Home | History | Annotate | Line # | Download | only in net
bpfjit.c revision 1.47
      1  1.47     alnsn /*	$NetBSD: bpfjit.c,v 1.47 2019/01/20 23:36:57 alnsn Exp $	*/
      2   1.3     rmind 
      3   1.1     alnsn /*-
      4  1.43     alnsn  * Copyright (c) 2011-2015 Alexander Nasonov.
      5   1.1     alnsn  * All rights reserved.
      6   1.1     alnsn  *
      7   1.1     alnsn  * Redistribution and use in source and binary forms, with or without
      8   1.1     alnsn  * modification, are permitted provided that the following conditions
      9   1.1     alnsn  * are met:
     10   1.1     alnsn  *
     11   1.1     alnsn  * 1. Redistributions of source code must retain the above copyright
     12   1.1     alnsn  *    notice, this list of conditions and the following disclaimer.
     13   1.1     alnsn  * 2. Redistributions in binary form must reproduce the above copyright
     14   1.1     alnsn  *    notice, this list of conditions and the following disclaimer in
     15   1.1     alnsn  *    the documentation and/or other materials provided with the
     16   1.1     alnsn  *    distribution.
     17   1.1     alnsn  *
     18   1.1     alnsn  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     19   1.1     alnsn  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     20   1.1     alnsn  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
     21   1.1     alnsn  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
     22   1.1     alnsn  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
     23   1.1     alnsn  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
     24   1.1     alnsn  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     25   1.1     alnsn  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     26   1.1     alnsn  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     27   1.1     alnsn  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
     28   1.1     alnsn  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29   1.1     alnsn  * SUCH DAMAGE.
     30   1.1     alnsn  */
     31   1.1     alnsn 
     32   1.2     alnsn #include <sys/cdefs.h>
     33   1.2     alnsn #ifdef _KERNEL
     34  1.47     alnsn __KERNEL_RCSID(0, "$NetBSD: bpfjit.c,v 1.47 2019/01/20 23:36:57 alnsn Exp $");
     35   1.2     alnsn #else
     36  1.47     alnsn __RCSID("$NetBSD: bpfjit.c,v 1.47 2019/01/20 23:36:57 alnsn Exp $");
     37   1.2     alnsn #endif
     38   1.2     alnsn 
     39   1.3     rmind #include <sys/types.h>
     40   1.3     rmind #include <sys/queue.h>
     41   1.1     alnsn 
     42   1.1     alnsn #ifndef _KERNEL
     43   1.7     alnsn #include <assert.h>
     44   1.7     alnsn #define BJ_ASSERT(c) assert(c)
     45   1.7     alnsn #else
     46   1.7     alnsn #define BJ_ASSERT(c) KASSERT(c)
     47   1.7     alnsn #endif
     48   1.7     alnsn 
     49   1.7     alnsn #ifndef _KERNEL
     50   1.3     rmind #include <stdlib.h>
     51   1.7     alnsn #define BJ_ALLOC(sz) malloc(sz)
     52   1.7     alnsn #define BJ_FREE(p, sz) free(p)
     53   1.1     alnsn #else
     54   1.3     rmind #include <sys/kmem.h>
     55   1.7     alnsn #define BJ_ALLOC(sz) kmem_alloc(sz, KM_SLEEP)
     56   1.7     alnsn #define BJ_FREE(p, sz) kmem_free(p, sz)
     57   1.1     alnsn #endif
     58   1.1     alnsn 
     59   1.1     alnsn #ifndef _KERNEL
     60   1.1     alnsn #include <limits.h>
     61   1.1     alnsn #include <stdbool.h>
     62   1.1     alnsn #include <stddef.h>
     63   1.1     alnsn #include <stdint.h>
     64  1.47     alnsn #include <string.h>
     65   1.1     alnsn #else
     66   1.1     alnsn #include <sys/atomic.h>
     67   1.1     alnsn #include <sys/module.h>
     68   1.1     alnsn #endif
     69   1.1     alnsn 
     70   1.5     rmind #define	__BPF_PRIVATE
     71   1.5     rmind #include <net/bpf.h>
     72   1.3     rmind #include <net/bpfjit.h>
     73   1.1     alnsn #include <sljitLir.h>
     74   1.1     alnsn 
     75   1.7     alnsn #if !defined(_KERNEL) && defined(SLJIT_VERBOSE) && SLJIT_VERBOSE
     76   1.7     alnsn #include <stdio.h> /* for stderr */
     77   1.7     alnsn #endif
     78   1.7     alnsn 
     79   1.7     alnsn /*
     80  1.44     alnsn  * Number of saved registers to pass to sljit_emit_enter() function.
     81  1.44     alnsn  */
     82  1.44     alnsn #define NSAVEDS		3
     83  1.44     alnsn 
     84  1.44     alnsn /*
     85  1.13     alnsn  * Arguments of generated bpfjit_func_t.
     86  1.13     alnsn  * The first argument is reassigned upon entry
     87  1.13     alnsn  * to a more frequently used buf argument.
     88  1.13     alnsn  */
     89  1.45     alnsn #define BJ_CTX_ARG	SLJIT_S0
     90  1.45     alnsn #define BJ_ARGS		SLJIT_S1
     91  1.13     alnsn 
     92  1.13     alnsn /*
     93   1.7     alnsn  * Permanent register assignments.
     94   1.7     alnsn  */
     95  1.45     alnsn #define BJ_BUF		SLJIT_S0
     96  1.45     alnsn //#define BJ_ARGS	SLJIT_S1
     97  1.45     alnsn #define BJ_BUFLEN	SLJIT_S2
     98  1.45     alnsn #define BJ_AREG		SLJIT_R0
     99  1.45     alnsn #define BJ_TMP1REG	SLJIT_R1
    100  1.45     alnsn #define BJ_TMP2REG	SLJIT_R2
    101  1.45     alnsn #define BJ_XREG		SLJIT_R3
    102  1.45     alnsn #define BJ_TMP3REG	SLJIT_R4
    103   1.7     alnsn 
    104  1.13     alnsn #ifdef _KERNEL
    105  1.13     alnsn #define MAX_MEMWORDS BPF_MAX_MEMWORDS
    106  1.13     alnsn #else
    107  1.13     alnsn #define MAX_MEMWORDS BPF_MEMWORDS
    108  1.13     alnsn #endif
    109  1.13     alnsn 
    110  1.13     alnsn #define BJ_INIT_NOBITS  ((bpf_memword_init_t)0)
    111  1.13     alnsn #define BJ_INIT_MBIT(k) BPF_MEMWORD_INIT(k)
    112  1.13     alnsn #define BJ_INIT_ABIT    BJ_INIT_MBIT(MAX_MEMWORDS)
    113  1.13     alnsn #define BJ_INIT_XBIT    BJ_INIT_MBIT(MAX_MEMWORDS + 1)
    114   1.1     alnsn 
    115   1.9     alnsn /*
    116  1.19     alnsn  * Get a number of memwords and external memwords from a bpf_ctx object.
    117  1.19     alnsn  */
    118  1.19     alnsn #define GET_EXTWORDS(bc) ((bc) ? (bc)->extwords : 0)
    119  1.19     alnsn #define GET_MEMWORDS(bc) (GET_EXTWORDS(bc) ? GET_EXTWORDS(bc) : BPF_MEMWORDS)
    120  1.19     alnsn 
    121  1.19     alnsn /*
    122  1.20     alnsn  * Optimization hints.
    123  1.20     alnsn  */
    124  1.20     alnsn typedef unsigned int bpfjit_hint_t;
    125  1.28     alnsn #define BJ_HINT_ABS  0x01 /* packet read at absolute offset   */
    126  1.28     alnsn #define BJ_HINT_IND  0x02 /* packet read at variable offset   */
    127  1.29     alnsn #define BJ_HINT_MSH  0x04 /* BPF_MSH instruction              */
    128  1.29     alnsn #define BJ_HINT_COP  0x08 /* BPF_COP or BPF_COPX instruction  */
    129  1.29     alnsn #define BJ_HINT_COPX 0x10 /* BPF_COPX instruction             */
    130  1.29     alnsn #define BJ_HINT_XREG 0x20 /* BJ_XREG is needed                */
    131  1.29     alnsn #define BJ_HINT_LDX  0x40 /* BPF_LDX instruction              */
    132  1.29     alnsn #define BJ_HINT_PKT  (BJ_HINT_ABS|BJ_HINT_IND|BJ_HINT_MSH)
    133  1.20     alnsn 
    134  1.20     alnsn /*
    135   1.9     alnsn  * Datatype for Array Bounds Check Elimination (ABC) pass.
    136   1.9     alnsn  */
    137   1.9     alnsn typedef uint64_t bpfjit_abc_length_t;
    138   1.9     alnsn #define MAX_ABC_LENGTH (UINT32_MAX + UINT64_C(4)) /* max. width is 4 */
    139   1.8     alnsn 
    140   1.7     alnsn struct bpfjit_stack
    141   1.7     alnsn {
    142  1.13     alnsn 	bpf_ctx_t *ctx;
    143  1.13     alnsn 	uint32_t *extmem; /* pointer to external memory store */
    144  1.32     alnsn 	uint32_t reg; /* saved A or X register */
    145   1.7     alnsn #ifdef _KERNEL
    146  1.21     alnsn 	int err; /* 3rd argument for m_xword/m_xhalf/m_xbyte function call */
    147   1.7     alnsn #endif
    148  1.13     alnsn 	uint32_t mem[BPF_MEMWORDS]; /* internal memory store */
    149   1.7     alnsn };
    150   1.7     alnsn 
    151   1.7     alnsn /*
    152   1.7     alnsn  * Data for BPF_JMP instruction.
    153   1.7     alnsn  * Forward declaration for struct bpfjit_jump.
    154   1.1     alnsn  */
    155   1.7     alnsn struct bpfjit_jump_data;
    156   1.1     alnsn 
    157   1.1     alnsn /*
    158   1.7     alnsn  * Node of bjumps list.
    159   1.1     alnsn  */
    160   1.3     rmind struct bpfjit_jump {
    161   1.7     alnsn 	struct sljit_jump *sjump;
    162   1.7     alnsn 	SLIST_ENTRY(bpfjit_jump) entries;
    163   1.7     alnsn 	struct bpfjit_jump_data *jdata;
    164   1.1     alnsn };
    165   1.1     alnsn 
    166   1.1     alnsn /*
    167   1.1     alnsn  * Data for BPF_JMP instruction.
    168   1.1     alnsn  */
    169   1.3     rmind struct bpfjit_jump_data {
    170   1.1     alnsn 	/*
    171   1.7     alnsn 	 * These entries make up bjumps list:
    172   1.7     alnsn 	 * jtf[0] - when coming from jt path,
    173   1.7     alnsn 	 * jtf[1] - when coming from jf path.
    174   1.1     alnsn 	 */
    175   1.7     alnsn 	struct bpfjit_jump jtf[2];
    176   1.7     alnsn 	/*
    177   1.7     alnsn 	 * Length calculated by Array Bounds Check Elimination (ABC) pass.
    178   1.7     alnsn 	 */
    179   1.8     alnsn 	bpfjit_abc_length_t abc_length;
    180   1.7     alnsn 	/*
    181   1.7     alnsn 	 * Length checked by the last out-of-bounds check.
    182   1.7     alnsn 	 */
    183   1.8     alnsn 	bpfjit_abc_length_t checked_length;
    184   1.1     alnsn };
    185   1.1     alnsn 
    186   1.1     alnsn /*
    187   1.1     alnsn  * Data for "read from packet" instructions.
    188   1.1     alnsn  * See also read_pkt_insn() function below.
    189   1.1     alnsn  */
    190   1.3     rmind struct bpfjit_read_pkt_data {
    191   1.1     alnsn 	/*
    192   1.7     alnsn 	 * Length calculated by Array Bounds Check Elimination (ABC) pass.
    193   1.7     alnsn 	 */
    194   1.8     alnsn 	bpfjit_abc_length_t abc_length;
    195   1.7     alnsn 	/*
    196   1.7     alnsn 	 * If positive, emit "if (buflen < check_length) return 0"
    197   1.7     alnsn 	 * out-of-bounds check.
    198   1.9     alnsn 	 * Values greater than UINT32_MAX generate unconditional "return 0".
    199   1.1     alnsn 	 */
    200   1.8     alnsn 	bpfjit_abc_length_t check_length;
    201   1.1     alnsn };
    202   1.1     alnsn 
    203   1.1     alnsn /*
    204   1.1     alnsn  * Additional (optimization-related) data for bpf_insn.
    205   1.1     alnsn  */
    206   1.3     rmind struct bpfjit_insn_data {
    207   1.1     alnsn 	/* List of jumps to this insn. */
    208   1.7     alnsn 	SLIST_HEAD(, bpfjit_jump) bjumps;
    209   1.1     alnsn 
    210   1.1     alnsn 	union {
    211   1.7     alnsn 		struct bpfjit_jump_data     jdata;
    212   1.7     alnsn 		struct bpfjit_read_pkt_data rdata;
    213   1.7     alnsn 	} u;
    214   1.1     alnsn 
    215  1.13     alnsn 	bpf_memword_init_t invalid;
    216   1.7     alnsn 	bool unreachable;
    217   1.1     alnsn };
    218   1.1     alnsn 
    219   1.1     alnsn #ifdef _KERNEL
    220   1.1     alnsn 
    221   1.1     alnsn uint32_t m_xword(const struct mbuf *, uint32_t, int *);
    222   1.1     alnsn uint32_t m_xhalf(const struct mbuf *, uint32_t, int *);
    223   1.1     alnsn uint32_t m_xbyte(const struct mbuf *, uint32_t, int *);
    224   1.1     alnsn 
    225   1.1     alnsn MODULE(MODULE_CLASS_MISC, bpfjit, "sljit")
    226   1.1     alnsn 
    227   1.1     alnsn static int
    228   1.1     alnsn bpfjit_modcmd(modcmd_t cmd, void *arg)
    229   1.1     alnsn {
    230   1.1     alnsn 
    231   1.1     alnsn 	switch (cmd) {
    232   1.1     alnsn 	case MODULE_CMD_INIT:
    233   1.1     alnsn 		bpfjit_module_ops.bj_free_code = &bpfjit_free_code;
    234   1.1     alnsn 		membar_producer();
    235   1.1     alnsn 		bpfjit_module_ops.bj_generate_code = &bpfjit_generate_code;
    236   1.1     alnsn 		membar_producer();
    237   1.1     alnsn 		return 0;
    238   1.1     alnsn 
    239   1.1     alnsn 	case MODULE_CMD_FINI:
    240   1.1     alnsn 		return EOPNOTSUPP;
    241   1.1     alnsn 
    242   1.1     alnsn 	default:
    243   1.1     alnsn 		return ENOTTY;
    244   1.1     alnsn 	}
    245   1.1     alnsn }
    246   1.1     alnsn #endif
    247   1.1     alnsn 
    248  1.20     alnsn /*
    249  1.21     alnsn  * Return a number of scratch registers to pass
    250  1.20     alnsn  * to sljit_emit_enter() function.
    251  1.20     alnsn  */
    252  1.45     alnsn static sljit_s32
    253  1.20     alnsn nscratches(bpfjit_hint_t hints)
    254  1.20     alnsn {
    255  1.45     alnsn 	sljit_s32 rv = 2;
    256  1.20     alnsn 
    257  1.22     alnsn #ifdef _KERNEL
    258  1.24     alnsn 	if (hints & BJ_HINT_PKT)
    259  1.24     alnsn 		rv = 3; /* xcall with three arguments */
    260  1.22     alnsn #endif
    261  1.22     alnsn 
    262  1.27     alnsn 	if (hints & BJ_HINT_IND)
    263  1.20     alnsn 		rv = 3; /* uses BJ_TMP2REG */
    264  1.20     alnsn 
    265  1.20     alnsn 	if (hints & BJ_HINT_COP)
    266  1.20     alnsn 		rv = 3; /* calls copfunc with three arguments */
    267  1.20     alnsn 
    268  1.32     alnsn 	if (hints & BJ_HINT_XREG)
    269  1.32     alnsn 		rv = 4; /* uses BJ_XREG */
    270  1.32     alnsn 
    271  1.32     alnsn #ifdef _KERNEL
    272  1.32     alnsn 	if (hints & BJ_HINT_LDX)
    273  1.32     alnsn 		rv = 5; /* uses BJ_TMP3REG */
    274  1.32     alnsn #endif
    275  1.32     alnsn 
    276  1.29     alnsn 	if (hints & BJ_HINT_COPX)
    277  1.32     alnsn 		rv = 5; /* uses BJ_TMP3REG */
    278  1.29     alnsn 
    279  1.29     alnsn 	return rv;
    280  1.29     alnsn }
    281  1.29     alnsn 
    282   1.1     alnsn static uint32_t
    283   1.7     alnsn read_width(const struct bpf_insn *pc)
    284   1.1     alnsn {
    285   1.1     alnsn 
    286   1.1     alnsn 	switch (BPF_SIZE(pc->code)) {
    287  1.39     alnsn 	case BPF_W: return 4;
    288  1.39     alnsn 	case BPF_H: return 2;
    289  1.39     alnsn 	case BPF_B: return 1;
    290  1.39     alnsn 	default:    return 0;
    291   1.1     alnsn 	}
    292   1.1     alnsn }
    293   1.1     alnsn 
    294  1.13     alnsn /*
    295  1.13     alnsn  * Copy buf and buflen members of bpf_args from BJ_ARGS
    296  1.13     alnsn  * pointer to BJ_BUF and BJ_BUFLEN registers.
    297  1.13     alnsn  */
    298  1.13     alnsn static int
    299  1.13     alnsn load_buf_buflen(struct sljit_compiler *compiler)
    300  1.13     alnsn {
    301  1.13     alnsn 	int status;
    302  1.13     alnsn 
    303  1.13     alnsn 	status = sljit_emit_op1(compiler,
    304  1.13     alnsn 	    SLJIT_MOV_P,
    305  1.13     alnsn 	    BJ_BUF, 0,
    306  1.13     alnsn 	    SLJIT_MEM1(BJ_ARGS),
    307  1.13     alnsn 	    offsetof(struct bpf_args, pkt));
    308  1.13     alnsn 	if (status != SLJIT_SUCCESS)
    309  1.13     alnsn 		return status;
    310  1.13     alnsn 
    311  1.13     alnsn 	status = sljit_emit_op1(compiler,
    312  1.21     alnsn 	    SLJIT_MOV, /* size_t source */
    313  1.13     alnsn 	    BJ_BUFLEN, 0,
    314  1.13     alnsn 	    SLJIT_MEM1(BJ_ARGS),
    315  1.13     alnsn 	    offsetof(struct bpf_args, buflen));
    316  1.13     alnsn 
    317  1.13     alnsn 	return status;
    318  1.13     alnsn }
    319  1.13     alnsn 
    320   1.7     alnsn static bool
    321   1.7     alnsn grow_jumps(struct sljit_jump ***jumps, size_t *size)
    322   1.7     alnsn {
    323   1.7     alnsn 	struct sljit_jump **newptr;
    324   1.7     alnsn 	const size_t elemsz = sizeof(struct sljit_jump *);
    325   1.7     alnsn 	size_t old_size = *size;
    326   1.7     alnsn 	size_t new_size = 2 * old_size;
    327   1.7     alnsn 
    328   1.7     alnsn 	if (new_size < old_size || new_size > SIZE_MAX / elemsz)
    329   1.7     alnsn 		return false;
    330   1.7     alnsn 
    331   1.7     alnsn 	newptr = BJ_ALLOC(new_size * elemsz);
    332   1.7     alnsn 	if (newptr == NULL)
    333   1.7     alnsn 		return false;
    334   1.7     alnsn 
    335   1.7     alnsn 	memcpy(newptr, *jumps, old_size * elemsz);
    336   1.7     alnsn 	BJ_FREE(*jumps, old_size * elemsz);
    337   1.7     alnsn 
    338   1.7     alnsn 	*jumps = newptr;
    339   1.7     alnsn 	*size = new_size;
    340   1.7     alnsn 	return true;
    341   1.7     alnsn }
    342   1.7     alnsn 
    343   1.7     alnsn static bool
    344   1.7     alnsn append_jump(struct sljit_jump *jump, struct sljit_jump ***jumps,
    345   1.7     alnsn     size_t *size, size_t *max_size)
    346   1.1     alnsn {
    347   1.7     alnsn 	if (*size == *max_size && !grow_jumps(jumps, max_size))
    348   1.7     alnsn 		return false;
    349   1.1     alnsn 
    350   1.7     alnsn 	(*jumps)[(*size)++] = jump;
    351   1.7     alnsn 	return true;
    352   1.1     alnsn }
    353   1.1     alnsn 
    354   1.1     alnsn /*
    355  1.24     alnsn  * Emit code for BPF_LD+BPF_B+BPF_ABS    A <- P[k:1].
    356   1.1     alnsn  */
    357   1.1     alnsn static int
    358  1.45     alnsn emit_read8(struct sljit_compiler *compiler, sljit_s32 src, uint32_t k)
    359   1.1     alnsn {
    360   1.1     alnsn 
    361   1.1     alnsn 	return sljit_emit_op1(compiler,
    362  1.45     alnsn 	    SLJIT_MOV_U8,
    363   1.7     alnsn 	    BJ_AREG, 0,
    364  1.27     alnsn 	    SLJIT_MEM1(src), k);
    365   1.1     alnsn }
    366   1.1     alnsn 
    367   1.1     alnsn /*
    368  1.24     alnsn  * Emit code for BPF_LD+BPF_H+BPF_ABS    A <- P[k:2].
    369   1.1     alnsn  */
    370   1.1     alnsn static int
    371  1.45     alnsn emit_read16(struct sljit_compiler *compiler, sljit_s32 src, uint32_t k)
    372   1.1     alnsn {
    373   1.1     alnsn 	int status;
    374   1.1     alnsn 
    375  1.27     alnsn 	BJ_ASSERT(k <= UINT32_MAX - 1);
    376  1.27     alnsn 
    377  1.27     alnsn 	/* A = buf[k]; */
    378   1.1     alnsn 	status = sljit_emit_op1(compiler,
    379  1.45     alnsn 	    SLJIT_MOV_U8,
    380  1.27     alnsn 	    BJ_AREG, 0,
    381  1.27     alnsn 	    SLJIT_MEM1(src), k);
    382   1.1     alnsn 	if (status != SLJIT_SUCCESS)
    383   1.1     alnsn 		return status;
    384   1.1     alnsn 
    385  1.27     alnsn 	/* tmp1 = buf[k+1]; */
    386   1.1     alnsn 	status = sljit_emit_op1(compiler,
    387  1.45     alnsn 	    SLJIT_MOV_U8,
    388  1.27     alnsn 	    BJ_TMP1REG, 0,
    389  1.27     alnsn 	    SLJIT_MEM1(src), k+1);
    390   1.1     alnsn 	if (status != SLJIT_SUCCESS)
    391   1.1     alnsn 		return status;
    392   1.1     alnsn 
    393  1.27     alnsn 	/* A = A << 8; */
    394   1.1     alnsn 	status = sljit_emit_op2(compiler,
    395   1.1     alnsn 	    SLJIT_SHL,
    396  1.27     alnsn 	    BJ_AREG, 0,
    397  1.27     alnsn 	    BJ_AREG, 0,
    398   1.1     alnsn 	    SLJIT_IMM, 8);
    399   1.1     alnsn 	if (status != SLJIT_SUCCESS)
    400   1.1     alnsn 		return status;
    401   1.1     alnsn 
    402   1.1     alnsn 	/* A = A + tmp1; */
    403   1.1     alnsn 	status = sljit_emit_op2(compiler,
    404   1.1     alnsn 	    SLJIT_ADD,
    405   1.7     alnsn 	    BJ_AREG, 0,
    406   1.7     alnsn 	    BJ_AREG, 0,
    407   1.7     alnsn 	    BJ_TMP1REG, 0);
    408   1.1     alnsn 	return status;
    409   1.1     alnsn }
    410   1.1     alnsn 
    411   1.1     alnsn /*
    412  1.24     alnsn  * Emit code for BPF_LD+BPF_W+BPF_ABS    A <- P[k:4].
    413   1.1     alnsn  */
    414   1.1     alnsn static int
    415  1.45     alnsn emit_read32(struct sljit_compiler *compiler, sljit_s32 src, uint32_t k)
    416   1.1     alnsn {
    417   1.1     alnsn 	int status;
    418   1.1     alnsn 
    419  1.27     alnsn 	BJ_ASSERT(k <= UINT32_MAX - 3);
    420   1.1     alnsn 
    421  1.27     alnsn 	/* A = buf[k]; */
    422   1.1     alnsn 	status = sljit_emit_op1(compiler,
    423  1.45     alnsn 	    SLJIT_MOV_U8,
    424  1.27     alnsn 	    BJ_AREG, 0,
    425  1.27     alnsn 	    SLJIT_MEM1(src), k);
    426   1.1     alnsn 	if (status != SLJIT_SUCCESS)
    427   1.1     alnsn 		return status;
    428   1.1     alnsn 
    429  1.27     alnsn 	/* tmp1 = buf[k+1]; */
    430   1.1     alnsn 	status = sljit_emit_op1(compiler,
    431  1.45     alnsn 	    SLJIT_MOV_U8,
    432  1.27     alnsn 	    BJ_TMP1REG, 0,
    433  1.27     alnsn 	    SLJIT_MEM1(src), k+1);
    434   1.1     alnsn 	if (status != SLJIT_SUCCESS)
    435   1.1     alnsn 		return status;
    436   1.1     alnsn 
    437  1.27     alnsn 	/* A = A << 8; */
    438   1.1     alnsn 	status = sljit_emit_op2(compiler,
    439   1.1     alnsn 	    SLJIT_SHL,
    440  1.27     alnsn 	    BJ_AREG, 0,
    441  1.27     alnsn 	    BJ_AREG, 0,
    442  1.27     alnsn 	    SLJIT_IMM, 8);
    443   1.1     alnsn 	if (status != SLJIT_SUCCESS)
    444   1.1     alnsn 		return status;
    445   1.1     alnsn 
    446   1.1     alnsn 	/* A = A + tmp1; */
    447   1.1     alnsn 	status = sljit_emit_op2(compiler,
    448   1.1     alnsn 	    SLJIT_ADD,
    449   1.7     alnsn 	    BJ_AREG, 0,
    450   1.7     alnsn 	    BJ_AREG, 0,
    451   1.7     alnsn 	    BJ_TMP1REG, 0);
    452   1.1     alnsn 	if (status != SLJIT_SUCCESS)
    453   1.1     alnsn 		return status;
    454   1.1     alnsn 
    455   1.1     alnsn 	/* tmp1 = buf[k+2]; */
    456   1.1     alnsn 	status = sljit_emit_op1(compiler,
    457  1.45     alnsn 	    SLJIT_MOV_U8,
    458   1.7     alnsn 	    BJ_TMP1REG, 0,
    459  1.27     alnsn 	    SLJIT_MEM1(src), k+2);
    460   1.1     alnsn 	if (status != SLJIT_SUCCESS)
    461   1.1     alnsn 		return status;
    462   1.1     alnsn 
    463  1.27     alnsn 	/* A = A << 8; */
    464   1.1     alnsn 	status = sljit_emit_op2(compiler,
    465   1.1     alnsn 	    SLJIT_SHL,
    466  1.27     alnsn 	    BJ_AREG, 0,
    467  1.27     alnsn 	    BJ_AREG, 0,
    468  1.27     alnsn 	    SLJIT_IMM, 8);
    469   1.1     alnsn 	if (status != SLJIT_SUCCESS)
    470   1.1     alnsn 		return status;
    471   1.1     alnsn 
    472  1.27     alnsn 	/* A = A + tmp1; */
    473   1.1     alnsn 	status = sljit_emit_op2(compiler,
    474   1.1     alnsn 	    SLJIT_ADD,
    475   1.7     alnsn 	    BJ_AREG, 0,
    476   1.7     alnsn 	    BJ_AREG, 0,
    477  1.27     alnsn 	    BJ_TMP1REG, 0);
    478  1.27     alnsn 	if (status != SLJIT_SUCCESS)
    479  1.27     alnsn 		return status;
    480  1.27     alnsn 
    481  1.27     alnsn 	/* tmp1 = buf[k+3]; */
    482  1.27     alnsn 	status = sljit_emit_op1(compiler,
    483  1.45     alnsn 	    SLJIT_MOV_U8,
    484  1.27     alnsn 	    BJ_TMP1REG, 0,
    485  1.27     alnsn 	    SLJIT_MEM1(src), k+3);
    486   1.1     alnsn 	if (status != SLJIT_SUCCESS)
    487   1.1     alnsn 		return status;
    488   1.1     alnsn 
    489  1.27     alnsn 	/* A = A << 8; */
    490   1.1     alnsn 	status = sljit_emit_op2(compiler,
    491   1.1     alnsn 	    SLJIT_SHL,
    492  1.27     alnsn 	    BJ_AREG, 0,
    493  1.27     alnsn 	    BJ_AREG, 0,
    494   1.1     alnsn 	    SLJIT_IMM, 8);
    495   1.1     alnsn 	if (status != SLJIT_SUCCESS)
    496   1.1     alnsn 		return status;
    497   1.1     alnsn 
    498   1.1     alnsn 	/* A = A + tmp1; */
    499   1.1     alnsn 	status = sljit_emit_op2(compiler,
    500   1.1     alnsn 	    SLJIT_ADD,
    501   1.7     alnsn 	    BJ_AREG, 0,
    502   1.7     alnsn 	    BJ_AREG, 0,
    503   1.7     alnsn 	    BJ_TMP1REG, 0);
    504   1.1     alnsn 	return status;
    505   1.1     alnsn }
    506   1.1     alnsn 
    507   1.1     alnsn #ifdef _KERNEL
    508   1.1     alnsn /*
    509  1.24     alnsn  * Emit code for m_xword/m_xhalf/m_xbyte call.
    510   1.1     alnsn  *
    511  1.24     alnsn  * @pc BPF_LD+BPF_W+BPF_ABS    A <- P[k:4]
    512  1.24     alnsn  *     BPF_LD+BPF_H+BPF_ABS    A <- P[k:2]
    513  1.24     alnsn  *     BPF_LD+BPF_B+BPF_ABS    A <- P[k:1]
    514  1.24     alnsn  *     BPF_LD+BPF_W+BPF_IND    A <- P[X+k:4]
    515  1.24     alnsn  *     BPF_LD+BPF_H+BPF_IND    A <- P[X+k:2]
    516  1.24     alnsn  *     BPF_LD+BPF_B+BPF_IND    A <- P[X+k:1]
    517  1.24     alnsn  *     BPF_LDX+BPF_B+BPF_MSH   X <- 4*(P[k:1]&0xf)
    518   1.1     alnsn  */
    519   1.1     alnsn static int
    520  1.32     alnsn emit_xcall(struct sljit_compiler *compiler, bpfjit_hint_t hints,
    521  1.32     alnsn     const struct bpf_insn *pc, int dst, struct sljit_jump ***ret0,
    522  1.32     alnsn     size_t *ret0_size, size_t *ret0_maxsize,
    523   1.1     alnsn     uint32_t (*fn)(const struct mbuf *, uint32_t, int *))
    524   1.1     alnsn {
    525  1.32     alnsn #if BJ_XREG == SLJIT_RETURN_REG   || \
    526  1.45     alnsn     BJ_XREG == SLJIT_R0 || \
    527  1.45     alnsn     BJ_XREG == SLJIT_R1 || \
    528  1.45     alnsn     BJ_XREG == SLJIT_R2
    529  1.32     alnsn #error "Not supported assignment of registers."
    530  1.32     alnsn #endif
    531  1.23     alnsn 	struct sljit_jump *jump;
    532  1.45     alnsn 	sljit_s32 save_reg;
    533   1.1     alnsn 	int status;
    534   1.1     alnsn 
    535  1.32     alnsn 	save_reg = (BPF_CLASS(pc->code) == BPF_LDX) ? BJ_AREG : BJ_XREG;
    536  1.23     alnsn 
    537  1.32     alnsn 	if (save_reg == BJ_AREG || (hints & BJ_HINT_XREG)) {
    538  1.32     alnsn 		/* save A or X */
    539   1.1     alnsn 		status = sljit_emit_op1(compiler,
    540  1.45     alnsn 		    SLJIT_MOV_U32,
    541  1.45     alnsn 		    SLJIT_MEM1(SLJIT_SP),
    542  1.32     alnsn 		    offsetof(struct bpfjit_stack, reg),
    543  1.32     alnsn 		    save_reg, 0);
    544   1.1     alnsn 		if (status != SLJIT_SUCCESS)
    545   1.1     alnsn 			return status;
    546   1.1     alnsn 	}
    547   1.1     alnsn 
    548   1.1     alnsn 	/*
    549  1.23     alnsn 	 * Prepare registers for fn(mbuf, k, &err) call.
    550   1.1     alnsn 	 */
    551   1.1     alnsn 	status = sljit_emit_op1(compiler,
    552   1.1     alnsn 	    SLJIT_MOV,
    553  1.45     alnsn 	    SLJIT_R0, 0,
    554   1.7     alnsn 	    BJ_BUF, 0);
    555   1.1     alnsn 	if (status != SLJIT_SUCCESS)
    556   1.1     alnsn 		return status;
    557   1.1     alnsn 
    558   1.1     alnsn 	if (BPF_CLASS(pc->code) == BPF_LD && BPF_MODE(pc->code) == BPF_IND) {
    559  1.31     alnsn 		if (pc->k == 0) {
    560  1.31     alnsn 			/* k = X; */
    561  1.31     alnsn 			status = sljit_emit_op1(compiler,
    562  1.31     alnsn 			    SLJIT_MOV,
    563  1.45     alnsn 			    SLJIT_R1, 0,
    564  1.31     alnsn 			    BJ_XREG, 0);
    565  1.31     alnsn 			if (status != SLJIT_SUCCESS)
    566  1.31     alnsn 				return status;
    567  1.31     alnsn 		} else {
    568  1.31     alnsn 			/* if (X > UINT32_MAX - pc->k) return 0; */
    569  1.31     alnsn 			jump = sljit_emit_cmp(compiler,
    570  1.45     alnsn 			    SLJIT_GREATER,
    571  1.31     alnsn 			    BJ_XREG, 0,
    572  1.31     alnsn 			    SLJIT_IMM, UINT32_MAX - pc->k);
    573  1.31     alnsn 			if (jump == NULL)
    574  1.31     alnsn 				return SLJIT_ERR_ALLOC_FAILED;
    575  1.31     alnsn 			if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
    576  1.31     alnsn 				return SLJIT_ERR_ALLOC_FAILED;
    577  1.31     alnsn 
    578  1.31     alnsn 			/* k = X + pc->k; */
    579  1.31     alnsn 			status = sljit_emit_op2(compiler,
    580  1.31     alnsn 			    SLJIT_ADD,
    581  1.45     alnsn 			    SLJIT_R1, 0,
    582  1.31     alnsn 			    BJ_XREG, 0,
    583  1.31     alnsn 			    SLJIT_IMM, (uint32_t)pc->k);
    584  1.31     alnsn 			if (status != SLJIT_SUCCESS)
    585  1.31     alnsn 				return status;
    586  1.31     alnsn 		}
    587   1.1     alnsn 	} else {
    588  1.23     alnsn 		/* k = pc->k */
    589   1.1     alnsn 		status = sljit_emit_op1(compiler,
    590   1.1     alnsn 		    SLJIT_MOV,
    591  1.45     alnsn 		    SLJIT_R1, 0,
    592   1.1     alnsn 		    SLJIT_IMM, (uint32_t)pc->k);
    593  1.24     alnsn 		if (status != SLJIT_SUCCESS)
    594  1.24     alnsn 			return status;
    595   1.1     alnsn 	}
    596   1.1     alnsn 
    597  1.21     alnsn 	/*
    598  1.21     alnsn 	 * The third argument of fn is an address on stack.
    599  1.21     alnsn 	 */
    600   1.1     alnsn 	status = sljit_get_local_base(compiler,
    601  1.45     alnsn 	    SLJIT_R2, 0,
    602  1.21     alnsn 	    offsetof(struct bpfjit_stack, err));
    603   1.1     alnsn 	if (status != SLJIT_SUCCESS)
    604   1.1     alnsn 		return status;
    605   1.1     alnsn 
    606   1.1     alnsn 	/* fn(buf, k, &err); */
    607   1.1     alnsn 	status = sljit_emit_ijump(compiler,
    608   1.1     alnsn 	    SLJIT_CALL3,
    609   1.1     alnsn 	    SLJIT_IMM, SLJIT_FUNC_OFFSET(fn));
    610  1.24     alnsn 	if (status != SLJIT_SUCCESS)
    611  1.24     alnsn 		return status;
    612   1.1     alnsn 
    613   1.7     alnsn 	if (dst != SLJIT_RETURN_REG) {
    614   1.1     alnsn 		/* move return value to dst */
    615   1.1     alnsn 		status = sljit_emit_op1(compiler,
    616   1.1     alnsn 		    SLJIT_MOV,
    617  1.23     alnsn 		    dst, 0,
    618   1.1     alnsn 		    SLJIT_RETURN_REG, 0);
    619   1.1     alnsn 		if (status != SLJIT_SUCCESS)
    620   1.1     alnsn 			return status;
    621   1.7     alnsn 	}
    622   1.1     alnsn 
    623  1.30     alnsn 	/* if (*err != 0) return 0; */
    624  1.30     alnsn 	jump = sljit_emit_cmp(compiler,
    625  1.45     alnsn 	    SLJIT_NOT_EQUAL|SLJIT_I32_OP,
    626  1.45     alnsn 	    SLJIT_MEM1(SLJIT_SP),
    627  1.30     alnsn 	    offsetof(struct bpfjit_stack, err),
    628   1.1     alnsn 	    SLJIT_IMM, 0);
    629  1.23     alnsn 	if (jump == NULL)
    630  1.23     alnsn 		return SLJIT_ERR_ALLOC_FAILED;
    631  1.23     alnsn 
    632  1.23     alnsn 	if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
    633   1.1     alnsn 		return SLJIT_ERR_ALLOC_FAILED;
    634   1.1     alnsn 
    635  1.32     alnsn 	if (save_reg == BJ_AREG || (hints & BJ_HINT_XREG)) {
    636  1.32     alnsn 		/* restore A or X */
    637  1.26     alnsn 		status = sljit_emit_op1(compiler,
    638  1.45     alnsn 		    SLJIT_MOV_U32,
    639  1.32     alnsn 		    save_reg, 0,
    640  1.45     alnsn 		    SLJIT_MEM1(SLJIT_SP),
    641  1.32     alnsn 		    offsetof(struct bpfjit_stack, reg));
    642  1.26     alnsn 		if (status != SLJIT_SUCCESS)
    643  1.26     alnsn 			return status;
    644  1.26     alnsn 	}
    645  1.26     alnsn 
    646  1.24     alnsn 	return SLJIT_SUCCESS;
    647   1.1     alnsn }
    648   1.1     alnsn #endif
    649   1.1     alnsn 
    650   1.1     alnsn /*
    651  1.13     alnsn  * Emit code for BPF_COP and BPF_COPX instructions.
    652  1.13     alnsn  */
    653  1.13     alnsn static int
    654  1.32     alnsn emit_cop(struct sljit_compiler *compiler, bpfjit_hint_t hints,
    655  1.28     alnsn     const bpf_ctx_t *bc, const struct bpf_insn *pc,
    656  1.28     alnsn     struct sljit_jump ***ret0, size_t *ret0_size, size_t *ret0_maxsize)
    657  1.13     alnsn {
    658  1.32     alnsn #if BJ_XREG    == SLJIT_RETURN_REG   || \
    659  1.45     alnsn     BJ_XREG    == SLJIT_R0 || \
    660  1.45     alnsn     BJ_XREG    == SLJIT_R1 || \
    661  1.45     alnsn     BJ_XREG    == SLJIT_R2 || \
    662  1.45     alnsn     BJ_TMP3REG == SLJIT_R0 || \
    663  1.45     alnsn     BJ_TMP3REG == SLJIT_R1 || \
    664  1.45     alnsn     BJ_TMP3REG == SLJIT_R2
    665  1.13     alnsn #error "Not supported assignment of registers."
    666  1.13     alnsn #endif
    667  1.13     alnsn 
    668  1.13     alnsn 	struct sljit_jump *jump;
    669  1.45     alnsn 	sljit_s32 call_reg;
    670  1.28     alnsn 	sljit_sw call_off;
    671  1.13     alnsn 	int status;
    672  1.13     alnsn 
    673  1.13     alnsn 	BJ_ASSERT(bc != NULL && bc->copfuncs != NULL);
    674  1.13     alnsn 
    675  1.32     alnsn 	if (hints & BJ_HINT_LDX) {
    676  1.32     alnsn 		/* save X */
    677  1.32     alnsn 		status = sljit_emit_op1(compiler,
    678  1.45     alnsn 		    SLJIT_MOV_U32,
    679  1.45     alnsn 		    SLJIT_MEM1(SLJIT_SP),
    680  1.32     alnsn 		    offsetof(struct bpfjit_stack, reg),
    681  1.32     alnsn 		    BJ_XREG, 0);
    682  1.32     alnsn 		if (status != SLJIT_SUCCESS)
    683  1.32     alnsn 			return status;
    684  1.32     alnsn 	}
    685  1.32     alnsn 
    686  1.28     alnsn 	if (BPF_MISCOP(pc->code) == BPF_COP) {
    687  1.28     alnsn 		call_reg = SLJIT_IMM;
    688  1.28     alnsn 		call_off = SLJIT_FUNC_OFFSET(bc->copfuncs[pc->k]);
    689  1.28     alnsn 	} else {
    690  1.13     alnsn 		/* if (X >= bc->nfuncs) return 0; */
    691  1.13     alnsn 		jump = sljit_emit_cmp(compiler,
    692  1.45     alnsn 		    SLJIT_GREATER_EQUAL,
    693  1.13     alnsn 		    BJ_XREG, 0,
    694  1.13     alnsn 		    SLJIT_IMM, bc->nfuncs);
    695  1.13     alnsn 		if (jump == NULL)
    696  1.13     alnsn 			return SLJIT_ERR_ALLOC_FAILED;
    697  1.28     alnsn 		if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
    698  1.28     alnsn 			return SLJIT_ERR_ALLOC_FAILED;
    699  1.28     alnsn 
    700  1.28     alnsn 		/* tmp1 = ctx; */
    701  1.28     alnsn 		status = sljit_emit_op1(compiler,
    702  1.28     alnsn 		    SLJIT_MOV_P,
    703  1.28     alnsn 		    BJ_TMP1REG, 0,
    704  1.45     alnsn 		    SLJIT_MEM1(SLJIT_SP),
    705  1.28     alnsn 		    offsetof(struct bpfjit_stack, ctx));
    706  1.28     alnsn 		if (status != SLJIT_SUCCESS)
    707  1.28     alnsn 			return status;
    708  1.28     alnsn 
    709  1.28     alnsn 		/* tmp1 = ctx->copfuncs; */
    710  1.28     alnsn 		status = sljit_emit_op1(compiler,
    711  1.28     alnsn 		    SLJIT_MOV_P,
    712  1.28     alnsn 		    BJ_TMP1REG, 0,
    713  1.28     alnsn 		    SLJIT_MEM1(BJ_TMP1REG),
    714  1.28     alnsn 		    offsetof(struct bpf_ctx, copfuncs));
    715  1.28     alnsn 		if (status != SLJIT_SUCCESS)
    716  1.28     alnsn 			return status;
    717  1.28     alnsn 
    718  1.28     alnsn 		/* tmp2 = X; */
    719  1.28     alnsn 		status = sljit_emit_op1(compiler,
    720  1.28     alnsn 		    SLJIT_MOV,
    721  1.28     alnsn 		    BJ_TMP2REG, 0,
    722  1.28     alnsn 		    BJ_XREG, 0);
    723  1.28     alnsn 		if (status != SLJIT_SUCCESS)
    724  1.28     alnsn 			return status;
    725  1.28     alnsn 
    726  1.28     alnsn 		/* tmp3 = ctx->copfuncs[tmp2]; */
    727  1.28     alnsn 		call_reg = BJ_TMP3REG;
    728  1.28     alnsn 		call_off = 0;
    729  1.28     alnsn 		status = sljit_emit_op1(compiler,
    730  1.28     alnsn 		    SLJIT_MOV_P,
    731  1.28     alnsn 		    call_reg, call_off,
    732  1.28     alnsn 		    SLJIT_MEM2(BJ_TMP1REG, BJ_TMP2REG),
    733  1.28     alnsn 		    SLJIT_WORD_SHIFT);
    734  1.28     alnsn 		if (status != SLJIT_SUCCESS)
    735  1.28     alnsn 			return status;
    736  1.13     alnsn 	}
    737  1.13     alnsn 
    738  1.13     alnsn 	/*
    739  1.13     alnsn 	 * Copy bpf_copfunc_t arguments to registers.
    740  1.13     alnsn 	 */
    741  1.45     alnsn #if BJ_AREG != SLJIT_R2
    742  1.13     alnsn 	status = sljit_emit_op1(compiler,
    743  1.45     alnsn 	    SLJIT_MOV_U32,
    744  1.45     alnsn 	    SLJIT_R2, 0,
    745  1.13     alnsn 	    BJ_AREG, 0);
    746  1.13     alnsn 	if (status != SLJIT_SUCCESS)
    747  1.13     alnsn 		return status;
    748  1.13     alnsn #endif
    749  1.13     alnsn 
    750  1.13     alnsn 	status = sljit_emit_op1(compiler,
    751  1.13     alnsn 	    SLJIT_MOV_P,
    752  1.45     alnsn 	    SLJIT_R0, 0,
    753  1.45     alnsn 	    SLJIT_MEM1(SLJIT_SP),
    754  1.13     alnsn 	    offsetof(struct bpfjit_stack, ctx));
    755  1.13     alnsn 	if (status != SLJIT_SUCCESS)
    756  1.13     alnsn 		return status;
    757  1.13     alnsn 
    758  1.13     alnsn 	status = sljit_emit_op1(compiler,
    759  1.13     alnsn 	    SLJIT_MOV_P,
    760  1.45     alnsn 	    SLJIT_R1, 0,
    761  1.13     alnsn 	    BJ_ARGS, 0);
    762  1.13     alnsn 	if (status != SLJIT_SUCCESS)
    763  1.13     alnsn 		return status;
    764  1.13     alnsn 
    765  1.28     alnsn 	status = sljit_emit_ijump(compiler,
    766  1.28     alnsn 	    SLJIT_CALL3, call_reg, call_off);
    767  1.28     alnsn 	if (status != SLJIT_SUCCESS)
    768  1.28     alnsn 		return status;
    769  1.13     alnsn 
    770  1.13     alnsn #if BJ_AREG != SLJIT_RETURN_REG
    771  1.13     alnsn 	status = sljit_emit_op1(compiler,
    772  1.13     alnsn 	    SLJIT_MOV,
    773  1.13     alnsn 	    BJ_AREG, 0,
    774  1.13     alnsn 	    SLJIT_RETURN_REG, 0);
    775  1.13     alnsn 	if (status != SLJIT_SUCCESS)
    776  1.13     alnsn 		return status;
    777  1.13     alnsn #endif
    778  1.13     alnsn 
    779  1.32     alnsn 	if (hints & BJ_HINT_LDX) {
    780  1.32     alnsn 		/* restore X */
    781  1.32     alnsn 		status = sljit_emit_op1(compiler,
    782  1.45     alnsn 		    SLJIT_MOV_U32,
    783  1.32     alnsn 		    BJ_XREG, 0,
    784  1.45     alnsn 		    SLJIT_MEM1(SLJIT_SP),
    785  1.32     alnsn 		    offsetof(struct bpfjit_stack, reg));
    786  1.32     alnsn 		if (status != SLJIT_SUCCESS)
    787  1.32     alnsn 			return status;
    788  1.32     alnsn 	}
    789  1.32     alnsn 
    790  1.24     alnsn 	return SLJIT_SUCCESS;
    791  1.13     alnsn }
    792  1.13     alnsn 
    793  1.13     alnsn /*
    794   1.1     alnsn  * Generate code for
    795   1.1     alnsn  * BPF_LD+BPF_W+BPF_ABS    A <- P[k:4]
    796   1.1     alnsn  * BPF_LD+BPF_H+BPF_ABS    A <- P[k:2]
    797   1.1     alnsn  * BPF_LD+BPF_B+BPF_ABS    A <- P[k:1]
    798   1.1     alnsn  * BPF_LD+BPF_W+BPF_IND    A <- P[X+k:4]
    799   1.1     alnsn  * BPF_LD+BPF_H+BPF_IND    A <- P[X+k:2]
    800   1.1     alnsn  * BPF_LD+BPF_B+BPF_IND    A <- P[X+k:1]
    801   1.1     alnsn  */
    802   1.1     alnsn static int
    803  1.32     alnsn emit_pkt_read(struct sljit_compiler *compiler, bpfjit_hint_t hints,
    804   1.7     alnsn     const struct bpf_insn *pc, struct sljit_jump *to_mchain_jump,
    805   1.7     alnsn     struct sljit_jump ***ret0, size_t *ret0_size, size_t *ret0_maxsize)
    806   1.1     alnsn {
    807  1.25     alnsn 	int status = SLJIT_ERR_ALLOC_FAILED;
    808   1.1     alnsn 	uint32_t width;
    809  1.45     alnsn 	sljit_s32 ld_reg;
    810   1.1     alnsn 	struct sljit_jump *jump;
    811   1.1     alnsn #ifdef _KERNEL
    812   1.1     alnsn 	struct sljit_label *label;
    813   1.1     alnsn 	struct sljit_jump *over_mchain_jump;
    814   1.1     alnsn 	const bool check_zero_buflen = (to_mchain_jump != NULL);
    815   1.1     alnsn #endif
    816   1.1     alnsn 	const uint32_t k = pc->k;
    817   1.1     alnsn 
    818   1.1     alnsn #ifdef _KERNEL
    819   1.1     alnsn 	if (to_mchain_jump == NULL) {
    820   1.1     alnsn 		to_mchain_jump = sljit_emit_cmp(compiler,
    821  1.45     alnsn 		    SLJIT_EQUAL,
    822   1.7     alnsn 		    BJ_BUFLEN, 0,
    823   1.1     alnsn 		    SLJIT_IMM, 0);
    824   1.1     alnsn 		if (to_mchain_jump == NULL)
    825   1.7     alnsn 			return SLJIT_ERR_ALLOC_FAILED;
    826   1.1     alnsn 	}
    827   1.1     alnsn #endif
    828   1.1     alnsn 
    829  1.27     alnsn 	ld_reg = BJ_BUF;
    830   1.1     alnsn 	width = read_width(pc);
    831  1.39     alnsn 	if (width == 0)
    832  1.39     alnsn 		return SLJIT_ERR_ALLOC_FAILED;
    833   1.1     alnsn 
    834   1.1     alnsn 	if (BPF_MODE(pc->code) == BPF_IND) {
    835   1.1     alnsn 		/* tmp1 = buflen - (pc->k + width); */
    836   1.1     alnsn 		status = sljit_emit_op2(compiler,
    837   1.1     alnsn 		    SLJIT_SUB,
    838   1.7     alnsn 		    BJ_TMP1REG, 0,
    839   1.7     alnsn 		    BJ_BUFLEN, 0,
    840   1.1     alnsn 		    SLJIT_IMM, k + width);
    841   1.1     alnsn 		if (status != SLJIT_SUCCESS)
    842   1.1     alnsn 			return status;
    843   1.1     alnsn 
    844  1.27     alnsn 		/* ld_reg = buf + X; */
    845  1.27     alnsn 		ld_reg = BJ_TMP2REG;
    846   1.1     alnsn 		status = sljit_emit_op2(compiler,
    847   1.1     alnsn 		    SLJIT_ADD,
    848  1.27     alnsn 		    ld_reg, 0,
    849   1.7     alnsn 		    BJ_BUF, 0,
    850   1.7     alnsn 		    BJ_XREG, 0);
    851   1.1     alnsn 		if (status != SLJIT_SUCCESS)
    852   1.1     alnsn 			return status;
    853   1.1     alnsn 
    854   1.1     alnsn 		/* if (tmp1 < X) return 0; */
    855   1.1     alnsn 		jump = sljit_emit_cmp(compiler,
    856  1.45     alnsn 		    SLJIT_LESS,
    857   1.7     alnsn 		    BJ_TMP1REG, 0,
    858   1.7     alnsn 		    BJ_XREG, 0);
    859   1.1     alnsn 		if (jump == NULL)
    860   1.7     alnsn 			return SLJIT_ERR_ALLOC_FAILED;
    861   1.7     alnsn 		if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
    862   1.7     alnsn 			return SLJIT_ERR_ALLOC_FAILED;
    863   1.1     alnsn 	}
    864   1.1     alnsn 
    865  1.40     alnsn 	/*
    866  1.40     alnsn 	 * Don't emit wrapped-around reads. They're dead code but
    867  1.40     alnsn 	 * dead code elimination logic isn't smart enough to figure
    868  1.40     alnsn 	 * it out.
    869  1.40     alnsn 	 */
    870  1.40     alnsn 	if (k <= UINT32_MAX - width + 1) {
    871  1.40     alnsn 		switch (width) {
    872  1.40     alnsn 		case 4:
    873  1.40     alnsn 			status = emit_read32(compiler, ld_reg, k);
    874  1.40     alnsn 			break;
    875  1.40     alnsn 		case 2:
    876  1.40     alnsn 			status = emit_read16(compiler, ld_reg, k);
    877  1.40     alnsn 			break;
    878  1.40     alnsn 		case 1:
    879  1.40     alnsn 			status = emit_read8(compiler, ld_reg, k);
    880  1.40     alnsn 			break;
    881  1.40     alnsn 		}
    882  1.40     alnsn 
    883  1.40     alnsn 		if (status != SLJIT_SUCCESS)
    884  1.40     alnsn 			return status;
    885   1.1     alnsn 	}
    886   1.1     alnsn 
    887   1.1     alnsn #ifdef _KERNEL
    888   1.1     alnsn 	over_mchain_jump = sljit_emit_jump(compiler, SLJIT_JUMP);
    889   1.1     alnsn 	if (over_mchain_jump == NULL)
    890   1.7     alnsn 		return SLJIT_ERR_ALLOC_FAILED;
    891   1.1     alnsn 
    892   1.1     alnsn 	/* entry point to mchain handler */
    893   1.1     alnsn 	label = sljit_emit_label(compiler);
    894   1.1     alnsn 	if (label == NULL)
    895   1.7     alnsn 		return SLJIT_ERR_ALLOC_FAILED;
    896   1.1     alnsn 	sljit_set_label(to_mchain_jump, label);
    897   1.1     alnsn 
    898   1.1     alnsn 	if (check_zero_buflen) {
    899   1.1     alnsn 		/* if (buflen != 0) return 0; */
    900   1.1     alnsn 		jump = sljit_emit_cmp(compiler,
    901  1.45     alnsn 		    SLJIT_NOT_EQUAL,
    902   1.7     alnsn 		    BJ_BUFLEN, 0,
    903   1.1     alnsn 		    SLJIT_IMM, 0);
    904   1.1     alnsn 		if (jump == NULL)
    905   1.1     alnsn 			return SLJIT_ERR_ALLOC_FAILED;
    906   1.7     alnsn 		if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
    907   1.7     alnsn 			return SLJIT_ERR_ALLOC_FAILED;
    908   1.1     alnsn 	}
    909   1.1     alnsn 
    910   1.1     alnsn 	switch (width) {
    911   1.1     alnsn 	case 4:
    912  1.32     alnsn 		status = emit_xcall(compiler, hints, pc, BJ_AREG,
    913  1.23     alnsn 		    ret0, ret0_size, ret0_maxsize, &m_xword);
    914   1.1     alnsn 		break;
    915   1.1     alnsn 	case 2:
    916  1.32     alnsn 		status = emit_xcall(compiler, hints, pc, BJ_AREG,
    917  1.23     alnsn 		    ret0, ret0_size, ret0_maxsize, &m_xhalf);
    918   1.1     alnsn 		break;
    919   1.1     alnsn 	case 1:
    920  1.32     alnsn 		status = emit_xcall(compiler, hints, pc, BJ_AREG,
    921  1.23     alnsn 		    ret0, ret0_size, ret0_maxsize, &m_xbyte);
    922   1.1     alnsn 		break;
    923   1.1     alnsn 	}
    924   1.1     alnsn 
    925   1.1     alnsn 	if (status != SLJIT_SUCCESS)
    926   1.1     alnsn 		return status;
    927   1.1     alnsn 
    928   1.1     alnsn 	label = sljit_emit_label(compiler);
    929   1.1     alnsn 	if (label == NULL)
    930   1.1     alnsn 		return SLJIT_ERR_ALLOC_FAILED;
    931   1.1     alnsn 	sljit_set_label(over_mchain_jump, label);
    932   1.1     alnsn #endif
    933   1.1     alnsn 
    934  1.24     alnsn 	return SLJIT_SUCCESS;
    935   1.1     alnsn }
    936   1.1     alnsn 
    937  1.13     alnsn static int
    938  1.19     alnsn emit_memload(struct sljit_compiler *compiler,
    939  1.45     alnsn     sljit_s32 dst, uint32_t k, size_t extwords)
    940  1.13     alnsn {
    941  1.13     alnsn 	int status;
    942  1.45     alnsn 	sljit_s32 src;
    943  1.13     alnsn 	sljit_sw srcw;
    944  1.13     alnsn 
    945  1.13     alnsn 	srcw = k * sizeof(uint32_t);
    946  1.13     alnsn 
    947  1.13     alnsn 	if (extwords == 0) {
    948  1.45     alnsn 		src = SLJIT_MEM1(SLJIT_SP);
    949  1.13     alnsn 		srcw += offsetof(struct bpfjit_stack, mem);
    950  1.13     alnsn 	} else {
    951  1.13     alnsn 		/* copy extmem pointer to the tmp1 register */
    952  1.13     alnsn 		status = sljit_emit_op1(compiler,
    953  1.16     alnsn 		    SLJIT_MOV_P,
    954  1.13     alnsn 		    BJ_TMP1REG, 0,
    955  1.45     alnsn 		    SLJIT_MEM1(SLJIT_SP),
    956  1.13     alnsn 		    offsetof(struct bpfjit_stack, extmem));
    957  1.13     alnsn 		if (status != SLJIT_SUCCESS)
    958  1.13     alnsn 			return status;
    959  1.13     alnsn 		src = SLJIT_MEM1(BJ_TMP1REG);
    960  1.13     alnsn 	}
    961  1.13     alnsn 
    962  1.45     alnsn 	return sljit_emit_op1(compiler, SLJIT_MOV_U32, dst, 0, src, srcw);
    963  1.13     alnsn }
    964  1.13     alnsn 
    965  1.13     alnsn static int
    966  1.19     alnsn emit_memstore(struct sljit_compiler *compiler,
    967  1.45     alnsn     sljit_s32 src, uint32_t k, size_t extwords)
    968  1.13     alnsn {
    969  1.13     alnsn 	int status;
    970  1.45     alnsn 	sljit_s32 dst;
    971  1.13     alnsn 	sljit_sw dstw;
    972  1.13     alnsn 
    973  1.13     alnsn 	dstw = k * sizeof(uint32_t);
    974  1.13     alnsn 
    975  1.13     alnsn 	if (extwords == 0) {
    976  1.45     alnsn 		dst = SLJIT_MEM1(SLJIT_SP);
    977  1.13     alnsn 		dstw += offsetof(struct bpfjit_stack, mem);
    978  1.13     alnsn 	} else {
    979  1.13     alnsn 		/* copy extmem pointer to the tmp1 register */
    980  1.13     alnsn 		status = sljit_emit_op1(compiler,
    981  1.16     alnsn 		    SLJIT_MOV_P,
    982  1.13     alnsn 		    BJ_TMP1REG, 0,
    983  1.45     alnsn 		    SLJIT_MEM1(SLJIT_SP),
    984  1.13     alnsn 		    offsetof(struct bpfjit_stack, extmem));
    985  1.13     alnsn 		if (status != SLJIT_SUCCESS)
    986  1.13     alnsn 			return status;
    987  1.13     alnsn 		dst = SLJIT_MEM1(BJ_TMP1REG);
    988  1.13     alnsn 	}
    989  1.13     alnsn 
    990  1.45     alnsn 	return sljit_emit_op1(compiler, SLJIT_MOV_U32, dst, dstw, src, 0);
    991  1.13     alnsn }
    992  1.13     alnsn 
    993   1.1     alnsn /*
    994  1.24     alnsn  * Emit code for BPF_LDX+BPF_B+BPF_MSH    X <- 4*(P[k:1]&0xf).
    995   1.1     alnsn  */
    996   1.1     alnsn static int
    997  1.32     alnsn emit_msh(struct sljit_compiler *compiler, bpfjit_hint_t hints,
    998   1.7     alnsn     const struct bpf_insn *pc, struct sljit_jump *to_mchain_jump,
    999   1.7     alnsn     struct sljit_jump ***ret0, size_t *ret0_size, size_t *ret0_maxsize)
   1000   1.1     alnsn {
   1001   1.1     alnsn 	int status;
   1002   1.1     alnsn #ifdef _KERNEL
   1003   1.1     alnsn 	struct sljit_label *label;
   1004   1.1     alnsn 	struct sljit_jump *jump, *over_mchain_jump;
   1005   1.1     alnsn 	const bool check_zero_buflen = (to_mchain_jump != NULL);
   1006   1.1     alnsn #endif
   1007   1.1     alnsn 	const uint32_t k = pc->k;
   1008   1.1     alnsn 
   1009   1.1     alnsn #ifdef _KERNEL
   1010   1.1     alnsn 	if (to_mchain_jump == NULL) {
   1011   1.1     alnsn 		to_mchain_jump = sljit_emit_cmp(compiler,
   1012  1.45     alnsn 		    SLJIT_EQUAL,
   1013   1.7     alnsn 		    BJ_BUFLEN, 0,
   1014   1.1     alnsn 		    SLJIT_IMM, 0);
   1015   1.1     alnsn 		if (to_mchain_jump == NULL)
   1016   1.7     alnsn 			return SLJIT_ERR_ALLOC_FAILED;
   1017   1.1     alnsn 	}
   1018   1.1     alnsn #endif
   1019   1.1     alnsn 
   1020   1.1     alnsn 	/* tmp1 = buf[k] */
   1021   1.1     alnsn 	status = sljit_emit_op1(compiler,
   1022  1.45     alnsn 	    SLJIT_MOV_U8,
   1023   1.7     alnsn 	    BJ_TMP1REG, 0,
   1024   1.7     alnsn 	    SLJIT_MEM1(BJ_BUF), k);
   1025   1.1     alnsn 	if (status != SLJIT_SUCCESS)
   1026   1.1     alnsn 		return status;
   1027   1.1     alnsn 
   1028   1.1     alnsn #ifdef _KERNEL
   1029   1.1     alnsn 	over_mchain_jump = sljit_emit_jump(compiler, SLJIT_JUMP);
   1030   1.1     alnsn 	if (over_mchain_jump == NULL)
   1031   1.1     alnsn 		return SLJIT_ERR_ALLOC_FAILED;
   1032   1.1     alnsn 
   1033   1.1     alnsn 	/* entry point to mchain handler */
   1034   1.1     alnsn 	label = sljit_emit_label(compiler);
   1035   1.1     alnsn 	if (label == NULL)
   1036   1.1     alnsn 		return SLJIT_ERR_ALLOC_FAILED;
   1037   1.1     alnsn 	sljit_set_label(to_mchain_jump, label);
   1038   1.1     alnsn 
   1039   1.1     alnsn 	if (check_zero_buflen) {
   1040   1.1     alnsn 		/* if (buflen != 0) return 0; */
   1041   1.1     alnsn 		jump = sljit_emit_cmp(compiler,
   1042  1.45     alnsn 		    SLJIT_NOT_EQUAL,
   1043   1.7     alnsn 		    BJ_BUFLEN, 0,
   1044   1.1     alnsn 		    SLJIT_IMM, 0);
   1045   1.1     alnsn 		if (jump == NULL)
   1046   1.7     alnsn 			return SLJIT_ERR_ALLOC_FAILED;
   1047   1.7     alnsn 		if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
   1048   1.7     alnsn 			return SLJIT_ERR_ALLOC_FAILED;
   1049   1.1     alnsn 	}
   1050   1.1     alnsn 
   1051  1.32     alnsn 	status = emit_xcall(compiler, hints, pc, BJ_TMP1REG,
   1052  1.23     alnsn 	    ret0, ret0_size, ret0_maxsize, &m_xbyte);
   1053   1.1     alnsn 	if (status != SLJIT_SUCCESS)
   1054   1.1     alnsn 		return status;
   1055   1.7     alnsn 
   1056  1.30     alnsn 	label = sljit_emit_label(compiler);
   1057  1.30     alnsn 	if (label == NULL)
   1058  1.30     alnsn 		return SLJIT_ERR_ALLOC_FAILED;
   1059  1.30     alnsn 	sljit_set_label(over_mchain_jump, label);
   1060  1.30     alnsn #endif
   1061  1.30     alnsn 
   1062   1.1     alnsn 	/* tmp1 &= 0xf */
   1063   1.1     alnsn 	status = sljit_emit_op2(compiler,
   1064   1.1     alnsn 	    SLJIT_AND,
   1065   1.7     alnsn 	    BJ_TMP1REG, 0,
   1066   1.7     alnsn 	    BJ_TMP1REG, 0,
   1067   1.1     alnsn 	    SLJIT_IMM, 0xf);
   1068   1.1     alnsn 	if (status != SLJIT_SUCCESS)
   1069   1.1     alnsn 		return status;
   1070   1.1     alnsn 
   1071  1.30     alnsn 	/* X = tmp1 << 2 */
   1072   1.1     alnsn 	status = sljit_emit_op2(compiler,
   1073   1.1     alnsn 	    SLJIT_SHL,
   1074   1.7     alnsn 	    BJ_XREG, 0,
   1075   1.7     alnsn 	    BJ_TMP1REG, 0,
   1076   1.1     alnsn 	    SLJIT_IMM, 2);
   1077   1.1     alnsn 	if (status != SLJIT_SUCCESS)
   1078   1.1     alnsn 		return status;
   1079   1.1     alnsn 
   1080  1.24     alnsn 	return SLJIT_SUCCESS;
   1081   1.1     alnsn }
   1082   1.1     alnsn 
   1083  1.35     alnsn /*
   1084  1.35     alnsn  * Emit code for A = A / k or A = A % k when k is a power of 2.
   1085  1.35     alnsn  * @pc BPF_DIV or BPF_MOD instruction.
   1086  1.35     alnsn  */
   1087   1.1     alnsn static int
   1088  1.35     alnsn emit_pow2_moddiv(struct sljit_compiler *compiler, const struct bpf_insn *pc)
   1089   1.1     alnsn {
   1090  1.35     alnsn 	uint32_t k = pc->k;
   1091   1.1     alnsn 	int status = SLJIT_SUCCESS;
   1092   1.1     alnsn 
   1093  1.35     alnsn 	BJ_ASSERT(k != 0 && (k & (k - 1)) == 0);
   1094   1.1     alnsn 
   1095  1.35     alnsn 	if (BPF_OP(pc->code) == BPF_MOD) {
   1096   1.1     alnsn 		status = sljit_emit_op2(compiler,
   1097  1.35     alnsn 		    SLJIT_AND,
   1098   1.7     alnsn 		    BJ_AREG, 0,
   1099   1.7     alnsn 		    BJ_AREG, 0,
   1100  1.35     alnsn 		    SLJIT_IMM, k - 1);
   1101  1.35     alnsn 	} else {
   1102  1.35     alnsn 		int shift = 0;
   1103  1.35     alnsn 
   1104  1.35     alnsn 		/*
   1105  1.35     alnsn 		 * Do shift = __builtin_ctz(k).
   1106  1.35     alnsn 		 * The loop is slower, but that's ok.
   1107  1.35     alnsn 		 */
   1108  1.35     alnsn 		while (k > 1) {
   1109  1.35     alnsn 			k >>= 1;
   1110  1.35     alnsn 			shift++;
   1111  1.35     alnsn 		}
   1112  1.35     alnsn 
   1113  1.35     alnsn 		if (shift != 0) {
   1114  1.35     alnsn 			status = sljit_emit_op2(compiler,
   1115  1.45     alnsn 			    SLJIT_LSHR|SLJIT_I32_OP,
   1116  1.35     alnsn 			    BJ_AREG, 0,
   1117  1.35     alnsn 			    BJ_AREG, 0,
   1118  1.35     alnsn 			    SLJIT_IMM, shift);
   1119  1.35     alnsn 		}
   1120   1.1     alnsn 	}
   1121   1.1     alnsn 
   1122   1.1     alnsn 	return status;
   1123   1.1     alnsn }
   1124   1.1     alnsn 
   1125   1.1     alnsn #if !defined(BPFJIT_USE_UDIV)
   1126   1.1     alnsn static sljit_uw
   1127   1.1     alnsn divide(sljit_uw x, sljit_uw y)
   1128   1.1     alnsn {
   1129   1.1     alnsn 
   1130   1.1     alnsn 	return (uint32_t)x / (uint32_t)y;
   1131   1.1     alnsn }
   1132  1.33  christos 
   1133  1.33  christos static sljit_uw
   1134  1.33  christos modulus(sljit_uw x, sljit_uw y)
   1135  1.33  christos {
   1136  1.33  christos 
   1137  1.33  christos 	return (uint32_t)x % (uint32_t)y;
   1138  1.33  christos }
   1139   1.1     alnsn #endif
   1140   1.1     alnsn 
   1141   1.1     alnsn /*
   1142  1.35     alnsn  * Emit code for A = A / div or A = A % div.
   1143  1.35     alnsn  * @pc BPF_DIV or BPF_MOD instruction.
   1144   1.1     alnsn  */
   1145   1.1     alnsn static int
   1146  1.35     alnsn emit_moddiv(struct sljit_compiler *compiler, const struct bpf_insn *pc)
   1147   1.1     alnsn {
   1148   1.1     alnsn 	int status;
   1149  1.38  christos 	const bool xdiv = BPF_OP(pc->code) == BPF_DIV;
   1150  1.35     alnsn 	const bool xreg = BPF_SRC(pc->code) == BPF_X;
   1151   1.1     alnsn 
   1152  1.32     alnsn #if BJ_XREG == SLJIT_RETURN_REG   || \
   1153  1.45     alnsn     BJ_XREG == SLJIT_R0 || \
   1154  1.45     alnsn     BJ_XREG == SLJIT_R1 || \
   1155  1.45     alnsn     BJ_AREG == SLJIT_R1
   1156  1.32     alnsn #error "Not supported assignment of registers."
   1157  1.32     alnsn #endif
   1158  1.32     alnsn 
   1159  1.45     alnsn #if BJ_AREG != SLJIT_R0
   1160   1.1     alnsn 	status = sljit_emit_op1(compiler,
   1161   1.1     alnsn 	    SLJIT_MOV,
   1162  1.45     alnsn 	    SLJIT_R0, 0,
   1163   1.7     alnsn 	    BJ_AREG, 0);
   1164   1.1     alnsn 	if (status != SLJIT_SUCCESS)
   1165   1.1     alnsn 		return status;
   1166   1.1     alnsn #endif
   1167   1.1     alnsn 
   1168   1.1     alnsn 	status = sljit_emit_op1(compiler,
   1169   1.1     alnsn 	    SLJIT_MOV,
   1170  1.45     alnsn 	    SLJIT_R1, 0,
   1171  1.35     alnsn 	    xreg ? BJ_XREG : SLJIT_IMM,
   1172  1.35     alnsn 	    xreg ? 0 : (uint32_t)pc->k);
   1173   1.1     alnsn 	if (status != SLJIT_SUCCESS)
   1174   1.1     alnsn 		return status;
   1175   1.1     alnsn 
   1176   1.1     alnsn #if defined(BPFJIT_USE_UDIV)
   1177  1.45     alnsn 	status = sljit_emit_op0(compiler, SLJIT_UDIV|SLJIT_I32_OP);
   1178   1.1     alnsn 
   1179  1.36     alnsn 	if (BPF_OP(pc->code) == BPF_DIV) {
   1180  1.45     alnsn #if BJ_AREG != SLJIT_R0
   1181  1.36     alnsn 		status = sljit_emit_op1(compiler,
   1182  1.36     alnsn 		    SLJIT_MOV,
   1183  1.36     alnsn 		    BJ_AREG, 0,
   1184  1.45     alnsn 		    SLJIT_R0, 0);
   1185  1.36     alnsn #endif
   1186  1.36     alnsn 	} else {
   1187  1.45     alnsn #if BJ_AREG != SLJIT_R1
   1188  1.45     alnsn 		/* Remainder is in SLJIT_R1. */
   1189  1.36     alnsn 		status = sljit_emit_op1(compiler,
   1190  1.36     alnsn 		    SLJIT_MOV,
   1191  1.36     alnsn 		    BJ_AREG, 0,
   1192  1.45     alnsn 		    SLJIT_R1, 0);
   1193  1.36     alnsn #endif
   1194  1.36     alnsn 	}
   1195  1.36     alnsn 
   1196   1.1     alnsn 	if (status != SLJIT_SUCCESS)
   1197   1.1     alnsn 		return status;
   1198   1.1     alnsn #else
   1199   1.1     alnsn 	status = sljit_emit_ijump(compiler,
   1200   1.1     alnsn 	    SLJIT_CALL2,
   1201  1.38  christos 	    SLJIT_IMM, xdiv ? SLJIT_FUNC_OFFSET(divide) :
   1202  1.33  christos 		SLJIT_FUNC_OFFSET(modulus));
   1203   1.1     alnsn 
   1204   1.7     alnsn #if BJ_AREG != SLJIT_RETURN_REG
   1205   1.1     alnsn 	status = sljit_emit_op1(compiler,
   1206   1.1     alnsn 	    SLJIT_MOV,
   1207   1.7     alnsn 	    BJ_AREG, 0,
   1208   1.1     alnsn 	    SLJIT_RETURN_REG, 0);
   1209   1.1     alnsn 	if (status != SLJIT_SUCCESS)
   1210   1.1     alnsn 		return status;
   1211   1.1     alnsn #endif
   1212   1.1     alnsn #endif
   1213   1.1     alnsn 
   1214   1.1     alnsn 	return status;
   1215   1.1     alnsn }
   1216   1.1     alnsn 
   1217   1.1     alnsn /*
   1218   1.1     alnsn  * Return true if pc is a "read from packet" instruction.
   1219   1.1     alnsn  * If length is not NULL and return value is true, *length will
   1220   1.1     alnsn  * be set to a safe length required to read a packet.
   1221   1.1     alnsn  */
   1222   1.1     alnsn static bool
   1223   1.8     alnsn read_pkt_insn(const struct bpf_insn *pc, bpfjit_abc_length_t *length)
   1224   1.1     alnsn {
   1225   1.1     alnsn 	bool rv;
   1226  1.37    justin 	bpfjit_abc_length_t width = 0; /* XXXuninit */
   1227   1.1     alnsn 
   1228   1.1     alnsn 	switch (BPF_CLASS(pc->code)) {
   1229   1.1     alnsn 	default:
   1230   1.1     alnsn 		rv = false;
   1231   1.1     alnsn 		break;
   1232   1.1     alnsn 
   1233   1.1     alnsn 	case BPF_LD:
   1234   1.1     alnsn 		rv = BPF_MODE(pc->code) == BPF_ABS ||
   1235   1.1     alnsn 		     BPF_MODE(pc->code) == BPF_IND;
   1236  1.39     alnsn 		if (rv) {
   1237   1.1     alnsn 			width = read_width(pc);
   1238  1.39     alnsn 			rv = (width != 0);
   1239  1.39     alnsn 		}
   1240   1.1     alnsn 		break;
   1241   1.1     alnsn 
   1242   1.1     alnsn 	case BPF_LDX:
   1243  1.39     alnsn 		rv = BPF_MODE(pc->code) == BPF_MSH &&
   1244  1.39     alnsn 		     BPF_SIZE(pc->code) == BPF_B;
   1245   1.1     alnsn 		width = 1;
   1246   1.1     alnsn 		break;
   1247   1.1     alnsn 	}
   1248   1.1     alnsn 
   1249   1.1     alnsn 	if (rv && length != NULL) {
   1250   1.9     alnsn 		/*
   1251   1.9     alnsn 		 * Values greater than UINT32_MAX will generate
   1252   1.9     alnsn 		 * unconditional "return 0".
   1253   1.9     alnsn 		 */
   1254   1.9     alnsn 		*length = (uint32_t)pc->k + width;
   1255   1.1     alnsn 	}
   1256   1.1     alnsn 
   1257   1.1     alnsn 	return rv;
   1258   1.1     alnsn }
   1259   1.1     alnsn 
   1260   1.1     alnsn static void
   1261   1.7     alnsn optimize_init(struct bpfjit_insn_data *insn_dat, size_t insn_count)
   1262   1.1     alnsn {
   1263   1.7     alnsn 	size_t i;
   1264   1.1     alnsn 
   1265   1.7     alnsn 	for (i = 0; i < insn_count; i++) {
   1266   1.7     alnsn 		SLIST_INIT(&insn_dat[i].bjumps);
   1267   1.7     alnsn 		insn_dat[i].invalid = BJ_INIT_NOBITS;
   1268   1.1     alnsn 	}
   1269   1.1     alnsn }
   1270   1.1     alnsn 
   1271   1.1     alnsn /*
   1272   1.1     alnsn  * The function divides instructions into blocks. Destination of a jump
   1273   1.1     alnsn  * instruction starts a new block. BPF_RET and BPF_JMP instructions
   1274   1.1     alnsn  * terminate a block. Blocks are linear, that is, there are no jumps out
   1275   1.1     alnsn  * from the middle of a block and there are no jumps in to the middle of
   1276   1.1     alnsn  * a block.
   1277   1.7     alnsn  *
   1278   1.7     alnsn  * The function also sets bits in *initmask for memwords that
   1279   1.7     alnsn  * need to be initialized to zero. Note that this set should be empty
   1280   1.7     alnsn  * for any valid kernel filter program.
   1281   1.1     alnsn  */
   1282   1.7     alnsn static bool
   1283  1.19     alnsn optimize_pass1(const bpf_ctx_t *bc, const struct bpf_insn *insns,
   1284  1.19     alnsn     struct bpfjit_insn_data *insn_dat, size_t insn_count,
   1285  1.20     alnsn     bpf_memword_init_t *initmask, bpfjit_hint_t *hints)
   1286   1.1     alnsn {
   1287   1.7     alnsn 	struct bpfjit_jump *jtf;
   1288   1.1     alnsn 	size_t i;
   1289   1.7     alnsn 	uint32_t jt, jf;
   1290  1.10     alnsn 	bpfjit_abc_length_t length;
   1291  1.13     alnsn 	bpf_memword_init_t invalid; /* borrowed from bpf_filter() */
   1292   1.1     alnsn 	bool unreachable;
   1293   1.1     alnsn 
   1294  1.19     alnsn 	const size_t memwords = GET_MEMWORDS(bc);
   1295  1.13     alnsn 
   1296  1.20     alnsn 	*hints = 0;
   1297   1.7     alnsn 	*initmask = BJ_INIT_NOBITS;
   1298   1.1     alnsn 
   1299   1.1     alnsn 	unreachable = false;
   1300   1.7     alnsn 	invalid = ~BJ_INIT_NOBITS;
   1301   1.1     alnsn 
   1302   1.1     alnsn 	for (i = 0; i < insn_count; i++) {
   1303   1.7     alnsn 		if (!SLIST_EMPTY(&insn_dat[i].bjumps))
   1304   1.1     alnsn 			unreachable = false;
   1305   1.7     alnsn 		insn_dat[i].unreachable = unreachable;
   1306   1.1     alnsn 
   1307   1.1     alnsn 		if (unreachable)
   1308   1.1     alnsn 			continue;
   1309   1.1     alnsn 
   1310   1.7     alnsn 		invalid |= insn_dat[i].invalid;
   1311   1.1     alnsn 
   1312  1.10     alnsn 		if (read_pkt_insn(&insns[i], &length) && length > UINT32_MAX)
   1313  1.10     alnsn 			unreachable = true;
   1314  1.10     alnsn 
   1315   1.1     alnsn 		switch (BPF_CLASS(insns[i].code)) {
   1316   1.1     alnsn 		case BPF_RET:
   1317   1.7     alnsn 			if (BPF_RVAL(insns[i].code) == BPF_A)
   1318   1.7     alnsn 				*initmask |= invalid & BJ_INIT_ABIT;
   1319   1.7     alnsn 
   1320   1.1     alnsn 			unreachable = true;
   1321   1.1     alnsn 			continue;
   1322   1.1     alnsn 
   1323   1.7     alnsn 		case BPF_LD:
   1324  1.27     alnsn 			if (BPF_MODE(insns[i].code) == BPF_ABS)
   1325  1.27     alnsn 				*hints |= BJ_HINT_ABS;
   1326   1.7     alnsn 
   1327  1.20     alnsn 			if (BPF_MODE(insns[i].code) == BPF_IND) {
   1328  1.27     alnsn 				*hints |= BJ_HINT_IND | BJ_HINT_XREG;
   1329   1.7     alnsn 				*initmask |= invalid & BJ_INIT_XBIT;
   1330  1.20     alnsn 			}
   1331   1.7     alnsn 
   1332   1.7     alnsn 			if (BPF_MODE(insns[i].code) == BPF_MEM &&
   1333  1.13     alnsn 			    (uint32_t)insns[i].k < memwords) {
   1334   1.7     alnsn 				*initmask |= invalid & BJ_INIT_MBIT(insns[i].k);
   1335   1.7     alnsn 			}
   1336   1.7     alnsn 
   1337   1.7     alnsn 			invalid &= ~BJ_INIT_ABIT;
   1338   1.7     alnsn 			continue;
   1339   1.7     alnsn 
   1340   1.7     alnsn 		case BPF_LDX:
   1341  1.20     alnsn 			*hints |= BJ_HINT_XREG | BJ_HINT_LDX;
   1342   1.7     alnsn 
   1343   1.7     alnsn 			if (BPF_MODE(insns[i].code) == BPF_MEM &&
   1344  1.13     alnsn 			    (uint32_t)insns[i].k < memwords) {
   1345   1.7     alnsn 				*initmask |= invalid & BJ_INIT_MBIT(insns[i].k);
   1346   1.7     alnsn 			}
   1347   1.7     alnsn 
   1348  1.29     alnsn 			if (BPF_MODE(insns[i].code) == BPF_MSH &&
   1349  1.29     alnsn 			    BPF_SIZE(insns[i].code) == BPF_B) {
   1350  1.29     alnsn 				*hints |= BJ_HINT_MSH;
   1351  1.29     alnsn 			}
   1352  1.29     alnsn 
   1353   1.7     alnsn 			invalid &= ~BJ_INIT_XBIT;
   1354   1.7     alnsn 			continue;
   1355   1.7     alnsn 
   1356   1.7     alnsn 		case BPF_ST:
   1357   1.7     alnsn 			*initmask |= invalid & BJ_INIT_ABIT;
   1358   1.7     alnsn 
   1359  1.13     alnsn 			if ((uint32_t)insns[i].k < memwords)
   1360   1.7     alnsn 				invalid &= ~BJ_INIT_MBIT(insns[i].k);
   1361   1.7     alnsn 
   1362   1.7     alnsn 			continue;
   1363   1.7     alnsn 
   1364   1.7     alnsn 		case BPF_STX:
   1365  1.20     alnsn 			*hints |= BJ_HINT_XREG;
   1366   1.7     alnsn 			*initmask |= invalid & BJ_INIT_XBIT;
   1367   1.7     alnsn 
   1368  1.13     alnsn 			if ((uint32_t)insns[i].k < memwords)
   1369   1.7     alnsn 				invalid &= ~BJ_INIT_MBIT(insns[i].k);
   1370   1.7     alnsn 
   1371   1.7     alnsn 			continue;
   1372   1.7     alnsn 
   1373   1.7     alnsn 		case BPF_ALU:
   1374   1.7     alnsn 			*initmask |= invalid & BJ_INIT_ABIT;
   1375   1.7     alnsn 
   1376   1.7     alnsn 			if (insns[i].code != (BPF_ALU|BPF_NEG) &&
   1377   1.7     alnsn 			    BPF_SRC(insns[i].code) == BPF_X) {
   1378  1.20     alnsn 				*hints |= BJ_HINT_XREG;
   1379   1.7     alnsn 				*initmask |= invalid & BJ_INIT_XBIT;
   1380   1.7     alnsn 			}
   1381   1.7     alnsn 
   1382   1.7     alnsn 			invalid &= ~BJ_INIT_ABIT;
   1383   1.7     alnsn 			continue;
   1384   1.7     alnsn 
   1385   1.7     alnsn 		case BPF_MISC:
   1386   1.7     alnsn 			switch (BPF_MISCOP(insns[i].code)) {
   1387   1.7     alnsn 			case BPF_TAX: // X <- A
   1388  1.20     alnsn 				*hints |= BJ_HINT_XREG;
   1389   1.7     alnsn 				*initmask |= invalid & BJ_INIT_ABIT;
   1390   1.7     alnsn 				invalid &= ~BJ_INIT_XBIT;
   1391   1.7     alnsn 				continue;
   1392   1.7     alnsn 
   1393   1.7     alnsn 			case BPF_TXA: // A <- X
   1394  1.20     alnsn 				*hints |= BJ_HINT_XREG;
   1395   1.7     alnsn 				*initmask |= invalid & BJ_INIT_XBIT;
   1396   1.7     alnsn 				invalid &= ~BJ_INIT_ABIT;
   1397   1.7     alnsn 				continue;
   1398  1.13     alnsn 
   1399  1.13     alnsn 			case BPF_COPX:
   1400  1.28     alnsn 				*hints |= BJ_HINT_XREG | BJ_HINT_COPX;
   1401  1.13     alnsn 				/* FALLTHROUGH */
   1402  1.13     alnsn 
   1403  1.13     alnsn 			case BPF_COP:
   1404  1.20     alnsn 				*hints |= BJ_HINT_COP;
   1405  1.13     alnsn 				*initmask |= invalid & BJ_INIT_ABIT;
   1406  1.13     alnsn 				invalid &= ~BJ_INIT_ABIT;
   1407  1.13     alnsn 				continue;
   1408   1.7     alnsn 			}
   1409   1.7     alnsn 
   1410   1.7     alnsn 			continue;
   1411   1.7     alnsn 
   1412   1.1     alnsn 		case BPF_JMP:
   1413   1.7     alnsn 			/* Initialize abc_length for ABC pass. */
   1414   1.8     alnsn 			insn_dat[i].u.jdata.abc_length = MAX_ABC_LENGTH;
   1415   1.7     alnsn 
   1416  1.41     alnsn 			*initmask |= invalid & BJ_INIT_ABIT;
   1417  1.41     alnsn 
   1418  1.41     alnsn 			if (BPF_SRC(insns[i].code) == BPF_X) {
   1419  1.39     alnsn 				*hints |= BJ_HINT_XREG;
   1420  1.41     alnsn 				*initmask |= invalid & BJ_INIT_XBIT;
   1421  1.41     alnsn 			}
   1422  1.39     alnsn 
   1423   1.7     alnsn 			if (BPF_OP(insns[i].code) == BPF_JA) {
   1424   1.1     alnsn 				jt = jf = insns[i].k;
   1425   1.1     alnsn 			} else {
   1426   1.1     alnsn 				jt = insns[i].jt;
   1427   1.1     alnsn 				jf = insns[i].jf;
   1428   1.1     alnsn 			}
   1429   1.1     alnsn 
   1430   1.1     alnsn 			if (jt >= insn_count - (i + 1) ||
   1431   1.1     alnsn 			    jf >= insn_count - (i + 1)) {
   1432   1.7     alnsn 				return false;
   1433   1.1     alnsn 			}
   1434   1.1     alnsn 
   1435   1.1     alnsn 			if (jt > 0 && jf > 0)
   1436   1.1     alnsn 				unreachable = true;
   1437   1.1     alnsn 
   1438   1.7     alnsn 			jt += i + 1;
   1439   1.7     alnsn 			jf += i + 1;
   1440   1.7     alnsn 
   1441   1.7     alnsn 			jtf = insn_dat[i].u.jdata.jtf;
   1442   1.1     alnsn 
   1443   1.7     alnsn 			jtf[0].jdata = &insn_dat[i].u.jdata;
   1444   1.7     alnsn 			SLIST_INSERT_HEAD(&insn_dat[jt].bjumps,
   1445   1.7     alnsn 			    &jtf[0], entries);
   1446   1.1     alnsn 
   1447   1.1     alnsn 			if (jf != jt) {
   1448   1.7     alnsn 				jtf[1].jdata = &insn_dat[i].u.jdata;
   1449   1.7     alnsn 				SLIST_INSERT_HEAD(&insn_dat[jf].bjumps,
   1450   1.7     alnsn 				    &jtf[1], entries);
   1451   1.1     alnsn 			}
   1452   1.1     alnsn 
   1453   1.7     alnsn 			insn_dat[jf].invalid |= invalid;
   1454   1.7     alnsn 			insn_dat[jt].invalid |= invalid;
   1455   1.7     alnsn 			invalid = 0;
   1456   1.7     alnsn 
   1457   1.1     alnsn 			continue;
   1458   1.1     alnsn 		}
   1459   1.1     alnsn 	}
   1460   1.1     alnsn 
   1461   1.7     alnsn 	return true;
   1462   1.1     alnsn }
   1463   1.1     alnsn 
   1464   1.1     alnsn /*
   1465   1.7     alnsn  * Array Bounds Check Elimination (ABC) pass.
   1466   1.1     alnsn  */
   1467   1.7     alnsn static void
   1468  1.19     alnsn optimize_pass2(const bpf_ctx_t *bc, const struct bpf_insn *insns,
   1469  1.19     alnsn     struct bpfjit_insn_data *insn_dat, size_t insn_count)
   1470   1.7     alnsn {
   1471   1.7     alnsn 	struct bpfjit_jump *jmp;
   1472   1.7     alnsn 	const struct bpf_insn *pc;
   1473   1.7     alnsn 	struct bpfjit_insn_data *pd;
   1474   1.7     alnsn 	size_t i;
   1475   1.8     alnsn 	bpfjit_abc_length_t length, abc_length = 0;
   1476   1.7     alnsn 
   1477  1.19     alnsn 	const size_t extwords = GET_EXTWORDS(bc);
   1478  1.19     alnsn 
   1479   1.7     alnsn 	for (i = insn_count; i != 0; i--) {
   1480   1.7     alnsn 		pc = &insns[i-1];
   1481   1.7     alnsn 		pd = &insn_dat[i-1];
   1482   1.7     alnsn 
   1483   1.7     alnsn 		if (pd->unreachable)
   1484   1.7     alnsn 			continue;
   1485   1.7     alnsn 
   1486   1.7     alnsn 		switch (BPF_CLASS(pc->code)) {
   1487   1.7     alnsn 		case BPF_RET:
   1488  1.11     alnsn 			/*
   1489  1.11     alnsn 			 * It's quite common for bpf programs to
   1490  1.11     alnsn 			 * check packet bytes in increasing order
   1491  1.11     alnsn 			 * and return zero if bytes don't match
   1492  1.11     alnsn 			 * specified critetion. Such programs disable
   1493  1.11     alnsn 			 * ABC optimization completely because for
   1494  1.11     alnsn 			 * every jump there is a branch with no read
   1495  1.11     alnsn 			 * instruction.
   1496  1.13     alnsn 			 * With no side effects, BPF_STMT(BPF_RET+BPF_K, 0)
   1497  1.13     alnsn 			 * is indistinguishable from out-of-bound load.
   1498  1.11     alnsn 			 * Therefore, abc_length can be set to
   1499  1.11     alnsn 			 * MAX_ABC_LENGTH and enable ABC for many
   1500  1.11     alnsn 			 * bpf programs.
   1501  1.13     alnsn 			 * If this optimization encounters any
   1502  1.11     alnsn 			 * instruction with a side effect, it will
   1503  1.11     alnsn 			 * reset abc_length.
   1504  1.11     alnsn 			 */
   1505  1.11     alnsn 			if (BPF_RVAL(pc->code) == BPF_K && pc->k == 0)
   1506  1.11     alnsn 				abc_length = MAX_ABC_LENGTH;
   1507  1.11     alnsn 			else
   1508  1.11     alnsn 				abc_length = 0;
   1509   1.7     alnsn 			break;
   1510   1.7     alnsn 
   1511  1.13     alnsn 		case BPF_MISC:
   1512  1.13     alnsn 			if (BPF_MISCOP(pc->code) == BPF_COP ||
   1513  1.13     alnsn 			    BPF_MISCOP(pc->code) == BPF_COPX) {
   1514  1.13     alnsn 				/* COP instructions can have side effects. */
   1515  1.13     alnsn 				abc_length = 0;
   1516  1.13     alnsn 			}
   1517  1.13     alnsn 			break;
   1518  1.13     alnsn 
   1519  1.13     alnsn 		case BPF_ST:
   1520  1.13     alnsn 		case BPF_STX:
   1521  1.13     alnsn 			if (extwords != 0) {
   1522  1.13     alnsn 				/* Write to memory is visible after a call. */
   1523  1.13     alnsn 				abc_length = 0;
   1524  1.13     alnsn 			}
   1525  1.13     alnsn 			break;
   1526  1.13     alnsn 
   1527   1.7     alnsn 		case BPF_JMP:
   1528   1.7     alnsn 			abc_length = pd->u.jdata.abc_length;
   1529   1.7     alnsn 			break;
   1530   1.7     alnsn 
   1531   1.7     alnsn 		default:
   1532   1.7     alnsn 			if (read_pkt_insn(pc, &length)) {
   1533   1.7     alnsn 				if (abc_length < length)
   1534   1.7     alnsn 					abc_length = length;
   1535   1.7     alnsn 				pd->u.rdata.abc_length = abc_length;
   1536   1.7     alnsn 			}
   1537   1.7     alnsn 			break;
   1538   1.7     alnsn 		}
   1539   1.7     alnsn 
   1540   1.7     alnsn 		SLIST_FOREACH(jmp, &pd->bjumps, entries) {
   1541   1.7     alnsn 			if (jmp->jdata->abc_length > abc_length)
   1542   1.7     alnsn 				jmp->jdata->abc_length = abc_length;
   1543   1.7     alnsn 		}
   1544   1.7     alnsn 	}
   1545   1.7     alnsn }
   1546   1.7     alnsn 
   1547   1.7     alnsn static void
   1548   1.7     alnsn optimize_pass3(const struct bpf_insn *insns,
   1549   1.7     alnsn     struct bpfjit_insn_data *insn_dat, size_t insn_count)
   1550   1.1     alnsn {
   1551   1.7     alnsn 	struct bpfjit_jump *jmp;
   1552   1.1     alnsn 	size_t i;
   1553   1.8     alnsn 	bpfjit_abc_length_t checked_length = 0;
   1554   1.1     alnsn 
   1555   1.1     alnsn 	for (i = 0; i < insn_count; i++) {
   1556   1.7     alnsn 		if (insn_dat[i].unreachable)
   1557   1.7     alnsn 			continue;
   1558   1.1     alnsn 
   1559   1.7     alnsn 		SLIST_FOREACH(jmp, &insn_dat[i].bjumps, entries) {
   1560   1.7     alnsn 			if (jmp->jdata->checked_length < checked_length)
   1561   1.7     alnsn 				checked_length = jmp->jdata->checked_length;
   1562   1.1     alnsn 		}
   1563   1.1     alnsn 
   1564   1.7     alnsn 		if (BPF_CLASS(insns[i].code) == BPF_JMP) {
   1565   1.7     alnsn 			insn_dat[i].u.jdata.checked_length = checked_length;
   1566   1.8     alnsn 		} else if (read_pkt_insn(&insns[i], NULL)) {
   1567   1.7     alnsn 			struct bpfjit_read_pkt_data *rdata =
   1568   1.7     alnsn 			    &insn_dat[i].u.rdata;
   1569   1.7     alnsn 			rdata->check_length = 0;
   1570   1.7     alnsn 			if (checked_length < rdata->abc_length) {
   1571   1.7     alnsn 				checked_length = rdata->abc_length;
   1572   1.7     alnsn 				rdata->check_length = checked_length;
   1573   1.7     alnsn 			}
   1574   1.1     alnsn 		}
   1575   1.7     alnsn 	}
   1576   1.7     alnsn }
   1577   1.1     alnsn 
   1578   1.7     alnsn static bool
   1579  1.19     alnsn optimize(const bpf_ctx_t *bc, const struct bpf_insn *insns,
   1580   1.7     alnsn     struct bpfjit_insn_data *insn_dat, size_t insn_count,
   1581  1.20     alnsn     bpf_memword_init_t *initmask, bpfjit_hint_t *hints)
   1582   1.7     alnsn {
   1583   1.1     alnsn 
   1584   1.7     alnsn 	optimize_init(insn_dat, insn_count);
   1585   1.7     alnsn 
   1586  1.20     alnsn 	if (!optimize_pass1(bc, insns, insn_dat, insn_count, initmask, hints))
   1587   1.7     alnsn 		return false;
   1588   1.1     alnsn 
   1589  1.19     alnsn 	optimize_pass2(bc, insns, insn_dat, insn_count);
   1590   1.7     alnsn 	optimize_pass3(insns, insn_dat, insn_count);
   1591   1.7     alnsn 
   1592   1.7     alnsn 	return true;
   1593   1.1     alnsn }
   1594   1.1     alnsn 
   1595   1.1     alnsn /*
   1596   1.1     alnsn  * Convert BPF_ALU operations except BPF_NEG and BPF_DIV to sljit operation.
   1597   1.1     alnsn  */
   1598  1.46     alnsn static bool
   1599  1.46     alnsn alu_to_op(const struct bpf_insn *pc, int *res)
   1600   1.1     alnsn {
   1601  1.42     alnsn 	const uint32_t k = pc->k;
   1602   1.1     alnsn 
   1603   1.1     alnsn 	/*
   1604   1.1     alnsn 	 * Note: all supported 64bit arches have 32bit multiply
   1605  1.45     alnsn 	 * instruction so SLJIT_I32_OP doesn't have any overhead.
   1606   1.1     alnsn 	 */
   1607   1.1     alnsn 	switch (BPF_OP(pc->code)) {
   1608  1.46     alnsn 	case BPF_ADD:
   1609  1.46     alnsn 		*res = SLJIT_ADD;
   1610  1.46     alnsn 		return true;
   1611  1.46     alnsn 	case BPF_SUB:
   1612  1.46     alnsn 		*res = SLJIT_SUB;
   1613  1.46     alnsn 		return true;
   1614  1.46     alnsn 	case BPF_MUL:
   1615  1.46     alnsn 		*res = SLJIT_MUL|SLJIT_I32_OP;
   1616  1.46     alnsn 		return true;
   1617  1.46     alnsn 	case BPF_OR:
   1618  1.46     alnsn 		*res = SLJIT_OR;
   1619  1.46     alnsn 		return true;
   1620  1.46     alnsn 	case BPF_XOR:
   1621  1.46     alnsn 		*res = SLJIT_XOR;
   1622  1.46     alnsn 		return true;
   1623  1.46     alnsn 	case BPF_AND:
   1624  1.46     alnsn 		*res = SLJIT_AND;
   1625  1.46     alnsn 		return true;
   1626  1.46     alnsn 	case BPF_LSH:
   1627  1.46     alnsn 		*res = SLJIT_SHL;
   1628  1.46     alnsn 		return k < 32;
   1629  1.46     alnsn 	case BPF_RSH:
   1630  1.46     alnsn 		*res = SLJIT_LSHR|SLJIT_I32_OP;
   1631  1.46     alnsn 		return k < 32;
   1632   1.1     alnsn 	default:
   1633  1.46     alnsn 		return false;
   1634   1.1     alnsn 	}
   1635   1.1     alnsn }
   1636   1.1     alnsn 
   1637   1.1     alnsn /*
   1638   1.1     alnsn  * Convert BPF_JMP operations except BPF_JA to sljit condition.
   1639   1.1     alnsn  */
   1640  1.46     alnsn static bool
   1641  1.46     alnsn jmp_to_cond(const struct bpf_insn *pc, bool negate, int *res)
   1642   1.1     alnsn {
   1643  1.46     alnsn 
   1644   1.1     alnsn 	/*
   1645   1.1     alnsn 	 * Note: all supported 64bit arches have 32bit comparison
   1646  1.45     alnsn 	 * instructions so SLJIT_I32_OP doesn't have any overhead.
   1647   1.1     alnsn 	 */
   1648  1.46     alnsn 	*res = SLJIT_I32_OP;
   1649   1.1     alnsn 
   1650   1.1     alnsn 	switch (BPF_OP(pc->code)) {
   1651   1.1     alnsn 	case BPF_JGT:
   1652  1.46     alnsn 		*res |= negate ? SLJIT_LESS_EQUAL : SLJIT_GREATER;
   1653  1.46     alnsn 		return true;
   1654   1.1     alnsn 	case BPF_JGE:
   1655  1.46     alnsn 		*res |= negate ? SLJIT_LESS : SLJIT_GREATER_EQUAL;
   1656  1.46     alnsn 		return true;
   1657   1.1     alnsn 	case BPF_JEQ:
   1658  1.46     alnsn 		*res |= negate ? SLJIT_NOT_EQUAL : SLJIT_EQUAL;
   1659  1.46     alnsn 		return true;
   1660   1.1     alnsn 	case BPF_JSET:
   1661  1.46     alnsn 		*res |= negate ? SLJIT_EQUAL : SLJIT_NOT_EQUAL;
   1662  1.46     alnsn 		return true;
   1663   1.1     alnsn 	default:
   1664  1.46     alnsn 		return false;
   1665   1.1     alnsn 	}
   1666   1.1     alnsn }
   1667   1.1     alnsn 
   1668   1.1     alnsn /*
   1669   1.1     alnsn  * Convert BPF_K and BPF_X to sljit register.
   1670   1.1     alnsn  */
   1671   1.1     alnsn static int
   1672   1.7     alnsn kx_to_reg(const struct bpf_insn *pc)
   1673   1.1     alnsn {
   1674   1.1     alnsn 
   1675   1.1     alnsn 	switch (BPF_SRC(pc->code)) {
   1676   1.1     alnsn 	case BPF_K: return SLJIT_IMM;
   1677   1.7     alnsn 	case BPF_X: return BJ_XREG;
   1678   1.1     alnsn 	default:
   1679   1.7     alnsn 		BJ_ASSERT(false);
   1680   1.1     alnsn 		return 0;
   1681   1.1     alnsn 	}
   1682   1.1     alnsn }
   1683   1.1     alnsn 
   1684  1.12     alnsn static sljit_sw
   1685   1.7     alnsn kx_to_reg_arg(const struct bpf_insn *pc)
   1686   1.1     alnsn {
   1687   1.1     alnsn 
   1688   1.1     alnsn 	switch (BPF_SRC(pc->code)) {
   1689   1.1     alnsn 	case BPF_K: return (uint32_t)pc->k; /* SLJIT_IMM, pc->k, */
   1690   1.7     alnsn 	case BPF_X: return 0;               /* BJ_XREG, 0,      */
   1691   1.1     alnsn 	default:
   1692   1.7     alnsn 		BJ_ASSERT(false);
   1693   1.1     alnsn 		return 0;
   1694   1.1     alnsn 	}
   1695   1.1     alnsn }
   1696   1.1     alnsn 
   1697  1.19     alnsn static bool
   1698  1.32     alnsn generate_insn_code(struct sljit_compiler *compiler, bpfjit_hint_t hints,
   1699  1.32     alnsn     const bpf_ctx_t *bc, const struct bpf_insn *insns,
   1700  1.32     alnsn     struct bpfjit_insn_data *insn_dat, size_t insn_count)
   1701   1.1     alnsn {
   1702   1.1     alnsn 	/* a list of jumps to out-of-bound return from a generated function */
   1703   1.1     alnsn 	struct sljit_jump **ret0;
   1704   1.7     alnsn 	size_t ret0_size, ret0_maxsize;
   1705   1.1     alnsn 
   1706  1.19     alnsn 	struct sljit_jump *jump;
   1707  1.19     alnsn 	struct sljit_label *label;
   1708   1.7     alnsn 	const struct bpf_insn *pc;
   1709   1.1     alnsn 	struct bpfjit_jump *bjump, *jtf;
   1710   1.1     alnsn 	struct sljit_jump *to_mchain_jump;
   1711   1.1     alnsn 
   1712  1.19     alnsn 	size_t i;
   1713  1.46     alnsn 	unsigned int rval, mode, src, op;
   1714  1.19     alnsn 	int branching, negate;
   1715  1.46     alnsn 	int status, cond, op2;
   1716   1.1     alnsn 	uint32_t jt, jf;
   1717   1.1     alnsn 
   1718  1.19     alnsn 	bool unconditional_ret;
   1719  1.19     alnsn 	bool rv;
   1720  1.19     alnsn 
   1721  1.19     alnsn 	const size_t extwords = GET_EXTWORDS(bc);
   1722  1.19     alnsn 	const size_t memwords = GET_MEMWORDS(bc);
   1723  1.13     alnsn 
   1724  1.13     alnsn 	ret0 = NULL;
   1725  1.19     alnsn 	rv = false;
   1726   1.7     alnsn 
   1727   1.1     alnsn 	ret0_size = 0;
   1728   1.7     alnsn 	ret0_maxsize = 64;
   1729   1.7     alnsn 	ret0 = BJ_ALLOC(ret0_maxsize * sizeof(ret0[0]));
   1730   1.7     alnsn 	if (ret0 == NULL)
   1731   1.1     alnsn 		goto fail;
   1732   1.1     alnsn 
   1733  1.24     alnsn 	/* reset sjump members of jdata */
   1734  1.24     alnsn 	for (i = 0; i < insn_count; i++) {
   1735  1.24     alnsn 		if (insn_dat[i].unreachable ||
   1736  1.24     alnsn 		    BPF_CLASS(insns[i].code) != BPF_JMP) {
   1737  1.24     alnsn 			continue;
   1738  1.24     alnsn 		}
   1739  1.24     alnsn 
   1740  1.24     alnsn 		jtf = insn_dat[i].u.jdata.jtf;
   1741  1.24     alnsn 		jtf[0].sjump = jtf[1].sjump = NULL;
   1742  1.24     alnsn 	}
   1743  1.24     alnsn 
   1744  1.24     alnsn 	/* main loop */
   1745   1.1     alnsn 	for (i = 0; i < insn_count; i++) {
   1746   1.7     alnsn 		if (insn_dat[i].unreachable)
   1747   1.1     alnsn 			continue;
   1748   1.1     alnsn 
   1749   1.1     alnsn 		/*
   1750   1.1     alnsn 		 * Resolve jumps to the current insn.
   1751   1.1     alnsn 		 */
   1752   1.1     alnsn 		label = NULL;
   1753   1.7     alnsn 		SLIST_FOREACH(bjump, &insn_dat[i].bjumps, entries) {
   1754   1.7     alnsn 			if (bjump->sjump != NULL) {
   1755   1.1     alnsn 				if (label == NULL)
   1756   1.1     alnsn 					label = sljit_emit_label(compiler);
   1757   1.1     alnsn 				if (label == NULL)
   1758   1.1     alnsn 					goto fail;
   1759   1.7     alnsn 				sljit_set_label(bjump->sjump, label);
   1760   1.1     alnsn 			}
   1761   1.1     alnsn 		}
   1762   1.1     alnsn 
   1763   1.9     alnsn 		to_mchain_jump = NULL;
   1764   1.9     alnsn 		unconditional_ret = false;
   1765   1.9     alnsn 
   1766   1.9     alnsn 		if (read_pkt_insn(&insns[i], NULL)) {
   1767   1.9     alnsn 			if (insn_dat[i].u.rdata.check_length > UINT32_MAX) {
   1768   1.9     alnsn 				/* Jump to "return 0" unconditionally. */
   1769   1.9     alnsn 				unconditional_ret = true;
   1770   1.9     alnsn 				jump = sljit_emit_jump(compiler, SLJIT_JUMP);
   1771   1.9     alnsn 				if (jump == NULL)
   1772   1.9     alnsn 					goto fail;
   1773   1.9     alnsn 				if (!append_jump(jump, &ret0,
   1774   1.9     alnsn 				    &ret0_size, &ret0_maxsize))
   1775   1.9     alnsn 					goto fail;
   1776   1.9     alnsn 			} else if (insn_dat[i].u.rdata.check_length > 0) {
   1777   1.9     alnsn 				/* if (buflen < check_length) return 0; */
   1778   1.9     alnsn 				jump = sljit_emit_cmp(compiler,
   1779  1.45     alnsn 				    SLJIT_LESS,
   1780   1.9     alnsn 				    BJ_BUFLEN, 0,
   1781   1.9     alnsn 				    SLJIT_IMM,
   1782   1.9     alnsn 				    insn_dat[i].u.rdata.check_length);
   1783   1.9     alnsn 				if (jump == NULL)
   1784   1.9     alnsn 					goto fail;
   1785   1.1     alnsn #ifdef _KERNEL
   1786   1.9     alnsn 				to_mchain_jump = jump;
   1787   1.1     alnsn #else
   1788   1.9     alnsn 				if (!append_jump(jump, &ret0,
   1789   1.9     alnsn 				    &ret0_size, &ret0_maxsize))
   1790   1.9     alnsn 					goto fail;
   1791   1.1     alnsn #endif
   1792   1.9     alnsn 			}
   1793   1.1     alnsn 		}
   1794   1.1     alnsn 
   1795   1.1     alnsn 		pc = &insns[i];
   1796   1.1     alnsn 		switch (BPF_CLASS(pc->code)) {
   1797   1.1     alnsn 
   1798   1.1     alnsn 		default:
   1799   1.1     alnsn 			goto fail;
   1800   1.1     alnsn 
   1801   1.1     alnsn 		case BPF_LD:
   1802   1.1     alnsn 			/* BPF_LD+BPF_IMM          A <- k */
   1803   1.1     alnsn 			if (pc->code == (BPF_LD|BPF_IMM)) {
   1804   1.1     alnsn 				status = sljit_emit_op1(compiler,
   1805   1.1     alnsn 				    SLJIT_MOV,
   1806   1.7     alnsn 				    BJ_AREG, 0,
   1807   1.1     alnsn 				    SLJIT_IMM, (uint32_t)pc->k);
   1808   1.1     alnsn 				if (status != SLJIT_SUCCESS)
   1809   1.1     alnsn 					goto fail;
   1810   1.1     alnsn 
   1811   1.1     alnsn 				continue;
   1812   1.1     alnsn 			}
   1813   1.1     alnsn 
   1814   1.1     alnsn 			/* BPF_LD+BPF_MEM          A <- M[k] */
   1815   1.1     alnsn 			if (pc->code == (BPF_LD|BPF_MEM)) {
   1816  1.13     alnsn 				if ((uint32_t)pc->k >= memwords)
   1817   1.1     alnsn 					goto fail;
   1818  1.13     alnsn 				status = emit_memload(compiler,
   1819  1.13     alnsn 				    BJ_AREG, pc->k, extwords);
   1820   1.1     alnsn 				if (status != SLJIT_SUCCESS)
   1821   1.1     alnsn 					goto fail;
   1822   1.1     alnsn 
   1823   1.1     alnsn 				continue;
   1824   1.1     alnsn 			}
   1825   1.1     alnsn 
   1826   1.1     alnsn 			/* BPF_LD+BPF_W+BPF_LEN    A <- len */
   1827   1.1     alnsn 			if (pc->code == (BPF_LD|BPF_W|BPF_LEN)) {
   1828   1.1     alnsn 				status = sljit_emit_op1(compiler,
   1829  1.21     alnsn 				    SLJIT_MOV, /* size_t source */
   1830   1.7     alnsn 				    BJ_AREG, 0,
   1831  1.13     alnsn 				    SLJIT_MEM1(BJ_ARGS),
   1832  1.13     alnsn 				    offsetof(struct bpf_args, wirelen));
   1833   1.1     alnsn 				if (status != SLJIT_SUCCESS)
   1834   1.1     alnsn 					goto fail;
   1835   1.1     alnsn 
   1836   1.1     alnsn 				continue;
   1837   1.1     alnsn 			}
   1838   1.1     alnsn 
   1839   1.1     alnsn 			mode = BPF_MODE(pc->code);
   1840   1.1     alnsn 			if (mode != BPF_ABS && mode != BPF_IND)
   1841   1.1     alnsn 				goto fail;
   1842   1.1     alnsn 
   1843   1.9     alnsn 			if (unconditional_ret)
   1844   1.9     alnsn 				continue;
   1845   1.9     alnsn 
   1846  1.32     alnsn 			status = emit_pkt_read(compiler, hints, pc,
   1847   1.7     alnsn 			    to_mchain_jump, &ret0, &ret0_size, &ret0_maxsize);
   1848   1.1     alnsn 			if (status != SLJIT_SUCCESS)
   1849   1.1     alnsn 				goto fail;
   1850   1.1     alnsn 
   1851   1.1     alnsn 			continue;
   1852   1.1     alnsn 
   1853   1.1     alnsn 		case BPF_LDX:
   1854   1.1     alnsn 			mode = BPF_MODE(pc->code);
   1855   1.1     alnsn 
   1856   1.1     alnsn 			/* BPF_LDX+BPF_W+BPF_IMM    X <- k */
   1857   1.1     alnsn 			if (mode == BPF_IMM) {
   1858   1.1     alnsn 				if (BPF_SIZE(pc->code) != BPF_W)
   1859   1.1     alnsn 					goto fail;
   1860   1.1     alnsn 				status = sljit_emit_op1(compiler,
   1861   1.1     alnsn 				    SLJIT_MOV,
   1862   1.7     alnsn 				    BJ_XREG, 0,
   1863   1.1     alnsn 				    SLJIT_IMM, (uint32_t)pc->k);
   1864   1.1     alnsn 				if (status != SLJIT_SUCCESS)
   1865   1.1     alnsn 					goto fail;
   1866   1.1     alnsn 
   1867   1.1     alnsn 				continue;
   1868   1.1     alnsn 			}
   1869   1.1     alnsn 
   1870   1.1     alnsn 			/* BPF_LDX+BPF_W+BPF_LEN    X <- len */
   1871   1.1     alnsn 			if (mode == BPF_LEN) {
   1872   1.1     alnsn 				if (BPF_SIZE(pc->code) != BPF_W)
   1873   1.1     alnsn 					goto fail;
   1874   1.1     alnsn 				status = sljit_emit_op1(compiler,
   1875  1.21     alnsn 				    SLJIT_MOV, /* size_t source */
   1876   1.7     alnsn 				    BJ_XREG, 0,
   1877  1.13     alnsn 				    SLJIT_MEM1(BJ_ARGS),
   1878  1.13     alnsn 				    offsetof(struct bpf_args, wirelen));
   1879   1.1     alnsn 				if (status != SLJIT_SUCCESS)
   1880   1.1     alnsn 					goto fail;
   1881   1.1     alnsn 
   1882   1.1     alnsn 				continue;
   1883   1.1     alnsn 			}
   1884   1.1     alnsn 
   1885   1.1     alnsn 			/* BPF_LDX+BPF_W+BPF_MEM    X <- M[k] */
   1886   1.1     alnsn 			if (mode == BPF_MEM) {
   1887   1.1     alnsn 				if (BPF_SIZE(pc->code) != BPF_W)
   1888   1.1     alnsn 					goto fail;
   1889  1.13     alnsn 				if ((uint32_t)pc->k >= memwords)
   1890   1.1     alnsn 					goto fail;
   1891  1.13     alnsn 				status = emit_memload(compiler,
   1892  1.13     alnsn 				    BJ_XREG, pc->k, extwords);
   1893   1.1     alnsn 				if (status != SLJIT_SUCCESS)
   1894   1.1     alnsn 					goto fail;
   1895   1.1     alnsn 
   1896   1.1     alnsn 				continue;
   1897   1.1     alnsn 			}
   1898   1.1     alnsn 
   1899   1.1     alnsn 			/* BPF_LDX+BPF_B+BPF_MSH    X <- 4*(P[k:1]&0xf) */
   1900   1.1     alnsn 			if (mode != BPF_MSH || BPF_SIZE(pc->code) != BPF_B)
   1901   1.1     alnsn 				goto fail;
   1902   1.1     alnsn 
   1903   1.9     alnsn 			if (unconditional_ret)
   1904   1.9     alnsn 				continue;
   1905   1.9     alnsn 
   1906  1.32     alnsn 			status = emit_msh(compiler, hints, pc,
   1907   1.7     alnsn 			    to_mchain_jump, &ret0, &ret0_size, &ret0_maxsize);
   1908   1.1     alnsn 			if (status != SLJIT_SUCCESS)
   1909   1.1     alnsn 				goto fail;
   1910   1.1     alnsn 
   1911   1.1     alnsn 			continue;
   1912   1.1     alnsn 
   1913   1.1     alnsn 		case BPF_ST:
   1914   1.8     alnsn 			if (pc->code != BPF_ST ||
   1915  1.13     alnsn 			    (uint32_t)pc->k >= memwords) {
   1916   1.1     alnsn 				goto fail;
   1917   1.8     alnsn 			}
   1918   1.1     alnsn 
   1919  1.13     alnsn 			status = emit_memstore(compiler,
   1920  1.13     alnsn 			    BJ_AREG, pc->k, extwords);
   1921   1.1     alnsn 			if (status != SLJIT_SUCCESS)
   1922   1.1     alnsn 				goto fail;
   1923   1.1     alnsn 
   1924   1.1     alnsn 			continue;
   1925   1.1     alnsn 
   1926   1.1     alnsn 		case BPF_STX:
   1927   1.8     alnsn 			if (pc->code != BPF_STX ||
   1928  1.13     alnsn 			    (uint32_t)pc->k >= memwords) {
   1929   1.1     alnsn 				goto fail;
   1930   1.8     alnsn 			}
   1931   1.1     alnsn 
   1932  1.13     alnsn 			status = emit_memstore(compiler,
   1933  1.13     alnsn 			    BJ_XREG, pc->k, extwords);
   1934   1.1     alnsn 			if (status != SLJIT_SUCCESS)
   1935   1.1     alnsn 				goto fail;
   1936   1.1     alnsn 
   1937   1.1     alnsn 			continue;
   1938   1.1     alnsn 
   1939   1.1     alnsn 		case BPF_ALU:
   1940   1.1     alnsn 			if (pc->code == (BPF_ALU|BPF_NEG)) {
   1941   1.1     alnsn 				status = sljit_emit_op1(compiler,
   1942   1.1     alnsn 				    SLJIT_NEG,
   1943   1.7     alnsn 				    BJ_AREG, 0,
   1944   1.7     alnsn 				    BJ_AREG, 0);
   1945   1.1     alnsn 				if (status != SLJIT_SUCCESS)
   1946   1.1     alnsn 					goto fail;
   1947   1.1     alnsn 
   1948   1.1     alnsn 				continue;
   1949   1.1     alnsn 			}
   1950   1.1     alnsn 
   1951  1.33  christos 			op = BPF_OP(pc->code);
   1952  1.33  christos 			if (op != BPF_DIV && op != BPF_MOD) {
   1953  1.46     alnsn 				if (!alu_to_op(pc, &op2))
   1954  1.46     alnsn 					goto fail;
   1955  1.39     alnsn 
   1956   1.1     alnsn 				status = sljit_emit_op2(compiler,
   1957  1.39     alnsn 				    op2, BJ_AREG, 0, BJ_AREG, 0,
   1958   1.1     alnsn 				    kx_to_reg(pc), kx_to_reg_arg(pc));
   1959   1.1     alnsn 				if (status != SLJIT_SUCCESS)
   1960   1.1     alnsn 					goto fail;
   1961   1.1     alnsn 
   1962   1.1     alnsn 				continue;
   1963   1.1     alnsn 			}
   1964   1.1     alnsn 
   1965  1.33  christos 			/* BPF_DIV/BPF_MOD */
   1966   1.1     alnsn 
   1967   1.1     alnsn 			src = BPF_SRC(pc->code);
   1968   1.1     alnsn 			if (src != BPF_X && src != BPF_K)
   1969   1.1     alnsn 				goto fail;
   1970   1.1     alnsn 
   1971   1.1     alnsn 			/* division by zero? */
   1972   1.1     alnsn 			if (src == BPF_X) {
   1973   1.1     alnsn 				jump = sljit_emit_cmp(compiler,
   1974  1.45     alnsn 				    SLJIT_EQUAL|SLJIT_I32_OP,
   1975   1.8     alnsn 				    BJ_XREG, 0,
   1976   1.1     alnsn 				    SLJIT_IMM, 0);
   1977   1.1     alnsn 				if (jump == NULL)
   1978   1.1     alnsn 					goto fail;
   1979   1.7     alnsn 				if (!append_jump(jump, &ret0,
   1980   1.7     alnsn 				    &ret0_size, &ret0_maxsize))
   1981   1.7     alnsn 					goto fail;
   1982   1.1     alnsn 			} else if (pc->k == 0) {
   1983   1.1     alnsn 				jump = sljit_emit_jump(compiler, SLJIT_JUMP);
   1984   1.1     alnsn 				if (jump == NULL)
   1985   1.1     alnsn 					goto fail;
   1986   1.7     alnsn 				if (!append_jump(jump, &ret0,
   1987   1.7     alnsn 				    &ret0_size, &ret0_maxsize))
   1988   1.7     alnsn 					goto fail;
   1989   1.1     alnsn 			}
   1990   1.1     alnsn 
   1991   1.1     alnsn 			if (src == BPF_X) {
   1992  1.35     alnsn 				status = emit_moddiv(compiler, pc);
   1993   1.1     alnsn 				if (status != SLJIT_SUCCESS)
   1994   1.1     alnsn 					goto fail;
   1995   1.1     alnsn 			} else if (pc->k != 0) {
   1996  1.35     alnsn 				if (pc->k & (pc->k - 1)) {
   1997  1.35     alnsn 					status = emit_moddiv(compiler, pc);
   1998   1.1     alnsn 				} else {
   1999  1.35     alnsn 					status = emit_pow2_moddiv(compiler, pc);
   2000   1.1     alnsn 				}
   2001   1.1     alnsn 				if (status != SLJIT_SUCCESS)
   2002   1.1     alnsn 					goto fail;
   2003   1.1     alnsn 			}
   2004   1.1     alnsn 
   2005   1.1     alnsn 			continue;
   2006   1.1     alnsn 
   2007   1.1     alnsn 		case BPF_JMP:
   2008  1.33  christos 			op = BPF_OP(pc->code);
   2009  1.33  christos 			if (op == BPF_JA) {
   2010   1.1     alnsn 				jt = jf = pc->k;
   2011   1.1     alnsn 			} else {
   2012   1.1     alnsn 				jt = pc->jt;
   2013   1.1     alnsn 				jf = pc->jf;
   2014   1.1     alnsn 			}
   2015   1.1     alnsn 
   2016   1.1     alnsn 			negate = (jt == 0) ? 1 : 0;
   2017   1.1     alnsn 			branching = (jt == jf) ? 0 : 1;
   2018   1.7     alnsn 			jtf = insn_dat[i].u.jdata.jtf;
   2019   1.1     alnsn 
   2020   1.1     alnsn 			if (branching) {
   2021  1.33  christos 				if (op != BPF_JSET) {
   2022  1.46     alnsn 					if (!jmp_to_cond(pc, negate, &cond))
   2023  1.46     alnsn 						goto fail;
   2024   1.1     alnsn 					jump = sljit_emit_cmp(compiler,
   2025  1.46     alnsn 					    cond, BJ_AREG, 0,
   2026   1.1     alnsn 					    kx_to_reg(pc), kx_to_reg_arg(pc));
   2027   1.1     alnsn 				} else {
   2028   1.1     alnsn 					status = sljit_emit_op2(compiler,
   2029   1.1     alnsn 					    SLJIT_AND,
   2030   1.7     alnsn 					    BJ_TMP1REG, 0,
   2031   1.7     alnsn 					    BJ_AREG, 0,
   2032   1.1     alnsn 					    kx_to_reg(pc), kx_to_reg_arg(pc));
   2033   1.1     alnsn 					if (status != SLJIT_SUCCESS)
   2034   1.1     alnsn 						goto fail;
   2035   1.1     alnsn 
   2036  1.46     alnsn 					if (!jmp_to_cond(pc, negate, &cond))
   2037  1.46     alnsn 						goto fail;
   2038   1.1     alnsn 					jump = sljit_emit_cmp(compiler,
   2039  1.46     alnsn 					    cond, BJ_TMP1REG, 0, SLJIT_IMM, 0);
   2040   1.1     alnsn 				}
   2041   1.1     alnsn 
   2042   1.1     alnsn 				if (jump == NULL)
   2043   1.1     alnsn 					goto fail;
   2044   1.1     alnsn 
   2045   1.7     alnsn 				BJ_ASSERT(jtf[negate].sjump == NULL);
   2046   1.7     alnsn 				jtf[negate].sjump = jump;
   2047   1.1     alnsn 			}
   2048   1.1     alnsn 
   2049   1.1     alnsn 			if (!branching || (jt != 0 && jf != 0)) {
   2050   1.1     alnsn 				jump = sljit_emit_jump(compiler, SLJIT_JUMP);
   2051   1.1     alnsn 				if (jump == NULL)
   2052   1.1     alnsn 					goto fail;
   2053   1.1     alnsn 
   2054   1.7     alnsn 				BJ_ASSERT(jtf[branching].sjump == NULL);
   2055   1.7     alnsn 				jtf[branching].sjump = jump;
   2056   1.1     alnsn 			}
   2057   1.1     alnsn 
   2058   1.1     alnsn 			continue;
   2059   1.1     alnsn 
   2060   1.1     alnsn 		case BPF_RET:
   2061   1.1     alnsn 			rval = BPF_RVAL(pc->code);
   2062   1.1     alnsn 			if (rval == BPF_X)
   2063   1.1     alnsn 				goto fail;
   2064   1.1     alnsn 
   2065   1.1     alnsn 			/* BPF_RET+BPF_K    accept k bytes */
   2066   1.1     alnsn 			if (rval == BPF_K) {
   2067   1.7     alnsn 				status = sljit_emit_return(compiler,
   2068  1.45     alnsn 				    SLJIT_MOV_U32,
   2069   1.1     alnsn 				    SLJIT_IMM, (uint32_t)pc->k);
   2070   1.1     alnsn 				if (status != SLJIT_SUCCESS)
   2071   1.1     alnsn 					goto fail;
   2072   1.1     alnsn 			}
   2073   1.1     alnsn 
   2074   1.1     alnsn 			/* BPF_RET+BPF_A    accept A bytes */
   2075   1.1     alnsn 			if (rval == BPF_A) {
   2076   1.7     alnsn 				status = sljit_emit_return(compiler,
   2077  1.45     alnsn 				    SLJIT_MOV_U32,
   2078   1.7     alnsn 				    BJ_AREG, 0);
   2079   1.1     alnsn 				if (status != SLJIT_SUCCESS)
   2080   1.1     alnsn 					goto fail;
   2081   1.1     alnsn 			}
   2082   1.1     alnsn 
   2083   1.1     alnsn 			continue;
   2084   1.1     alnsn 
   2085   1.1     alnsn 		case BPF_MISC:
   2086   1.7     alnsn 			switch (BPF_MISCOP(pc->code)) {
   2087   1.7     alnsn 			case BPF_TAX:
   2088   1.1     alnsn 				status = sljit_emit_op1(compiler,
   2089  1.45     alnsn 				    SLJIT_MOV_U32,
   2090   1.7     alnsn 				    BJ_XREG, 0,
   2091   1.7     alnsn 				    BJ_AREG, 0);
   2092   1.1     alnsn 				if (status != SLJIT_SUCCESS)
   2093   1.1     alnsn 					goto fail;
   2094   1.1     alnsn 
   2095   1.1     alnsn 				continue;
   2096   1.1     alnsn 
   2097   1.7     alnsn 			case BPF_TXA:
   2098   1.1     alnsn 				status = sljit_emit_op1(compiler,
   2099   1.1     alnsn 				    SLJIT_MOV,
   2100   1.7     alnsn 				    BJ_AREG, 0,
   2101   1.7     alnsn 				    BJ_XREG, 0);
   2102   1.1     alnsn 				if (status != SLJIT_SUCCESS)
   2103   1.1     alnsn 					goto fail;
   2104   1.1     alnsn 
   2105   1.1     alnsn 				continue;
   2106  1.13     alnsn 
   2107  1.13     alnsn 			case BPF_COP:
   2108  1.13     alnsn 			case BPF_COPX:
   2109  1.13     alnsn 				if (bc == NULL || bc->copfuncs == NULL)
   2110  1.13     alnsn 					goto fail;
   2111  1.13     alnsn 				if (BPF_MISCOP(pc->code) == BPF_COP &&
   2112  1.13     alnsn 				    (uint32_t)pc->k >= bc->nfuncs) {
   2113  1.13     alnsn 					goto fail;
   2114  1.13     alnsn 				}
   2115  1.13     alnsn 
   2116  1.32     alnsn 				status = emit_cop(compiler, hints, bc, pc,
   2117  1.28     alnsn 				    &ret0, &ret0_size, &ret0_maxsize);
   2118  1.13     alnsn 				if (status != SLJIT_SUCCESS)
   2119  1.13     alnsn 					goto fail;
   2120  1.13     alnsn 
   2121  1.13     alnsn 				continue;
   2122   1.1     alnsn 			}
   2123   1.1     alnsn 
   2124   1.1     alnsn 			goto fail;
   2125   1.1     alnsn 		} /* switch */
   2126   1.1     alnsn 	} /* main loop */
   2127   1.1     alnsn 
   2128   1.7     alnsn 	BJ_ASSERT(ret0_size <= ret0_maxsize);
   2129   1.1     alnsn 
   2130   1.7     alnsn 	if (ret0_size > 0) {
   2131   1.1     alnsn 		label = sljit_emit_label(compiler);
   2132   1.1     alnsn 		if (label == NULL)
   2133   1.1     alnsn 			goto fail;
   2134   1.7     alnsn 		for (i = 0; i < ret0_size; i++)
   2135   1.7     alnsn 			sljit_set_label(ret0[i], label);
   2136   1.1     alnsn 	}
   2137   1.1     alnsn 
   2138  1.23     alnsn 	status = sljit_emit_return(compiler,
   2139  1.45     alnsn 	    SLJIT_MOV_U32,
   2140  1.23     alnsn 	    SLJIT_IMM, 0);
   2141  1.23     alnsn 	if (status != SLJIT_SUCCESS)
   2142  1.23     alnsn 		goto fail;
   2143  1.23     alnsn 
   2144  1.19     alnsn 	rv = true;
   2145  1.19     alnsn 
   2146  1.19     alnsn fail:
   2147  1.19     alnsn 	if (ret0 != NULL)
   2148  1.19     alnsn 		BJ_FREE(ret0, ret0_maxsize * sizeof(ret0[0]));
   2149  1.19     alnsn 
   2150  1.19     alnsn 	return rv;
   2151  1.19     alnsn }
   2152  1.19     alnsn 
   2153  1.19     alnsn bpfjit_func_t
   2154  1.19     alnsn bpfjit_generate_code(const bpf_ctx_t *bc,
   2155  1.19     alnsn     const struct bpf_insn *insns, size_t insn_count)
   2156  1.19     alnsn {
   2157  1.19     alnsn 	void *rv;
   2158  1.19     alnsn 	struct sljit_compiler *compiler;
   2159  1.19     alnsn 
   2160  1.19     alnsn 	size_t i;
   2161  1.19     alnsn 	int status;
   2162  1.19     alnsn 
   2163  1.19     alnsn 	/* optimization related */
   2164  1.19     alnsn 	bpf_memword_init_t initmask;
   2165  1.20     alnsn 	bpfjit_hint_t hints;
   2166  1.19     alnsn 
   2167  1.19     alnsn 	/* memory store location for initial zero initialization */
   2168  1.45     alnsn 	sljit_s32 mem_reg;
   2169  1.19     alnsn 	sljit_sw mem_off;
   2170  1.19     alnsn 
   2171  1.19     alnsn 	struct bpfjit_insn_data *insn_dat;
   2172  1.19     alnsn 
   2173  1.19     alnsn 	const size_t extwords = GET_EXTWORDS(bc);
   2174  1.19     alnsn 	const size_t memwords = GET_MEMWORDS(bc);
   2175  1.19     alnsn 	const bpf_memword_init_t preinited = extwords ? bc->preinited : 0;
   2176  1.19     alnsn 
   2177  1.19     alnsn 	rv = NULL;
   2178  1.19     alnsn 	compiler = NULL;
   2179  1.19     alnsn 	insn_dat = NULL;
   2180  1.19     alnsn 
   2181  1.19     alnsn 	if (memwords > MAX_MEMWORDS)
   2182  1.19     alnsn 		goto fail;
   2183  1.19     alnsn 
   2184  1.19     alnsn 	if (insn_count == 0 || insn_count > SIZE_MAX / sizeof(insn_dat[0]))
   2185  1.19     alnsn 		goto fail;
   2186  1.19     alnsn 
   2187  1.19     alnsn 	insn_dat = BJ_ALLOC(insn_count * sizeof(insn_dat[0]));
   2188  1.19     alnsn 	if (insn_dat == NULL)
   2189  1.19     alnsn 		goto fail;
   2190  1.19     alnsn 
   2191  1.20     alnsn 	if (!optimize(bc, insns, insn_dat, insn_count, &initmask, &hints))
   2192  1.19     alnsn 		goto fail;
   2193  1.19     alnsn 
   2194  1.45     alnsn 	compiler = sljit_create_compiler(NULL);
   2195  1.19     alnsn 	if (compiler == NULL)
   2196  1.19     alnsn 		goto fail;
   2197  1.19     alnsn 
   2198  1.19     alnsn #if !defined(_KERNEL) && defined(SLJIT_VERBOSE) && SLJIT_VERBOSE
   2199  1.19     alnsn 	sljit_compiler_verbose(compiler, stderr);
   2200  1.19     alnsn #endif
   2201  1.19     alnsn 
   2202  1.45     alnsn 	status = sljit_emit_enter(compiler, 0, 2, nscratches(hints),
   2203  1.45     alnsn 	    NSAVEDS, 0, 0, sizeof(struct bpfjit_stack));
   2204  1.19     alnsn 	if (status != SLJIT_SUCCESS)
   2205  1.19     alnsn 		goto fail;
   2206  1.19     alnsn 
   2207  1.20     alnsn 	if (hints & BJ_HINT_COP) {
   2208  1.19     alnsn 		/* save ctx argument */
   2209  1.19     alnsn 		status = sljit_emit_op1(compiler,
   2210  1.19     alnsn 		    SLJIT_MOV_P,
   2211  1.45     alnsn 		    SLJIT_MEM1(SLJIT_SP),
   2212  1.19     alnsn 		    offsetof(struct bpfjit_stack, ctx),
   2213  1.19     alnsn 		    BJ_CTX_ARG, 0);
   2214  1.19     alnsn 		if (status != SLJIT_SUCCESS)
   2215  1.19     alnsn 			goto fail;
   2216  1.19     alnsn 	}
   2217  1.19     alnsn 
   2218  1.19     alnsn 	if (extwords == 0) {
   2219  1.45     alnsn 		mem_reg = SLJIT_MEM1(SLJIT_SP);
   2220  1.19     alnsn 		mem_off = offsetof(struct bpfjit_stack, mem);
   2221  1.19     alnsn 	} else {
   2222  1.19     alnsn 		/* copy "mem" argument from bpf_args to bpfjit_stack */
   2223  1.19     alnsn 		status = sljit_emit_op1(compiler,
   2224  1.19     alnsn 		    SLJIT_MOV_P,
   2225  1.19     alnsn 		    BJ_TMP1REG, 0,
   2226  1.19     alnsn 		    SLJIT_MEM1(BJ_ARGS), offsetof(struct bpf_args, mem));
   2227  1.19     alnsn 		if (status != SLJIT_SUCCESS)
   2228  1.19     alnsn 			goto fail;
   2229  1.19     alnsn 
   2230  1.19     alnsn 		status = sljit_emit_op1(compiler,
   2231  1.19     alnsn 		    SLJIT_MOV_P,
   2232  1.45     alnsn 		    SLJIT_MEM1(SLJIT_SP),
   2233  1.19     alnsn 		    offsetof(struct bpfjit_stack, extmem),
   2234  1.19     alnsn 		    BJ_TMP1REG, 0);
   2235  1.19     alnsn 		if (status != SLJIT_SUCCESS)
   2236  1.19     alnsn 			goto fail;
   2237  1.19     alnsn 
   2238  1.19     alnsn 		mem_reg = SLJIT_MEM1(BJ_TMP1REG);
   2239  1.19     alnsn 		mem_off = 0;
   2240  1.19     alnsn 	}
   2241  1.19     alnsn 
   2242  1.19     alnsn 	/*
   2243  1.19     alnsn 	 * Exclude pre-initialised external memory words but keep
   2244  1.19     alnsn 	 * initialization statuses of A and X registers in case
   2245  1.19     alnsn 	 * bc->preinited wrongly sets those two bits.
   2246  1.19     alnsn 	 */
   2247  1.19     alnsn 	initmask &= ~preinited | BJ_INIT_ABIT | BJ_INIT_XBIT;
   2248  1.19     alnsn 
   2249  1.19     alnsn #if defined(_KERNEL)
   2250  1.19     alnsn 	/* bpf_filter() checks initialization of memwords. */
   2251  1.19     alnsn 	BJ_ASSERT((initmask & (BJ_INIT_MBIT(memwords) - 1)) == 0);
   2252  1.19     alnsn #endif
   2253  1.19     alnsn 	for (i = 0; i < memwords; i++) {
   2254  1.19     alnsn 		if (initmask & BJ_INIT_MBIT(i)) {
   2255  1.19     alnsn 			/* M[i] = 0; */
   2256  1.19     alnsn 			status = sljit_emit_op1(compiler,
   2257  1.45     alnsn 			    SLJIT_MOV_U32,
   2258  1.19     alnsn 			    mem_reg, mem_off + i * sizeof(uint32_t),
   2259  1.19     alnsn 			    SLJIT_IMM, 0);
   2260  1.19     alnsn 			if (status != SLJIT_SUCCESS)
   2261  1.19     alnsn 				goto fail;
   2262  1.19     alnsn 		}
   2263  1.19     alnsn 	}
   2264  1.19     alnsn 
   2265  1.19     alnsn 	if (initmask & BJ_INIT_ABIT) {
   2266  1.19     alnsn 		/* A = 0; */
   2267  1.19     alnsn 		status = sljit_emit_op1(compiler,
   2268  1.19     alnsn 		    SLJIT_MOV,
   2269  1.19     alnsn 		    BJ_AREG, 0,
   2270  1.19     alnsn 		    SLJIT_IMM, 0);
   2271  1.19     alnsn 		if (status != SLJIT_SUCCESS)
   2272  1.19     alnsn 			goto fail;
   2273  1.19     alnsn 	}
   2274  1.19     alnsn 
   2275  1.19     alnsn 	if (initmask & BJ_INIT_XBIT) {
   2276  1.19     alnsn 		/* X = 0; */
   2277  1.19     alnsn 		status = sljit_emit_op1(compiler,
   2278  1.19     alnsn 		    SLJIT_MOV,
   2279  1.19     alnsn 		    BJ_XREG, 0,
   2280  1.19     alnsn 		    SLJIT_IMM, 0);
   2281  1.19     alnsn 		if (status != SLJIT_SUCCESS)
   2282  1.19     alnsn 			goto fail;
   2283  1.19     alnsn 	}
   2284  1.19     alnsn 
   2285  1.19     alnsn 	status = load_buf_buflen(compiler);
   2286  1.19     alnsn 	if (status != SLJIT_SUCCESS)
   2287  1.19     alnsn 		goto fail;
   2288  1.19     alnsn 
   2289  1.32     alnsn 	if (!generate_insn_code(compiler, hints,
   2290  1.32     alnsn 	    bc, insns, insn_dat, insn_count)) {
   2291  1.19     alnsn 		goto fail;
   2292  1.32     alnsn 	}
   2293  1.19     alnsn 
   2294   1.1     alnsn 	rv = sljit_generate_code(compiler);
   2295   1.1     alnsn 
   2296   1.1     alnsn fail:
   2297   1.1     alnsn 	if (compiler != NULL)
   2298   1.1     alnsn 		sljit_free_compiler(compiler);
   2299   1.1     alnsn 
   2300   1.1     alnsn 	if (insn_dat != NULL)
   2301   1.7     alnsn 		BJ_FREE(insn_dat, insn_count * sizeof(insn_dat[0]));
   2302   1.1     alnsn 
   2303   1.4     rmind 	return (bpfjit_func_t)rv;
   2304   1.1     alnsn }
   2305   1.1     alnsn 
   2306   1.1     alnsn void
   2307   1.4     rmind bpfjit_free_code(bpfjit_func_t code)
   2308   1.1     alnsn {
   2309   1.7     alnsn 
   2310   1.1     alnsn 	sljit_free_code((void *)code);
   2311   1.1     alnsn }
   2312