn * Length calculated by Array Bounds Check Elimination (ABC) pass.
192 1.7 alnsn */
193 1.8 alnsn bpfjit_abc_length_t abc_length;
194 1.7 alnsn /*
195 1.7 alnsn * If positive, emit "if (buflen < check_length) return 0"
196 1.7 alnsn * out-of-bounds check.
197 1.9 alnsn * Values greater than UINT32_MAX generate unconditional "return 0".
198 1.1 alnsn */
199 1.8 alnsn bpfjit_abc_length_t check_length;
200 1.1 alnsn };
201 1.1 alnsn
202 1.1 alnsn /*
203 1.1 alnsn * Additional (optimization-related) data for bpf_insn.
204 1.1 alnsn */
205 1.3 rmind struct bpfjit_insn_data {
206 1.1 alnsn /* List of jumps to this insn. */
207 1.7 alnsn SLIST_HEAD(, bpfjit_jump) bjumps;
208 1.1 alnsn
209 1.1 alnsn union {
210 1.7 alnsn struct bpfjit_jump_data jdata;
211 1.7 alnsn struct bpfjit_read_pkt_data rdata;
212 1.7 alnsn } u;
213 1.1 alnsn
214 1.13 alnsn bpf_memword_init_t invalid;
215 1.7 alnsn bool unreachable;
216 1.1 alnsn };
217 1.1 alnsn
218 1.1 alnsn #ifdef _KERNEL
219 1.1 alnsn
220 1.1 alnsn uint32_t m_xword(const struct mbuf *, uint32_t, int *);
221 1.1 alnsn uint32_t m_xhalf(const struct mbuf *, uint32_t, int *);
222 1.1 alnsn uint32_t m_xbyte(const struct mbuf *, uint32_t, int *);
223 1.1 alnsn
224 1.1 alnsn MODULE(MODULE_CLASS_MISC, bpfjit, "sljit")
225 1.1 alnsn
226 1.1 alnsn static int
227 1.1 alnsn bpfjit_modcmd(modcmd_t cmd, void *arg)
228 1.1 alnsn {
229 1.1 alnsn
230 1.1 alnsn switch (cmd) {
231 1.1 alnsn case MODULE_CMD_INIT:
232 1.1 alnsn bpfjit_module_ops.bj_free_code = &bpfjit_free_code;
233 1.1 alnsn membar_producer();
234 1.1 alnsn bpfjit_module_ops.bj_generate_code = &bpfjit_generate_code;
235 1.1 alnsn membar_producer();
236 1.1 alnsn return 0;
237 1.1 alnsn
238 1.1 alnsn case MODULE_CMD_FINI:
239 1.1 alnsn return EOPNOTSUPP;
240 1.1 alnsn
241 1.1 alnsn default:
242 1.1 alnsn return ENOTTY;
243 1.1 alnsn }
244 1.1 alnsn }
245 1.1 alnsn #endif
246 1.1 alnsn
247 1.20 alnsn /*
248 1.21 alnsn * Return a number of scratch registers to pass
249 1.20 alnsn * to sljit_emit_enter() function.
250 1.20 alnsn */
251 1.45 alnsn static sljit_s32
252 1.20 alnsn nscratches(bpfjit_hint_t hints)
253 1.20 alnsn {
254 1.45 alnsn sljit_s32 rv = 2;
255 1.20 alnsn
256 1.22 alnsn #ifdef _KERNEL
257 1.24 alnsn if (hints & BJ_HINT_PKT)
258 1.24 alnsn rv = 3; /* xcall with three arguments */
259 1.22 alnsn #endif
260 1.22 alnsn
261 1.27 alnsn if (hints & BJ_HINT_IND)
262 1.20 alnsn rv = 3; /* uses BJ_TMP2REG */
263 1.20 alnsn
264 1.20 alnsn if (hints & BJ_HINT_COP)
265 1.20 alnsn rv = 3; /* calls copfunc with three arguments */
266 1.20 alnsn
267 1.32 alnsn if (hints & BJ_HINT_XREG)
268 1.32 alnsn rv = 4; /* uses BJ_XREG */
269 1.32 alnsn
270 1.32 alnsn #ifdef _KERNEL
271 1.32 alnsn if (hints & BJ_HINT_LDX)
272 1.32 alnsn rv = 5; /* uses BJ_TMP3REG */
273 1.32 alnsn #endif
274 1.32 alnsn
275 1.29 alnsn if (hints & BJ_HINT_COPX)
276 1.32 alnsn rv = 5; /* uses BJ_TMP3REG */
277 1.29 alnsn
278 1.29 alnsn return rv;
279 1.29 alnsn }
280 1.29 alnsn
281 1.1 alnsn static uint32_t
282 1.7 alnsn read_width(const struct bpf_insn *pc)
283 1.1 alnsn {
284 1.1 alnsn
285 1.1 alnsn switch (BPF_SIZE(pc->code)) {
286 1.39 alnsn case BPF_W: return 4;
287 1.39 alnsn case BPF_H: return 2;
288 1.39 alnsn case BPF_B: return 1;
289 1.39 alnsn default: return 0;
290 1.1 alnsn }
291 1.1 alnsn }
292 1.1 alnsn
293 1.13 alnsn /*
294 1.13 alnsn * Copy buf and buflen members of bpf_args from BJ_ARGS
295 1.13 alnsn * pointer to BJ_BUF and BJ_BUFLEN registers.
296 1.13 alnsn */
297 1.13 alnsn static int
298 1.13 alnsn load_buf_buflen(struct sljit_compiler *compiler)
299 1.13 alnsn {
300 1.13 alnsn int status;
301 1.13 alnsn
302 1.13 alnsn status = sljit_emit_op1(compiler,
303 1.13 alnsn SLJIT_MOV_P,
304 1.13 alnsn BJ_BUF, 0,
305 1.13 alnsn SLJIT_MEM1(BJ_ARGS),
306 1.13 alnsn offsetof(struct bpf_args, pkt));
307 1.13 alnsn if (status != SLJIT_SUCCESS)
308 1.13 alnsn return status;
309 1.13 alnsn
310 1.13 alnsn status = sljit_emit_op1(compiler,
311 1.21 alnsn SLJIT_MOV, /* size_t source */
312 1.13 alnsn BJ_BUFLEN, 0,
313 1.13 alnsn SLJIT_MEM1(BJ_ARGS),
314 1.13 alnsn offsetof(struct bpf_args, buflen));
315 1.13 alnsn
316 1.13 alnsn return status;
317 1.13 alnsn }
318 1.13 alnsn
319 1.7 alnsn static bool
320 1.7 alnsn grow_jumps(struct sljit_jump ***jumps, size_t *size)
321 1.7 alnsn {
322 1.7 alnsn struct sljit_jump **newptr;
323 1.7 alnsn const size_t elemsz = sizeof(struct sljit_jump *);
324 1.7 alnsn size_t old_size = *size;
325 1.7 alnsn size_t new_size = 2 * old_size;
326 1.7 alnsn
327 1.7 alnsn if (new_size < old_size || new_size > SIZE_MAX / elemsz)
328 1.7 alnsn return false;
329 1.7 alnsn
330 1.7 alnsn newptr = BJ_ALLOC(new_size * elemsz);
331 1.7 alnsn if (newptr == NULL)
332 1.7 alnsn return false;
333 1.7 alnsn
334 1.7 alnsn memcpy(newptr, *jumps, old_size * elemsz);
335 1.7 alnsn BJ_FREE(*jumps, old_size * elemsz);
336 1.7 alnsn
337 1.7 alnsn *jumps = newptr;
338 1.7 alnsn *size = new_size;
339 1.7 alnsn return true;
340 1.7 alnsn }
341 1.7 alnsn
342 1.7 alnsn static bool
343 1.7 alnsn append_jump(struct sljit_jump *jump, struct sljit_jump ***jumps,
344 1.7 alnsn size_t *size, size_t *max_size)
345 1.1 alnsn {
346 1.7 alnsn if (*size == *max_size && !grow_jumps(jumps, max_size))
347 1.7 alnsn return false;
348 1.1 alnsn
349 1.7 alnsn (*jumps)[(*size)++] = jump;
350 1.7 alnsn return true;
351 1.1 alnsn }
352 1.1 alnsn
353 1.1 alnsn /*
354 1.24 alnsn * Emit code for BPF_LD+BPF_B+BPF_ABS A <- P[k:1].
355 1.1 alnsn */
356 1.1 alnsn static int
357 1.45 alnsn emit_read8(struct sljit_compiler *compiler, sljit_s32 src, uint32_t k)
358 1.1 alnsn {
359 1.1 alnsn
360 1.1 alnsn return sljit_emit_op1(compiler,
361 1.45 alnsn SLJIT_MOV_U8,
362 1.7 alnsn BJ_AREG, 0,
363 1.27 alnsn SLJIT_MEM1(src), k);
364 1.1 alnsn }
365 1.1 alnsn
366 1.1 alnsn /*
367 1.24 alnsn * Emit code for BPF_LD+BPF_H+BPF_ABS A <- P[k:2].
368 1.1 alnsn */
369 1.1 alnsn static int
370 1.45 alnsn emit_read16(struct sljit_compiler *compiler, sljit_s32 src, uint32_t k)
371 1.1 alnsn {
372 1.1 alnsn int status;
373 1.1 alnsn
374 1.27 alnsn BJ_ASSERT(k <= UINT32_MAX - 1);
375 1.27 alnsn
376 1.27 alnsn /* A = buf[k]; */
377 1.1 alnsn status = sljit_emit_op1(compiler,
378 1.45 alnsn SLJIT_MOV_U8,
379 1.27 alnsn BJ_AREG, 0,
380 1.27 alnsn SLJIT_MEM1(src), k);
381 1.1 alnsn if (status != SLJIT_SUCCESS)
382 1.1 alnsn return status;
383 1.1 alnsn
384 1.27 alnsn /* tmp1 = buf[k+1]; */
385 1.1 alnsn status = sljit_emit_op1(compiler,
386 1.45 alnsn SLJIT_MOV_U8,
387 1.27 alnsn BJ_TMP1REG, 0,
388 1.27 alnsn SLJIT_MEM1(src), k+1);
389 1.1 alnsn if (status != SLJIT_SUCCESS)
390 1.1 alnsn return status;
391 1.1 alnsn
392 1.27 alnsn /* A = A << 8; */
393 1.1 alnsn status = sljit_emit_op2(compiler,
394 1.1 alnsn SLJIT_SHL,
395 1.27 alnsn BJ_AREG, 0,
396 1.27 alnsn BJ_AREG, 0,
397 1.1 alnsn SLJIT_IMM, 8);
398 1.1 alnsn if (status != SLJIT_SUCCESS)
399 1.1 alnsn return status;
400 1.1 alnsn
401 1.1 alnsn /* A = A + tmp1; */
402 1.1 alnsn status = sljit_emit_op2(compiler,
403 1.1 alnsn SLJIT_ADD,
404 1.7 alnsn BJ_AREG, 0,
405 1.7 alnsn BJ_AREG, 0,
406 1.7 alnsn BJ_TMP1REG, 0);
407 1.1 alnsn return status;
408 1.1 alnsn }
409 1.1 alnsn
410 1.1 alnsn /*
411 1.24 alnsn * Emit code for BPF_LD+BPF_W+BPF_ABS A <- P[k:4].
412 1.1 alnsn */
413 1.1 alnsn static int
414 1.45 alnsn emit_read32(struct sljit_compiler *compiler, sljit_s32 src, uint32_t k)
415 1.1 alnsn {
416 1.1 alnsn int status;
417 1.1 alnsn
418 1.27 alnsn BJ_ASSERT(k <= UINT32_MAX - 3);
419 1.1 alnsn
420 1.27 alnsn /* A = buf[k]; */
421 1.1 alnsn status = sljit_emit_op1(compiler,
422 1.45 alnsn SLJIT_MOV_U8,
423 1.27 alnsn BJ_AREG, 0,
424 1.27 alnsn SLJIT_MEM1(src), k);
425 1.1 alnsn if (status != SLJIT_SUCCESS)
426 1.1 alnsn return status;
427 1.1 alnsn
428 1.27 alnsn /* tmp1 = buf[k+1]; */
429 1.1 alnsn status = sljit_emit_op1(compiler,
430 1.45 alnsn SLJIT_MOV_U8,
431 1.27 alnsn BJ_TMP1REG, 0,
432 1.27 alnsn SLJIT_MEM1(src), k+1);
433 1.1 alnsn if (status != SLJIT_SUCCESS)
434 1.1 alnsn return status;
435 1.1 alnsn
436 1.27 alnsn /* A = A << 8; */
437 1.1 alnsn status = sljit_emit_op2(compiler,
438 1.1 alnsn SLJIT_SHL,
439 1.27 alnsn BJ_AREG, 0,
440 1.27 alnsn BJ_AREG, 0,
441 1.27 alnsn SLJIT_IMM, 8);
442 1.1 alnsn if (status != SLJIT_SUCCESS)
443 1.1 alnsn return status;
444 1.1 alnsn
445 1.1 alnsn /* A = A + tmp1; */
446 1.1 alnsn status = sljit_emit_op2(compiler,
447 1.1 alnsn SLJIT_ADD,
448 1.7 alnsn BJ_AREG, 0,
449 1.7 alnsn BJ_AREG, 0,
450 1.7 alnsn BJ_TMP1REG, 0);
451 1.1 alnsn if (status != SLJIT_SUCCESS)
452 1.1 alnsn return status;
453 1.1 alnsn
454 1.1 alnsn /* tmp1 = buf[k+2]; */
455 1.1 alnsn status = sljit_emit_op1(compiler,
456 1.45 alnsn SLJIT_MOV_U8,
457 1.7 alnsn BJ_TMP1REG, 0,
458 1.27 alnsn SLJIT_MEM1(src), k+2);
459 1.1 alnsn if (status != SLJIT_SUCCESS)
460 1.1 alnsn return status;
461 1.1 alnsn
462 1.27 alnsn /* A = A << 8; */
463 1.1 alnsn status = sljit_emit_op2(compiler,
464 1.1 alnsn SLJIT_SHL,
465 1.27 alnsn BJ_AREG, 0,
466 1.27 alnsn BJ_AREG, 0,
467 1.27 alnsn SLJIT_IMM, 8);
468 1.1 alnsn if (status != SLJIT_SUCCESS)
469 1.1 alnsn return status;
470 1.1 alnsn
471 1.27 alnsn /* A = A + tmp1; */
472 1.1 alnsn status = sljit_emit_op2(compiler,
473 1.1 alnsn SLJIT_ADD,
474 1.7 alnsn BJ_AREG, 0,
475 1.7 alnsn BJ_AREG, 0,
476 1.27 alnsn BJ_TMP1REG, 0);
477 1.27 alnsn if (status != SLJIT_SUCCESS)
478 1.27 alnsn return status;
479 1.27 alnsn
480 1.27 alnsn /* tmp1 = buf[k+3]; */
481 1.27 alnsn status = sljit_emit_op1(compiler,
482 1.45 alnsn SLJIT_MOV_U8,
483 1.27 alnsn BJ_TMP1REG, 0,
484 1.27 alnsn SLJIT_MEM1(src), k+3);
485 1.1 alnsn if (status != SLJIT_SUCCESS)
486 1.1 alnsn return status;
487 1.1 alnsn
488 1.27 alnsn /* A = A << 8; */
489 1.1 alnsn status = sljit_emit_op2(compiler,
490 1.1 alnsn SLJIT_SHL,
491 1.27 alnsn BJ_AREG, 0,
492 1.27 alnsn BJ_AREG, 0,
493 1.1 alnsn SLJIT_IMM, 8);
494 1.1 alnsn if (status != SLJIT_SUCCESS)
495 1.1 alnsn return status;
496 1.1 alnsn
497 1.1 alnsn /* A = A + tmp1; */
498 1.1 alnsn status = sljit_emit_op2(compiler,
499 1.1 alnsn SLJIT_ADD,
500 1.7 alnsn BJ_AREG, 0,
501 1.7 alnsn BJ_AREG, 0,
502 1.7 alnsn BJ_TMP1REG, 0);
503 1.1 alnsn return status;
504 1.1 alnsn }
505 1.1 alnsn
506 1.1 alnsn #ifdef _KERNEL
507 1.1 alnsn /*
508 1.24 alnsn * Emit code for m_xword/m_xhalf/m_xbyte call.
509 1.1 alnsn *
510 1.24 alnsn * @pc BPF_LD+BPF_W+BPF_ABS A <- P[k:4]
511 1.24 alnsn * BPF_LD+BPF_H+BPF_ABS A <- P[k:2]
512 1.24 alnsn * BPF_LD+BPF_B+BPF_ABS A <- P[k:1]
513 1.24 alnsn * BPF_LD+BPF_W+BPF_IND A <- P[X+k:4]
514 1.24 alnsn * BPF_LD+BPF_H+BPF_IND A <- P[X+k:2]
515 1.24 alnsn * BPF_LD+BPF_B+BPF_IND A <- P[X+k:1]
516 1.24 alnsn * BPF_LDX+BPF_B+BPF_MSH X <- 4*(P[k:1]&0xf)
517 1.1 alnsn */
518 1.1 alnsn static int
519 1.32 alnsn emit_xcall(struct sljit_compiler *compiler, bpfjit_hint_t hints,
520 1.32 alnsn const struct bpf_insn *pc, int dst, struct sljit_jump ***ret0,
521 1.32 alnsn size_t *ret0_size, size_t *ret0_maxsize,
522 1.1 alnsn uint32_t (*fn)(const struct mbuf *, uint32_t, int *))
523 1.1 alnsn {
524 1.32 alnsn #if BJ_XREG == SLJIT_RETURN_REG || \
525 1.45 alnsn BJ_XREG == SLJIT_R0 || \
526 1.45 alnsn BJ_XREG == SLJIT_R1 || \
527 1.45 alnsn BJ_XREG == SLJIT_R2
528 1.32 alnsn #error "Not supported assignment of registers."
529 1.32 alnsn #endif
530 1.23 alnsn struct sljit_jump *jump;
531 1.45 alnsn sljit_s32 save_reg;
532 1.1 alnsn int status;
533 1.1 alnsn
534 1.32 alnsn save_reg = (BPF_CLASS(pc->code) == BPF_LDX) ? BJ_AREG : BJ_XREG;
535 1.23 alnsn
536 1.32 alnsn if (save_reg == BJ_AREG || (hints & BJ_HINT_XREG)) {
537 1.32 alnsn /* save A or X */
538 1.1 alnsn status = sljit_emit_op1(compiler,
539 1.45 alnsn SLJIT_MOV_U32,
540 1.45 alnsn SLJIT_MEM1(SLJIT_SP),
541 1.32 alnsn offsetof(struct bpfjit_stack, reg),
542 1.32 alnsn save_reg, 0);
543 1.1 alnsn if (status != SLJIT_SUCCESS)
544 1.1 alnsn return status;
545 1.1 alnsn }
546 1.1 alnsn
547 1.1 alnsn /*
548 1.23 alnsn * Prepare registers for fn(mbuf, k, &err) call.
549 1.1 alnsn */
550 1.1 alnsn status = sljit_emit_op1(compiler,
551 1.1 alnsn SLJIT_MOV,
552 1.45 alnsn SLJIT_R0, 0,
553 1.7 alnsn BJ_BUF, 0);
554 1.1 alnsn if (status != SLJIT_SUCCESS)
555 1.1 alnsn return status;
556 1.1 alnsn
557 1.1 alnsn if (BPF_CLASS(pc->code) == BPF_LD && BPF_MODE(pc->code) == BPF_IND) {
558 1.31 alnsn if (pc->k == 0) {
559 1.31 alnsn /* k = X; */
560 1.31 alnsn status = sljit_emit_op1(compiler,
561 1.31 alnsn SLJIT_MOV,
562 1.45 alnsn SLJIT_R1, 0,
563 1.31 alnsn BJ_XREG, 0);
564 1.31 alnsn if (status != SLJIT_SUCCESS)
565 1.31 alnsn return status;
566 1.31 alnsn } else {
567 1.31 alnsn /* if (X > UINT32_MAX - pc->k) return 0; */
568 1.31 alnsn jump = sljit_emit_cmp(compiler,
569 1.45 alnsn SLJIT_GREATER,
570 1.31 alnsn BJ_XREG, 0,
571 1.31 alnsn SLJIT_IMM, UINT32_MAX - pc->k);
572 1.31 alnsn if (jump == NULL)
573 1.31 alnsn return SLJIT_ERR_ALLOC_FAILED;
574 1.31 alnsn if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
575 1.31 alnsn return SLJIT_ERR_ALLOC_FAILED;
576 1.31 alnsn
577 1.31 alnsn /* k = X + pc->k; */
578 1.31 alnsn status = sljit_emit_op2(compiler,
579 1.31 alnsn SLJIT_ADD,
580 1.45 alnsn SLJIT_R1, 0,
581 1.31 alnsn BJ_XREG, 0,
582 1.31 alnsn SLJIT_IMM, (uint32_t)pc->k);
583 1.31 alnsn if (status != SLJIT_SUCCESS)
584 1.31 alnsn return status;
585 1.31 alnsn }
586 1.1 alnsn } else {
587 1.23 alnsn /* k = pc->k */
588 1.1 alnsn status = sljit_emit_op1(compiler,
589 1.1 alnsn SLJIT_MOV,
590 1.45 alnsn SLJIT_R1, 0,
591 1.1 alnsn SLJIT_IMM, (uint32_t)pc->k);
592 1.24 alnsn if (status != SLJIT_SUCCESS)
593 1.24 alnsn return status;
594 1.1 alnsn }
595 1.1 alnsn
596 1.21 alnsn /*
597 1.21 alnsn * The third argument of fn is an address on stack.
598 1.21 alnsn */
599 1.1 alnsn status = sljit_get_local_base(compiler,
600 1.45 alnsn SLJIT_R2, 0,
601 1.21 alnsn offsetof(struct bpfjit_stack, err));
602 1.1 alnsn if (status != SLJIT_SUCCESS)
603 1.1 alnsn return status;
604 1.1 alnsn
605 1.1 alnsn /* fn(buf, k, &err); */
606 1.1 alnsn status = sljit_emit_ijump(compiler,
607 1.1 alnsn SLJIT_CALL3,
608 1.1 alnsn SLJIT_IMM, SLJIT_FUNC_OFFSET(fn));
609 1.24 alnsn if (status != SLJIT_SUCCESS)
610 1.24 alnsn return status;
611 1.1 alnsn
612 1.7 alnsn if (dst != SLJIT_RETURN_REG) {
613 1.1 alnsn /* move return value to dst */
614 1.1 alnsn status = sljit_emit_op1(compiler,
615 1.1 alnsn SLJIT_MOV,
616 1.23 alnsn dst, 0,
617 1.1 alnsn SLJIT_RETURN_REG, 0);
618 1.1 alnsn if (status != SLJIT_SUCCESS)
619 1.1 alnsn return status;
620 1.7 alnsn }
621 1.1 alnsn
622 1.30 alnsn /* if (*err != 0) return 0; */
623 1.30 alnsn jump = sljit_emit_cmp(compiler,
624 1.45 alnsn SLJIT_NOT_EQUAL|SLJIT_I32_OP,
625 1.45 alnsn SLJIT_MEM1(SLJIT_SP),
626 1.30 alnsn offsetof(struct bpfjit_stack, err),
627 1.1 alnsn SLJIT_IMM, 0);
628 1.23 alnsn if (jump == NULL)
629 1.23 alnsn return SLJIT_ERR_ALLOC_FAILED;
630 1.23 alnsn
631 1.23 alnsn if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
632 1.1 alnsn return SLJIT_ERR_ALLOC_FAILED;
633 1.1 alnsn
634 1.32 alnsn if (save_reg == BJ_AREG || (hints & BJ_HINT_XREG)) {
635 1.32 alnsn /* restore A or X */
636 1.26 alnsn status = sljit_emit_op1(compiler,
637 1.45 alnsn SLJIT_MOV_U32,
638 1.32 alnsn save_reg, 0,
639 1.45 alnsn SLJIT_MEM1(SLJIT_SP),
640 1.32 alnsn offsetof(struct bpfjit_stack, reg));
641 1.26 alnsn if (status != SLJIT_SUCCESS)
642 1.26 alnsn return status;
643 1.26 alnsn }
644 1.26 alnsn
645 1.24 alnsn return SLJIT_SUCCESS;
646 1.1 alnsn }
647 1.1 alnsn #endif
648 1.1 alnsn
649 1.1 alnsn /*
650 1.13 alnsn * Emit code for BPF_COP and BPF_COPX instructions.
651 1.13 alnsn */
652 1.13 alnsn static int
653 1.32 alnsn emit_cop(struct sljit_compiler *compiler, bpfjit_hint_t hints,
654 1.28 alnsn const bpf_ctx_t *bc, const struct bpf_insn *pc,
655 1.28 alnsn struct sljit_jump ***ret0, size_t *ret0_size, size_t *ret0_maxsize)
656 1.13 alnsn {
657 1.32 alnsn #if BJ_XREG == SLJIT_RETURN_REG || \
658 1.45 alnsn BJ_XREG == SLJIT_R0 || \
659 1.45 alnsn BJ_XREG == SLJIT_R1 || \
660 1.45 alnsn BJ_XREG == SLJIT_R2 || \
661 1.45 alnsn BJ_TMP3REG == SLJIT_R0 || \
662 1.45 alnsn BJ_TMP3REG == SLJIT_R1 || \
663 1.45 alnsn BJ_TMP3REG == SLJIT_R2
664 1.13 alnsn #error "Not supported assignment of registers."
665 1.13 alnsn #endif
666 1.13 alnsn
667 1.13 alnsn struct sljit_jump *jump;
668 1.45 alnsn sljit_s32 call_reg;
669 1.28 alnsn sljit_sw call_off;
670 1.13 alnsn int status;
671 1.13 alnsn
672 1.13 alnsn BJ_ASSERT(bc != NULL && bc->copfuncs != NULL);
673 1.13 alnsn
674 1.32 alnsn if (hints & BJ_HINT_LDX) {
675 1.32 alnsn /* save X */
676 1.32 alnsn status = sljit_emit_op1(compiler,
677 1.45 alnsn SLJIT_MOV_U32,
678 1.45 alnsn SLJIT_MEM1(SLJIT_SP),
679 1.32 alnsn offsetof(struct bpfjit_stack, reg),
680 1.32 alnsn BJ_XREG, 0);
681 1.32 alnsn if (status != SLJIT_SUCCESS)
682 1.32 alnsn return status;
683 1.32 alnsn }
684 1.32 alnsn
685 1.28 alnsn if (BPF_MISCOP(pc->code) == BPF_COP) {
686 1.28 alnsn call_reg = SLJIT_IMM;
687 1.28 alnsn call_off = SLJIT_FUNC_OFFSET(bc->copfuncs[pc->k]);
688 1.28 alnsn } else {
689 1.13 alnsn /* if (X >= bc->nfuncs) return 0; */
690 1.13 alnsn jump = sljit_emit_cmp(compiler,
691 1.45 alnsn SLJIT_GREATER_EQUAL,
692 1.13 alnsn BJ_XREG, 0,
693 1.13 alnsn SLJIT_IMM, bc->nfuncs);
694 1.13 alnsn if (jump == NULL)
695 1.13 alnsn return SLJIT_ERR_ALLOC_FAILED;
696 1.28 alnsn if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
697 1.28 alnsn return SLJIT_ERR_ALLOC_FAILED;
698 1.28 alnsn
699 1.28 alnsn /* tmp1 = ctx; */
700 1.28 alnsn status = sljit_emit_op1(compiler,
701 1.28 alnsn SLJIT_MOV_P,
702 1.28 alnsn BJ_TMP1REG, 0,
703 1.45 alnsn SLJIT_MEM1(SLJIT_SP),
704 1.28 alnsn offsetof(struct bpfjit_stack, ctx));
705 1.28 alnsn if (status != SLJIT_SUCCESS)
706 1.28 alnsn return status;
707 1.28 alnsn
708 1.28 alnsn /* tmp1 = ctx->copfuncs; */
709 1.28 alnsn status = sljit_emit_op1(compiler,
710 1.28 alnsn SLJIT_MOV_P,
711 1.28 alnsn BJ_TMP1REG, 0,
712 1.28 alnsn SLJIT_MEM1(BJ_TMP1REG),
713 1.28 alnsn offsetof(struct bpf_ctx, copfuncs));
714 1.28 alnsn if (status != SLJIT_SUCCESS)
715 1.28 alnsn return status;
716 1.28 alnsn
717 1.28 alnsn /* tmp2 = X; */
718 1.28 alnsn status = sljit_emit_op1(compiler,
719 1.28 alnsn SLJIT_MOV,
720 1.28 alnsn BJ_TMP2REG, 0,
721 1.28 alnsn BJ_XREG, 0);
722 1.28 alnsn if (status != SLJIT_SUCCESS)
723 1.28 alnsn return status;
724 1.28 alnsn
725 1.28 alnsn /* tmp3 = ctx->copfuncs[tmp2]; */
726 1.28 alnsn call_reg = BJ_TMP3REG;
727 1.28 alnsn call_off = 0;
728 1.28 alnsn status = sljit_emit_op1(compiler,
729 1.28 alnsn SLJIT_MOV_P,
730 1.28 alnsn call_reg, call_off,
731 1.28 alnsn SLJIT_MEM2(BJ_TMP1REG, BJ_TMP2REG),
732 1.28 alnsn SLJIT_WORD_SHIFT);
733 1.28 alnsn if (status != SLJIT_SUCCESS)
734 1.28 alnsn return status;
735 1.13 alnsn }
736 1.13 alnsn
737 1.13 alnsn /*
738 1.13 alnsn * Copy bpf_copfunc_t arguments to registers.
739 1.13 alnsn */
740 1.45 alnsn #if BJ_AREG != SLJIT_R2
741 1.13 alnsn status = sljit_emit_op1(compiler,
742 1.45 alnsn SLJIT_MOV_U32,
743 1.45 alnsn SLJIT_R2, 0,
744 1.13 alnsn BJ_AREG, 0);
745 1.13 alnsn if (status != SLJIT_SUCCESS)
746 1.13 alnsn return status;
747 1.13 alnsn #endif
748 1.13 alnsn
749 1.13 alnsn status = sljit_emit_op1(compiler,
750 1.13 alnsn SLJIT_MOV_P,
751 1.45 alnsn SLJIT_R0, 0,
752 1.45 alnsn SLJIT_MEM1(SLJIT_SP),
753 1.13 alnsn offsetof(struct bpfjit_stack, ctx));
754 1.13 alnsn if (status != SLJIT_SUCCESS)
755 1.13 alnsn return status;
756 1.13 alnsn
757 1.13 alnsn status = sljit_emit_op1(compiler,
758 1.13 alnsn SLJIT_MOV_P,
759 1.45 alnsn SLJIT_R1, 0,
760 1.13 alnsn BJ_ARGS, 0);
761 1.13 alnsn if (status != SLJIT_SUCCESS)
762 1.13 alnsn return status;
763 1.13 alnsn
764 1.28 alnsn status = sljit_emit_ijump(compiler,
765 1.28 alnsn SLJIT_CALL3, call_reg, call_off);
766 1.28 alnsn if (status != SLJIT_SUCCESS)
767 1.28 alnsn return status;
768 1.13 alnsn
769 1.13 alnsn #if BJ_AREG != SLJIT_RETURN_REG
770 1.13 alnsn status = sljit_emit_op1(compiler,
771 1.13 alnsn SLJIT_MOV,
772 1.13 alnsn BJ_AREG, 0,
773 1.13 alnsn SLJIT_RETURN_REG, 0);
774 1.13 alnsn if (status != SLJIT_SUCCESS)
775 1.13 alnsn return status;
776 1.13 alnsn #endif
777 1.13 alnsn
778 1.32 alnsn if (hints & BJ_HINT_LDX) {
779 1.32 alnsn /* restore X */
780 1.32 alnsn status = sljit_emit_op1(compiler,
781 1.45 alnsn SLJIT_MOV_U32,
782 1.32 alnsn BJ_XREG, 0,
783 1.45 alnsn SLJIT_MEM1(SLJIT_SP),
784 1.32 alnsn offsetof(struct bpfjit_stack, reg));
785 1.32 alnsn if (status != SLJIT_SUCCESS)
786 1.32 alnsn return status;
787 1.32 alnsn }
788 1.32 alnsn
789 1.24 alnsn return SLJIT_SUCCESS;
790 1.13 alnsn }
791 1.13 alnsn
792 1.13 alnsn /*
793 1.1 alnsn * Generate code for
794 1.1 alnsn * BPF_LD+BPF_W+BPF_ABS A <- P[k:4]
795 1.1 alnsn * BPF_LD+BPF_H+BPF_ABS A <- P[k:2]
796 1.1 alnsn * BPF_LD+BPF_B+BPF_ABS A <- P[k:1]
797 1.1 alnsn * BPF_LD+BPF_W+BPF_IND A <- P[X+k:4]
798 1.1 alnsn * BPF_LD+BPF_H+BPF_IND A <- P[X+k:2]
799 1.1 alnsn * BPF_LD+BPF_B+BPF_IND A <- P[X+k:1]
800 1.1 alnsn */
801 1.1 alnsn static int
802 1.32 alnsn emit_pkt_read(struct sljit_compiler *compiler, bpfjit_hint_t hints,
803 1.7 alnsn const struct bpf_insn *pc, struct sljit_jump *to_mchain_jump,
804 1.7 alnsn struct sljit_jump ***ret0, size_t *ret0_size, size_t *ret0_maxsize)
805 1.1 alnsn {
806 1.25 alnsn int status = SLJIT_ERR_ALLOC_FAILED;
807 1.1 alnsn uint32_t width;
808 1.45 alnsn sljit_s32 ld_reg;
809 1.1 alnsn struct sljit_jump *jump;
810 1.1 alnsn #ifdef _KERNEL
811 1.1 alnsn struct sljit_label *label;
812 1.1 alnsn struct sljit_jump *over_mchain_jump;
813 1.1 alnsn const bool check_zero_buflen = (to_mchain_jump != NULL);
814 1.1 alnsn #endif
815 1.1 alnsn const uint32_t k = pc->k;
816 1.1 alnsn
817 1.1 alnsn #ifdef _KERNEL
818 1.1 alnsn if (to_mchain_jump == NULL) {
819 1.1 alnsn to_mchain_jump = sljit_emit_cmp(compiler,
820 1.45 alnsn SLJIT_EQUAL,
821 1.7 alnsn BJ_BUFLEN, 0,
822 1.1 alnsn SLJIT_IMM, 0);
823 1.1 alnsn if (to_mchain_jump == NULL)
824 1.7 alnsn return SLJIT_ERR_ALLOC_FAILED;
825 1.1 alnsn }
826 1.1 alnsn #endif
827 1.1 alnsn
828 1.27 alnsn ld_reg = BJ_BUF;
829 1.1 alnsn width = read_width(pc);
830 1.39 alnsn if (width == 0)
831 1.39 alnsn return SLJIT_ERR_ALLOC_FAILED;
832 1.1 alnsn
833 1.1 alnsn if (BPF_MODE(pc->code) == BPF_IND) {
834 1.1 alnsn /* tmp1 = buflen - (pc->k + width); */
835 1.1 alnsn status = sljit_emit_op2(compiler,
836 1.1 alnsn SLJIT_SUB,
837 1.7 alnsn BJ_TMP1REG, 0,
838 1.7 alnsn BJ_BUFLEN, 0,
839 1.1 alnsn SLJIT_IMM, k + width);
840 1.1 alnsn if (status != SLJIT_SUCCESS)
841 1.1 alnsn return status;
842 1.1 alnsn
843 1.27 alnsn /* ld_reg = buf + X; */
844 1.27 alnsn ld_reg = BJ_TMP2REG;
845 1.1 alnsn status = sljit_emit_op2(compiler,
846 1.1 alnsn SLJIT_ADD,
847 1.27 alnsn ld_reg, 0,
848 1.7 alnsn BJ_BUF, 0,
849 1.7 alnsn BJ_XREG, 0);
850 1.1 alnsn if (status != SLJIT_SUCCESS)
851 1.1 alnsn return status;
852 1.1 alnsn
853 1.1 alnsn /* if (tmp1 < X) return 0; */
854 1.1 alnsn jump = sljit_emit_cmp(compiler,
855 1.45 alnsn SLJIT_LESS,
856 1.7 alnsn BJ_TMP1REG, 0,
857 1.7 alnsn BJ_XREG, 0);
858 1.1 alnsn if (jump == NULL)
859 1.7 alnsn return SLJIT_ERR_ALLOC_FAILED;
860 1.7 alnsn if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
861 1.7 alnsn return SLJIT_ERR_ALLOC_FAILED;
862 1.1 alnsn }
863 1.1 alnsn
864 1.40 alnsn /*
865 1.40 alnsn * Don't emit wrapped-around reads. They're dead code but
866 1.40 alnsn * dead code elimination logic isn't smart enough to figure
867 1.40 alnsn * it out.
868 1.40 alnsn */
869 1.40 alnsn if (k <= UINT32_MAX - width + 1) {
870 1.40 alnsn switch (width) {
871 1.40 alnsn case 4:
872 1.40 alnsn status = emit_read32(compiler, ld_reg, k);
873 1.40 alnsn break;
874 1.40 alnsn case 2:
875 1.40 alnsn status = emit_read16(compiler, ld_reg, k);
876 1.40 alnsn break;
877 1.40 alnsn case 1:
878 1.40 alnsn status = emit_read8(compiler, ld_reg, k);
879 1.40 alnsn break;
880 1.40 alnsn }
881 1.40 alnsn
882 1.40 alnsn if (status != SLJIT_SUCCESS)
883 1.40 alnsn return status;
884 1.1 alnsn }
885 1.1 alnsn
886 1.1 alnsn #ifdef _KERNEL
887 1.1 alnsn over_mchain_jump = sljit_emit_jump(compiler, SLJIT_JUMP);
888 1.1 alnsn if (over_mchain_jump == NULL)
889 1.7 alnsn return SLJIT_ERR_ALLOC_FAILED;
890 1.1 alnsn
891 1.1 alnsn /* entry point to mchain handler */
892 1.1 alnsn label = sljit_emit_label(compiler);
893 1.1 alnsn if (label == NULL)
894 1.7 alnsn return SLJIT_ERR_ALLOC_FAILED;
895 1.1 alnsn sljit_set_label(to_mchain_jump, label);
896 1.1 alnsn
897 1.1 alnsn if (check_zero_buflen) {
898 1.1 alnsn /* if (buflen != 0) return 0; */
899 1.1 alnsn jump = sljit_emit_cmp(compiler,
900 1.45 alnsn SLJIT_NOT_EQUAL,
901 1.7 alnsn BJ_BUFLEN, 0,
902 1.1 alnsn SLJIT_IMM, 0);
903 1.1 alnsn if (jump == NULL)
904 1.1 alnsn return SLJIT_ERR_ALLOC_FAILED;
905 1.7 alnsn if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
906 1.7 alnsn return SLJIT_ERR_ALLOC_FAILED;
907 1.1 alnsn }
908 1.1 alnsn
909 1.1 alnsn switch (width) {
910 1.1 alnsn case 4:
911 1.32 alnsn status = emit_xcall(compiler, hints, pc, BJ_AREG,
912 1.23 alnsn ret0, ret0_size, ret0_maxsize, &m_xword);
913 1.1 alnsn break;
914 1.1 alnsn case 2:
915 1.32 alnsn status = emit_xcall(compiler, hints, pc, BJ_AREG,
916 1.23 alnsn ret0, ret0_size, ret0_maxsize, &m_xhalf);
917 1.1 alnsn break;
918 1.1 alnsn case 1:
919 1.32 alnsn status = emit_xcall(compiler, hints, pc, BJ_AREG,
920 1.23 alnsn ret0, ret0_size, ret0_maxsize, &m_xbyte);
921 1.1 alnsn break;
922 1.1 alnsn }
923 1.1 alnsn
924 1.1 alnsn if (status != SLJIT_SUCCESS)
925 1.1 alnsn return status;
926 1.1 alnsn
927 1.1 alnsn label = sljit_emit_label(compiler);
928 1.1 alnsn if (label == NULL)
929 1.1 alnsn return SLJIT_ERR_ALLOC_FAILED;
930 1.1 alnsn sljit_set_label(over_mchain_jump, label);
931 1.1 alnsn #endif
932 1.1 alnsn
933 1.24 alnsn return SLJIT_SUCCESS;
934 1.1 alnsn }
935 1.1 alnsn
936 1.13 alnsn static int
937 1.19 alnsn emit_memload(struct sljit_compiler *compiler,
938 1.45 alnsn sljit_s32 dst, uint32_t k, size_t extwords)
939 1.13 alnsn {
940 1.13 alnsn int status;
941 1.45 alnsn sljit_s32 src;
942 1.13 alnsn sljit_sw srcw;
943 1.13 alnsn
944 1.13 alnsn srcw = k * sizeof(uint32_t);
945 1.13 alnsn
946 1.13 alnsn if (extwords == 0) {
947 1.45 alnsn src = SLJIT_MEM1(SLJIT_SP);
948 1.13 alnsn srcw += offsetof(struct bpfjit_stack, mem);
949 1.13 alnsn } else {
950 1.13 alnsn /* copy extmem pointer to the tmp1 register */
951 1.13 alnsn status = sljit_emit_op1(compiler,
952 1.16 alnsn SLJIT_MOV_P,
953 1.13 alnsn BJ_TMP1REG, 0,
954 1.45 alnsn SLJIT_MEM1(SLJIT_SP),
955 1.13 alnsn offsetof(struct bpfjit_stack, extmem));
956 1.13 alnsn if (status != SLJIT_SUCCESS)
957 1.13 alnsn return status;
958 1.13 alnsn src = SLJIT_MEM1(BJ_TMP1REG);
959 1.13 alnsn }
960 1.13 alnsn
961 1.45 alnsn return sljit_emit_op1(compiler, SLJIT_MOV_U32, dst, 0, src, srcw);
962 1.13 alnsn }
963 1.13 alnsn
964 1.13 alnsn static int
965 1.19 alnsn emit_memstore(struct sljit_compiler *compiler,
966 1.45 alnsn sljit_s32 src, uint32_t k, size_t extwords)
967 1.13 alnsn {
968 1.13 alnsn int status;
969 1.45 alnsn sljit_s32 dst;
970 1.13 alnsn sljit_sw dstw;
971 1.13 alnsn
972 1.13 alnsn dstw = k * sizeof(uint32_t);
973 1.13 alnsn
974 1.13 alnsn if (extwords == 0) {
975 1.45 alnsn dst = SLJIT_MEM1(SLJIT_SP);
976 1.13 alnsn dstw += offsetof(struct bpfjit_stack, mem);
977 1.13 alnsn } else {
978 1.13 alnsn /* copy extmem pointer to the tmp1 register */
979 1.13 alnsn status = sljit_emit_op1(compiler,
980 1.16 alnsn SLJIT_MOV_P,
981 1.13 alnsn BJ_TMP1REG, 0,
982 1.45 alnsn SLJIT_MEM1(SLJIT_SP),
983 1.13 alnsn offsetof(struct bpfjit_stack, extmem));
984 1.13 alnsn if (status != SLJIT_SUCCESS)
985 1.13 alnsn return status;
986 1.13 alnsn dst = SLJIT_MEM1(BJ_TMP1REG);
987 1.13 alnsn }
988 1.13 alnsn
989 1.45 alnsn return sljit_emit_op1(compiler, SLJIT_MOV_U32, dst, dstw, src, 0);
990 1.13 alnsn }
991 1.13 alnsn
992 1.1 alnsn /*
993 1.24 alnsn * Emit code for BPF_LDX+BPF_B+BPF_MSH X <- 4*(P[k:1]&0xf).
994 1.1 alnsn */
995 1.1 alnsn static int
996 1.32 alnsn emit_msh(struct sljit_compiler *compiler, bpfjit_hint_t hints,
997 1.7 alnsn const struct bpf_insn *pc, struct sljit_jump *to_mchain_jump,
998 1.7 alnsn struct sljit_jump ***ret0, size_t *ret0_size, size_t *ret0_maxsize)
999 1.1 alnsn {
1000 1.1 alnsn int status;
1001 1.1 alnsn #ifdef _KERNEL
1002 1.1 alnsn struct sljit_label *label;
1003 1.1 alnsn struct sljit_jump *jump, *over_mchain_jump;
1004 1.1 alnsn const bool check_zero_buflen = (to_mchain_jump != NULL);
1005 1.1 alnsn #endif
1006 1.1 alnsn const uint32_t k = pc->k;
1007 1.1 alnsn
1008 1.1 alnsn #ifdef _KERNEL
1009 1.1 alnsn if (to_mchain_jump == NULL) {
1010 1.1 alnsn to_mchain_jump = sljit_emit_cmp(compiler,
1011 1.45 alnsn SLJIT_EQUAL,
1012 1.7 alnsn BJ_BUFLEN, 0,
1013 1.1 alnsn SLJIT_IMM, 0);
1014 1.1 alnsn if (to_mchain_jump == NULL)
1015 1.7 alnsn return SLJIT_ERR_ALLOC_FAILED;
1016 1.1 alnsn }
1017 1.1 alnsn #endif
1018 1.1 alnsn
1019 1.1 alnsn /* tmp1 = buf[k] */
1020 1.1 alnsn status = sljit_emit_op1(compiler,
1021 1.45 alnsn SLJIT_MOV_U8,
1022 1.7 alnsn BJ_TMP1REG, 0,
1023 1.7 alnsn SLJIT_MEM1(BJ_BUF), k);
1024 1.1 alnsn if (status != SLJIT_SUCCESS)
1025 1.1 alnsn return status;
1026 1.1 alnsn
1027 1.1 alnsn #ifdef _KERNEL
1028 1.1 alnsn over_mchain_jump = sljit_emit_jump(compiler, SLJIT_JUMP);
1029 1.1 alnsn if (over_mchain_jump == NULL)
1030 1.1 alnsn return SLJIT_ERR_ALLOC_FAILED;
1031 1.1 alnsn
1032 1.1 alnsn /* entry point to mchain handler */
1033 1.1 alnsn label = sljit_emit_label(compiler);
1034 1.1 alnsn if (label == NULL)
1035 1.1 alnsn return SLJIT_ERR_ALLOC_FAILED;
1036 1.1 alnsn sljit_set_label(to_mchain_jump, label);
1037 1.1 alnsn
1038 1.1 alnsn if (check_zero_buflen) {
1039 1.1 alnsn /* if (buflen != 0) return 0; */
1040 1.1 alnsn jump = sljit_emit_cmp(compiler,
1041 1.45 alnsn SLJIT_NOT_EQUAL,
1042 1.7 alnsn BJ_BUFLEN, 0,
1043 1.1 alnsn SLJIT_IMM, 0);
1044 1.1 alnsn if (jump == NULL)
1045 1.7 alnsn return SLJIT_ERR_ALLOC_FAILED;
1046 1.7 alnsn if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
1047 1.7 alnsn return SLJIT_ERR_ALLOC_FAILED;
1048 1.1 alnsn }
1049 1.1 alnsn
1050 1.32 alnsn status = emit_xcall(compiler, hints, pc, BJ_TMP1REG,
1051 1.23 alnsn ret0, ret0_size, ret0_maxsize, &m_xbyte);
1052 1.1 alnsn if (status != SLJIT_SUCCESS)
1053 1.1 alnsn return status;
1054 1.7 alnsn
1055 1.30 alnsn label = sljit_emit_label(compiler);
1056 1.30 alnsn if (label == NULL)
1057 1.30 alnsn return SLJIT_ERR_ALLOC_FAILED;
1058 1.30 alnsn sljit_set_label(over_mchain_jump, label);
1059 1.30 alnsn #endif
1060 1.30 alnsn
1061 1.1 alnsn /* tmp1 &= 0xf */
1062 1.1 alnsn status = sljit_emit_op2(compiler,
1063 1.1 alnsn SLJIT_AND,
1064 1.7 alnsn BJ_TMP1REG, 0,
1065 1.7 alnsn BJ_TMP1REG, 0,
1066 1.1 alnsn SLJIT_IMM, 0xf);
1067 1.1 alnsn if (status != SLJIT_SUCCESS)
1068 1.1 alnsn return status;
1069 1.1 alnsn
1070 1.30 alnsn /* X = tmp1 << 2 */
1071 1.1 alnsn status = sljit_emit_op2(compiler,
1072 1.1 alnsn SLJIT_SHL,
1073 1.7 alnsn BJ_XREG, 0,
1074 1.7 alnsn BJ_TMP1REG, 0,
1075 1.1 alnsn SLJIT_IMM, 2);
1076 1.1 alnsn if (status != SLJIT_SUCCESS)
1077 1.1 alnsn return status;
1078 1.1 alnsn
1079 1.24 alnsn return SLJIT_SUCCESS;
1080 1.1 alnsn }
1081 1.1 alnsn
1082 1.35 alnsn /*
1083 1.35 alnsn * Emit code for A = A / k or A = A % k when k is a power of 2.
1084 1.35 alnsn * @pc BPF_DIV or BPF_MOD instruction.
1085 1.35 alnsn */
1086 1.1 alnsn static int
1087 1.35 alnsn emit_pow2_moddiv(struct sljit_compiler *compiler, const struct bpf_insn *pc)
1088 1.1 alnsn {
1089 1.35 alnsn uint32_t k = pc->k;
1090 1.1 alnsn int status = SLJIT_SUCCESS;
1091 1.1 alnsn
1092 1.35 alnsn BJ_ASSERT(k != 0 && (k & (k - 1)) == 0);
1093 1.1 alnsn
1094 1.35 alnsn if (BPF_OP(pc->code) == BPF_MOD) {
1095 1.1 alnsn status = sljit_emit_op2(compiler,
1096 1.35 alnsn SLJIT_AND,
1097 1.7 alnsn BJ_AREG, 0,
1098 1.7 alnsn BJ_AREG, 0,
1099 1.35 alnsn SLJIT_IMM, k - 1);
1100 1.35 alnsn } else {
1101 1.35 alnsn int shift = 0;
1102 1.35 alnsn
1103 1.35 alnsn /*
1104 1.35 alnsn * Do shift = __builtin_ctz(k).
1105 1.35 alnsn * The loop is slower, but that's ok.
1106 1.35 alnsn */
1107 1.35 alnsn while (k > 1) {
1108 1.35 alnsn k >>= 1;
1109 1.35 alnsn shift++;
1110 1.35 alnsn }
1111 1.35 alnsn
1112 1.35 alnsn if (shift != 0) {
1113 1.35 alnsn status = sljit_emit_op2(compiler,
1114 1.45 alnsn SLJIT_LSHR|SLJIT_I32_OP,
1115 1.35 alnsn BJ_AREG, 0,
1116 1.35 alnsn BJ_AREG, 0,
1117 1.35 alnsn SLJIT_IMM, shift);
1118 1.35 alnsn }
1119 1.1 alnsn }
1120 1.1 alnsn
1121 1.1 alnsn return status;
1122 1.1 alnsn }
1123 1.1 alnsn
1124 1.1 alnsn #if !defined(BPFJIT_USE_UDIV)
1125 1.1 alnsn static sljit_uw
1126 1.1 alnsn divide(sljit_uw x, sljit_uw y)
1127 1.1 alnsn {
1128 1.1 alnsn
1129 1.1 alnsn return (uint32_t)x / (uint32_t)y;
1130 1.1 alnsn }
1131 1.33 christos
1132 1.33 christos static sljit_uw
1133 1.33 christos modulus(sljit_uw x, sljit_uw y)
1134 1.33 christos {
1135 1.33 christos
1136 1.33 christos return (uint32_t)x % (uint32_t)y;
1137 1.33 christos }
1138 1.1 alnsn #endif
1139 1.1 alnsn
1140 1.1 alnsn /*
1141 1.35 alnsn * Emit code for A = A / div or A = A % div.
1142 1.35 alnsn * @pc BPF_DIV or BPF_MOD instruction.
1143 1.1 alnsn */
1144 1.1 alnsn static int
1145 1.35 alnsn emit_moddiv(struct sljit_compiler *compiler, const struct bpf_insn *pc)
1146 1.1 alnsn {
1147 1.1 alnsn int status;
1148 1.38 christos const bool xdiv = BPF_OP(pc->code) == BPF_DIV;
1149 1.35 alnsn const bool xreg = BPF_SRC(pc->code) == BPF_X;
1150 1.1 alnsn
1151 1.32 alnsn #if BJ_XREG == SLJIT_RETURN_REG || \
1152 1.45 alnsn BJ_XREG == SLJIT_R0 || \
1153 1.45 alnsn BJ_XREG == SLJIT_R1 || \
1154 1.45 alnsn BJ_AREG == SLJIT_R1
1155 1.32 alnsn #error "Not supported assignment of registers."
1156 1.32 alnsn #endif
1157 1.32 alnsn
1158 1.45 alnsn #if BJ_AREG != SLJIT_R0
1159 1.1 alnsn status = sljit_emit_op1(compiler,
1160 1.1 alnsn SLJIT_MOV,
1161 1.45 alnsn SLJIT_R0, 0,
1162 1.7 alnsn BJ_AREG, 0);
1163 1.1 alnsn if (status != SLJIT_SUCCESS)
1164 1.1 alnsn return status;
1165 1.1 alnsn #endif
1166 1.1 alnsn
1167 1.1 alnsn status = sljit_emit_op1(compiler,
1168 1.1 alnsn SLJIT_MOV,
1169 1.45 alnsn SLJIT_R1, 0,
1170 1.35 alnsn xreg ? BJ_XREG : SLJIT_IMM,
1171 1.35 alnsn xreg ? 0 : (uint32_t)pc->k);
1172 1.1 alnsn if (status != SLJIT_SUCCESS)
1173 1.1 alnsn return status;
1174 1.1 alnsn
1175 1.1 alnsn #if defined(BPFJIT_USE_UDIV)
1176 1.45 alnsn status = sljit_emit_op0(compiler, SLJIT_UDIV|SLJIT_I32_OP);
1177 1.1 alnsn
1178 1.36 alnsn if (BPF_OP(pc->code) == BPF_DIV) {
1179 1.45 alnsn #if BJ_AREG != SLJIT_R0
1180 1.36 alnsn status = sljit_emit_op1(compiler,
1181 1.36 alnsn SLJIT_MOV,
1182 1.36 alnsn BJ_AREG, 0,
1183 1.45 alnsn SLJIT_R0, 0);
1184 1.36 alnsn #endif
1185 1.36 alnsn } else {
1186 1.45 alnsn #if BJ_AREG != SLJIT_R1
1187 1.45 alnsn /* Remainder is in SLJIT_R1. */
1188 1.36 alnsn status = sljit_emit_op1(compiler,
1189 1.36 alnsn SLJIT_MOV,
1190 1.36 alnsn BJ_AREG, 0,
1191 1.45 alnsn SLJIT_R1, 0);
1192 1.36 alnsn #endif
1193 1.36 alnsn }
1194 1.36 alnsn
1195 1.1 alnsn if (status != SLJIT_SUCCESS)
1196 1.1 alnsn return status;
1197 1.1 alnsn #else
1198 1.1 alnsn status = sljit_emit_ijump(compiler,
1199 1.1 alnsn SLJIT_CALL2,
1200 1.38 christos SLJIT_IMM, xdiv ? SLJIT_FUNC_OFFSET(divide) :
1201 1.33 christos SLJIT_FUNC_OFFSET(modulus));
1202 1.1 alnsn
1203 1.7 alnsn #if BJ_AREG != SLJIT_RETURN_REG
1204 1.1 alnsn status = sljit_emit_op1(compiler,
1205 1.1 alnsn SLJIT_MOV,
1206 1.7 alnsn BJ_AREG, 0,
1207 1.1 alnsn SLJIT_RETURN_REG, 0);
1208 1.1 alnsn if (status != SLJIT_SUCCESS)
1209 1.1 alnsn return status;
1210 1.1 alnsn #endif
1211 1.1 alnsn #endif
1212 1.1 alnsn
1213 1.1 alnsn return status;
1214 1.1 alnsn }
1215 1.1 alnsn
1216 1.1 alnsn /*
1217 1.1 alnsn * Return true if pc is a "read from packet" instruction.
1218 1.1 alnsn * If length is not NULL and return value is true, *length will
1219 1.1 alnsn * be set to a safe length required to read a packet.
1220 1.1 alnsn */
1221 1.1 alnsn static bool
1222 1.8 alnsn read_pkt_insn(const struct bpf_insn *pc, bpfjit_abc_length_t *length)
1223 1.1 alnsn {
1224 1.1 alnsn bool rv;
1225 1.37 justin bpfjit_abc_length_t width = 0; /* XXXuninit */
1226 1.1 alnsn
1227 1.1 alnsn switch (BPF_CLASS(pc->code)) {
1228 1.1 alnsn default:
1229 1.1 alnsn rv = false;
1230 1.1 alnsn break;
1231 1.1 alnsn
1232 1.1 alnsn case BPF_LD:
1233 1.1 alnsn rv = BPF_MODE(pc->code) == BPF_ABS ||
1234 1.1 alnsn BPF_MODE(pc->code) == BPF_IND;
1235 1.39 alnsn if (rv) {
1236 1.1 alnsn width = read_width(pc);
1237 1.39 alnsn rv = (width != 0);
1238 1.39 alnsn }
1239 1.1 alnsn break;
1240 1.1 alnsn
1241 1.1 alnsn case BPF_LDX:
1242 1.39 alnsn rv = BPF_MODE(pc->code) == BPF_MSH &&
1243 1.39 alnsn BPF_SIZE(pc->code) == BPF_B;
1244 1.1 alnsn width = 1;
1245 1.1 alnsn break;
1246 1.1 alnsn }
1247 1.1 alnsn
1248 1.1 alnsn if (rv && length != NULL) {
1249 1.9 alnsn /*
1250 1.9 alnsn * Values greater than UINT32_MAX will generate
1251 1.9 alnsn * unconditional "return 0".
1252 1.9 alnsn */
1253 1.9 alnsn *length = (uint32_t)pc->k + width;
1254 1.1 alnsn }
1255 1.1 alnsn
1256 1.1 alnsn return rv;
1257 1.1 alnsn }
1258 1.1 alnsn
1259 1.1 alnsn static void
1260 1.7 alnsn optimize_init(struct bpfjit_insn_data *insn_dat, size_t insn_count)
1261 1.1 alnsn {
1262 1.7 alnsn size_t i;
1263 1.1 alnsn
1264 1.7 alnsn for (i = 0; i < insn_count; i++) {
1265 1.7 alnsn SLIST_INIT(&insn_dat[i].bjumps);
1266 1.7 alnsn insn_dat[i].invalid = BJ_INIT_NOBITS;
1267 1.1 alnsn }
1268 1.1 alnsn }
1269 1.1 alnsn
1270 1.1 alnsn /*
1271 1.1 alnsn * The function divides instructions into blocks. Destination of a jump
1272 1.1 alnsn * instruction starts a new block. BPF_RET and BPF_JMP instructions
1273 1.1 alnsn * terminate a block. Blocks are linear, that is, there are no jumps out
1274 1.1 alnsn * from the middle of a block and there are no jumps in to the middle of
1275 1.1 alnsn * a block.
1276 1.7 alnsn *
1277 1.7 alnsn * The function also sets bits in *initmask for memwords that
1278 1.7 alnsn * need to be initialized to zero. Note that this set should be empty
1279 1.7 alnsn * for any valid kernel filter program.
1280 1.1 alnsn */
1281 1.7 alnsn static bool
1282 1.19 alnsn optimize_pass1(const bpf_ctx_t *bc, const struct bpf_insn *insns,
1283 1.19 alnsn struct bpfjit_insn_data *insn_dat, size_t insn_count,
1284 1.20 alnsn bpf_memword_init_t *initmask, bpfjit_hint_t *hints)
1285 1.1 alnsn {
1286 1.7 alnsn struct bpfjit_jump *jtf;
1287 1.1 alnsn size_t i;
1288 1.7 alnsn uint32_t jt, jf;
1289 1.10 alnsn bpfjit_abc_length_t length;
1290 1.13 alnsn bpf_memword_init_t invalid; /* borrowed from bpf_filter() */
1291 1.1 alnsn bool unreachable;
1292 1.1 alnsn
1293 1.19 alnsn const size_t memwords = GET_MEMWORDS(bc);
1294 1.13 alnsn
1295 1.20 alnsn *hints = 0;
1296 1.7 alnsn *initmask = BJ_INIT_NOBITS;
1297 1.1 alnsn
1298 1.1 alnsn unreachable = false;
1299 1.7 alnsn invalid = ~BJ_INIT_NOBITS;
1300 1.1 alnsn
1301 1.1 alnsn for (i = 0; i < insn_count; i++) {
1302 1.7 alnsn if (!SLIST_EMPTY(&insn_dat[i].bjumps))
1303 1.1 alnsn unreachable = false;
1304 1.7 alnsn insn_dat[i].unreachable = unreachable;
1305 1.1 alnsn
1306 1.1 alnsn if (unreachable)
1307 1.1 alnsn continue;
1308 1.1 alnsn
1309 1.7 alnsn invalid |= insn_dat[i].invalid;
1310 1.1 alnsn
1311 1.10 alnsn if (read_pkt_insn(&insns[i], &length) && length > UINT32_MAX)
1312 1.10 alnsn unreachable = true;
1313 1.10 alnsn
1314 1.1 alnsn switch (BPF_CLASS(insns[i].code)) {
1315 1.1 alnsn case BPF_RET:
1316 1.7 alnsn if (BPF_RVAL(insns[i].code) == BPF_A)
1317 1.7 alnsn *initmask |= invalid & BJ_INIT_ABIT;
1318 1.7 alnsn
1319 1.1 alnsn unreachable = true;
1320 1.1 alnsn continue;
1321 1.1 alnsn
1322 1.7 alnsn case BPF_LD:
1323 1.27 alnsn if (BPF_MODE(insns[i].code) == BPF_ABS)
1324 1.27 alnsn *hints |= BJ_HINT_ABS;
1325 1.7 alnsn
1326 1.20 alnsn if (BPF_MODE(insns[i].code) == BPF_IND) {
1327 1.27 alnsn *hints |= BJ_HINT_IND | BJ_HINT_XREG;
1328 1.7 alnsn *initmask |= invalid & BJ_INIT_XBIT;
1329 1.20 alnsn }
1330 1.7 alnsn
1331 1.7 alnsn if (BPF_MODE(insns[i].code) == BPF_MEM &&
1332 1.13 alnsn (uint32_t)insns[i].k < memwords) {
1333 1.7 alnsn *initmask |= invalid & BJ_INIT_MBIT(insns[i].k);
1334 1.7 alnsn }
1335 1.7 alnsn
1336 1.7 alnsn invalid &= ~BJ_INIT_ABIT;
1337 1.7 alnsn continue;
1338 1.7 alnsn
1339 1.7 alnsn case BPF_LDX:
1340 1.20 alnsn *hints |= BJ_HINT_XREG | BJ_HINT_LDX;
1341 1.7 alnsn
1342 1.7 alnsn if (BPF_MODE(insns[i].code) == BPF_MEM &&
1343 1.13 alnsn (uint32_t)insns[i].k < memwords) {
1344 1.7 alnsn *initmask |= invalid & BJ_INIT_MBIT(insns[i].k);
1345 1.7 alnsn }
1346 1.7 alnsn
1347 1.29 alnsn if (BPF_MODE(insns[i].code) == BPF_MSH &&
1348 1.29 alnsn BPF_SIZE(insns[i].code) == BPF_B) {
1349 1.29 alnsn *hints |= BJ_HINT_MSH;
1350 1.29 alnsn }
1351 1.29 alnsn
1352 1.7 alnsn invalid &= ~BJ_INIT_XBIT;
1353 1.7 alnsn continue;
1354 1.7 alnsn
1355 1.7 alnsn case BPF_ST:
1356 1.7 alnsn *initmask |= invalid & BJ_INIT_ABIT;
1357 1.7 alnsn
1358 1.13 alnsn if ((uint32_t)insns[i].k < memwords)
1359 1.7 alnsn invalid &= ~BJ_INIT_MBIT(insns[i].k);
1360 1.7 alnsn
1361 1.7 alnsn continue;
1362 1.7 alnsn
1363 1.7 alnsn case BPF_STX:
1364 1.20 alnsn *hints |= BJ_HINT_XREG;
1365 1.7 alnsn *initmask |= invalid & BJ_INIT_XBIT;
1366 1.7 alnsn
1367 1.13 alnsn if ((uint32_t)insns[i].k < memwords)
1368 1.7 alnsn invalid &= ~BJ_INIT_MBIT(insns[i].k);
1369 1.7 alnsn
1370 1.7 alnsn continue;
1371 1.7 alnsn
1372 1.7 alnsn case BPF_ALU:
1373 1.7 alnsn *initmask |= invalid & BJ_INIT_ABIT;
1374 1.7 alnsn
1375 1.7 alnsn if (insns[i].code != (BPF_ALU|BPF_NEG) &&
1376 1.7 alnsn BPF_SRC(insns[i].code) == BPF_X) {
1377 1.20 alnsn *hints |= BJ_HINT_XREG;
1378 1.7 alnsn *initmask |= invalid & BJ_INIT_XBIT;
1379 1.7 alnsn }
1380 1.7 alnsn
1381 1.7 alnsn invalid &= ~BJ_INIT_ABIT;
1382 1.7 alnsn continue;
1383 1.7 alnsn
1384 1.7 alnsn case BPF_MISC:
1385 1.7 alnsn switch (BPF_MISCOP(insns[i].code)) {
1386 1.7 alnsn case BPF_TAX: // X <- A
1387 1.20 alnsn *hints |= BJ_HINT_XREG;
1388 1.7 alnsn *initmask |= invalid & BJ_INIT_ABIT;
1389 1.7 alnsn invalid &= ~BJ_INIT_XBIT;
1390 1.7 alnsn continue;
1391 1.7 alnsn
1392 1.7 alnsn case BPF_TXA: // A <- X
1393 1.20 alnsn *hints |= BJ_HINT_XREG;
1394 1.7 alnsn *initmask |= invalid & BJ_INIT_XBIT;
1395 1.7 alnsn invalid &= ~BJ_INIT_ABIT;
1396 1.7 alnsn continue;
1397 1.13 alnsn
1398 1.13 alnsn case BPF_COPX:
1399 1.28 alnsn *hints |= BJ_HINT_XREG | BJ_HINT_COPX;
1400 1.13 alnsn /* FALLTHROUGH */
1401 1.13 alnsn
1402 1.13 alnsn case BPF_COP:
1403 1.20 alnsn *hints |= BJ_HINT_COP;
1404 1.13 alnsn *initmask |= invalid & BJ_INIT_ABIT;
1405 1.13 alnsn invalid &= ~BJ_INIT_ABIT;
1406 1.13 alnsn continue;
1407 1.7 alnsn }
1408 1.7 alnsn
1409 1.7 alnsn continue;
1410 1.7 alnsn
1411 1.1 alnsn case BPF_JMP:
1412 1.7 alnsn /* Initialize abc_length for ABC pass. */
1413 1.8 alnsn insn_dat[i].u.jdata.abc_length = MAX_ABC_LENGTH;
1414 1.7 alnsn
1415 1.41 alnsn *initmask |= invalid & BJ_INIT_ABIT;
1416 1.41 alnsn
1417 1.41 alnsn if (BPF_SRC(insns[i].code) == BPF_X) {
1418 1.39 alnsn *hints |= BJ_HINT_XREG;
1419 1.41 alnsn *initmask |= invalid & BJ_INIT_XBIT;
1420 1.41 alnsn }
1421 1.39 alnsn
1422 1.7 alnsn if (BPF_OP(insns[i].code) == BPF_JA) {
1423 1.1 alnsn jt = jf = insns[i].k;
1424 1.1 alnsn } else {
1425 1.1 alnsn jt = insns[i].jt;
1426 1.1 alnsn jf = insns[i].jf;
1427 1.1 alnsn }
1428 1.1 alnsn
1429 1.1 alnsn if (jt >= insn_count - (i + 1) ||
1430 1.1 alnsn jf >= insn_count - (i + 1)) {
1431 1.7 alnsn return false;
1432 1.1 alnsn }
1433 1.1 alnsn
1434 1.1 alnsn if (jt > 0 && jf > 0)
1435 1.1 alnsn unreachable = true;
1436 1.1 alnsn
1437 1.7 alnsn jt += i + 1;
1438 1.7 alnsn jf += i + 1;
1439 1.7 alnsn
1440 1.7 alnsn jtf = insn_dat[i].u.jdata.jtf;
1441 1.1 alnsn
1442 1.7 alnsn jtf[0].jdata = &insn_dat[i].u.jdata;
1443 1.7 alnsn SLIST_INSERT_HEAD(&insn_dat[jt].bjumps,
1444 1.7 alnsn &jtf[0], entries);
1445 1.1 alnsn
1446 1.1 alnsn if (jf != jt) {
1447 1.7 alnsn jtf[1].jdata = &insn_dat[i].u.jdata;
1448 1.7 alnsn SLIST_INSERT_HEAD(&insn_dat[jf].bjumps,
1449 1.7 alnsn &jtf[1], entries);
1450 1.1 alnsn }
1451 1.1 alnsn
1452 1.7 alnsn insn_dat[jf].invalid |= invalid;
1453 1.7 alnsn insn_dat[jt].invalid |= invalid;
1454 1.7 alnsn invalid = 0;
1455 1.7 alnsn
1456 1.1 alnsn continue;
1457 1.1 alnsn }
1458 1.1 alnsn }
1459 1.1 alnsn
1460 1.7 alnsn return true;
1461 1.1 alnsn }
1462 1.1 alnsn
1463 1.1 alnsn /*
1464 1.7 alnsn * Array Bounds Check Elimination (ABC) pass.
1465 1.1 alnsn */
1466 1.7 alnsn static void
1467 1.19 alnsn optimize_pass2(const bpf_ctx_t *bc, const struct bpf_insn *insns,
1468 1.19 alnsn struct bpfjit_insn_data *insn_dat, size_t insn_count)
1469 1.7 alnsn {
1470 1.7 alnsn struct bpfjit_jump *jmp;
1471 1.7 alnsn const struct bpf_insn *pc;
1472 1.7 alnsn struct bpfjit_insn_data *pd;
1473 1.7 alnsn size_t i;
1474 1.8 alnsn bpfjit_abc_length_t length, abc_length = 0;
1475 1.7 alnsn
1476 1.19 alnsn const size_t extwords = GET_EXTWORDS(bc);
1477 1.19 alnsn
1478 1.7 alnsn for (i = insn_count; i != 0; i--) {
1479 1.7 alnsn pc = &insns[i-1];
1480 1.7 alnsn pd = &insn_dat[i-1];
1481 1.7 alnsn
1482 1.7 alnsn if (pd->unreachable)
1483 1.7 alnsn continue;
1484 1.7 alnsn
1485 1.7 alnsn switch (BPF_CLASS(pc->code)) {
1486 1.7 alnsn case BPF_RET:
1487 1.11 alnsn /*
1488 1.11 alnsn * It's quite common for bpf programs to
1489 1.11 alnsn * check packet bytes in increasing order
1490 1.11 alnsn * and return zero if bytes don't match
1491 1.11 alnsn * specified critetion. Such programs disable
1492 1.11 alnsn * ABC optimization completely because for
1493 1.11 alnsn * every jump there is a branch with no read
1494 1.11 alnsn * instruction.
1495 1.13 alnsn * With no side effects, BPF_STMT(BPF_RET+BPF_K, 0)
1496 1.13 alnsn * is indistinguishable from out-of-bound load.
1497 1.11 alnsn * Therefore, abc_length can be set to
1498 1.11 alnsn * MAX_ABC_LENGTH and enable ABC for many
1499 1.11 alnsn * bpf programs.
1500 1.13 alnsn * If this optimization encounters any
1501 1.11 alnsn * instruction with a side effect, it will
1502 1.11 alnsn * reset abc_length.
1503 1.11 alnsn */
1504 1.11 alnsn if (BPF_RVAL(pc->code) == BPF_K && pc->k == 0)
1505 1.11 alnsn abc_length = MAX_ABC_LENGTH;
1506 1.11 alnsn else
1507 1.11 alnsn abc_length = 0;
1508 1.7 alnsn break;
1509 1.7 alnsn
1510 1.13 alnsn case BPF_MISC:
1511 1.13 alnsn if (BPF_MISCOP(pc->code) == BPF_COP ||
1512 1.13 alnsn BPF_MISCOP(pc->code) == BPF_COPX) {
1513 1.13 alnsn /* COP instructions can have side effects. */
1514 1.13 alnsn abc_length = 0;
1515 1.13 alnsn }
1516 1.13 alnsn break;
1517 1.13 alnsn
1518 1.13 alnsn case BPF_ST:
1519 1.13 alnsn case BPF_STX:
1520 1.13 alnsn if (extwords != 0) {
1521 1.13 alnsn /* Write to memory is visible after a call. */
1522 1.13 alnsn abc_length = 0;
1523 1.13 alnsn }
1524 1.13 alnsn break;
1525 1.13 alnsn
1526 1.7 alnsn case BPF_JMP:
1527 1.7 alnsn abc_length = pd->u.jdata.abc_length;
1528 1.7 alnsn break;
1529 1.7 alnsn
1530 1.7 alnsn default:
1531 1.7 alnsn if (read_pkt_insn(pc, &length)) {
1532 1.7 alnsn if (abc_length < length)
1533 1.7 alnsn abc_length = length;
1534 1.7 alnsn pd->u.rdata.abc_length = abc_length;
1535 1.7 alnsn }
1536 1.7 alnsn break;
1537 1.7 alnsn }
1538 1.7 alnsn
1539 1.7 alnsn SLIST_FOREACH(jmp, &pd->bjumps, entries) {
1540 1.7 alnsn if (jmp->jdata->abc_length > abc_length)
1541 1.7 alnsn jmp->jdata->abc_length = abc_length;
1542 1.7 alnsn }
1543 1.7 alnsn }
1544 1.7 alnsn }
1545 1.7 alnsn
1546 1.7 alnsn static void
1547 1.7 alnsn optimize_pass3(const struct bpf_insn *insns,
1548 1.7 alnsn struct bpfjit_insn_data *insn_dat, size_t insn_count)
1549 1.1 alnsn {
1550 1.7 alnsn struct bpfjit_jump *jmp;
1551 1.1 alnsn size_t i;
1552 1.8 alnsn bpfjit_abc_length_t checked_length = 0;
1553 1.1 alnsn
1554 1.1 alnsn for (i = 0; i < insn_count; i++) {
1555 1.7 alnsn if (insn_dat[i].unreachable)
1556 1.7 alnsn continue;
1557 1.1 alnsn
1558 1.7 alnsn SLIST_FOREACH(jmp, &insn_dat[i].bjumps, entries) {
1559 1.7 alnsn if (jmp->jdata->checked_length < checked_length)
1560 1.7 alnsn checked_length = jmp->jdata->checked_length;
1561 1.1 alnsn }
1562 1.1 alnsn
1563 1.7 alnsn if (BPF_CLASS(insns[i].code) == BPF_JMP) {
1564 1.7 alnsn insn_dat[i].u.jdata.checked_length = checked_length;
1565 1.8 alnsn } else if (read_pkt_insn(&insns[i], NULL)) {
1566 1.7 alnsn struct bpfjit_read_pkt_data *rdata =
1567 1.7 alnsn &insn_dat[i].u.rdata;
1568 1.7 alnsn rdata->check_length = 0;
1569 1.7 alnsn if (checked_length < rdata->abc_length) {
1570 1.7 alnsn checked_length = rdata->abc_length;
1571 1.7 alnsn rdata->check_length = checked_length;
1572 1.7 alnsn }
1573 1.1 alnsn }
1574 1.7 alnsn }
1575 1.7 alnsn }
1576 1.1 alnsn
1577 1.7 alnsn static bool
1578 1.19 alnsn optimize(const bpf_ctx_t *bc, const struct bpf_insn *insns,
1579 1.7 alnsn struct bpfjit_insn_data *insn_dat, size_t insn_count,
1580 1.20 alnsn bpf_memword_init_t *initmask, bpfjit_hint_t *hints)
1581 1.7 alnsn {
1582 1.1 alnsn
1583 1.7 alnsn optimize_init(insn_dat, insn_count);
1584 1.7 alnsn
1585 1.20 alnsn if (!optimize_pass1(bc, insns, insn_dat, insn_count, initmask, hints))
1586 1.7 alnsn return false;
1587 1.1 alnsn
1588 1.19 alnsn optimize_pass2(bc, insns, insn_dat, insn_count);
1589 1.7 alnsn optimize_pass3(insns, insn_dat, insn_count);
1590 1.7 alnsn
1591 1.7 alnsn return true;
1592 1.1 alnsn }
1593 1.1 alnsn
1594 1.1 alnsn /*
1595 1.1 alnsn * Convert BPF_ALU operations except BPF_NEG and BPF_DIV to sljit operation.
1596 1.1 alnsn */
1597 1.1 alnsn static int
1598 1.7 alnsn bpf_alu_to_sljit_op(const struct bpf_insn *pc)
1599 1.1 alnsn {
1600 1.39 alnsn const int bad = SLJIT_UNUSED;
1601 1.42 alnsn const uint32_t k = pc->k;
1602 1.1 alnsn
1603 1.1 alnsn /*
1604 1.1 alnsn * Note: all supported 64bit arches have 32bit multiply
1605 1.45 alnsn * instruction so SLJIT_I32_OP doesn't have any overhead.
1606 1.1 alnsn */
1607 1.1 alnsn switch (BPF_OP(pc->code)) {
1608 1.1 alnsn case BPF_ADD: return SLJIT_ADD;
1609 1.1 alnsn case BPF_SUB: return SLJIT_SUB;
1610 1.45 alnsn case BPF_MUL: return SLJIT_MUL|SLJIT_I32_OP;
1611 1.1 alnsn case BPF_OR: return SLJIT_OR;
1612 1.33 christos case BPF_XOR: return SLJIT_XOR;
1613 1.1 alnsn case BPF_AND: return SLJIT_AND;
1614 1.42 alnsn case BPF_LSH: return (k > 31) ? bad : SLJIT_SHL;
1615 1.45 alnsn case BPF_RSH: return (k > 31) ? bad : SLJIT_LSHR|SLJIT_I32_OP;
1616 1.1 alnsn default:
1617 1.39 alnsn return bad;
1618 1.1 alnsn }
1619 1.1 alnsn }
1620 1.1 alnsn
1621 1.1 alnsn /*
1622 1.1 alnsn * Convert BPF_JMP operations except BPF_JA to sljit condition.
1623 1.1 alnsn */
1624 1.1 alnsn static int
1625 1.7 alnsn bpf_jmp_to_sljit_cond(const struct bpf_insn *pc, bool negate)
1626 1.1 alnsn {
1627 1.1 alnsn /*
1628 1.1 alnsn * Note: all supported 64bit arches have 32bit comparison
1629 1.45 alnsn * instructions so SLJIT_I32_OP doesn't have any overhead.
1630 1.1 alnsn */
1631 1.45 alnsn int rv = SLJIT_I32_OP;
1632 1.1 alnsn
1633 1.1 alnsn switch (BPF_OP(pc->code)) {
1634 1.1 alnsn case BPF_JGT:
1635 1.45 alnsn rv |= negate ? SLJIT_LESS_EQUAL : SLJIT_GREATER;
1636 1.1 alnsn break;
1637 1.1 alnsn case BPF_JGE:
1638 1.45 alnsn rv |= negate ? SLJIT_LESS : SLJIT_GREATER_EQUAL;
1639 1.1 alnsn break;
1640 1.1 alnsn case BPF_JEQ:
1641 1.45 alnsn rv |= negate ? SLJIT_NOT_EQUAL : SLJIT_EQUAL;
1642 1.1 alnsn break;
1643 1.1 alnsn case BPF_JSET:
1644 1.45 alnsn rv |= negate ? SLJIT_EQUAL : SLJIT_NOT_EQUAL;
1645 1.1 alnsn break;
1646 1.1 alnsn default:
1647 1.7 alnsn BJ_ASSERT(false);
1648 1.1 alnsn }
1649 1.1 alnsn
1650 1.1 alnsn return rv;
1651 1.1 alnsn }
1652 1.1 alnsn
1653 1.1 alnsn /*
1654 1.1 alnsn * Convert BPF_K and BPF_X to sljit register.
1655 1.1 alnsn */
1656 1.1 alnsn static int
1657 1.7 alnsn kx_to_reg(const struct bpf_insn *pc)
1658 1.1 alnsn {
1659 1.1 alnsn
1660 1.1 alnsn switch (BPF_SRC(pc->code)) {
1661 1.1 alnsn case BPF_K: return SLJIT_IMM;
1662 1.7 alnsn case BPF_X: return BJ_XREG;
1663 1.1 alnsn default:
1664 1.7 alnsn BJ_ASSERT(false);
1665 1.1 alnsn return 0;
1666 1.1 alnsn }
1667 1.1 alnsn }
1668 1.1 alnsn
1669 1.12 alnsn static sljit_sw
1670 1.7 alnsn kx_to_reg_arg(const struct bpf_insn *pc)
1671 1.1 alnsn {
1672 1.1 alnsn
1673 1.1 alnsn switch (BPF_SRC(pc->code)) {
1674 1.1 alnsn case BPF_K: return (uint32_t)pc->k; /* SLJIT_IMM, pc->k, */
1675 1.7 alnsn case BPF_X: return 0; /* BJ_XREG, 0, */
1676 1.1 alnsn default:
1677 1.7 alnsn BJ_ASSERT(false);
1678 1.1 alnsn return 0;
1679 1.1 alnsn }
1680 1.1 alnsn }
1681 1.1 alnsn
1682 1.19 alnsn static bool
1683 1.32 alnsn generate_insn_code(struct sljit_compiler *compiler, bpfjit_hint_t hints,
1684 1.32 alnsn const bpf_ctx_t *bc, const struct bpf_insn *insns,
1685 1.32 alnsn struct bpfjit_insn_data *insn_dat, size_t insn_count)
1686 1.1 alnsn {
1687 1.1 alnsn /* a list of jumps to out-of-bound return from a generated function */
1688 1.1 alnsn struct sljit_jump **ret0;
1689 1.7 alnsn size_t ret0_size, ret0_maxsize;
1690 1.1 alnsn
1691 1.19 alnsn struct sljit_jump *jump;
1692 1.19 alnsn struct sljit_label *label;
1693 1.7 alnsn const struct bpf_insn *pc;
1694 1.1 alnsn struct bpfjit_jump *bjump, *jtf;
1695 1.1 alnsn struct sljit_jump *to_mchain_jump;
1696 1.1 alnsn
1697 1.19 alnsn size_t i;
1698 1.19 alnsn int status;
1699 1.19 alnsn int branching, negate;
1700 1.33 christos unsigned int rval, mode, src, op;
1701 1.1 alnsn uint32_t jt, jf;
1702 1.1 alnsn
1703 1.19 alnsn bool unconditional_ret;
1704 1.19 alnsn bool rv;
1705 1.19 alnsn
1706 1.19 alnsn const size_t extwords = GET_EXTWORDS(bc);
1707 1.19 alnsn const size_t memwords = GET_MEMWORDS(bc);
1708 1.13 alnsn
1709 1.13 alnsn ret0 = NULL;
1710 1.19 alnsn rv = false;
1711 1.7 alnsn
1712 1.1 alnsn ret0_size = 0;
1713 1.7 alnsn ret0_maxsize = 64;
1714 1.7 alnsn ret0 = BJ_ALLOC(ret0_maxsize * sizeof(ret0[0]));
1715 1.7 alnsn if (ret0 == NULL)
1716 1.1 alnsn goto fail;
1717 1.1 alnsn
1718 1.24 alnsn /* reset sjump members of jdata */
1719 1.24 alnsn for (i = 0; i < insn_count; i++) {
1720 1.24 alnsn if (insn_dat[i].unreachable ||
1721 1.24 alnsn BPF_CLASS(insns[i].code) != BPF_JMP) {
1722 1.24 alnsn continue;
1723 1.24 alnsn }
1724 1.24 alnsn
1725 1.24 alnsn jtf = insn_dat[i].u.jdata.jtf;
1726 1.24 alnsn jtf[0].sjump = jtf[1].sjump = NULL;
1727 1.24 alnsn }
1728 1.24 alnsn
1729 1.24 alnsn /* main loop */
1730 1.1 alnsn for (i = 0; i < insn_count; i++) {
1731 1.7 alnsn if (insn_dat[i].unreachable)
1732 1.1 alnsn continue;
1733 1.1 alnsn
1734 1.1 alnsn /*
1735 1.1 alnsn * Resolve jumps to the current insn.
1736 1.1 alnsn */
1737 1.1 alnsn label = NULL;
1738 1.7 alnsn SLIST_FOREACH(bjump, &insn_dat[i].bjumps, entries) {
1739 1.7 alnsn if (bjump->sjump != NULL) {
1740 1.1 alnsn if (label == NULL)
1741 1.1 alnsn label = sljit_emit_label(compiler);
1742 1.1 alnsn if (label == NULL)
1743 1.1 alnsn goto fail;
1744 1.7 alnsn sljit_set_label(bjump->sjump, label);
1745 1.1 alnsn }
1746 1.1 alnsn }
1747 1.1 alnsn
1748 1.9 alnsn to_mchain_jump = NULL;
1749 1.9 alnsn unconditional_ret = false;
1750 1.9 alnsn
1751 1.9 alnsn if (read_pkt_insn(&insns[i], NULL)) {
1752 1.9 alnsn if (insn_dat[i].u.rdata.check_length > UINT32_MAX) {
1753 1.9 alnsn /* Jump to "return 0" unconditionally. */
1754 1.9 alnsn unconditional_ret = true;
1755 1.9 alnsn jump = sljit_emit_jump(compiler, SLJIT_JUMP);
1756 1.9 alnsn if (jump == NULL)
1757 1.9 alnsn goto fail;
1758 1.9 alnsn if (!append_jump(jump, &ret0,
1759 1.9 alnsn &ret0_size, &ret0_maxsize))
1760 1.9 alnsn goto fail;
1761 1.9 alnsn } else if (insn_dat[i].u.rdata.check_length > 0) {
1762 1.9 alnsn /* if (buflen < check_length) return 0; */
1763 1.9 alnsn jump = sljit_emit_cmp(compiler,
1764 1.45 alnsn SLJIT_LESS,
1765 1.9 alnsn BJ_BUFLEN, 0,
1766 1.9 alnsn SLJIT_IMM,
1767 1.9 alnsn insn_dat[i].u.rdata.check_length);
1768 1.9 alnsn if (jump == NULL)
1769 1.9 alnsn goto fail;
1770 1.1 alnsn #ifdef _KERNEL
1771 1.9 alnsn to_mchain_jump = jump;
1772 1.1 alnsn #else
1773 1.9 alnsn if (!append_jump(jump, &ret0,
1774 1.9 alnsn &ret0_size, &ret0_maxsize))
1775 1.9 alnsn goto fail;
1776 1.1 alnsn #endif
1777 1.9 alnsn }
1778 1.1 alnsn }
1779 1.1 alnsn
1780 1.1 alnsn pc = &insns[i];
1781 1.1 alnsn switch (BPF_CLASS(pc->code)) {
1782 1.1 alnsn
1783 1.1 alnsn default:
1784 1.1 alnsn goto fail;
1785 1.1 alnsn
1786 1.1 alnsn case BPF_LD:
1787 1.1 alnsn /* BPF_LD+BPF_IMM A <- k */
1788 1.1 alnsn if (pc->code == (BPF_LD|BPF_IMM)) {
1789 1.1 alnsn status = sljit_emit_op1(compiler,
1790 1.1 alnsn SLJIT_MOV,
1791 1.7 alnsn BJ_AREG, 0,
1792 1.1 alnsn SLJIT_IMM, (uint32_t)pc->k);
1793 1.1 alnsn if (status != SLJIT_SUCCESS)
1794 1.1 alnsn goto fail;
1795 1.1 alnsn
1796 1.1 alnsn continue;
1797 1.1 alnsn }
1798 1.1 alnsn
1799 1.1 alnsn /* BPF_LD+BPF_MEM A <- M[k] */
1800 1.1 alnsn if (pc->code == (BPF_LD|BPF_MEM)) {
1801 1.13 alnsn if ((uint32_t)pc->k >= memwords)
1802 1.1 alnsn goto fail;
1803 1.13 alnsn status = emit_memload(compiler,
1804 1.13 alnsn BJ_AREG, pc->k, extwords);
1805 1.1 alnsn if (status != SLJIT_SUCCESS)
1806 1.1 alnsn goto fail;
1807 1.1 alnsn
1808 1.1 alnsn continue;
1809 1.1 alnsn }
1810 1.1 alnsn
1811 1.1 alnsn /* BPF_LD+BPF_W+BPF_LEN A <- len */
1812 1.1 alnsn if (pc->code == (BPF_LD|BPF_W|BPF_LEN)) {
1813 1.1 alnsn status = sljit_emit_op1(compiler,
1814 1.21 alnsn SLJIT_MOV, /* size_t source */
1815 1.7 alnsn BJ_AREG, 0,
1816 1.13 alnsn SLJIT_MEM1(BJ_ARGS),
1817 1.13 alnsn offsetof(struct bpf_args, wirelen));
1818 1.1 alnsn if (status != SLJIT_SUCCESS)
1819 1.1 alnsn goto fail;
1820 1.1 alnsn
1821 1.1 alnsn continue;
1822 1.1 alnsn }
1823 1.1 alnsn
1824 1.1 alnsn mode = BPF_MODE(pc->code);
1825 1.1 alnsn if (mode != BPF_ABS && mode != BPF_IND)
1826 1.1 alnsn goto fail;
1827 1.1 alnsn
1828 1.9 alnsn if (unconditional_ret)
1829 1.9 alnsn continue;
1830 1.9 alnsn
1831 1.32 alnsn status = emit_pkt_read(compiler, hints, pc,
1832 1.7 alnsn to_mchain_jump, &ret0, &ret0_size, &ret0_maxsize);
1833 1.1 alnsn if (status != SLJIT_SUCCESS)
1834 1.1 alnsn goto fail;
1835 1.1 alnsn
1836 1.1 alnsn continue;
1837 1.1 alnsn
1838 1.1 alnsn case BPF_LDX:
1839 1.1 alnsn mode = BPF_MODE(pc->code);
1840 1.1 alnsn
1841 1.1 alnsn /* BPF_LDX+BPF_W+BPF_IMM X <- k */
1842 1.1 alnsn if (mode == BPF_IMM) {
1843 1.1 alnsn if (BPF_SIZE(pc->code) != BPF_W)
1844 1.1 alnsn goto fail;
1845 1.1 alnsn status = sljit_emit_op1(compiler,
1846 1.1 alnsn SLJIT_MOV,
1847 1.7 alnsn BJ_XREG, 0,
1848 1.1 alnsn SLJIT_IMM, (uint32_t)pc->k);
1849 1.1 alnsn if (status != SLJIT_SUCCESS)
1850 1.1 alnsn goto fail;
1851 1.1 alnsn
1852 1.1 alnsn continue;
1853 1.1 alnsn }
1854 1.1 alnsn
1855 1.1 alnsn /* BPF_LDX+BPF_W+BPF_LEN X <- len */
1856 1.1 alnsn if (mode == BPF_LEN) {
1857 1.1 alnsn if (BPF_SIZE(pc->code) != BPF_W)
1858 1.1 alnsn goto fail;
1859 1.1 alnsn status = sljit_emit_op1(compiler,
1860 1.21 alnsn SLJIT_MOV, /* size_t source */
1861 1.7 alnsn BJ_XREG, 0,
1862 1.13 alnsn SLJIT_MEM1(BJ_ARGS),
1863 1.13 alnsn offsetof(struct bpf_args, wirelen));
1864 1.1 alnsn if (status != SLJIT_SUCCESS)
1865 1.1 alnsn goto fail;
1866 1.1 alnsn
1867 1.1 alnsn continue;
1868 1.1 alnsn }
1869 1.1 alnsn
1870 1.1 alnsn /* BPF_LDX+BPF_W+BPF_MEM X <- M[k] */
1871 1.1 alnsn if (mode == BPF_MEM) {
1872 1.1 alnsn if (BPF_SIZE(pc->code) != BPF_W)
1873 1.1 alnsn goto fail;
1874 1.13 alnsn if ((uint32_t)pc->k >= memwords)
1875 1.1 alnsn goto fail;
1876 1.13 alnsn status = emit_memload(compiler,
1877 1.13 alnsn BJ_XREG, pc->k, extwords);
1878 1.1 alnsn if (status != SLJIT_SUCCESS)
1879 1.1 alnsn goto fail;
1880 1.1 alnsn
1881 1.1 alnsn continue;
1882 1.1 alnsn }
1883 1.1 alnsn
1884 1.1 alnsn /* BPF_LDX+BPF_B+BPF_MSH X <- 4*(P[k:1]&0xf) */
1885 1.1 alnsn if (mode != BPF_MSH || BPF_SIZE(pc->code) != BPF_B)
1886 1.1 alnsn goto fail;
1887 1.1 alnsn
1888 1.9 alnsn if (unconditional_ret)
1889 1.9 alnsn continue;
1890 1.9 alnsn
1891 1.32 alnsn status = emit_msh(compiler, hints, pc,
1892 1.7 alnsn to_mchain_jump, &ret0, &ret0_size, &ret0_maxsize);
1893 1.1 alnsn if (status != SLJIT_SUCCESS)
1894 1.1 alnsn goto fail;
1895 1.1 alnsn
1896 1.1 alnsn continue;
1897 1.1 alnsn
1898 1.1 alnsn case BPF_ST:
1899 1.8 alnsn if (pc->code != BPF_ST ||
1900 1.13 alnsn (uint32_t)pc->k >= memwords) {
1901 1.1 alnsn goto fail;
1902 1.8 alnsn }
1903 1.1 alnsn
1904 1.13 alnsn status = emit_memstore(compiler,
1905 1.13 alnsn BJ_AREG, pc->k, extwords);
1906 1.1 alnsn if (status != SLJIT_SUCCESS)
1907 1.1 alnsn goto fail;
1908 1.1 alnsn
1909 1.1 alnsn continue;
1910 1.1 alnsn
1911 1.1 alnsn case BPF_STX:
1912 1.8 alnsn if (pc->code != BPF_STX ||
1913 1.13 alnsn (uint32_t)pc->k >= memwords) {
1914 1.1 alnsn goto fail;
1915 1.8 alnsn }
1916 1.1 alnsn
1917 1.13 alnsn status = emit_memstore(compiler,
1918 1.13 alnsn BJ_XREG, pc->k, extwords);
1919 1.1 alnsn if (status != SLJIT_SUCCESS)
1920 1.1 alnsn goto fail;
1921 1.1 alnsn
1922 1.1 alnsn continue;
1923 1.1 alnsn
1924 1.1 alnsn case BPF_ALU:
1925 1.1 alnsn if (pc->code == (BPF_ALU|BPF_NEG)) {
1926 1.1 alnsn status = sljit_emit_op1(compiler,
1927 1.1 alnsn SLJIT_NEG,
1928 1.7 alnsn BJ_AREG, 0,
1929 1.7 alnsn BJ_AREG, 0);
1930 1.1 alnsn if (status != SLJIT_SUCCESS)
1931 1.1 alnsn goto fail;
1932 1.1 alnsn
1933 1.1 alnsn continue;
1934 1.1 alnsn }
1935 1.1 alnsn
1936 1.33 christos op = BPF_OP(pc->code);
1937 1.33 christos if (op != BPF_DIV && op != BPF_MOD) {
1938 1.39 alnsn const int op2 = bpf_alu_to_sljit_op(pc);
1939 1.39 alnsn
1940 1.39 alnsn if (op2 == SLJIT_UNUSED)
1941 1.39 alnsn goto fail;
1942 1.1 alnsn status = sljit_emit_op2(compiler,
1943 1.39 alnsn op2, BJ_AREG, 0, BJ_AREG, 0,
1944 1.1 alnsn kx_to_reg(pc), kx_to_reg_arg(pc));
1945 1.1 alnsn if (status != SLJIT_SUCCESS)
1946 1.1 alnsn goto fail;
1947 1.1 alnsn
1948 1.1 alnsn continue;
1949 1.1 alnsn }
1950 1.1 alnsn
1951 1.33 christos /* BPF_DIV/BPF_MOD */
1952 1.1 alnsn
1953 1.1 alnsn src = BPF_SRC(pc->code);
1954 1.1 alnsn if (src != BPF_X && src != BPF_K)
1955 1.1 alnsn goto fail;
1956 1.1 alnsn
1957 1.1 alnsn /* division by zero? */
1958 1.1 alnsn if (src == BPF_X) {
1959 1.1 alnsn jump = sljit_emit_cmp(compiler,
1960 1.45 alnsn SLJIT_EQUAL|SLJIT_I32_OP,
1961 1.8 alnsn BJ_XREG, 0,
1962 1.1 alnsn SLJIT_IMM, 0);
1963 1.1 alnsn if (jump == NULL)
1964 1.1 alnsn goto fail;
1965 1.7 alnsn if (!append_jump(jump, &ret0,
1966 1.7 alnsn &ret0_size, &ret0_maxsize))
1967 1.7 alnsn goto fail;
1968 1.1 alnsn } else if (pc->k == 0) {
1969 1.1 alnsn jump = sljit_emit_jump(compiler, SLJIT_JUMP);
1970 1.1 alnsn if (jump == NULL)
1971 1.1 alnsn goto fail;
1972 1.7 alnsn if (!append_jump(jump, &ret0,
1973 1.7 alnsn &ret0_size, &ret0_maxsize))
1974 1.7 alnsn goto fail;
1975 1.1 alnsn }
1976 1.1 alnsn
1977 1.1 alnsn if (src == BPF_X) {
1978 1.35 alnsn status = emit_moddiv(compiler, pc);
1979 1.1 alnsn if (status != SLJIT_SUCCESS)
1980 1.1 alnsn goto fail;
1981 1.1 alnsn } else if (pc->k != 0) {
1982 1.35 alnsn if (pc->k & (pc->k - 1)) {
1983 1.35 alnsn status = emit_moddiv(compiler, pc);
1984 1.1 alnsn } else {
1985 1.35 alnsn status = emit_pow2_moddiv(compiler, pc);
1986 1.1 alnsn }
1987 1.1 alnsn if (status != SLJIT_SUCCESS)
1988 1.1 alnsn goto fail;
1989 1.1 alnsn }
1990 1.1 alnsn
1991 1.1 alnsn continue;
1992 1.1 alnsn
1993 1.1 alnsn case BPF_JMP:
1994 1.33 christos op = BPF_OP(pc->code);
1995 1.33 christos if (op == BPF_JA) {
1996 1.1 alnsn jt = jf = pc->k;
1997 1.1 alnsn } else {
1998 1.1 alnsn jt = pc->jt;
1999 1.1 alnsn jf = pc->jf;
2000 1.1 alnsn }
2001 1.1 alnsn
2002 1.1 alnsn negate = (jt == 0) ? 1 : 0;
2003 1.1 alnsn branching = (jt == jf) ? 0 : 1;
2004 1.7 alnsn jtf = insn_dat[i].u.jdata.jtf;
2005 1.1 alnsn
2006 1.1 alnsn if (branching) {
2007 1.33 christos if (op != BPF_JSET) {
2008 1.1 alnsn jump = sljit_emit_cmp(compiler,
2009 1.1 alnsn bpf_jmp_to_sljit_cond(pc, negate),
2010 1.7 alnsn BJ_AREG, 0,
2011 1.1 alnsn kx_to_reg(pc), kx_to_reg_arg(pc));
2012 1.1 alnsn } else {
2013 1.1 alnsn status = sljit_emit_op2(compiler,
2014 1.1 alnsn SLJIT_AND,
2015 1.7 alnsn BJ_TMP1REG, 0,
2016 1.7 alnsn BJ_AREG, 0,
2017 1.1 alnsn kx_to_reg(pc), kx_to_reg_arg(pc));
2018 1.1 alnsn if (status != SLJIT_SUCCESS)
2019 1.1 alnsn goto fail;
2020 1.1 alnsn
2021 1.1 alnsn jump = sljit_emit_cmp(compiler,
2022 1.1 alnsn bpf_jmp_to_sljit_cond(pc, negate),
2023 1.7 alnsn BJ_TMP1REG, 0,
2024 1.1 alnsn SLJIT_IMM, 0);
2025 1.1 alnsn }
2026 1.1 alnsn
2027 1.1 alnsn if (jump == NULL)
2028 1.1 alnsn goto fail;
2029 1.1 alnsn
2030 1.7 alnsn BJ_ASSERT(jtf[negate].sjump == NULL);
2031 1.7 alnsn jtf[negate].sjump = jump;
2032 1.1 alnsn }
2033 1.1 alnsn
2034 1.1 alnsn if (!branching || (jt != 0 && jf != 0)) {
2035 1.1 alnsn jump = sljit_emit_jump(compiler, SLJIT_JUMP);
2036 1.1 alnsn if (jump == NULL)
2037 1.1 alnsn goto fail;
2038 1.1 alnsn
2039 1.7 alnsn BJ_ASSERT(jtf[branching].sjump == NULL);
2040 1.7 alnsn jtf[branching].sjump = jump;
2041 1.1 alnsn }
2042 1.1 alnsn
2043 1.1 alnsn continue;
2044 1.1 alnsn
2045 1.1 alnsn case BPF_RET:
2046 1.1 alnsn rval = BPF_RVAL(pc->code);
2047 1.1 alnsn if (rval == BPF_X)
2048 1.1 alnsn goto fail;
2049 1.1 alnsn
2050 1.1 alnsn /* BPF_RET+BPF_K accept k bytes */
2051 1.1 alnsn if (rval == BPF_K) {
2052 1.7 alnsn status = sljit_emit_return(compiler,
2053 1.45 alnsn SLJIT_MOV_U32,
2054 1.1 alnsn SLJIT_IMM, (uint32_t)pc->k);
2055 1.1 alnsn if (status != SLJIT_SUCCESS)
2056 1.1 alnsn goto fail;
2057 1.1 alnsn }
2058 1.1 alnsn
2059 1.1 alnsn /* BPF_RET+BPF_A accept A bytes */
2060 1.1 alnsn if (rval == BPF_A) {
2061 1.7 alnsn status = sljit_emit_return(compiler,
2062 1.45 alnsn SLJIT_MOV_U32,
2063 1.7 alnsn BJ_AREG, 0);
2064 1.1 alnsn if (status != SLJIT_SUCCESS)
2065 1.1 alnsn goto fail;
2066 1.1 alnsn }
2067 1.1 alnsn
2068 1.1 alnsn continue;
2069 1.1 alnsn
2070 1.1 alnsn case BPF_MISC:
2071 1.7 alnsn switch (BPF_MISCOP(pc->code)) {
2072 1.7 alnsn case BPF_TAX:
2073 1.1 alnsn status = sljit_emit_op1(compiler,
2074 1.45 alnsn SLJIT_MOV_U32,
2075 1.7 alnsn BJ_XREG, 0,
2076 1.7 alnsn BJ_AREG, 0);
2077 1.1 alnsn if (status != SLJIT_SUCCESS)
2078 1.1 alnsn goto fail;
2079 1.1 alnsn
2080 1.1 alnsn continue;
2081 1.1 alnsn
2082 1.7 alnsn case BPF_TXA:
2083 1.1 alnsn status = sljit_emit_op1(compiler,
2084 1.1 alnsn SLJIT_MOV,
2085 1.7 alnsn BJ_AREG, 0,
2086 1.7 alnsn BJ_XREG, 0);
2087 1.1 alnsn if (status != SLJIT_SUCCESS)
2088 1.1 alnsn goto fail;
2089 1.1 alnsn
2090 1.1 alnsn continue;
2091 1.13 alnsn
2092 1.13 alnsn case BPF_COP:
2093 1.13 alnsn case BPF_COPX:
2094 1.13 alnsn if (bc == NULL || bc->copfuncs == NULL)
2095 1.13 alnsn goto fail;
2096 1.13 alnsn if (BPF_MISCOP(pc->code) == BPF_COP &&
2097 1.13 alnsn (uint32_t)pc->k >= bc->nfuncs) {
2098 1.13 alnsn goto fail;
2099 1.13 alnsn }
2100 1.13 alnsn
2101 1.32 alnsn status = emit_cop(compiler, hints, bc, pc,
2102 1.28 alnsn &ret0, &ret0_size, &ret0_maxsize);
2103 1.13 alnsn if (status != SLJIT_SUCCESS)
2104 1.13 alnsn goto fail;
2105 1.13 alnsn
2106 1.13 alnsn continue;
2107 1.1 alnsn }
2108 1.1 alnsn
2109 1.1 alnsn goto fail;
2110 1.1 alnsn } /* switch */
2111 1.1 alnsn } /* main loop */
2112 1.1 alnsn
2113 1.7 alnsn BJ_ASSERT(ret0_size <= ret0_maxsize);
2114 1.1 alnsn
2115 1.7 alnsn if (ret0_size > 0) {
2116 1.1 alnsn label = sljit_emit_label(compiler);
2117 1.1 alnsn if (label == NULL)
2118 1.1 alnsn goto fail;
2119 1.7 alnsn for (i = 0; i < ret0_size; i++)
2120 1.7 alnsn sljit_set_label(ret0[i], label);
2121 1.1 alnsn }
2122 1.1 alnsn
2123 1.23 alnsn status = sljit_emit_return(compiler,
2124 1.45 alnsn SLJIT_MOV_U32,
2125 1.23 alnsn SLJIT_IMM, 0);
2126 1.23 alnsn if (status != SLJIT_SUCCESS)
2127 1.23 alnsn goto fail;
2128 1.23 alnsn
2129 1.19 alnsn rv = true;
2130 1.19 alnsn
2131 1.19 alnsn fail:
2132 1.19 alnsn if (ret0 != NULL)
2133 1.19 alnsn BJ_FREE(ret0, ret0_maxsize * sizeof(ret0[0]));
2134 1.19 alnsn
2135 1.19 alnsn return rv;
2136 1.19 alnsn }
2137 1.19 alnsn
2138 1.19 alnsn bpfjit_func_t
2139 1.19 alnsn bpfjit_generate_code(const bpf_ctx_t *bc,
2140 1.19 alnsn const struct bpf_insn *insns, size_t insn_count)
2141 1.19 alnsn {
2142 1.19 alnsn void *rv;
2143 1.19 alnsn struct sljit_compiler *compiler;
2144 1.19 alnsn
2145 1.19 alnsn size_t i;
2146 1.19 alnsn int status;
2147 1.19 alnsn
2148 1.19 alnsn /* optimization related */
2149 1.19 alnsn bpf_memword_init_t initmask;
2150 1.20 alnsn bpfjit_hint_t hints;
2151 1.19 alnsn
2152 1.19 alnsn /* memory store location for initial zero initialization */
2153 1.45 alnsn sljit_s32 mem_reg;
2154 1.19 alnsn sljit_sw mem_off;
2155 1.19 alnsn
2156 1.19 alnsn struct bpfjit_insn_data *insn_dat;
2157 1.19 alnsn
2158 1.19 alnsn const size_t extwords = GET_EXTWORDS(bc);
2159 1.19 alnsn const size_t memwords = GET_MEMWORDS(bc);
2160 1.19 alnsn const bpf_memword_init_t preinited = extwords ? bc->preinited : 0;
2161 1.19 alnsn
2162 1.19 alnsn rv = NULL;
2163 1.19 alnsn compiler = NULL;
2164 1.19 alnsn insn_dat = NULL;
2165 1.19 alnsn
2166 1.19 alnsn if (memwords > MAX_MEMWORDS)
2167 1.19 alnsn goto fail;
2168 1.19 alnsn
2169 1.19 alnsn if (insn_count == 0 || insn_count > SIZE_MAX / sizeof(insn_dat[0]))
2170 1.19 alnsn goto fail;
2171 1.19 alnsn
2172 1.19 alnsn insn_dat = BJ_ALLOC(insn_count * sizeof(insn_dat[0]));
2173 1.19 alnsn if (insn_dat == NULL)
2174 1.19 alnsn goto fail;
2175 1.19 alnsn
2176 1.20 alnsn if (!optimize(bc, insns, insn_dat, insn_count, &initmask, &hints))
2177 1.19 alnsn goto fail;
2178 1.19 alnsn
2179 1.45 alnsn compiler = sljit_create_compiler(NULL);
2180 1.19 alnsn if (compiler == NULL)
2181 1.19 alnsn goto fail;
2182 1.19 alnsn
2183 1.19 alnsn #if !defined(_KERNEL) && defined(SLJIT_VERBOSE) && SLJIT_VERBOSE
2184 1.19 alnsn sljit_compiler_verbose(compiler, stderr);
2185 1.19 alnsn #endif
2186 1.19 alnsn
2187 1.45 alnsn status = sljit_emit_enter(compiler, 0, 2, nscratches(hints),
2188 1.45 alnsn NSAVEDS, 0, 0, sizeof(struct bpfjit_stack));
2189 1.19 alnsn if (status != SLJIT_SUCCESS)
2190 1.19 alnsn goto fail;
2191 1.19 alnsn
2192 1.20 alnsn if (hints & BJ_HINT_COP) {
2193 1.19 alnsn /* save ctx argument */
2194 1.19 alnsn status = sljit_emit_op1(compiler,
2195 1.19 alnsn SLJIT_MOV_P,
2196 1.45 alnsn SLJIT_MEM1(SLJIT_SP),
2197 1.19 alnsn offsetof(struct bpfjit_stack, ctx),
2198 1.19 alnsn BJ_CTX_ARG, 0);
2199 1.19 alnsn if (status != SLJIT_SUCCESS)
2200 1.19 alnsn goto fail;
2201 1.19 alnsn }
2202 1.19 alnsn
2203 1.19 alnsn if (extwords == 0) {
2204 1.45 alnsn mem_reg = SLJIT_MEM1(SLJIT_SP);
2205 1.19 alnsn mem_off = offsetof(struct bpfjit_stack, mem);
2206 1.19 alnsn } else {
2207 1.19 alnsn /* copy "mem" argument from bpf_args to bpfjit_stack */
2208 1.19 alnsn status = sljit_emit_op1(compiler,
2209 1.19 alnsn SLJIT_MOV_P,
2210 1.19 alnsn BJ_TMP1REG, 0,
2211 1.19 alnsn SLJIT_MEM1(BJ_ARGS), offsetof(struct bpf_args, mem));
2212 1.19 alnsn if (status != SLJIT_SUCCESS)
2213 1.19 alnsn goto fail;
2214 1.19 alnsn
2215 1.19 alnsn status = sljit_emit_op1(compiler,
2216 1.19 alnsn SLJIT_MOV_P,
2217 1.45 alnsn SLJIT_MEM1(SLJIT_SP),
2218 1.19 alnsn offsetof(struct bpfjit_stack, extmem),
2219 1.19 alnsn BJ_TMP1REG, 0);
2220 1.19 alnsn if (status != SLJIT_SUCCESS)
2221 1.19 alnsn goto fail;
2222 1.19 alnsn
2223 1.19 alnsn mem_reg = SLJIT_MEM1(BJ_TMP1REG);
2224 1.19 alnsn mem_off = 0;
2225 1.19 alnsn }
2226 1.19 alnsn
2227 1.19 alnsn /*
2228 1.19 alnsn * Exclude pre-initialised external memory words but keep
2229 1.19 alnsn * initialization statuses of A and X registers in case
2230 1.19 alnsn * bc->preinited wrongly sets those two bits.
2231 1.19 alnsn */
2232 1.19 alnsn initmask &= ~preinited | BJ_INIT_ABIT | BJ_INIT_XBIT;
2233 1.19 alnsn
2234 1.19 alnsn #if defined(_KERNEL)
2235 1.19 alnsn /* bpf_filter() checks initialization of memwords. */
2236 1.19 alnsn BJ_ASSERT((initmask & (BJ_INIT_MBIT(memwords) - 1)) == 0);
2237 1.19 alnsn #endif
2238 1.19 alnsn for (i = 0; i < memwords; i++) {
2239 1.19 alnsn if (initmask & BJ_INIT_MBIT(i)) {
2240 1.19 alnsn /* M[i] = 0; */
2241 1.19 alnsn status = sljit_emit_op1(compiler,
2242 1.45 alnsn SLJIT_MOV_U32,
2243 1.19 alnsn mem_reg, mem_off + i * sizeof(uint32_t),
2244 1.19 alnsn SLJIT_IMM, 0);
2245 1.19 alnsn if (status != SLJIT_SUCCESS)
2246 1.19 alnsn goto fail;
2247 1.19 alnsn }
2248 1.19 alnsn }
2249 1.19 alnsn
2250 1.19 alnsn if (initmask & BJ_INIT_ABIT) {
2251 1.19 alnsn /* A = 0; */
2252 1.19 alnsn status = sljit_emit_op1(compiler,
2253 1.19 alnsn SLJIT_MOV,
2254 1.19 alnsn BJ_AREG, 0,
2255 1.19 alnsn SLJIT_IMM, 0);
2256 1.19 alnsn if (status != SLJIT_SUCCESS)
2257 1.19 alnsn goto fail;
2258 1.19 alnsn }
2259 1.19 alnsn
2260 1.19 alnsn if (initmask & BJ_INIT_XBIT) {
2261 1.19 alnsn /* X = 0; */
2262 1.19 alnsn status = sljit_emit_op1(compiler,
2263 1.19 alnsn SLJIT_MOV,
2264 1.19 alnsn BJ_XREG, 0,
2265 1.19 alnsn SLJIT_IMM, 0);
2266 1.19 alnsn if (status != SLJIT_SUCCESS)
2267 1.19 alnsn goto fail;
2268 1.19 alnsn }
2269 1.19 alnsn
2270 1.19 alnsn status = load_buf_buflen(compiler);
2271 1.19 alnsn if (status != SLJIT_SUCCESS)
2272 1.19 alnsn goto fail;
2273 1.19 alnsn
2274 1.32 alnsn if (!generate_insn_code(compiler, hints,
2275 1.32 alnsn bc, insns, insn_dat, insn_count)) {
2276 1.19 alnsn goto fail;
2277 1.32 alnsn }
2278 1.19 alnsn
2279 1.1 alnsn rv = sljit_generate_code(compiler);
2280 1.1 alnsn
2281 1.1 alnsn fail:
2282 1.1 alnsn if (compiler != NULL)
2283 1.1 alnsn sljit_free_compiler(compiler);
2284 1.1 alnsn
2285 1.1 alnsn if (insn_dat != NULL)
2286 1.7 alnsn BJ_FREE(insn_dat, insn_count * sizeof(insn_dat[0]));
2287 1.1 alnsn
2288 1.4 rmind return (bpfjit_func_t)rv;
2289 1.1 alnsn }
2290 1.1 alnsn
2291 1.1 alnsn void
2292 1.4 rmind bpfjit_free_code(bpfjit_func_t code)
2293 1.1 alnsn {
2294 1.7 alnsn
2295 1.1 alnsn sljit_free_code((void *)code);
2296 1.1 alnsn }
2297